Quercetin-loaded exosomes delivery system prevents myopia progression by targeting endoplasmic reticulum stress and ferroptosis in scleral fibroblasts

Myopia, a predominant cause of visual impairment, is often associated with scleral extracellular matrix (ECM) remodeling and axial elongation. Currently, effective therapeutic strategies for addressing scleral ECM remodeling remain limited, necessitating the development of new treatments. Quercetin,...

Full description

Saved in:
Bibliographic Details
Published inMaterials today bio Vol. 32; p. 101896
Main Authors Zhao, Lianghui, Dong, Xiaoyun, Guo, Bin, Song, Jike, Bi, Hongsheng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Myopia, a predominant cause of visual impairment, is often associated with scleral extracellular matrix (ECM) remodeling and axial elongation. Currently, effective therapeutic strategies for addressing scleral ECM remodeling remain limited, necessitating the development of new treatments. Quercetin, a natural flavonoid, has been shown to alleviate ECM remodeling. However, its hydrophobic nature limits clinical application. To address this, we developed a quercetin-loaded exosome delivery system (Exo-Que) to enhance quercetin bioavailability and investigated its effects and mechanisms in myopia prevention. This system exhibited excellent aqueous solubility, enhanced corneal permeability, and prolonged precorneal retention, enabling low-dose administration with significant efficacy. In the initial phase of treatment, Exo-Que showed a pronounced myopia prevention effect, with reductions of 58.41 % in refractive error progression and 38.46 % in axial length growth after two weeks of treatment. As the treatment duration extended to four weeks, its therapeutic efficacy remained robust, achieving reductions of 59.97 % and 35.85 %, respectively. The therapeutic efficacy of Exo-Que was comparable to that of the 0.1 % atropine group (at two weeks, reducing 59.07 % and 35.9 %, respectively; at four weeks, 59.84 % and 37.74 %, respectively). Mechanistically, Exo-Que inhibited the activation of the IRE1-XBP1, PERK-eIF2, and ATF6 pathways, alleviating endoplasmic reticulum stress. Furthermore, it suppressed ferroptosis by modulating GRP78-ACSL4 and GRP78-GPX4 protein interactions, thus mitigating ECM remodeling and slowing myopia progression. Besides, Exo-Que showed excellent biosafety in both in vitro and in vivo studies. Collectively, these results highlight the promising therapeutic potential of Exo-Que for myopia prevention. [Display omitted]
AbstractList Myopia, a predominant cause of visual impairment, is often associated with scleral extracellular matrix (ECM) remodeling and axial elongation. Currently, effective therapeutic strategies for addressing scleral ECM remodeling remain limited, necessitating the development of new treatments. Quercetin, a natural flavonoid, has been shown to alleviate ECM remodeling. However, its hydrophobic nature limits clinical application. To address this, we developed a quercetin-loaded exosome delivery system (Exo-Que) to enhance quercetin bioavailability and investigated its effects and mechanisms in myopia prevention. This system exhibited excellent aqueous solubility, enhanced corneal permeability, and prolonged precorneal retention, enabling low-dose administration with significant efficacy. In the initial phase of treatment, Exo-Que showed a pronounced myopia prevention effect, with reductions of 58.41 % in refractive error progression and 38.46 % in axial length growth after two weeks of treatment. As the treatment duration extended to four weeks, its therapeutic efficacy remained robust, achieving reductions of 59.97 % and 35.85 %, respectively. The therapeutic efficacy of Exo-Que was comparable to that of the 0.1 % atropine group (at two weeks, reducing 59.07 % and 35.9 %, respectively; at four weeks, 59.84 % and 37.74 %, respectively). Mechanistically, Exo-Que inhibited the activation of the IRE1-XBP1, PERK-eIF2, and ATF6 pathways, alleviating endoplasmic reticulum stress. Furthermore, it suppressed ferroptosis by modulating GRP78-ACSL4 and GRP78-GPX4 protein interactions, thus mitigating ECM remodeling and slowing myopia progression. Besides, Exo-Que showed excellent biosafety in both in vitro and in vivo studies. Collectively, these results highlight the promising therapeutic potential of Exo-Que for myopia prevention. [Display omitted]
Myopia, a predominant cause of visual impairment, is often associated with scleral extracellular matrix (ECM) remodeling and axial elongation. Currently, effective therapeutic strategies for addressing scleral ECM remodeling remain limited, necessitating the development of new treatments. Quercetin, a natural flavonoid, has been shown to alleviate ECM remodeling. However, its hydrophobic nature limits clinical application. To address this, we developed a quercetin-loaded exosome delivery system (Exo-Que) to enhance quercetin bioavailability and investigated its effects and mechanisms in myopia prevention. This system exhibited excellent aqueous solubility, enhanced corneal permeability, and prolonged precorneal retention, enabling low-dose administration with significant efficacy. In the initial phase of treatment, Exo-Que showed a pronounced myopia prevention effect, with reductions of 58.41 % in refractive error progression and 38.46 % in axial length growth after two weeks of treatment. As the treatment duration extended to four weeks, its therapeutic efficacy remained robust, achieving reductions of 59.97 % and 35.85 %, respectively. The therapeutic efficacy of Exo-Que was comparable to that of the 0.1 % atropine group (at two weeks, reducing 59.07 % and 35.9 %, respectively; at four weeks, 59.84 % and 37.74 %, respectively). Mechanistically, Exo-Que inhibited the activation of the IRE1-XBP1, PERK-eIF2, and ATF6 pathways, alleviating endoplasmic reticulum stress. Furthermore, it suppressed ferroptosis by modulating GRP78-ACSL4 and GRP78-GPX4 protein interactions, thus mitigating ECM remodeling and slowing myopia progression. Besides, Exo-Que showed excellent biosafety in both in vitro and in vivo studies. Collectively, these results highlight the promising therapeutic potential of Exo-Que for myopia prevention.
Myopia, a predominant cause of visual impairment, is often associated with scleral extracellular matrix (ECM) remodeling and axial elongation. Currently, effective therapeutic strategies for addressing scleral ECM remodeling remain limited, necessitating the development of new treatments. Quercetin, a natural flavonoid, has been shown to alleviate ECM remodeling. However, its hydrophobic nature limits clinical application. To address this, we developed a quercetin-loaded exosome delivery system (Exo-Que) to enhance quercetin bioavailability and investigated its effects and mechanisms in myopia prevention. This system exhibited excellent aqueous solubility, enhanced corneal permeability, and prolonged precorneal retention, enabling low-dose administration with significant efficacy. In the initial phase of treatment, Exo-Que showed a pronounced myopia prevention effect, with reductions of 58.41 % in refractive error progression and 38.46 % in axial length growth after two weeks of treatment. As the treatment duration extended to four weeks, its therapeutic efficacy remained robust, achieving reductions of 59.97 % and 35.85 %, respectively. The therapeutic efficacy of Exo-Que was comparable to that of the 0.1 % atropine group (at two weeks, reducing 59.07 % and 35.9 %, respectively; at four weeks, 59.84 % and 37.74 %, respectively). Mechanistically, Exo-Que inhibited the activation of the IRE1-XBP1, PERK-eIF2, and ATF6 pathways, alleviating endoplasmic reticulum stress. Furthermore, it suppressed ferroptosis by modulating GRP78-ACSL4 and GRP78-GPX4 protein interactions, thus mitigating ECM remodeling and slowing myopia progression. Besides, Exo-Que showed excellent biosafety in both in vitro and in vivo studies. Collectively, these results highlight the promising therapeutic potential of Exo-Que for myopia prevention.Myopia, a predominant cause of visual impairment, is often associated with scleral extracellular matrix (ECM) remodeling and axial elongation. Currently, effective therapeutic strategies for addressing scleral ECM remodeling remain limited, necessitating the development of new treatments. Quercetin, a natural flavonoid, has been shown to alleviate ECM remodeling. However, its hydrophobic nature limits clinical application. To address this, we developed a quercetin-loaded exosome delivery system (Exo-Que) to enhance quercetin bioavailability and investigated its effects and mechanisms in myopia prevention. This system exhibited excellent aqueous solubility, enhanced corneal permeability, and prolonged precorneal retention, enabling low-dose administration with significant efficacy. In the initial phase of treatment, Exo-Que showed a pronounced myopia prevention effect, with reductions of 58.41 % in refractive error progression and 38.46 % in axial length growth after two weeks of treatment. As the treatment duration extended to four weeks, its therapeutic efficacy remained robust, achieving reductions of 59.97 % and 35.85 %, respectively. The therapeutic efficacy of Exo-Que was comparable to that of the 0.1 % atropine group (at two weeks, reducing 59.07 % and 35.9 %, respectively; at four weeks, 59.84 % and 37.74 %, respectively). Mechanistically, Exo-Que inhibited the activation of the IRE1-XBP1, PERK-eIF2, and ATF6 pathways, alleviating endoplasmic reticulum stress. Furthermore, it suppressed ferroptosis by modulating GRP78-ACSL4 and GRP78-GPX4 protein interactions, thus mitigating ECM remodeling and slowing myopia progression. Besides, Exo-Que showed excellent biosafety in both in vitro and in vivo studies. Collectively, these results highlight the promising therapeutic potential of Exo-Que for myopia prevention.
Myopia, a predominant cause of visual impairment, is often associated with scleral extracellular matrix (ECM) remodeling and axial elongation. Currently, effective therapeutic strategies for addressing scleral ECM remodeling remain limited, necessitating the development of new treatments. Quercetin, a natural flavonoid, has been shown to alleviate ECM remodeling. However, its hydrophobic nature limits clinical application. To address this, we developed a quercetin-loaded exosome delivery system (Exo-Que) to enhance quercetin bioavailability and investigated its effects and mechanisms in myopia prevention. This system exhibited excellent aqueous solubility, enhanced corneal permeability, and prolonged precorneal retention, enabling low-dose administration with significant efficacy. In the initial phase of treatment, Exo-Que showed a pronounced myopia prevention effect, with reductions of 58.41 % in refractive error progression and 38.46 % in axial length growth after two weeks of treatment. As the treatment duration extended to four weeks, its therapeutic efficacy remained robust, achieving reductions of 59.97 % and 35.85 %, respectively. The therapeutic efficacy of Exo-Que was comparable to that of the 0.1 % atropine group (at two weeks, reducing 59.07 % and 35.9 %, respectively; at four weeks, 59.84 % and 37.74 %, respectively). Mechanistically, Exo-Que inhibited the activation of the IRE1-XBP1, PERK-eIF2, and ATF6 pathways, alleviating endoplasmic reticulum stress. Furthermore, it suppressed ferroptosis by modulating GRP78-ACSL4 and GRP78-GPX4 protein interactions, thus mitigating ECM remodeling and slowing myopia progression. Besides, Exo-Que showed excellent biosafety in both in vitro and in vivo studies. Collectively, these results highlight the promising therapeutic potential of Exo-Que for myopia prevention. Image 1
Myopia, a predominant cause of visual impairment, is often associated with scleral extracellular matrix (ECM) remodeling and axial elongation. Currently, effective therapeutic strategies for addressing scleral ECM remodeling remain limited, necessitating the development of new treatments. Quercetin, a natural flavonoid, has been shown to alleviate ECM remodeling. However, its hydrophobic nature limits clinical application. To address this, we developed a quercetin-loaded exosome delivery system (Exo-Que) to enhance quercetin bioavailability and investigated its effects and mechanisms in myopia prevention. This system exhibited excellent aqueous solubility, enhanced corneal permeability, and prolonged precorneal retention, enabling low-dose administration with significant efficacy. In the initial phase of treatment, Exo-Que showed a pronounced myopia prevention effect, with reductions of 58.41 % in refractive error progression and 38.46 % in axial length growth after two weeks of treatment. As the treatment duration extended to four weeks, its therapeutic efficacy remained robust, achieving reductions of 59.97 % and 35.85 %, respectively. The therapeutic efficacy of Exo-Que was comparable to that of the 0.1 % atropine group (at two weeks, reducing 59.07 % and 35.9 %, respectively; at four weeks, 59.84 % and 37.74 %, respectively). Mechanistically, Exo-Que inhibited the activation of the IRE1-XBP1, PERK-eIF2, and ATF6 pathways, alleviating endoplasmic reticulum stress. Furthermore, it suppressed ferroptosis by modulating GRP78-ACSL4 and GRP78-GPX4 protein interactions, thus mitigating ECM remodeling and slowing myopia progression. Besides, Exo-Que showed excellent biosafety in both and studies. Collectively, these results highlight the promising therapeutic potential of Exo-Que for myopia prevention.
ArticleNumber 101896
Author Guo, Bin
Song, Jike
Dong, Xiaoyun
Zhao, Lianghui
Bi, Hongsheng
Author_xml – sequence: 1
  givenname: Lianghui
  orcidid: 0000-0002-1844-4887
  surname: Zhao
  fullname: Zhao, Lianghui
  organization: Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
– sequence: 2
  givenname: Xiaoyun
  surname: Dong
  fullname: Dong, Xiaoyun
  organization: Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
– sequence: 3
  givenname: Bin
  orcidid: 0000-0002-7879-8003
  surname: Guo
  fullname: Guo, Bin
  email: guobin00002@126.com
  organization: Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
– sequence: 4
  givenname: Jike
  orcidid: 0000-0002-7045-728X
  surname: Song
  fullname: Song, Jike
  email: edusjk@163.com
  organization: Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
– sequence: 5
  givenname: Hongsheng
  orcidid: 0000-0002-6965-9626
  surname: Bi
  fullname: Bi, Hongsheng
  email: bihongsheng@sdutcm.edu.cn
  organization: Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40520556$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_aC_AAn5yGUX23Hi5IAQqqBUqoSQ4Gw59njxKrGDx1l1_wi_F2-3VO2Fkz0z773RzLzz6iTEAFX1htE1o6x9v11PefBxzSlvDpmub19UZ7zp6YrSVpw8-Z9Wl4hbSimXvaC0f1WdCtpw2jTtWfXn-wLJQPZhNUZtwRK4ixgnQGJh9DtIe4J7zDCROcEOQkYy7ePsdYnjJgGij4EMe5J12hx0NgSCjfOocfKGpJIyy7hMBPMBTHSwxEFKcc4RPRIfCJoRkh6J80OKQyFmfF29dHpEuHx4L6qfXz7_uPq6uv12fXP16XZlhOzySjeutlQL2fK6H8qsWtuWwmBYzaiTEkrkdG0E2AG6mvOmoz3nUrays7yB-qK6OeraqLdqTn7Saa-i9uo-EdNG6VQmGEE5py3tS7OWctG5rjecSSmcEIMZZG2L1sej1rwME1hTdlWmeib6vBL8L7WJO8U4ayWVtCi8e1BI8fcCmNXk0cA46gBxQVVz1pcDMtEX6NunzR67_LtsAdRHgEkRMYF7hDCqDhZSW3VvIXWwkDpaqLA-HFlQlr7zkBQaD8GA9QlMLlvx_-X_BdaE1OI
Cites_doi 10.1016/j.redox.2018.11.005
10.1038/srep45329
10.1073/pnas.1721443115
10.1016/j.intimp.2022.109608
10.1016/j.ajpath.2020.06.002
10.1016/j.jare.2020.07.007
10.1016/j.biopha.2023.114897
10.1158/0008-5472.CAN-16-1979
10.1016/j.redox.2022.102509
10.3389/fbioe.2020.586130
10.1007/s11010-021-04112-6
10.7150/ijbs.85883
10.1016/j.cell.2013.12.010
10.1007/s10753-023-01962-8
10.1038/s41467-022-33605-1
10.31083/j.fbe1603030
10.1002/ptr.7283
10.1016/j.ecoenv.2022.113595
10.3390/pharmaceutics15092301
10.1016/j.preteyeres.2019.100773
10.1016/j.ecoenv.2022.113772
10.1016/j.ecoenv.2023.115331
10.1038/s41572-020-00231-4
10.15407/exp-oncology.2024.02.174
10.1016/j.freeradbiomed.2021.09.008
10.1038/s41551-021-00764-3
10.1016/j.addr.2023.114899
10.1038/s41551-023-01112-3
10.7150/thno.27608
10.1186/s13046-019-1413-7
10.1039/D2NR05178H
10.1016/j.freeradbiomed.2024.01.002
10.1016/j.biomaterials.2021.121320
10.1038/s41392-022-00917-z
10.1016/j.exer.2014.07.015
10.1167/iovs.65.13.11
10.1126/science.1209038
10.1038/nrneph.2017.129
10.3389/fphys.2021.712509
10.1016/j.cell.2017.11.048
10.1016/j.ccell.2022.02.003
10.1038/s41592-020-01034-x
10.1016/j.ophtha.2021.04.032
10.1016/j.isci.2024.110606
10.1016/j.cmet.2023.12.023
10.7150/thno.54755
10.3390/cells11162573
ContentType Journal Article
Copyright 2025 The Authors
2025 The Authors. Published by Elsevier Ltd.
2025 The Authors. Published by Elsevier Ltd. 2025
Copyright_xml – notice: 2025 The Authors
– notice: 2025 The Authors. Published by Elsevier Ltd.
– notice: 2025 The Authors. Published by Elsevier Ltd. 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.mtbio.2025.101896
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-0064
ExternalDocumentID oai_doaj_org_article_ffad090a460248f89c21774f44bcb73d
PMC12167070
40520556
10_1016_j_mtbio_2025_101896
S2590006425004569
Genre Journal Article
GroupedDBID 0R~
53G
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACLIJ
ACVFH
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
SSZ
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c478t-a5f3d0a476239b064aad60ebc1310f77ed60fa3c4edbe832258092277678d25e3
IEDL.DBID DOA
ISSN 2590-0064
IngestDate Wed Aug 27 01:31:39 EDT 2025
Thu Aug 21 18:27:50 EDT 2025
Wed Jul 02 02:37:36 EDT 2025
Wed Jun 18 01:36:37 EDT 2025
Thu Jul 03 08:39:32 EDT 2025
Sat Jul 19 17:12:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ferroptosis
Drug delivery
Quercetin
Myopia
Endoplasmic reticulum stress
Language English
License This is an open access article under the CC BY-NC-ND license.
2025 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-a5f3d0a476239b064aad60ebc1310f77ed60fa3c4edbe832258092277678d25e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7879-8003
0000-0002-7045-728X
0000-0002-6965-9626
0000-0002-1844-4887
OpenAccessLink https://doaj.org/article/ffad090a460248f89c21774f44bcb73d
PMID 40520556
PQID 3219009149
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ffad090a460248f89c21774f44bcb73d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12167070
proquest_miscellaneous_3219009149
pubmed_primary_40520556
crossref_primary_10_1016_j_mtbio_2025_101896
elsevier_sciencedirect_doi_10_1016_j_mtbio_2025_101896
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Materials today bio
PublicationTitleAlternate Mater Today Bio
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Walter, Ron (bib11) 2011; 334
Zhang, Zhang, Zhou, Lei, Zhang, Huang (bib13) 2019; 25
Bao, Tian, Wang, Ye, Wang, Zhao, Qiu, Li, Pan, Ma, Wei, Tao (bib28) 2024; 8
Zeng, Zhou, Yu, Wang, Wu, Wang, Zhu, Zhou, Wan (bib37) 2023; 114
Wassmer, Carvalho, György, Vandenberghe, Maguire (bib29) 2017; 7
Tuo, Liu, Xiang, Yan, Zou, Shu, Ding, Zou, Xu, Tang, Gong, Li, Guo, Zheng, Deng, Yang, Li, Zhang, Ayton, Bush, Xu, Dai, Dong, Lei (bib48) 2022; 7
Pollalis, Kim, Nair, Kang, Nanda, Lee (bib32) 2022; 11
Wang, Quan, Cao, Lin, Yue, Bi, Cui, Yang, Yang, Birnbaumer, Li, Gao (bib20) 2020; 28
Chen, Zhu, Cheng, Wang, Li, Yang, Hu, Lou, Li, Dong, Lee, Liu (bib33) 2021; 18
Guan, Wang, Hu, Cao, Dong, Chen (bib40) 2023; 19
Liu, Nan, Gong, Tian, Zheng, Wu (bib38) 2023; 164
Zhao, Wu, Reinach, Wu, Zhai, Lei, Ma, Su, Chen, Li, Liu, Srinivasalu, Qu, Zhou (bib7) 2020; 190
Feng, Chen, Li, Xie, Zhang, Guo, Zhao, Xu, Song, Song, Bi (bib36) 2024; 27
Wang, Ding, Wang, Huang, Yu, Yan, Wang, Zhang, Yang, Liu (bib17) 2022; 241
Liao, Wang, Wang, Kryczek, Li, Bian, Sell, Wei, Grove, Johnson, Kennedy, Gijón, Shah, Zou (bib47) 2022; 40
Hu, Jiang, Ding, Xue, Sun, Qian (bib8) 2021; 12
Dong, Lei, Yu, Wang, Liu, Han, Zhang, Li, Song, Xu, Du, Yin, Wang, Yan (bib30) 2021; 11
Ma, Feng, Liu, Tian, Wang, Luan, Wang, Yang, Bai, Zhang, Tao (bib27) 2023; 15
Pei, Qin, Fu, Yang, Huo, Liang, Wang, Cui, Lin, Zhou, Yan, Wu, Chen, Zhu (bib14) 2022; 57
Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish, Brown, Girotti, Cornish, Schreiber, Stockwell (bib46) 2014; 156
Baird, Saw, Lanca, Guggenheim, Smith Iii, Zhou, Matsui, Wu, Sankaridurg, Chia, Rosman, Lamoureux, Man, He (bib1) 2020; 6
Boote, Sigal, Grytz, Hua, Nguyen, Girard (bib3) 2020; 74
Cui, Guo, Kong, Shi, Liu, Li, Geng, Gao, Zhang, Fu (bib35) 2021; 10
Harper, Summers (bib4) 2015; 133
Wang, Xu, Liu, Shen, Zhang, Hu, Zhu (bib42) 2024; 47
Bullimore, Ritchey, Shah, Leveziel, Bourne, Flitcroft (bib2) 2021; 128
Tang, Lu, He, Chen, Fu, Han, Luo, Yin, Qin, Lyu, Zhang, Zhou, Yao (bib25) 2022; 280
Luo, Guan, Qin, Wang, Wang, Ji (bib15) 2021; 476
Xu, Yang, Sun, Wang (bib24) 2020; 8
Wu, Chen, Zhao, Zhou, Reinach, Deng, Ma, Luo, Srinivasalu, Pan, Hu, Pei, Sun, Ren, Xiong, Zhou, Zhang, Tian, Fang, Zhang, Lang, Wu, Zeng, Qu, Zhou (bib5) 2018; 115
Tian, Zhang, Li, Tao (bib23) 2023; 199
Xu, Zhao, Zhang, Ying, Zhou, Cai, Wu, Jiang, Xu, Miao, Zeng, Yu (bib39) 2023; 262
Ikeda, Kurihara, Jiang, Miwa, Lee, Serizawa, Jeong, Mori, Katada, Kunimi, Ozawa, Shoda, Ibuki, Negishi, Torii, Tsubota (bib9) 2022; 13
Zhu, Chen, Yuan, Li, Ke (bib10) 2020; 2020
Zhu, Zhang, Sun, Zeh, Lotze, Kang, Tang (bib50) 2017; 77
Zhang, Zhang, Hao, Zhao, Ma, Peng, Bao, Xin, Yin, Bi, Guo (bib21) 2024; 65
Eisvand, Tajbakhsh, Seidel, Zirak, Tabeshpour, Shakeri (bib18) 2022; 36
Tian, Zhang, Zhao, Luan, Wang, Lai, Ouyang, Tao (bib26) 2023; 15
Wang, Zhuang, Sriwastva, Mu, Teng, Deng, Zhang, Sundaram, Kumar, Miller, Yan, Zhang (bib34) 2018; 8
Chen, Mi, Zhang, Ma, Song, Zhang, Wang, Xing, Hou, Li, Jin, Du, Zou (bib44) 2019; 38
Cui, Chen, Yang, Zhao, Yang, Wang, Mang, Yan, Wang, Tong, Wang, Kong, Wang, Wang, Dong, Liu, E, Zhang, Yu (bib49) 2024; 11
Hassan, Ahmad (bib22) 2024; 46
Tian, Zhang, Qiu, Wang, Li, Zhao, Pan, Tao, Yu, Wei (bib31) 2021; 5
Li, Fu, Lv, Xiang, Xiang, Xu, Zhao (bib41) 2022; 238
Cybulsky (bib12) 2017; 13
Ingold, Berndt, Schmitt, Doll, Poschmann, Buday, Roveri, Peng, Porto Freitas, Seibt, Mehr, Aichler, Walch, Lamp, Jastroch, Miyamoto, Wurst, Ursini, Arnér, Fradejas-Villar, Schweizer, Zischka, Friedmann Angeli, Conrad (bib45) 2018; 172
Baqer, Al-Shawi, Al-Younis (bib16) 2024; 16
Lin, Lei, Pan, Hu, Xie, Wu, Su, Li, Tan, Wei, Xue, Xu, Di, Deng, Liu, Yang, Qu, Chen, Zhou, Zhao (bib6) 2024; 36
Zhao, Yu, He, Bao, Feng, Chen, Liu, Hu, Zhang, Wang, Fu (bib43) 2021; 175
Ding, Dang, Sun, Zhou, Sun, Li, Peng, Li, Li (bib19) 2024; 213
Eisvand (10.1016/j.mtbio.2025.101896_bib18) 2022; 36
Dong (10.1016/j.mtbio.2025.101896_bib30) 2021; 11
Liu (10.1016/j.mtbio.2025.101896_bib38) 2023; 164
Wu (10.1016/j.mtbio.2025.101896_bib5) 2018; 115
Zhang (10.1016/j.mtbio.2025.101896_bib13) 2019; 25
Tian (10.1016/j.mtbio.2025.101896_bib23) 2023; 199
Wang (10.1016/j.mtbio.2025.101896_bib17) 2022; 241
Zhu (10.1016/j.mtbio.2025.101896_bib50) 2017; 77
Wang (10.1016/j.mtbio.2025.101896_bib34) 2018; 8
Boote (10.1016/j.mtbio.2025.101896_bib3) 2020; 74
Ma (10.1016/j.mtbio.2025.101896_bib27) 2023; 15
Liao (10.1016/j.mtbio.2025.101896_bib47) 2022; 40
Bullimore (10.1016/j.mtbio.2025.101896_bib2) 2021; 128
Tian (10.1016/j.mtbio.2025.101896_bib26) 2023; 15
Lin (10.1016/j.mtbio.2025.101896_bib6) 2024; 36
Ikeda (10.1016/j.mtbio.2025.101896_bib9) 2022; 13
Xu (10.1016/j.mtbio.2025.101896_bib39) 2023; 262
Zhu (10.1016/j.mtbio.2025.101896_bib10) 2020; 2020
Zhang (10.1016/j.mtbio.2025.101896_bib21) 2024; 65
Wassmer (10.1016/j.mtbio.2025.101896_bib29) 2017; 7
Bao (10.1016/j.mtbio.2025.101896_bib28) 2024; 8
Feng (10.1016/j.mtbio.2025.101896_bib36) 2024; 27
Tuo (10.1016/j.mtbio.2025.101896_bib48) 2022; 7
Cybulsky (10.1016/j.mtbio.2025.101896_bib12) 2017; 13
Baqer (10.1016/j.mtbio.2025.101896_bib16) 2024; 16
Cui (10.1016/j.mtbio.2025.101896_bib35) 2021; 10
Tang (10.1016/j.mtbio.2025.101896_bib25) 2022; 280
Pei (10.1016/j.mtbio.2025.101896_bib14) 2022; 57
Baird (10.1016/j.mtbio.2025.101896_bib1) 2020; 6
Wang (10.1016/j.mtbio.2025.101896_bib20) 2020; 28
Ingold (10.1016/j.mtbio.2025.101896_bib45) 2018; 172
Zeng (10.1016/j.mtbio.2025.101896_bib37) 2023; 114
Chen (10.1016/j.mtbio.2025.101896_bib44) 2019; 38
Pollalis (10.1016/j.mtbio.2025.101896_bib32) 2022; 11
Li (10.1016/j.mtbio.2025.101896_bib41) 2022; 238
Wang (10.1016/j.mtbio.2025.101896_bib42) 2024; 47
Xu (10.1016/j.mtbio.2025.101896_bib24) 2020; 8
Chen (10.1016/j.mtbio.2025.101896_bib33) 2021; 18
Zhao (10.1016/j.mtbio.2025.101896_bib43) 2021; 175
Yang (10.1016/j.mtbio.2025.101896_bib46) 2014; 156
Luo (10.1016/j.mtbio.2025.101896_bib15) 2021; 476
Harper (10.1016/j.mtbio.2025.101896_bib4) 2015; 133
Ding (10.1016/j.mtbio.2025.101896_bib19) 2024; 213
Guan (10.1016/j.mtbio.2025.101896_bib40) 2023; 19
Walter (10.1016/j.mtbio.2025.101896_bib11) 2011; 334
Zhao (10.1016/j.mtbio.2025.101896_bib7) 2020; 190
Hu (10.1016/j.mtbio.2025.101896_bib8) 2021; 12
Tian (10.1016/j.mtbio.2025.101896_bib31) 2021; 5
Cui (10.1016/j.mtbio.2025.101896_bib49) 2024; 11
Hassan (10.1016/j.mtbio.2025.101896_bib22) 2024; 46
References_xml – volume: 8
  start-page: 4912
  year: 2018
  end-page: 4924
  ident: bib34
  article-title: Blood exosomes regulate the tissue distribution of grapefruit-derived nanovector via CD36 and IGFR1 pathways
  publication-title: Theranostics
– volume: 334
  start-page: 1081
  year: 2011
  end-page: 1086
  ident: bib11
  article-title: The unfolded protein response: from stress pathway to homeostatic regulation
  publication-title: Science
– volume: 16
  start-page: 30
  year: 2024
  ident: bib16
  article-title: Quercetin, the potential powerful flavonoid for human and food: a review
  publication-title: Front Biosci (Elite Ed)
– volume: 28
  start-page: 231
  year: 2020
  end-page: 243
  ident: bib20
  article-title: Quercetin alleviates acute kidney injury by inhibiting ferroptosis
  publication-title: J. Adv. Res.
– volume: 77
  start-page: 2064
  year: 2017
  end-page: 2077
  ident: bib50
  article-title: HSPA5 regulates ferroptotic cell death in cancer cells
  publication-title: Cancer Res.
– volume: 133
  start-page: 100
  year: 2015
  end-page: 111
  ident: bib4
  article-title: The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development
  publication-title: Exp. Eye Res.
– volume: 238
  year: 2022
  ident: bib41
  article-title: Arsenic induces ferroptosis and acute lung injury through mtROS-mediated mitochondria-associated endoplasmic reticulum membrane dysfunction
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 7
  start-page: 59
  year: 2022
  ident: bib48
  article-title: Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion
  publication-title: Signal Transduct. Targeted Ther.
– volume: 46
  start-page: 174
  year: 2024
  end-page: 178
  ident: bib22
  article-title: Considering dimethyl sulfoxide solvent toxicity to mammalian cells and its biological effects
  publication-title: Exp. Oncol.
– volume: 262
  year: 2023
  ident: bib39
  article-title: Salidroside ameliorates acetaminophen-induced acute liver injury through the inhibition of endoplasmic reticulum stress-mediated ferroptosis by activating the AMPK/SIRT1 pathway
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 5
  start-page: 968
  year: 2021
  end-page: 982
  ident: bib31
  article-title: Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells
  publication-title: Nat. Biomed. Eng.
– volume: 280
  year: 2022
  ident: bib25
  article-title: Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration
  publication-title: Biomaterials
– volume: 6
  start-page: 99
  year: 2020
  ident: bib1
  article-title: Myopia
  publication-title: Nat. Rev. Dis. Primers
– volume: 114
  year: 2023
  ident: bib37
  article-title: rmMANF prevents sepsis-associated lung injury via inhibiting endoplasmic reticulum stress-induced ferroptosis in mice
  publication-title: Int. Immunopharmacol.
– volume: 11
  year: 2024
  ident: bib49
  article-title: Protosappanin a protects DOX-induced myocardial injury and cardiac dysfunction by targeting ACSL4/FTH1 axis-dependent ferroptosis
  publication-title: Adv. Sci.
– volume: 11
  start-page: 2573
  year: 2022
  ident: bib32
  article-title: Intraocular RGD-engineered exosomes and active targeting of choroidal neovascularization (CNV)
  publication-title: Cells
– volume: 8
  year: 2020
  ident: bib24
  article-title: Recent advancements in the loading and modification of therapeutic exosomes
  publication-title: Front. Bioeng. Biotechnol.
– volume: 27
  year: 2024
  ident: bib36
  article-title: Lactylome analysis reveals potential target modified proteins in the retina of form-deprivation myopia
  publication-title: iScience
– volume: 36
  start-page: 511
  year: 2024
  end-page: 525
  ident: bib6
  article-title: Augmentation of scleral glycolysis promotes myopia through histone lactylation
  publication-title: Cell Metab.
– volume: 25
  year: 2019
  ident: bib13
  article-title: Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress
  publication-title: Redox Biol.
– volume: 476
  start-page: 2603
  year: 2021
  end-page: 2611
  ident: bib15
  article-title: Astragaloside IV inhibits adriamycin-induced cardiac ferroptosis by enhancing Nrf2 signaling
  publication-title: Mol. Cell. Biochem.
– volume: 10
  start-page: 207
  year: 2021
  end-page: 221
  ident: bib35
  article-title: A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis
  publication-title: Bioact. Mater.
– volume: 36
  start-page: 73
  year: 2022
  end-page: 84
  ident: bib18
  article-title: Quercetin and its role in modulating endoplasmic reticulum stress: a review
  publication-title: Phytother Res.
– volume: 172
  start-page: 409
  year: 2018
  end-page: 422
  ident: bib45
  article-title: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis
  publication-title: Cell
– volume: 47
  start-page: 1067
  year: 2024
  end-page: 1082
  ident: bib42
  article-title: Suppressing endoplasmic reticulum stress alleviates LPS-induced acute lung injury via inhibiting inflammation and ferroptosis
  publication-title: Inflammation
– volume: 11
  start-page: 5107
  year: 2021
  end-page: 5126
  ident: bib30
  article-title: Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis
  publication-title: Theranostics
– volume: 57
  year: 2022
  ident: bib14
  article-title: Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model
  publication-title: Redox Biol.
– volume: 38
  start-page: 402
  year: 2019
  ident: bib44
  article-title: Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells
  publication-title: J. Exp. Clin. Cancer Res.
– volume: 128
  start-page: 1561
  year: 2021
  end-page: 1579
  ident: bib2
  article-title: The risks and benefits of myopia control
  publication-title: Ophthalmology
– volume: 8
  start-page: 1436
  year: 2024
  end-page: 1452
  ident: bib28
  article-title: Exosome-loaded degradable polymeric microcapsules for the treatment of vitreoretinal diseases
  publication-title: Nat. Biomed. Eng.
– volume: 15
  start-page: 1890
  year: 2023
  end-page: 1899
  ident: bib27
  article-title: A synergistic therapeutic nano-eyedrop for dry eye disease based on ascorbic acid-coupled exosomes
  publication-title: Nanoscale
– volume: 190
  start-page: 1888
  year: 2020
  end-page: 1908
  ident: bib7
  article-title: Up-regulation of matrix metalloproteinase-2 by scleral monocyte-derived macrophages contributes to myopia development
  publication-title: Am. J. Pathol.
– volume: 175
  start-page: 236
  year: 2021
  end-page: 248
  ident: bib43
  article-title: Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells
  publication-title: Free Radic. Biol. Med.
– volume: 115
  start-page: E7091
  year: 2018
  end-page: E7100
  ident: bib5
  article-title: Scleral hypoxia is a target for myopia control
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 12
  year: 2021
  ident: bib8
  article-title: Mechanical strain regulates myofibroblast differentiation of human scleral fibroblasts by YAP
  publication-title: Front. Physiol.
– volume: 65
  start-page: 11
  year: 2024
  ident: bib21
  article-title: Quercetin alleviates scleral remodeling through inhibiting the PERK-EIF2α Axis in experiment myopia
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 241
  year: 2022
  ident: bib17
  article-title: Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 13
  start-page: 681
  year: 2017
  end-page: 696
  ident: bib12
  article-title: Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases
  publication-title: Nat. Rev. Nephrol.
– volume: 19
  start-page: 3937
  year: 2023
  end-page: 3950
  ident: bib40
  article-title: Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway
  publication-title: Int. J. Biol. Sci.
– volume: 199
  year: 2023
  ident: bib23
  article-title: Advances in development of exosomes for ophthalmic therapeutics
  publication-title: Adv. Drug Deliv. Rev.
– volume: 7
  year: 2017
  ident: bib29
  article-title: Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection
  publication-title: Sci. Rep.
– volume: 2020
  year: 2020
  ident: bib10
  publication-title: Endoplasmic reticulum stress regulates scleral remodeling in a guinea pig model of form-deprivation myopia
– volume: 74
  year: 2020
  ident: bib3
  article-title: Scleral structure and biomechanics
  publication-title: Prog. Retin. Eye Res.
– volume: 164
  year: 2023
  ident: bib38
  article-title: Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy
  publication-title: Biomed. Pharmacother.
– volume: 156
  start-page: 317
  year: 2014
  end-page: 331
  ident: bib46
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
– volume: 15
  start-page: 2301
  year: 2023
  ident: bib26
  article-title: Combining MSC exosomes and cerium oxide nanocrystals for enhanced dry eye syndrome therapy
  publication-title: Pharmaceutics
– volume: 18
  start-page: 212
  year: 2021
  end-page: 218
  ident: bib33
  article-title: Exosome detection via the ultrafast-isolation system: EXODUS
  publication-title: Nat. Methods
– volume: 13
  start-page: 5859
  year: 2022
  ident: bib9
  article-title: Scleral PERK and ATF6 as targets of myopic axial elongation of mouse eyes
  publication-title: Nat. Commun.
– volume: 213
  start-page: 150
  year: 2024
  end-page: 163
  ident: bib19
  article-title: Quercetin induces ferroptosis in gastric cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4 Axes
  publication-title: Free Radic. Biol. Med.
– volume: 40
  start-page: 365
  year: 2022
  end-page: 378
  ident: bib47
  article-title: CD8+T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4
  publication-title: Cancer Cell
– volume: 25
  year: 2019
  ident: 10.1016/j.mtbio.2025.101896_bib13
  article-title: Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2018.11.005
– volume: 7
  year: 2017
  ident: 10.1016/j.mtbio.2025.101896_bib29
  article-title: Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection
  publication-title: Sci. Rep.
  doi: 10.1038/srep45329
– volume: 10
  start-page: 207
  year: 2021
  ident: 10.1016/j.mtbio.2025.101896_bib35
  article-title: A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis
  publication-title: Bioact. Mater.
– volume: 115
  start-page: E7091
  issue: 30
  year: 2018
  ident: 10.1016/j.mtbio.2025.101896_bib5
  article-title: Scleral hypoxia is a target for myopia control
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1721443115
– volume: 114
  year: 2023
  ident: 10.1016/j.mtbio.2025.101896_bib37
  article-title: rmMANF prevents sepsis-associated lung injury via inhibiting endoplasmic reticulum stress-induced ferroptosis in mice
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2022.109608
– volume: 190
  start-page: 1888
  issue: 9
  year: 2020
  ident: 10.1016/j.mtbio.2025.101896_bib7
  article-title: Up-regulation of matrix metalloproteinase-2 by scleral monocyte-derived macrophages contributes to myopia development
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2020.06.002
– volume: 28
  start-page: 231
  year: 2020
  ident: 10.1016/j.mtbio.2025.101896_bib20
  article-title: Quercetin alleviates acute kidney injury by inhibiting ferroptosis
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2020.07.007
– volume: 164
  year: 2023
  ident: 10.1016/j.mtbio.2025.101896_bib38
  article-title: Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2023.114897
– volume: 77
  start-page: 2064
  issue: 8
  year: 2017
  ident: 10.1016/j.mtbio.2025.101896_bib50
  article-title: HSPA5 regulates ferroptotic cell death in cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-1979
– volume: 57
  year: 2022
  ident: 10.1016/j.mtbio.2025.101896_bib14
  article-title: Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2022.102509
– volume: 8
  year: 2020
  ident: 10.1016/j.mtbio.2025.101896_bib24
  article-title: Recent advancements in the loading and modification of therapeutic exosomes
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.586130
– volume: 476
  start-page: 2603
  issue: 7
  year: 2021
  ident: 10.1016/j.mtbio.2025.101896_bib15
  article-title: Astragaloside IV inhibits adriamycin-induced cardiac ferroptosis by enhancing Nrf2 signaling
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-021-04112-6
– volume: 19
  start-page: 3937
  issue: 12
  year: 2023
  ident: 10.1016/j.mtbio.2025.101896_bib40
  article-title: Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.85883
– volume: 156
  start-page: 317
  issue: 1–2
  year: 2014
  ident: 10.1016/j.mtbio.2025.101896_bib46
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.010
– volume: 47
  start-page: 1067
  issue: 4
  year: 2024
  ident: 10.1016/j.mtbio.2025.101896_bib42
  article-title: Suppressing endoplasmic reticulum stress alleviates LPS-induced acute lung injury via inhibiting inflammation and ferroptosis
  publication-title: Inflammation
  doi: 10.1007/s10753-023-01962-8
– volume: 13
  start-page: 5859
  issue: 1
  year: 2022
  ident: 10.1016/j.mtbio.2025.101896_bib9
  article-title: Scleral PERK and ATF6 as targets of myopic axial elongation of mouse eyes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33605-1
– volume: 2020
  year: 2020
  ident: 10.1016/j.mtbio.2025.101896_bib10
– volume: 16
  start-page: 30
  issue: 3
  year: 2024
  ident: 10.1016/j.mtbio.2025.101896_bib16
  article-title: Quercetin, the potential powerful flavonoid for human and food: a review
  publication-title: Front Biosci (Elite Ed)
  doi: 10.31083/j.fbe1603030
– volume: 11
  issue: 34
  year: 2024
  ident: 10.1016/j.mtbio.2025.101896_bib49
  article-title: Protosappanin a protects DOX-induced myocardial injury and cardiac dysfunction by targeting ACSL4/FTH1 axis-dependent ferroptosis
  publication-title: Adv. Sci.
– volume: 36
  start-page: 73
  issue: 1
  year: 2022
  ident: 10.1016/j.mtbio.2025.101896_bib18
  article-title: Quercetin and its role in modulating endoplasmic reticulum stress: a review
  publication-title: Phytother Res.
  doi: 10.1002/ptr.7283
– volume: 238
  year: 2022
  ident: 10.1016/j.mtbio.2025.101896_bib41
  article-title: Arsenic induces ferroptosis and acute lung injury through mtROS-mediated mitochondria-associated endoplasmic reticulum membrane dysfunction
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2022.113595
– volume: 15
  start-page: 2301
  issue: 9
  year: 2023
  ident: 10.1016/j.mtbio.2025.101896_bib26
  article-title: Combining MSC exosomes and cerium oxide nanocrystals for enhanced dry eye syndrome therapy
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics15092301
– volume: 74
  year: 2020
  ident: 10.1016/j.mtbio.2025.101896_bib3
  article-title: Scleral structure and biomechanics
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2019.100773
– volume: 241
  year: 2022
  ident: 10.1016/j.mtbio.2025.101896_bib17
  article-title: Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2022.113772
– volume: 262
  year: 2023
  ident: 10.1016/j.mtbio.2025.101896_bib39
  article-title: Salidroside ameliorates acetaminophen-induced acute liver injury through the inhibition of endoplasmic reticulum stress-mediated ferroptosis by activating the AMPK/SIRT1 pathway
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2023.115331
– volume: 6
  start-page: 99
  issue: 1
  year: 2020
  ident: 10.1016/j.mtbio.2025.101896_bib1
  article-title: Myopia
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/s41572-020-00231-4
– volume: 46
  start-page: 174
  issue: 2
  year: 2024
  ident: 10.1016/j.mtbio.2025.101896_bib22
  article-title: Considering dimethyl sulfoxide solvent toxicity to mammalian cells and its biological effects
  publication-title: Exp. Oncol.
  doi: 10.15407/exp-oncology.2024.02.174
– volume: 175
  start-page: 236
  year: 2021
  ident: 10.1016/j.mtbio.2025.101896_bib43
  article-title: Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2021.09.008
– volume: 5
  start-page: 968
  issue: 9
  year: 2021
  ident: 10.1016/j.mtbio.2025.101896_bib31
  article-title: Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00764-3
– volume: 199
  year: 2023
  ident: 10.1016/j.mtbio.2025.101896_bib23
  article-title: Advances in development of exosomes for ophthalmic therapeutics
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2023.114899
– volume: 8
  start-page: 1436
  issue: 11
  year: 2024
  ident: 10.1016/j.mtbio.2025.101896_bib28
  article-title: Exosome-loaded degradable polymeric microcapsules for the treatment of vitreoretinal diseases
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-023-01112-3
– volume: 8
  start-page: 4912
  issue: 18
  year: 2018
  ident: 10.1016/j.mtbio.2025.101896_bib34
  article-title: Blood exosomes regulate the tissue distribution of grapefruit-derived nanovector via CD36 and IGFR1 pathways
  publication-title: Theranostics
  doi: 10.7150/thno.27608
– volume: 38
  start-page: 402
  issue: 1
  year: 2019
  ident: 10.1016/j.mtbio.2025.101896_bib44
  article-title: Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-019-1413-7
– volume: 15
  start-page: 1890
  issue: 4
  year: 2023
  ident: 10.1016/j.mtbio.2025.101896_bib27
  article-title: A synergistic therapeutic nano-eyedrop for dry eye disease based on ascorbic acid-coupled exosomes
  publication-title: Nanoscale
  doi: 10.1039/D2NR05178H
– volume: 213
  start-page: 150
  year: 2024
  ident: 10.1016/j.mtbio.2025.101896_bib19
  article-title: Quercetin induces ferroptosis in gastric cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4 Axes
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2024.01.002
– volume: 280
  year: 2022
  ident: 10.1016/j.mtbio.2025.101896_bib25
  article-title: Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121320
– volume: 7
  start-page: 59
  issue: 1
  year: 2022
  ident: 10.1016/j.mtbio.2025.101896_bib48
  article-title: Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion
  publication-title: Signal Transduct. Targeted Ther.
  doi: 10.1038/s41392-022-00917-z
– volume: 133
  start-page: 100
  year: 2015
  ident: 10.1016/j.mtbio.2025.101896_bib4
  article-title: The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2014.07.015
– volume: 65
  start-page: 11
  issue: 13
  year: 2024
  ident: 10.1016/j.mtbio.2025.101896_bib21
  article-title: Quercetin alleviates scleral remodeling through inhibiting the PERK-EIF2α Axis in experiment myopia
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.65.13.11
– volume: 334
  start-page: 1081
  issue: 6059
  year: 2011
  ident: 10.1016/j.mtbio.2025.101896_bib11
  article-title: The unfolded protein response: from stress pathway to homeostatic regulation
  publication-title: Science
  doi: 10.1126/science.1209038
– volume: 13
  start-page: 681
  issue: 11
  year: 2017
  ident: 10.1016/j.mtbio.2025.101896_bib12
  article-title: Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2017.129
– volume: 12
  year: 2021
  ident: 10.1016/j.mtbio.2025.101896_bib8
  article-title: Mechanical strain regulates myofibroblast differentiation of human scleral fibroblasts by YAP
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.712509
– volume: 172
  start-page: 409
  issue: 3
  year: 2018
  ident: 10.1016/j.mtbio.2025.101896_bib45
  article-title: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.048
– volume: 40
  start-page: 365
  issue: 4
  year: 2022
  ident: 10.1016/j.mtbio.2025.101896_bib47
  article-title: CD8+T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.02.003
– volume: 18
  start-page: 212
  issue: 2
  year: 2021
  ident: 10.1016/j.mtbio.2025.101896_bib33
  article-title: Exosome detection via the ultrafast-isolation system: EXODUS
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01034-x
– volume: 128
  start-page: 1561
  issue: 11
  year: 2021
  ident: 10.1016/j.mtbio.2025.101896_bib2
  article-title: The risks and benefits of myopia control
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.04.032
– volume: 27
  issue: 9
  year: 2024
  ident: 10.1016/j.mtbio.2025.101896_bib36
  article-title: Lactylome analysis reveals potential target modified proteins in the retina of form-deprivation myopia
  publication-title: iScience
  doi: 10.1016/j.isci.2024.110606
– volume: 36
  start-page: 511
  issue: 3
  year: 2024
  ident: 10.1016/j.mtbio.2025.101896_bib6
  article-title: Augmentation of scleral glycolysis promotes myopia through histone lactylation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2023.12.023
– volume: 11
  start-page: 5107
  issue: 11
  year: 2021
  ident: 10.1016/j.mtbio.2025.101896_bib30
  article-title: Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis
  publication-title: Theranostics
  doi: 10.7150/thno.54755
– volume: 11
  start-page: 2573
  issue: 16
  year: 2022
  ident: 10.1016/j.mtbio.2025.101896_bib32
  article-title: Intraocular RGD-engineered exosomes and active targeting of choroidal neovascularization (CNV)
  publication-title: Cells
  doi: 10.3390/cells11162573
SSID ssj0002794009
Score 2.2929752
Snippet Myopia, a predominant cause of visual impairment, is often associated with scleral extracellular matrix (ECM) remodeling and axial elongation. Currently,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 101896
SubjectTerms Drug delivery
Endoplasmic reticulum stress
Ferroptosis
Full Length
Myopia
Quercetin
Title Quercetin-loaded exosomes delivery system prevents myopia progression by targeting endoplasmic reticulum stress and ferroptosis in scleral fibroblasts
URI https://dx.doi.org/10.1016/j.mtbio.2025.101896
https://www.ncbi.nlm.nih.gov/pubmed/40520556
https://www.proquest.com/docview/3219009149
https://pubmed.ncbi.nlm.nih.gov/PMC12167070
https://doaj.org/article/ffad090a460248f89c21774f44bcb73d
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yT_og3h0vSwQfLXbapE0fVVwWQUFwYd9CrthlJynTDjh_xN_rOcl06Sjoi4-9pUnPac53ki9fCHndGiMs46ZQXqiCOc0LpbwuNC992enGco0zup-_NOcX7NMlv1xs9YWcsCwPnD_cW--VLbtSsQbVt7zoDIDolnnGtNFtbbH3hZi3SKau0nQabvjdzTJDidC1mXSPy_0qjmcEyvQvQlFS7D-KSH8izt-Jk4tIdHaP3D1ASPouV_0-ueXCA3JnISz4kPz8ukPCytSH4joq6yx1P-IYN26k1l0jFWNPs4YzHbKG00g3-zj0iibCVhbroHpPM1McCqUu2DgA1t70hqaljzhuSPNaE6qCpd5tt3GY4tiPtA90hMpB7amHhDxqeHAaH5GLs4_fPpwXhx0YCsNaMRWK-9rCt4ces-40oBelbFM6bdaACn3bOjjyqjbMWe1S3yDKrqpQIUjYirv6MTkJMbinhEIq3DS2bLzSHbOQlWLRVauEN51bs3ZF3szGkEMW2pAzA-1KJttJtJ3MtluR92iwm1tRJTudAN-RB9-R__KdFWlmc8sD4MhAAorq__72V7NzSPgdcY5FBRd3o6whAoDjQd65Ik-ys9zUkSHniHN4Why50VEjjq-E_nuS_F5X66aF3vnZ_2j2c3Ib25IJby_IybTduZcArSZ9mv6i0zTm9Qu7Zyn6
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quercetin-loaded+exosomes+delivery+system+prevents+myopia+progression+by+targeting+endoplasmic+reticulum+stress+and+ferroptosis+in+scleral+fibroblasts&rft.jtitle=Materials+today+bio&rft.au=Zhao%2C+Lianghui&rft.au=Dong%2C+Xiaoyun&rft.au=Guo%2C+Bin&rft.au=Song%2C+Jike&rft.date=2025-06-01&rft.issn=2590-0064&rft.eissn=2590-0064&rft.volume=32&rft.spage=101896&rft_id=info:doi/10.1016%2Fj.mtbio.2025.101896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtbio_2025_101896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0064&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0064&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0064&client=summon