NRF2, a Transcription Factor for Stress Response and Beyond
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carc...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 13; p. 4777 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
06.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity. |
---|---|
AbstractList | Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell's response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell's response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity. |
Author | Ru, Xiaoli Wen, Tao He, Feng |
AuthorAffiliation | 2 Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; 18801350216@163.com 1 Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA 3 Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China |
AuthorAffiliation_xml | – name: 2 Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; 18801350216@163.com – name: 3 Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China – name: 1 Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA |
Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0003-0276-3303 surname: He fullname: He, Feng – sequence: 2 givenname: Xiaoli surname: Ru fullname: Ru, Xiaoli – sequence: 3 givenname: Tao orcidid: 0000-0003-0675-0163 surname: Wen fullname: Wen, Tao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32640524$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFLwzAYxYMobk5vnqXgxYPT9EvaNAiCilNBFOY8hzRNNaNLZtIK_vdmbsoUDyGB75fH-97bQZvWWY3QfopPCOH41ExnAdKUUMbYBuqnFGCIcc421949tBPCFGMgkPFt1COQU5wB7aOzh_EIjhOZTLy0QXkzb42zyUiq1vmkjuep9TqEZKzD3NmgE2mr5FJ_OFvtoq1aNkHvre4Beh5dT65uh_ePN3dXF_dDRVnRDosilXVZZAApqwAYlZLXKtOEV7ogdXRSZalitJS5LjkDwiRwSbMKVFlmqiYDdL7UnXflTFdK29bLRsy9mUn_IZw04vfEmlfx4t4FIznnOIsCRysB7946HVoxM0HpppFWuy4IiDlhzGOGET38g05d521c74uiecEwj9TBuqMfK9-5RuB4CSjvQvC6_kFSLBa1ifXaIg5_cGVauWgi7mOa_z99Ai1_mhU |
CitedBy_id | crossref_primary_10_1007_s13273_022_00322_1 crossref_primary_10_1016_j_intimp_2024_112527 crossref_primary_10_1016_j_micpath_2023_106339 crossref_primary_10_1016_j_jpha_2024_101145 crossref_primary_10_1007_s11130_024_01249_9 crossref_primary_10_3390_antiox10111762 crossref_primary_10_3390_ijms24076804 crossref_primary_10_1007_s13577_023_00959_7 crossref_primary_10_3390_toxins15090555 crossref_primary_10_3390_antiox11081430 crossref_primary_10_1186_s12864_024_10967_y crossref_primary_10_1016_j_foodchem_2022_135230 crossref_primary_10_31857_S0026898423060071 crossref_primary_10_1016_j_jep_2024_118582 crossref_primary_10_1111_anu_13372 crossref_primary_10_1016_j_abb_2023_109601 crossref_primary_10_1007_s13273_023_00419_1 crossref_primary_10_1002_fsn3_4404 crossref_primary_10_1007_s12035_024_04097_5 crossref_primary_10_2147_JIR_S490418 crossref_primary_10_1016_j_cellsig_2025_111609 crossref_primary_10_1124_dmd_124_001282 crossref_primary_10_1016_j_xcrm_2024_101690 crossref_primary_10_1159_000538832 crossref_primary_10_3390_antiox11081426 crossref_primary_10_3390_nu16172838 crossref_primary_10_1007_s11418_022_01664_9 crossref_primary_10_1002_2211_5463_13732 crossref_primary_10_1016_j_taap_2024_117113 crossref_primary_10_1038_s41420_023_01565_0 crossref_primary_10_2147_CCID_S449987 crossref_primary_10_3390_ijms24010199 crossref_primary_10_1007_s10787_022_01016_9 crossref_primary_10_1016_j_psj_2024_103909 crossref_primary_10_3390_ijms22116022 crossref_primary_10_3390_molecules29163852 crossref_primary_10_2147_IJN_S467733 crossref_primary_10_3390_cells12131713 crossref_primary_10_3390_ijms23126719 crossref_primary_10_1016_j_fsi_2022_02_010 crossref_primary_10_1016_j_molimm_2025_02_007 crossref_primary_10_3390_biom13071105 crossref_primary_10_1016_j_ijpharm_2024_124002 crossref_primary_10_1016_j_cbi_2024_111179 crossref_primary_10_3389_fphar_2023_1102567 crossref_primary_10_3390_biomedicines11041081 crossref_primary_10_3390_biom14121594 crossref_primary_10_1016_j_jtcms_2023_12_001 crossref_primary_10_1016_j_fct_2024_114845 crossref_primary_10_1080_10715762_2024_2348789 crossref_primary_10_3390_molecules28145305 crossref_primary_10_3390_nu17010158 crossref_primary_10_3389_fphar_2024_1416781 crossref_primary_10_1016_j_jep_2024_118357 crossref_primary_10_3390_antiox13070813 crossref_primary_10_1016_j_ejphar_2022_174933 crossref_primary_10_3389_fcimb_2022_1022879 crossref_primary_10_1007_s11356_022_22702_9 crossref_primary_10_3390_molecules28145543 crossref_primary_10_3390_cells14010018 crossref_primary_10_3389_fphar_2024_1503064 crossref_primary_10_1039_D4MD00281D crossref_primary_10_1007_s12640_024_00694_3 crossref_primary_10_3390_antiox11071410 crossref_primary_10_3390_antiox12061206 crossref_primary_10_1002_fsn3_4615 crossref_primary_10_1016_j_crtox_2023_100134 crossref_primary_10_3390_antiox13020146 crossref_primary_10_3390_md22120568 crossref_primary_10_1016_j_phymed_2024_155458 crossref_primary_10_3390_cells13040296 crossref_primary_10_3390_ijms25094925 crossref_primary_10_1111_fcp_12926 crossref_primary_10_3389_fendo_2024_1434338 crossref_primary_10_3390_cancers13051095 crossref_primary_10_3390_applmicrobiol3010011 crossref_primary_10_1134_S0006297922120057 crossref_primary_10_1016_j_tox_2024_153760 crossref_primary_10_1007_s11655_024_3657_0 crossref_primary_10_3390_life13061308 crossref_primary_10_1016_j_jes_2024_02_027 crossref_primary_10_1177_10738584221139761 crossref_primary_10_1016_j_ecoenv_2023_114646 crossref_primary_10_1016_j_envres_2024_119113 crossref_primary_10_3390_ijms241914755 crossref_primary_10_1016_j_neuroscience_2024_08_025 crossref_primary_10_3390_ijms222011060 crossref_primary_10_1016_j_jprot_2022_104734 crossref_primary_10_1016_j_ecoenv_2022_114389 crossref_primary_10_1007_s11356_022_20996_3 crossref_primary_10_3389_fphar_2022_807452 crossref_primary_10_1016_j_jhep_2022_01_008 crossref_primary_10_3390_cancers16122262 crossref_primary_10_1007_s11655_022_3620_x crossref_primary_10_4251_wjgo_v16_i11_4436 crossref_primary_10_1016_j_lfs_2023_122343 crossref_primary_10_1002_iid3_70109 crossref_primary_10_1186_s10020_023_00624_7 crossref_primary_10_2220_biomedres_45_197 crossref_primary_10_1007_s00204_023_03660_8 crossref_primary_10_1155_2022_7222590 crossref_primary_10_1016_j_psj_2023_102975 crossref_primary_10_1016_j_biopha_2023_115805 crossref_primary_10_1080_10408398_2023_2294164 crossref_primary_10_1186_s12906_024_04491_5 crossref_primary_10_62347_LWRS3363 crossref_primary_10_1038_s12276_023_00958_6 crossref_primary_10_1016_j_biopha_2023_115807 crossref_primary_10_3390_antiox10122005 crossref_primary_10_1515_medgen_2022_2138 crossref_primary_10_1155_2023_3906043 crossref_primary_10_1002_biof_1931 crossref_primary_10_1016_j_abb_2024_109948 crossref_primary_10_1016_j_yexcr_2024_114388 crossref_primary_10_1007_s11010_023_04876_z crossref_primary_10_1089_jop_2024_0123 crossref_primary_10_1089_ars_2022_0214 crossref_primary_10_3390_cimb45080420 crossref_primary_10_3390_antiox12030766 crossref_primary_10_1016_j_biopha_2024_117280 crossref_primary_10_1038_s41598_021_90148_z crossref_primary_10_1016_j_cbi_2025_111444 crossref_primary_10_1016_j_lfs_2023_122125 crossref_primary_10_3390_nu16040542 crossref_primary_10_1016_j_radonc_2024_110503 crossref_primary_10_20517_cdr_2023_79 crossref_primary_10_3389_fmars_2024_1438955 crossref_primary_10_3390_antiox11102067 crossref_primary_10_1016_j_carbpol_2024_122960 crossref_primary_10_1007_s10266_024_00909_1 crossref_primary_10_3390_biomedicines11051293 crossref_primary_10_3389_fphar_2022_862085 crossref_primary_10_1016_j_ijbiomac_2024_136687 crossref_primary_10_1016_j_arr_2024_102536 crossref_primary_10_1111_jnc_16222 crossref_primary_10_3389_fphys_2022_844539 crossref_primary_10_3390_antiox13030303 crossref_primary_10_3389_fcell_2024_1458716 crossref_primary_10_1016_j_ejmech_2024_116795 crossref_primary_10_1016_j_lfs_2024_123066 crossref_primary_10_1016_j_fct_2023_113850 crossref_primary_10_1016_j_ijbiomac_2024_135109 crossref_primary_10_3390_ijms241814013 crossref_primary_10_2147_IJN_S411562 crossref_primary_10_1007_s00253_022_12041_7 crossref_primary_10_12688_f1000research_158839_1 crossref_primary_10_1093_toxres_tfac076 crossref_primary_10_1016_j_archger_2024_105694 crossref_primary_10_3390_antiox10091430 crossref_primary_10_1007_s00210_024_03170_z crossref_primary_10_61186_rbmb_12_4_512 crossref_primary_10_1021_acsomega_4c06152 crossref_primary_10_3390_pathogens13020104 crossref_primary_10_3390_antiox12020518 crossref_primary_10_1038_s41598_024_71234_4 crossref_primary_10_1016_j_lfs_2024_123056 crossref_primary_10_1038_s41467_023_43513_7 crossref_primary_10_1007_s12012_023_09794_6 crossref_primary_10_3390_antiox10060944 crossref_primary_10_1080_1061186X_2024_2356736 crossref_primary_10_1142_S0192415X24500952 crossref_primary_10_3892_mmr_2024_13401 crossref_primary_10_1016_j_jpap_2024_100227 crossref_primary_10_1080_10715762_2024_2320383 crossref_primary_10_3390_cells12151969 crossref_primary_10_1007_s10068_024_01599_9 crossref_primary_10_1007_s44372_025_00127_1 crossref_primary_10_3389_fphar_2024_1497733 crossref_primary_10_1002_jbt_23689 crossref_primary_10_3390_nano14201647 crossref_primary_10_1016_j_freeradbiomed_2024_04_229 crossref_primary_10_3390_antiox10122028 crossref_primary_10_1016_j_taap_2024_117172 crossref_primary_10_1371_journal_pone_0272928 crossref_primary_10_1080_14728222_2022_2052848 crossref_primary_10_3390_antiox12061290 crossref_primary_10_1016_j_arr_2024_102548 crossref_primary_10_1007_s12192_023_01391_4 crossref_primary_10_1080_00498254_2025_2465239 crossref_primary_10_1007_s00210_024_03400_4 crossref_primary_10_1113_EP091768 crossref_primary_10_1016_j_cbi_2025_111489 crossref_primary_10_1016_j_biocel_2023_106397 crossref_primary_10_1016_j_biopha_2024_117210 crossref_primary_10_3724_abbs_2025026 crossref_primary_10_1186_s40798_022_00450_x crossref_primary_10_1016_j_freeradbiomed_2024_06_008 crossref_primary_10_1007_s11101_024_09955_7 crossref_primary_10_1155_2024_9590066 crossref_primary_10_3390_vetsci11120607 crossref_primary_10_1007_s12026_025_09613_w crossref_primary_10_3390_antiox13111284 crossref_primary_10_3389_fimmu_2021_716661 crossref_primary_10_3389_fmolb_2023_1111511 crossref_primary_10_1016_j_semcancer_2023_12_001 crossref_primary_10_3390_antiox13030344 crossref_primary_10_1016_j_ejmech_2024_116355 crossref_primary_10_3390_antiox13101224 crossref_primary_10_1016_j_bbadis_2025_167764 crossref_primary_10_1007_s12640_024_00726_y crossref_primary_10_1080_14786419_2024_2411725 crossref_primary_10_1038_s41598_023_49310_y crossref_primary_10_1002_pro_5137 crossref_primary_10_1016_j_aninu_2023_12_007 crossref_primary_10_1021_acs_jmedchem_1c01883 crossref_primary_10_1016_j_pharmthera_2021_108009 crossref_primary_10_3746_pnf_2022_27_2_188 crossref_primary_10_1016_j_crfs_2023_100521 crossref_primary_10_1080_00365513_2024_2377966 crossref_primary_10_1016_j_cbpc_2023_109787 crossref_primary_10_1016_j_heliyon_2024_e24619 crossref_primary_10_2147_DDDT_S467569 crossref_primary_10_2147_DDDT_S433591 crossref_primary_10_1016_j_intimp_2024_113478 crossref_primary_10_3724_abbs_2024194 crossref_primary_10_3390_nu13061788 crossref_primary_10_1016_j_intimp_2024_113233 crossref_primary_10_1016_j_intimp_2024_113475 crossref_primary_10_1016_j_freeradbiomed_2022_03_016 crossref_primary_10_2147_VHRM_S294121 crossref_primary_10_1007_s11356_023_27747_y crossref_primary_10_3390_ijms25116148 crossref_primary_10_3390_nu14163392 crossref_primary_10_1080_21688370_2024_2361202 crossref_primary_10_1371_journal_pntd_0011607 crossref_primary_10_1016_j_exer_2024_110105 crossref_primary_10_1007_s11033_023_08392_7 crossref_primary_10_1111_ppl_13771 crossref_primary_10_3389_fimmu_2024_1342977 crossref_primary_10_3390_ijms25073833 crossref_primary_10_3390_antiox11112277 crossref_primary_10_1016_j_jsps_2022_06_026 crossref_primary_10_1016_j_fsi_2023_108547 crossref_primary_10_1016_j_vph_2025_107476 crossref_primary_10_12677_acm_2025_152377 crossref_primary_10_1080_17512433_2021_1901578 crossref_primary_10_1186_s12987_024_00599_5 crossref_primary_10_1016_j_heliyon_2024_e32459 crossref_primary_10_3389_fcvm_2025_1541278 crossref_primary_10_32604_biocell_2023_042472 crossref_primary_10_3390_ijms24097924 crossref_primary_10_3390_nu16121877 crossref_primary_10_1016_j_jep_2022_115759 crossref_primary_10_1016_j_csbj_2024_04_006 crossref_primary_10_3390_ijms241210350 crossref_primary_10_1038_s41598_023_44836_7 crossref_primary_10_3389_fphar_2024_1470879 crossref_primary_10_3390_ph15060692 crossref_primary_10_1016_j_phymed_2024_155814 crossref_primary_10_1016_j_bbrc_2023_08_004 crossref_primary_10_25048_tudod_1517395 crossref_primary_10_3390_antiox14030360 crossref_primary_10_3389_fgene_2021_673002 crossref_primary_10_3390_epigenomes6040036 crossref_primary_10_1007_s12265_021_10197_7 crossref_primary_10_1016_j_toxicon_2023_107313 crossref_primary_10_3390_antiox14030352 crossref_primary_10_1016_j_bbrc_2023_09_045 crossref_primary_10_1038_s41598_023_44814_z crossref_primary_10_1016_j_ejphar_2024_177070 crossref_primary_10_1016_j_lfs_2024_123206 crossref_primary_10_1155_sci5_7932075 crossref_primary_10_1360_SSV_2023_0003 crossref_primary_10_3390_ijms24076017 crossref_primary_10_1096_fj_202400236RR crossref_primary_10_1016_j_foodchem_2023_138234 crossref_primary_10_1177_15330338221105736 crossref_primary_10_1016_j_ijbiomac_2024_134532 crossref_primary_10_1093_burnst_tkac007 crossref_primary_10_3390_ijms252211954 crossref_primary_10_3390_antibiotics12010130 crossref_primary_10_3390_biomedicines9111524 crossref_primary_10_3390_nu16183169 crossref_primary_10_3390_ijms23052846 crossref_primary_10_1038_s41420_024_01863_1 crossref_primary_10_1016_j_intimp_2023_110747 crossref_primary_10_1155_2022_3313016 crossref_primary_10_28996_2618_9801_2024_3_283_302 crossref_primary_10_3389_fendo_2024_1411706 crossref_primary_10_3390_computation11120255 crossref_primary_10_1080_10408398_2022_2107611 crossref_primary_10_3389_fphar_2022_916732 crossref_primary_10_1016_j_scitotenv_2024_172633 crossref_primary_10_3390_ijms24098011 crossref_primary_10_1016_j_jhazmat_2024_134560 crossref_primary_10_3390_ijms24010853 crossref_primary_10_3390_ijms25137042 crossref_primary_10_1016_j_freeradbiomed_2024_07_021 crossref_primary_10_1016_j_freeradbiomed_2024_08_038 crossref_primary_10_1016_j_phytochem_2023_113803 crossref_primary_10_1016_j_ajhg_2021_07_008 crossref_primary_10_1016_j_jbc_2024_108121 crossref_primary_10_3390_ijms24098264 crossref_primary_10_1007_s11101_024_09944_w crossref_primary_10_1158_1535_7163_MCT_24_0170 crossref_primary_10_3390_antiox11061179 crossref_primary_10_1016_j_bbagen_2022_130129 crossref_primary_10_1016_j_preteyeres_2024_101271 crossref_primary_10_3390_cancers13153670 crossref_primary_10_4062_biomolther_2023_179 crossref_primary_10_1038_s41580_024_00730_2 crossref_primary_10_1016_j_fitote_2025_106398 crossref_primary_10_3390_jfmk6030072 crossref_primary_10_3389_fneur_2023_1271941 crossref_primary_10_3390_antiox9121259 crossref_primary_10_1002_jbt_23455 crossref_primary_10_32947_ajps_v21i4_798 crossref_primary_10_1051_bioconf_20248601041 crossref_primary_10_3390_antiox13101193 crossref_primary_10_3390_molecules28010121 crossref_primary_10_1016_j_neuint_2024_105773 crossref_primary_10_2147_JIR_S451643 crossref_primary_10_1016_j_exer_2024_110163 crossref_primary_10_3390_ijms251910385 crossref_primary_10_3389_fimmu_2023_1305933 crossref_primary_10_1016_j_ijbiomac_2025_140221 crossref_primary_10_1016_j_jnutbio_2024_109779 crossref_primary_10_3390_nu13010266 crossref_primary_10_3390_ijms24076053 crossref_primary_10_3389_fphar_2023_1177542 crossref_primary_10_3390_ph16111624 crossref_primary_10_1016_j_phrs_2023_107032 crossref_primary_10_1038_s41380_022_01712_6 crossref_primary_10_1155_2022_7497816 crossref_primary_10_3390_ijms242417223 crossref_primary_10_1007_s11356_022_24361_2 crossref_primary_10_1007_s10565_022_09789_z crossref_primary_10_1016_j_bbrc_2023_149167 crossref_primary_10_1080_13880209_2022_2123941 crossref_primary_10_1016_j_abb_2024_110101 crossref_primary_10_1016_j_heliyon_2024_e27011 crossref_primary_10_3390_v17030347 crossref_primary_10_1016_j_ccell_2025_01_003 crossref_primary_10_1021_acschembio_3c00750 crossref_primary_10_1097_MD_0000000000036157 crossref_primary_10_3389_fnagi_2022_1004557 crossref_primary_10_3389_fncel_2022_946206 crossref_primary_10_3390_ijms241310869 crossref_primary_10_1155_2021_8447456 crossref_primary_10_3389_fnmol_2024_1513084 crossref_primary_10_1111_1753_0407_13524 crossref_primary_10_1016_j_freeradbiomed_2023_10_403 crossref_primary_10_3389_fimmu_2024_1520072 crossref_primary_10_1016_j_fsi_2025_110161 crossref_primary_10_1007_s12012_025_09962_w crossref_primary_10_1016_j_heliyon_2022_e11108 crossref_primary_10_1039_D1FO02361F crossref_primary_10_1134_S0026893323060067 crossref_primary_10_3390_app14083186 crossref_primary_10_1007_s12012_024_09941_7 crossref_primary_10_3389_fendo_2022_963451 crossref_primary_10_1177_0976500X221128855 crossref_primary_10_3748_wjg_v30_i10_1405 crossref_primary_10_3389_fmed_2023_1118703 crossref_primary_10_3390_ijms25063510 crossref_primary_10_1007_s40495_024_00388_6 crossref_primary_10_1016_j_ecoenv_2024_116344 crossref_primary_10_1016_j_molimm_2023_11_010 crossref_primary_10_1007_s10787_024_01506_y crossref_primary_10_1007_s10565_024_09964_4 crossref_primary_10_1080_1061186X_2024_2417189 crossref_primary_10_1021_acs_jafc_2c04811 crossref_primary_10_3389_fimmu_2025_1515430 crossref_primary_10_1089_rej_2023_0061 crossref_primary_10_3390_ijms24032020 crossref_primary_10_1016_j_bcp_2023_115522 crossref_primary_10_1016_j_marenvres_2023_106294 crossref_primary_10_3390_ijms25158153 crossref_primary_10_1007_s00580_024_03572_8 crossref_primary_10_3390_molecules29225440 crossref_primary_10_3390_foods12030439 crossref_primary_10_1007_s12012_024_09952_4 crossref_primary_10_1038_s41401_023_01177_5 crossref_primary_10_3390_ijms25063521 crossref_primary_10_1002_ptr_7749 crossref_primary_10_1016_j_intimp_2023_110587 crossref_primary_10_1016_j_mrgentox_2021_503437 crossref_primary_10_1155_2024_7683793 crossref_primary_10_1177_1934578X241287061 crossref_primary_10_1111_nep_14237 crossref_primary_10_1016_j_jff_2024_106095 crossref_primary_10_33590_emj_21_00027 crossref_primary_10_1016_j_intimp_2025_114024 crossref_primary_10_3390_antiox13091147 crossref_primary_10_1158_0008_5472_CAN_22_3848 crossref_primary_10_1038_s41419_023_06144_w crossref_primary_10_1042_BSR20240444 crossref_primary_10_3389_fmed_2024_1454902 crossref_primary_10_1016_j_radonc_2021_03_038 crossref_primary_10_3390_ijms24065508 crossref_primary_10_3390_antiox11040607 crossref_primary_10_1016_j_cyto_2025_156876 crossref_primary_10_1002_med_22014 crossref_primary_10_1016_j_bbr_2024_115280 crossref_primary_10_1016_j_fct_2024_114445 crossref_primary_10_1016_j_cbi_2020_109336 crossref_primary_10_3390_cells12091341 crossref_primary_10_1016_j_kint_2023_03_012 crossref_primary_10_3390_ph17020232 crossref_primary_10_1016_j_jnutbio_2022_108992 crossref_primary_10_3390_antiox14020171 crossref_primary_10_1167_iovs_62_12_8 crossref_primary_10_3390_antiox13020180 crossref_primary_10_1097_COH_0000000000000844 crossref_primary_10_52711_0974_360X_2022_00650 crossref_primary_10_1016_j_mam_2024_101279 crossref_primary_10_1016_j_jep_2023_117115 crossref_primary_10_3390_antiox10081168 crossref_primary_10_3746_pnf_2024_29_3_301 crossref_primary_10_1016_j_smhs_2023_09_001 crossref_primary_10_1016_j_xcrm_2021_100471 crossref_primary_10_3389_fonc_2023_1125855 crossref_primary_10_3390_cancers15133484 crossref_primary_10_1016_j_toxrep_2023_12_004 crossref_primary_10_1021_acs_jcim_3c01967 crossref_primary_10_1016_j_semcancer_2020_11_019 crossref_primary_10_3390_antiox14020180 crossref_primary_10_3390_antiox12101837 crossref_primary_10_1128_spectrum_03279_23 crossref_primary_10_26442_20751753_2023_5_202272 crossref_primary_10_3390_biomedicines12112525 crossref_primary_10_1038_s41419_022_04660_9 crossref_primary_10_1007_s00018_023_05061_7 crossref_primary_10_1016_j_brainres_2023_148462 crossref_primary_10_1007_s10787_024_01624_7 crossref_primary_10_1096_fj_202401987RR crossref_primary_10_1186_s12964_024_01878_2 crossref_primary_10_1016_j_dld_2022_02_001 crossref_primary_10_1515_reveh_2023_0023 crossref_primary_10_3389_fneur_2022_1013062 crossref_primary_10_3390_molecules27051468 crossref_primary_10_1136_jitc_2023_006890 crossref_primary_10_3390_molecules27020502 crossref_primary_10_3390_antiox10111824 crossref_primary_10_1016_j_phymed_2022_154123 crossref_primary_10_2174_0115672050315334240508162754 crossref_primary_10_1016_j_abb_2021_109094 crossref_primary_10_3390_molecules29143382 crossref_primary_10_3389_fcell_2024_1520429 crossref_primary_10_3390_cancers12113458 crossref_primary_10_3389_fpls_2023_1138700 crossref_primary_10_3390_antiox12081561 crossref_primary_10_3390_ijms24065788 crossref_primary_10_3390_antiox10050630 crossref_primary_10_3390_antiox11040649 crossref_primary_10_3390_ijms25074000 crossref_primary_10_1016_j_freeradbiomed_2022_12_102 crossref_primary_10_1016_j_bbadis_2023_166792 crossref_primary_10_1016_j_freeradbiomed_2025_03_029 crossref_primary_10_1111_cns_14456 crossref_primary_10_1139_cjpp_2023_0015 crossref_primary_10_3390_ijms22126562 crossref_primary_10_3390_antiox12061302 crossref_primary_10_1093_jpp_rgae035 crossref_primary_10_1016_j_heliyon_2024_e39426 crossref_primary_10_1016_j_intimp_2024_113914 crossref_primary_10_11569_wcjd_v31_i9_352 crossref_primary_10_3390_pathogens13010039 crossref_primary_10_1007_s43450_023_00421_7 crossref_primary_10_1016_j_ajt_2023_05_009 crossref_primary_10_1016_j_bbadis_2023_166787 crossref_primary_10_1016_j_aquaculture_2023_740307 crossref_primary_10_1016_j_intimp_2025_114048 crossref_primary_10_1016_j_phrs_2024_107380 crossref_primary_10_3390_ijms24043782 crossref_primary_10_3390_nu16193307 crossref_primary_10_1080_08916934_2021_1963959 crossref_primary_10_4062_biomolther_2024_183 crossref_primary_10_3390_antiox12040834 crossref_primary_10_1016_j_biocel_2024_106702 crossref_primary_10_3390_antiox12081586 crossref_primary_10_1177_02676591241280371 crossref_primary_10_1016_j_phymed_2024_155839 crossref_primary_10_1186_s12929_022_00873_4 crossref_primary_10_1016_j_tiv_2024_105901 crossref_primary_10_1155_jnme_8482883 crossref_primary_10_3390_ijms24054666 crossref_primary_10_3390_toxics11040393 crossref_primary_10_1007_s12032_021_01573_z crossref_primary_10_31083_j_fbs1402014 crossref_primary_10_1002_1878_0261_13200 crossref_primary_10_3233_JAD_240711 crossref_primary_10_2147_DDDT_S509357 crossref_primary_10_1007_s10787_023_01373_z crossref_primary_10_1016_j_toxlet_2023_06_005 crossref_primary_10_1016_j_anireprosci_2022_107186 crossref_primary_10_1016_j_gene_2024_149074 crossref_primary_10_1155_2024_8520489 crossref_primary_10_1212_WNL_0000000000207730 crossref_primary_10_3390_antiox11040619 crossref_primary_10_1016_j_cellsig_2025_111717 crossref_primary_10_1016_j_expneurol_2024_115060 crossref_primary_10_1016_j_phymed_2023_155097 crossref_primary_10_1016_j_bbrc_2023_06_080 crossref_primary_10_3390_cells10082053 crossref_primary_10_3389_fcell_2025_1512341 crossref_primary_10_2174_0118715303250834230923234802 crossref_primary_10_1016_j_phymed_2024_155380 crossref_primary_10_1016_j_biopha_2022_113208 crossref_primary_10_1155_2023_4420592 crossref_primary_10_3389_fendo_2024_1390351 crossref_primary_10_3389_fendo_2023_1217730 crossref_primary_10_3389_fphar_2021_687935 crossref_primary_10_1096_fj_202400195R crossref_primary_10_3390_neurosci6010019 crossref_primary_10_3390_genes14051011 crossref_primary_10_3390_ijms23031118 crossref_primary_10_3390_antiox13020215 crossref_primary_10_3390_cells12162106 crossref_primary_10_1007_s11033_022_08049_x crossref_primary_10_1016_j_ejphar_2023_176264 crossref_primary_10_3390_antiox13020218 crossref_primary_10_4014_jmb_2308_08053 crossref_primary_10_1016_j_nicl_2025_103767 crossref_primary_10_3390_ijms23042008 crossref_primary_10_3390_ijms22157963 crossref_primary_10_1007_s00011_021_01529_z crossref_primary_10_1016_j_jep_2022_115854 crossref_primary_10_3390_biomedicines13020327 crossref_primary_10_1186_s12969_023_00909_5 crossref_primary_10_3233_JBR_230058 crossref_primary_10_1016_j_isci_2022_105719 crossref_primary_10_3390_antiox13030294 crossref_primary_10_15283_ijsc21067 crossref_primary_10_3389_fphar_2022_830554 crossref_primary_10_3390_antiox12111928 crossref_primary_10_4103_2221_1691_387748 crossref_primary_10_1007_s10753_023_01900_8 crossref_primary_10_1007_s10565_024_09948_4 crossref_primary_10_3390_jcm12144575 crossref_primary_10_1016_j_aqrep_2024_102449 crossref_primary_10_1007_s10735_024_10286_2 crossref_primary_10_3389_fnins_2022_970925 crossref_primary_10_1038_s41419_024_06778_4 crossref_primary_10_1016_j_gene_2023_147461 crossref_primary_10_1080_01635581_2023_2183546 crossref_primary_10_3389_fphar_2023_1295096 crossref_primary_10_1007_s12035_024_04063_1 crossref_primary_10_3390_nu17010036 crossref_primary_10_3390_molecules28248105 crossref_primary_10_1016_j_pbiomolbio_2024_02_005 crossref_primary_10_1038_s41598_024_72075_x crossref_primary_10_1186_s12964_025_02075_5 crossref_primary_10_1016_j_taap_2021_115469 crossref_primary_10_1111_cpr_13799 crossref_primary_10_3390_ijms241914619 crossref_primary_10_1016_j_ibneur_2024_11_007 crossref_primary_10_2147_JIR_S478683 crossref_primary_10_2131_jts_48_139 crossref_primary_10_1039_D3BM00271C crossref_primary_10_1016_j_brainres_2024_149203 crossref_primary_10_3390_ijms241511886 crossref_primary_10_1186_s43088_024_00558_x crossref_primary_10_1016_j_clinbiochem_2022_12_011 crossref_primary_10_12688_f1000research_156321_1 crossref_primary_10_3390_cimb46060338 crossref_primary_10_3390_life14111467 crossref_primary_10_1016_j_exger_2021_111372 crossref_primary_10_1007_s43032_024_01662_0 crossref_primary_10_3390_ijms24076723 crossref_primary_10_1016_j_exer_2023_109569 crossref_primary_10_3389_fphar_2022_944502 crossref_primary_10_1016_j_jri_2024_104392 crossref_primary_10_1016_j_heliyon_2024_e27826 crossref_primary_10_1016_j_coi_2022_102247 crossref_primary_10_1021_acschembio_4c00849 crossref_primary_10_1177_09603271251322186 crossref_primary_10_3390_antiox10020309 crossref_primary_10_1016_j_bbrc_2023_05_082 crossref_primary_10_1007_s11010_024_05009_w crossref_primary_10_1016_j_jep_2022_115826 crossref_primary_10_1016_j_phrs_2021_105701 crossref_primary_10_1007_s12035_024_04394_z crossref_primary_10_2174_1389201024666230804102617 crossref_primary_10_1016_j_actbio_2023_12_021 crossref_primary_10_1080_10520295_2024_2365231 crossref_primary_10_3389_fcell_2023_1151108 crossref_primary_10_3390_biom15010149 crossref_primary_10_31718_2077_1096_24_1_114 crossref_primary_10_1007_s11010_024_05118_6 crossref_primary_10_3389_fopht_2024_1407582 crossref_primary_10_3390_jcm12041667 crossref_primary_10_1016_j_scitotenv_2023_165076 crossref_primary_10_1177_11786388241253436 crossref_primary_10_1016_j_ejmech_2024_116624 crossref_primary_10_1007_s00210_023_02692_2 crossref_primary_10_3389_fimmu_2022_945860 crossref_primary_10_1016_j_ab_2024_115624 crossref_primary_10_1016_j_lfs_2023_122220 crossref_primary_10_1111_jocd_16210 crossref_primary_10_3390_ijms25168742 crossref_primary_10_3390_ijms26031260 crossref_primary_10_3390_antiox12030631 crossref_primary_10_3390_genes14091773 crossref_primary_10_3390_nu15173799 crossref_primary_10_3389_fphar_2021_670076 crossref_primary_10_1016_j_bonr_2021_101149 crossref_primary_10_3390_ijms25136936 crossref_primary_10_1016_j_ejphar_2023_176241 crossref_primary_10_1016_j_ijbiomac_2024_138521 crossref_primary_10_1016_j_abb_2022_109452 crossref_primary_10_1038_s41419_021_04226_1 crossref_primary_10_1016_j_bbi_2024_02_007 crossref_primary_10_3390_microorganisms12020348 crossref_primary_10_1038_s41598_024_81839_4 crossref_primary_10_1016_j_comtox_2021_100191 crossref_primary_10_1016_j_celrep_2022_110475 crossref_primary_10_3390_biomedicines13010133 crossref_primary_10_3390_ijms21207800 crossref_primary_10_1016_j_jep_2025_119439 crossref_primary_10_3389_fendo_2023_1188003 crossref_primary_10_3390_ijms241713448 crossref_primary_10_1016_j_heliyon_2021_e07738 crossref_primary_10_1128_spectrum_02262_24 crossref_primary_10_3390_biom13071050 crossref_primary_10_3390_biology14010081 crossref_primary_10_1016_j_psj_2024_103649 crossref_primary_10_1016_j_phymed_2024_156064 crossref_primary_10_3390_metabo13020243 crossref_primary_10_4103_REGENMED_REGENMED_D_24_00027 crossref_primary_10_1016_j_pep_2025_106689 crossref_primary_10_1002_cbin_12153 crossref_primary_10_1080_13880209_2022_2067569 crossref_primary_10_3390_antiox12020405 crossref_primary_10_1016_j_fsi_2023_109112 crossref_primary_10_3389_fnins_2020_611904 crossref_primary_10_1097_MD_0000000000040835 crossref_primary_10_1186_s12964_023_01213_1 crossref_primary_10_3390_cancers15184613 crossref_primary_10_3390_ijms241310938 crossref_primary_10_3390_antiox10030388 crossref_primary_10_1007_s10753_021_01529_5 crossref_primary_10_3389_fncel_2024_1343544 crossref_primary_10_1080_07853890_2025_2472871 crossref_primary_10_4251_wjgo_v14_i1_38 crossref_primary_10_1007_s00204_024_03691_9 crossref_primary_10_1016_j_ejphar_2024_177210 crossref_primary_10_1016_j_phymed_2021_153766 crossref_primary_10_1111_bph_17321 crossref_primary_10_1016_j_freeradbiomed_2023_12_043 crossref_primary_10_1016_j_brainres_2025_149572 crossref_primary_10_1615_CritRevOncog_2022045331 crossref_primary_10_1016_j_cellsig_2024_111272 crossref_primary_10_1016_j_bbamcr_2024_119823 crossref_primary_10_1186_s13062_024_00580_0 crossref_primary_10_1016_j_isci_2023_107582 crossref_primary_10_3390_antiox13040452 crossref_primary_10_1016_j_jep_2025_119459 crossref_primary_10_1016_j_intimp_2023_109812 crossref_primary_10_1016_j_biopha_2024_116422 crossref_primary_10_1093_toxsci_kfab114 crossref_primary_10_3390_ijms252413292 crossref_primary_10_3389_fnut_2023_1102146 crossref_primary_10_1016_j_freeradbiomed_2023_11_003 crossref_primary_10_3390_antiox9100980 crossref_primary_10_1007_s43630_024_00606_6 crossref_primary_10_1016_j_prmcm_2024_100399 crossref_primary_10_1002_ame2_12436 crossref_primary_10_1016_j_modpat_2024_100574 crossref_primary_10_1039_D3FO05213C crossref_primary_10_1007_s11011_024_01377_w crossref_primary_10_1038_s42003_024_07377_x crossref_primary_10_1016_j_cpt_2023_02_003 crossref_primary_10_1016_j_jsps_2024_101956 crossref_primary_10_1007_s10787_024_01587_9 crossref_primary_10_1007_s10787_024_01541_9 crossref_primary_10_3390_cancers13020281 crossref_primary_10_3892_or_2024_8764 crossref_primary_10_3390_antiox11020304 crossref_primary_10_3390_pharmaceutics16081068 crossref_primary_10_3390_cells11233855 crossref_primary_10_1016_j_joim_2024_03_004 crossref_primary_10_1590_1414_431x2024e13914 crossref_primary_10_1080_10837450_2022_2129687 crossref_primary_10_1016_j_toxrep_2022_09_002 crossref_primary_10_1016_j_psj_2025_105071 crossref_primary_10_3389_fimmu_2025_1549459 crossref_primary_10_3390_nu15214652 crossref_primary_10_1002_tox_23362 crossref_primary_10_3390_antiox13080969 crossref_primary_10_7717_peerj_18027 crossref_primary_10_1016_j_biopha_2021_112201 crossref_primary_10_3892_ijmm_2023_5339 crossref_primary_10_1186_s12964_023_01170_9 crossref_primary_10_1007_s11130_024_01250_2 crossref_primary_10_2147_IJN_S479425 crossref_primary_10_1016_j_scitotenv_2023_166577 crossref_primary_10_1016_j_yexcr_2022_113436 crossref_primary_10_3389_fnins_2022_890021 crossref_primary_10_1016_j_freeradbiomed_2023_11_020 crossref_primary_10_1016_j_jtcme_2025_02_006 crossref_primary_10_1016_j_abb_2024_110193 crossref_primary_10_3389_fnut_2023_1284066 crossref_primary_10_1152_physiol_00015_2024 crossref_primary_10_3390_agriculture13020404 crossref_primary_10_1016_j_mcn_2024_103981 crossref_primary_10_1177_09603271221136206 crossref_primary_10_3390_tropicalmed8060306 crossref_primary_10_1186_s13018_024_05221_w crossref_primary_10_3390_antiox11051034 crossref_primary_10_3724_abbs_2024042 crossref_primary_10_1007_s00580_023_03528_4 crossref_primary_10_25289_ML_24_023 crossref_primary_10_1016_j_ejphar_2024_177013 crossref_primary_10_1016_j_advnut_2025_100376 crossref_primary_10_3389_fnmol_2024_1394932 crossref_primary_10_1002_ptr_8457 crossref_primary_10_3390_antiox13080954 crossref_primary_10_1016_j_aanat_2023_152180 crossref_primary_10_3389_fphar_2022_823881 crossref_primary_10_1016_j_lfs_2023_122064 crossref_primary_10_3390_antiox14030320 crossref_primary_10_1016_j_semcancer_2022_10_005 crossref_primary_10_1016_j_intimp_2022_108851 crossref_primary_10_1016_j_jff_2024_106204 crossref_primary_10_3390_antiox12020433 crossref_primary_10_3390_ijms24020902 crossref_primary_10_1016_j_ijbiomac_2023_124243 crossref_primary_10_3389_fneur_2025_1514394 crossref_primary_10_1016_j_scitotenv_2022_154046 crossref_primary_10_1016_j_jep_2024_118045 crossref_primary_10_1016_j_intimp_2024_113113 crossref_primary_10_1186_s13098_024_01512_8 crossref_primary_10_1016_j_biopha_2024_117555 crossref_primary_10_1186_s10020_024_00993_7 crossref_primary_10_1016_j_bbamcr_2023_119510 crossref_primary_10_3390_antiox14030337 crossref_primary_10_1007_s43440_024_00602_8 crossref_primary_10_1016_j_scitotenv_2023_166558 crossref_primary_10_3389_fmars_2024_1444061 crossref_primary_10_1080_10408398_2023_2176815 crossref_primary_10_3389_fgene_2025_1538168 crossref_primary_10_1155_2024_7465045 crossref_primary_10_3390_antiox12020220 crossref_primary_10_1186_s10020_024_00905_9 crossref_primary_10_3390_ijms24010099 crossref_primary_10_1016_j_bbrc_2025_151417 crossref_primary_10_1038_s42003_024_06063_2 crossref_primary_10_3389_fphar_2024_1371613 crossref_primary_10_3390_cells13131081 crossref_primary_10_1016_j_sajb_2024_07_048 crossref_primary_10_1186_s13045_024_01643_5 crossref_primary_10_1039_D3SC06997D crossref_primary_10_1007_s10753_024_02145_9 crossref_primary_10_1515_biol_2022_0706 crossref_primary_10_1016_j_cbpc_2024_110071 crossref_primary_10_3390_ijms252413239 crossref_primary_10_3390_cells11081298 crossref_primary_10_1038_s41598_024_82559_5 crossref_primary_10_4028_p_2aa27K crossref_primary_10_1007_s10753_023_01885_4 crossref_primary_10_1111_bcpt_70024 crossref_primary_10_1080_09553002_2021_1962566 crossref_primary_10_1590_acb393524 crossref_primary_10_3390_ijms22147598 crossref_primary_10_1016_j_aqrep_2023_101851 crossref_primary_10_3390_ijms26041693 crossref_primary_10_1016_j_ijbiomac_2023_123481 crossref_primary_10_1016_j_fbio_2024_105487 crossref_primary_10_1155_2021_5561124 crossref_primary_10_1016_j_biopha_2023_115467 crossref_primary_10_3390_molecules28010272 crossref_primary_10_3390_kinasesphosphatases2030018 crossref_primary_10_3390_ijms25105530 crossref_primary_10_1007_s11010_024_04957_7 crossref_primary_10_1177_1934578X231214129 crossref_primary_10_3390_antiox12122028 crossref_primary_10_1016_j_mad_2024_111914 crossref_primary_10_1007_s00018_022_04586_7 crossref_primary_10_1016_j_freeradbiomed_2021_02_030 crossref_primary_10_1016_j_prerep_2024_100019 crossref_primary_10_1111_jnc_15786 crossref_primary_10_3390_antiox12020232 crossref_primary_10_1007_s12035_023_03850_6 crossref_primary_10_3389_fphys_2022_989793 crossref_primary_10_1038_s41598_024_57874_6 crossref_primary_10_3390_toxics12120864 crossref_primary_10_3390_ijms24098376 crossref_primary_10_31083_j_fbl2707223 crossref_primary_10_3390_nu15020306 crossref_primary_10_3390_ijms24065498 crossref_primary_10_3389_fimmu_2022_1028953 crossref_primary_10_1016_j_jhazmat_2024_133590 crossref_primary_10_1152_ajpendo_00378_2023 crossref_primary_10_1089_ars_2024_0556 crossref_primary_10_3390_cells10071810 crossref_primary_10_1093_toxsci_kfae108 crossref_primary_10_1016_j_gendis_2023_05_019 crossref_primary_10_3389_fimmu_2024_1343987 crossref_primary_10_1016_j_jep_2023_117647 crossref_primary_10_1016_j_jff_2023_105475 crossref_primary_10_3390_antiox10020280 crossref_primary_10_1007_s13402_023_00834_5 crossref_primary_10_1016_j_biopha_2023_115443 crossref_primary_10_1002_cmdc_202400377 crossref_primary_10_20517_jca_2023_22 crossref_primary_10_3389_fimmu_2023_1196065 crossref_primary_10_1016_j_aoas_2023_02_002 crossref_primary_10_1016_j_biopha_2024_116829 crossref_primary_10_1089_ars_2020_8231 crossref_primary_10_3390_antiox14030264 crossref_primary_10_37349_emed_2024_00225 crossref_primary_10_3390_biom13030549 crossref_primary_10_1186_s12951_023_02120_w crossref_primary_10_1016_j_freeradbiomed_2023_06_003 crossref_primary_10_1016_j_jhazmat_2021_127009 crossref_primary_10_1186_s43094_024_00757_4 crossref_primary_10_3390_ijms241310502 crossref_primary_10_3389_fonc_2025_1522273 crossref_primary_10_3389_fnut_2022_988517 crossref_primary_10_1016_j_ecoenv_2024_116439 crossref_primary_10_3389_fcell_2024_1418296 crossref_primary_10_1007_s00535_024_02140_9 crossref_primary_10_1111_1750_3841_17400 crossref_primary_10_3390_biom10121688 crossref_primary_10_3389_fimmu_2023_1200111 crossref_primary_10_3390_md21020105 crossref_primary_10_1007_s43032_025_01787_w crossref_primary_10_1186_s10194_024_01750_1 crossref_primary_10_1016_j_neulet_2022_136997 crossref_primary_10_1177_09603271211021880 crossref_primary_10_3390_toxins16030151 crossref_primary_10_1007_s11010_024_05111_z crossref_primary_10_1016_j_canlet_2024_216833 crossref_primary_10_3390_cells10123556 crossref_primary_10_1016_j_actbio_2022_04_021 crossref_primary_10_3390_ijms22115722 crossref_primary_10_3390_toxins16030154 crossref_primary_10_3389_fonc_2025_1502673 crossref_primary_10_3390_antiox12040901 crossref_primary_10_1016_j_bbr_2023_114651 crossref_primary_10_1016_j_bbrc_2024_149788 crossref_primary_10_3390_metabo14080435 crossref_primary_10_1016_j_ymthe_2024_08_019 crossref_primary_10_1155_2023_7136819 crossref_primary_10_1002_ptr_7403 crossref_primary_10_1016_j_ecoenv_2023_115290 crossref_primary_10_3390_ijms241814215 crossref_primary_10_3389_fonc_2024_1381467 crossref_primary_10_2174_0113816128308454240823074555 crossref_primary_10_1002_jsfa_13877 crossref_primary_10_1016_j_jtemb_2023_127149 crossref_primary_10_1016_j_bioorg_2025_108350 crossref_primary_10_3390_cancers14246111 crossref_primary_10_3389_fnut_2022_910785 crossref_primary_10_3390_cimb44100337 crossref_primary_10_3390_ijms25179195 crossref_primary_10_1016_j_psj_2024_104523 crossref_primary_10_3390_ijms251910484 crossref_primary_10_3892_etm_2022_11160 crossref_primary_10_3390_pharmaceutics14112467 crossref_primary_10_1038_s41598_022_20817_0 crossref_primary_10_1016_j_jsps_2023_05_022 crossref_primary_10_3389_fphar_2024_1333657 crossref_primary_10_1186_s40659_024_00547_5 crossref_primary_10_1016_j_neulet_2024_138037 crossref_primary_10_1111_exd_15189 crossref_primary_10_3390_ijms25052511 crossref_primary_10_1177_17534259211015330 crossref_primary_10_1007_s10555_022_10072_0 crossref_primary_10_1038_s12276_024_01180_8 crossref_primary_10_1016_j_phymed_2023_155001 crossref_primary_10_1016_j_jep_2025_119384 crossref_primary_10_1080_13510002_2024_2371173 crossref_primary_10_3390_ani15060861 crossref_primary_10_3390_ijms24076160 crossref_primary_10_1007_s11886_024_02157_9 crossref_primary_10_3389_fbioe_2021_745911 crossref_primary_10_1111_cns_70081 crossref_primary_10_1080_03602532_2023_2215478 crossref_primary_10_1016_j_heliyon_2023_e18991 crossref_primary_10_1016_j_intimp_2023_110227 crossref_primary_10_3389_fimmu_2024_1390589 crossref_primary_10_3390_antiox12071440 crossref_primary_10_3390_toxics9040070 crossref_primary_10_1016_j_pupt_2023_102262 crossref_primary_10_1007_s10620_022_07546_0 crossref_primary_10_1016_j_taap_2023_116389 crossref_primary_10_1016_j_ejphar_2023_175558 crossref_primary_10_3390_nu16203496 crossref_primary_10_1016_j_fitote_2023_105599 crossref_primary_10_1016_j_biopha_2024_117094 crossref_primary_10_3390_biomedicines12112624 crossref_primary_10_3390_antiox13070798 crossref_primary_10_1016_j_tvr_2024_200277 crossref_primary_10_1515_tnsci_2022_0296 crossref_primary_10_1038_s41598_024_75786_3 crossref_primary_10_1016_j_scitotenv_2024_177396 crossref_primary_10_1007_s12013_025_01723_4 crossref_primary_10_3389_fphys_2024_1416639 crossref_primary_10_3390_antiox12040947 crossref_primary_10_1016_j_phrs_2021_105853 crossref_primary_10_3233_ADR_210061 crossref_primary_10_1007_s11626_022_00725_3 crossref_primary_10_3892_or_2023_8492 crossref_primary_10_1016_j_marpolbul_2023_115928 crossref_primary_10_1016_j_molimm_2021_04_002 crossref_primary_10_3389_fphar_2022_948600 crossref_primary_10_1016_j_biopha_2023_115854 crossref_primary_10_1016_j_ijbiomac_2025_141616 crossref_primary_10_1055_a_2257_6407 crossref_primary_10_3390_biology11060839 crossref_primary_10_3390_nu14173662 crossref_primary_10_3390_cancers16172949 crossref_primary_10_3390_ijms24021469 crossref_primary_10_3390_ani15050693 crossref_primary_10_1016_j_jcmgh_2025_101483 crossref_primary_10_1007_s00204_024_03752_z crossref_primary_10_3389_fcvm_2021_792180 crossref_primary_10_3390_antiox10081296 crossref_primary_10_1007_s00394_021_02541_z crossref_primary_10_1016_j_ijbiomac_2025_139552 crossref_primary_10_3390_ijms241311221 crossref_primary_10_1016_j_ajpath_2023_11_009 crossref_primary_10_1016_j_bbadis_2024_167600 crossref_primary_10_1016_j_nantod_2024_102514 crossref_primary_10_1016_j_reth_2024_11_014 crossref_primary_10_1080_13510002_2022_2096339 crossref_primary_10_3390_antiox13091058 crossref_primary_10_3390_biom13020353 crossref_primary_10_14814_phy2_15879 crossref_primary_10_3390_ph17081080 crossref_primary_10_3390_app12031268 crossref_primary_10_1038_s41581_024_00806_4 crossref_primary_10_3389_fnut_2022_1007816 crossref_primary_10_3892_mmr_2023_13098 crossref_primary_10_1007_s43450_023_00390_x crossref_primary_10_3390_ijms22179592 crossref_primary_10_3390_antiox12111987 crossref_primary_10_2174_0126669390272831231227110602 crossref_primary_10_1186_s41232_023_00300_7 crossref_primary_10_1002_fsn3_4285 crossref_primary_10_1021_acs_est_2c09024 crossref_primary_10_3390_ijms241914585 crossref_primary_10_1007_s12011_022_03464_4 crossref_primary_10_1002_fsn3_4049 crossref_primary_10_3390_ijms22147314 crossref_primary_10_1038_s41598_025_92674_6 crossref_primary_10_3390_antiox13121515 crossref_primary_10_3389_fphar_2023_1197433 crossref_primary_10_1021_acs_jafc_4c05370 crossref_primary_10_1186_s13287_024_04089_1 crossref_primary_10_3390_biom11020162 crossref_primary_10_1016_j_mad_2024_111960 crossref_primary_10_3390_antiox13010070 crossref_primary_10_1016_j_ejphar_2024_176965 crossref_primary_10_3390_antiox13121528 crossref_primary_10_3390_antiox13121529 crossref_primary_10_1016_j_jhep_2022_04_038 crossref_primary_10_1016_j_placenta_2022_01_007 crossref_primary_10_3390_app132212348 crossref_primary_10_1016_j_jbc_2024_107815 crossref_primary_10_3892_wasj_2024_280 crossref_primary_10_1016_j_redox_2025_103565 crossref_primary_10_1016_j_fct_2022_113089 crossref_primary_10_1016_j_heliyon_2024_e36241 crossref_primary_10_2174_1570161120666220510120220 crossref_primary_10_1080_10408398_2024_2367570 crossref_primary_10_3390_antiox13010083 crossref_primary_10_1016_j_ctro_2024_100726 crossref_primary_10_1016_j_toxlet_2023_12_006 crossref_primary_10_3390_ijms24129917 crossref_primary_10_1128_jvi_00159_24 crossref_primary_10_1016_j_immuni_2021_04_014 crossref_primary_10_26599_FSHW_2022_9250129 crossref_primary_10_1016_j_ejmech_2023_115602 crossref_primary_10_1002_jbt_70158 crossref_primary_10_1016_j_lfs_2023_121664 crossref_primary_10_1016_j_bej_2024_109279 crossref_primary_10_1016_j_taap_2022_116252 crossref_primary_10_1093_toxsci_kfad056 crossref_primary_10_1002_mco2_519 crossref_primary_10_1016_j_jgg_2022_06_002 crossref_primary_10_1016_j_aquaculture_2022_739163 crossref_primary_10_1186_s12987_022_00344_w crossref_primary_10_3389_fendo_2023_1261298 crossref_primary_10_1016_j_freeradbiomed_2023_09_021 crossref_primary_10_1007_s00210_024_03343_w crossref_primary_10_3390_antiox13121502 crossref_primary_10_3390_nu14173613 crossref_primary_10_1093_noajnl_vdad160 crossref_primary_10_3389_fcell_2025_1522873 |
Cites_doi | 10.1002/jbt.20212 10.1128/MCB.06271-11 10.1038/srep38619 10.1038/sj.onc.1202237 10.1074/jbc.M002319200 10.1042/BJ20130863 10.1074/jbc.M412081200 10.1074/jbc.M109.031575 10.1074/jbc.M206911200 10.1038/s41590-019-0482-2 10.1182/blood-2012-04-422121 10.1016/j.redox.2017.01.006 10.1074/jbc.M111.322420 10.1093/nar/gkv1101 10.1074/jbc.M111.277145 10.3389/fimmu.2018.01552 10.1038/s41586-018-0052-z 10.4049/jimmunol.181.1.680 10.1038/onc.2009.264 10.1101/gad.238246.114 10.1016/j.cell.2011.02.013 10.3748/wjg.v20.i36.13079 10.1128/MCB.01095-15 10.1074/jbc.M109.093955 10.1074/jbc.M500166200 10.1158/0008-5472.CAN-11-3213 10.1128/MCB.00225-13 10.1016/j.freeradbiomed.2015.05.034 10.1126/scitranslmed.3002042 10.1038/ncb2021 10.1073/pnas.91.21.9926 10.1038/nm.2557 10.4049/jimmunol.1700812 10.1093/nar/gks827 10.1128/MCB.25.10.4150-4165.2005 10.1371/journal.pone.0051111 10.1128/MCB.00785-15 10.1371/journal.pgen.1003701 10.1158/0008-5472.CAN-12-3386 10.1007/s10549-011-1604-1 10.1093/toxsci/kfr183 10.1038/nrm.2017.130 10.7754/Clin.Lab.2015.150518 10.4110/in.2018.18.e14 10.1093/nar/gkq212 10.1111/j.1365-2443.2005.00905.x 10.1016/j.bcp.2017.06.136 10.2353/ajpath.2006.051113 10.1093/carcin/bgp100 10.1016/j.jhep.2020.01.023 10.1038/onc.2012.59 10.1074/jbc.M109.084590 10.1523/JNEUROSCI.1860-14.2014 10.1038/ng1248 10.1016/j.freeradbiomed.2015.02.004 10.1038/ni.3868 10.1172/JCI31405 10.1073/pnas.1007387107 10.1073/pnas.1305687110 10.1016/j.mad.2010.12.004 10.1172/JCI66353 10.1128/MCB.00700-06 10.1111/j.1440-1746.2012.07180.x 10.1016/j.ccell.2016.04.006 10.1128/MCB.25.24.10895-10906.2005 10.1161/01.RES.0000338597.71702.ad 10.1016/j.molcel.2009.04.029 10.1101/gad.225680.113 10.1080/15548627.2016.1208889 10.1074/jbc.M403061200 10.1084/jem.20121337 10.1089/ars.2014.5987 10.1016/j.tibs.2014.02.002 10.1074/jbc.RA118.005963 10.1128/MCB.01408-13 10.1182/blood-2009-04-214817 10.3389/fonc.2017.00085 10.1073/pnas.1714056115 10.1016/j.mce.2005.08.002 10.1074/jbc.M110.118976 10.1016/j.celrep.2016.08.010 10.1016/j.celrep.2014.02.027 10.1016/S0092-8674(00)82001-2 10.1016/j.ccell.2018.03.022 10.1172/JCI25790 10.1016/j.abb.2011.02.001 10.1158/1940-6207.CAPR-14-0094 10.1128/MCB.00065-13 10.1038/sj.bjc.6604703 10.3389/fendo.2018.00402 10.1016/S1097-2765(03)00105-9 10.1038/ng.3421 10.1096/fj.201901930R 10.1242/bio.20134853 10.1016/j.freeradbiomed.2013.04.007 10.1074/jbc.M110.162008 10.1046/j.1365-2443.2001.00469.x 10.1016/j.abb.2008.06.004 10.1038/s41467-018-05861-7 10.1074/jbc.M111.316471 10.1371/journal.pone.0008579 10.1093/carcin/bgt026 10.1158/0008-5472.CAN-10-3018 10.1007/s11064-015-1709-8 10.7554/eLife.28083 10.1046/j.1523-1755.2001.00939.x 10.1113/JP271957 10.1158/0008-5472.CAN-07-2170 10.1038/s41419-018-0436-x 10.1128/MCB.23.20.7198-7209.2003 10.3389/fgene.2019.00435 10.1074/jbc.M115.664953 10.1101/655159 10.1128/MCB.00063-17 10.1158/0008-5472.CAN-12-4400 10.1146/annurev-cellbio-092910-154237 10.1002/mc.20234 10.1038/cr.2016.4 10.4049/jimmunol.181.10.6730 10.1083/jcb.201110131 10.1016/j.ccr.2012.05.016 10.1093/carcin/bgaa039 10.1371/journal.pgen.1006762 10.1002/stem.1764 10.1046/j.1365-2443.2003.00640.x 10.1093/nar/gks409 10.1128/MCB.23.23.8786-8794.2003 10.1038/s41573-018-0008-x 10.1016/j.jhep.2019.08.014 10.1038/nm1609 10.1038/onc.2012.388 10.1371/journal.pone.0039006 10.1128/MCB.22.9.2883-2892.2002 10.4049/jimmunol.1101712 10.1042/BST20150011 10.1073/pnas.93.25.14960 10.1016/j.cell.2019.07.031 10.1038/nature10189 10.1038/ncomms11624 10.1089/ars.2017.7176 10.1016/j.celrep.2016.07.075 10.1016/j.bbrc.2020.02.006 10.3389/fonc.2020.00159 10.1038/nm.4407 10.1074/jbc.M101198200 10.1093/toxsci/kfn267 10.1093/toxsci/kfn079 10.1002/1873-3468.12301 10.1093/nar/gkm638 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms21134777 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7369905 32640524 10_3390_ijms21134777 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Lilly innovation fellowship award grantid: na – fundername: National Natural Science Foundation of China grantid: 81672338 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-881afb852217d2274aa9fc5e39de83f640d51c74ba6eb97237a29a45d2cbb5cf3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:08:29 EDT 2025 Fri Jul 11 05:15:27 EDT 2025 Fri Jul 25 20:24:08 EDT 2025 Thu Apr 03 06:59:49 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Tue Jul 01 04:15:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | transcription factor autophagy NRF2 inflammation UPR metabolism proteostasis oxidative stress |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-881afb852217d2274aa9fc5e39de83f640d51c74ba6eb97237a29a45d2cbb5cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-0675-0163 0000-0003-0276-3303 |
OpenAccessLink | https://www.proquest.com/docview/2422468709?pq-origsite=%requestingapplication% |
PMID | 32640524 |
PQID | 2422468709 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7369905 proquest_miscellaneous_2422009134 proquest_journals_2422468709 pubmed_primary_32640524 crossref_primary_10_3390_ijms21134777 crossref_citationtrail_10_3390_ijms21134777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200706 |
PublicationDateYYYYMMDD | 2020-07-06 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200706 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hu (ref_114) 2018; 9 Taguchi (ref_2) 2017; 7 Li (ref_106) 2015; 290 Venugopal (ref_56) 1998; 17 ref_98 ref_97 Gorrini (ref_16) 2013; 210 Fu (ref_77) 2019; 294 McMahon (ref_6) 2010; 107 Komatsu (ref_10) 2010; 12 Kobayashi (ref_127) 2016; 7 Camp (ref_13) 2012; 287 Hayes (ref_19) 2015; 43 Ma (ref_124) 2006; 168 Mukaigasa (ref_100) 2018; 115 Hanahan (ref_76) 2011; 144 Arlt (ref_103) 2009; 28 Innamorato (ref_126) 2008; 181 Hamdam (ref_145) 2012; 287 Kwak (ref_101) 2003; 23 Iizuka (ref_121) 2005; 10 Wang (ref_44) 2016; 62 Yarosz (ref_144) 2018; 18 ref_23 ref_20 He (ref_54) 2001; 276 Mitsuishi (ref_35) 2012; 22 Burgener (ref_131) 2019; 20 ref_71 Zahra (ref_81) 2020; 10 Pickering (ref_102) 2012; 287 Singh (ref_43) 2013; 34 Rushworth (ref_107) 2011; 71 Thimmulappa (ref_120) 2006; 116 Shan (ref_60) 2015; 22 Wu (ref_73) 2011; 123 Nioi (ref_63) 2005; 25 Hirotsu (ref_51) 2012; 40 Gureev (ref_118) 2019; 10 ref_75 Clarke (ref_108) 2012; 72 Kim (ref_64) 2013; 32 Zhang (ref_62) 2006; 26 Yuan (ref_24) 2006; 45 DeNicola (ref_88) 2015; 47 Kang (ref_22) 2010; 285 Ikeda (ref_67) 2000; 275 Wu (ref_21) 2014; 28 Suzuki (ref_38) 2013; 33 Romero (ref_87) 2017; 23 Poganik (ref_47) 2019; 33 DeNicola (ref_34) 2011; 475 Wakabayashi (ref_72) 2003; 35 Bagger (ref_119) 2016; 44 Chapman (ref_78) 2018; 34 Harada (ref_93) 2011; 508 Aguiar (ref_117) 2016; 41 Yang (ref_41) 2011; 129 Harding (ref_99) 2003; 11 Canning (ref_3) 2015; 88 ref_89 Hou (ref_137) 2020; 72 ref_142 Hentze (ref_46) 2018; 19 Miao (ref_30) 2005; 280 Piantadosi (ref_115) 2008; 103 Singh (ref_85) 2013; 123 Pajares (ref_109) 2016; 12 Dhakshinamoorthy (ref_52) 2005; 280 Cullinan (ref_27) 2003; 23 Kerins (ref_94) 2018; 29 Pajares (ref_96) 2017; 11 Tang (ref_122) 2014; 20 Zhang (ref_79) 2014; 34 Jaramillo (ref_1) 2013; 27 Huang (ref_25) 2002; 277 Jain (ref_110) 2010; 285 Ludtmann (ref_112) 2014; 457 Page (ref_134) 2014; 6 Holmstrom (ref_111) 2013; 2 Harvey (ref_132) 2011; 3 Ohl (ref_138) 2018; 9 Merry (ref_116) 2016; 594 Rockwell (ref_143) 2012; 188 Wakabayashi (ref_36) 2014; 34 Sangokoya (ref_40) 2010; 116 Li (ref_42) 2011; 132 Itoh (ref_8) 2003; 8 Cuadrado (ref_80) 2019; 18 Reichard (ref_53) 2007; 35 Nair (ref_31) 2008; 99 Uruno (ref_83) 2013; 33 Ogryzko (ref_58) 1996; 87 Pan (ref_65) 2016; 26 Zhao (ref_146) 2016; 6 Hayder (ref_39) 2018; 9 Brown (ref_59) 2008; 68 Rushworth (ref_32) 2012; 120 Tanaka (ref_90) 2012; 27 Wang (ref_5) 2013; 73 Ganner (ref_17) 2020; 524 Seelige (ref_135) 2016; 16 Sekine (ref_66) 2016; 36 Reisman (ref_74) 2009; 108 Lunt (ref_86) 2011; 27 Maruyama (ref_92) 2008; 477 Hiramoto (ref_140) 2014; 7 Taniguchi (ref_9) 2016; 590 Nagaraj (ref_139) 2007; 13 Ma (ref_14) 2012; 32 Hast (ref_12) 2013; 73 Wang (ref_95) 2012; 197 Osburn (ref_125) 2008; 104 Olagnier (ref_133) 2018; 9 Wruck (ref_130) 2011; 286 ref_37 Apopa (ref_26) 2008; 22 Rushworth (ref_33) 2008; 181 Chen (ref_147) 2017; 142 Sanghvi (ref_28) 2019; 178 Pi (ref_91) 2010; 285 Venugopal (ref_55) 1996; 93 Malhotra (ref_49) 2010; 38 Noel (ref_148) 2018; 200 Baird (ref_7) 2013; 110 Chorley (ref_50) 2012; 40 Kapeta (ref_104) 2010; 285 Ansell (ref_68) 2005; 243 Yates (ref_82) 2009; 30 Chowdhry (ref_18) 2013; 32 Umemura (ref_11) 2016; 29 ref_45 Jang (ref_105) 2014; 32 McMahon (ref_4) 2004; 279 Bambouskova (ref_129) 2018; 556 Swann (ref_136) 2007; 117 Hayes (ref_70) 2014; 39 Uruno (ref_84) 2016; 36 Maj (ref_149) 2017; 18 Ki (ref_61) 2005; 25 Yoh (ref_123) 2001; 60 Hoetzenecker (ref_128) 2011; 18 Goldstein (ref_48) 2016; 16 Anedda (ref_113) 2013; 61 Sha (ref_141) 2015; 83 Kwak (ref_29) 2002; 22 Moi (ref_69) 1994; 91 Katoh (ref_57) 2001; 6 Chen (ref_15) 2009; 34 |
References_xml | – volume: 22 start-page: 63 year: 2008 ident: ref_26 article-title: Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells publication-title: J. Biochem. Mol. Toxicol. doi: 10.1002/jbt.20212 – volume: 32 start-page: 1506 year: 2012 ident: ref_14 article-title: PALB2 interacts with KEAP1 to promote NRF2 nuclear accumulation and function publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06271-11 – volume: 6 start-page: 38619 year: 2016 ident: ref_146 article-title: Nuclear Factor Erythroid 2-related Factor 2 Deficiency Exacerbates Lupus Nephritis in B6/lpr mice by Regulating Th17 Cell Function publication-title: Sci. Rep. doi: 10.1038/srep38619 – volume: 17 start-page: 3145 year: 1998 ident: ref_56 article-title: Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes publication-title: Oncogene doi: 10.1038/sj.onc.1202237 – volume: 275 start-page: 33142 year: 2000 ident: ref_67 article-title: Suppression of rat thromboxane synthase gene transcription by peroxisome proliferator-activated receptor gamma in macrophages via an interaction with NRF2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002319200 – volume: 457 start-page: 415 year: 2014 ident: ref_112 article-title: Nrf2 affects the efficiency of mitochondrial fatty acid oxidation publication-title: Biochem. J. doi: 10.1042/BJ20130863 – volume: 280 start-page: 20340 year: 2005 ident: ref_30 article-title: Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: Direct cross-talk between phase I and II drug-metabolizing enzymes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412081200 – volume: 285 start-page: 8171 year: 2010 ident: ref_104 article-title: Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.031575 – volume: 277 start-page: 42769 year: 2002 ident: ref_25 article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206911200 – volume: 20 start-page: 1311 year: 2019 ident: ref_131 article-title: SDHA gain-of-function engages inflammatory mitochondrial retrograde signaling via KEAP1-Nrf2 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0482-2 – volume: 120 start-page: 5188 year: 2012 ident: ref_32 article-title: The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance publication-title: Blood doi: 10.1182/blood-2012-04-422121 – volume: 11 start-page: 543 year: 2017 ident: ref_96 article-title: Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases publication-title: Redox Biol. doi: 10.1016/j.redox.2017.01.006 – volume: 287 start-page: 10556 year: 2012 ident: ref_145 article-title: Loss of transcription factor nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) leads to dysregulation of immune functions, redox homeostasis, and intracellular signaling in dendritic cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.322420 – volume: 44 start-page: D917 year: 2016 ident: ref_119 article-title: BloodSpot: A database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1101 – volume: 287 start-page: 10021 year: 2012 ident: ref_102 article-title: Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.277145 – volume: 9 start-page: 1552 year: 2018 ident: ref_138 article-title: Nrf2 Is a Central Regulator of Metabolic Reprogramming of Myeloid-Derived Suppressor Cells in Steady State and Sepsis publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01552 – volume: 556 start-page: 501 year: 2018 ident: ref_129 article-title: Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis publication-title: Nature doi: 10.1038/s41586-018-0052-z – volume: 181 start-page: 680 year: 2008 ident: ref_126 article-title: The transcription factor Nrf2 is a therapeutic target against brain inflammation publication-title: J. Immunol. doi: 10.4049/jimmunol.181.1.680 – volume: 28 start-page: 3983 year: 2009 ident: ref_103 article-title: Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2) publication-title: Oncogene doi: 10.1038/onc.2009.264 – volume: 28 start-page: 708 year: 2014 ident: ref_21 article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis publication-title: Genes Dev. doi: 10.1101/gad.238246.114 – volume: 144 start-page: 646 year: 2011 ident: ref_76 article-title: Hallmarks of cancer: The next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 20 start-page: 13079 year: 2014 ident: ref_122 article-title: Role of Nrf2 in chronic liver disease publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v20.i36.13079 – volume: 36 start-page: 1655 year: 2016 ident: ref_84 article-title: Nrf2-Mediated Regulation of Skeletal Muscle Glycogen Metabolism publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01095-15 – volume: 285 start-page: 9292 year: 2010 ident: ref_91 article-title: Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.093955 – volume: 280 start-page: 16891 year: 2005 ident: ref_52 article-title: Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500166200 – volume: 72 start-page: 1321 year: 2012 ident: ref_108 article-title: Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3213 – volume: 33 start-page: 2996 year: 2013 ident: ref_83 article-title: The Keap1-Nrf2 system prevents onset of diabetes mellitus publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00225-13 – volume: 88 start-page: 101 year: 2015 ident: ref_3 article-title: Structural basis of Keap1 interactions with Nrf2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.05.034 – volume: 3 start-page: 78ra32 year: 2011 ident: ref_132 article-title: Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3002042 – volume: 12 start-page: 213 year: 2010 ident: ref_10 article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2021 – volume: 91 start-page: 9926 year: 1994 ident: ref_69 article-title: Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.21.9926 – volume: 18 start-page: 128 year: 2011 ident: ref_128 article-title: ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression publication-title: Nat. Med. doi: 10.1038/nm.2557 – volume: 200 start-page: 1929 year: 2018 ident: ref_148 article-title: KEAP1 Editing Using CRISPR/Cas9 for Therapeutic NRF2 Activation in Primary Human T Lymphocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.1700812 – volume: 40 start-page: 10228 year: 2012 ident: ref_51 article-title: Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks827 – volume: 25 start-page: 4150 year: 2005 ident: ref_61 article-title: Glucocorticoid receptor (GR)-associated SMRT binding to C/EBPbeta TAD and Nrf2 Neh4/5: Role of SMRT recruited to GR in GSTA2 gene repression publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.10.4150-4165.2005 – ident: ref_45 doi: 10.1371/journal.pone.0051111 – volume: 36 start-page: 407 year: 2016 ident: ref_66 article-title: The Mediator Subunit MED16 Transduces NRF2-Activating Signals into Antioxidant Gene Expression publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00785-15 – ident: ref_97 doi: 10.1371/journal.pgen.1003701 – volume: 73 start-page: 3097 year: 2013 ident: ref_5 article-title: RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3386 – volume: 129 start-page: 983 year: 2011 ident: ref_41 article-title: MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-011-1604-1 – volume: 123 start-page: 590 year: 2011 ident: ref_73 article-title: Beneficial role of Nrf2 in regulating NADPH generation and consumption publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfr183 – volume: 19 start-page: 327 year: 2018 ident: ref_46 article-title: A brave new world of RNA-binding proteins publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.130 – volume: 62 start-page: 39 year: 2016 ident: ref_44 article-title: MicroRNA-153 Regulates NRF2 Expression and is Associated with Breast Carcinogenesis publication-title: Clin. Lab. doi: 10.7754/Clin.Lab.2015.150518 – volume: 18 start-page: e14 year: 2018 ident: ref_144 article-title: The Role of Reactive Oxygen Species in Regulating T Cell-mediated Immunity and Disease publication-title: Immune Netw. doi: 10.4110/in.2018.18.e14 – volume: 38 start-page: 5718 year: 2010 ident: ref_49 article-title: Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq212 – volume: 10 start-page: 1113 year: 2005 ident: ref_121 article-title: Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema publication-title: Genes Cells doi: 10.1111/j.1365-2443.2005.00905.x – volume: 142 start-page: 111 year: 2017 ident: ref_147 article-title: Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2017.06.136 – volume: 168 start-page: 1960 year: 2006 ident: ref_124 article-title: Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2 publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2006.051113 – volume: 30 start-page: 1024 year: 2009 ident: ref_82 article-title: Genetic versus chemoprotective activation of Nrf2 signaling: Overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice publication-title: Carcinogenesis doi: 10.1093/carcin/bgp100 – ident: ref_75 doi: 10.1016/j.jhep.2020.01.023 – volume: 32 start-page: 514 year: 2013 ident: ref_64 article-title: The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains publication-title: Oncogene doi: 10.1038/onc.2012.59 – volume: 285 start-page: 21258 year: 2010 ident: ref_22 article-title: CR6-interacting factor 1 (CRIF1) regulates NF-E2-related factor 2 (NRF2) protein stability by proteasome-mediated degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.084590 – volume: 34 start-page: 11929 year: 2014 ident: ref_79 article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1860-14.2014 – volume: 35 start-page: 238 year: 2003 ident: ref_72 article-title: Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation publication-title: Nat. Genet. doi: 10.1038/ng1248 – volume: 83 start-page: 77 year: 2015 ident: ref_141 article-title: Loss of Nrf2 in bone marrow-derived macrophages impairs antigen-driven CD8(+) T cell function by limiting GSH and Cys availability publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.02.004 – volume: 18 start-page: 1332 year: 2017 ident: ref_149 article-title: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor publication-title: Nat. Immunol. doi: 10.1038/ni.3868 – volume: 117 start-page: 1137 year: 2007 ident: ref_136 article-title: Immune surveillance of tumors publication-title: J. Clin. Investig. doi: 10.1172/JCI31405 – volume: 107 start-page: 18838 year: 2010 ident: ref_6 article-title: Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1007387107 – volume: 110 start-page: 15259 year: 2013 ident: ref_7 article-title: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1305687110 – volume: 132 start-page: 75 year: 2011 ident: ref_42 article-title: Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1 publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2010.12.004 – volume: 123 start-page: 2921 year: 2013 ident: ref_85 article-title: Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis publication-title: J. Clin. Investig. doi: 10.1172/JCI66353 – volume: 26 start-page: 7942 year: 2006 ident: ref_62 article-title: BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00700-06 – volume: 27 start-page: 1711 year: 2012 ident: ref_90 article-title: Dysregulated expression of fatty acid oxidation enzymes and iron-regulatory genes in livers of Nrf2-null mice publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/j.1440-1746.2012.07180.x – volume: 29 start-page: 935 year: 2016 ident: ref_11 article-title: p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.04.006 – volume: 25 start-page: 10895 year: 2005 ident: ref_63 article-title: The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.24.10895-10906.2005 – volume: 103 start-page: 1232 year: 2008 ident: ref_115 article-title: Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1 publication-title: Circ. Res. doi: 10.1161/01.RES.0000338597.71702.ad – volume: 34 start-page: 663 year: 2009 ident: ref_15 article-title: Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.04.029 – volume: 27 start-page: 2179 year: 2013 ident: ref_1 article-title: The emerging role of the Nrf2-Keap1 signaling pathway in cancer publication-title: Genes Dev. doi: 10.1101/gad.225680.113 – volume: 12 start-page: 1902 year: 2016 ident: ref_109 article-title: Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes publication-title: Autophagy doi: 10.1080/15548627.2016.1208889 – volume: 279 start-page: 31556 year: 2004 ident: ref_4 article-title: Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron publication-title: J. Biol. Chem. doi: 10.1074/jbc.M403061200 – volume: 210 start-page: 1529 year: 2013 ident: ref_16 article-title: BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival publication-title: J. Exp. Med. doi: 10.1084/jem.20121337 – volume: 22 start-page: 651 year: 2015 ident: ref_60 article-title: ATF3 protects pulmonary resident cells from acute and ventilator-induced lung injury by preventing Nrf2 degradation publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2014.5987 – volume: 39 start-page: 199 year: 2014 ident: ref_70 article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.02.002 – volume: 294 start-page: 327 year: 2019 ident: ref_77 article-title: Hyperactivity of the transcription factor Nrf2 causes metabolic reprogramming in mouse esophagus publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.005963 – volume: 34 start-page: 653 year: 2014 ident: ref_36 article-title: Notch-Nrf2 axis: Regulation of Nrf2 gene expression and cytoprotection by notch signaling publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01408-13 – volume: 116 start-page: 4338 year: 2010 ident: ref_40 article-title: microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease publication-title: Blood doi: 10.1182/blood-2009-04-214817 – volume: 7 start-page: 85 year: 2017 ident: ref_2 article-title: The KEAP1-NRF2 System in Cancer publication-title: Front. Oncol. doi: 10.3389/fonc.2017.00085 – volume: 115 start-page: 2758 year: 2018 ident: ref_100 article-title: Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1714056115 – volume: 243 start-page: 27 year: 2005 ident: ref_68 article-title: Repression of cancer protective genes by 17beta-estradiol: Ligand-dependent interaction between human Nrf2 and estrogen receptor alpha publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2005.08.002 – volume: 285 start-page: 22576 year: 2010 ident: ref_110 article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.118976 – volume: 16 start-page: 2605 year: 2016 ident: ref_48 article-title: Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.08.010 – volume: 6 start-page: 1026 year: 2014 ident: ref_134 article-title: Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.02.027 – volume: 87 start-page: 953 year: 1996 ident: ref_58 article-title: The transcriptional coactivators p300 and CBP are histone acetyltransferases publication-title: Cell doi: 10.1016/S0092-8674(00)82001-2 – volume: 34 start-page: 21 year: 2018 ident: ref_78 article-title: NRF2 and the Hallmarks of Cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.022 – volume: 116 start-page: 984 year: 2006 ident: ref_120 article-title: Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis publication-title: J. Clin. Investig. doi: 10.1172/JCI25790 – volume: 508 start-page: 101 year: 2011 ident: ref_93 article-title: Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2011.02.001 – volume: 7 start-page: 835 year: 2014 ident: ref_140 article-title: Myeloid lineage-specific deletion of antioxidant system enhances tumor metastasis publication-title: Cancer Prev. Res. (Phila.) doi: 10.1158/1940-6207.CAPR-14-0094 – volume: 33 start-page: 2402 year: 2013 ident: ref_38 article-title: Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00065-13 – volume: 99 start-page: 2070 year: 2008 ident: ref_31 article-title: Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6604703 – volume: 9 start-page: 402 year: 2018 ident: ref_39 article-title: Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2018.00402 – volume: 11 start-page: 619 year: 2003 ident: ref_99 article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00105-9 – volume: 47 start-page: 1475 year: 2015 ident: ref_88 article-title: NRF2 regulates serine biosynthesis in non-small cell lung cancer publication-title: Nat. Genet. doi: 10.1038/ng.3421 – volume: 33 start-page: 14636 year: 2019 ident: ref_47 article-title: Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1 publication-title: FASEB J. doi: 10.1096/fj.201901930R – volume: 2 start-page: 761 year: 2013 ident: ref_111 article-title: Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration publication-title: Biol. Open doi: 10.1242/bio.20134853 – volume: 61 start-page: 395 year: 2013 ident: ref_113 article-title: The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.04.007 – volume: 286 start-page: 4493 year: 2011 ident: ref_130 article-title: Nrf2 induces interleukin-6 (IL-6) expression via an antioxidant response element within the IL-6 promoter publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.162008 – volume: 6 start-page: 857 year: 2001 ident: ref_57 article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription publication-title: Genes Cells doi: 10.1046/j.1365-2443.2001.00469.x – volume: 477 start-page: 139 year: 2008 ident: ref_92 article-title: Nrf2 regulates the alternative first exons of CD36 in macrophages through specific antioxidant response elements publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2008.06.004 – volume: 9 start-page: 3506 year: 2018 ident: ref_133 article-title: Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming publication-title: Nat. Commun. doi: 10.1038/s41467-018-05861-7 – volume: 287 start-page: 6539 year: 2012 ident: ref_13 article-title: Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.316471 – ident: ref_37 doi: 10.1371/journal.pone.0008579 – volume: 34 start-page: 1165 year: 2013 ident: ref_43 article-title: MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis publication-title: Carcinogenesis doi: 10.1093/carcin/bgt026 – volume: 71 start-page: 1999 year: 2011 ident: ref_107 article-title: High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-3018 – volume: 41 start-page: 64 year: 2016 ident: ref_117 article-title: Moderate-Intensity Physical Exercise Protects Against Experimental 6-Hydroxydopamine-Induced Hemiparkinsonism Through Nrf2-Antioxidant Response Element Pathway publication-title: Neurochem. Res. doi: 10.1007/s11064-015-1709-8 – ident: ref_89 doi: 10.7554/eLife.28083 – volume: 60 start-page: 1343 year: 2001 ident: ref_123 article-title: Nrf2-deficient female mice develop lupus-like autoimmune nephritis publication-title: Kidney Int. doi: 10.1046/j.1523-1755.2001.00939.x – volume: 594 start-page: 5195 year: 2016 ident: ref_116 article-title: Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice publication-title: J. Physiol. doi: 10.1113/JP271957 – volume: 68 start-page: 364 year: 2008 ident: ref_59 article-title: Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-regulated stress pathway publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-2170 – volume: 9 start-page: 403 year: 2018 ident: ref_114 article-title: The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0436-x – volume: 23 start-page: 7198 year: 2003 ident: ref_27 article-title: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.20.7198-7209.2003 – volume: 10 start-page: 435 year: 2019 ident: ref_118 article-title: Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1alpha Signaling Pathways publication-title: Front. Genet. doi: 10.3389/fgene.2019.00435 – volume: 290 start-page: 29854 year: 2015 ident: ref_106 article-title: The Nuclear Factor (Erythroid-derived 2)-like 2 and Proteasome Maturation Protein Axis Mediate Bortezomib Resistance in Multiple Myeloma publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.664953 – ident: ref_98 doi: 10.1101/655159 – ident: ref_142 doi: 10.1128/MCB.00063-17 – volume: 73 start-page: 2199 year: 2013 ident: ref_12 article-title: Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-4400 – volume: 27 start-page: 441 year: 2011 ident: ref_86 article-title: Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154237 – volume: 45 start-page: 841 year: 2006 ident: ref_24 article-title: Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells publication-title: Mol. Carcinog. doi: 10.1002/mc.20234 – volume: 26 start-page: 190 year: 2016 ident: ref_65 article-title: SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2 publication-title: Cell Res. doi: 10.1038/cr.2016.4 – volume: 181 start-page: 6730 year: 2008 ident: ref_33 article-title: Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.181.10.6730 – volume: 197 start-page: 857 year: 2012 ident: ref_95 article-title: The impact of the unfolded protein response on human disease publication-title: J. Cell Biol. doi: 10.1083/jcb.201110131 – volume: 22 start-page: 66 year: 2012 ident: ref_35 article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.05.016 – ident: ref_23 doi: 10.1093/carcin/bgaa039 – ident: ref_20 doi: 10.1371/journal.pgen.1006762 – volume: 32 start-page: 2616 year: 2014 ident: ref_105 article-title: Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells publication-title: Stem Cells doi: 10.1002/stem.1764 – volume: 8 start-page: 379 year: 2003 ident: ref_8 article-title: Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles publication-title: Genes Cells doi: 10.1046/j.1365-2443.2003.00640.x – volume: 40 start-page: 7416 year: 2012 ident: ref_50 article-title: Identification of novel NRF2-regulated genes by ChIP-Seq: Influence on retinoid X receptor alpha publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks409 – volume: 23 start-page: 8786 year: 2003 ident: ref_101 article-title: Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.23.8786-8794.2003 – volume: 18 start-page: 295 year: 2019 ident: ref_80 article-title: Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-018-0008-x – volume: 72 start-page: 167 year: 2020 ident: ref_137 article-title: The immunobiology of hepatocellular carcinoma in humans and mice: Basic concepts and therapeutic implications publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.08.014 – volume: 13 start-page: 828 year: 2007 ident: ref_139 article-title: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer publication-title: Nat. Med. doi: 10.1038/nm1609 – volume: 32 start-page: 3765 year: 2013 ident: ref_18 article-title: Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity publication-title: Oncogene doi: 10.1038/onc.2012.388 – ident: ref_71 doi: 10.1371/journal.pone.0039006 – volume: 22 start-page: 2883 year: 2002 ident: ref_29 article-title: Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: Role of antioxidant response element-like sequences in the nrf2 promoter publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.9.2883-2892.2002 – volume: 188 start-page: 1630 year: 2012 ident: ref_143 article-title: Th2 skewing by activation of Nrf2 in CD4(+) T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1101712 – volume: 43 start-page: 611 year: 2015 ident: ref_19 article-title: Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of beta-TrCP and GSK-3 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20150011 – volume: 93 start-page: 14960 year: 1996 ident: ref_55 article-title: Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.25.14960 – volume: 178 start-page: 807 year: 2019 ident: ref_28 article-title: The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase publication-title: Cell doi: 10.1016/j.cell.2019.07.031 – volume: 475 start-page: 106 year: 2011 ident: ref_34 article-title: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis publication-title: Nature doi: 10.1038/nature10189 – volume: 7 start-page: 11624 year: 2016 ident: ref_127 article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription publication-title: Nat. Commun. doi: 10.1038/ncomms11624 – volume: 29 start-page: 1756 year: 2018 ident: ref_94 article-title: The Roles of NRF2 in Modulating Cellular Iron Homeostasis publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7176 – volume: 16 start-page: 2348 year: 2016 ident: ref_135 article-title: Nrf2 Induces IL-17D to Mediate Tumor and Virus Surveillance publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.07.075 – volume: 524 start-page: 895 year: 2020 ident: ref_17 article-title: The acetyltransferase p300 regulates NRF2 stability and localization publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.02.006 – volume: 10 start-page: 159 year: 2020 ident: ref_81 article-title: Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis publication-title: Front. Oncol. doi: 10.3389/fonc.2020.00159 – volume: 23 start-page: 1362 year: 2017 ident: ref_87 article-title: Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis publication-title: Nat. Med. doi: 10.1038/nm.4407 – volume: 276 start-page: 20858 year: 2001 ident: ref_54 article-title: Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101198200 – volume: 108 start-page: 35 year: 2009 ident: ref_74 article-title: Increased Nrf2 activation in livers from Keap1-knockdown mice increases expression of cytoprotective genes that detoxify electrophiles more than those that detoxify reactive oxygen species publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfn267 – volume: 104 start-page: 218 year: 2008 ident: ref_125 article-title: Genetic or pharmacologic amplification of nrf2 signaling inhibits acute inflammatory liver injury in mice publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfn079 – volume: 590 start-page: 2375 year: 2016 ident: ref_9 article-title: p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer publication-title: FEBS Lett. doi: 10.1002/1873-3468.12301 – volume: 35 start-page: 7074 year: 2007 ident: ref_53 article-title: Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm638 |
SSID | ssj0023259 |
Score | 2.7097397 |
SecondaryResourceType | review_article |
Snippet | Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4777 |
SubjectTerms | Animals Autophagy Binding sites Breast cancer Endoplasmic reticulum Gene expression Gene Expression Regulation Humans Hydrocarbons Inflammation - physiopathology Kinases Metabolism NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism Oxidative Stress Phosphorylation Proteins Review Transcription factors Unfolded Protein Response |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66IngR31ZXiaAnLdo0jxYPImIRDx5Whb2VPFHRrrrrwX_vJO12XUWvzUDLTJr5JvkyH0L7LHHGQB0Qu5T5ptqaxVJpF_PcMacN0doEtsUNv7qn133Wbzbchg2tcrwmhoXaDLTfIz-GVEIoh9mVn72-xV41yp-uNhIas2jOty7zlC7RnxRcKQliaQnkoJiznNfE9xTK_OPHp5ch1D4pFUJMp6RfOPMnXfJb_imW0GIDHPF5HellNGOrFTRfS0l-rqLTm15BjrDEIfmMlwJcBDkdDMgU34ZbIbhXk2ItlpXB9f2VNXRfXN5dXMWNMEKsqchGcZYl0qkMoFMiDIG6UsrcaWbT3NgsdZyeGJZoQZXkVnlZMSFJLikD1yvFtEvXUacaVHYTYWXgqWSMSeYoVwAIBGR8aaWSigD6jtDh2DelbrqGe_GK5xKqB-_J8rsnI3TQWr_W3TL-sOuO3Vw2_8ywnEQ4QnvtMMx2f4QhKzv4qG1OfCtTGqGNOirtiwCIAvokMCKm4tUa-E7a0yPV40PoqC1SDlmZbf3_WdtogfhqOxAGu6gzev-wOwBJRmo3zLsvMWngig priority: 102 providerName: ProQuest |
Title | NRF2, a Transcription Factor for Stress Response and Beyond |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32640524 https://www.proquest.com/docview/2422468709 https://www.proquest.com/docview/2422009134 https://pubmed.ncbi.nlm.nih.gov/PMC7369905 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oRPBFvDsvI4I-aXVrk6ZFRFSsIjhkOthbyRUVrZdN0H_vSbsW5wV86UOT0nJOkvN9zcn5ADZZy2qNPMCzAXNFtRXzhFTWC2PLrNK-UjrPtmiH51160WO9MSjVRocG7P9K7ZyeVPf1Yff95eMQJ_yBY5xI2ffu7h_7yGMCyjkfhwmMSdxN0Uta7ScgbMhl09wPD88t0EUK_I-nR4PTD8T5PXHySyRKZmB6CCHJUeHzWRgz2RxMFqKSH_Ow3-4k_g4RJA9D5aJAklxYhyBGJdf5-RDSKdJjDRGZJsVJlgXoJqc3J-feUCLBU5RHAy-KWsLKCEFUi2sfGaYQsVXMBLE2UWBD2tSspTiVIjTSCYxx4ceCMnSClEzZYBFq2VNmloFIjXcFY0wwS0OJ0IBj7BdGSCF9xOF12C5tk6ph_XAnY_GQIo9wlky_WrIOW1Xv56Juxh_91kozp6XzU4QNPg1xJYnrsFE147h3mxkiM09vRZ-mK2pK67BUeKV6EUJSxKE-tvARf1UdXE3t0Zbs7javrc2DEOMzW_nn56_ClO8IeJ5DuAa1weubWUeUMpANGOc9jtcoOWvAxPFp-6rTcHGDNfKh-QlDcOon |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxJvQFoxET7Bq1s9dIVQhIEppyaG0Um5bP0URbEqTCvVP8RsZ29m0AcGt1_Vo15oZe75Zj-cDeCHK4BzmAUVgIjbVtqLQxoZC1kEE66i1LlVbjOTwkH8ci_EK_OruwsSyym5PTBu1m9j4j3wLQwnlEr2r3j75UUTWqHi62lFoZLfY9ec_MWWbvtl5j_bdpHTw4eDdsJizChSWq2pWVFWpg6kQd5TKUUzKtK6DFZ7VzlcsSN53orSKGy29iZxcStNac4HzNkbYwPC91-A6Bt5-XFFqfJHgMZrI2UqMeYUUtcyF9ozV_a3jr9-nmGsxrpRaDoF_4do_yzMvxbvBHbg9B6rkbfasu7Di23twI1NXnt-H16P9AX1FNEnBrtt6yCDR9xBEwuRzuoVC9nMRrie6dSTfl3kAh1eisoew2k5a_xiIcfhUCyG0CFwaBCAKEYb22mhDEe334GWnm8bOu5RHsoxvDWYrUZPNZU32YHMhfZK7c_xDbr1TczNfo9PmwqN68HwxjKsrHpno1k_Oskw_tk7lPXiUrbL4EAJfRLsUR9SSvRYCsXP38kh7_CV18FZMIgoQT_4_rWdwc3jwaa_Z2xntrsEtGjP9VKy4Dquz0zO_gXBoZp4mHyRwdNVO_xuV6h4O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAviHe3FDASPUG0Gzu2EyGEECVqKVqhQqW9BT_VVpBt2a1Q_xq_jrGdbLsguPUaj_IYjz3fxDPzATznubcW44DMMx6aahueKW18JirPvbHUGBuzLcZi56D4MOGTFfjV18KEtMp-T4wbtZ2a8I98iK6EFgKtqxr6Li3i03b95uQ0CwxS4aS1p9NIJrLnzn9i-DZ7vbuNc71Faf3-y7udrGMYyEwhy3lWlrnyukQMkktLMUBTqvKGO1ZZVzIvipHluZGFVsLpwM8lFa1UwfEbtObGM7zvNbguGc_DGpOTi2CP0UjUlqP_ywSvREq6Z6waDY-Ov88w7mKFlHLZHf6Fcf9M1bzk--rbcKsDreRtsrI7sOLau3Aj0Vie34NX4_2aviSKRMfXb0OkjlQ-BFEx-RwrUsh-Ssh1RLWWpNqZ-3BwJSp7AKvttHXrQLTFq4pzrrgvhEYwIhFtKKe00hSR_wBe9LppTNexPBBnfGswcgmabC5rcgBbC-mT1KnjH3KbvZqbbr3OmgvrGsCzxTCutHB8olo3PUsyo9BGtRjAwzQriwchCEbkS3FELs3XQiB08V4eaY8OYzdvyQQiAr7x_9d6CjfR3JuPu-O9R7BGQ9Af8xY3YXX-48w9RmQ010-iCRL4etU2_xu0biJE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NRF2%2C+a+Transcription+Factor+for+Stress+Response+and+Beyond&rft.jtitle=International+journal+of+molecular+sciences&rft.au=He%2C+Feng&rft.au=Ru%2C+Xiaoli&rft.au=Wen%2C+Tao&rft.date=2020-07-06&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=21&rft.issue=13&rft.spage=4777&rft_id=info:doi/10.3390%2Fijms21134777&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms21134777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |