A Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware Based on Genetic Algorithm

This paper presents a novel solution for detecting rare and mutating malware programs and provides a strategy to address the scarcity of datasets for modeling these types of malware. To provide sufficient training data for malware behavioral modeling, genetic algorithms are used together with an opt...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 69951 - 69970
Main Authors Javaheri, Danial, Lalbakhsh, Pooia, Hosseinzadeh, Mehdi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel solution for detecting rare and mutating malware programs and provides a strategy to address the scarcity of datasets for modeling these types of malware. To provide sufficient training data for malware behavioral modeling, genetic algorithms are used together with an optimization strategy that selectively creates generations of mutated elite malware samples. In our unique method, a sequence of system API calls is extracted using tracker filter drivers in a sandbox environment. The most obfuscated and metamorphic malware are chosen by an elite selection method. The behavioral chromosomes are formed by mapping extracted APIs to genes using linear regression. Our analysis system includes an Internet simulator and a human emulator to deceive intelligent classes of malware to successfully execute themselves and prevent system halting. The evolution process is performed through crossover and permutation of genes, which are encoded based on the addresses of the kernel-level system functions. An objective function has been defined to optimize the vital indicators of malignancy and tracking rate with a linear time complexity. This guarantees that new generations of malware are more destructive and stealthy than their parents. J48 and deep neural networks were employed in our experiments as they are two popular modeling and classification strategies in the area of behavioral malware detection. Real-world malware samples from valid references were used for the performance evaluation of our approach. Comprehensive scenarios were involved in the experiments to evaluate the performance of our proposed strategy. The results demonstrate significant improvement in detection accuracy - up to 5% considering rare and metamorphic malware. The results also demonstrated a considerable enhancement in true positive rate for the proposed deep-learning algorithm.
AbstractList This paper presents a novel solution for detecting rare and mutating malware programs and provides a strategy to address the scarcity of datasets for modeling these types of malware. To provide sufficient training data for malware behavioral modeling, genetic algorithms are used together with an optimization strategy that selectively creates generations of mutated elite malware samples. In our unique method, a sequence of system API calls is extracted using tracker filter drivers in a sandbox environment. The most obfuscated and metamorphic malware are chosen by an elite selection method. The behavioral chromosomes are formed by mapping extracted APIs to genes using linear regression. Our analysis system includes an Internet simulator and a human emulator to deceive intelligent classes of malware to successfully execute themselves and prevent system halting. The evolution process is performed through crossover and permutation of genes, which are encoded based on the addresses of the kernel-level system functions. An objective function has been defined to optimize the vital indicators of malignancy and tracking rate with a linear time complexity. This guarantees that new generations of malware are more destructive and stealthy than their parents. J48 and deep neural networks were employed in our experiments as they are two popular modeling and classification strategies in the area of behavioral malware detection. Real-world malware samples from valid references were used for the performance evaluation of our approach. Comprehensive scenarios were involved in the experiments to evaluate the performance of our proposed strategy. The results demonstrate significant improvement in detection accuracy - up to 5% considering rare and metamorphic malware. The results also demonstrated a considerable enhancement in true positive rate for the proposed deep-learning algorithm.
Author Javaheri, Danial
Lalbakhsh, Pooia
Hosseinzadeh, Mehdi
Author_xml – sequence: 1
  givenname: Danial
  orcidid: 0000-0002-7275-2370
  surname: Javaheri
  fullname: Javaheri, Danial
  organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
– sequence: 2
  givenname: Pooia
  orcidid: 0000-0001-9267-2610
  surname: Lalbakhsh
  fullname: Lalbakhsh, Pooia
  organization: Euler Capital, Drysdale, VIC, Australia
– sequence: 3
  givenname: Mehdi
  orcidid: 0000-0003-3040-1801
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Mehdi
  email: mehdihosseinzadeh@duytan.edu.vn
  organization: Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
BookMark eNqFkU1PGzEQhq2KSqXAL-BiiXNSf-yXjyEFigTlAD1b4_U4cbSxU69D1X9fJ4tQ1Ut9GWvmfWZG834mJyEGJOSSsznnTH1ZLJc3z89zwQSfS9a2QtUfyKngjZrJWjYnf_0_kYtx3LDyupKq21MSFvR7fMWBPmJeR0tdTPQrZuyzDyt6u8_7hPQOAybIPoaRRkdfIK2KxFII9sDBNqbd2vf0EYZfUPTXMJZqDEcwl8JiWMXk83p7Tj46GEa8eItn5Mftzcvy2-zh6e5-uXiY9VXb5RlI2zsupRXW8bY2tWPSMDCmb0TLrQLedY11pqgbU3emF5U00nIABhWClGfkfuprI2z0LvktpN86gtfHREwrDalsNqC2rq-sQ-5MqyrGEbgQVipsgElwtiq9rqZeuxR_7nHMehP3KZT1tahFo5q646yo5KTqUxzHhO59Kmf64JOefNIHn_SbT4VS_1C9z8dL5wR--A97ObEeEd-nqUqUEyn5BxSao8Q
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_istruc_2022_11_072
crossref_primary_10_1109_ACCESS_2022_3196905
crossref_primary_10_1002_spy2_444
crossref_primary_10_1007_s10044_024_01381_x
crossref_primary_10_1109_ACCESS_2022_3232505
crossref_primary_10_1109_ACCESS_2023_3305274
crossref_primary_10_1016_j_matpr_2022_03_121
crossref_primary_10_1109_ACCESS_2023_3328351
crossref_primary_10_1007_s12652_022_04110_6
crossref_primary_10_1007_s13369_022_07309_z
crossref_primary_10_1155_2022_9620555
crossref_primary_10_3390_electronics12204316
crossref_primary_10_1007_s11042_024_18246_4
crossref_primary_10_1016_j_ins_2023_01_067
crossref_primary_10_1016_j_eswa_2023_122697
crossref_primary_10_3390_info15040194
crossref_primary_10_1007_s10586_024_04602_4
Cites_doi 10.1002/9781118950951
10.1109/ACCESS.2019.2906934
10.1002/cpe.5082
10.1109/ACCESS.2018.2853121
10.1145/2554850.2555157
10.1007/s11416-018-0324-z
10.3233/JIFS-169015
10.1186/s13677-017-0098-8
10.1504/IJMIS.2010.039240
10.1109/SP.2017.42
10.1016/j.cose.2015.04.001
10.1016/j.jisa.2019.06.006
10.1007/s41125-019-00039-8
10.1145/3133956.3134099
10.1016/j.jnca.2019.102526
10.1109/GLOCOM.2017.8254503
10.1007/978-3-319-93025-1_4
10.1007/s11277-017-4859-y
10.1109/ICONSTEM.2016.7560870
10.1109/TR.2019.2927285
10.1109/NTMS.2018.8328749
10.1145/3052973.3052999
10.1016/j.csi.2020.103443
10.1109/ACCESS.2019.2908033
10.1007/978-981-15-0994-0
10.1016/S1361-3723(19)30006-5
10.1109/BWCCA.2010.85
10.1007/11604938_15
10.1109/TII.2020.2968927
10.1002/nem.1913
10.1109/ACCESS.2020.3036491
10.31979/etd.3ge6-6nfx
10.1145/2592791.2592795
10.1109/ACCESS.2018.2884964
10.1145/3073559
10.1016/j.cose.2019.101574
10.1007/978-3-030-62582-5_5
10.1007/s11416-006-0028-7
10.1007/978-1-4842-6193-4_7
10.1109/SNPD.2018.8441123
10.3390/sym12050754
10.1145/3194452.3194459
10.1631/FITEE.1601325
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3077295
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 69970
ExternalDocumentID oai_doaj_org_article_dfc4dfe1fb79401ea122d39e6a03afd4
10_1109_ACCESS_2021_3077295
9422719
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c478t-a3dcf133d2df175b5f03b0abbc6271d9a1886dfbc476b58bc243b3d1aa0a4ea33
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:02 EDT 2025
Mon Jun 30 01:53:50 EDT 2025
Tue Jul 01 04:03:30 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Wed Aug 27 02:29:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-a3dcf133d2df175b5f03b0abbc6271d9a1886dfbc476b58bc243b3d1aa0a4ea33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7275-2370
0000-0003-3040-1801
0000-0001-9267-2610
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9422719
PQID 2526965810
PQPubID 4845423
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_dfc4dfe1fb79401ea122d39e6a03afd4
proquest_journals_2526965810
crossref_primary_10_1109_ACCESS_2021_3077295
ieee_primary_9422719
crossref_citationtrail_10_1109_ACCESS_2021_3077295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref59
ref15
ref14
ref11
kumar (ref51) 2014; 4
cichosz (ref54) 2015
ref16
ref19
ref18
(ref56) 2014
russinovich (ref53) 2012
namani (ref10) 2020
ref50
ref48
ref47
(ref62) 2021
ref42
ref41
ref49
ref8
(ref45) 2020
ref7
(ref1) 2020
ref9
ref4
ref3
ref6
ref5
(ref57) 2014
ref40
easttom (ref20) 2018; 17
jurczyk (ref52) 2020
ref35
honig (ref63) 2012
schreiber (ref55) 2001
ref34
ref37
(ref58) 2020
ref36
ref31
ref30
ref33
ref32
priyadarshi (ref17) 2011
ref2
ref39
ref38
(ref25) 2021
(ref44) 2020
reeves (ref46) 2010
yuvaraj (ref61) 2020
ref24
ref23
(ref43) 2018
ref22
ref21
ref28
ref27
ref29
(ref26) 2021
jagsir (ref13) 2018; 7
ref60
References_xml – year: 2020
  ident: ref1
  publication-title: AV-Test Report
– year: 2014
  ident: ref57
  publication-title: Virus Total
– start-page: 1
  year: 2020
  ident: ref10
  article-title: Symbolic execution based feature extraction for detection of malware
  publication-title: Proc 5th Int Conf Comput Commun Secur (ICCCS)
– start-page: 135
  year: 2010
  ident: ref46
  publication-title: Windows 7 Device Driver
– year: 2015
  ident: ref54
  publication-title: Data Mining Algorithms Explained Using R
  doi: 10.1002/9781118950951
– ident: ref32
  doi: 10.1109/ACCESS.2019.2906934
– start-page: 229
  year: 2020
  ident: ref61
  publication-title: Analysis on the Prediction of Central Line-Associated Bloodstream Infections (CLABSI) Using Deep Neural Network Classification Computational Intelligence and its Applications in Healthcare
– ident: ref8
  doi: 10.1002/cpe.5082
– ident: ref12
  doi: 10.1109/ACCESS.2018.2853121
– ident: ref14
  doi: 10.1145/2554850.2555157
– volume: 4
  start-page: 8
  year: 2014
  ident: ref51
  article-title: Variant of genetic algorithm and its applications
  publication-title: Int J Artif Intell Neural Netw
– year: 2001
  ident: ref55
  publication-title: Undocumented Windows 2000 Secrets A Programmer's Cookbook
– ident: ref39
  doi: 10.1007/s11416-018-0324-z
– ident: ref37
  doi: 10.3233/JIFS-169015
– ident: ref27
  doi: 10.1186/s13677-017-0098-8
– ident: ref16
  doi: 10.1504/IJMIS.2010.039240
– ident: ref9
  doi: 10.1109/SP.2017.42
– ident: ref36
  doi: 10.1016/j.cose.2015.04.001
– ident: ref30
  doi: 10.1016/j.jisa.2019.06.006
– ident: ref2
  doi: 10.1007/s41125-019-00039-8
– year: 2018
  ident: ref43
  publication-title: Adminus Malware Dataset 2016-18
– ident: ref24
  doi: 10.1145/3133956.3134099
– ident: ref5
  doi: 10.1016/j.jnca.2019.102526
– ident: ref34
  doi: 10.1109/GLOCOM.2017.8254503
– ident: ref48
  doi: 10.1007/978-3-319-93025-1_4
– ident: ref28
  doi: 10.1007/s11277-017-4859-y
– year: 2021
  ident: ref26
  publication-title: McAfee Website
– ident: ref50
  doi: 10.1109/ICONSTEM.2016.7560870
– ident: ref40
  doi: 10.1109/TR.2019.2927285
– start-page: 133
  year: 2012
  ident: ref53
  publication-title: Windows Internals Part 2
– year: 2020
  ident: ref52
  publication-title: Windows X86 System Call Table
– ident: ref31
  doi: 10.1109/NTMS.2018.8328749
– ident: ref23
  doi: 10.1145/3052973.3052999
– ident: ref4
  doi: 10.1016/j.csi.2020.103443
– volume: 17
  start-page: 1
  year: 2018
  ident: ref20
  article-title: An examination of the operational requirements of weaponised malware
  publication-title: J Inf Warfare
– year: 2014
  ident: ref56
  publication-title: Joe Sandbox
– ident: ref19
  doi: 10.1109/ACCESS.2019.2908033
– ident: ref49
  doi: 10.1007/978-981-15-0994-0
– start-page: 221
  year: 2012
  ident: ref63
  publication-title: Practical Malware Analysis The Hands-On Guide to Dissecting Malicious Software
– year: 2020
  ident: ref44
  publication-title: VirusSign Malware Dataset 2013-20
– ident: ref22
  doi: 10.1016/S1361-3723(19)30006-5
– year: 2020
  ident: ref58
  publication-title: AV-Test Ranking List
– ident: ref11
  doi: 10.1109/BWCCA.2010.85
– ident: ref3
  doi: 10.1007/11604938_15
– volume: 7
  start-page: 100
  year: 2018
  ident: ref13
  article-title: Challenges of malware analysis: Obfuscation techniques
  publication-title: Int J Inf Secur Sci
– ident: ref41
  doi: 10.1109/TII.2020.2968927
– year: 2020
  ident: ref45
  publication-title: VirusShare Malware Dataset 2016-20
– ident: ref7
  doi: 10.1002/nem.1913
– ident: ref33
  doi: 10.1109/ACCESS.2020.3036491
– year: 2011
  ident: ref17
  article-title: Metamorphic detection via emulation
  doi: 10.31979/etd.3ge6-6nfx
– ident: ref21
  doi: 10.1145/2592791.2592795
– ident: ref6
  doi: 10.1109/ACCESS.2018.2884964
– ident: ref47
  doi: 10.1145/3073559
– ident: ref35
  doi: 10.1016/j.cose.2019.101574
– year: 2021
  ident: ref25
  publication-title: Kaspersky Encyclopedia
– ident: ref60
  doi: 10.1007/978-3-030-62582-5_5
– ident: ref15
  doi: 10.1007/s11416-006-0028-7
– ident: ref18
  doi: 10.1007/978-1-4842-6193-4_7
– ident: ref29
  doi: 10.1109/SNPD.2018.8441123
– ident: ref59
  doi: 10.3390/sym12050754
– year: 2021
  ident: ref62
  publication-title: H2O AI Hybrid Cloud
– ident: ref42
  doi: 10.1145/3194452.3194459
– ident: ref38
  doi: 10.1631/FITEE.1601325
SSID ssj0000816957
Score 2.3541143
Snippet This paper presents a novel solution for detecting rare and mutating malware programs and provides a strategy to address the scarcity of datasets for modeling...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 69951
SubjectTerms Artificial neural networks
Crossovers
cyber security
data mining
Emulators
Engines
Feature extraction
Genes
genetic algorithm
Genetic algorithms
Machine learning
Malware
Malware detection
malware unpacking
metamorphism
Modelling
Monitoring
obfuscation
Optimization
Performance evaluation
Permutations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkYDvOayyFqkIqE0hs1vkFSCVBpcDf5-ykVRESLGxRco7j7y6-O9v6jpDTXGfGeLAJCF0lsvA5XkmdeGYzXUJhRFwaGN_mo3t585A9LJX6CmfCWnrgFrgL64203nGv0XIYd8CFsGnlcmApeBuZQNHnLSVTcQ4ueV5lRUczxFl10R8McESYEAp-jnaNMWX2zRVFxv6uxMqPeTk6m-Em2eiiRNpvv26LrLh6m6wvcQfukLpPb5sPN6HjWAOaYvBJr1zYEsDHdBipQmhLKh1Nizae3sVj385SqG1oBy8Nwvxs6Bgmn4Dyl-jTLG3q2BD7pv3JYzN9nj297JL74fXdYJR0xRMSI4tylkBqjccE1ArrMUTQmWepZqC1yUXBbQW8LHPrNUqjvkpthEx1ajkAA-kgTffIat3Ubp9QhFmwHKc2V3pZYDxVZl6zsH_LMyOc6BExx1GZjlk8FLiYqJhhsEq14KsAvurA75GzRaPXlljjd_HLoKCFaGDFjjfQVlRnK-ovW-mRnaDexUsqKRCLqkeO5upW3R_8pkQovY7hGWcH_9H1IVkLw2kXb47I6mz67o4xnJnpk2i5X-e58b4
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware Based on Genetic Algorithm
URI https://ieeexplore.ieee.org/document/9422719
https://www.proquest.com/docview/2526965810
https://doaj.org/article/dfc4dfe1fb79401ea122d39e6a03afd4
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTvRQ2kLVbSnyoUey2I7zOi5bVghpOYHEzfKzRV2SimaL1F_fseONoEUVtyjxJLa-yXhmbH8D8LnUhTFe2Uxx3WSi8iVeCZ15agtdq8rwmBpYXpRnV-L8urjegqPxLIxzLm4-c9NwGdfybWfWIVV23AjOq8Dx-QIDt-Gs1phPCQUkmqJKxEKMNsez-RzHgCEgZ1PUZPQii0eTT-ToT0VV_rHEcXpZ7MJy07FhV8n36brXU_P7L87G5_b8NbxKfiaZDYrxBrZc-xZePmAf3IN2Ri66X25FlrGKNEH3lXxxYVEBH5NFJBshAy11VE7SeXIZN447S1Rrg5y67RCoG0OWanWvsP0JzoqWdG0UxG-T2eprd3fTf7vdh6vF6eX8LEvlFzIjqrrPVG6NxxDWcuvRydCFp7mmSmtT4lhso1hdl9ZrbI2I19pwkevcMqWoEk7l-TvYbrvWvQeivOW0ROPoai8q9MjqwmsaVoBZYbjjE-AbXKRJ3OShRMZKxhiFNnIAUwYwZQJzAkej0I-BmuP_zU8C4GPTwKsdbyBQMv2m0nojrHfMa7RTlDnFOLd540pFcxyEmMBeAHd8ScJ1Agcb9ZHJBvyUPBRvRweP0Q9PS32EndDBIaFzANv93dp9Qhen14cxNXAYNfwPvAP6tg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAOvApiSwEfODZb27HzOG4XVgs0e9pKvVl-0optgtosSPx6xo434iXELUo8ia1vMjMe298g9KbQwhivbKaYrjNe-gKuuM48sUJXqjQspgaaVbE85x8uxMUeOh7Pwjjn4uYzNw2XcS3fdmYbUmUnNWesDByfd8DvCzqc1hozKqGERC3KRC1ESX0ym89hFDAJZHQKugxxpPjF_USW_lRW5Q9bHB3M4iFqdl0b9pV8nm57PTXff2Nt_N--P0IPUqSJZ4NqPEZ7rn2C7v_EP3iA2hledV_dBjexjjSGABa_dWFZAR7jRaQbwQMxdVRP3Hm8jlvHncWqtUFOXXcA1ZXBjdp8U9D-FPyixV0bBeHbeLb51N1c9ZfXT9H54t16vsxSAYbM8LLqM5Vb42ESa5n1EGZo4UmuidLaFDAWWytaVYX1GloD5pU2jOc6t1QporhTef4M7bdd654jrLxlpADz6CrPS4jJKuE1CWvAVBjm2ASxHS7SJHbyUCRjI-MshdRyAFMGMGUCc4KOR6EvAznHv5ufBsDHpoFZO94AoGT6UaX1hlvvqNdgqQh1ijJm89oViuQwCD5BBwHc8SUJ1wk62qmPTFbgVrJQvh1CPEoO_y71Gt1drpszefZ-9fEFuhc6O6R3jtB-f7N1LyHg6fWrqOc_AAec_Qo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Method+for+Detecting+Future+Generations+of+Targeted+and+Metamorphic+Malware+Based+on+Genetic+Algorithm&rft.jtitle=IEEE+access&rft.au=Javaheri%2C+Danial&rft.au=Lalbakhsh%2C+Pooia&rft.au=Hosseinzadeh%2C+Mehdi&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=69951&rft.epage=69970&rft_id=info:doi/10.1109%2FACCESS.2021.3077295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3077295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon