Resolvins suppress tumor growth and enhance cancer therapy

Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or target...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 215; no. 1; pp. 115 - 140
Main Authors Sulciner, Megan L., Serhan, Charles N., Gilligan, Molly M., Mudge, Dayna K., Chang, Jaimie, Gartung, Allison, Lehner, Kristen A., Bielenberg, Diane R., Schmidt, Birgitta, Dalli, Jesmond, Greene, Emily R., Gus-Brautbar, Yael, Piwowarski, Julia, Mammoto, Tadanori, Zurakowski, David, Perretti, Mauro, Sukhatme, Vikas P., Kaipainen, Arja, Kieran, Mark W., Huang, Sui, Panigrahy, Dipak
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 02.01.2018
The Rockefeller University Press
Subjects
Online AccessGet full text
ISSN0022-1007
1540-9538
1540-9538
DOI10.1084/jem.20170681

Cover

Loading…
Abstract Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.
AbstractList Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy ("tumor cell debris") stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy ("tumor cell debris") stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.
Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.
Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Sulciner et al. demonstrate that specific resolvins (RvD1, RvD2, and RvE1) inhibit tumor growth and enhance cancer therapy through the clearance of tumor cell debris. Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.
Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Sulciner et al. demonstrate that specific resolvins (RvD1, RvD2, and RvE1) inhibit tumor growth and enhance cancer therapy through the clearance of tumor cell debris.Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.
Author Piwowarski, Julia
Sukhatme, Vikas P.
Bielenberg, Diane R.
Dalli, Jesmond
Greene, Emily R.
Panigrahy, Dipak
Mammoto, Tadanori
Sulciner, Megan L.
Huang, Sui
Gartung, Allison
Perretti, Mauro
Serhan, Charles N.
Lehner, Kristen A.
Gus-Brautbar, Yael
Mudge, Dayna K.
Schmidt, Birgitta
Kieran, Mark W.
Gilligan, Molly M.
Chang, Jaimie
Zurakowski, David
Kaipainen, Arja
AuthorAffiliation 12 The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, England, UK
10 Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
11 Department of Pediatric Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
3 Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
14 Institute of Systems Biology, Seattle, WA
4 Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
7 Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA
6 Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
8 Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA
13 Human Biology Division, Fred Hutchinson Cancer Research Center,
AuthorAffiliation_xml – name: 2 Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
– name: 4 Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
– name: 8 Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA
– name: 7 Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA
– name: 13 Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
– name: 5 Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
– name: 6 Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
– name: 10 Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
– name: 11 Department of Pediatric Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
– name: 12 The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, England, UK
– name: 1 Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
– name: 9 Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
– name: 3 Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
– name: 14 Institute of Systems Biology, Seattle, WA
Author_xml – sequence: 1
  givenname: Megan L.
  surname: Sulciner
  fullname: Sulciner, Megan L.
– sequence: 2
  givenname: Charles N.
  orcidid: 0000-0003-4627-8545
  surname: Serhan
  fullname: Serhan, Charles N.
– sequence: 3
  givenname: Molly M.
  orcidid: 0000-0002-7342-9858
  surname: Gilligan
  fullname: Gilligan, Molly M.
– sequence: 4
  givenname: Dayna K.
  surname: Mudge
  fullname: Mudge, Dayna K.
– sequence: 5
  givenname: Jaimie
  surname: Chang
  fullname: Chang, Jaimie
– sequence: 6
  givenname: Allison
  surname: Gartung
  fullname: Gartung, Allison
– sequence: 7
  givenname: Kristen A.
  surname: Lehner
  fullname: Lehner, Kristen A.
– sequence: 8
  givenname: Diane R.
  surname: Bielenberg
  fullname: Bielenberg, Diane R.
– sequence: 9
  givenname: Birgitta
  surname: Schmidt
  fullname: Schmidt, Birgitta
– sequence: 10
  givenname: Jesmond
  surname: Dalli
  fullname: Dalli, Jesmond
– sequence: 11
  givenname: Emily R.
  surname: Greene
  fullname: Greene, Emily R.
– sequence: 12
  givenname: Yael
  surname: Gus-Brautbar
  fullname: Gus-Brautbar, Yael
– sequence: 13
  givenname: Julia
  surname: Piwowarski
  fullname: Piwowarski, Julia
– sequence: 14
  givenname: Tadanori
  surname: Mammoto
  fullname: Mammoto, Tadanori
– sequence: 15
  givenname: David
  surname: Zurakowski
  fullname: Zurakowski, David
– sequence: 16
  givenname: Mauro
  orcidid: 0000-0003-2068-3331
  surname: Perretti
  fullname: Perretti, Mauro
– sequence: 17
  givenname: Vikas P.
  surname: Sukhatme
  fullname: Sukhatme, Vikas P.
– sequence: 18
  givenname: Arja
  surname: Kaipainen
  fullname: Kaipainen, Arja
– sequence: 19
  givenname: Mark W.
  orcidid: 0000-0003-2184-7692
  surname: Kieran
  fullname: Kieran, Mark W.
– sequence: 20
  givenname: Sui
  surname: Huang
  fullname: Huang, Sui
– sequence: 21
  givenname: Dipak
  surname: Panigrahy
  fullname: Panigrahy, Dipak
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29191914$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LxDAQxYMouq7ePEvBiwe7Jm3SJh4EEb9AEETPIUmnbpc2qUmr-N-bZV1RkYHMIb95vJm3izats4DQAcEzgjk9XUA3yzApccHJBpoQRnEqWM430QTjLEsJxuUO2g1hgTGhlBXbaCcTZFl0gs4eIbj2rbEhCWPfewghGcbO-eTFu_dhnihbJWDnyhpIzPL1yTAHr_qPPbRVqzbA_lefoufrq6fL2_T-4ebu8uI-NbTkQyoKwepaVLgi0Q4rIFNYg6ZaM02VNoIDzylhJC-pJhkvGBSiNARXGuo8h3yKzle6_ag7qAzYwatW9r7plP-QTjXy949t5vLFvUlWUs6j7hQdfwl49zpCGGTXBANtqyy4MUgiSlLkTDAR0aM_6MKN3sb1ZIbjhUWEeKQOfzr6trI-awSyFWC8C8FDLU0zqKFxS4NNKwmWy-xkzE6us4tDJ3-G1rr_4p91tJqd
CitedBy_id crossref_primary_10_1080_17460441_2024_2340493
crossref_primary_10_1093_carcin_bgaa028
crossref_primary_10_1007_s10555_021_09998_8
crossref_primary_10_3389_fonc_2023_1178681
crossref_primary_10_3390_cancers11122034
crossref_primary_10_1038_s41467_023_39865_9
crossref_primary_10_1016_j_bbrc_2017_12_171
crossref_primary_10_1096_fj_201903025RR
crossref_primary_10_1038_s41523_018_0058_6
crossref_primary_10_1096_fj_202002392R
crossref_primary_10_3389_fimmu_2023_1322746
crossref_primary_10_1016_j_isci_2024_109413
crossref_primary_10_1016_j_jhep_2023_08_029
crossref_primary_10_1016_j_prostaglandins_2023_106718
crossref_primary_10_3390_cancers11050592
crossref_primary_10_1172_JCI127282
crossref_primary_10_4155_ppa_2020_0027
crossref_primary_10_1007_s12013_024_01299_5
crossref_primary_10_1016_j_pharmthera_2021_107879
crossref_primary_10_3390_cancers13133224
crossref_primary_10_26508_lsa_202101256
crossref_primary_10_1073_pnas_1804000116
crossref_primary_10_1073_pnas_2107771118
crossref_primary_10_3390_ijms23094808
crossref_primary_10_1038_s41568_019_0209_6
crossref_primary_10_3892_etm_2019_7761
crossref_primary_10_1038_s41598_019_39584_6
crossref_primary_10_1042_EBC20200018
crossref_primary_10_1016_j_canlet_2022_215857
crossref_primary_10_15430_JCP_2019_24_2_129
crossref_primary_10_1007_s13311_020_00892_9
crossref_primary_10_1097_MOH_0000000000000822
crossref_primary_10_3389_fimmu_2020_623052
crossref_primary_10_1186_s13046_023_02857_0
crossref_primary_10_3389_fphar_2025_1524980
crossref_primary_10_1038_s41569_023_00984_x
crossref_primary_10_3390_nu11050945
crossref_primary_10_1002_cam4_70077
crossref_primary_10_1097_MCO_0000000000000601
crossref_primary_10_1038_s41385_019_0248_z
crossref_primary_10_1172_JCI97943
crossref_primary_10_3389_fimmu_2023_1243149
crossref_primary_10_3390_cancers12041014
crossref_primary_10_3390_cancers14061504
crossref_primary_10_1080_09553002_2023_2158246
crossref_primary_10_1126_sciadv_aax3223
crossref_primary_10_1016_j_chembiol_2018_10_023
crossref_primary_10_1016_j_ejphar_2023_176047
crossref_primary_10_1186_s40643_023_00723_7
crossref_primary_10_1007_s10585_023_10243_5
crossref_primary_10_1007_s12013_023_01187_4
crossref_primary_10_1016_j_molstruc_2018_11_014
crossref_primary_10_3390_cells10071801
crossref_primary_10_3389_fimmu_2021_695815
crossref_primary_10_3390_jcm10020228
crossref_primary_10_1007_s43630_021_00105_y
crossref_primary_10_3390_cancers14143333
crossref_primary_10_1016_j_neo_2020_08_006
crossref_primary_10_3390_antiox10030470
crossref_primary_10_1051_medsci_2024050
crossref_primary_10_1002_ijc_34459
crossref_primary_10_3389_fimmu_2021_702785
crossref_primary_10_3390_nu13082664
crossref_primary_10_1016_j_mtbio_2024_101394
crossref_primary_10_1186_s13046_019_1163_6
crossref_primary_10_1016_j_prostaglandins_2024_106905
crossref_primary_10_1038_s41467_022_29606_9
crossref_primary_10_3390_biom14121496
crossref_primary_10_1080_03009742_2024_2344906
crossref_primary_10_1089_ars_2021_0156
crossref_primary_10_1007_s10555_023_10091_5
crossref_primary_10_1016_j_ejphar_2019_04_039
crossref_primary_10_3390_biom10081109
crossref_primary_10_1111_fcp_12939
crossref_primary_10_1007_s00018_019_03413_w
crossref_primary_10_1016_j_ymthe_2020_12_026
crossref_primary_10_3389_fonc_2018_00235
crossref_primary_10_3390_antiox10030457
crossref_primary_10_1016_j_ajpath_2020_06_010
crossref_primary_10_3389_fimmu_2023_1248547
crossref_primary_10_1136_gutjnl_2024_332535
crossref_primary_10_3390_cancers13040740
crossref_primary_10_1007_s10555_024_10196_5
crossref_primary_10_1038_s41598_020_76005_5
crossref_primary_10_1016_j_smim_2022_101597
crossref_primary_10_3390_cancers13174290
crossref_primary_10_1016_j_cbi_2019_04_037
crossref_primary_10_1016_j_pharmthera_2020_107703
crossref_primary_10_3389_fimmu_2021_663115
crossref_primary_10_2174_0929867331666230727100123
crossref_primary_10_3389_fonc_2022_942798
crossref_primary_10_1016_j_addr_2020_06_028
crossref_primary_10_1016_j_neuropharm_2018_07_016
crossref_primary_10_1016_j_compbiolchem_2024_108236
crossref_primary_10_3390_molecules27051677
crossref_primary_10_1126_sciadv_abd1453
crossref_primary_10_1186_s12943_023_01860_5
crossref_primary_10_3390_ijms20102425
crossref_primary_10_3389_fphar_2019_00852
crossref_primary_10_1186_s12944_024_02386_5
crossref_primary_10_3390_ijms241310971
crossref_primary_10_1016_j_foostr_2021_100175
crossref_primary_10_1007_s10555_023_10092_4
crossref_primary_10_3390_ijms24108838
crossref_primary_10_1002_1878_0261_13280
crossref_primary_10_1016_j_plipres_2022_101165
crossref_primary_10_1073_pnas_2007412117
crossref_primary_10_1016_j_anndiagpath_2021_151865
crossref_primary_10_3390_ijms20153765
crossref_primary_10_1038_s41598_018_26198_7
crossref_primary_10_1096_fj_201800173R
crossref_primary_10_3390_ijms22105227
crossref_primary_10_3390_antiox10091459
crossref_primary_10_1096_fj_201800019RR
crossref_primary_10_1007_s10555_023_10085_3
crossref_primary_10_1111_prd_12603
crossref_primary_10_3390_ijms241612623
crossref_primary_10_1007_s10555_018_9744_y
crossref_primary_10_1016_j_prostaglandins_2024_106944
crossref_primary_10_1016_j_jtho_2020_01_015
crossref_primary_10_1186_s13046_019_1478_3
crossref_primary_10_1002_jpen_2485
crossref_primary_10_1016_j_pharmthera_2018_12_001
crossref_primary_10_1111_ijpo_12499
crossref_primary_10_1080_09553002_2021_1955998
crossref_primary_10_3892_ol_2019_10540
crossref_primary_10_1038_s41388_018_0555_y
crossref_primary_10_3389_fimmu_2022_1094278
crossref_primary_10_1007_s10555_018_9731_3
crossref_primary_10_1002_cac2_12272
crossref_primary_10_1007_s10555_018_9754_9
crossref_primary_10_1084_jem_20172044
crossref_primary_10_1002_cbic_201900389
crossref_primary_10_1016_j_immuni_2019_11_013
crossref_primary_10_1016_j_bcp_2024_116259
crossref_primary_10_1177_2040622319872118
crossref_primary_10_3390_ijms23126473
crossref_primary_10_1126_sciimmunol_aay1863
crossref_primary_10_3389_fnut_2022_924192
crossref_primary_10_3389_fimmu_2022_768606
crossref_primary_10_3389_fimmu_2018_00957
crossref_primary_10_1038_s41590_022_01267_2
crossref_primary_10_3390_cancers14030757
crossref_primary_10_1016_j_trecan_2020_01_018
crossref_primary_10_1038_s41423_022_00930_w
crossref_primary_10_1007_s10555_021_10017_z
crossref_primary_10_1016_j_biomaterials_2025_123116
crossref_primary_10_3390_medicina61020168
crossref_primary_10_3390_ijms22189836
crossref_primary_10_1146_annurev_pharmtox_051921_084047
crossref_primary_10_1007_s00018_022_04430_y
crossref_primary_10_1016_j_molcel_2021_08_027
crossref_primary_10_3390_molecules28052417
crossref_primary_10_2174_1871520619666191029151545
crossref_primary_10_1021_acsmedchemlett_9b00596
crossref_primary_10_1016_j_gastha_2022_02_007
crossref_primary_10_1186_s13046_021_01937_3
crossref_primary_10_1161_HYPERTENSIONAHA_121_17809
crossref_primary_10_1016_j_addr_2020_07_013
crossref_primary_10_1093_intimm_dxz001
crossref_primary_10_3390_molecules23081941
crossref_primary_10_1111_jcmm_15436
crossref_primary_10_3390_cancers15072025
crossref_primary_10_1039_D0BM01183E
crossref_primary_10_3390_ijms232314883
crossref_primary_10_1371_journal_pbio_3002275
crossref_primary_10_1172_JCI129705
crossref_primary_10_3390_ijms22105078
crossref_primary_10_1073_pnas_1803999116
crossref_primary_10_3390_cancers14020280
crossref_primary_10_3389_fphar_2019_00797
crossref_primary_10_3390_cancers12082060
crossref_primary_10_1002_adhm_202400586
crossref_primary_10_1016_j_etap_2022_103836
crossref_primary_10_3390_nu16152569
crossref_primary_10_1016_j_prostaglandins_2024_106854
crossref_primary_10_1096_fj_201802445R
crossref_primary_10_1101_cshperspect_a041172
crossref_primary_10_4049_jimmunol_2000186
crossref_primary_10_3389_fonc_2022_790933
crossref_primary_10_1080_10408398_2022_2029826
crossref_primary_10_1002_jcp_31133
crossref_primary_10_3389_fimmu_2020_631319
crossref_primary_10_1007_s10787_025_01703_3
crossref_primary_10_3389_fimmu_2021_668760
crossref_primary_10_1002_bies_201800103
crossref_primary_10_3389_fimmu_2021_812171
crossref_primary_10_1007_s10555_018_9743_z
crossref_primary_10_1038_s41423_019_0306_1
crossref_primary_10_1016_j_compbiomed_2022_105922
crossref_primary_10_3390_diagnostics11112149
crossref_primary_10_1016_j_jff_2024_106439
crossref_primary_10_1016_j_bbrc_2018_03_037
crossref_primary_10_1016_j_plefa_2020_102215
crossref_primary_10_1073_pnas_2314085121
crossref_primary_10_3389_fimmu_2019_02187
crossref_primary_10_3389_fonc_2018_00050
crossref_primary_10_1007_s10571_022_01216_5
crossref_primary_10_3390_gucdd1030013
crossref_primary_10_1016_j_nantod_2023_101978
crossref_primary_10_1136_jitc_2020_000529
crossref_primary_10_1007_s10555_021_09987_x
crossref_primary_10_3389_fimmu_2018_00586
crossref_primary_10_1002_jpen_2259
crossref_primary_10_1016_j_pharmthera_2020_107670
crossref_primary_10_1021_acs_nanolett_2c00478
Cites_doi 10.1002/eji.201040801
10.1038/cdd.2016.11
10.1038/onc.2012.77
10.1038/jid.2014.18
10.1038/nature13479
10.1038/bjc.2015.146
10.1038/mt.2010.127
10.1038/bjc.1977.159
10.1084/jem.20050915
10.4049/jimmunol.174.6.3727
10.1002/jcp.21832
10.1080/2162402X.2015.1008866
10.1002/path.2792
10.1177/1358863X13503695
10.4049/jimmunol.0903526
10.4049/jimmunol.163.4.1730
10.1016/j.bbcan.2009.08.003
10.1016/j.cub.2015.01.040
10.1186/s12967-015-0757-9
10.1038/nature11042
10.1038/emboj.2011.497
10.1038/nature08541
10.1038/onc.2009.356
10.1016/j.addr.2014.03.004
10.1158/0008-5472.CAN-03-1518
10.1038/nrd.2016.39
10.3109/08916934.2012.754433
10.1038/nm.2385
10.1016/j.cell.2010.03.014
10.1158/1535-7163.MCT-10-0258
10.4049/jimmunol.1100225
10.1038/nrc2809
10.2337/db14-0256
10.2147/OTT.S60114
10.1096/fj.201500155R
10.1152/ajpcell.00024.2014
10.1172/JCI62423
10.1016/S0024-3205(97)00375-5
10.1016/j.prostaglandins.2011.08.004
10.1084/jem.187.4.601
10.1084/jem.20040327
10.1172/JCI58128
10.1016/0014-2964(79)90130-0
10.1073/pnas.1700455114
10.1038/1781391a0
10.1074/jbc.M609212200
10.1093/cvr/cvv037
10.1186/1476-4598-12-24
10.1016/j.immuni.2007.11.011
10.1016/0092-8674(94)90200-3
10.1016/0165-2478(94)00149-9
10.1084/jem.165.1.14
10.1038/sj.bjc.6604059
10.1126/scitranslmed.aan0026
10.4049/jimmunol.163.3.1398
10.1038/nm0295-149
10.1097/01.cej.0000198896.02185.68
10.1016/j.canlet.2016.02.052
10.1038/sj.bjc.6603240
10.3892/ol.2015.2977
10.1084/jem.20150225
10.1148/radiol.2511072175
10.1038/nm0711-780
10.1038/nm1622
10.1186/s13048-015-0141-7
10.1158/1078-0432.CCR-09-1499
10.1007/978-3-319-39406-0_3
10.3109/15476910903204058
10.4049/jimmunol.174.6.3220
10.1371/journal.pbio.1000412
10.1158/0008-5472.CAN-14-0067
10.1038/nature06307
10.1084/jem.20020760
10.1038/oncsis.2016.90
10.1054/bjoc.1999.0928
10.1038/nrc.2016.58
10.1038/nm0598-581
10.1073/pnas.0910929107
10.1186/1472-6890-13-24
10.1038/nm1523
10.1016/j.ultrasmedbio.2009.12.004
10.1186/s13058-016-0708-2
10.4049/jimmunol.178.6.3912
10.1038/nm786
10.1038/nbt0714-604
10.1016/j.cub.2014.12.059
10.1073/pnas.0907342107
10.1083/jcb.8.1.165
10.1002/1097-0142(20010201)91:3<578::AID-CNCR1037>3.0.CO;2-W
10.4049/jimmunol.1103688
10.1038/nature07205
10.1016/S0140-6736(12)60209-8
10.1038/bjc.1960.15
10.1073/pnas.1602023113
ContentType Journal Article
Copyright 2018 Sulciner et al.
Copyright Rockefeller University Press Jan 2, 2018
2018 Sulciner et al. 2018
Copyright_xml – notice: 2018 Sulciner et al.
– notice: Copyright Rockefeller University Press Jan 2, 2018
– notice: 2018 Sulciner et al. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1084/jem.20170681
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Resolvins mediate clearance of tumor cell debris
EISSN 1540-9538
EndPage 140
ExternalDocumentID PMC5748851
29191914
10_1084_jem_20170681
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P01 GM095467
– fundername: Wellcome Trust
  grantid: 086867/Z/08
– fundername: Wellcome Trust
– fundername: NCI NIH HHS
  grantid: R01 CA169354
– fundername: NIAID NIH HHS
  grantid: R01 AI079320
– fundername: NCI NIH HHS
  grantid: R01 CA170549
– fundername: ;
– fundername: ;
  grantid: CA169354
– fundername: ;
  grantid: RO1 01CA170549-02; ROCA148633-01A4; GM095467
– fundername: ;
  grantid: R01 AI079320
– fundername: ;
  grantid: 086867/Z/08
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
GX1
H13
HYE
IH2
K-O
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c478t-9695ff9d0d102256e2a0beb4bb5b4abc98e834151374b12865e697c10dbef33e3
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 18:13:53 EDT 2025
Fri Jul 11 06:12:40 EDT 2025
Mon Jun 30 16:41:25 EDT 2025
Mon Jul 21 05:57:44 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Tue Jul 01 00:41:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2018 Sulciner et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c478t-9695ff9d0d102256e2a0beb4bb5b4abc98e834151374b12865e697c10dbef33e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
M.L. Sulciner, C.N. Serhan, M.M. Gilligan, D.K. Mudge, M.W. Kieran, S. Huang, and D. Panigrahy contributed equally to this paper.
ORCID 0000-0003-4627-8545
0000-0003-2184-7692
0000-0002-7342-9858
0000-0003-2068-3331
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5748851
PMID 29191914
PQID 2006899598
PQPubID 2046203
PageCount 26
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748851
proquest_miscellaneous_1971635959
proquest_journals_2006899598
pubmed_primary_29191914
crossref_citationtrail_10_1084_jem_20170681
crossref_primary_10_1084_jem_20170681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180102
PublicationDateYYYYMMDD 2018-01-02
PublicationDate_xml – month: 1
  year: 2018
  text: 20180102
  day: 2
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2018
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References Huang (2024012320465091400_bib44) 2011; 17
Mochizuki (2024012320465091400_bib62) 2003; 44
Volk-Draper (2024012320465091400_bib95) 2014; 74
Schif-Zuck (2024012320465091400_bib80) 2011; 41
Gregory (2024012320465091400_bib36) 2011; 223
Chiang (2024012320465091400_bib13) 2012; 484
Naresh (2024012320465091400_bib63) 2001; 91
Chang (2024012320465091400_bib11) 2017; 114
Chiang (2024012320465091400_bib14) 2015; 212
Pol (2024012320465091400_bib73) 2015; 4
Wang (2024012320465091400_bib97) 2010; 10
Spite (2024012320465091400_bib85) 2009; 461
Kindy (2024012320465091400_bib49) 2016; 14
Seelig (2024012320465091400_bib81) 1960; 14
Elajami (2024012320465091400_bib26) 2016; 30
Connell (2024012320465091400_bib16) 2011; 17
Drochmans (2024012320465091400_bib23) 1960; 8
Perretti (2024012320465091400_bib71) 2002; 8
Reiter (2024012320465091400_bib77) 1999; 163
Stuart (2024012320465091400_bib87) 2005; 174
Holmgren (2024012320465091400_bib42) 1995; 1
Garg (2024012320465091400_bib31) 2010; 1805
Chan (2024012320465091400_bib10) 2012; 122
Wyllie (2024012320465091400_bib99) 1985; 5
Yu (2024012320465091400_bib100) 2016; 375
Sun (2024012320465091400_bib88) 2006; 15
Deng (2024012320465091400_bib20) 2010; 36
Dufton (2024012320465091400_bib25) 2010; 184
Gough (2024012320465091400_bib33) 2001; 61
Ormerod (2024012320465091400_bib67) 1986; 46
Fullerton (2024012320465091400_bib29) 2016; 15
Lu (2024012320465091400_bib57) 1998; 187
He (2024012320465091400_bib41) 2009; 15
de Ruiter (2024012320465091400_bib21) 1979; 15
Greene (2024012320465091400_bib35) 2011; 96
Kornbluth (2024012320465091400_bib52) 1994; 43
Maderna (2024012320465091400_bib58) 2005; 174
Obeid (2024012320465091400_bib66) 2007; 13
Ichim (2024012320465091400_bib45) 2016; 16
Gray (2024012320465091400_bib34) 2016; 18
Poth (2024012320465091400_bib74) 2010; 9
Mantovani (2024012320465091400_bib59) 2008; 454
Arita (2024012320465091400_bib5) 2007; 178
O’Reilly (2024012320465091400_bib65) 1994; 79
Abubaker (2024012320465091400_bib1) 2013; 12
da Silva-Jr (2024012320465091400_bib17) 2017; 6
Gao (2024012320465091400_bib30) 2013; 190
Hosseini (2024012320465091400_bib43) 2015; 106
Sun (2024012320465091400_bib89) 2007; 282
Unga (2024012320465091400_bib93) 2014; 72
DeFrancesco (2024012320465091400_bib18) 2014; 32
Rothwell (2024012320465091400_bib79) 2012; 379
Liu (2024012320465091400_bib56) 2010; 18
Dromi (2024012320465091400_bib24) 2009; 251
Ley (2024012320465091400_bib55) 2013; 32
Panigrahy (2024012320465091400_bib69) 2012; 122
Gunjal (2024012320465091400_bib39) 2015; 8
Stienstra (2024012320465091400_bib86) 2014; 63
Titos (2024012320465091400_bib91) 2011; 187
Grenon (2024012320465091400_bib38) 2013; 18
Vyas (2024012320465091400_bib96) 2014; 7
Garg (2024012320465091400_bib32) 2012; 31
Lauber (2024012320465091400_bib54) 2015; 25
Casares (2024012320465091400_bib9) 2005; 202
Apetoh (2024012320465091400_bib4) 2007; 13
Melcher (2024012320465091400_bib60) 1998; 4
Niwa (2024012320465091400_bib64) 1997; 61
Zeisberger (2024012320465091400_bib101) 2006; 95
Donato (2024012320465091400_bib22) 2014; 134
Chaurio (2024012320465091400_bib12) 2013; 46
Qian (2024012320465091400_bib75) 2010; 141
Reers (2024012320465091400_bib76) 2013; 33
Todryk (2024012320465091400_bib92) 1999; 163
Karagiannis (2024012320465091400_bib47) 2017
Alcaide (2024012320465091400_bib3) 2013; 13
Wong (2024012320465091400_bib98) 2010; 107
Ford (2024012320465091400_bib27) 2015; 25
Bondanza (2024012320465091400_bib8) 2004; 200
Kobayashi (2024012320465091400_bib50) 2007; 27
van den Brenk (2024012320465091400_bib94) 1977; 36
Gregory (2024012320465091400_bib37) 2016; 930
Kilkenny (2024012320465091400_bib48) 2010; 8
Akazawa (2024012320465091400_bib2) 2004; 64
Shan (2024012320465091400_bib84) 2015; 9
Colas (2024012320465091400_bib15) 2014; 307
Révész (2024012320465091400_bib78) 1956; 178
Orr (2024012320465091400_bib68) 1986; 46
Serhan (2024012320465091400_bib82) 2014; 510
Serhan (2024012320465091400_bib83) 2002; 196
Krishnamoorthy (2024012320465091400_bib53) 2010; 107
Frey (2024012320465091400_bib28) 2009; 6
Benton (2024012320465091400_bib6) 2009; 221
de Jong (2024012320465091400_bib19) 2000; 82
Hangai (2024012320465091400_bib40) 2016; 113
Korbelik (2024012320465091400_bib51) 2007; 97
Tesniere (2024012320465091400_bib90) 2010; 29
Pisco (2024012320465091400_bib72) 2015; 112
Birge (2024012320465091400_bib7) 2016; 23
Miyanishi (2024012320465091400_bib61) 2007; 450
Jalalinadoushan (2024012320465091400_bib46) 2004; 1
Parhar (2024012320465091400_bib70) 1987; 165
29263217 - J Exp Med. 2018 Jan 2;215(1):9-11
References_xml – volume: 41
  start-page: 366
  year: 2011
  ident: 2024012320465091400_bib80
  article-title: Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201040801
– volume: 23
  start-page: 962
  year: 2016
  ident: 2024012320465091400_bib7
  article-title: Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2016.11
– volume: 44
  start-page: 92
  year: 2003
  ident: 2024012320465091400_bib62
  article-title: Detection of apoptotic tumor response in vivo after a single dose of chemotherapy with 99mTc-annexin V
  publication-title: J. Nucl. Med.
– volume: 32
  start-page: 631
  year: 2013
  ident: 2024012320465091400_bib55
  article-title: The role of TRKA signaling in IL-10 production by apoptotic tumor cell- activated macrophages
  publication-title: Oncogene.
  doi: 10.1038/onc.2012.77
– volume: 134
  start-page: 1686
  year: 2014
  ident: 2024012320465091400_bib22
  article-title: Caspase 3 promotes surviving melanoma tumor cell growth after cytotoxic therapy
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2014.18
– volume: 510
  start-page: 92
  year: 2014
  ident: 2024012320465091400_bib82
  article-title: Pro-resolving lipid mediators are leads for resolution physiology
  publication-title: Nature.
  doi: 10.1038/nature13479
– volume: 112
  start-page: 1725
  year: 2015
  ident: 2024012320465091400_bib72
  article-title: Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘What does not kill me strengthens me’
  publication-title: Br. J. Cancer.
  doi: 10.1038/bjc.2015.146
– volume: 5
  start-page: 131
  year: 1985
  ident: 2024012320465091400_bib99
  article-title: The biology of cell death in tumours
  publication-title: Anticancer Res.
– volume: 18
  start-page: 1724
  year: 2010
  ident: 2024012320465091400_bib56
  article-title: Statistical issues in longitudinal data analysis for treatment efficacy studies in the biomedical sciences
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2010.127
– volume: 36
  start-page: 94
  year: 1977
  ident: 2024012320465091400_bib94
  article-title: Reactions of the tumour bed to lethally irradiated tumour cells, and the Révész effect
  publication-title: Br. J. Cancer.
  doi: 10.1038/bjc.1977.159
– volume: 202
  start-page: 1691
  year: 2005
  ident: 2024012320465091400_bib9
  article-title: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050915
– volume: 174
  start-page: 3727
  year: 2005
  ident: 2024012320465091400_bib58
  article-title: Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac(2-26)
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.6.3727
– volume: 221
  start-page: 18
  year: 2009
  ident: 2024012320465091400_bib6
  article-title: Advancing science and technology via 3D culture on basement membrane matrix
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21832
– volume: 4
  start-page: e1008866
  year: 2015
  ident: 2024012320465091400_bib73
  article-title: Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy
  publication-title: OncoImmunology.
  doi: 10.1080/2162402X.2015.1008866
– volume: 223
  start-page: 177
  year: 2011
  ident: 2024012320465091400_bib36
  article-title: Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues
  publication-title: J. Pathol.
  doi: 10.1002/path.2792
– volume: 18
  start-page: 263
  year: 2013
  ident: 2024012320465091400_bib38
  article-title: n-3 Polyunsaturated fatty acids supplementation in peripheral artery disease: the OMEGA-PAD trial
  publication-title: Vasc. Med.
  doi: 10.1177/1358863X13503695
– volume: 184
  start-page: 2611
  year: 2010
  ident: 2024012320465091400_bib25
  article-title: Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0903526
– volume: 163
  start-page: 1730
  year: 1999
  ident: 2024012320465091400_bib77
  article-title: Cutting edge: differential effect of apoptotic versus necrotic tumor cells on macrophage antitumor activities
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.163.4.1730
– volume: 1805
  start-page: 53
  year: 2010
  ident: 2024012320465091400_bib31
  article-title: Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/j.bbcan.2009.08.003
– volume: 25
  start-page: R198
  year: 2015
  ident: 2024012320465091400_bib54
  article-title: Tumor biology: with a little help from my dying friends
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.01.040
– volume: 14
  start-page: 1
  year: 2016
  ident: 2024012320465091400_bib49
  article-title: A therapeutic cancer vaccine against GL261 murine glioma
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-015-0757-9
– volume: 484
  start-page: 524
  year: 2012
  ident: 2024012320465091400_bib13
  article-title: Infection regulates pro-resolving mediators that lower antibiotic requirements
  publication-title: Nature.
  doi: 10.1038/nature11042
– volume: 31
  start-page: 1062
  year: 2012
  ident: 2024012320465091400_bib32
  article-title: A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.497
– volume: 461
  start-page: 1287
  year: 2009
  ident: 2024012320465091400_bib85
  article-title: Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis
  publication-title: Nature.
  doi: 10.1038/nature08541
– volume: 29
  start-page: 482
  year: 2010
  ident: 2024012320465091400_bib90
  article-title: Immunogenic death of colon cancer cells treated with oxaliplatin
  publication-title: Oncogene.
  doi: 10.1038/onc.2009.356
– volume: 72
  start-page: 144
  year: 2014
  ident: 2024012320465091400_bib93
  article-title: Ultrasound induced cancer immunotherapy
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2014.03.004
– volume: 64
  start-page: 757
  year: 2004
  ident: 2024012320465091400_bib2
  article-title: Adjuvant-mediated tumor regression and tumor-specific cytotoxic response are impaired in MyD88-deficient mice
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-1518
– volume: 15
  start-page: 551
  year: 2016
  ident: 2024012320465091400_bib29
  article-title: Resolution of inflammation: a new therapeutic frontier
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.39
– volume: 46
  start-page: 317
  year: 2013
  ident: 2024012320465091400_bib12
  article-title: UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice
  publication-title: Autoimmunity.
  doi: 10.3109/08916934.2012.754433
– volume: 17
  start-page: 860
  year: 2011
  ident: 2024012320465091400_bib44
  article-title: Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm.2385
– volume: 141
  start-page: 39
  year: 2010
  ident: 2024012320465091400_bib75
  article-title: Macrophage diversity enhances tumor progression and metastasis
  publication-title: Cell.
  doi: 10.1016/j.cell.2010.03.014
– volume: 9
  start-page: 2430
  year: 2010
  ident: 2024012320465091400_bib74
  article-title: Cisplatin treatment induces a transient increase in tumorigenic potential associated with high interleukin-6 expression in head and neck squamous cell carcinoma
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-10-0258
– volume: 187
  start-page: 5408
  year: 2011
  ident: 2024012320465091400_bib91
  article-title: Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100225
– volume: 61
  start-page: 7240
  year: 2001
  ident: 2024012320465091400_bib33
  article-title: Macrophages orchestrate the immune response to tumor cell death
  publication-title: Cancer Res.
– volume: 10
  start-page: 181
  year: 2010
  ident: 2024012320465091400_bib97
  article-title: Eicosanoids and cancer
  publication-title: Nat. Rev. Cancer.
  doi: 10.1038/nrc2809
– volume: 63
  start-page: 4143
  year: 2014
  ident: 2024012320465091400_bib86
  article-title: Mannose-binding lectin is required for the effective clearance of apoptotic cells by adipose tissue macrophages during obesity
  publication-title: Diabetes.
  doi: 10.2337/db14-0256
– volume: 7
  start-page: 1015
  year: 2014
  ident: 2024012320465091400_bib96
  article-title: Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis
  publication-title: Onco Targets Ther.
  doi: 10.2147/OTT.S60114
– volume: 30
  start-page: 2792
  year: 2016
  ident: 2024012320465091400_bib26
  article-title: Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling
  publication-title: FASEB J.
  doi: 10.1096/fj.201500155R
– volume: 307
  start-page: C39
  year: 2014
  ident: 2024012320465091400_bib15
  article-title: Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00024.2014
– volume: 122
  start-page: 2711
  year: 2012
  ident: 2024012320465091400_bib10
  article-title: Alarmins: awaiting a clinical response
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI62423
– volume: 61
  start-page: 205
  year: 1997
  ident: 2024012320465091400_bib64
  article-title: Comparison of susceptibility to apoptosis induced by rhTNF-alpha and cycloheximide between human circulating and exudated neutrophils
  publication-title: Life Sci.
  doi: 10.1016/S0024-3205(97)00375-5
– volume: 96
  start-page: 27
  year: 2011
  ident: 2024012320465091400_bib35
  article-title: Regulation of inflammation in cancer by eicosanoids
  publication-title: Prostaglandins Other Lipid Mediat.
  doi: 10.1016/j.prostaglandins.2011.08.004
– volume: 187
  start-page: 601
  year: 1998
  ident: 2024012320465091400_bib57
  article-title: Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.187.4.601
– volume: 200
  start-page: 1157
  year: 2004
  ident: 2024012320465091400_bib8
  article-title: Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20040327
– volume: 122
  start-page: 178
  year: 2012
  ident: 2024012320465091400_bib69
  article-title: Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI58128
– volume: 15
  start-page: 1139
  year: 1979
  ident: 2024012320465091400_bib21
  article-title: The facilitation of tumour growth in the lung by cyclophosphamide in artificial and spontaneous metastases models
  publication-title: Eur. J. Cancer.
  doi: 10.1016/0014-2964(79)90130-0
– volume: 114
  start-page: E7159
  year: 2017
  ident: 2024012320465091400_bib11
  article-title: Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1700455114
– volume: 178
  start-page: 1391
  year: 1956
  ident: 2024012320465091400_bib78
  article-title: Effect of tumour cells killed by x-rays upon the growth of admixed viable cells
  publication-title: Nature.
  doi: 10.1038/1781391a0
– volume: 282
  start-page: 9323
  year: 2007
  ident: 2024012320465091400_bib89
  article-title: Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M609212200
– volume: 106
  start-page: 443
  year: 2015
  ident: 2024012320465091400_bib43
  article-title: Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvv037
– volume: 12
  start-page: 24
  year: 2013
  ident: 2024012320465091400_bib1
  article-title: Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden
  publication-title: Mol. Cancer.
  doi: 10.1186/1476-4598-12-24
– volume: 27
  start-page: 927
  year: 2007
  ident: 2024012320465091400_bib50
  article-title: TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2007.11.011
– volume: 79
  start-page: 315
  year: 1994
  ident: 2024012320465091400_bib65
  article-title: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma
  publication-title: Cell.
  doi: 10.1016/0092-8674(94)90200-3
– volume: 43
  start-page: 125
  year: 1994
  ident: 2024012320465091400_bib52
  article-title: The immunological potential of apoptotic debris produced by tumor cells and during HIV infection
  publication-title: Immunol. Lett.
  doi: 10.1016/0165-2478(94)00149-9
– volume: 165
  start-page: 14
  year: 1987
  ident: 2024012320465091400_bib70
  article-title: Amelioration of B16F10 melanoma lung metastasis in mice by a combination therapy with indomethacin and interleukin 2
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.165.1.14
– volume: 97
  start-page: 1381
  year: 2007
  ident: 2024012320465091400_bib51
  article-title: Photodynamic therapy-generated vaccines: relevance of tumour cell death expression
  publication-title: Br. J. Cancer.
  doi: 10.1038/sj.bjc.6604059
– year: 2017
  ident: 2024012320465091400_bib47
  article-title: Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan0026
– volume: 163
  start-page: 1398
  year: 1999
  ident: 2024012320465091400_bib92
  article-title: Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.163.3.1398
– volume: 1
  start-page: 149
  year: 1995
  ident: 2024012320465091400_bib42
  article-title: Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression
  publication-title: Nat. Med.
  doi: 10.1038/nm0295-149
– volume: 15
  start-page: 258
  year: 2006
  ident: 2024012320465091400_bib88
  article-title: Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma
  publication-title: Eur. J. Cancer Prev.
  doi: 10.1097/01.cej.0000198896.02185.68
– volume: 375
  start-page: 31
  year: 2016
  ident: 2024012320465091400_bib100
  article-title: eIF4E-phosphorylation-mediated Sox2 upregulation promotes pancreatic tumor cell repopulation after irradiation
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2016.02.052
– volume: 95
  start-page: 272
  year: 2006
  ident: 2024012320465091400_bib101
  article-title: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach
  publication-title: Br. J. Cancer.
  doi: 10.1038/sj.bjc.6603240
– volume: 9
  start-page: 1549
  year: 2015
  ident: 2024012320465091400_bib84
  article-title: Cytokine-induced killer cells co-cultured with dendritic cells loaded with the protein lysate produced by radiofrequency ablation induce a specific antitumor response
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2015.2977
– volume: 212
  start-page: 1203
  year: 2015
  ident: 2024012320465091400_bib14
  article-title: Identification of resolvin D2 receptor mediating resolution of infections and organ protection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20150225
– volume: 251
  start-page: 58
  year: 2009
  ident: 2024012320465091400_bib24
  article-title: Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity
  publication-title: Radiology.
  doi: 10.1148/radiol.2511072175
– volume: 17
  start-page: 780
  year: 2011
  ident: 2024012320465091400_bib16
  article-title: A downside to apoptosis in cancer therapy?
  publication-title: Nat. Med.
  doi: 10.1038/nm0711-780
– volume: 13
  start-page: 1050
  year: 2007
  ident: 2024012320465091400_bib4
  article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm1622
– volume: 8
  start-page: 20
  year: 2015
  ident: 2024012320465091400_bib39
  article-title: Evidence for induction of a tumor metastasis-receptive microenvironment for ovarian cancer cells in bone marrow and other organs as an unwanted and underestimated side effect of chemotherapy/radiotherapy
  publication-title: J. Ovarian Res.
  doi: 10.1186/s13048-015-0141-7
– volume: 15
  start-page: 6871
  year: 2009
  ident: 2024012320465091400_bib41
  article-title: Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-1499
– volume: 930
  start-page: 51
  year: 2016
  ident: 2024012320465091400_bib37
  article-title: Microenvironmental Effects of Cell Death in Malignant Disease
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-39406-0_3
– volume: 6
  start-page: 209
  year: 2009
  ident: 2024012320465091400_bib28
  article-title: AnnexinA5 renders dead tumor cells immunogenic--implications for multimodal cancer therapies
  publication-title: J. Immunotoxicol.
  doi: 10.3109/15476910903204058
– volume: 174
  start-page: 3220
  year: 2005
  ident: 2024012320465091400_bib87
  article-title: Mannose-binding lectin-deficient mice display defective apoptotic cell clearance but no autoimmune phenotype
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.6.3220
– volume: 8
  start-page: e1000412
  year: 2010
  ident: 2024012320465091400_bib48
  article-title: Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000412
– volume: 74
  start-page: 5421
  year: 2014
  ident: 2024012320465091400_bib95
  article-title: Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-0067
– volume: 450
  start-page: 435
  year: 2007
  ident: 2024012320465091400_bib61
  article-title: Identification of Tim4 as a phosphatidylserine receptor
  publication-title: Nature.
  doi: 10.1038/nature06307
– volume: 196
  start-page: 1025
  year: 2002
  ident: 2024012320465091400_bib83
  article-title: Resolvins
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20020760
– volume: 6
  start-page: e296
  year: 2017
  ident: 2024012320465091400_bib17
  article-title: Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy
  publication-title: Oncogenesis.
  doi: 10.1038/oncsis.2016.90
– volume: 82
  start-page: 368
  year: 2000
  ident: 2024012320465091400_bib19
  article-title: Number of apoptotic cells as a prognostic marker in invasive breast cancer
  publication-title: Br. J. Cancer.
  doi: 10.1054/bjoc.1999.0928
– volume: 16
  start-page: 539
  year: 2016
  ident: 2024012320465091400_bib45
  article-title: A fate worse than death: apoptosis as an oncogenic process
  publication-title: Nat. Rev. Cancer.
  doi: 10.1038/nrc.2016.58
– volume: 4
  start-page: 581
  year: 1998
  ident: 2024012320465091400_bib60
  article-title: Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression
  publication-title: Nat. Med.
  doi: 10.1038/nm0598-581
– volume: 107
  start-page: 8712
  year: 2010
  ident: 2024012320465091400_bib98
  article-title: Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0910929107
– volume: 13
  start-page: 24
  year: 2013
  ident: 2024012320465091400_bib3
  article-title: The role and prognostic value of apoptosis in colorectal carcinoma
  publication-title: BMC Clin. Pathol.
  doi: 10.1186/1472-6890-13-24
– volume: 13
  start-page: 54
  year: 2007
  ident: 2024012320465091400_bib66
  article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death
  publication-title: Nat. Med.
  doi: 10.1038/nm1523
– volume: 46
  start-page: 891
  year: 1986
  ident: 2024012320465091400_bib68
  article-title: Promotion of pulmonary metastasis in mice by bleomycin-induced endothelial injury
  publication-title: Cancer Res.
– volume: 36
  start-page: 441
  year: 2010
  ident: 2024012320465091400_bib20
  article-title: Dendritic cells loaded with ultrasound-ablated tumour induce in vivo specific antitumour immune responses
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2009.12.004
– volume: 18
  start-page: 50
  year: 2016
  ident: 2024012320465091400_bib34
  article-title: Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-016-0708-2
– volume: 178
  start-page: 3912
  year: 2007
  ident: 2024012320465091400_bib5
  article-title: Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.6.3912
– volume: 46
  start-page: 884
  year: 1986
  ident: 2024012320465091400_bib67
  article-title: Enhanced experimental metastatic capacity of a human tumor line following treatment with 5-azacytidine
  publication-title: Cancer Res.
– volume: 8
  start-page: 1296
  year: 2002
  ident: 2024012320465091400_bib71
  article-title: Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor
  publication-title: Nat. Med.
  doi: 10.1038/nm786
– volume: 1
  start-page: 177
  year: 2004
  ident: 2024012320465091400_bib46
  article-title: Correlation between Apoptosis and Histological Grade of Transitional Cell Carcinoma of Urinary Bladder
  publication-title: Urol. J.
– volume: 32
  start-page: 604
  year: 2014
  ident: 2024012320465091400_bib18
  article-title: CAR-T cell therapy seeks strategies to harness cytokine storm
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0714-604
– volume: 25
  start-page: 577
  year: 2015
  ident: 2024012320465091400_bib27
  article-title: Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.12.059
– volume: 107
  start-page: 1660
  year: 2010
  ident: 2024012320465091400_bib53
  article-title: Resolvin D1 binds human phagocytes with evidence for proresolving receptors
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0907342107
– volume: 8
  start-page: 165
  year: 1960
  ident: 2024012320465091400_bib23
  article-title: Electron microscope studies of epidermal melanocytes, and the fine structure of melanin granules
  publication-title: J. Biophys. Biochem. Cytol.
  doi: 10.1083/jcb.8.1.165
– volume: 91
  start-page: 578
  year: 2001
  ident: 2024012320465091400_bib63
  article-title: Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue
  publication-title: Cancer.
  doi: 10.1002/1097-0142(20010201)91:3<578::AID-CNCR1037>3.0.CO;2-W
– volume: 33
  start-page: 2481
  year: 2013
  ident: 2024012320465091400_bib76
  article-title: Cytokine changes in response to radio-/chemotherapeutic treatment in head and neck cancer
  publication-title: Anticancer Res.
– volume: 190
  start-page: 689
  year: 2013
  ident: 2024012320465091400_bib30
  article-title: Resolvin E1 and chemokine-like receptor 1 mediate bone preservation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1103688
– volume: 454
  start-page: 436
  year: 2008
  ident: 2024012320465091400_bib59
  article-title: Cancer-related inflammation
  publication-title: Nature.
  doi: 10.1038/nature07205
– volume: 379
  start-page: 1591
  year: 2012
  ident: 2024012320465091400_bib79
  article-title: Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(12)60209-8
– volume: 14
  start-page: 126
  year: 1960
  ident: 2024012320465091400_bib81
  article-title: Effect of lethally damaged tumour cells upon the growth of admixed viable cells in diffusion chambers
  publication-title: Br. J. Cancer.
  doi: 10.1038/bjc.1960.15
– volume: 113
  start-page: 3844
  year: 2016
  ident: 2024012320465091400_bib40
  article-title: PGE2 induced in and released by dying cells functions as an inhibitory DAMP
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1602023113
– reference: 29263217 - J Exp Med. 2018 Jan 2;215(1):9-11
SSID ssj0014456
Score 2.6226928
Snippet Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 115
SubjectTerms Animals
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Cancer
Cancer therapies
Carbon tetrachloride
CCL4 protein
Cell Line, Tumor
Cell Proliferation
Chemokines
Chemotherapy
Coinjection
Cytokines
Cytokines - metabolism
Cytotoxicity
Debris
Detritus
Disease Models, Animal
Docosahexaenoic Acids - pharmacology
Humans
Inflammation
Inflammation Mediators - metabolism
Inoculum
Interleukin 6
Interleukin 8
Macrophages
Macrophages - metabolism
Melanoma, Experimental
Mice
Mice, Knockout
Mice, Transgenic
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - pathology
Phagocytosis
Phosphatidylserine
Phosphatidylserines - metabolism
Tumor Burden
Tumor cells
Tumor necrosis factor-α
Tumors
Xenograft Model Antitumor Assays
Title Resolvins suppress tumor growth and enhance cancer therapy
URI https://www.ncbi.nlm.nih.gov/pubmed/29191914
https://www.proquest.com/docview/2006899598
https://www.proquest.com/docview/1971635959
https://pubmed.ncbi.nlm.nih.gov/PMC5748851
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviHENbFOQ4KkKxImdC29oFwZbxgOt1LcoTtwWVNKpTZDg13OO7brJNqSBIlmtbTmVv-PT43Ml5HXKeCz9qfBKFggPRGrfK3gReVEZMS5LXsaqTGd2EZ2O2ecJnwwGZx2vpbYRb8vfN8aV_A-q0Ae4YpTsPyBrF4UO-Az4QgsIQ3srjFH3vviJTi7r9lJ5tA6b9sdyNZzB5drErMl6rqICSmyVR6HNIvB9SykdubSX8_-q6f1ru8CvCuZMzrDmrx2Sq3nRNeFvrTwfUakz04MZFrfe6mCz1hR3Pyp-1YVRuhotBE2UFiLoMk7moylY81J5Q5_htoGO3uyRleadVI9c4-l-wpCnS8wbgMl-dImXfursiy_5yfj8PB8dT0Z3yN0A7gxYzuLo05k1KTGmSvnaH2WiIGD1d921-_LJtUvHVd_ZjjAyekgeGLTcD5okdslA1o_IvcyA9Zi8t5ThbijDVZThaspwgTJcQxmupgzXUMYTMj45Hh2eeqZKBhyvOGm8NEr5dJpWfoWXdx7JoPCFFEwILlghyjSRCYgqnIYxExQDkWWUxiX1KyGnYSjDp2SnXtbyOXFRXSB4JOKKwQMoB5SGgqHpncZFUjlkuNmbvDQp5LGSySJXrgwJy2En881OOuSNnX2pU6f8Zd7eZptzc7jWWB01SjAXXuKQV3YYWB_as4paLtt1TjH9GQaWpw55plGxLwpSig9zSNzDy07AtOr9kfrbXKVX5zH8qXH64hbvfUnubw_DHtlpVq3cByG1EQeK-P4AOAST2g
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolvins+suppress+tumor+growth+and+enhance+cancer+therapy&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Sulciner%2C+Megan+L&rft.au=Serhan%2C+Charles+N&rft.au=Gilligan%2C+Molly+M&rft.au=Mudge%2C+Dayna+K&rft.date=2018-01-02&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=215&rft.issue=1&rft.spage=115&rft_id=info:doi/10.1084%2Fjem.20170681&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon