Bidirectional roles of neutrophil extracellular traps in oral microbiota carcinogenesis: A systematic review
•Elucidate the role of oral microorganisms in the development of oral squamous cell carcinoma.•Systematically elucidated the bidirectional role of neutrophil extracellular traps in oral microbiota carcinogenesis.•Explored the potential value of NETs as a biomarker in precancerous screening and progn...
Saved in:
Published in | Translational oncology Vol. 56; p. 102361 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Elucidate the role of oral microorganisms in the development of oral squamous cell carcinoma.•Systematically elucidated the bidirectional role of neutrophil extracellular traps in oral microbiota carcinogenesis.•Explored the potential value of NETs as a biomarker in precancerous screening and prognostic diagnosis of oral squamous cell carcinoma.
Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap and eliminate extracellular pathogens. Recent research has demonstrated a strong correlation between NETs and various diseases, including immune dysregulation, thrombosis, and malignancies. This review synthesizes current research on NETs, focusing on its biological role in oral squamous cell carcinoma (OSCC) and explores its potential in treating.
A literature review in the PubMed database was conducted to examine the impact of NETs on the homeostasis of oral microbiota and the involvement in the development of oral microbiota-related carcinogenesis.
Various microorganisms, including Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus spp., along with Candida albicans, as well as certain viruses such as Human papillomavirus (HPV), Human herpes virus 8 (HHV-8), and Herpes simplex virus-1 (HSV-1)are regulated by NETs during oral colonization and proliferation and have been identified as contributors to the pathogenesis of oral squamous cell carcinoma. NETs have been shown to play a dual role in the carcinogenic process of oral microbiota in humans. At the initial stage of tumor formation, NETs inhibit tumorigenesis by eliminating tumorigenic bacteria that infiltrated the tumor; however, following tumor establishment, various cytokines and chemokines that promote tumor progression are released by neutrophils during the NETs formation.
This article reviews the oncogenic mechanisms of NETs in the oral microbiota, with potential implications for early tumor detection and the development of microbe-targeted therapies.
[Display omitted] |
---|---|
AbstractList | Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap and eliminate extracellular pathogens. Recent research has demonstrated a strong correlation between NETs and various diseases, including immune dysregulation, thrombosis, and malignancies. This review synthesizes current research on NETs, focusing on its biological role in oral squamous cell carcinoma (OSCC) and explores its potential in treating.BACKGROUNDNeutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap and eliminate extracellular pathogens. Recent research has demonstrated a strong correlation between NETs and various diseases, including immune dysregulation, thrombosis, and malignancies. This review synthesizes current research on NETs, focusing on its biological role in oral squamous cell carcinoma (OSCC) and explores its potential in treating.A literature review in the PubMed database was conducted to examine the impact of NETs on the homeostasis of oral microbiota and the involvement in the development of oral microbiota-related carcinogenesis.METHODSA literature review in the PubMed database was conducted to examine the impact of NETs on the homeostasis of oral microbiota and the involvement in the development of oral microbiota-related carcinogenesis.Various microorganisms, including Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus spp., along with Candida albicans, as well as certain viruses such as Human papillomavirus (HPV), Human herpes virus 8 (HHV-8), and Herpes simplex virus-1 (HSV-1)are regulated by NETs during oral colonization and proliferation and have been identified as contributors to the pathogenesis of oral squamous cell carcinoma. NETs have been shown to play a dual role in the carcinogenic process of oral microbiota in humans. At the initial stage of tumor formation, NETs inhibit tumorigenesis by eliminating tumorigenic bacteria that infiltrated the tumor; however, following tumor establishment, various cytokines and chemokines that promote tumor progression are released by neutrophils during the NETs formation.RESULTSVarious microorganisms, including Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus spp., along with Candida albicans, as well as certain viruses such as Human papillomavirus (HPV), Human herpes virus 8 (HHV-8), and Herpes simplex virus-1 (HSV-1)are regulated by NETs during oral colonization and proliferation and have been identified as contributors to the pathogenesis of oral squamous cell carcinoma. NETs have been shown to play a dual role in the carcinogenic process of oral microbiota in humans. At the initial stage of tumor formation, NETs inhibit tumorigenesis by eliminating tumorigenic bacteria that infiltrated the tumor; however, following tumor establishment, various cytokines and chemokines that promote tumor progression are released by neutrophils during the NETs formation.This article reviews the oncogenic mechanisms of NETs in the oral microbiota, with potential implications for early tumor detection and the development of microbe-targeted therapies.CONCLUSIONThis article reviews the oncogenic mechanisms of NETs in the oral microbiota, with potential implications for early tumor detection and the development of microbe-targeted therapies. •Elucidate the role of oral microorganisms in the development of oral squamous cell carcinoma.•Systematically elucidated the bidirectional role of neutrophil extracellular traps in oral microbiota carcinogenesis.•Explored the potential value of NETs as a biomarker in precancerous screening and prognostic diagnosis of oral squamous cell carcinoma. Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap and eliminate extracellular pathogens. Recent research has demonstrated a strong correlation between NETs and various diseases, including immune dysregulation, thrombosis, and malignancies. This review synthesizes current research on NETs, focusing on its biological role in oral squamous cell carcinoma (OSCC) and explores its potential in treating. A literature review in the PubMed database was conducted to examine the impact of NETs on the homeostasis of oral microbiota and the involvement in the development of oral microbiota-related carcinogenesis. Various microorganisms, including Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus spp., along with Candida albicans, as well as certain viruses such as Human papillomavirus (HPV), Human herpes virus 8 (HHV-8), and Herpes simplex virus-1 (HSV-1)are regulated by NETs during oral colonization and proliferation and have been identified as contributors to the pathogenesis of oral squamous cell carcinoma. NETs have been shown to play a dual role in the carcinogenic process of oral microbiota in humans. At the initial stage of tumor formation, NETs inhibit tumorigenesis by eliminating tumorigenic bacteria that infiltrated the tumor; however, following tumor establishment, various cytokines and chemokines that promote tumor progression are released by neutrophils during the NETs formation. This article reviews the oncogenic mechanisms of NETs in the oral microbiota, with potential implications for early tumor detection and the development of microbe-targeted therapies. [Display omitted] Background: Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap and eliminate extracellular pathogens. Recent research has demonstrated a strong correlation between NETs and various diseases, including immune dysregulation, thrombosis, and malignancies. This review synthesizes current research on NETs, focusing on its biological role in oral squamous cell carcinoma (OSCC) and explores its potential in treating. Methods: A literature review in the PubMed database was conducted to examine the impact of NETs on the homeostasis of oral microbiota and the involvement in the development of oral microbiota-related carcinogenesis. Results: Various microorganisms, including Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus spp., along with Candida albicans, as well as certain viruses such as Human papillomavirus (HPV), Human herpes virus 8 (HHV-8), and Herpes simplex virus-1 (HSV-1)are regulated by NETs during oral colonization and proliferation and have been identified as contributors to the pathogenesis of oral squamous cell carcinoma. NETs have been shown to play a dual role in the carcinogenic process of oral microbiota in humans. At the initial stage of tumor formation, NETs inhibit tumorigenesis by eliminating tumorigenic bacteria that infiltrated the tumor; however, following tumor establishment, various cytokines and chemokines that promote tumor progression are released by neutrophils during the NETs formation. Conclusion: This article reviews the oncogenic mechanisms of NETs in the oral microbiota, with potential implications for early tumor detection and the development of microbe-targeted therapies. Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap and eliminate extracellular pathogens. Recent research has demonstrated a strong correlation between NETs and various diseases, including immune dysregulation, thrombosis, and malignancies. This review synthesizes current research on NETs, focusing on its biological role in oral squamous cell carcinoma (OSCC) and explores its potential in treating. A literature review in the PubMed database was conducted to examine the impact of NETs on the homeostasis of oral microbiota and the involvement in the development of oral microbiota-related carcinogenesis. Various microorganisms, including Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus spp., along with Candida albicans, as well as certain viruses such as Human papillomavirus (HPV), Human herpes virus 8 (HHV-8), and Herpes simplex virus-1 (HSV-1)are regulated by NETs during oral colonization and proliferation and have been identified as contributors to the pathogenesis of oral squamous cell carcinoma. NETs have been shown to play a dual role in the carcinogenic process of oral microbiota in humans. At the initial stage of tumor formation, NETs inhibit tumorigenesis by eliminating tumorigenic bacteria that infiltrated the tumor; however, following tumor establishment, various cytokines and chemokines that promote tumor progression are released by neutrophils during the NETs formation. This article reviews the oncogenic mechanisms of NETs in the oral microbiota, with potential implications for early tumor detection and the development of microbe-targeted therapies. |
ArticleNumber | 102361 |
Author | Shen, Jie Mo, Kangnan Chen, Chao Liang, Zhong Wang, Xing Lin, Haitao Zhang, Yan Zhang, Chenping Quan, Huatao |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-6367-3814 surname: Shen fullname: Shen, Jie email: 21718136@zju.edu.cn organization: Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China – sequence: 2 givenname: Haitao surname: Lin fullname: Lin, Haitao organization: Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China – sequence: 3 givenname: Kangnan surname: Mo fullname: Mo, Kangnan email: mokn@zjcc.org.cn organization: Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China – sequence: 4 givenname: Zhong surname: Liang fullname: Liang, Zhong organization: Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China – sequence: 5 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China – sequence: 6 givenname: Huatao surname: Quan fullname: Quan, Huatao email: 714203880@qq.com organization: Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China – sequence: 7 givenname: Xing surname: Wang fullname: Wang, Xing organization: Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China – sequence: 8 givenname: Chenping surname: Zhang fullname: Zhang, Chenping email: zhangcp@zjcc.org.cn organization: Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China – sequence: 9 givenname: Chao surname: Chen fullname: Chen, Chao email: Lancet2000@msn.com organization: Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40239243$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctuFDEQtFAQSRb-ACEfuezi1-yMEUIKEY9IkbjA2Wp7eoIXj73YM4H9e7xMiBCXnNwqVVW7q87JSUwRCXnO2YYzvn2120wZKrYRTDQVEnLLH5EzruV23QgpT_6ZT8l5KTvGtlwL8YScqsrWQskzEt753md0k08RAs0pYKFpoBHnKaf9Nx8o_qqLHIYwB8i0zvtCfaQpV_7oXU7Wpwmog-x8TDcYsfjyml7QcigTjjB5RzPeevz5lDweIBR8dveuyNcP779cflpff_54dXlxvXaq7aa1bqFpkaneuQ56xfpeq04OknEnu1aAtHaQVoumE6p1KCUqCRwFB22treeuyNXi2yfYmX32I-SDSeDNHyDlGwO5fiug0Qqgt1I00NY8oNNcKN0PQ8t1a5k8er1cvPY5_ZixTGb05ZgGRExzMZJrzlUjqnpFXtxRZztif7_4b9qVoBZCDa2UjMM9hTNzLNXszFKqOZZqllKr7O0iw5pZzTGb4jxGh0tz9Sj_kMGb_wxc8NE7CN_x8LD8N4IlwRk |
Cites_doi | 10.3389/fcimb.2018.00379 10.1111/odi.13810 10.1159/000510979 10.1038/s41420-024-01809-7 10.3390/biom10071036 10.1016/j.imbio.2019.151901 10.1093/annonc/mdw028 10.1093/nar/gks059 10.1111/jcpe.12628 10.1016/j.intimp.2021.108516 10.1016/j.semcancer.2021.07.011 10.1371/journal.ppat.1000713 10.1007/978-1-0716-0154-9_25 10.1073/pnas.0909927107 10.1038/s41423-018-0024-0 10.1177/1533033819867354 10.2147/JIR.S417182 10.1002/cam4.6748 10.31083/j.fbl2810265 10.1016/j.advms.2021.12.004 10.3389/fcell.2023.1117637 10.1093/jnci/djx278 10.1016/j.thromres.2018.01.049 10.15252/embr.202357571 10.1177/1073274820960473 10.1083/jcb.200606027 10.3389/fcimb.2017.00057 10.3389/fimmu.2019.00635 10.1111/prd.12352 10.1016/j.devcel.2018.01.019 10.1073/pnas.1909546117 10.1073/pnas.1414055112 10.3389/fcimb.2018.00226 10.1177/0022034518790941 10.1016/j.autrev.2017.09.012 10.3390/ijms242417583 10.4049/jimmunol.1300436 10.1038/nrmicro1710 10.1111/jth.13951 10.1016/j.gene.2003.08.022 10.1134/S0006297920100065 10.1111/prd.12366 10.1177/00220345211004498 10.1038/s41579-023-00963-6 10.1038/s41420-021-00491-3 10.1245/s10434-018-6941-4 10.3390/pathogens12020209 10.3389/fimmu.2023.1134521 10.1074/jbc.274.28.19655 10.1002/cac2.12388 10.1161/ATVBAHA.120.314883 10.1111/j.1600-0765.2011.01451.x 10.3390/ijms24043466 10.3390/ijms22147260 10.3390/ijms24054896 10.1111/omi.12099 10.1093/epirev/mxx006 10.1158/1078-0432.CCR-18-1226 10.1128/MCB.24.15.6719-6727.2004 10.15252/embr.201948779 10.1177/10732748231159313 10.1007/s00011-023-01822-z 10.1038/nri3785 10.1126/sciimmunol.aar6689 10.3390/cells9122614 10.1016/j.cell.2009.06.036 10.3390/cells12222621 10.1016/j.biopha.2017.02.102 10.1097/QAD.0000000000001159 10.7150/jca.24238 10.1016/j.chom.2012.05.015 10.1146/annurev-cellbio-020520-111016 10.1111/pim.12332 10.3389/fcimb.2021.627328 10.1016/j.oooo.2017.12.011 10.1038/s41420-024-01982-9 10.1007/978-3-030-44518-8_2 10.1177/0022034520956975 10.3389/fonc.2020.01036 10.3389/fmicb.2017.02391 10.1007/s13300-024-01579-6 10.1186/s13058-019-1237-6 10.3389/fimmu.2022.930553 10.1158/1535-7163.MCT-19-1020 10.1128/mBio.01704-18 10.1111/jop.12245 10.1007/978-1-4939-9424-3_31 10.1016/j.intimp.2023.111364 10.1007/s00432-019-02922-2 10.1038/s41586-020-2394-6 10.3389/fimmu.2020.563335 10.3389/fcimb.2017.00414 10.3389/fimmu.2023.1198269 10.1016/j.tim.2016.12.012 10.1016/j.clim.2023.109274 10.1128/msystems.00187-18 10.21037/atm.2020.03.190 10.1111/pcmr.12818 10.1155/2019/1029857 |
ContentType | Journal Article |
Copyright | 2025 Copyright © 2025. Published by Elsevier Inc. |
Copyright_xml | – notice: 2025 – notice: Copyright © 2025. Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 DOA |
DOI | 10.1016/j.tranon.2025.102361 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1936-5233 |
ExternalDocumentID | oai_doaj_org_article_94aadb325a7243a891249dff7197b033 40239243 10_1016_j_tranon_2025_102361 S1936523325000920 |
Genre | Journal Article Review |
GroupedDBID | --- .1- .FO 0R~ 1P~ 29Q 2WC 4.4 457 53G 5VS AAEDT AAEDW AAIKJ AAKDD AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK E3Z EBS EJD F5P FDB GROUPED_DOAJ GX1 HYE IPNFZ IXB KQ8 OC~ OK1 OO- RIG ROL RPM SSZ TR2 Z5R 6I. AAFTH AFCTW AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c478t-97a57e04dcc8ad40dd9483f301c3872a3bbf3b9258247ce33e43a1e21a9bbb233 |
IEDL.DBID | IXB |
ISSN | 1936-5233 |
IngestDate | Wed Aug 27 01:20:42 EDT 2025 Wed Jul 02 04:58:39 EDT 2025 Mon Jul 21 06:07:19 EDT 2025 Sun Jul 06 05:05:12 EDT 2025 Sat Jun 07 17:01:55 EDT 2025 Tue Aug 26 16:32:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | cpmn sap cpr nets pkc Oral squamous cell carcinoma Carcinogenesis gsdmd homd OLK oscc p.gingivalis cdk4/6 pad4 Neutrophil extracellular traps dna nox opmn ros ne Oral microbiota tlr dnase OPMD |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-97a57e04dcc8ad40dd9483f301c3872a3bbf3b9258247ce33e43a1e21a9bbb233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6367-3814 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1936523325000920 |
PMID | 40239243 |
PQID | 3191145224 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94aadb325a7243a891249dff7197b033 proquest_miscellaneous_3191145224 pubmed_primary_40239243 crossref_primary_10_1016_j_tranon_2025_102361 elsevier_sciencedirect_doi_10_1016_j_tranon_2025_102361 elsevier_clinicalkey_doi_10_1016_j_tranon_2025_102361 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Translational oncology |
PublicationTitleAlternate | Transl Oncol |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Speight, Khurram, Kujan (bib0075) 2018; 125 Lin, Tang, Teng, Feng, Li, Liu (bib0097) 2024; 127 Aparna, Rao, Kunhikatta, Radhakrishnan (bib0071) 2015; 44 Riaz, Sohn (bib0001) 2023; 12 Li, Li, Weigel, Mall, Werth, Liu (bib0018) 2020; 21 Hakkim, Furnrohr, Amann, Laube, Abed, Brinkmann (bib0029) 2010; 107 Amer, Galvin, Healy, Moran (bib0077) 2017; 8 Cedervall, Hamidi, Olsson (bib0011) 2018; 164 Mikolai, Branitzki-Heinemann, Ingendoh-Tsakmakidis, Stiesch, von Kockritz-Blickwede, Winkel (bib0043) 2020; 13 Zhang, Hu, Ma, Sun, Wei, Li (bib0103) 2020; 10 Garley, Dziemianczyk-Pakiela, Ratajczak-Wrona, Pryczynicz, Nowak, Lazarczyk (bib0083) 2022; 67 Jin, Xu, Zhang, Li, Wang, Gao (bib0094) 2019; 26 Schedel, Mayer-Hain, Pappelbaum, Metze, Stock, Goerge (bib0012) 2020; 33 Moonen, Hirschfeld, Cheng, Chapple, Loos, Nicu (bib0035) 2019; 10 Laukova, Konecna, Janovicova, Vlkova, Celec (bib0025) 2020; 10 Sollberger, Tilley, Zychlinsky (bib0016) 2018; 44 Xiao, Grier, Faustoferri, Alzoubi, Gill, Feng (bib0055) 2018; 97 Hasegawa, Ouchi, Shibukawa, Asoda, Nakagawa (bib0078) 2023; 28 Yang, Liu, Zhang, Liu, Zhou, Chen (bib0105) 2020; 583 Al-Kuraishy, Al-Gareeb, Al-Hussaniy, Al-Harcan, Alexiou, Batiha (bib0009) 2022; 104 Li, Zhang, Shang, Feng, Yu, Fan (bib0007) 2023; 14 Baker, Mark Welch, Kauffman, McLean, He (bib0013) 2024; 22 Chattopadhyay, Verma, Panda (bib0066) 2019; 18 Douda, Khan, Grasemann, Palaniyar (bib0022) 2015; 112 Jung, Jang (bib0079) 2022; 11 Vorobjeva, Chernyak (bib0024) 2020; 85 Xin, Lai, Zhou, He, Song, Liao (bib0096) 2023; 14 Li, Lin, Deng, Strnad, Bernabei, Vogl (bib0033) 2020; 19 Thiam, Wong, Qiu, Kittisopikul, Vahabikashi, Goldman (bib0014) 2020; 117 Fuchs, Abed, Goosmann, Hurwitz, Schulze, Wahn (bib0004) 2007; 176 de Bont, Boelens, Pruijn (bib0086) 2019; 16 Jayaprakash, Demirel, Khalaf, Bengtsson (bib0040) 2015; 30 Jiang, Wang, Chen, Xia, Xue, Gu (bib0095) 2023; 11 Qu, Han, Zhu, Ding, Wang, Zhang (bib0093) 2023; 16 Farrera, Fadeel (bib0028) 2013; 191 Jablonska, Garley, Surazynski, Grubczak, Iwaniuk, Borys (bib0080) 2020; 225 Haider, Kral-Pointner, Mayer, Richter, Kaun, Brostjan (bib0027) 2020; 40 Garley (bib0084) 2023; 30 Mauracher, Posch, Martinod, Grilz, Daullary, Hell (bib0111) 2018; 16 Virgin, Wherry, Ahmed (bib0050) 2009; 138 Ibrahim, Nuermaimaiti, Maimaituxun, Luo, Maimaituxun, Akbar (bib0100) 2024; 15 Tuominen, Rautava (bib0038) 2021; 88 Michaud, Lu, Peacock-Villada, Barber, Joshu, Prizment (bib0061) 2018; 110 Garley, Jablonska, Miltyk, Grubczak, Surazynski, Ratajczak-Wrona (bib0090) 2020; 27 Khan, Chowdhury, Billah, Islam, Thorlacius, Rahman (bib0107) 2021; 22 Stobernack, du Teil Espina, Mulder, Palma Medina, Piebenga, Gabarrini (bib0041) 2018; 9 Nie, Yang, Bi, Wang, Sun, Yang (bib0106) 2019; 25 Aguirre-Urizar, Lafuente-Ibanez de Mendoza, Warnakulasuriya (bib0076) 2021; 27 Morita, Stamp, Robins, Dulic, Rosewell, Hrivnak (bib0031) 2004; 24 Gao, Hui, Yang, Zhang, Yu, Lu (bib0099) 2019; 31 Zhang, Lv, Weng, Wang, Cata, Chen (bib0108) 2020; 8 Snoderly, Boone, Bennewitz (bib0102) 2019; 21 Zhai, Gong, Wang, Ni, Zhang, Wang (bib0109) 2024; 10 Diaz (bib0052) 2021; 85 Zawrotniak, Bochenska, Karkowska-Kuleta, Seweryn-Ozog, Aoki, Ueda (bib0057) 2017; 7 Jiang, Zhao, Shui, Zhou, Cheng, Ren (bib0074) 2021; 11 Wang, Lu, Tu, Ge, He, Zhou (bib0062) 2016; 6 Guo, Jing, Jia, Elayah, Xie, Cui (bib0091) 2024; 73 Jani, Lutz, Hurt, Laskey, Stewart, VO (bib0032) 2012; 40 de Buhr, von Kockritz-Blickwede (bib0047) 2020; 2087 Hoare, Soto, Rojas-Celis, Bravo (bib0069) 2019; 2019 Jia, Wang, Ma, Teng, Shi, Liu (bib0098) 2020; 11 Saikia, Pathak, Mitra, Das (bib0082) 2023; 14 Fonseca, Diaz-Godinez, Mora, Aleman, Uribe-Querol, Carrero (bib0021) 2018; 8 Albrengues, Shields, Ng, Park, Ambrico, Poindexter (bib0085) 2018; 361 Sollberger, Choidas, Burn, Habenberger, Di Lucrezia, Kordes (bib0017) 2018; 3 Mazur, Perrino (bib0030) 1999; 274 Demkow (bib0042) 2023; 24 Thiam, Wong, Wagner, Waterman (bib0023) 2020; 36 Zhang, Zhao, Sun, Li, Wei, Ashman (bib0058) 2017; 9 Kozlowski, Lai, Havugimana, White, Emili, Sakac (bib0048) 2016; 30 Brinkmann, Zychlinsky (bib0015) 2007; 5 Zhan, Wu, Kong, You, He, Sun (bib0092) 2023; 43 Ghannoum, Jurevic, Mukherjee, Cui, Sikaroodi, Naqvi (bib0053) 2010; 6 Kaan, Kahharova, Zaura (bib0039) 2021; 86 Escapa, Chen, Huang, Gajare, Dewhirst, Lemon (bib0037) 2018; 3 Brinkmann, Reichard, Goosmann, Fauler, Uhlemann, Weiss (bib0003) 2004; 303 de, Gonzalez-Contreras, Zarate (bib0049) 2022; 382 Herreros-Pomares, Hervas, Bagan-Debon, Jantus-Lewintre, Gimeno-Cardona, Bagan (bib0081) 2023; 24 Unger, Skoluda, Backman, Amulic, Ponce-Garcia, Etiaba (bib0056) 2023; 24 Michaud, Fu, Shi, Chung (bib0064) 2017; 39 Guo, Jing, Jia, Elayah, Xie, Cui (bib0045) 2023 Shafqat, Khan, Alkachem, Sabur, Alkattan, Yaqinuddin (bib0002) 2023; 24 Diaz, Hoare, Hong (bib0063) 2016; 44 Garley, Dziemianczyk-Pakiela, Grubczak, Surazynski, Dabrowska, Ratajczak-Wrona (bib0110) 2018; 9 Ramos, Oehler (bib0005) 2024; 10 Diaz, Dongari-Bagtzoglou (bib0054) 2021; 100 White, Sakellari, Roberts, Risafi, Ling, Cooper (bib0072) 2016; 43 Hajishengallis (bib0067) 2015; 15 Gholizadeh, Eslami, Kafil (bib0068) 2017; 89 Saitoh, Komano, Saitoh, Misawa, Takahama, Kozaki (bib0046) 2012; 12 Huang, Zhang, Onuma, Tsung (bib0089) 2020; 1263 Azzouz, Khan, Palaniyar (bib0020) 2021; 7 Petrelli, Popp, Fukuda, Parish, Bosi, Simeonovic (bib0008) 2022; 13 Ventura-Juarez, Campos-Esparza, Pacheco-Yepez, Lopez-Blanco, Adabache-Ortiz, Silva-Briano (bib0060) 2016; 38 Geng, Liu, Guo, Li, Wang, Wang (bib0070) 2017; 7 Lee, Kronbichler, Park, Park, Moon, Kim (bib0006) 2017; 16 Bao, Weiner, Meckes, Dommisch, Schaefer (bib0034) 2021; 100 Baker, Bor, Agnello, Shi, He (bib0036) 2017; 25 Rada (bib0019) 2019; 1982 Chen, He, Cui (bib0101) 2022; 9 Palmer, Chapple, Wright, Roberts, Cooper (bib0044) 2012; 47 Vitkov, Minnich, Knopf, Schauer, Hannig, Herrmann (bib0073) 2020; 9 Kapoor, Shukla (bib0051) 2023; 12 Cristinziano, Modestino, Antonelli, Marone, Simon, Varricchi (bib0087) 2022; 79 Evans, Aguilera (bib0026) 2003; 322 Michailidou, Kuley, Wang, Hermanson, Grayson, Cuthbertson (bib0010) 2023; 249 Bonner, Fresno, Girones, Guillen, Santi-Rocca (bib0059) 2018; 8 Michaud, Kelsey, Papathanasiou, Genco, Giovannucci (bib0065) 2016; 27 Xie, Shang, Shi, Bi, Song, Qu (bib0104) 2023; 12 Li, Liu, Hu, Zhang, Zhang, Li (bib0088) 2019; 145 Schedel (10.1016/j.tranon.2025.102361_bib0012) 2020; 33 Xie (10.1016/j.tranon.2025.102361_bib0104) 2023; 12 Li (10.1016/j.tranon.2025.102361_bib0018) 2020; 21 Moonen (10.1016/j.tranon.2025.102361_bib0035) 2019; 10 Speight (10.1016/j.tranon.2025.102361_bib0075) 2018; 125 Michaud (10.1016/j.tranon.2025.102361_bib0064) 2017; 39 Tuominen (10.1016/j.tranon.2025.102361_bib0038) 2021; 88 Diaz (10.1016/j.tranon.2025.102361_bib0052) 2021; 85 Chattopadhyay (10.1016/j.tranon.2025.102361_bib0066) 2019; 18 Chen (10.1016/j.tranon.2025.102361_bib0101) 2022; 9 Vitkov (10.1016/j.tranon.2025.102361_bib0073) 2020; 9 White (10.1016/j.tranon.2025.102361_bib0072) 2016; 43 Li (10.1016/j.tranon.2025.102361_bib0033) 2020; 19 Jayaprakash (10.1016/j.tranon.2025.102361_bib0040) 2015; 30 de (10.1016/j.tranon.2025.102361_bib0049) 2022; 382 Azzouz (10.1016/j.tranon.2025.102361_bib0020) 2021; 7 Amer (10.1016/j.tranon.2025.102361_bib0077) 2017; 8 Cristinziano (10.1016/j.tranon.2025.102361_bib0087) 2022; 79 Gholizadeh (10.1016/j.tranon.2025.102361_bib0068) 2017; 89 Khan (10.1016/j.tranon.2025.102361_bib0107) 2021; 22 Mauracher (10.1016/j.tranon.2025.102361_bib0111) 2018; 16 Baker (10.1016/j.tranon.2025.102361_bib0036) 2017; 25 Riaz (10.1016/j.tranon.2025.102361_bib0001) 2023; 12 Huang (10.1016/j.tranon.2025.102361_bib0089) 2020; 1263 Bao (10.1016/j.tranon.2025.102361_bib0034) 2021; 100 Zhan (10.1016/j.tranon.2025.102361_bib0092) 2023; 43 Ghannoum (10.1016/j.tranon.2025.102361_bib0053) 2010; 6 Morita (10.1016/j.tranon.2025.102361_bib0031) 2004; 24 Diaz (10.1016/j.tranon.2025.102361_bib0054) 2021; 100 Snoderly (10.1016/j.tranon.2025.102361_bib0102) 2019; 21 Garley (10.1016/j.tranon.2025.102361_bib0110) 2018; 9 Mikolai (10.1016/j.tranon.2025.102361_bib0043) 2020; 13 Laukova (10.1016/j.tranon.2025.102361_bib0025) 2020; 10 Ibrahim (10.1016/j.tranon.2025.102361_bib0100) 2024; 15 Michailidou (10.1016/j.tranon.2025.102361_bib0010) 2023; 249 Guo (10.1016/j.tranon.2025.102361_bib0091) 2024; 73 Qu (10.1016/j.tranon.2025.102361_bib0093) 2023; 16 Zhang (10.1016/j.tranon.2025.102361_bib0103) 2020; 10 Herreros-Pomares (10.1016/j.tranon.2025.102361_bib0081) 2023; 24 Kaan (10.1016/j.tranon.2025.102361_bib0039) 2021; 86 Fuchs (10.1016/j.tranon.2025.102361_bib0004) 2007; 176 Aguirre-Urizar (10.1016/j.tranon.2025.102361_bib0076) 2021; 27 Garley (10.1016/j.tranon.2025.102361_bib0090) 2020; 27 Jablonska (10.1016/j.tranon.2025.102361_bib0080) 2020; 225 Xiao (10.1016/j.tranon.2025.102361_bib0055) 2018; 97 Hakkim (10.1016/j.tranon.2025.102361_bib0029) 2010; 107 Vorobjeva (10.1016/j.tranon.2025.102361_bib0024) 2020; 85 Palmer (10.1016/j.tranon.2025.102361_bib0044) 2012; 47 Xin (10.1016/j.tranon.2025.102361_bib0096) 2023; 14 Yang (10.1016/j.tranon.2025.102361_bib0105) 2020; 583 Jung (10.1016/j.tranon.2025.102361_bib0079) 2022; 11 Fonseca (10.1016/j.tranon.2025.102361_bib0021) 2018; 8 Geng (10.1016/j.tranon.2025.102361_bib0070) 2017; 7 Evans (10.1016/j.tranon.2025.102361_bib0026) 2003; 322 Zhang (10.1016/j.tranon.2025.102361_bib0108) 2020; 8 Aparna (10.1016/j.tranon.2025.102361_bib0071) 2015; 44 Thiam (10.1016/j.tranon.2025.102361_bib0014) 2020; 117 Haider (10.1016/j.tranon.2025.102361_bib0027) 2020; 40 Stobernack (10.1016/j.tranon.2025.102361_bib0041) 2018; 9 Petrelli (10.1016/j.tranon.2025.102361_bib0008) 2022; 13 Saitoh (10.1016/j.tranon.2025.102361_bib0046) 2012; 12 Nie (10.1016/j.tranon.2025.102361_bib0106) 2019; 25 Jiang (10.1016/j.tranon.2025.102361_bib0095) 2023; 11 Rada (10.1016/j.tranon.2025.102361_bib0019) 2019; 1982 Lin (10.1016/j.tranon.2025.102361_bib0097) 2024; 127 Farrera (10.1016/j.tranon.2025.102361_bib0028) 2013; 191 Douda (10.1016/j.tranon.2025.102361_bib0022) 2015; 112 Bonner (10.1016/j.tranon.2025.102361_bib0059) 2018; 8 Diaz (10.1016/j.tranon.2025.102361_bib0063) 2016; 44 Ramos (10.1016/j.tranon.2025.102361_bib0005) 2024; 10 Guo (10.1016/j.tranon.2025.102361_bib0045) 2023 Hajishengallis (10.1016/j.tranon.2025.102361_bib0067) 2015; 15 Garley (10.1016/j.tranon.2025.102361_bib0083) 2022; 67 Jia (10.1016/j.tranon.2025.102361_bib0098) 2020; 11 Kozlowski (10.1016/j.tranon.2025.102361_bib0048) 2016; 30 Hoare (10.1016/j.tranon.2025.102361_bib0069) 2019; 2019 Shafqat (10.1016/j.tranon.2025.102361_bib0002) 2023; 24 Michaud (10.1016/j.tranon.2025.102361_bib0065) 2016; 27 Sollberger (10.1016/j.tranon.2025.102361_bib0017) 2018; 3 Garley (10.1016/j.tranon.2025.102361_bib0084) 2023; 30 Baker (10.1016/j.tranon.2025.102361_bib0013) 2024; 22 Zhai (10.1016/j.tranon.2025.102361_bib0109) 2024; 10 Brinkmann (10.1016/j.tranon.2025.102361_bib0015) 2007; 5 Jiang (10.1016/j.tranon.2025.102361_bib0074) 2021; 11 Zhang (10.1016/j.tranon.2025.102361_bib0058) 2017; 9 Kapoor (10.1016/j.tranon.2025.102361_bib0051) 2023; 12 Cedervall (10.1016/j.tranon.2025.102361_bib0011) 2018; 164 Michaud (10.1016/j.tranon.2025.102361_bib0061) 2018; 110 de Buhr (10.1016/j.tranon.2025.102361_bib0047) 2020; 2087 Unger (10.1016/j.tranon.2025.102361_bib0056) 2023; 24 Albrengues (10.1016/j.tranon.2025.102361_bib0085) 2018; 361 Lee (10.1016/j.tranon.2025.102361_bib0006) 2017; 16 Jani (10.1016/j.tranon.2025.102361_bib0032) 2012; 40 Li (10.1016/j.tranon.2025.102361_bib0088) 2019; 145 Jin (10.1016/j.tranon.2025.102361_bib0094) 2019; 26 Thiam (10.1016/j.tranon.2025.102361_bib0023) 2020; 36 Saikia (10.1016/j.tranon.2025.102361_bib0082) 2023; 14 Al-Kuraishy (10.1016/j.tranon.2025.102361_bib0009) 2022; 104 Demkow (10.1016/j.tranon.2025.102361_bib0042) 2023; 24 Hasegawa (10.1016/j.tranon.2025.102361_bib0078) 2023; 28 de Bont (10.1016/j.tranon.2025.102361_bib0086) 2019; 16 Virgin (10.1016/j.tranon.2025.102361_bib0050) 2009; 138 Gao (10.1016/j.tranon.2025.102361_bib0099) 2019; 31 Ventura-Juarez (10.1016/j.tranon.2025.102361_bib0060) 2016; 38 Li (10.1016/j.tranon.2025.102361_bib0007) 2023; 14 Brinkmann (10.1016/j.tranon.2025.102361_bib0003) 2004; 303 Zawrotniak (10.1016/j.tranon.2025.102361_bib0057) 2017; 7 Wang (10.1016/j.tranon.2025.102361_bib0062) 2016; 6 Escapa (10.1016/j.tranon.2025.102361_bib0037) 2018; 3 Mazur (10.1016/j.tranon.2025.102361_bib0030) 1999; 274 Sollberger (10.1016/j.tranon.2025.102361_bib0016) 2018; 44 |
References_xml | – volume: 25 start-page: 362 year: 2017 end-page: 374 ident: bib0036 article-title: Ecology of the oral microbiome: beyond bacteria publication-title: Trends. Microbiol. – volume: 303 start-page: 1532 year: 2004 end-page: 1535 ident: bib0003 article-title: Neutrophil extracellular traps kill bacteria publication-title: Science (1979) – volume: 3 year: 2018 ident: bib0037 article-title: New insights into human nostril microbiome from the expanded human oral microbiome database (ehomd): a resource for the microbiome of the human aerodigestive tract publication-title: mSystems – volume: 86 start-page: 123 year: 2021 end-page: 141 ident: bib0039 article-title: Acquisition and establishment of the oral microbiota publication-title: Periodontol. 2000 – volume: 44 start-page: 421 year: 2016 end-page: 435 ident: bib0063 article-title: Subgingival microbiome shifts and community dynamics in periodontal diseases publication-title: J. Calif. Dent. Assoc. – volume: 164 start-page: S148 year: 2018 end-page: S152 ident: bib0011 article-title: Platelets, nets and cancer publication-title: Thromb. Res. – volume: 110 start-page: 843 year: 2018 end-page: 854 ident: bib0061 article-title: Periodontal disease assessed using clinical dental measurements and cancer risk in the aric study publication-title: J. Natl. Cancer Inst. – volume: 25 start-page: 1867 year: 2019 end-page: 1879 ident: bib0106 article-title: Neutrophil extracellular traps induced by il8 promote diffuse large b-cell lymphoma progression via the tlr9 signaling publication-title: Clin. Cancer Res. – volume: 9 year: 2020 ident: bib0073 article-title: Nets are double-edged swords with the potential to aggravate or resolve periodontal inflammation publication-title: Cells – volume: 10 start-page: 214 year: 2024 ident: bib0109 article-title: Neutrophil extracellular traps promote invasion and metastasis via nlrp3-mediated oral squamous cell carcinoma pyroptosis inhibition publication-title: Cell Death Discov. – volume: 10 year: 2020 ident: bib0025 article-title: Deoxyribonucleases and their applications in biomedicine publication-title: Biomolecules – volume: 8 start-page: 441 year: 2020 ident: bib0108 article-title: Preoperative leukocytosis is associated with increased tumor-infiltrating neutrophil extracellular traps and worse outcomes in esophageal cancer publication-title: Ann. Transl. Med. – year: 2023 ident: bib0045 article-title: Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by stimulating the release of neutrophil extracellular traps in the tumor immune microenvironment publication-title: Inflamm. Res. – volume: 85 start-page: 1178 year: 2020 end-page: 1190 ident: bib0024 article-title: Netosis: molecular mechanisms, role in physiology and pathology publication-title: Biochemistry (Mosc) – volume: 38 start-page: 503 year: 2016 end-page: 509 ident: bib0060 article-title: Entamoeba histolytica induces human neutrophils to form nets publication-title: Parasite Immunol. – volume: 191 start-page: 2647 year: 2013 end-page: 2656 ident: bib0028 article-title: Macrophage clearance of neutrophil extracellular traps is a silent process publication-title: J. Immunol. – volume: 47 start-page: 439 year: 2012 end-page: 445 ident: bib0044 article-title: Extracellular deoxyribonuclease production by periodontal bacteria publication-title: J. Periodontal. Res. – volume: 44 start-page: 542 year: 2018 end-page: 553 ident: bib0016 article-title: Neutrophil extracellular traps: the biology of chromatin externalization publication-title: Dev. Cell – volume: 16 start-page: 508 year: 2018 end-page: 518 ident: bib0111 article-title: Citrullinated histone h3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients publication-title: J. Thromb. Haemost. – volume: 16 start-page: 1160 year: 2017 end-page: 1173 ident: bib0006 article-title: Neutrophil extracellular traps (nets) in autoimmune diseases: a comprehensive review publication-title: Autoimmun. Rev. – volume: 39 start-page: 49 year: 2017 end-page: 58 ident: bib0064 article-title: Periodontal disease, tooth loss, and cancer risk publication-title: Epidemiol. Rev. – volume: 1982 start-page: 517 year: 2019 end-page: 528 ident: bib0019 article-title: Neutrophil extracellular traps publication-title: Methods Mol. Biol. – volume: 12 start-page: 109 year: 2012 end-page: 116 ident: bib0046 article-title: Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1 publication-title: Cell Host. Microbe – volume: 24 year: 2023 ident: bib0056 article-title: Candida albicans induces neutrophil extracellular traps and leucotoxic hypercitrullination via candidalysin publication-title: EMBo Rep. – volume: 11 year: 2021 ident: bib0074 article-title: Interactions between neutrophils and periodontal pathogens in late-onset periodontitis publication-title: Front. Cell Infect. Microbiol. – volume: 583 start-page: 133 year: 2020 end-page: 138 ident: bib0105 article-title: DNA of neutrophil extracellular traps promotes cancer metastasis via ccdc25 publication-title: Nature – volume: 18 year: 2019 ident: bib0066 article-title: Role of oral microbiome signatures in diagnosis and prognosis of oral cancer publication-title: Technol. Cancer Res. Treat. – volume: 31 start-page: 1324 year: 2019 end-page: 1329 ident: bib0099 article-title: Changes in neutrophil function in septic liver injury and its effect on prognosis: a prospective observational study publication-title: Zhonghua Wei. Zhong. Bing. Ji. Jiu Yi. Xue – volume: 8 start-page: 379 year: 2018 ident: bib0059 article-title: Reassessing the role of entamoeba gingivalis in periodontitis publication-title: Front. Cell Infect. Microbiol. – volume: 43 start-page: 1041 year: 2016 end-page: 1049 ident: bib0072 article-title: Peripheral blood neutrophil extracellular trap production and degradation in chronic periodontitis publication-title: J. Clin. Periodontol. – volume: 9 year: 2022 ident: bib0101 article-title: A neutrophil extracellular traps signature predicts the clinical outcomes and immunotherapy response in head and neck squamous cell carcinoma publication-title: Front. Mol. Biosci. – volume: 28 start-page: 265 year: 2023 ident: bib0078 article-title: Etiology of oral potentially malignant disorders and squamous cell carcinoma based on cellular stress regulation and matrix stiffness publication-title: Front. Biosci. (Landmark. Ed) – volume: 24 year: 2023 ident: bib0042 article-title: Molecular mechanisms of neutrophil extracellular trap (nets) degradation publication-title: Int. J. Mol. Sci. – volume: 100 start-page: 133 year: 2021 end-page: 140 ident: bib0054 article-title: Critically appraising the significance of the oral mycobiome publication-title: J. Dent. Res. – volume: 3 year: 2018 ident: bib0017 article-title: Gasdermin d plays a vital role in the generation of neutrophil extracellular traps publication-title: Sci. Immunol. – volume: 24 year: 2023 ident: bib0081 article-title: On the oral microbiome of oral potentially malignant and malignant disorders: dysbiosis, loss of diversity, and pathogens enrichment publication-title: Int. J. Mol. Sci. – volume: 5 start-page: 577 year: 2007 end-page: 582 ident: bib0015 article-title: Beneficial suicide: why neutrophils die to make nets publication-title: Nat. Rev. Microbiol. – volume: 19 start-page: 1530 year: 2020 end-page: 1538 ident: bib0033 article-title: A novel peptidylarginine deiminase 4 (pad4) inhibitor bms-p5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma publication-title: Mol. Cancer Ther. – volume: 15 start-page: 30 year: 2015 end-page: 44 ident: bib0067 article-title: Periodontitis: from microbial immune subversion to systemic inflammation publication-title: Nat. Rev. Immunol. – volume: 11 year: 2020 ident: bib0098 article-title: Circulating neutrophil extracellular traps signature for identifying organ involvement and response to glucocorticoid in adult-onset still's disease: a machine learning study publication-title: Front. Immunol. – volume: 16 start-page: 19 year: 2019 end-page: 27 ident: bib0086 article-title: Netosis, complement, and coagulation: a triangular relationship publication-title: Cell Mol. Immunol. – volume: 249 year: 2023 ident: bib0010 article-title: Neutrophil extracellular trap formation in anti-neutrophil cytoplasmic antibody-associated and large-vessel vasculitis publication-title: Clin. Immunol. – volume: 21 year: 2020 ident: bib0018 article-title: Nuclear envelope rupture and net formation is driven by pkcalpha-mediated lamin b disassembly publication-title: EMBo Rep. – volume: 85 start-page: 82 year: 2021 end-page: 89 ident: bib0052 article-title: Subgingival fungi, archaea, and viruses under the omics loupe publication-title: Periodontol. 2000 – volume: 127 year: 2024 ident: bib0097 article-title: Development and validation of neutrophil extracellular traps-derived signature to predict the prognosis for osteosarcoma patients publication-title: Int. Immunopharmacol. – volume: 79 start-page: 91 year: 2022 end-page: 104 ident: bib0087 article-title: Neutrophil extracellular traps in cancer publication-title: Semin. Cancer Biol. – volume: 27 start-page: 1881 year: 2021 end-page: 1895 ident: bib0076 article-title: Malignant transformation of oral leukoplakia: systematic review and meta-analysis of the last 5 years publication-title: Oral Dis. – volume: 1263 start-page: 13 year: 2020 end-page: 23 ident: bib0089 article-title: Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment publication-title: Adv. Exp. Med. Biol. – volume: 382 year: 2022 ident: bib0049 article-title: Neutrophil extracellular traps: modulation mechanisms by pathogens publication-title: Cell Immunol. – volume: 43 start-page: 225 year: 2023 end-page: 245 ident: bib0092 article-title: Elevated neutrophil extracellular traps by hbv-mediated s100a9-tlr4/rage-ros cascade facilitate the growth and metastasis of hepatocellular carcinoma publication-title: Cancer Commun. (Lond) – volume: 30 start-page: 361 year: 2015 end-page: 375 ident: bib0040 article-title: The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen porphyromonas gingivalis publication-title: Mol. Oral Microbiol. – volume: 9 start-page: 50 year: 2017 end-page: 62 ident: bib0058 article-title: Different virulence of candida albicans is attributed to the ability of escape from neutrophil extracellular traps by secretion of dnase publication-title: Am. J. Transl. Res. – volume: 30 year: 2023 ident: bib0084 article-title: Unobvious neutrophil extracellular traps signification in the course of oral squamous cell carcinoma: current understanding and future perspectives publication-title: Cancer Control – volume: 12 start-page: 21807 year: 2023 end-page: 21819 ident: bib0104 article-title: Neutrophil extracellular traps in relationship to efficacy of systemic therapy for metastatic renal cell carcinoma publication-title: Cancer Med. – volume: 14 year: 2023 ident: bib0007 article-title: Identification of nets-related biomarkers and molecular clusters in systemic lupus erythematosus publication-title: Front. Immunol. – volume: 33 start-page: 63 year: 2020 end-page: 73 ident: bib0012 article-title: Evidence and impact of neutrophil extracellular traps in malignant melanoma publication-title: Pigment. Cell Melanoma Res. – volume: 104 year: 2022 ident: bib0009 article-title: Neutrophil extracellular traps (nets) and covid-19: a new frontiers for therapeutic modality publication-title: Int. Immunopharmacol. – volume: 22 year: 2021 ident: bib0107 article-title: Neutrophil extracellular traps in colorectal cancer progression and metastasis publication-title: Int. J. Mol. Sci. – volume: 11 year: 2022 ident: bib0079 article-title: Oral microbiome research on oral lichen planus: current findings and perspectives publication-title: Biology (Basel) – volume: 225 year: 2020 ident: bib0080 article-title: Neutrophil extracellular traps (nets) formation induced by tgf-beta in oral lichen planus - possible implications for the development of oral cancer publication-title: Immunobiology – volume: 44 start-page: 345 year: 2015 end-page: 352 ident: bib0071 article-title: The role of mmp-2 and mmp-9 as prognostic markers in the early stages of tongue squamous cell carcinoma publication-title: J. Oral Pathol. Med. – volume: 100 start-page: 771 year: 2021 end-page: 776 ident: bib0034 article-title: Entamoeba gingivalis exerts severe pathogenic effects on the oral mucosa publication-title: J. Dent. Res. – volume: 9 year: 2018 ident: bib0041 article-title: A secreted bacterial peptidylarginine deiminase can neutralize human innate immune defenses publication-title: mBio – volume: 2019 year: 2019 ident: bib0069 article-title: Chronic inflammation as a link between periodontitis and carcinogenesis publication-title: Mediators Inflamm. – volume: 16 start-page: 3419 year: 2023 end-page: 3436 ident: bib0093 article-title: A novel neutrophil extracellular traps signature for overall survival prediction and tumor microenvironment identification in gastric cancer publication-title: J. Inflamm. Res. – volume: 97 start-page: 1468 year: 2018 end-page: 1476 ident: bib0055 article-title: Association between oral candida and bacteriome in children with severe ecc publication-title: J. Dent. Res. – volume: 322 start-page: 1 year: 2003 end-page: 15 ident: bib0026 article-title: Dnase ii: genes, enzymes and function publication-title: Gene – volume: 22 start-page: 89 year: 2024 end-page: 104 ident: bib0013 article-title: The oral microbiome: diversity, biogeography and human health publication-title: Nat. Rev. Microbiol. – volume: 14 year: 2023 ident: bib0082 article-title: The emerging role of oral microbiota in oral cancer initiation, progression and stemness publication-title: Front. Immunol. – volume: 10 start-page: 26 year: 2024 ident: bib0005 article-title: Clearance of apoptotic cells by neutrophils in inflammation and cancer publication-title: Cell Death Discov. – volume: 26 start-page: 635 year: 2019 end-page: 643 ident: bib0094 article-title: Tumor-infiltrating nets predict postsurgical survival in patients with pancreatic ductal adenocarcinoma publication-title: Ann. Surg. Oncol. – volume: 21 start-page: 145 year: 2019 ident: bib0102 article-title: Neutrophil extracellular traps in breast cancer and beyond: current perspectives on net stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment publication-title: Breast Cancer Res. – volume: 274 start-page: 19655 year: 1999 end-page: 19660 ident: bib0030 article-title: Identification and expression of the trex1 and trex2 cdna sequences encoding mammalian 3′–>5′ exonucleases publication-title: J. Biol. Chem. – volume: 2087 start-page: 425 year: 2020 end-page: 442 ident: bib0047 article-title: Detection, visualization, and quantification of neutrophil extracellular traps (nets) and net markers publication-title: Methods Mol. Biol. – volume: 24 start-page: 6719 year: 2004 end-page: 6727 ident: bib0031 article-title: Gene-targeted mice lacking the trex1 (dnase iii) 3′–>5′ DNA exonuclease develop inflammatory myocarditis publication-title: Mol. Cell Biol. – volume: 88 start-page: 116 year: 2021 end-page: 126 ident: bib0038 article-title: Oral microbiota and cancer development publication-title: Pathobiology – volume: 24 year: 2023 ident: bib0002 article-title: How neutrophils shape the immune response: reassessing their multifaceted role in health and disease publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 2391 year: 2017 ident: bib0077 article-title: The microbiome of potentially malignant oral leukoplakia exhibits enrichment for fusobacterium, leptotrichia, campylobacter, and rothia species publication-title: Front. Microbiol. – volume: 12 year: 2023 ident: bib0051 article-title: Neutrophil extracellular traps and their possible implications in ocular herpes infection publication-title: Pathogens – volume: 6 year: 2010 ident: bib0053 article-title: Characterization of the oral fungal microbiome (mycobiome) in healthy individuals publication-title: PLoS Pathog. – volume: 7 start-page: 113 year: 2021 ident: bib0020 article-title: Ros induces netosis by oxidizing DNA and initiating DNA repair publication-title: Cell Death. Discov. – volume: 10 start-page: 635 year: 2019 ident: bib0035 article-title: Oral neutrophils characterized: chemotactic, phagocytic, and neutrophil extracellular trap (net) formation properties publication-title: Front. Immunol. – volume: 30 start-page: 2043 year: 2016 end-page: 2052 ident: bib0048 article-title: Extracellular histones identified in crocodile blood inhibit in-vitro hiv-1 infection publication-title: AIDS – volume: 40 start-page: 2265 year: 2020 end-page: 2278 ident: bib0027 article-title: Neutrophil extracellular trap degradation by differently polarized macrophage subsets publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 7 start-page: 57 year: 2017 ident: bib0070 article-title: Persistent exposure to porphyromonas gingivalis promotes proliferative and invasion capabilities, and tumorigenic properties of human immortalized oral epithelial cells publication-title: Front. Cell Infect. Microbiol. – volume: 12 year: 2023 ident: bib0001 article-title: Neutrophils in inflammatory diseases: unraveling the impact of their derived molecules and heterogeneity publication-title: Cells – volume: 89 start-page: 918 year: 2017 end-page: 925 ident: bib0068 article-title: Carcinogenesis mechanisms of fusobacterium nucleatum publication-title: Biomed. PharmacOther – volume: 6 year: 2016 ident: bib0062 article-title: Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus publication-title: Sci. Rep. – volume: 117 start-page: 7326 year: 2020 end-page: 7337 ident: bib0014 article-title: Netosis proceeds by cytoskeleton and endomembrane disassembly and pad4-mediated chromatin decondensation and nuclear envelope rupture publication-title: Proc. Natl. Acad. Sci. U S. A – volume: 73 start-page: 693 year: 2024 end-page: 705 ident: bib0091 article-title: Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by stimulating the release of neutrophil extracellular traps in the tumor immune microenvironment publication-title: Inflamm. Res. – volume: 14 year: 2023 ident: bib0096 article-title: Noninvasive evaluation of neutrophil extracellular traps signature predicts clinical outcomes and immunotherapy response in hepatocellular carcinoma publication-title: Front. Immunol. – volume: 36 start-page: 191 year: 2020 end-page: 218 ident: bib0023 article-title: Cellular mechanisms of netosis publication-title: Annu Rev. Cell Dev. Biol. – volume: 8 start-page: 226 year: 2018 ident: bib0021 article-title: Entamoeba histolytica induce signaling via raf/mek/erk for neutrophil extracellular trap (net) formation publication-title: Front. Cell Infect. Microbiol. – volume: 145 start-page: 1695 year: 2019 end-page: 1707 ident: bib0088 article-title: Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma publication-title: J. Cancer Res. Clin. Oncol. – volume: 7 start-page: 414 year: 2017 ident: bib0057 article-title: Aspartic proteases and major cell wall components in candida albicans trigger the release of neutrophil extracellular traps publication-title: Front. Cell Infect. Microbiol. – volume: 11 year: 2023 ident: bib0095 article-title: Neutrophil extracellular traps (nets)-related lncrnas signature for predicting prognosis and the immune microenvironment in breast cancer publication-title: Front. Cell Dev. Biol. – volume: 112 start-page: 2817 year: 2015 end-page: 2822 ident: bib0022 article-title: Sk3 channel and mitochondrial ros mediate nadph oxidase-independent netosis induced by calcium influx publication-title: Proc. Natl. Acad. Sci. U S. A – volume: 40 start-page: 4562 year: 2012 end-page: 4573 ident: bib0032 article-title: Functional and structural characterization of the mammalian trex-2 complex that links transcription with nuclear messenger rna export publication-title: Nucleic Acids Res. – volume: 13 year: 2020 ident: bib0043 article-title: Neutrophils exhibit an individual response to different oral bacterial biofilms publication-title: J. Oral Microbiol. – volume: 10 start-page: 1036 year: 2020 ident: bib0103 article-title: Diagnostic, therapeutic predictive, and prognostic value of neutrophil extracellular traps in patients with gastric adenocarcinoma publication-title: Front. Oncol. – volume: 125 start-page: 612 year: 2018 end-page: 627 ident: bib0075 article-title: Oral potentially malignant disorders: risk of progression to malignancy publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. – volume: 138 start-page: 30 year: 2009 end-page: 50 ident: bib0050 article-title: Redefining chronic viral infection publication-title: Cell – volume: 9 start-page: 1958 year: 2018 end-page: 1965 ident: bib0110 article-title: Differences and similarities in the phenomenon of nets formation in oral inflammation and in oral squamous cell carcinoma publication-title: J. Cancer – volume: 176 start-page: 231 year: 2007 end-page: 241 ident: bib0004 article-title: Novel cell death program leads to neutrophil extracellular traps publication-title: J. Cell Biol. – volume: 15 start-page: 1333 year: 2024 end-page: 1348 ident: bib0100 article-title: Neutrophil extracellular traps (nets) are associated with type 2 diabetes and diabetic foot ulcer related amputation: a prospective cohort study publication-title: Diabetes Ther. – volume: 361 year: 2018 ident: bib0085 article-title: Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice publication-title: Science (1979) – volume: 13 year: 2022 ident: bib0008 article-title: The contribution of neutrophils and nets to the development of type 1 diabetes publication-title: Front. Immunol. – volume: 27 year: 2020 ident: bib0090 article-title: Cancers cells in traps? The pathways of nets formation in response to oscc in humans-a pilot study publication-title: Cancer Control – volume: 27 start-page: 941 year: 2016 end-page: 947 ident: bib0065 article-title: Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the health professionals follow-up study publication-title: Ann. Oncol. – volume: 67 start-page: 45 year: 2022 end-page: 54 ident: bib0083 article-title: Nets biomarkers in saliva and serum oscc patients: one hypothesis, two conclusions publication-title: Adv. Med. Sci. – volume: 107 start-page: 9813 year: 2010 end-page: 9818 ident: bib0029 article-title: Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis publication-title: Proc. Natl. Acad. Sci. U S. A – volume: 8 start-page: 379 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0059 article-title: Reassessing the role of entamoeba gingivalis in periodontitis publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2018.00379 – volume: 27 start-page: 1881 year: 2021 ident: 10.1016/j.tranon.2025.102361_bib0076 article-title: Malignant transformation of oral leukoplakia: systematic review and meta-analysis of the last 5 years publication-title: Oral Dis. doi: 10.1111/odi.13810 – volume: 88 start-page: 116 year: 2021 ident: 10.1016/j.tranon.2025.102361_bib0038 article-title: Oral microbiota and cancer development publication-title: Pathobiology doi: 10.1159/000510979 – volume: 10 start-page: 26 year: 2024 ident: 10.1016/j.tranon.2025.102361_bib0005 article-title: Clearance of apoptotic cells by neutrophils in inflammation and cancer publication-title: Cell Death Discov. doi: 10.1038/s41420-024-01809-7 – volume: 10 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0025 article-title: Deoxyribonucleases and their applications in biomedicine publication-title: Biomolecules doi: 10.3390/biom10071036 – volume: 225 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0080 article-title: Neutrophil extracellular traps (nets) formation induced by tgf-beta in oral lichen planus - possible implications for the development of oral cancer publication-title: Immunobiology doi: 10.1016/j.imbio.2019.151901 – volume: 27 start-page: 941 year: 2016 ident: 10.1016/j.tranon.2025.102361_bib0065 article-title: Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the health professionals follow-up study publication-title: Ann. Oncol. doi: 10.1093/annonc/mdw028 – volume: 13 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0043 article-title: Neutrophils exhibit an individual response to different oral bacterial biofilms publication-title: J. Oral Microbiol. – volume: 40 start-page: 4562 year: 2012 ident: 10.1016/j.tranon.2025.102361_bib0032 article-title: Functional and structural characterization of the mammalian trex-2 complex that links transcription with nuclear messenger rna export publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks059 – volume: 43 start-page: 1041 year: 2016 ident: 10.1016/j.tranon.2025.102361_bib0072 article-title: Peripheral blood neutrophil extracellular trap production and degradation in chronic periodontitis publication-title: J. Clin. Periodontol. doi: 10.1111/jcpe.12628 – volume: 104 year: 2022 ident: 10.1016/j.tranon.2025.102361_bib0009 article-title: Neutrophil extracellular traps (nets) and covid-19: a new frontiers for therapeutic modality publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2021.108516 – volume: 79 start-page: 91 year: 2022 ident: 10.1016/j.tranon.2025.102361_bib0087 article-title: Neutrophil extracellular traps in cancer publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2021.07.011 – volume: 6 year: 2010 ident: 10.1016/j.tranon.2025.102361_bib0053 article-title: Characterization of the oral fungal microbiome (mycobiome) in healthy individuals publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000713 – volume: 2087 start-page: 425 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0047 article-title: Detection, visualization, and quantification of neutrophil extracellular traps (nets) and net markers publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-0154-9_25 – year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0045 article-title: Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by stimulating the release of neutrophil extracellular traps in the tumor immune microenvironment publication-title: Inflamm. Res. – volume: 107 start-page: 9813 year: 2010 ident: 10.1016/j.tranon.2025.102361_bib0029 article-title: Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis publication-title: Proc. Natl. Acad. Sci. U S. A doi: 10.1073/pnas.0909927107 – volume: 16 start-page: 19 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0086 article-title: Netosis, complement, and coagulation: a triangular relationship publication-title: Cell Mol. Immunol. doi: 10.1038/s41423-018-0024-0 – volume: 18 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0066 article-title: Role of oral microbiome signatures in diagnosis and prognosis of oral cancer publication-title: Technol. Cancer Res. Treat. doi: 10.1177/1533033819867354 – volume: 382 year: 2022 ident: 10.1016/j.tranon.2025.102361_bib0049 article-title: Neutrophil extracellular traps: modulation mechanisms by pathogens publication-title: Cell Immunol. – volume: 16 start-page: 3419 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0093 article-title: A novel neutrophil extracellular traps signature for overall survival prediction and tumor microenvironment identification in gastric cancer publication-title: J. Inflamm. Res. doi: 10.2147/JIR.S417182 – volume: 12 start-page: 21807 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0104 article-title: Neutrophil extracellular traps in relationship to efficacy of systemic therapy for metastatic renal cell carcinoma publication-title: Cancer Med. doi: 10.1002/cam4.6748 – volume: 28 start-page: 265 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0078 article-title: Etiology of oral potentially malignant disorders and squamous cell carcinoma based on cellular stress regulation and matrix stiffness publication-title: Front. Biosci. (Landmark. Ed) doi: 10.31083/j.fbl2810265 – volume: 67 start-page: 45 year: 2022 ident: 10.1016/j.tranon.2025.102361_bib0083 article-title: Nets biomarkers in saliva and serum oscc patients: one hypothesis, two conclusions publication-title: Adv. Med. Sci. doi: 10.1016/j.advms.2021.12.004 – volume: 11 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0095 article-title: Neutrophil extracellular traps (nets)-related lncrnas signature for predicting prognosis and the immune microenvironment in breast cancer publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2023.1117637 – volume: 110 start-page: 843 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0061 article-title: Periodontal disease assessed using clinical dental measurements and cancer risk in the aric study publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djx278 – volume: 164 start-page: S148 issue: Suppl 1 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0011 article-title: Platelets, nets and cancer publication-title: Thromb. Res. doi: 10.1016/j.thromres.2018.01.049 – volume: 24 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0056 article-title: Candida albicans induces neutrophil extracellular traps and leucotoxic hypercitrullination via candidalysin publication-title: EMBo Rep. doi: 10.15252/embr.202357571 – volume: 27 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0090 article-title: Cancers cells in traps? The pathways of nets formation in response to oscc in humans-a pilot study publication-title: Cancer Control doi: 10.1177/1073274820960473 – volume: 176 start-page: 231 year: 2007 ident: 10.1016/j.tranon.2025.102361_bib0004 article-title: Novel cell death program leads to neutrophil extracellular traps publication-title: J. Cell Biol. doi: 10.1083/jcb.200606027 – volume: 11 year: 2022 ident: 10.1016/j.tranon.2025.102361_bib0079 article-title: Oral microbiome research on oral lichen planus: current findings and perspectives publication-title: Biology (Basel) – volume: 7 start-page: 57 year: 2017 ident: 10.1016/j.tranon.2025.102361_bib0070 article-title: Persistent exposure to porphyromonas gingivalis promotes proliferative and invasion capabilities, and tumorigenic properties of human immortalized oral epithelial cells publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2017.00057 – volume: 10 start-page: 635 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0035 article-title: Oral neutrophils characterized: chemotactic, phagocytic, and neutrophil extracellular trap (net) formation properties publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00635 – volume: 85 start-page: 82 year: 2021 ident: 10.1016/j.tranon.2025.102361_bib0052 article-title: Subgingival fungi, archaea, and viruses under the omics loupe publication-title: Periodontol. 2000 doi: 10.1111/prd.12352 – volume: 44 start-page: 542 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0016 article-title: Neutrophil extracellular traps: the biology of chromatin externalization publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.01.019 – volume: 117 start-page: 7326 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0014 article-title: Netosis proceeds by cytoskeleton and endomembrane disassembly and pad4-mediated chromatin decondensation and nuclear envelope rupture publication-title: Proc. Natl. Acad. Sci. U S. A doi: 10.1073/pnas.1909546117 – volume: 112 start-page: 2817 year: 2015 ident: 10.1016/j.tranon.2025.102361_bib0022 article-title: Sk3 channel and mitochondrial ros mediate nadph oxidase-independent netosis induced by calcium influx publication-title: Proc. Natl. Acad. Sci. U S. A doi: 10.1073/pnas.1414055112 – volume: 8 start-page: 226 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0021 article-title: Entamoeba histolytica induce signaling via raf/mek/erk for neutrophil extracellular trap (net) formation publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2018.00226 – volume: 97 start-page: 1468 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0055 article-title: Association between oral candida and bacteriome in children with severe ecc publication-title: J. Dent. Res. doi: 10.1177/0022034518790941 – volume: 16 start-page: 1160 year: 2017 ident: 10.1016/j.tranon.2025.102361_bib0006 article-title: Neutrophil extracellular traps (nets) in autoimmune diseases: a comprehensive review publication-title: Autoimmun. Rev. doi: 10.1016/j.autrev.2017.09.012 – volume: 24 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0002 article-title: How neutrophils shape the immune response: reassessing their multifaceted role in health and disease publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms242417583 – volume: 44 start-page: 421 year: 2016 ident: 10.1016/j.tranon.2025.102361_bib0063 article-title: Subgingival microbiome shifts and community dynamics in periodontal diseases publication-title: J. Calif. Dent. Assoc. – volume: 191 start-page: 2647 year: 2013 ident: 10.1016/j.tranon.2025.102361_bib0028 article-title: Macrophage clearance of neutrophil extracellular traps is a silent process publication-title: J. Immunol. doi: 10.4049/jimmunol.1300436 – volume: 5 start-page: 577 year: 2007 ident: 10.1016/j.tranon.2025.102361_bib0015 article-title: Beneficial suicide: why neutrophils die to make nets publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1710 – volume: 16 start-page: 508 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0111 article-title: Citrullinated histone h3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients publication-title: J. Thromb. Haemost. doi: 10.1111/jth.13951 – volume: 322 start-page: 1 year: 2003 ident: 10.1016/j.tranon.2025.102361_bib0026 article-title: Dnase ii: genes, enzymes and function publication-title: Gene doi: 10.1016/j.gene.2003.08.022 – volume: 85 start-page: 1178 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0024 article-title: Netosis: molecular mechanisms, role in physiology and pathology publication-title: Biochemistry (Mosc) doi: 10.1134/S0006297920100065 – volume: 86 start-page: 123 year: 2021 ident: 10.1016/j.tranon.2025.102361_bib0039 article-title: Acquisition and establishment of the oral microbiota publication-title: Periodontol. 2000 doi: 10.1111/prd.12366 – volume: 100 start-page: 771 year: 2021 ident: 10.1016/j.tranon.2025.102361_bib0034 article-title: Entamoeba gingivalis exerts severe pathogenic effects on the oral mucosa publication-title: J. Dent. Res. doi: 10.1177/00220345211004498 – volume: 22 start-page: 89 year: 2024 ident: 10.1016/j.tranon.2025.102361_bib0013 article-title: The oral microbiome: diversity, biogeography and human health publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-023-00963-6 – volume: 7 start-page: 113 year: 2021 ident: 10.1016/j.tranon.2025.102361_bib0020 article-title: Ros induces netosis by oxidizing DNA and initiating DNA repair publication-title: Cell Death. Discov. doi: 10.1038/s41420-021-00491-3 – volume: 26 start-page: 635 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0094 article-title: Tumor-infiltrating nets predict postsurgical survival in patients with pancreatic ductal adenocarcinoma publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-018-6941-4 – volume: 12 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0051 article-title: Neutrophil extracellular traps and their possible implications in ocular herpes infection publication-title: Pathogens doi: 10.3390/pathogens12020209 – volume: 14 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0096 article-title: Noninvasive evaluation of neutrophil extracellular traps signature predicts clinical outcomes and immunotherapy response in hepatocellular carcinoma publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1134521 – volume: 274 start-page: 19655 year: 1999 ident: 10.1016/j.tranon.2025.102361_bib0030 article-title: Identification and expression of the trex1 and trex2 cdna sequences encoding mammalian 3′–>5′ exonucleases publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.28.19655 – volume: 43 start-page: 225 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0092 article-title: Elevated neutrophil extracellular traps by hbv-mediated s100a9-tlr4/rage-ros cascade facilitate the growth and metastasis of hepatocellular carcinoma publication-title: Cancer Commun. (Lond) doi: 10.1002/cac2.12388 – volume: 40 start-page: 2265 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0027 article-title: Neutrophil extracellular trap degradation by differently polarized macrophage subsets publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.120.314883 – volume: 361 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0085 article-title: Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice publication-title: Science (1979) – volume: 14 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0007 article-title: Identification of nets-related biomarkers and molecular clusters in systemic lupus erythematosus publication-title: Front. Immunol. – volume: 47 start-page: 439 year: 2012 ident: 10.1016/j.tranon.2025.102361_bib0044 article-title: Extracellular deoxyribonuclease production by periodontal bacteria publication-title: J. Periodontal. Res. doi: 10.1111/j.1600-0765.2011.01451.x – volume: 24 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0081 article-title: On the oral microbiome of oral potentially malignant and malignant disorders: dysbiosis, loss of diversity, and pathogens enrichment publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24043466 – volume: 22 year: 2021 ident: 10.1016/j.tranon.2025.102361_bib0107 article-title: Neutrophil extracellular traps in colorectal cancer progression and metastasis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22147260 – volume: 303 start-page: 1532 year: 2004 ident: 10.1016/j.tranon.2025.102361_bib0003 article-title: Neutrophil extracellular traps kill bacteria publication-title: Science (1979) – volume: 24 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0042 article-title: Molecular mechanisms of neutrophil extracellular trap (nets) degradation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24054896 – volume: 30 start-page: 361 year: 2015 ident: 10.1016/j.tranon.2025.102361_bib0040 article-title: The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen porphyromonas gingivalis publication-title: Mol. Oral Microbiol. doi: 10.1111/omi.12099 – volume: 39 start-page: 49 year: 2017 ident: 10.1016/j.tranon.2025.102361_bib0064 article-title: Periodontal disease, tooth loss, and cancer risk publication-title: Epidemiol. Rev. doi: 10.1093/epirev/mxx006 – volume: 25 start-page: 1867 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0106 article-title: Neutrophil extracellular traps induced by il8 promote diffuse large b-cell lymphoma progression via the tlr9 signaling publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-1226 – volume: 24 start-page: 6719 year: 2004 ident: 10.1016/j.tranon.2025.102361_bib0031 article-title: Gene-targeted mice lacking the trex1 (dnase iii) 3′–>5′ DNA exonuclease develop inflammatory myocarditis publication-title: Mol. Cell Biol. doi: 10.1128/MCB.24.15.6719-6727.2004 – volume: 21 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0018 article-title: Nuclear envelope rupture and net formation is driven by pkcalpha-mediated lamin b disassembly publication-title: EMBo Rep. doi: 10.15252/embr.201948779 – volume: 30 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0084 article-title: Unobvious neutrophil extracellular traps signification in the course of oral squamous cell carcinoma: current understanding and future perspectives publication-title: Cancer Control doi: 10.1177/10732748231159313 – volume: 73 start-page: 693 year: 2024 ident: 10.1016/j.tranon.2025.102361_bib0091 article-title: Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by stimulating the release of neutrophil extracellular traps in the tumor immune microenvironment publication-title: Inflamm. Res. doi: 10.1007/s00011-023-01822-z – volume: 15 start-page: 30 year: 2015 ident: 10.1016/j.tranon.2025.102361_bib0067 article-title: Periodontitis: from microbial immune subversion to systemic inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3785 – volume: 3 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0017 article-title: Gasdermin d plays a vital role in the generation of neutrophil extracellular traps publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aar6689 – volume: 9 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0073 article-title: Nets are double-edged swords with the potential to aggravate or resolve periodontal inflammation publication-title: Cells doi: 10.3390/cells9122614 – volume: 6 year: 2016 ident: 10.1016/j.tranon.2025.102361_bib0062 article-title: Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus publication-title: Sci. Rep. – volume: 138 start-page: 30 year: 2009 ident: 10.1016/j.tranon.2025.102361_bib0050 article-title: Redefining chronic viral infection publication-title: Cell doi: 10.1016/j.cell.2009.06.036 – volume: 12 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0001 article-title: Neutrophils in inflammatory diseases: unraveling the impact of their derived molecules and heterogeneity publication-title: Cells doi: 10.3390/cells12222621 – volume: 89 start-page: 918 year: 2017 ident: 10.1016/j.tranon.2025.102361_bib0068 article-title: Carcinogenesis mechanisms of fusobacterium nucleatum publication-title: Biomed. PharmacOther doi: 10.1016/j.biopha.2017.02.102 – volume: 30 start-page: 2043 year: 2016 ident: 10.1016/j.tranon.2025.102361_bib0048 article-title: Extracellular histones identified in crocodile blood inhibit in-vitro hiv-1 infection publication-title: AIDS doi: 10.1097/QAD.0000000000001159 – volume: 9 start-page: 50 year: 2017 ident: 10.1016/j.tranon.2025.102361_bib0058 article-title: Different virulence of candida albicans is attributed to the ability of escape from neutrophil extracellular traps by secretion of dnase publication-title: Am. J. Transl. Res. – volume: 9 start-page: 1958 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0110 article-title: Differences and similarities in the phenomenon of nets formation in oral inflammation and in oral squamous cell carcinoma publication-title: J. Cancer doi: 10.7150/jca.24238 – volume: 12 start-page: 109 year: 2012 ident: 10.1016/j.tranon.2025.102361_bib0046 article-title: Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1 publication-title: Cell Host. Microbe doi: 10.1016/j.chom.2012.05.015 – volume: 36 start-page: 191 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0023 article-title: Cellular mechanisms of netosis publication-title: Annu Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-020520-111016 – volume: 38 start-page: 503 year: 2016 ident: 10.1016/j.tranon.2025.102361_bib0060 article-title: Entamoeba histolytica induces human neutrophils to form nets publication-title: Parasite Immunol. doi: 10.1111/pim.12332 – volume: 11 year: 2021 ident: 10.1016/j.tranon.2025.102361_bib0074 article-title: Interactions between neutrophils and periodontal pathogens in late-onset periodontitis publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2021.627328 – volume: 125 start-page: 612 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0075 article-title: Oral potentially malignant disorders: risk of progression to malignancy publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. doi: 10.1016/j.oooo.2017.12.011 – volume: 10 start-page: 214 year: 2024 ident: 10.1016/j.tranon.2025.102361_bib0109 article-title: Neutrophil extracellular traps promote invasion and metastasis via nlrp3-mediated oral squamous cell carcinoma pyroptosis inhibition publication-title: Cell Death Discov. doi: 10.1038/s41420-024-01982-9 – volume: 1263 start-page: 13 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0089 article-title: Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-44518-8_2 – volume: 100 start-page: 133 year: 2021 ident: 10.1016/j.tranon.2025.102361_bib0054 article-title: Critically appraising the significance of the oral mycobiome publication-title: J. Dent. Res. doi: 10.1177/0022034520956975 – volume: 10 start-page: 1036 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0103 article-title: Diagnostic, therapeutic predictive, and prognostic value of neutrophil extracellular traps in patients with gastric adenocarcinoma publication-title: Front. Oncol. doi: 10.3389/fonc.2020.01036 – volume: 8 start-page: 2391 year: 2017 ident: 10.1016/j.tranon.2025.102361_bib0077 article-title: The microbiome of potentially malignant oral leukoplakia exhibits enrichment for fusobacterium, leptotrichia, campylobacter, and rothia species publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02391 – volume: 15 start-page: 1333 year: 2024 ident: 10.1016/j.tranon.2025.102361_bib0100 article-title: Neutrophil extracellular traps (nets) are associated with type 2 diabetes and diabetic foot ulcer related amputation: a prospective cohort study publication-title: Diabetes Ther. doi: 10.1007/s13300-024-01579-6 – volume: 21 start-page: 145 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0102 article-title: Neutrophil extracellular traps in breast cancer and beyond: current perspectives on net stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment publication-title: Breast Cancer Res. doi: 10.1186/s13058-019-1237-6 – volume: 13 year: 2022 ident: 10.1016/j.tranon.2025.102361_bib0008 article-title: The contribution of neutrophils and nets to the development of type 1 diabetes publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.930553 – volume: 19 start-page: 1530 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0033 article-title: A novel peptidylarginine deiminase 4 (pad4) inhibitor bms-p5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-19-1020 – volume: 9 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0041 article-title: A secreted bacterial peptidylarginine deiminase can neutralize human innate immune defenses publication-title: mBio doi: 10.1128/mBio.01704-18 – volume: 44 start-page: 345 year: 2015 ident: 10.1016/j.tranon.2025.102361_bib0071 article-title: The role of mmp-2 and mmp-9 as prognostic markers in the early stages of tongue squamous cell carcinoma publication-title: J. Oral Pathol. Med. doi: 10.1111/jop.12245 – volume: 1982 start-page: 517 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0019 article-title: Neutrophil extracellular traps publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-9424-3_31 – volume: 127 year: 2024 ident: 10.1016/j.tranon.2025.102361_bib0097 article-title: Development and validation of neutrophil extracellular traps-derived signature to predict the prognosis for osteosarcoma patients publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2023.111364 – volume: 145 start-page: 1695 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0088 article-title: Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-019-02922-2 – volume: 9 year: 2022 ident: 10.1016/j.tranon.2025.102361_bib0101 article-title: A neutrophil extracellular traps signature predicts the clinical outcomes and immunotherapy response in head and neck squamous cell carcinoma publication-title: Front. Mol. Biosci. – volume: 583 start-page: 133 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0105 article-title: DNA of neutrophil extracellular traps promotes cancer metastasis via ccdc25 publication-title: Nature doi: 10.1038/s41586-020-2394-6 – volume: 11 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0098 article-title: Circulating neutrophil extracellular traps signature for identifying organ involvement and response to glucocorticoid in adult-onset still's disease: a machine learning study publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.563335 – volume: 7 start-page: 414 year: 2017 ident: 10.1016/j.tranon.2025.102361_bib0057 article-title: Aspartic proteases and major cell wall components in candida albicans trigger the release of neutrophil extracellular traps publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2017.00414 – volume: 14 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0082 article-title: The emerging role of oral microbiota in oral cancer initiation, progression and stemness publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1198269 – volume: 25 start-page: 362 year: 2017 ident: 10.1016/j.tranon.2025.102361_bib0036 article-title: Ecology of the oral microbiome: beyond bacteria publication-title: Trends. Microbiol. doi: 10.1016/j.tim.2016.12.012 – volume: 249 year: 2023 ident: 10.1016/j.tranon.2025.102361_bib0010 article-title: Neutrophil extracellular trap formation in anti-neutrophil cytoplasmic antibody-associated and large-vessel vasculitis publication-title: Clin. Immunol. doi: 10.1016/j.clim.2023.109274 – volume: 31 start-page: 1324 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0099 article-title: Changes in neutrophil function in septic liver injury and its effect on prognosis: a prospective observational study publication-title: Zhonghua Wei. Zhong. Bing. Ji. Jiu Yi. Xue – volume: 3 year: 2018 ident: 10.1016/j.tranon.2025.102361_bib0037 article-title: New insights into human nostril microbiome from the expanded human oral microbiome database (ehomd): a resource for the microbiome of the human aerodigestive tract publication-title: mSystems doi: 10.1128/msystems.00187-18 – volume: 8 start-page: 441 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0108 article-title: Preoperative leukocytosis is associated with increased tumor-infiltrating neutrophil extracellular traps and worse outcomes in esophageal cancer publication-title: Ann. Transl. Med. doi: 10.21037/atm.2020.03.190 – volume: 33 start-page: 63 year: 2020 ident: 10.1016/j.tranon.2025.102361_bib0012 article-title: Evidence and impact of neutrophil extracellular traps in malignant melanoma publication-title: Pigment. Cell Melanoma Res. doi: 10.1111/pcmr.12818 – volume: 2019 year: 2019 ident: 10.1016/j.tranon.2025.102361_bib0069 article-title: Chronic inflammation as a link between periodontitis and carcinogenesis publication-title: Mediators Inflamm. doi: 10.1155/2019/1029857 |
SSID | ssj0061922 |
Score | 2.369504 |
SecondaryResourceType | review_article |
Snippet | •Elucidate the role of oral microorganisms in the development of oral squamous cell carcinoma.•Systematically elucidated the bidirectional role of neutrophil... Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap... Background: Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 102361 |
SubjectTerms | Carcinogenesis Neutrophil extracellular traps Oral microbiota Oral squamous cell carcinoma |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqDhUX1Aely6NyJa5Rs36s7d4AgVCl9gQSN8t27DYVTVa72f_PjJ0s5VDRA7coip14xvNyZr4h5FTHRagbX1cCdzDEG6Iy3CyqoFPQYBJA_nKW74_F9a34difv_mr1hTlhBR64EO6LEc41njPpFBPcaYPdkpuU1NwoX_OM8wk2bwqmig7GqIBNhXI5m2sAzd8j3imTGa1gMX9iiDJe_xN79C9_M9udqzdkb3QY6Vn50LfkVezekdffx1_i78n9eVvMUj7To5gtuKZ9ol3cDKt--au9p6B_Vw5P6DHllML1ck3bjmJtPv3TFiSmwdGAbYW6_idqv3b9lZ7RR5hnWkpc9snt1eXNxXU1tlCoglB6qIxyUsVaNCFo14i6aYzQPIFUB64Vc9z7xL1hEviiQuQ8Ao3nkc2d8d4zzj-QHaBb_EgoT8qzFKRO0osYgwsisSZImJXBBG5GqomedlmQMuyUQvbbFvpbpL8t9J-RcyT69lnEuc43gPt25L59jvszIieW2amUFJQfTNQ-83K1HTe6GoVX_zHy87QzLEgiMs91sd-sLSgzCC7BnxUzclC2zHZxAmuIYQWHL7HoI7KLH1QS1o7JzrDaxBNwjQb_KUvBA6xyDGU priority: 102 providerName: Directory of Open Access Journals |
Title | Bidirectional roles of neutrophil extracellular traps in oral microbiota carcinogenesis: A systematic review |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1936523325000920 https://dx.doi.org/10.1016/j.tranon.2025.102361 https://www.ncbi.nlm.nih.gov/pubmed/40239243 https://www.proquest.com/docview/3191145224 https://doaj.org/article/94aadb325a7243a891249dff7197b033 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXBC2PBVoZiWu0WduJbW7diqqiAglBpb1ZtmOXoDZZ7Wb_PzN2smgPCMQlSqLYjr-x52HPjAl5r0Lty8aVhcARDPaGKDTXdeFV9ApEAsy_5OX7pb6-FZ9W1eqIXE6xMOhWOfL-zNMTtx7fzEc05-u2nX8D1aMGM4qzlNOfod3OhUpBfKvlxI3RPmB5Z7lGo4tP4XPJx2sAedBjFlRWpRwG9eJAPKUs_gdS6k9aaJJGV0_Jk1GNpBf5T5-Ro9CdkEefx43yU3K_bHPH0kofRR_CLe0j7cJu2PTrH-09Ba68sbhuj46oFO7XW9p2FCP26UOb8zMNlno8bKjr75AnttsP9IL-Tv5Mc-DLc3J79fH75XUxHqxQeCHVUGhpKxlK0XivbCPKptEAXIS57rmSzHLnIneaVUAt6QPnQXC7CGxhtXMOQHxBjgG38IpQHqVj0VcqVk6E4K0XkTW-gloZVGBnpJjwNOucP8NMjmU_TcbfIP4m4z8jSwR9_y1mv04v-s2dGclvtLC2cUB4Kxn8mdJ4gnYTo1xo6UrOZ6SaSGamAFNgiVBR-5fG5b7cwSD8h5LvppFhYH4i8WwX-t3WAIsDkxO0XDEjL_OQ2XdOYGQx9OD1f7f7hjzGp-y79pYcD5tdOAMtaXDnaXXhPE0GuN58Vb8AzAIR7g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtwgEEWp1PZS9d1NX1Tq1VovYGN6y0aNNm2SSxNpbwgwJK5Se7Xr_f_MgL3VHqpWvVnYYJgZ5gHzIORz5UuX1zbPBFIw2BsiU1yVmauCq0AkwP6LXr6X5eJafFsWywNyMsbCoFvlwPsTT4_cemiZDtCcrppm-gNUjxLMKM5iTn8GdvsD0AYk1m84W85HdowGAktXyyVaXXyMn4tOXj0IhA7ToLIiJjEoZ3vyKabx3xNTf1JDozg6fUqeDHokPU5TfUYOfPucPLwYbspfkLt5k1YWj_ooOhFuaBdo67f9ulvdNncU2PLa4ME9eqJSeF5taNNSDNmnv5qUoKk31GG1oba7QabYbL7QY_o7-zNNkS8vyfXp16uTRTZUVsickFWfKWkK6XNRO1eZWuR1rUTFA2x2xyvJDLc2cKtYAeiSznPuBTczz2ZGWWsBiK_IIcDNvyGUB2lZcEUVCiu8d8aJwGpXwKgMBjATko3w1KuUQEOPnmU_dYK_RvjrBP8JmSPQd99i-uvY0K1v9IB_rYQxtQXMG8lgZpXCEtp1CHKmpM05n5BiRJkeI0yBJ8JAzV9-Lnf99qjwH3p-GilDwwZF5JnWd9uNBh4HNieouWJCXieS2S1OYGgxrODov__7kTxaXF2c6_Ozy-9vyWN8kxzZ3pHDfr3170Fl6u2HuCXuAanTEyM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+roles+of+neutrophil+extracellular+traps+in+oral+microbiota+carcinogenesis%3A+A+systematic+review&rft.jtitle=Translational+oncology&rft.au=Shen%2C+Jie&rft.au=Lin%2C+Haitao&rft.au=Mo%2C+Kangnan&rft.au=Liang%2C+Zhong&rft.date=2025-06-01&rft.issn=1936-5233&rft.volume=56&rft.spage=102361&rft_id=info:doi/10.1016%2Fj.tranon.2025.102361&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-5233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-5233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-5233&client=summon |