A Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware Based on Genetic Algorithm
This paper presents a novel solution for detecting rare and mutating malware programs and provides a strategy to address the scarcity of datasets for modeling these types of malware. To provide sufficient training data for malware behavioral modeling, genetic algorithms are used together with an opt...
Saved in:
Published in | IEEE access Vol. 9; pp. 69951 - 69970 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel solution for detecting rare and mutating malware programs and provides a strategy to address the scarcity of datasets for modeling these types of malware. To provide sufficient training data for malware behavioral modeling, genetic algorithms are used together with an optimization strategy that selectively creates generations of mutated elite malware samples. In our unique method, a sequence of system API calls is extracted using tracker filter drivers in a sandbox environment. The most obfuscated and metamorphic malware are chosen by an elite selection method. The behavioral chromosomes are formed by mapping extracted APIs to genes using linear regression. Our analysis system includes an Internet simulator and a human emulator to deceive intelligent classes of malware to successfully execute themselves and prevent system halting. The evolution process is performed through crossover and permutation of genes, which are encoded based on the addresses of the kernel-level system functions. An objective function has been defined to optimize the vital indicators of malignancy and tracking rate with a linear time complexity. This guarantees that new generations of malware are more destructive and stealthy than their parents. J48 and deep neural networks were employed in our experiments as they are two popular modeling and classification strategies in the area of behavioral malware detection. Real-world malware samples from valid references were used for the performance evaluation of our approach. Comprehensive scenarios were involved in the experiments to evaluate the performance of our proposed strategy. The results demonstrate significant improvement in detection accuracy - up to 5% considering rare and metamorphic malware. The results also demonstrated a considerable enhancement in true positive rate for the proposed deep-learning algorithm. |
---|---|
AbstractList | This paper presents a novel solution for detecting rare and mutating malware programs and provides a strategy to address the scarcity of datasets for modeling these types of malware. To provide sufficient training data for malware behavioral modeling, genetic algorithms are used together with an optimization strategy that selectively creates generations of mutated elite malware samples. In our unique method, a sequence of system API calls is extracted using tracker filter drivers in a sandbox environment. The most obfuscated and metamorphic malware are chosen by an elite selection method. The behavioral chromosomes are formed by mapping extracted APIs to genes using linear regression. Our analysis system includes an Internet simulator and a human emulator to deceive intelligent classes of malware to successfully execute themselves and prevent system halting. The evolution process is performed through crossover and permutation of genes, which are encoded based on the addresses of the kernel-level system functions. An objective function has been defined to optimize the vital indicators of malignancy and tracking rate with a linear time complexity. This guarantees that new generations of malware are more destructive and stealthy than their parents. J48 and deep neural networks were employed in our experiments as they are two popular modeling and classification strategies in the area of behavioral malware detection. Real-world malware samples from valid references were used for the performance evaluation of our approach. Comprehensive scenarios were involved in the experiments to evaluate the performance of our proposed strategy. The results demonstrate significant improvement in detection accuracy - up to 5% considering rare and metamorphic malware. The results also demonstrated a considerable enhancement in true positive rate for the proposed deep-learning algorithm. |
Author | Javaheri, Danial Lalbakhsh, Pooia Hosseinzadeh, Mehdi |
Author_xml | – sequence: 1 givenname: Danial orcidid: 0000-0002-7275-2370 surname: Javaheri fullname: Javaheri, Danial organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran – sequence: 2 givenname: Pooia orcidid: 0000-0001-9267-2610 surname: Lalbakhsh fullname: Lalbakhsh, Pooia organization: Euler Capital, Drysdale, VIC, Australia – sequence: 3 givenname: Mehdi orcidid: 0000-0003-3040-1801 surname: Hosseinzadeh fullname: Hosseinzadeh, Mehdi email: mehdihosseinzadeh@duytan.edu.vn organization: Institute of Research and Development, Duy Tan University, Da Nang, Vietnam |
BookMark | eNqFkU1PGzEQhq2KSqXAL-BiiXNSf-yXjyEFigTlAD1b4_U4cbSxU69D1X9fJ4tQ1Ut9GWvmfWZG834mJyEGJOSSsznnTH1ZLJc3z89zwQSfS9a2QtUfyKngjZrJWjYnf_0_kYtx3LDyupKq21MSFvR7fMWBPmJeR0tdTPQrZuyzDyt6u8_7hPQOAybIPoaRRkdfIK2KxFII9sDBNqbd2vf0EYZfUPTXMJZqDEcwl8JiWMXk83p7Tj46GEa8eItn5Mftzcvy2-zh6e5-uXiY9VXb5RlI2zsupRXW8bY2tWPSMDCmb0TLrQLedY11pqgbU3emF5U00nIABhWClGfkfuprI2z0LvktpN86gtfHREwrDalsNqC2rq-sQ-5MqyrGEbgQVipsgElwtiq9rqZeuxR_7nHMehP3KZT1tahFo5q646yo5KTqUxzHhO59Kmf64JOefNIHn_SbT4VS_1C9z8dL5wR--A97ObEeEd-nqUqUEyn5BxSao8Q |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_istruc_2022_11_072 crossref_primary_10_1109_ACCESS_2022_3196905 crossref_primary_10_1002_spy2_444 crossref_primary_10_1007_s10044_024_01381_x crossref_primary_10_1109_ACCESS_2022_3232505 crossref_primary_10_1109_ACCESS_2023_3305274 crossref_primary_10_1016_j_matpr_2022_03_121 crossref_primary_10_1109_ACCESS_2023_3328351 crossref_primary_10_1007_s12652_022_04110_6 crossref_primary_10_1007_s13369_022_07309_z crossref_primary_10_1155_2022_9620555 crossref_primary_10_3390_electronics12204316 crossref_primary_10_1007_s11042_024_18246_4 crossref_primary_10_1016_j_ins_2023_01_067 crossref_primary_10_1016_j_eswa_2023_122697 crossref_primary_10_3390_info15040194 crossref_primary_10_1007_s10586_024_04602_4 |
Cites_doi | 10.1002/9781118950951 10.1109/ACCESS.2019.2906934 10.1002/cpe.5082 10.1109/ACCESS.2018.2853121 10.1145/2554850.2555157 10.1007/s11416-018-0324-z 10.3233/JIFS-169015 10.1186/s13677-017-0098-8 10.1504/IJMIS.2010.039240 10.1109/SP.2017.42 10.1016/j.cose.2015.04.001 10.1016/j.jisa.2019.06.006 10.1007/s41125-019-00039-8 10.1145/3133956.3134099 10.1016/j.jnca.2019.102526 10.1109/GLOCOM.2017.8254503 10.1007/978-3-319-93025-1_4 10.1007/s11277-017-4859-y 10.1109/ICONSTEM.2016.7560870 10.1109/TR.2019.2927285 10.1109/NTMS.2018.8328749 10.1145/3052973.3052999 10.1016/j.csi.2020.103443 10.1109/ACCESS.2019.2908033 10.1007/978-981-15-0994-0 10.1016/S1361-3723(19)30006-5 10.1109/BWCCA.2010.85 10.1007/11604938_15 10.1109/TII.2020.2968927 10.1002/nem.1913 10.1109/ACCESS.2020.3036491 10.31979/etd.3ge6-6nfx 10.1145/2592791.2592795 10.1109/ACCESS.2018.2884964 10.1145/3073559 10.1016/j.cose.2019.101574 10.1007/978-3-030-62582-5_5 10.1007/s11416-006-0028-7 10.1007/978-1-4842-6193-4_7 10.1109/SNPD.2018.8441123 10.3390/sym12050754 10.1145/3194452.3194459 10.1631/FITEE.1601325 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3077295 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 69970 |
ExternalDocumentID | oai_doaj_org_article_dfc4dfe1fb79401ea122d39e6a03afd4 10_1109_ACCESS_2021_3077295 9422719 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c478t-a3dcf133d2df175b5f03b0abbc6271d9a1886dfbc476b58bc243b3d1aa0a4ea33 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:02 EDT 2025 Mon Jun 30 01:53:50 EDT 2025 Tue Jul 01 04:03:30 EDT 2025 Thu Apr 24 23:02:57 EDT 2025 Wed Aug 27 02:29:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-a3dcf133d2df175b5f03b0abbc6271d9a1886dfbc476b58bc243b3d1aa0a4ea33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7275-2370 0000-0003-3040-1801 0000-0001-9267-2610 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9422719 |
PQID | 2526965810 |
PQPubID | 4845423 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dfc4dfe1fb79401ea122d39e6a03afd4 proquest_journals_2526965810 crossref_primary_10_1109_ACCESS_2021_3077295 ieee_primary_9422719 crossref_citationtrail_10_1109_ACCESS_2021_3077295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref59 ref15 ref14 ref11 kumar (ref51) 2014; 4 cichosz (ref54) 2015 ref16 ref19 ref18 (ref56) 2014 russinovich (ref53) 2012 namani (ref10) 2020 ref50 ref48 ref47 (ref62) 2021 ref42 ref41 ref49 ref8 (ref45) 2020 ref7 (ref1) 2020 ref9 ref4 ref3 ref6 ref5 (ref57) 2014 ref40 easttom (ref20) 2018; 17 jurczyk (ref52) 2020 ref35 honig (ref63) 2012 schreiber (ref55) 2001 ref34 ref37 (ref58) 2020 ref36 ref31 ref30 ref33 ref32 priyadarshi (ref17) 2011 ref2 ref39 ref38 (ref25) 2021 (ref44) 2020 reeves (ref46) 2010 yuvaraj (ref61) 2020 ref24 ref23 (ref43) 2018 ref22 ref21 ref28 ref27 ref29 (ref26) 2021 jagsir (ref13) 2018; 7 ref60 |
References_xml | – year: 2020 ident: ref1 publication-title: AV-Test Report – year: 2014 ident: ref57 publication-title: Virus Total – start-page: 1 year: 2020 ident: ref10 article-title: Symbolic execution based feature extraction for detection of malware publication-title: Proc 5th Int Conf Comput Commun Secur (ICCCS) – start-page: 135 year: 2010 ident: ref46 publication-title: Windows 7 Device Driver – year: 2015 ident: ref54 publication-title: Data Mining Algorithms Explained Using R doi: 10.1002/9781118950951 – ident: ref32 doi: 10.1109/ACCESS.2019.2906934 – start-page: 229 year: 2020 ident: ref61 publication-title: Analysis on the Prediction of Central Line-Associated Bloodstream Infections (CLABSI) Using Deep Neural Network Classification Computational Intelligence and its Applications in Healthcare – ident: ref8 doi: 10.1002/cpe.5082 – ident: ref12 doi: 10.1109/ACCESS.2018.2853121 – ident: ref14 doi: 10.1145/2554850.2555157 – volume: 4 start-page: 8 year: 2014 ident: ref51 article-title: Variant of genetic algorithm and its applications publication-title: Int J Artif Intell Neural Netw – year: 2001 ident: ref55 publication-title: Undocumented Windows 2000 Secrets A Programmer's Cookbook – ident: ref39 doi: 10.1007/s11416-018-0324-z – ident: ref37 doi: 10.3233/JIFS-169015 – ident: ref27 doi: 10.1186/s13677-017-0098-8 – ident: ref16 doi: 10.1504/IJMIS.2010.039240 – ident: ref9 doi: 10.1109/SP.2017.42 – ident: ref36 doi: 10.1016/j.cose.2015.04.001 – ident: ref30 doi: 10.1016/j.jisa.2019.06.006 – ident: ref2 doi: 10.1007/s41125-019-00039-8 – year: 2018 ident: ref43 publication-title: Adminus Malware Dataset 2016-18 – ident: ref24 doi: 10.1145/3133956.3134099 – ident: ref5 doi: 10.1016/j.jnca.2019.102526 – ident: ref34 doi: 10.1109/GLOCOM.2017.8254503 – ident: ref48 doi: 10.1007/978-3-319-93025-1_4 – ident: ref28 doi: 10.1007/s11277-017-4859-y – year: 2021 ident: ref26 publication-title: McAfee Website – ident: ref50 doi: 10.1109/ICONSTEM.2016.7560870 – ident: ref40 doi: 10.1109/TR.2019.2927285 – start-page: 133 year: 2012 ident: ref53 publication-title: Windows Internals Part 2 – year: 2020 ident: ref52 publication-title: Windows X86 System Call Table – ident: ref31 doi: 10.1109/NTMS.2018.8328749 – ident: ref23 doi: 10.1145/3052973.3052999 – ident: ref4 doi: 10.1016/j.csi.2020.103443 – volume: 17 start-page: 1 year: 2018 ident: ref20 article-title: An examination of the operational requirements of weaponised malware publication-title: J Inf Warfare – year: 2014 ident: ref56 publication-title: Joe Sandbox – ident: ref19 doi: 10.1109/ACCESS.2019.2908033 – ident: ref49 doi: 10.1007/978-981-15-0994-0 – start-page: 221 year: 2012 ident: ref63 publication-title: Practical Malware Analysis The Hands-On Guide to Dissecting Malicious Software – year: 2020 ident: ref44 publication-title: VirusSign Malware Dataset 2013-20 – ident: ref22 doi: 10.1016/S1361-3723(19)30006-5 – year: 2020 ident: ref58 publication-title: AV-Test Ranking List – ident: ref11 doi: 10.1109/BWCCA.2010.85 – ident: ref3 doi: 10.1007/11604938_15 – volume: 7 start-page: 100 year: 2018 ident: ref13 article-title: Challenges of malware analysis: Obfuscation techniques publication-title: Int J Inf Secur Sci – ident: ref41 doi: 10.1109/TII.2020.2968927 – year: 2020 ident: ref45 publication-title: VirusShare Malware Dataset 2016-20 – ident: ref7 doi: 10.1002/nem.1913 – ident: ref33 doi: 10.1109/ACCESS.2020.3036491 – year: 2011 ident: ref17 article-title: Metamorphic detection via emulation doi: 10.31979/etd.3ge6-6nfx – ident: ref21 doi: 10.1145/2592791.2592795 – ident: ref6 doi: 10.1109/ACCESS.2018.2884964 – ident: ref47 doi: 10.1145/3073559 – ident: ref35 doi: 10.1016/j.cose.2019.101574 – year: 2021 ident: ref25 publication-title: Kaspersky Encyclopedia – ident: ref60 doi: 10.1007/978-3-030-62582-5_5 – ident: ref15 doi: 10.1007/s11416-006-0028-7 – ident: ref18 doi: 10.1007/978-1-4842-6193-4_7 – ident: ref29 doi: 10.1109/SNPD.2018.8441123 – ident: ref59 doi: 10.3390/sym12050754 – year: 2021 ident: ref62 publication-title: H2O AI Hybrid Cloud – ident: ref42 doi: 10.1145/3194452.3194459 – ident: ref38 doi: 10.1631/FITEE.1601325 |
SSID | ssj0000816957 |
Score | 2.3541143 |
Snippet | This paper presents a novel solution for detecting rare and mutating malware programs and provides a strategy to address the scarcity of datasets for modeling... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 69951 |
SubjectTerms | Artificial neural networks Crossovers cyber security data mining Emulators Engines Feature extraction Genes genetic algorithm Genetic algorithms Machine learning Malware Malware detection malware unpacking metamorphism Modelling Monitoring obfuscation Optimization Performance evaluation Permutations |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkYDvOayyFqkIqE0hs1vkFSCVBpcDf5-ykVRESLGxRco7j7y6-O9v6jpDTXGfGeLAJCF0lsvA5XkmdeGYzXUJhRFwaGN_mo3t585A9LJX6CmfCWnrgFrgL64203nGv0XIYd8CFsGnlcmApeBuZQNHnLSVTcQ4ueV5lRUczxFl10R8McESYEAp-jnaNMWX2zRVFxv6uxMqPeTk6m-Em2eiiRNpvv26LrLh6m6wvcQfukLpPb5sPN6HjWAOaYvBJr1zYEsDHdBipQmhLKh1Nizae3sVj385SqG1oBy8Nwvxs6Bgmn4Dyl-jTLG3q2BD7pv3JYzN9nj297JL74fXdYJR0xRMSI4tylkBqjccE1ArrMUTQmWepZqC1yUXBbQW8LHPrNUqjvkpthEx1ajkAA-kgTffIat3Ubp9QhFmwHKc2V3pZYDxVZl6zsH_LMyOc6BExx1GZjlk8FLiYqJhhsEq14KsAvurA75GzRaPXlljjd_HLoKCFaGDFjjfQVlRnK-ovW-mRnaDexUsqKRCLqkeO5upW3R_8pkQovY7hGWcH_9H1IVkLw2kXb47I6mz67o4xnJnpk2i5X-e58b4 priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware Based on Genetic Algorithm |
URI | https://ieeexplore.ieee.org/document/9422719 https://www.proquest.com/docview/2526965810 https://doaj.org/article/dfc4dfe1fb79401ea122d39e6a03afd4 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTvRQ2kLVbSnyoUey2I7zOi5bVghpOYHEzfKzRV2SimaL1F_fseONoEUVtyjxJLa-yXhmbH8D8LnUhTFe2Uxx3WSi8iVeCZ15agtdq8rwmBpYXpRnV-L8urjegqPxLIxzLm4-c9NwGdfybWfWIVV23AjOq8Dx-QIDt-Gs1phPCQUkmqJKxEKMNsez-RzHgCEgZ1PUZPQii0eTT-ToT0VV_rHEcXpZ7MJy07FhV8n36brXU_P7L87G5_b8NbxKfiaZDYrxBrZc-xZePmAf3IN2Ri66X25FlrGKNEH3lXxxYVEBH5NFJBshAy11VE7SeXIZN447S1Rrg5y67RCoG0OWanWvsP0JzoqWdG0UxG-T2eprd3fTf7vdh6vF6eX8LEvlFzIjqrrPVG6NxxDWcuvRydCFp7mmSmtT4lhso1hdl9ZrbI2I19pwkevcMqWoEk7l-TvYbrvWvQeivOW0ROPoai8q9MjqwmsaVoBZYbjjE-AbXKRJ3OShRMZKxhiFNnIAUwYwZQJzAkej0I-BmuP_zU8C4GPTwKsdbyBQMv2m0nojrHfMa7RTlDnFOLd540pFcxyEmMBeAHd8ScJ1Agcb9ZHJBvyUPBRvRweP0Q9PS32EndDBIaFzANv93dp9Qhen14cxNXAYNfwPvAP6tg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAOvApiSwEfODZb27HzOG4XVgs0e9pKvVl-0optgtosSPx6xo434iXELUo8ia1vMjMe298g9KbQwhivbKaYrjNe-gKuuM48sUJXqjQspgaaVbE85x8uxMUeOh7Pwjjn4uYzNw2XcS3fdmYbUmUnNWesDByfd8DvCzqc1hozKqGERC3KRC1ESX0ym89hFDAJZHQKugxxpPjF_USW_lRW5Q9bHB3M4iFqdl0b9pV8nm57PTXff2Nt_N--P0IPUqSJZ4NqPEZ7rn2C7v_EP3iA2hledV_dBjexjjSGABa_dWFZAR7jRaQbwQMxdVRP3Hm8jlvHncWqtUFOXXcA1ZXBjdp8U9D-FPyixV0bBeHbeLb51N1c9ZfXT9H54t16vsxSAYbM8LLqM5Vb42ESa5n1EGZo4UmuidLaFDAWWytaVYX1GloD5pU2jOc6t1QporhTef4M7bdd654jrLxlpADz6CrPS4jJKuE1CWvAVBjm2ASxHS7SJHbyUCRjI-MshdRyAFMGMGUCc4KOR6EvAznHv5ufBsDHpoFZO94AoGT6UaX1hlvvqNdgqQh1ijJm89oViuQwCD5BBwHc8SUJ1wk62qmPTFbgVrJQvh1CPEoO_y71Gt1drpszefZ-9fEFuhc6O6R3jtB-f7N1LyHg6fWrqOc_AAec_Qo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Method+for+Detecting+Future+Generations+of+Targeted+and+Metamorphic+Malware+Based+on+Genetic+Algorithm&rft.jtitle=IEEE+access&rft.au=Javaheri%2C+Danial&rft.au=Lalbakhsh%2C+Pooia&rft.au=Hosseinzadeh%2C+Mehdi&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=69951&rft.epage=69970&rft_id=info:doi/10.1109%2FACCESS.2021.3077295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3077295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |