Resolvins suppress tumor growth and enhance cancer therapy
Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or target...
Saved in:
Published in | The Journal of experimental medicine Vol. 215; no. 1; pp. 115 - 140 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
02.01.2018
The Rockefeller University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0022-1007 1540-9538 1540-9538 |
DOI | 10.1084/jem.20170681 |
Cover
Loading…
Abstract | Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies. |
---|---|
AbstractList | Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy ("tumor cell debris") stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy ("tumor cell debris") stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies. Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies. Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Sulciner et al. demonstrate that specific resolvins (RvD1, RvD2, and RvE1) inhibit tumor growth and enhance cancer therapy through the clearance of tumor cell debris. Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies. Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Sulciner et al. demonstrate that specific resolvins (RvD1, RvD2, and RvE1) inhibit tumor growth and enhance cancer therapy through the clearance of tumor cell debris.Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies. |
Author | Piwowarski, Julia Sukhatme, Vikas P. Bielenberg, Diane R. Dalli, Jesmond Greene, Emily R. Panigrahy, Dipak Mammoto, Tadanori Sulciner, Megan L. Huang, Sui Gartung, Allison Perretti, Mauro Serhan, Charles N. Lehner, Kristen A. Gus-Brautbar, Yael Mudge, Dayna K. Schmidt, Birgitta Kieran, Mark W. Gilligan, Molly M. Chang, Jaimie Zurakowski, David Kaipainen, Arja |
AuthorAffiliation | 12 The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, England, UK 10 Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 11 Department of Pediatric Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 3 Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 14 Institute of Systems Biology, Seattle, WA 4 Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 7 Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA 6 Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 8 Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 13 Human Biology Division, Fred Hutchinson Cancer Research Center, |
AuthorAffiliation_xml | – name: 2 Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA – name: 4 Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA – name: 8 Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA – name: 7 Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA – name: 13 Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA – name: 5 Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA – name: 6 Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA – name: 10 Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA – name: 11 Department of Pediatric Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA – name: 12 The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, England, UK – name: 1 Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA – name: 9 Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA – name: 3 Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA – name: 14 Institute of Systems Biology, Seattle, WA |
Author_xml | – sequence: 1 givenname: Megan L. surname: Sulciner fullname: Sulciner, Megan L. – sequence: 2 givenname: Charles N. orcidid: 0000-0003-4627-8545 surname: Serhan fullname: Serhan, Charles N. – sequence: 3 givenname: Molly M. orcidid: 0000-0002-7342-9858 surname: Gilligan fullname: Gilligan, Molly M. – sequence: 4 givenname: Dayna K. surname: Mudge fullname: Mudge, Dayna K. – sequence: 5 givenname: Jaimie surname: Chang fullname: Chang, Jaimie – sequence: 6 givenname: Allison surname: Gartung fullname: Gartung, Allison – sequence: 7 givenname: Kristen A. surname: Lehner fullname: Lehner, Kristen A. – sequence: 8 givenname: Diane R. surname: Bielenberg fullname: Bielenberg, Diane R. – sequence: 9 givenname: Birgitta surname: Schmidt fullname: Schmidt, Birgitta – sequence: 10 givenname: Jesmond surname: Dalli fullname: Dalli, Jesmond – sequence: 11 givenname: Emily R. surname: Greene fullname: Greene, Emily R. – sequence: 12 givenname: Yael surname: Gus-Brautbar fullname: Gus-Brautbar, Yael – sequence: 13 givenname: Julia surname: Piwowarski fullname: Piwowarski, Julia – sequence: 14 givenname: Tadanori surname: Mammoto fullname: Mammoto, Tadanori – sequence: 15 givenname: David surname: Zurakowski fullname: Zurakowski, David – sequence: 16 givenname: Mauro orcidid: 0000-0003-2068-3331 surname: Perretti fullname: Perretti, Mauro – sequence: 17 givenname: Vikas P. surname: Sukhatme fullname: Sukhatme, Vikas P. – sequence: 18 givenname: Arja surname: Kaipainen fullname: Kaipainen, Arja – sequence: 19 givenname: Mark W. orcidid: 0000-0003-2184-7692 surname: Kieran fullname: Kieran, Mark W. – sequence: 20 givenname: Sui surname: Huang fullname: Huang, Sui – sequence: 21 givenname: Dipak surname: Panigrahy fullname: Panigrahy, Dipak |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29191914$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LxDAQxYMouq7ePEvBiwe7Jm3SJh4EEb9AEETPIUmnbpc2qUmr-N-bZV1RkYHMIb95vJm3izats4DQAcEzgjk9XUA3yzApccHJBpoQRnEqWM430QTjLEsJxuUO2g1hgTGhlBXbaCcTZFl0gs4eIbj2rbEhCWPfewghGcbO-eTFu_dhnihbJWDnyhpIzPL1yTAHr_qPPbRVqzbA_lefoufrq6fL2_T-4ebu8uI-NbTkQyoKwepaVLgi0Q4rIFNYg6ZaM02VNoIDzylhJC-pJhkvGBSiNARXGuo8h3yKzle6_ag7qAzYwatW9r7plP-QTjXy949t5vLFvUlWUs6j7hQdfwl49zpCGGTXBANtqyy4MUgiSlLkTDAR0aM_6MKN3sb1ZIbjhUWEeKQOfzr6trI-awSyFWC8C8FDLU0zqKFxS4NNKwmWy-xkzE6us4tDJ3-G1rr_4p91tJqd |
CitedBy_id | crossref_primary_10_1080_17460441_2024_2340493 crossref_primary_10_1093_carcin_bgaa028 crossref_primary_10_1007_s10555_021_09998_8 crossref_primary_10_3389_fonc_2023_1178681 crossref_primary_10_3390_cancers11122034 crossref_primary_10_1038_s41467_023_39865_9 crossref_primary_10_1016_j_bbrc_2017_12_171 crossref_primary_10_1096_fj_201903025RR crossref_primary_10_1038_s41523_018_0058_6 crossref_primary_10_1096_fj_202002392R crossref_primary_10_3389_fimmu_2023_1322746 crossref_primary_10_1016_j_isci_2024_109413 crossref_primary_10_1016_j_jhep_2023_08_029 crossref_primary_10_1016_j_prostaglandins_2023_106718 crossref_primary_10_3390_cancers11050592 crossref_primary_10_1172_JCI127282 crossref_primary_10_4155_ppa_2020_0027 crossref_primary_10_1007_s12013_024_01299_5 crossref_primary_10_1016_j_pharmthera_2021_107879 crossref_primary_10_3390_cancers13133224 crossref_primary_10_26508_lsa_202101256 crossref_primary_10_1073_pnas_1804000116 crossref_primary_10_1073_pnas_2107771118 crossref_primary_10_3390_ijms23094808 crossref_primary_10_1038_s41568_019_0209_6 crossref_primary_10_3892_etm_2019_7761 crossref_primary_10_1038_s41598_019_39584_6 crossref_primary_10_1042_EBC20200018 crossref_primary_10_1016_j_canlet_2022_215857 crossref_primary_10_15430_JCP_2019_24_2_129 crossref_primary_10_1007_s13311_020_00892_9 crossref_primary_10_1097_MOH_0000000000000822 crossref_primary_10_3389_fimmu_2020_623052 crossref_primary_10_1186_s13046_023_02857_0 crossref_primary_10_3389_fphar_2025_1524980 crossref_primary_10_1038_s41569_023_00984_x crossref_primary_10_3390_nu11050945 crossref_primary_10_1002_cam4_70077 crossref_primary_10_1097_MCO_0000000000000601 crossref_primary_10_1038_s41385_019_0248_z crossref_primary_10_1172_JCI97943 crossref_primary_10_3389_fimmu_2023_1243149 crossref_primary_10_3390_cancers12041014 crossref_primary_10_3390_cancers14061504 crossref_primary_10_1080_09553002_2023_2158246 crossref_primary_10_1126_sciadv_aax3223 crossref_primary_10_1016_j_chembiol_2018_10_023 crossref_primary_10_1016_j_ejphar_2023_176047 crossref_primary_10_1186_s40643_023_00723_7 crossref_primary_10_1007_s10585_023_10243_5 crossref_primary_10_1007_s12013_023_01187_4 crossref_primary_10_1016_j_molstruc_2018_11_014 crossref_primary_10_3390_cells10071801 crossref_primary_10_3389_fimmu_2021_695815 crossref_primary_10_3390_jcm10020228 crossref_primary_10_1007_s43630_021_00105_y crossref_primary_10_3390_cancers14143333 crossref_primary_10_1016_j_neo_2020_08_006 crossref_primary_10_3390_antiox10030470 crossref_primary_10_1051_medsci_2024050 crossref_primary_10_1002_ijc_34459 crossref_primary_10_3389_fimmu_2021_702785 crossref_primary_10_3390_nu13082664 crossref_primary_10_1016_j_mtbio_2024_101394 crossref_primary_10_1186_s13046_019_1163_6 crossref_primary_10_1016_j_prostaglandins_2024_106905 crossref_primary_10_1038_s41467_022_29606_9 crossref_primary_10_3390_biom14121496 crossref_primary_10_1080_03009742_2024_2344906 crossref_primary_10_1089_ars_2021_0156 crossref_primary_10_1007_s10555_023_10091_5 crossref_primary_10_1016_j_ejphar_2019_04_039 crossref_primary_10_3390_biom10081109 crossref_primary_10_1111_fcp_12939 crossref_primary_10_1007_s00018_019_03413_w crossref_primary_10_1016_j_ymthe_2020_12_026 crossref_primary_10_3389_fonc_2018_00235 crossref_primary_10_3390_antiox10030457 crossref_primary_10_1016_j_ajpath_2020_06_010 crossref_primary_10_3389_fimmu_2023_1248547 crossref_primary_10_1136_gutjnl_2024_332535 crossref_primary_10_3390_cancers13040740 crossref_primary_10_1007_s10555_024_10196_5 crossref_primary_10_1038_s41598_020_76005_5 crossref_primary_10_1016_j_smim_2022_101597 crossref_primary_10_3390_cancers13174290 crossref_primary_10_1016_j_cbi_2019_04_037 crossref_primary_10_1016_j_pharmthera_2020_107703 crossref_primary_10_3389_fimmu_2021_663115 crossref_primary_10_2174_0929867331666230727100123 crossref_primary_10_3389_fonc_2022_942798 crossref_primary_10_1016_j_addr_2020_06_028 crossref_primary_10_1016_j_neuropharm_2018_07_016 crossref_primary_10_1016_j_compbiolchem_2024_108236 crossref_primary_10_3390_molecules27051677 crossref_primary_10_1126_sciadv_abd1453 crossref_primary_10_1186_s12943_023_01860_5 crossref_primary_10_3390_ijms20102425 crossref_primary_10_3389_fphar_2019_00852 crossref_primary_10_1186_s12944_024_02386_5 crossref_primary_10_3390_ijms241310971 crossref_primary_10_1016_j_foostr_2021_100175 crossref_primary_10_1007_s10555_023_10092_4 crossref_primary_10_3390_ijms24108838 crossref_primary_10_1002_1878_0261_13280 crossref_primary_10_1016_j_plipres_2022_101165 crossref_primary_10_1073_pnas_2007412117 crossref_primary_10_1016_j_anndiagpath_2021_151865 crossref_primary_10_3390_ijms20153765 crossref_primary_10_1038_s41598_018_26198_7 crossref_primary_10_1096_fj_201800173R crossref_primary_10_3390_ijms22105227 crossref_primary_10_3390_antiox10091459 crossref_primary_10_1096_fj_201800019RR crossref_primary_10_1007_s10555_023_10085_3 crossref_primary_10_1111_prd_12603 crossref_primary_10_3390_ijms241612623 crossref_primary_10_1007_s10555_018_9744_y crossref_primary_10_1016_j_prostaglandins_2024_106944 crossref_primary_10_1016_j_jtho_2020_01_015 crossref_primary_10_1186_s13046_019_1478_3 crossref_primary_10_1002_jpen_2485 crossref_primary_10_1016_j_pharmthera_2018_12_001 crossref_primary_10_1111_ijpo_12499 crossref_primary_10_1080_09553002_2021_1955998 crossref_primary_10_3892_ol_2019_10540 crossref_primary_10_1038_s41388_018_0555_y crossref_primary_10_3389_fimmu_2022_1094278 crossref_primary_10_1007_s10555_018_9731_3 crossref_primary_10_1002_cac2_12272 crossref_primary_10_1007_s10555_018_9754_9 crossref_primary_10_1084_jem_20172044 crossref_primary_10_1002_cbic_201900389 crossref_primary_10_1016_j_immuni_2019_11_013 crossref_primary_10_1016_j_bcp_2024_116259 crossref_primary_10_1177_2040622319872118 crossref_primary_10_3390_ijms23126473 crossref_primary_10_1126_sciimmunol_aay1863 crossref_primary_10_3389_fnut_2022_924192 crossref_primary_10_3389_fimmu_2022_768606 crossref_primary_10_3389_fimmu_2018_00957 crossref_primary_10_1038_s41590_022_01267_2 crossref_primary_10_3390_cancers14030757 crossref_primary_10_1016_j_trecan_2020_01_018 crossref_primary_10_1038_s41423_022_00930_w crossref_primary_10_1007_s10555_021_10017_z crossref_primary_10_1016_j_biomaterials_2025_123116 crossref_primary_10_3390_medicina61020168 crossref_primary_10_3390_ijms22189836 crossref_primary_10_1146_annurev_pharmtox_051921_084047 crossref_primary_10_1007_s00018_022_04430_y crossref_primary_10_1016_j_molcel_2021_08_027 crossref_primary_10_3390_molecules28052417 crossref_primary_10_2174_1871520619666191029151545 crossref_primary_10_1021_acsmedchemlett_9b00596 crossref_primary_10_1016_j_gastha_2022_02_007 crossref_primary_10_1186_s13046_021_01937_3 crossref_primary_10_1161_HYPERTENSIONAHA_121_17809 crossref_primary_10_1016_j_addr_2020_07_013 crossref_primary_10_1093_intimm_dxz001 crossref_primary_10_3390_molecules23081941 crossref_primary_10_1111_jcmm_15436 crossref_primary_10_3390_cancers15072025 crossref_primary_10_1039_D0BM01183E crossref_primary_10_3390_ijms232314883 crossref_primary_10_1371_journal_pbio_3002275 crossref_primary_10_1172_JCI129705 crossref_primary_10_3390_ijms22105078 crossref_primary_10_1073_pnas_1803999116 crossref_primary_10_3390_cancers14020280 crossref_primary_10_3389_fphar_2019_00797 crossref_primary_10_3390_cancers12082060 crossref_primary_10_1002_adhm_202400586 crossref_primary_10_1016_j_etap_2022_103836 crossref_primary_10_3390_nu16152569 crossref_primary_10_1016_j_prostaglandins_2024_106854 crossref_primary_10_1096_fj_201802445R crossref_primary_10_1101_cshperspect_a041172 crossref_primary_10_4049_jimmunol_2000186 crossref_primary_10_3389_fonc_2022_790933 crossref_primary_10_1080_10408398_2022_2029826 crossref_primary_10_1002_jcp_31133 crossref_primary_10_3389_fimmu_2020_631319 crossref_primary_10_1007_s10787_025_01703_3 crossref_primary_10_3389_fimmu_2021_668760 crossref_primary_10_1002_bies_201800103 crossref_primary_10_3389_fimmu_2021_812171 crossref_primary_10_1007_s10555_018_9743_z crossref_primary_10_1038_s41423_019_0306_1 crossref_primary_10_1016_j_compbiomed_2022_105922 crossref_primary_10_3390_diagnostics11112149 crossref_primary_10_1016_j_jff_2024_106439 crossref_primary_10_1016_j_bbrc_2018_03_037 crossref_primary_10_1016_j_plefa_2020_102215 crossref_primary_10_1073_pnas_2314085121 crossref_primary_10_3389_fimmu_2019_02187 crossref_primary_10_3389_fonc_2018_00050 crossref_primary_10_1007_s10571_022_01216_5 crossref_primary_10_3390_gucdd1030013 crossref_primary_10_1016_j_nantod_2023_101978 crossref_primary_10_1136_jitc_2020_000529 crossref_primary_10_1007_s10555_021_09987_x crossref_primary_10_3389_fimmu_2018_00586 crossref_primary_10_1002_jpen_2259 crossref_primary_10_1016_j_pharmthera_2020_107670 crossref_primary_10_1021_acs_nanolett_2c00478 |
Cites_doi | 10.1002/eji.201040801 10.1038/cdd.2016.11 10.1038/onc.2012.77 10.1038/jid.2014.18 10.1038/nature13479 10.1038/bjc.2015.146 10.1038/mt.2010.127 10.1038/bjc.1977.159 10.1084/jem.20050915 10.4049/jimmunol.174.6.3727 10.1002/jcp.21832 10.1080/2162402X.2015.1008866 10.1002/path.2792 10.1177/1358863X13503695 10.4049/jimmunol.0903526 10.4049/jimmunol.163.4.1730 10.1016/j.bbcan.2009.08.003 10.1016/j.cub.2015.01.040 10.1186/s12967-015-0757-9 10.1038/nature11042 10.1038/emboj.2011.497 10.1038/nature08541 10.1038/onc.2009.356 10.1016/j.addr.2014.03.004 10.1158/0008-5472.CAN-03-1518 10.1038/nrd.2016.39 10.3109/08916934.2012.754433 10.1038/nm.2385 10.1016/j.cell.2010.03.014 10.1158/1535-7163.MCT-10-0258 10.4049/jimmunol.1100225 10.1038/nrc2809 10.2337/db14-0256 10.2147/OTT.S60114 10.1096/fj.201500155R 10.1152/ajpcell.00024.2014 10.1172/JCI62423 10.1016/S0024-3205(97)00375-5 10.1016/j.prostaglandins.2011.08.004 10.1084/jem.187.4.601 10.1084/jem.20040327 10.1172/JCI58128 10.1016/0014-2964(79)90130-0 10.1073/pnas.1700455114 10.1038/1781391a0 10.1074/jbc.M609212200 10.1093/cvr/cvv037 10.1186/1476-4598-12-24 10.1016/j.immuni.2007.11.011 10.1016/0092-8674(94)90200-3 10.1016/0165-2478(94)00149-9 10.1084/jem.165.1.14 10.1038/sj.bjc.6604059 10.1126/scitranslmed.aan0026 10.4049/jimmunol.163.3.1398 10.1038/nm0295-149 10.1097/01.cej.0000198896.02185.68 10.1016/j.canlet.2016.02.052 10.1038/sj.bjc.6603240 10.3892/ol.2015.2977 10.1084/jem.20150225 10.1148/radiol.2511072175 10.1038/nm0711-780 10.1038/nm1622 10.1186/s13048-015-0141-7 10.1158/1078-0432.CCR-09-1499 10.1007/978-3-319-39406-0_3 10.3109/15476910903204058 10.4049/jimmunol.174.6.3220 10.1371/journal.pbio.1000412 10.1158/0008-5472.CAN-14-0067 10.1038/nature06307 10.1084/jem.20020760 10.1038/oncsis.2016.90 10.1054/bjoc.1999.0928 10.1038/nrc.2016.58 10.1038/nm0598-581 10.1073/pnas.0910929107 10.1186/1472-6890-13-24 10.1038/nm1523 10.1016/j.ultrasmedbio.2009.12.004 10.1186/s13058-016-0708-2 10.4049/jimmunol.178.6.3912 10.1038/nm786 10.1038/nbt0714-604 10.1016/j.cub.2014.12.059 10.1073/pnas.0907342107 10.1083/jcb.8.1.165 10.1002/1097-0142(20010201)91:3<578::AID-CNCR1037>3.0.CO;2-W 10.4049/jimmunol.1103688 10.1038/nature07205 10.1016/S0140-6736(12)60209-8 10.1038/bjc.1960.15 10.1073/pnas.1602023113 |
ContentType | Journal Article |
Copyright | 2018 Sulciner et al. Copyright Rockefeller University Press Jan 2, 2018 2018 Sulciner et al. 2018 |
Copyright_xml | – notice: 2018 Sulciner et al. – notice: Copyright Rockefeller University Press Jan 2, 2018 – notice: 2018 Sulciner et al. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1084/jem.20170681 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Resolvins mediate clearance of tumor cell debris |
EISSN | 1540-9538 |
EndPage | 140 |
ExternalDocumentID | PMC5748851 29191914 10_1084_jem_20170681 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P01 GM095467 – fundername: Wellcome Trust grantid: 086867/Z/08 – fundername: Wellcome Trust – fundername: NCI NIH HHS grantid: R01 CA169354 – fundername: NIAID NIH HHS grantid: R01 AI079320 – fundername: NCI NIH HHS grantid: R01 CA170549 – fundername: ; – fundername: ; grantid: CA169354 – fundername: ; grantid: RO1 01CA170549-02; ROCA148633-01A4; GM095467 – fundername: ; grantid: R01 AI079320 – fundername: ; grantid: 086867/Z/08 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c478t-9695ff9d0d102256e2a0beb4bb5b4abc98e834151374b12865e697c10dbef33e3 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 18:13:53 EDT 2025 Fri Jul 11 06:12:40 EDT 2025 Mon Jun 30 16:41:25 EDT 2025 Mon Jul 21 05:57:44 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Tue Jul 01 00:41:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2018 Sulciner et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c478t-9695ff9d0d102256e2a0beb4bb5b4abc98e834151374b12865e697c10dbef33e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 M.L. Sulciner, C.N. Serhan, M.M. Gilligan, D.K. Mudge, M.W. Kieran, S. Huang, and D. Panigrahy contributed equally to this paper. |
ORCID | 0000-0003-4627-8545 0000-0003-2184-7692 0000-0002-7342-9858 0000-0003-2068-3331 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5748851 |
PMID | 29191914 |
PQID | 2006899598 |
PQPubID | 2046203 |
PageCount | 26 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748851 proquest_miscellaneous_1971635959 proquest_journals_2006899598 pubmed_primary_29191914 crossref_citationtrail_10_1084_jem_20170681 crossref_primary_10_1084_jem_20170681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180102 |
PublicationDateYYYYMMDD | 2018-01-02 |
PublicationDate_xml | – month: 1 year: 2018 text: 20180102 day: 2 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2018 |
Publisher | Rockefeller University Press The Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
References | Huang (2024012320465091400_bib44) 2011; 17 Mochizuki (2024012320465091400_bib62) 2003; 44 Volk-Draper (2024012320465091400_bib95) 2014; 74 Schif-Zuck (2024012320465091400_bib80) 2011; 41 Gregory (2024012320465091400_bib36) 2011; 223 Chiang (2024012320465091400_bib13) 2012; 484 Naresh (2024012320465091400_bib63) 2001; 91 Chang (2024012320465091400_bib11) 2017; 114 Chiang (2024012320465091400_bib14) 2015; 212 Pol (2024012320465091400_bib73) 2015; 4 Wang (2024012320465091400_bib97) 2010; 10 Spite (2024012320465091400_bib85) 2009; 461 Kindy (2024012320465091400_bib49) 2016; 14 Seelig (2024012320465091400_bib81) 1960; 14 Elajami (2024012320465091400_bib26) 2016; 30 Connell (2024012320465091400_bib16) 2011; 17 Drochmans (2024012320465091400_bib23) 1960; 8 Perretti (2024012320465091400_bib71) 2002; 8 Reiter (2024012320465091400_bib77) 1999; 163 Stuart (2024012320465091400_bib87) 2005; 174 Holmgren (2024012320465091400_bib42) 1995; 1 Garg (2024012320465091400_bib31) 2010; 1805 Chan (2024012320465091400_bib10) 2012; 122 Wyllie (2024012320465091400_bib99) 1985; 5 Yu (2024012320465091400_bib100) 2016; 375 Sun (2024012320465091400_bib88) 2006; 15 Deng (2024012320465091400_bib20) 2010; 36 Dufton (2024012320465091400_bib25) 2010; 184 Gough (2024012320465091400_bib33) 2001; 61 Ormerod (2024012320465091400_bib67) 1986; 46 Fullerton (2024012320465091400_bib29) 2016; 15 Lu (2024012320465091400_bib57) 1998; 187 He (2024012320465091400_bib41) 2009; 15 de Ruiter (2024012320465091400_bib21) 1979; 15 Greene (2024012320465091400_bib35) 2011; 96 Kornbluth (2024012320465091400_bib52) 1994; 43 Maderna (2024012320465091400_bib58) 2005; 174 Obeid (2024012320465091400_bib66) 2007; 13 Ichim (2024012320465091400_bib45) 2016; 16 Gray (2024012320465091400_bib34) 2016; 18 Poth (2024012320465091400_bib74) 2010; 9 Mantovani (2024012320465091400_bib59) 2008; 454 Arita (2024012320465091400_bib5) 2007; 178 O’Reilly (2024012320465091400_bib65) 1994; 79 Abubaker (2024012320465091400_bib1) 2013; 12 da Silva-Jr (2024012320465091400_bib17) 2017; 6 Gao (2024012320465091400_bib30) 2013; 190 Hosseini (2024012320465091400_bib43) 2015; 106 Sun (2024012320465091400_bib89) 2007; 282 Unga (2024012320465091400_bib93) 2014; 72 DeFrancesco (2024012320465091400_bib18) 2014; 32 Rothwell (2024012320465091400_bib79) 2012; 379 Liu (2024012320465091400_bib56) 2010; 18 Dromi (2024012320465091400_bib24) 2009; 251 Ley (2024012320465091400_bib55) 2013; 32 Panigrahy (2024012320465091400_bib69) 2012; 122 Gunjal (2024012320465091400_bib39) 2015; 8 Stienstra (2024012320465091400_bib86) 2014; 63 Titos (2024012320465091400_bib91) 2011; 187 Grenon (2024012320465091400_bib38) 2013; 18 Vyas (2024012320465091400_bib96) 2014; 7 Garg (2024012320465091400_bib32) 2012; 31 Lauber (2024012320465091400_bib54) 2015; 25 Casares (2024012320465091400_bib9) 2005; 202 Apetoh (2024012320465091400_bib4) 2007; 13 Melcher (2024012320465091400_bib60) 1998; 4 Niwa (2024012320465091400_bib64) 1997; 61 Zeisberger (2024012320465091400_bib101) 2006; 95 Donato (2024012320465091400_bib22) 2014; 134 Chaurio (2024012320465091400_bib12) 2013; 46 Qian (2024012320465091400_bib75) 2010; 141 Reers (2024012320465091400_bib76) 2013; 33 Todryk (2024012320465091400_bib92) 1999; 163 Karagiannis (2024012320465091400_bib47) 2017 Alcaide (2024012320465091400_bib3) 2013; 13 Wong (2024012320465091400_bib98) 2010; 107 Ford (2024012320465091400_bib27) 2015; 25 Bondanza (2024012320465091400_bib8) 2004; 200 Kobayashi (2024012320465091400_bib50) 2007; 27 van den Brenk (2024012320465091400_bib94) 1977; 36 Gregory (2024012320465091400_bib37) 2016; 930 Kilkenny (2024012320465091400_bib48) 2010; 8 Akazawa (2024012320465091400_bib2) 2004; 64 Shan (2024012320465091400_bib84) 2015; 9 Colas (2024012320465091400_bib15) 2014; 307 Révész (2024012320465091400_bib78) 1956; 178 Orr (2024012320465091400_bib68) 1986; 46 Serhan (2024012320465091400_bib82) 2014; 510 Serhan (2024012320465091400_bib83) 2002; 196 Krishnamoorthy (2024012320465091400_bib53) 2010; 107 Frey (2024012320465091400_bib28) 2009; 6 Benton (2024012320465091400_bib6) 2009; 221 de Jong (2024012320465091400_bib19) 2000; 82 Hangai (2024012320465091400_bib40) 2016; 113 Korbelik (2024012320465091400_bib51) 2007; 97 Tesniere (2024012320465091400_bib90) 2010; 29 Pisco (2024012320465091400_bib72) 2015; 112 Birge (2024012320465091400_bib7) 2016; 23 Miyanishi (2024012320465091400_bib61) 2007; 450 Jalalinadoushan (2024012320465091400_bib46) 2004; 1 Parhar (2024012320465091400_bib70) 1987; 165 29263217 - J Exp Med. 2018 Jan 2;215(1):9-11 |
References_xml | – volume: 41 start-page: 366 year: 2011 ident: 2024012320465091400_bib80 article-title: Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids publication-title: Eur. J. Immunol. doi: 10.1002/eji.201040801 – volume: 23 start-page: 962 year: 2016 ident: 2024012320465091400_bib7 article-title: Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer publication-title: Cell Death Differ. doi: 10.1038/cdd.2016.11 – volume: 44 start-page: 92 year: 2003 ident: 2024012320465091400_bib62 article-title: Detection of apoptotic tumor response in vivo after a single dose of chemotherapy with 99mTc-annexin V publication-title: J. Nucl. Med. – volume: 32 start-page: 631 year: 2013 ident: 2024012320465091400_bib55 article-title: The role of TRKA signaling in IL-10 production by apoptotic tumor cell- activated macrophages publication-title: Oncogene. doi: 10.1038/onc.2012.77 – volume: 134 start-page: 1686 year: 2014 ident: 2024012320465091400_bib22 article-title: Caspase 3 promotes surviving melanoma tumor cell growth after cytotoxic therapy publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2014.18 – volume: 510 start-page: 92 year: 2014 ident: 2024012320465091400_bib82 article-title: Pro-resolving lipid mediators are leads for resolution physiology publication-title: Nature. doi: 10.1038/nature13479 – volume: 112 start-page: 1725 year: 2015 ident: 2024012320465091400_bib72 article-title: Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘What does not kill me strengthens me’ publication-title: Br. J. Cancer. doi: 10.1038/bjc.2015.146 – volume: 5 start-page: 131 year: 1985 ident: 2024012320465091400_bib99 article-title: The biology of cell death in tumours publication-title: Anticancer Res. – volume: 18 start-page: 1724 year: 2010 ident: 2024012320465091400_bib56 article-title: Statistical issues in longitudinal data analysis for treatment efficacy studies in the biomedical sciences publication-title: Mol. Ther. doi: 10.1038/mt.2010.127 – volume: 36 start-page: 94 year: 1977 ident: 2024012320465091400_bib94 article-title: Reactions of the tumour bed to lethally irradiated tumour cells, and the Révész effect publication-title: Br. J. Cancer. doi: 10.1038/bjc.1977.159 – volume: 202 start-page: 1691 year: 2005 ident: 2024012320465091400_bib9 article-title: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death publication-title: J. Exp. Med. doi: 10.1084/jem.20050915 – volume: 174 start-page: 3727 year: 2005 ident: 2024012320465091400_bib58 article-title: Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac(2-26) publication-title: J. Immunol. doi: 10.4049/jimmunol.174.6.3727 – volume: 221 start-page: 18 year: 2009 ident: 2024012320465091400_bib6 article-title: Advancing science and technology via 3D culture on basement membrane matrix publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21832 – volume: 4 start-page: e1008866 year: 2015 ident: 2024012320465091400_bib73 article-title: Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy publication-title: OncoImmunology. doi: 10.1080/2162402X.2015.1008866 – volume: 223 start-page: 177 year: 2011 ident: 2024012320465091400_bib36 article-title: Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues publication-title: J. Pathol. doi: 10.1002/path.2792 – volume: 18 start-page: 263 year: 2013 ident: 2024012320465091400_bib38 article-title: n-3 Polyunsaturated fatty acids supplementation in peripheral artery disease: the OMEGA-PAD trial publication-title: Vasc. Med. doi: 10.1177/1358863X13503695 – volume: 184 start-page: 2611 year: 2010 ident: 2024012320465091400_bib25 article-title: Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation publication-title: J. Immunol. doi: 10.4049/jimmunol.0903526 – volume: 163 start-page: 1730 year: 1999 ident: 2024012320465091400_bib77 article-title: Cutting edge: differential effect of apoptotic versus necrotic tumor cells on macrophage antitumor activities publication-title: J. Immunol. doi: 10.4049/jimmunol.163.4.1730 – volume: 1805 start-page: 53 year: 2010 ident: 2024012320465091400_bib31 article-title: Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation publication-title: Biochim. Biophys. Acta. doi: 10.1016/j.bbcan.2009.08.003 – volume: 25 start-page: R198 year: 2015 ident: 2024012320465091400_bib54 article-title: Tumor biology: with a little help from my dying friends publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.01.040 – volume: 14 start-page: 1 year: 2016 ident: 2024012320465091400_bib49 article-title: A therapeutic cancer vaccine against GL261 murine glioma publication-title: J. Transl. Med. doi: 10.1186/s12967-015-0757-9 – volume: 484 start-page: 524 year: 2012 ident: 2024012320465091400_bib13 article-title: Infection regulates pro-resolving mediators that lower antibiotic requirements publication-title: Nature. doi: 10.1038/nature11042 – volume: 31 start-page: 1062 year: 2012 ident: 2024012320465091400_bib32 article-title: A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death publication-title: EMBO J. doi: 10.1038/emboj.2011.497 – volume: 461 start-page: 1287 year: 2009 ident: 2024012320465091400_bib85 article-title: Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis publication-title: Nature. doi: 10.1038/nature08541 – volume: 29 start-page: 482 year: 2010 ident: 2024012320465091400_bib90 article-title: Immunogenic death of colon cancer cells treated with oxaliplatin publication-title: Oncogene. doi: 10.1038/onc.2009.356 – volume: 72 start-page: 144 year: 2014 ident: 2024012320465091400_bib93 article-title: Ultrasound induced cancer immunotherapy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2014.03.004 – volume: 64 start-page: 757 year: 2004 ident: 2024012320465091400_bib2 article-title: Adjuvant-mediated tumor regression and tumor-specific cytotoxic response are impaired in MyD88-deficient mice publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-1518 – volume: 15 start-page: 551 year: 2016 ident: 2024012320465091400_bib29 article-title: Resolution of inflammation: a new therapeutic frontier publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.39 – volume: 46 start-page: 317 year: 2013 ident: 2024012320465091400_bib12 article-title: UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice publication-title: Autoimmunity. doi: 10.3109/08916934.2012.754433 – volume: 17 start-page: 860 year: 2011 ident: 2024012320465091400_bib44 article-title: Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy publication-title: Nat. Med. doi: 10.1038/nm.2385 – volume: 141 start-page: 39 year: 2010 ident: 2024012320465091400_bib75 article-title: Macrophage diversity enhances tumor progression and metastasis publication-title: Cell. doi: 10.1016/j.cell.2010.03.014 – volume: 9 start-page: 2430 year: 2010 ident: 2024012320465091400_bib74 article-title: Cisplatin treatment induces a transient increase in tumorigenic potential associated with high interleukin-6 expression in head and neck squamous cell carcinoma publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-10-0258 – volume: 187 start-page: 5408 year: 2011 ident: 2024012320465091400_bib91 article-title: Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype publication-title: J. Immunol. doi: 10.4049/jimmunol.1100225 – volume: 61 start-page: 7240 year: 2001 ident: 2024012320465091400_bib33 article-title: Macrophages orchestrate the immune response to tumor cell death publication-title: Cancer Res. – volume: 10 start-page: 181 year: 2010 ident: 2024012320465091400_bib97 article-title: Eicosanoids and cancer publication-title: Nat. Rev. Cancer. doi: 10.1038/nrc2809 – volume: 63 start-page: 4143 year: 2014 ident: 2024012320465091400_bib86 article-title: Mannose-binding lectin is required for the effective clearance of apoptotic cells by adipose tissue macrophages during obesity publication-title: Diabetes. doi: 10.2337/db14-0256 – volume: 7 start-page: 1015 year: 2014 ident: 2024012320465091400_bib96 article-title: Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis publication-title: Onco Targets Ther. doi: 10.2147/OTT.S60114 – volume: 30 start-page: 2792 year: 2016 ident: 2024012320465091400_bib26 article-title: Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling publication-title: FASEB J. doi: 10.1096/fj.201500155R – volume: 307 start-page: C39 year: 2014 ident: 2024012320465091400_bib15 article-title: Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00024.2014 – volume: 122 start-page: 2711 year: 2012 ident: 2024012320465091400_bib10 article-title: Alarmins: awaiting a clinical response publication-title: J. Clin. Invest. doi: 10.1172/JCI62423 – volume: 61 start-page: 205 year: 1997 ident: 2024012320465091400_bib64 article-title: Comparison of susceptibility to apoptosis induced by rhTNF-alpha and cycloheximide between human circulating and exudated neutrophils publication-title: Life Sci. doi: 10.1016/S0024-3205(97)00375-5 – volume: 96 start-page: 27 year: 2011 ident: 2024012320465091400_bib35 article-title: Regulation of inflammation in cancer by eicosanoids publication-title: Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2011.08.004 – volume: 187 start-page: 601 year: 1998 ident: 2024012320465091400_bib57 article-title: Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice publication-title: J. Exp. Med. doi: 10.1084/jem.187.4.601 – volume: 200 start-page: 1157 year: 2004 ident: 2024012320465091400_bib8 article-title: Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.20040327 – volume: 122 start-page: 178 year: 2012 ident: 2024012320465091400_bib69 article-title: Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI58128 – volume: 15 start-page: 1139 year: 1979 ident: 2024012320465091400_bib21 article-title: The facilitation of tumour growth in the lung by cyclophosphamide in artificial and spontaneous metastases models publication-title: Eur. J. Cancer. doi: 10.1016/0014-2964(79)90130-0 – volume: 114 start-page: E7159 year: 2017 ident: 2024012320465091400_bib11 article-title: Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1700455114 – volume: 178 start-page: 1391 year: 1956 ident: 2024012320465091400_bib78 article-title: Effect of tumour cells killed by x-rays upon the growth of admixed viable cells publication-title: Nature. doi: 10.1038/1781391a0 – volume: 282 start-page: 9323 year: 2007 ident: 2024012320465091400_bib89 article-title: Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M609212200 – volume: 106 start-page: 443 year: 2015 ident: 2024012320465091400_bib43 article-title: Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvv037 – volume: 12 start-page: 24 year: 2013 ident: 2024012320465091400_bib1 article-title: Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden publication-title: Mol. Cancer. doi: 10.1186/1476-4598-12-24 – volume: 27 start-page: 927 year: 2007 ident: 2024012320465091400_bib50 article-title: TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells publication-title: Immunity. doi: 10.1016/j.immuni.2007.11.011 – volume: 79 start-page: 315 year: 1994 ident: 2024012320465091400_bib65 article-title: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma publication-title: Cell. doi: 10.1016/0092-8674(94)90200-3 – volume: 43 start-page: 125 year: 1994 ident: 2024012320465091400_bib52 article-title: The immunological potential of apoptotic debris produced by tumor cells and during HIV infection publication-title: Immunol. Lett. doi: 10.1016/0165-2478(94)00149-9 – volume: 165 start-page: 14 year: 1987 ident: 2024012320465091400_bib70 article-title: Amelioration of B16F10 melanoma lung metastasis in mice by a combination therapy with indomethacin and interleukin 2 publication-title: J. Exp. Med. doi: 10.1084/jem.165.1.14 – volume: 97 start-page: 1381 year: 2007 ident: 2024012320465091400_bib51 article-title: Photodynamic therapy-generated vaccines: relevance of tumour cell death expression publication-title: Br. J. Cancer. doi: 10.1038/sj.bjc.6604059 – year: 2017 ident: 2024012320465091400_bib47 article-title: Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan0026 – volume: 163 start-page: 1398 year: 1999 ident: 2024012320465091400_bib92 article-title: Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake publication-title: J. Immunol. doi: 10.4049/jimmunol.163.3.1398 – volume: 1 start-page: 149 year: 1995 ident: 2024012320465091400_bib42 article-title: Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression publication-title: Nat. Med. doi: 10.1038/nm0295-149 – volume: 15 start-page: 258 year: 2006 ident: 2024012320465091400_bib88 article-title: Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma publication-title: Eur. J. Cancer Prev. doi: 10.1097/01.cej.0000198896.02185.68 – volume: 375 start-page: 31 year: 2016 ident: 2024012320465091400_bib100 article-title: eIF4E-phosphorylation-mediated Sox2 upregulation promotes pancreatic tumor cell repopulation after irradiation publication-title: Cancer Lett. doi: 10.1016/j.canlet.2016.02.052 – volume: 95 start-page: 272 year: 2006 ident: 2024012320465091400_bib101 article-title: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach publication-title: Br. J. Cancer. doi: 10.1038/sj.bjc.6603240 – volume: 9 start-page: 1549 year: 2015 ident: 2024012320465091400_bib84 article-title: Cytokine-induced killer cells co-cultured with dendritic cells loaded with the protein lysate produced by radiofrequency ablation induce a specific antitumor response publication-title: Oncol. Lett. doi: 10.3892/ol.2015.2977 – volume: 212 start-page: 1203 year: 2015 ident: 2024012320465091400_bib14 article-title: Identification of resolvin D2 receptor mediating resolution of infections and organ protection publication-title: J. Exp. Med. doi: 10.1084/jem.20150225 – volume: 251 start-page: 58 year: 2009 ident: 2024012320465091400_bib24 article-title: Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity publication-title: Radiology. doi: 10.1148/radiol.2511072175 – volume: 17 start-page: 780 year: 2011 ident: 2024012320465091400_bib16 article-title: A downside to apoptosis in cancer therapy? publication-title: Nat. Med. doi: 10.1038/nm0711-780 – volume: 13 start-page: 1050 year: 2007 ident: 2024012320465091400_bib4 article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy publication-title: Nat. Med. doi: 10.1038/nm1622 – volume: 8 start-page: 20 year: 2015 ident: 2024012320465091400_bib39 article-title: Evidence for induction of a tumor metastasis-receptive microenvironment for ovarian cancer cells in bone marrow and other organs as an unwanted and underestimated side effect of chemotherapy/radiotherapy publication-title: J. Ovarian Res. doi: 10.1186/s13048-015-0141-7 – volume: 15 start-page: 6871 year: 2009 ident: 2024012320465091400_bib41 article-title: Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-09-1499 – volume: 930 start-page: 51 year: 2016 ident: 2024012320465091400_bib37 article-title: Microenvironmental Effects of Cell Death in Malignant Disease publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-39406-0_3 – volume: 6 start-page: 209 year: 2009 ident: 2024012320465091400_bib28 article-title: AnnexinA5 renders dead tumor cells immunogenic--implications for multimodal cancer therapies publication-title: J. Immunotoxicol. doi: 10.3109/15476910903204058 – volume: 174 start-page: 3220 year: 2005 ident: 2024012320465091400_bib87 article-title: Mannose-binding lectin-deficient mice display defective apoptotic cell clearance but no autoimmune phenotype publication-title: J. Immunol. doi: 10.4049/jimmunol.174.6.3220 – volume: 8 start-page: e1000412 year: 2010 ident: 2024012320465091400_bib48 article-title: Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000412 – volume: 74 start-page: 5421 year: 2014 ident: 2024012320465091400_bib95 article-title: Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0067 – volume: 450 start-page: 435 year: 2007 ident: 2024012320465091400_bib61 article-title: Identification of Tim4 as a phosphatidylserine receptor publication-title: Nature. doi: 10.1038/nature06307 – volume: 196 start-page: 1025 year: 2002 ident: 2024012320465091400_bib83 article-title: Resolvins publication-title: J. Exp. Med. doi: 10.1084/jem.20020760 – volume: 6 start-page: e296 year: 2017 ident: 2024012320465091400_bib17 article-title: Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy publication-title: Oncogenesis. doi: 10.1038/oncsis.2016.90 – volume: 82 start-page: 368 year: 2000 ident: 2024012320465091400_bib19 article-title: Number of apoptotic cells as a prognostic marker in invasive breast cancer publication-title: Br. J. Cancer. doi: 10.1054/bjoc.1999.0928 – volume: 16 start-page: 539 year: 2016 ident: 2024012320465091400_bib45 article-title: A fate worse than death: apoptosis as an oncogenic process publication-title: Nat. Rev. Cancer. doi: 10.1038/nrc.2016.58 – volume: 4 start-page: 581 year: 1998 ident: 2024012320465091400_bib60 article-title: Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression publication-title: Nat. Med. doi: 10.1038/nm0598-581 – volume: 107 start-page: 8712 year: 2010 ident: 2024012320465091400_bib98 article-title: Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0910929107 – volume: 13 start-page: 24 year: 2013 ident: 2024012320465091400_bib3 article-title: The role and prognostic value of apoptosis in colorectal carcinoma publication-title: BMC Clin. Pathol. doi: 10.1186/1472-6890-13-24 – volume: 13 start-page: 54 year: 2007 ident: 2024012320465091400_bib66 article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death publication-title: Nat. Med. doi: 10.1038/nm1523 – volume: 46 start-page: 891 year: 1986 ident: 2024012320465091400_bib68 article-title: Promotion of pulmonary metastasis in mice by bleomycin-induced endothelial injury publication-title: Cancer Res. – volume: 36 start-page: 441 year: 2010 ident: 2024012320465091400_bib20 article-title: Dendritic cells loaded with ultrasound-ablated tumour induce in vivo specific antitumour immune responses publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2009.12.004 – volume: 18 start-page: 50 year: 2016 ident: 2024012320465091400_bib34 article-title: Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers publication-title: Breast Cancer Res. doi: 10.1186/s13058-016-0708-2 – volume: 178 start-page: 3912 year: 2007 ident: 2024012320465091400_bib5 article-title: Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation publication-title: J. Immunol. doi: 10.4049/jimmunol.178.6.3912 – volume: 46 start-page: 884 year: 1986 ident: 2024012320465091400_bib67 article-title: Enhanced experimental metastatic capacity of a human tumor line following treatment with 5-azacytidine publication-title: Cancer Res. – volume: 8 start-page: 1296 year: 2002 ident: 2024012320465091400_bib71 article-title: Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor publication-title: Nat. Med. doi: 10.1038/nm786 – volume: 1 start-page: 177 year: 2004 ident: 2024012320465091400_bib46 article-title: Correlation between Apoptosis and Histological Grade of Transitional Cell Carcinoma of Urinary Bladder publication-title: Urol. J. – volume: 32 start-page: 604 year: 2014 ident: 2024012320465091400_bib18 article-title: CAR-T cell therapy seeks strategies to harness cytokine storm publication-title: Nat. Biotechnol. doi: 10.1038/nbt0714-604 – volume: 25 start-page: 577 year: 2015 ident: 2024012320465091400_bib27 article-title: Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.12.059 – volume: 107 start-page: 1660 year: 2010 ident: 2024012320465091400_bib53 article-title: Resolvin D1 binds human phagocytes with evidence for proresolving receptors publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0907342107 – volume: 8 start-page: 165 year: 1960 ident: 2024012320465091400_bib23 article-title: Electron microscope studies of epidermal melanocytes, and the fine structure of melanin granules publication-title: J. Biophys. Biochem. Cytol. doi: 10.1083/jcb.8.1.165 – volume: 91 start-page: 578 year: 2001 ident: 2024012320465091400_bib63 article-title: Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue publication-title: Cancer. doi: 10.1002/1097-0142(20010201)91:3<578::AID-CNCR1037>3.0.CO;2-W – volume: 33 start-page: 2481 year: 2013 ident: 2024012320465091400_bib76 article-title: Cytokine changes in response to radio-/chemotherapeutic treatment in head and neck cancer publication-title: Anticancer Res. – volume: 190 start-page: 689 year: 2013 ident: 2024012320465091400_bib30 article-title: Resolvin E1 and chemokine-like receptor 1 mediate bone preservation publication-title: J. Immunol. doi: 10.4049/jimmunol.1103688 – volume: 454 start-page: 436 year: 2008 ident: 2024012320465091400_bib59 article-title: Cancer-related inflammation publication-title: Nature. doi: 10.1038/nature07205 – volume: 379 start-page: 1591 year: 2012 ident: 2024012320465091400_bib79 article-title: Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials publication-title: Lancet. doi: 10.1016/S0140-6736(12)60209-8 – volume: 14 start-page: 126 year: 1960 ident: 2024012320465091400_bib81 article-title: Effect of lethally damaged tumour cells upon the growth of admixed viable cells in diffusion chambers publication-title: Br. J. Cancer. doi: 10.1038/bjc.1960.15 – volume: 113 start-page: 3844 year: 2016 ident: 2024012320465091400_bib40 article-title: PGE2 induced in and released by dying cells functions as an inhibitory DAMP publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1602023113 – reference: 29263217 - J Exp Med. 2018 Jan 2;215(1):9-11 |
SSID | ssj0014456 |
Score | 2.6226928 |
Snippet | Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 115 |
SubjectTerms | Animals Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Cancer Cancer therapies Carbon tetrachloride CCL4 protein Cell Line, Tumor Cell Proliferation Chemokines Chemotherapy Coinjection Cytokines Cytokines - metabolism Cytotoxicity Debris Detritus Disease Models, Animal Docosahexaenoic Acids - pharmacology Humans Inflammation Inflammation Mediators - metabolism Inoculum Interleukin 6 Interleukin 8 Macrophages Macrophages - metabolism Melanoma, Experimental Mice Mice, Knockout Mice, Transgenic Neoplasms - drug therapy Neoplasms - metabolism Neoplasms - pathology Phagocytosis Phosphatidylserine Phosphatidylserines - metabolism Tumor Burden Tumor cells Tumor necrosis factor-α Tumors Xenograft Model Antitumor Assays |
Title | Resolvins suppress tumor growth and enhance cancer therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29191914 https://www.proquest.com/docview/2006899598 https://www.proquest.com/docview/1971635959 https://pubmed.ncbi.nlm.nih.gov/PMC5748851 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviHENbFOQ4KkKxImdC29oFwZbxgOt1LcoTtwWVNKpTZDg13OO7brJNqSBIlmtbTmVv-PT43Ml5HXKeCz9qfBKFggPRGrfK3gReVEZMS5LXsaqTGd2EZ2O2ecJnwwGZx2vpbYRb8vfN8aV_A-q0Ae4YpTsPyBrF4UO-Az4QgsIQ3srjFH3vviJTi7r9lJ5tA6b9sdyNZzB5drErMl6rqICSmyVR6HNIvB9SykdubSX8_-q6f1ru8CvCuZMzrDmrx2Sq3nRNeFvrTwfUakz04MZFrfe6mCz1hR3Pyp-1YVRuhotBE2UFiLoMk7moylY81J5Q5_htoGO3uyRleadVI9c4-l-wpCnS8wbgMl-dImXfursiy_5yfj8PB8dT0Z3yN0A7gxYzuLo05k1KTGmSvnaH2WiIGD1d921-_LJtUvHVd_ZjjAyekgeGLTcD5okdslA1o_IvcyA9Zi8t5ThbijDVZThaspwgTJcQxmupgzXUMYTMj45Hh2eeqZKBhyvOGm8NEr5dJpWfoWXdx7JoPCFFEwILlghyjSRCYgqnIYxExQDkWWUxiX1KyGnYSjDp2SnXtbyOXFRXSB4JOKKwQMoB5SGgqHpncZFUjlkuNmbvDQp5LGSySJXrgwJy2En881OOuSNnX2pU6f8Zd7eZptzc7jWWB01SjAXXuKQV3YYWB_as4paLtt1TjH9GQaWpw55plGxLwpSig9zSNzDy07AtOr9kfrbXKVX5zH8qXH64hbvfUnubw_DHtlpVq3cByG1EQeK-P4AOAST2g |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolvins+suppress+tumor+growth+and+enhance+cancer+therapy&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Sulciner%2C+Megan+L&rft.au=Serhan%2C+Charles+N&rft.au=Gilligan%2C+Molly+M&rft.au=Mudge%2C+Dayna+K&rft.date=2018-01-02&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=215&rft.issue=1&rft.spage=115&rft_id=info:doi/10.1084%2Fjem.20170681&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |