NRF2, a Transcription Factor for Stress Response and Beyond

Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 13; p. 4777
Main Authors He, Feng, Ru, Xiaoli, Wen, Tao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.07.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.
AbstractList Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell's response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell's response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.
Author Ru, Xiaoli
Wen, Tao
He, Feng
AuthorAffiliation 2 Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; 18801350216@163.com
1 Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
3 Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
AuthorAffiliation_xml – name: 2 Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; 18801350216@163.com
– name: 3 Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
– name: 1 Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0003-0276-3303
  surname: He
  fullname: He, Feng
– sequence: 2
  givenname: Xiaoli
  surname: Ru
  fullname: Ru, Xiaoli
– sequence: 3
  givenname: Tao
  orcidid: 0000-0003-0675-0163
  surname: Wen
  fullname: Wen, Tao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32640524$$D View this record in MEDLINE/PubMed
BookMark eNptkcFLwzAYxYMobk5vnqXgxYPT9EvaNAiCilNBFOY8hzRNNaNLZtIK_vdmbsoUDyGB75fH-97bQZvWWY3QfopPCOH41ExnAdKUUMbYBuqnFGCIcc421949tBPCFGMgkPFt1COQU5wB7aOzh_EIjhOZTLy0QXkzb42zyUiq1vmkjuep9TqEZKzD3NmgE2mr5FJ_OFvtoq1aNkHvre4Beh5dT65uh_ePN3dXF_dDRVnRDosilXVZZAApqwAYlZLXKtOEV7ogdXRSZalitJS5LjkDwiRwSbMKVFlmqiYDdL7UnXflTFdK29bLRsy9mUn_IZw04vfEmlfx4t4FIznnOIsCRysB7946HVoxM0HpppFWuy4IiDlhzGOGET38g05d521c74uiecEwj9TBuqMfK9-5RuB4CSjvQvC6_kFSLBa1ifXaIg5_cGVauWgi7mOa_z99Ai1_mhU
CitedBy_id crossref_primary_10_1007_s13273_022_00322_1
crossref_primary_10_1016_j_intimp_2024_112527
crossref_primary_10_1016_j_micpath_2023_106339
crossref_primary_10_1016_j_jpha_2024_101145
crossref_primary_10_1007_s11130_024_01249_9
crossref_primary_10_3390_antiox10111762
crossref_primary_10_3390_ijms24076804
crossref_primary_10_1007_s13577_023_00959_7
crossref_primary_10_3390_toxins15090555
crossref_primary_10_3390_antiox11081430
crossref_primary_10_1186_s12864_024_10967_y
crossref_primary_10_1016_j_foodchem_2022_135230
crossref_primary_10_31857_S0026898423060071
crossref_primary_10_1016_j_jep_2024_118582
crossref_primary_10_1111_anu_13372
crossref_primary_10_1016_j_abb_2023_109601
crossref_primary_10_1007_s13273_023_00419_1
crossref_primary_10_1002_fsn3_4404
crossref_primary_10_1007_s12035_024_04097_5
crossref_primary_10_2147_JIR_S490418
crossref_primary_10_1016_j_cellsig_2025_111609
crossref_primary_10_1124_dmd_124_001282
crossref_primary_10_1016_j_xcrm_2024_101690
crossref_primary_10_1159_000538832
crossref_primary_10_3390_antiox11081426
crossref_primary_10_3390_nu16172838
crossref_primary_10_1007_s11418_022_01664_9
crossref_primary_10_1002_2211_5463_13732
crossref_primary_10_1016_j_taap_2024_117113
crossref_primary_10_1038_s41420_023_01565_0
crossref_primary_10_2147_CCID_S449987
crossref_primary_10_3390_ijms24010199
crossref_primary_10_1007_s10787_022_01016_9
crossref_primary_10_1016_j_psj_2024_103909
crossref_primary_10_3390_ijms22116022
crossref_primary_10_3390_molecules29163852
crossref_primary_10_2147_IJN_S467733
crossref_primary_10_3390_cells12131713
crossref_primary_10_3390_ijms23126719
crossref_primary_10_1016_j_fsi_2022_02_010
crossref_primary_10_1016_j_molimm_2025_02_007
crossref_primary_10_3390_biom13071105
crossref_primary_10_1016_j_ijpharm_2024_124002
crossref_primary_10_1016_j_cbi_2024_111179
crossref_primary_10_3389_fphar_2023_1102567
crossref_primary_10_3390_biomedicines11041081
crossref_primary_10_3390_biom14121594
crossref_primary_10_1016_j_jtcms_2023_12_001
crossref_primary_10_1016_j_fct_2024_114845
crossref_primary_10_1080_10715762_2024_2348789
crossref_primary_10_3390_molecules28145305
crossref_primary_10_3390_nu17010158
crossref_primary_10_3389_fphar_2024_1416781
crossref_primary_10_1016_j_jep_2024_118357
crossref_primary_10_3390_antiox13070813
crossref_primary_10_1016_j_ejphar_2022_174933
crossref_primary_10_3389_fcimb_2022_1022879
crossref_primary_10_1007_s11356_022_22702_9
crossref_primary_10_3390_molecules28145543
crossref_primary_10_3390_cells14010018
crossref_primary_10_3389_fphar_2024_1503064
crossref_primary_10_1039_D4MD00281D
crossref_primary_10_1007_s12640_024_00694_3
crossref_primary_10_3390_antiox11071410
crossref_primary_10_3390_antiox12061206
crossref_primary_10_1002_fsn3_4615
crossref_primary_10_1016_j_crtox_2023_100134
crossref_primary_10_3390_antiox13020146
crossref_primary_10_3390_md22120568
crossref_primary_10_1016_j_phymed_2024_155458
crossref_primary_10_3390_cells13040296
crossref_primary_10_3390_ijms25094925
crossref_primary_10_1111_fcp_12926
crossref_primary_10_3389_fendo_2024_1434338
crossref_primary_10_3390_cancers13051095
crossref_primary_10_3390_applmicrobiol3010011
crossref_primary_10_1134_S0006297922120057
crossref_primary_10_1016_j_tox_2024_153760
crossref_primary_10_1007_s11655_024_3657_0
crossref_primary_10_3390_life13061308
crossref_primary_10_1016_j_jes_2024_02_027
crossref_primary_10_1177_10738584221139761
crossref_primary_10_1016_j_ecoenv_2023_114646
crossref_primary_10_1016_j_envres_2024_119113
crossref_primary_10_3390_ijms241914755
crossref_primary_10_1016_j_neuroscience_2024_08_025
crossref_primary_10_3390_ijms222011060
crossref_primary_10_1016_j_jprot_2022_104734
crossref_primary_10_1016_j_ecoenv_2022_114389
crossref_primary_10_1007_s11356_022_20996_3
crossref_primary_10_3389_fphar_2022_807452
crossref_primary_10_1016_j_jhep_2022_01_008
crossref_primary_10_3390_cancers16122262
crossref_primary_10_1007_s11655_022_3620_x
crossref_primary_10_4251_wjgo_v16_i11_4436
crossref_primary_10_1016_j_lfs_2023_122343
crossref_primary_10_1002_iid3_70109
crossref_primary_10_1186_s10020_023_00624_7
crossref_primary_10_2220_biomedres_45_197
crossref_primary_10_1007_s00204_023_03660_8
crossref_primary_10_1155_2022_7222590
crossref_primary_10_1016_j_psj_2023_102975
crossref_primary_10_1016_j_biopha_2023_115805
crossref_primary_10_1080_10408398_2023_2294164
crossref_primary_10_1186_s12906_024_04491_5
crossref_primary_10_62347_LWRS3363
crossref_primary_10_1038_s12276_023_00958_6
crossref_primary_10_1016_j_biopha_2023_115807
crossref_primary_10_3390_antiox10122005
crossref_primary_10_1515_medgen_2022_2138
crossref_primary_10_1155_2023_3906043
crossref_primary_10_1002_biof_1931
crossref_primary_10_1016_j_abb_2024_109948
crossref_primary_10_1016_j_yexcr_2024_114388
crossref_primary_10_1007_s11010_023_04876_z
crossref_primary_10_1089_jop_2024_0123
crossref_primary_10_1089_ars_2022_0214
crossref_primary_10_3390_cimb45080420
crossref_primary_10_3390_antiox12030766
crossref_primary_10_1016_j_biopha_2024_117280
crossref_primary_10_1038_s41598_021_90148_z
crossref_primary_10_1016_j_cbi_2025_111444
crossref_primary_10_1016_j_lfs_2023_122125
crossref_primary_10_3390_nu16040542
crossref_primary_10_1016_j_radonc_2024_110503
crossref_primary_10_20517_cdr_2023_79
crossref_primary_10_3389_fmars_2024_1438955
crossref_primary_10_3390_antiox11102067
crossref_primary_10_1016_j_carbpol_2024_122960
crossref_primary_10_1007_s10266_024_00909_1
crossref_primary_10_3390_biomedicines11051293
crossref_primary_10_3389_fphar_2022_862085
crossref_primary_10_1016_j_ijbiomac_2024_136687
crossref_primary_10_1016_j_arr_2024_102536
crossref_primary_10_1111_jnc_16222
crossref_primary_10_3389_fphys_2022_844539
crossref_primary_10_3390_antiox13030303
crossref_primary_10_3389_fcell_2024_1458716
crossref_primary_10_1016_j_ejmech_2024_116795
crossref_primary_10_1016_j_lfs_2024_123066
crossref_primary_10_1016_j_fct_2023_113850
crossref_primary_10_1016_j_ijbiomac_2024_135109
crossref_primary_10_3390_ijms241814013
crossref_primary_10_2147_IJN_S411562
crossref_primary_10_1007_s00253_022_12041_7
crossref_primary_10_12688_f1000research_158839_1
crossref_primary_10_1093_toxres_tfac076
crossref_primary_10_1016_j_archger_2024_105694
crossref_primary_10_3390_antiox10091430
crossref_primary_10_1007_s00210_024_03170_z
crossref_primary_10_61186_rbmb_12_4_512
crossref_primary_10_1021_acsomega_4c06152
crossref_primary_10_3390_pathogens13020104
crossref_primary_10_3390_antiox12020518
crossref_primary_10_1038_s41598_024_71234_4
crossref_primary_10_1016_j_lfs_2024_123056
crossref_primary_10_1038_s41467_023_43513_7
crossref_primary_10_1007_s12012_023_09794_6
crossref_primary_10_3390_antiox10060944
crossref_primary_10_1080_1061186X_2024_2356736
crossref_primary_10_1142_S0192415X24500952
crossref_primary_10_3892_mmr_2024_13401
crossref_primary_10_1016_j_jpap_2024_100227
crossref_primary_10_1080_10715762_2024_2320383
crossref_primary_10_3390_cells12151969
crossref_primary_10_1007_s10068_024_01599_9
crossref_primary_10_1007_s44372_025_00127_1
crossref_primary_10_3389_fphar_2024_1497733
crossref_primary_10_1002_jbt_23689
crossref_primary_10_3390_nano14201647
crossref_primary_10_1016_j_freeradbiomed_2024_04_229
crossref_primary_10_3390_antiox10122028
crossref_primary_10_1016_j_taap_2024_117172
crossref_primary_10_1371_journal_pone_0272928
crossref_primary_10_1080_14728222_2022_2052848
crossref_primary_10_3390_antiox12061290
crossref_primary_10_1016_j_arr_2024_102548
crossref_primary_10_1007_s12192_023_01391_4
crossref_primary_10_1080_00498254_2025_2465239
crossref_primary_10_1007_s00210_024_03400_4
crossref_primary_10_1113_EP091768
crossref_primary_10_1016_j_cbi_2025_111489
crossref_primary_10_1016_j_biocel_2023_106397
crossref_primary_10_1016_j_biopha_2024_117210
crossref_primary_10_3724_abbs_2025026
crossref_primary_10_1186_s40798_022_00450_x
crossref_primary_10_1016_j_freeradbiomed_2024_06_008
crossref_primary_10_1007_s11101_024_09955_7
crossref_primary_10_1155_2024_9590066
crossref_primary_10_3390_vetsci11120607
crossref_primary_10_1007_s12026_025_09613_w
crossref_primary_10_3390_antiox13111284
crossref_primary_10_3389_fimmu_2021_716661
crossref_primary_10_3389_fmolb_2023_1111511
crossref_primary_10_1016_j_semcancer_2023_12_001
crossref_primary_10_3390_antiox13030344
crossref_primary_10_1016_j_ejmech_2024_116355
crossref_primary_10_3390_antiox13101224
crossref_primary_10_1016_j_bbadis_2025_167764
crossref_primary_10_1007_s12640_024_00726_y
crossref_primary_10_1080_14786419_2024_2411725
crossref_primary_10_1038_s41598_023_49310_y
crossref_primary_10_1002_pro_5137
crossref_primary_10_1016_j_aninu_2023_12_007
crossref_primary_10_1021_acs_jmedchem_1c01883
crossref_primary_10_1016_j_pharmthera_2021_108009
crossref_primary_10_3746_pnf_2022_27_2_188
crossref_primary_10_1016_j_crfs_2023_100521
crossref_primary_10_1080_00365513_2024_2377966
crossref_primary_10_1016_j_cbpc_2023_109787
crossref_primary_10_1016_j_heliyon_2024_e24619
crossref_primary_10_2147_DDDT_S467569
crossref_primary_10_2147_DDDT_S433591
crossref_primary_10_1016_j_intimp_2024_113478
crossref_primary_10_3724_abbs_2024194
crossref_primary_10_3390_nu13061788
crossref_primary_10_1016_j_intimp_2024_113233
crossref_primary_10_1016_j_intimp_2024_113475
crossref_primary_10_1016_j_freeradbiomed_2022_03_016
crossref_primary_10_2147_VHRM_S294121
crossref_primary_10_1007_s11356_023_27747_y
crossref_primary_10_3390_ijms25116148
crossref_primary_10_3390_nu14163392
crossref_primary_10_1080_21688370_2024_2361202
crossref_primary_10_1371_journal_pntd_0011607
crossref_primary_10_1016_j_exer_2024_110105
crossref_primary_10_1007_s11033_023_08392_7
crossref_primary_10_1111_ppl_13771
crossref_primary_10_3389_fimmu_2024_1342977
crossref_primary_10_3390_ijms25073833
crossref_primary_10_3390_antiox11112277
crossref_primary_10_1016_j_jsps_2022_06_026
crossref_primary_10_1016_j_fsi_2023_108547
crossref_primary_10_1016_j_vph_2025_107476
crossref_primary_10_12677_acm_2025_152377
crossref_primary_10_1080_17512433_2021_1901578
crossref_primary_10_1186_s12987_024_00599_5
crossref_primary_10_1016_j_heliyon_2024_e32459
crossref_primary_10_3389_fcvm_2025_1541278
crossref_primary_10_32604_biocell_2023_042472
crossref_primary_10_3390_ijms24097924
crossref_primary_10_3390_nu16121877
crossref_primary_10_1016_j_jep_2022_115759
crossref_primary_10_1016_j_csbj_2024_04_006
crossref_primary_10_3390_ijms241210350
crossref_primary_10_1038_s41598_023_44836_7
crossref_primary_10_3389_fphar_2024_1470879
crossref_primary_10_3390_ph15060692
crossref_primary_10_1016_j_phymed_2024_155814
crossref_primary_10_1016_j_bbrc_2023_08_004
crossref_primary_10_25048_tudod_1517395
crossref_primary_10_3390_antiox14030360
crossref_primary_10_3389_fgene_2021_673002
crossref_primary_10_3390_epigenomes6040036
crossref_primary_10_1007_s12265_021_10197_7
crossref_primary_10_1016_j_toxicon_2023_107313
crossref_primary_10_3390_antiox14030352
crossref_primary_10_1016_j_bbrc_2023_09_045
crossref_primary_10_1038_s41598_023_44814_z
crossref_primary_10_1016_j_ejphar_2024_177070
crossref_primary_10_1016_j_lfs_2024_123206
crossref_primary_10_1155_sci5_7932075
crossref_primary_10_1360_SSV_2023_0003
crossref_primary_10_3390_ijms24076017
crossref_primary_10_1096_fj_202400236RR
crossref_primary_10_1016_j_foodchem_2023_138234
crossref_primary_10_1177_15330338221105736
crossref_primary_10_1016_j_ijbiomac_2024_134532
crossref_primary_10_1093_burnst_tkac007
crossref_primary_10_3390_ijms252211954
crossref_primary_10_3390_antibiotics12010130
crossref_primary_10_3390_biomedicines9111524
crossref_primary_10_3390_nu16183169
crossref_primary_10_3390_ijms23052846
crossref_primary_10_1038_s41420_024_01863_1
crossref_primary_10_1016_j_intimp_2023_110747
crossref_primary_10_1155_2022_3313016
crossref_primary_10_28996_2618_9801_2024_3_283_302
crossref_primary_10_3389_fendo_2024_1411706
crossref_primary_10_3390_computation11120255
crossref_primary_10_1080_10408398_2022_2107611
crossref_primary_10_3389_fphar_2022_916732
crossref_primary_10_1016_j_scitotenv_2024_172633
crossref_primary_10_3390_ijms24098011
crossref_primary_10_1016_j_jhazmat_2024_134560
crossref_primary_10_3390_ijms24010853
crossref_primary_10_3390_ijms25137042
crossref_primary_10_1016_j_freeradbiomed_2024_07_021
crossref_primary_10_1016_j_freeradbiomed_2024_08_038
crossref_primary_10_1016_j_phytochem_2023_113803
crossref_primary_10_1016_j_ajhg_2021_07_008
crossref_primary_10_1016_j_jbc_2024_108121
crossref_primary_10_3390_ijms24098264
crossref_primary_10_1007_s11101_024_09944_w
crossref_primary_10_1158_1535_7163_MCT_24_0170
crossref_primary_10_3390_antiox11061179
crossref_primary_10_1016_j_bbagen_2022_130129
crossref_primary_10_1016_j_preteyeres_2024_101271
crossref_primary_10_3390_cancers13153670
crossref_primary_10_4062_biomolther_2023_179
crossref_primary_10_1038_s41580_024_00730_2
crossref_primary_10_1016_j_fitote_2025_106398
crossref_primary_10_3390_jfmk6030072
crossref_primary_10_3389_fneur_2023_1271941
crossref_primary_10_3390_antiox9121259
crossref_primary_10_1002_jbt_23455
crossref_primary_10_32947_ajps_v21i4_798
crossref_primary_10_1051_bioconf_20248601041
crossref_primary_10_3390_antiox13101193
crossref_primary_10_3390_molecules28010121
crossref_primary_10_1016_j_neuint_2024_105773
crossref_primary_10_2147_JIR_S451643
crossref_primary_10_1016_j_exer_2024_110163
crossref_primary_10_3390_ijms251910385
crossref_primary_10_3389_fimmu_2023_1305933
crossref_primary_10_1016_j_ijbiomac_2025_140221
crossref_primary_10_1016_j_jnutbio_2024_109779
crossref_primary_10_3390_nu13010266
crossref_primary_10_3390_ijms24076053
crossref_primary_10_3389_fphar_2023_1177542
crossref_primary_10_3390_ph16111624
crossref_primary_10_1016_j_phrs_2023_107032
crossref_primary_10_1038_s41380_022_01712_6
crossref_primary_10_1155_2022_7497816
crossref_primary_10_3390_ijms242417223
crossref_primary_10_1007_s11356_022_24361_2
crossref_primary_10_1007_s10565_022_09789_z
crossref_primary_10_1016_j_bbrc_2023_149167
crossref_primary_10_1080_13880209_2022_2123941
crossref_primary_10_1016_j_abb_2024_110101
crossref_primary_10_1016_j_heliyon_2024_e27011
crossref_primary_10_3390_v17030347
crossref_primary_10_1016_j_ccell_2025_01_003
crossref_primary_10_1021_acschembio_3c00750
crossref_primary_10_1097_MD_0000000000036157
crossref_primary_10_3389_fnagi_2022_1004557
crossref_primary_10_3389_fncel_2022_946206
crossref_primary_10_3390_ijms241310869
crossref_primary_10_1155_2021_8447456
crossref_primary_10_3389_fnmol_2024_1513084
crossref_primary_10_1111_1753_0407_13524
crossref_primary_10_1016_j_freeradbiomed_2023_10_403
crossref_primary_10_3389_fimmu_2024_1520072
crossref_primary_10_1016_j_fsi_2025_110161
crossref_primary_10_1007_s12012_025_09962_w
crossref_primary_10_1016_j_heliyon_2022_e11108
crossref_primary_10_1039_D1FO02361F
crossref_primary_10_1134_S0026893323060067
crossref_primary_10_3390_app14083186
crossref_primary_10_1007_s12012_024_09941_7
crossref_primary_10_3389_fendo_2022_963451
crossref_primary_10_1177_0976500X221128855
crossref_primary_10_3748_wjg_v30_i10_1405
crossref_primary_10_3389_fmed_2023_1118703
crossref_primary_10_3390_ijms25063510
crossref_primary_10_1007_s40495_024_00388_6
crossref_primary_10_1016_j_ecoenv_2024_116344
crossref_primary_10_1016_j_molimm_2023_11_010
crossref_primary_10_1007_s10787_024_01506_y
crossref_primary_10_1007_s10565_024_09964_4
crossref_primary_10_1080_1061186X_2024_2417189
crossref_primary_10_1021_acs_jafc_2c04811
crossref_primary_10_3389_fimmu_2025_1515430
crossref_primary_10_1089_rej_2023_0061
crossref_primary_10_3390_ijms24032020
crossref_primary_10_1016_j_bcp_2023_115522
crossref_primary_10_1016_j_marenvres_2023_106294
crossref_primary_10_3390_ijms25158153
crossref_primary_10_1007_s00580_024_03572_8
crossref_primary_10_3390_molecules29225440
crossref_primary_10_3390_foods12030439
crossref_primary_10_1007_s12012_024_09952_4
crossref_primary_10_1038_s41401_023_01177_5
crossref_primary_10_3390_ijms25063521
crossref_primary_10_1002_ptr_7749
crossref_primary_10_1016_j_intimp_2023_110587
crossref_primary_10_1016_j_mrgentox_2021_503437
crossref_primary_10_1155_2024_7683793
crossref_primary_10_1177_1934578X241287061
crossref_primary_10_1111_nep_14237
crossref_primary_10_1016_j_jff_2024_106095
crossref_primary_10_33590_emj_21_00027
crossref_primary_10_1016_j_intimp_2025_114024
crossref_primary_10_3390_antiox13091147
crossref_primary_10_1158_0008_5472_CAN_22_3848
crossref_primary_10_1038_s41419_023_06144_w
crossref_primary_10_1042_BSR20240444
crossref_primary_10_3389_fmed_2024_1454902
crossref_primary_10_1016_j_radonc_2021_03_038
crossref_primary_10_3390_ijms24065508
crossref_primary_10_3390_antiox11040607
crossref_primary_10_1016_j_cyto_2025_156876
crossref_primary_10_1002_med_22014
crossref_primary_10_1016_j_bbr_2024_115280
crossref_primary_10_1016_j_fct_2024_114445
crossref_primary_10_1016_j_cbi_2020_109336
crossref_primary_10_3390_cells12091341
crossref_primary_10_1016_j_kint_2023_03_012
crossref_primary_10_3390_ph17020232
crossref_primary_10_1016_j_jnutbio_2022_108992
crossref_primary_10_3390_antiox14020171
crossref_primary_10_1167_iovs_62_12_8
crossref_primary_10_3390_antiox13020180
crossref_primary_10_1097_COH_0000000000000844
crossref_primary_10_52711_0974_360X_2022_00650
crossref_primary_10_1016_j_mam_2024_101279
crossref_primary_10_1016_j_jep_2023_117115
crossref_primary_10_3390_antiox10081168
crossref_primary_10_3746_pnf_2024_29_3_301
crossref_primary_10_1016_j_smhs_2023_09_001
crossref_primary_10_1016_j_xcrm_2021_100471
crossref_primary_10_3389_fonc_2023_1125855
crossref_primary_10_3390_cancers15133484
crossref_primary_10_1016_j_toxrep_2023_12_004
crossref_primary_10_1021_acs_jcim_3c01967
crossref_primary_10_1016_j_semcancer_2020_11_019
crossref_primary_10_3390_antiox14020180
crossref_primary_10_3390_antiox12101837
crossref_primary_10_1128_spectrum_03279_23
crossref_primary_10_26442_20751753_2023_5_202272
crossref_primary_10_3390_biomedicines12112525
crossref_primary_10_1038_s41419_022_04660_9
crossref_primary_10_1007_s00018_023_05061_7
crossref_primary_10_1016_j_brainres_2023_148462
crossref_primary_10_1007_s10787_024_01624_7
crossref_primary_10_1096_fj_202401987RR
crossref_primary_10_1186_s12964_024_01878_2
crossref_primary_10_1016_j_dld_2022_02_001
crossref_primary_10_1515_reveh_2023_0023
crossref_primary_10_3389_fneur_2022_1013062
crossref_primary_10_3390_molecules27051468
crossref_primary_10_1136_jitc_2023_006890
crossref_primary_10_3390_molecules27020502
crossref_primary_10_3390_antiox10111824
crossref_primary_10_1016_j_phymed_2022_154123
crossref_primary_10_2174_0115672050315334240508162754
crossref_primary_10_1016_j_abb_2021_109094
crossref_primary_10_3390_molecules29143382
crossref_primary_10_3389_fcell_2024_1520429
crossref_primary_10_3390_cancers12113458
crossref_primary_10_3389_fpls_2023_1138700
crossref_primary_10_3390_antiox12081561
crossref_primary_10_3390_ijms24065788
crossref_primary_10_3390_antiox10050630
crossref_primary_10_3390_antiox11040649
crossref_primary_10_3390_ijms25074000
crossref_primary_10_1016_j_freeradbiomed_2022_12_102
crossref_primary_10_1016_j_bbadis_2023_166792
crossref_primary_10_1016_j_freeradbiomed_2025_03_029
crossref_primary_10_1111_cns_14456
crossref_primary_10_1139_cjpp_2023_0015
crossref_primary_10_3390_ijms22126562
crossref_primary_10_3390_antiox12061302
crossref_primary_10_1093_jpp_rgae035
crossref_primary_10_1016_j_heliyon_2024_e39426
crossref_primary_10_1016_j_intimp_2024_113914
crossref_primary_10_11569_wcjd_v31_i9_352
crossref_primary_10_3390_pathogens13010039
crossref_primary_10_1007_s43450_023_00421_7
crossref_primary_10_1016_j_ajt_2023_05_009
crossref_primary_10_1016_j_bbadis_2023_166787
crossref_primary_10_1016_j_aquaculture_2023_740307
crossref_primary_10_1016_j_intimp_2025_114048
crossref_primary_10_1016_j_phrs_2024_107380
crossref_primary_10_3390_ijms24043782
crossref_primary_10_3390_nu16193307
crossref_primary_10_1080_08916934_2021_1963959
crossref_primary_10_4062_biomolther_2024_183
crossref_primary_10_3390_antiox12040834
crossref_primary_10_1016_j_biocel_2024_106702
crossref_primary_10_3390_antiox12081586
crossref_primary_10_1177_02676591241280371
crossref_primary_10_1016_j_phymed_2024_155839
crossref_primary_10_1186_s12929_022_00873_4
crossref_primary_10_1016_j_tiv_2024_105901
crossref_primary_10_1155_jnme_8482883
crossref_primary_10_3390_ijms24054666
crossref_primary_10_3390_toxics11040393
crossref_primary_10_1007_s12032_021_01573_z
crossref_primary_10_31083_j_fbs1402014
crossref_primary_10_1002_1878_0261_13200
crossref_primary_10_3233_JAD_240711
crossref_primary_10_2147_DDDT_S509357
crossref_primary_10_1007_s10787_023_01373_z
crossref_primary_10_1016_j_toxlet_2023_06_005
crossref_primary_10_1016_j_anireprosci_2022_107186
crossref_primary_10_1016_j_gene_2024_149074
crossref_primary_10_1155_2024_8520489
crossref_primary_10_1212_WNL_0000000000207730
crossref_primary_10_3390_antiox11040619
crossref_primary_10_1016_j_cellsig_2025_111717
crossref_primary_10_1016_j_expneurol_2024_115060
crossref_primary_10_1016_j_phymed_2023_155097
crossref_primary_10_1016_j_bbrc_2023_06_080
crossref_primary_10_3390_cells10082053
crossref_primary_10_3389_fcell_2025_1512341
crossref_primary_10_2174_0118715303250834230923234802
crossref_primary_10_1016_j_phymed_2024_155380
crossref_primary_10_1016_j_biopha_2022_113208
crossref_primary_10_1155_2023_4420592
crossref_primary_10_3389_fendo_2024_1390351
crossref_primary_10_3389_fendo_2023_1217730
crossref_primary_10_3389_fphar_2021_687935
crossref_primary_10_1096_fj_202400195R
crossref_primary_10_3390_neurosci6010019
crossref_primary_10_3390_genes14051011
crossref_primary_10_3390_ijms23031118
crossref_primary_10_3390_antiox13020215
crossref_primary_10_3390_cells12162106
crossref_primary_10_1007_s11033_022_08049_x
crossref_primary_10_1016_j_ejphar_2023_176264
crossref_primary_10_3390_antiox13020218
crossref_primary_10_4014_jmb_2308_08053
crossref_primary_10_1016_j_nicl_2025_103767
crossref_primary_10_3390_ijms23042008
crossref_primary_10_3390_ijms22157963
crossref_primary_10_1007_s00011_021_01529_z
crossref_primary_10_1016_j_jep_2022_115854
crossref_primary_10_3390_biomedicines13020327
crossref_primary_10_1186_s12969_023_00909_5
crossref_primary_10_3233_JBR_230058
crossref_primary_10_1016_j_isci_2022_105719
crossref_primary_10_3390_antiox13030294
crossref_primary_10_15283_ijsc21067
crossref_primary_10_3389_fphar_2022_830554
crossref_primary_10_3390_antiox12111928
crossref_primary_10_4103_2221_1691_387748
crossref_primary_10_1007_s10753_023_01900_8
crossref_primary_10_1007_s10565_024_09948_4
crossref_primary_10_3390_jcm12144575
crossref_primary_10_1016_j_aqrep_2024_102449
crossref_primary_10_1007_s10735_024_10286_2
crossref_primary_10_3389_fnins_2022_970925
crossref_primary_10_1038_s41419_024_06778_4
crossref_primary_10_1016_j_gene_2023_147461
crossref_primary_10_1080_01635581_2023_2183546
crossref_primary_10_3389_fphar_2023_1295096
crossref_primary_10_1007_s12035_024_04063_1
crossref_primary_10_3390_nu17010036
crossref_primary_10_3390_molecules28248105
crossref_primary_10_1016_j_pbiomolbio_2024_02_005
crossref_primary_10_1038_s41598_024_72075_x
crossref_primary_10_1186_s12964_025_02075_5
crossref_primary_10_1016_j_taap_2021_115469
crossref_primary_10_1111_cpr_13799
crossref_primary_10_3390_ijms241914619
crossref_primary_10_1016_j_ibneur_2024_11_007
crossref_primary_10_2147_JIR_S478683
crossref_primary_10_2131_jts_48_139
crossref_primary_10_1039_D3BM00271C
crossref_primary_10_1016_j_brainres_2024_149203
crossref_primary_10_3390_ijms241511886
crossref_primary_10_1186_s43088_024_00558_x
crossref_primary_10_1016_j_clinbiochem_2022_12_011
crossref_primary_10_12688_f1000research_156321_1
crossref_primary_10_3390_cimb46060338
crossref_primary_10_3390_life14111467
crossref_primary_10_1016_j_exger_2021_111372
crossref_primary_10_1007_s43032_024_01662_0
crossref_primary_10_3390_ijms24076723
crossref_primary_10_1016_j_exer_2023_109569
crossref_primary_10_3389_fphar_2022_944502
crossref_primary_10_1016_j_jri_2024_104392
crossref_primary_10_1016_j_heliyon_2024_e27826
crossref_primary_10_1016_j_coi_2022_102247
crossref_primary_10_1021_acschembio_4c00849
crossref_primary_10_1177_09603271251322186
crossref_primary_10_3390_antiox10020309
crossref_primary_10_1016_j_bbrc_2023_05_082
crossref_primary_10_1007_s11010_024_05009_w
crossref_primary_10_1016_j_jep_2022_115826
crossref_primary_10_1016_j_phrs_2021_105701
crossref_primary_10_1007_s12035_024_04394_z
crossref_primary_10_2174_1389201024666230804102617
crossref_primary_10_1016_j_actbio_2023_12_021
crossref_primary_10_1080_10520295_2024_2365231
crossref_primary_10_3389_fcell_2023_1151108
crossref_primary_10_3390_biom15010149
crossref_primary_10_31718_2077_1096_24_1_114
crossref_primary_10_1007_s11010_024_05118_6
crossref_primary_10_3389_fopht_2024_1407582
crossref_primary_10_3390_jcm12041667
crossref_primary_10_1016_j_scitotenv_2023_165076
crossref_primary_10_1177_11786388241253436
crossref_primary_10_1016_j_ejmech_2024_116624
crossref_primary_10_1007_s00210_023_02692_2
crossref_primary_10_3389_fimmu_2022_945860
crossref_primary_10_1016_j_ab_2024_115624
crossref_primary_10_1016_j_lfs_2023_122220
crossref_primary_10_1111_jocd_16210
crossref_primary_10_3390_ijms25168742
crossref_primary_10_3390_ijms26031260
crossref_primary_10_3390_antiox12030631
crossref_primary_10_3390_genes14091773
crossref_primary_10_3390_nu15173799
crossref_primary_10_3389_fphar_2021_670076
crossref_primary_10_1016_j_bonr_2021_101149
crossref_primary_10_3390_ijms25136936
crossref_primary_10_1016_j_ejphar_2023_176241
crossref_primary_10_1016_j_ijbiomac_2024_138521
crossref_primary_10_1016_j_abb_2022_109452
crossref_primary_10_1038_s41419_021_04226_1
crossref_primary_10_1016_j_bbi_2024_02_007
crossref_primary_10_3390_microorganisms12020348
crossref_primary_10_1038_s41598_024_81839_4
crossref_primary_10_1016_j_comtox_2021_100191
crossref_primary_10_1016_j_celrep_2022_110475
crossref_primary_10_3390_biomedicines13010133
crossref_primary_10_3390_ijms21207800
crossref_primary_10_1016_j_jep_2025_119439
crossref_primary_10_3389_fendo_2023_1188003
crossref_primary_10_3390_ijms241713448
crossref_primary_10_1016_j_heliyon_2021_e07738
crossref_primary_10_1128_spectrum_02262_24
crossref_primary_10_3390_biom13071050
crossref_primary_10_3390_biology14010081
crossref_primary_10_1016_j_psj_2024_103649
crossref_primary_10_1016_j_phymed_2024_156064
crossref_primary_10_3390_metabo13020243
crossref_primary_10_4103_REGENMED_REGENMED_D_24_00027
crossref_primary_10_1016_j_pep_2025_106689
crossref_primary_10_1002_cbin_12153
crossref_primary_10_1080_13880209_2022_2067569
crossref_primary_10_3390_antiox12020405
crossref_primary_10_1016_j_fsi_2023_109112
crossref_primary_10_3389_fnins_2020_611904
crossref_primary_10_1097_MD_0000000000040835
crossref_primary_10_1186_s12964_023_01213_1
crossref_primary_10_3390_cancers15184613
crossref_primary_10_3390_ijms241310938
crossref_primary_10_3390_antiox10030388
crossref_primary_10_1007_s10753_021_01529_5
crossref_primary_10_3389_fncel_2024_1343544
crossref_primary_10_1080_07853890_2025_2472871
crossref_primary_10_4251_wjgo_v14_i1_38
crossref_primary_10_1007_s00204_024_03691_9
crossref_primary_10_1016_j_ejphar_2024_177210
crossref_primary_10_1016_j_phymed_2021_153766
crossref_primary_10_1111_bph_17321
crossref_primary_10_1016_j_freeradbiomed_2023_12_043
crossref_primary_10_1016_j_brainres_2025_149572
crossref_primary_10_1615_CritRevOncog_2022045331
crossref_primary_10_1016_j_cellsig_2024_111272
crossref_primary_10_1016_j_bbamcr_2024_119823
crossref_primary_10_1186_s13062_024_00580_0
crossref_primary_10_1016_j_isci_2023_107582
crossref_primary_10_3390_antiox13040452
crossref_primary_10_1016_j_jep_2025_119459
crossref_primary_10_1016_j_intimp_2023_109812
crossref_primary_10_1016_j_biopha_2024_116422
crossref_primary_10_1093_toxsci_kfab114
crossref_primary_10_3390_ijms252413292
crossref_primary_10_3389_fnut_2023_1102146
crossref_primary_10_1016_j_freeradbiomed_2023_11_003
crossref_primary_10_3390_antiox9100980
crossref_primary_10_1007_s43630_024_00606_6
crossref_primary_10_1016_j_prmcm_2024_100399
crossref_primary_10_1002_ame2_12436
crossref_primary_10_1016_j_modpat_2024_100574
crossref_primary_10_1039_D3FO05213C
crossref_primary_10_1007_s11011_024_01377_w
crossref_primary_10_1038_s42003_024_07377_x
crossref_primary_10_1016_j_cpt_2023_02_003
crossref_primary_10_1016_j_jsps_2024_101956
crossref_primary_10_1007_s10787_024_01587_9
crossref_primary_10_1007_s10787_024_01541_9
crossref_primary_10_3390_cancers13020281
crossref_primary_10_3892_or_2024_8764
crossref_primary_10_3390_antiox11020304
crossref_primary_10_3390_pharmaceutics16081068
crossref_primary_10_3390_cells11233855
crossref_primary_10_1016_j_joim_2024_03_004
crossref_primary_10_1590_1414_431x2024e13914
crossref_primary_10_1080_10837450_2022_2129687
crossref_primary_10_1016_j_toxrep_2022_09_002
crossref_primary_10_1016_j_psj_2025_105071
crossref_primary_10_3389_fimmu_2025_1549459
crossref_primary_10_3390_nu15214652
crossref_primary_10_1002_tox_23362
crossref_primary_10_3390_antiox13080969
crossref_primary_10_7717_peerj_18027
crossref_primary_10_1016_j_biopha_2021_112201
crossref_primary_10_3892_ijmm_2023_5339
crossref_primary_10_1186_s12964_023_01170_9
crossref_primary_10_1007_s11130_024_01250_2
crossref_primary_10_2147_IJN_S479425
crossref_primary_10_1016_j_scitotenv_2023_166577
crossref_primary_10_1016_j_yexcr_2022_113436
crossref_primary_10_3389_fnins_2022_890021
crossref_primary_10_1016_j_freeradbiomed_2023_11_020
crossref_primary_10_1016_j_jtcme_2025_02_006
crossref_primary_10_1016_j_abb_2024_110193
crossref_primary_10_3389_fnut_2023_1284066
crossref_primary_10_1152_physiol_00015_2024
crossref_primary_10_3390_agriculture13020404
crossref_primary_10_1016_j_mcn_2024_103981
crossref_primary_10_1177_09603271221136206
crossref_primary_10_3390_tropicalmed8060306
crossref_primary_10_1186_s13018_024_05221_w
crossref_primary_10_3390_antiox11051034
crossref_primary_10_3724_abbs_2024042
crossref_primary_10_1007_s00580_023_03528_4
crossref_primary_10_25289_ML_24_023
crossref_primary_10_1016_j_ejphar_2024_177013
crossref_primary_10_1016_j_advnut_2025_100376
crossref_primary_10_3389_fnmol_2024_1394932
crossref_primary_10_1002_ptr_8457
crossref_primary_10_3390_antiox13080954
crossref_primary_10_1016_j_aanat_2023_152180
crossref_primary_10_3389_fphar_2022_823881
crossref_primary_10_1016_j_lfs_2023_122064
crossref_primary_10_3390_antiox14030320
crossref_primary_10_1016_j_semcancer_2022_10_005
crossref_primary_10_1016_j_intimp_2022_108851
crossref_primary_10_1016_j_jff_2024_106204
crossref_primary_10_3390_antiox12020433
crossref_primary_10_3390_ijms24020902
crossref_primary_10_1016_j_ijbiomac_2023_124243
crossref_primary_10_3389_fneur_2025_1514394
crossref_primary_10_1016_j_scitotenv_2022_154046
crossref_primary_10_1016_j_jep_2024_118045
crossref_primary_10_1016_j_intimp_2024_113113
crossref_primary_10_1186_s13098_024_01512_8
crossref_primary_10_1016_j_biopha_2024_117555
crossref_primary_10_1186_s10020_024_00993_7
crossref_primary_10_1016_j_bbamcr_2023_119510
crossref_primary_10_3390_antiox14030337
crossref_primary_10_1007_s43440_024_00602_8
crossref_primary_10_1016_j_scitotenv_2023_166558
crossref_primary_10_3389_fmars_2024_1444061
crossref_primary_10_1080_10408398_2023_2176815
crossref_primary_10_3389_fgene_2025_1538168
crossref_primary_10_1155_2024_7465045
crossref_primary_10_3390_antiox12020220
crossref_primary_10_1186_s10020_024_00905_9
crossref_primary_10_3390_ijms24010099
crossref_primary_10_1016_j_bbrc_2025_151417
crossref_primary_10_1038_s42003_024_06063_2
crossref_primary_10_3389_fphar_2024_1371613
crossref_primary_10_3390_cells13131081
crossref_primary_10_1016_j_sajb_2024_07_048
crossref_primary_10_1186_s13045_024_01643_5
crossref_primary_10_1039_D3SC06997D
crossref_primary_10_1007_s10753_024_02145_9
crossref_primary_10_1515_biol_2022_0706
crossref_primary_10_1016_j_cbpc_2024_110071
crossref_primary_10_3390_ijms252413239
crossref_primary_10_3390_cells11081298
crossref_primary_10_1038_s41598_024_82559_5
crossref_primary_10_4028_p_2aa27K
crossref_primary_10_1007_s10753_023_01885_4
crossref_primary_10_1111_bcpt_70024
crossref_primary_10_1080_09553002_2021_1962566
crossref_primary_10_1590_acb393524
crossref_primary_10_3390_ijms22147598
crossref_primary_10_1016_j_aqrep_2023_101851
crossref_primary_10_3390_ijms26041693
crossref_primary_10_1016_j_ijbiomac_2023_123481
crossref_primary_10_1016_j_fbio_2024_105487
crossref_primary_10_1155_2021_5561124
crossref_primary_10_1016_j_biopha_2023_115467
crossref_primary_10_3390_molecules28010272
crossref_primary_10_3390_kinasesphosphatases2030018
crossref_primary_10_3390_ijms25105530
crossref_primary_10_1007_s11010_024_04957_7
crossref_primary_10_1177_1934578X231214129
crossref_primary_10_3390_antiox12122028
crossref_primary_10_1016_j_mad_2024_111914
crossref_primary_10_1007_s00018_022_04586_7
crossref_primary_10_1016_j_freeradbiomed_2021_02_030
crossref_primary_10_1016_j_prerep_2024_100019
crossref_primary_10_1111_jnc_15786
crossref_primary_10_3390_antiox12020232
crossref_primary_10_1007_s12035_023_03850_6
crossref_primary_10_3389_fphys_2022_989793
crossref_primary_10_1038_s41598_024_57874_6
crossref_primary_10_3390_toxics12120864
crossref_primary_10_3390_ijms24098376
crossref_primary_10_31083_j_fbl2707223
crossref_primary_10_3390_nu15020306
crossref_primary_10_3390_ijms24065498
crossref_primary_10_3389_fimmu_2022_1028953
crossref_primary_10_1016_j_jhazmat_2024_133590
crossref_primary_10_1152_ajpendo_00378_2023
crossref_primary_10_1089_ars_2024_0556
crossref_primary_10_3390_cells10071810
crossref_primary_10_1093_toxsci_kfae108
crossref_primary_10_1016_j_gendis_2023_05_019
crossref_primary_10_3389_fimmu_2024_1343987
crossref_primary_10_1016_j_jep_2023_117647
crossref_primary_10_1016_j_jff_2023_105475
crossref_primary_10_3390_antiox10020280
crossref_primary_10_1007_s13402_023_00834_5
crossref_primary_10_1016_j_biopha_2023_115443
crossref_primary_10_1002_cmdc_202400377
crossref_primary_10_20517_jca_2023_22
crossref_primary_10_3389_fimmu_2023_1196065
crossref_primary_10_1016_j_aoas_2023_02_002
crossref_primary_10_1016_j_biopha_2024_116829
crossref_primary_10_1089_ars_2020_8231
crossref_primary_10_3390_antiox14030264
crossref_primary_10_37349_emed_2024_00225
crossref_primary_10_3390_biom13030549
crossref_primary_10_1186_s12951_023_02120_w
crossref_primary_10_1016_j_freeradbiomed_2023_06_003
crossref_primary_10_1016_j_jhazmat_2021_127009
crossref_primary_10_1186_s43094_024_00757_4
crossref_primary_10_3390_ijms241310502
crossref_primary_10_3389_fonc_2025_1522273
crossref_primary_10_3389_fnut_2022_988517
crossref_primary_10_1016_j_ecoenv_2024_116439
crossref_primary_10_3389_fcell_2024_1418296
crossref_primary_10_1007_s00535_024_02140_9
crossref_primary_10_1111_1750_3841_17400
crossref_primary_10_3390_biom10121688
crossref_primary_10_3389_fimmu_2023_1200111
crossref_primary_10_3390_md21020105
crossref_primary_10_1007_s43032_025_01787_w
crossref_primary_10_1186_s10194_024_01750_1
crossref_primary_10_1016_j_neulet_2022_136997
crossref_primary_10_1177_09603271211021880
crossref_primary_10_3390_toxins16030151
crossref_primary_10_1007_s11010_024_05111_z
crossref_primary_10_1016_j_canlet_2024_216833
crossref_primary_10_3390_cells10123556
crossref_primary_10_1016_j_actbio_2022_04_021
crossref_primary_10_3390_ijms22115722
crossref_primary_10_3390_toxins16030154
crossref_primary_10_3389_fonc_2025_1502673
crossref_primary_10_3390_antiox12040901
crossref_primary_10_1016_j_bbr_2023_114651
crossref_primary_10_1016_j_bbrc_2024_149788
crossref_primary_10_3390_metabo14080435
crossref_primary_10_1016_j_ymthe_2024_08_019
crossref_primary_10_1155_2023_7136819
crossref_primary_10_1002_ptr_7403
crossref_primary_10_1016_j_ecoenv_2023_115290
crossref_primary_10_3390_ijms241814215
crossref_primary_10_3389_fonc_2024_1381467
crossref_primary_10_2174_0113816128308454240823074555
crossref_primary_10_1002_jsfa_13877
crossref_primary_10_1016_j_jtemb_2023_127149
crossref_primary_10_1016_j_bioorg_2025_108350
crossref_primary_10_3390_cancers14246111
crossref_primary_10_3389_fnut_2022_910785
crossref_primary_10_3390_cimb44100337
crossref_primary_10_3390_ijms25179195
crossref_primary_10_1016_j_psj_2024_104523
crossref_primary_10_3390_ijms251910484
crossref_primary_10_3892_etm_2022_11160
crossref_primary_10_3390_pharmaceutics14112467
crossref_primary_10_1038_s41598_022_20817_0
crossref_primary_10_1016_j_jsps_2023_05_022
crossref_primary_10_3389_fphar_2024_1333657
crossref_primary_10_1186_s40659_024_00547_5
crossref_primary_10_1016_j_neulet_2024_138037
crossref_primary_10_1111_exd_15189
crossref_primary_10_3390_ijms25052511
crossref_primary_10_1177_17534259211015330
crossref_primary_10_1007_s10555_022_10072_0
crossref_primary_10_1038_s12276_024_01180_8
crossref_primary_10_1016_j_phymed_2023_155001
crossref_primary_10_1016_j_jep_2025_119384
crossref_primary_10_1080_13510002_2024_2371173
crossref_primary_10_3390_ani15060861
crossref_primary_10_3390_ijms24076160
crossref_primary_10_1007_s11886_024_02157_9
crossref_primary_10_3389_fbioe_2021_745911
crossref_primary_10_1111_cns_70081
crossref_primary_10_1080_03602532_2023_2215478
crossref_primary_10_1016_j_heliyon_2023_e18991
crossref_primary_10_1016_j_intimp_2023_110227
crossref_primary_10_3389_fimmu_2024_1390589
crossref_primary_10_3390_antiox12071440
crossref_primary_10_3390_toxics9040070
crossref_primary_10_1016_j_pupt_2023_102262
crossref_primary_10_1007_s10620_022_07546_0
crossref_primary_10_1016_j_taap_2023_116389
crossref_primary_10_1016_j_ejphar_2023_175558
crossref_primary_10_3390_nu16203496
crossref_primary_10_1016_j_fitote_2023_105599
crossref_primary_10_1016_j_biopha_2024_117094
crossref_primary_10_3390_biomedicines12112624
crossref_primary_10_3390_antiox13070798
crossref_primary_10_1016_j_tvr_2024_200277
crossref_primary_10_1515_tnsci_2022_0296
crossref_primary_10_1038_s41598_024_75786_3
crossref_primary_10_1016_j_scitotenv_2024_177396
crossref_primary_10_1007_s12013_025_01723_4
crossref_primary_10_3389_fphys_2024_1416639
crossref_primary_10_3390_antiox12040947
crossref_primary_10_1016_j_phrs_2021_105853
crossref_primary_10_3233_ADR_210061
crossref_primary_10_1007_s11626_022_00725_3
crossref_primary_10_3892_or_2023_8492
crossref_primary_10_1016_j_marpolbul_2023_115928
crossref_primary_10_1016_j_molimm_2021_04_002
crossref_primary_10_3389_fphar_2022_948600
crossref_primary_10_1016_j_biopha_2023_115854
crossref_primary_10_1016_j_ijbiomac_2025_141616
crossref_primary_10_1055_a_2257_6407
crossref_primary_10_3390_biology11060839
crossref_primary_10_3390_nu14173662
crossref_primary_10_3390_cancers16172949
crossref_primary_10_3390_ijms24021469
crossref_primary_10_3390_ani15050693
crossref_primary_10_1016_j_jcmgh_2025_101483
crossref_primary_10_1007_s00204_024_03752_z
crossref_primary_10_3389_fcvm_2021_792180
crossref_primary_10_3390_antiox10081296
crossref_primary_10_1007_s00394_021_02541_z
crossref_primary_10_1016_j_ijbiomac_2025_139552
crossref_primary_10_3390_ijms241311221
crossref_primary_10_1016_j_ajpath_2023_11_009
crossref_primary_10_1016_j_bbadis_2024_167600
crossref_primary_10_1016_j_nantod_2024_102514
crossref_primary_10_1016_j_reth_2024_11_014
crossref_primary_10_1080_13510002_2022_2096339
crossref_primary_10_3390_antiox13091058
crossref_primary_10_3390_biom13020353
crossref_primary_10_14814_phy2_15879
crossref_primary_10_3390_ph17081080
crossref_primary_10_3390_app12031268
crossref_primary_10_1038_s41581_024_00806_4
crossref_primary_10_3389_fnut_2022_1007816
crossref_primary_10_3892_mmr_2023_13098
crossref_primary_10_1007_s43450_023_00390_x
crossref_primary_10_3390_ijms22179592
crossref_primary_10_3390_antiox12111987
crossref_primary_10_2174_0126669390272831231227110602
crossref_primary_10_1186_s41232_023_00300_7
crossref_primary_10_1002_fsn3_4285
crossref_primary_10_1021_acs_est_2c09024
crossref_primary_10_3390_ijms241914585
crossref_primary_10_1007_s12011_022_03464_4
crossref_primary_10_1002_fsn3_4049
crossref_primary_10_3390_ijms22147314
crossref_primary_10_1038_s41598_025_92674_6
crossref_primary_10_3390_antiox13121515
crossref_primary_10_3389_fphar_2023_1197433
crossref_primary_10_1021_acs_jafc_4c05370
crossref_primary_10_1186_s13287_024_04089_1
crossref_primary_10_3390_biom11020162
crossref_primary_10_1016_j_mad_2024_111960
crossref_primary_10_3390_antiox13010070
crossref_primary_10_1016_j_ejphar_2024_176965
crossref_primary_10_3390_antiox13121528
crossref_primary_10_3390_antiox13121529
crossref_primary_10_1016_j_jhep_2022_04_038
crossref_primary_10_1016_j_placenta_2022_01_007
crossref_primary_10_3390_app132212348
crossref_primary_10_1016_j_jbc_2024_107815
crossref_primary_10_3892_wasj_2024_280
crossref_primary_10_1016_j_redox_2025_103565
crossref_primary_10_1016_j_fct_2022_113089
crossref_primary_10_1016_j_heliyon_2024_e36241
crossref_primary_10_2174_1570161120666220510120220
crossref_primary_10_1080_10408398_2024_2367570
crossref_primary_10_3390_antiox13010083
crossref_primary_10_1016_j_ctro_2024_100726
crossref_primary_10_1016_j_toxlet_2023_12_006
crossref_primary_10_3390_ijms24129917
crossref_primary_10_1128_jvi_00159_24
crossref_primary_10_1016_j_immuni_2021_04_014
crossref_primary_10_26599_FSHW_2022_9250129
crossref_primary_10_1016_j_ejmech_2023_115602
crossref_primary_10_1002_jbt_70158
crossref_primary_10_1016_j_lfs_2023_121664
crossref_primary_10_1016_j_bej_2024_109279
crossref_primary_10_1016_j_taap_2022_116252
crossref_primary_10_1093_toxsci_kfad056
crossref_primary_10_1002_mco2_519
crossref_primary_10_1016_j_jgg_2022_06_002
crossref_primary_10_1016_j_aquaculture_2022_739163
crossref_primary_10_1186_s12987_022_00344_w
crossref_primary_10_3389_fendo_2023_1261298
crossref_primary_10_1016_j_freeradbiomed_2023_09_021
crossref_primary_10_1007_s00210_024_03343_w
crossref_primary_10_3390_antiox13121502
crossref_primary_10_3390_nu14173613
crossref_primary_10_1093_noajnl_vdad160
crossref_primary_10_3389_fcell_2025_1522873
Cites_doi 10.1002/jbt.20212
10.1128/MCB.06271-11
10.1038/srep38619
10.1038/sj.onc.1202237
10.1074/jbc.M002319200
10.1042/BJ20130863
10.1074/jbc.M412081200
10.1074/jbc.M109.031575
10.1074/jbc.M206911200
10.1038/s41590-019-0482-2
10.1182/blood-2012-04-422121
10.1016/j.redox.2017.01.006
10.1074/jbc.M111.322420
10.1093/nar/gkv1101
10.1074/jbc.M111.277145
10.3389/fimmu.2018.01552
10.1038/s41586-018-0052-z
10.4049/jimmunol.181.1.680
10.1038/onc.2009.264
10.1101/gad.238246.114
10.1016/j.cell.2011.02.013
10.3748/wjg.v20.i36.13079
10.1128/MCB.01095-15
10.1074/jbc.M109.093955
10.1074/jbc.M500166200
10.1158/0008-5472.CAN-11-3213
10.1128/MCB.00225-13
10.1016/j.freeradbiomed.2015.05.034
10.1126/scitranslmed.3002042
10.1038/ncb2021
10.1073/pnas.91.21.9926
10.1038/nm.2557
10.4049/jimmunol.1700812
10.1093/nar/gks827
10.1128/MCB.25.10.4150-4165.2005
10.1371/journal.pone.0051111
10.1128/MCB.00785-15
10.1371/journal.pgen.1003701
10.1158/0008-5472.CAN-12-3386
10.1007/s10549-011-1604-1
10.1093/toxsci/kfr183
10.1038/nrm.2017.130
10.7754/Clin.Lab.2015.150518
10.4110/in.2018.18.e14
10.1093/nar/gkq212
10.1111/j.1365-2443.2005.00905.x
10.1016/j.bcp.2017.06.136
10.2353/ajpath.2006.051113
10.1093/carcin/bgp100
10.1016/j.jhep.2020.01.023
10.1038/onc.2012.59
10.1074/jbc.M109.084590
10.1523/JNEUROSCI.1860-14.2014
10.1038/ng1248
10.1016/j.freeradbiomed.2015.02.004
10.1038/ni.3868
10.1172/JCI31405
10.1073/pnas.1007387107
10.1073/pnas.1305687110
10.1016/j.mad.2010.12.004
10.1172/JCI66353
10.1128/MCB.00700-06
10.1111/j.1440-1746.2012.07180.x
10.1016/j.ccell.2016.04.006
10.1128/MCB.25.24.10895-10906.2005
10.1161/01.RES.0000338597.71702.ad
10.1016/j.molcel.2009.04.029
10.1101/gad.225680.113
10.1080/15548627.2016.1208889
10.1074/jbc.M403061200
10.1084/jem.20121337
10.1089/ars.2014.5987
10.1016/j.tibs.2014.02.002
10.1074/jbc.RA118.005963
10.1128/MCB.01408-13
10.1182/blood-2009-04-214817
10.3389/fonc.2017.00085
10.1073/pnas.1714056115
10.1016/j.mce.2005.08.002
10.1074/jbc.M110.118976
10.1016/j.celrep.2016.08.010
10.1016/j.celrep.2014.02.027
10.1016/S0092-8674(00)82001-2
10.1016/j.ccell.2018.03.022
10.1172/JCI25790
10.1016/j.abb.2011.02.001
10.1158/1940-6207.CAPR-14-0094
10.1128/MCB.00065-13
10.1038/sj.bjc.6604703
10.3389/fendo.2018.00402
10.1016/S1097-2765(03)00105-9
10.1038/ng.3421
10.1096/fj.201901930R
10.1242/bio.20134853
10.1016/j.freeradbiomed.2013.04.007
10.1074/jbc.M110.162008
10.1046/j.1365-2443.2001.00469.x
10.1016/j.abb.2008.06.004
10.1038/s41467-018-05861-7
10.1074/jbc.M111.316471
10.1371/journal.pone.0008579
10.1093/carcin/bgt026
10.1158/0008-5472.CAN-10-3018
10.1007/s11064-015-1709-8
10.7554/eLife.28083
10.1046/j.1523-1755.2001.00939.x
10.1113/JP271957
10.1158/0008-5472.CAN-07-2170
10.1038/s41419-018-0436-x
10.1128/MCB.23.20.7198-7209.2003
10.3389/fgene.2019.00435
10.1074/jbc.M115.664953
10.1101/655159
10.1128/MCB.00063-17
10.1158/0008-5472.CAN-12-4400
10.1146/annurev-cellbio-092910-154237
10.1002/mc.20234
10.1038/cr.2016.4
10.4049/jimmunol.181.10.6730
10.1083/jcb.201110131
10.1016/j.ccr.2012.05.016
10.1093/carcin/bgaa039
10.1371/journal.pgen.1006762
10.1002/stem.1764
10.1046/j.1365-2443.2003.00640.x
10.1093/nar/gks409
10.1128/MCB.23.23.8786-8794.2003
10.1038/s41573-018-0008-x
10.1016/j.jhep.2019.08.014
10.1038/nm1609
10.1038/onc.2012.388
10.1371/journal.pone.0039006
10.1128/MCB.22.9.2883-2892.2002
10.4049/jimmunol.1101712
10.1042/BST20150011
10.1073/pnas.93.25.14960
10.1016/j.cell.2019.07.031
10.1038/nature10189
10.1038/ncomms11624
10.1089/ars.2017.7176
10.1016/j.celrep.2016.07.075
10.1016/j.bbrc.2020.02.006
10.3389/fonc.2020.00159
10.1038/nm.4407
10.1074/jbc.M101198200
10.1093/toxsci/kfn267
10.1093/toxsci/kfn079
10.1002/1873-3468.12301
10.1093/nar/gkm638
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms21134777
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7369905
32640524
10_3390_ijms21134777
Genre Journal Article
Review
GrantInformation_xml – fundername: Lilly innovation fellowship award
  grantid: na
– fundername: National Natural Science Foundation of China
  grantid: 81672338
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-881afb852217d2274aa9fc5e39de83f640d51c74ba6eb97237a29a45d2cbb5cf3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:08:29 EDT 2025
Fri Jul 11 05:15:27 EDT 2025
Fri Jul 25 20:24:08 EDT 2025
Thu Apr 03 06:59:49 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Tue Jul 01 04:15:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords transcription factor
autophagy
NRF2
inflammation
UPR
metabolism
proteostasis
oxidative stress
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-881afb852217d2274aa9fc5e39de83f640d51c74ba6eb97237a29a45d2cbb5cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-0675-0163
0000-0003-0276-3303
OpenAccessLink https://www.proquest.com/docview/2422468709?pq-origsite=%requestingapplication%
PMID 32640524
PQID 2422468709
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7369905
proquest_miscellaneous_2422009134
proquest_journals_2422468709
pubmed_primary_32640524
crossref_primary_10_3390_ijms21134777
crossref_citationtrail_10_3390_ijms21134777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200706
PublicationDateYYYYMMDD 2020-07-06
PublicationDate_xml – month: 7
  year: 2020
  text: 20200706
  day: 6
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hu (ref_114) 2018; 9
Taguchi (ref_2) 2017; 7
Li (ref_106) 2015; 290
Venugopal (ref_56) 1998; 17
ref_98
ref_97
Gorrini (ref_16) 2013; 210
Fu (ref_77) 2019; 294
McMahon (ref_6) 2010; 107
Komatsu (ref_10) 2010; 12
Kobayashi (ref_127) 2016; 7
Camp (ref_13) 2012; 287
Hayes (ref_19) 2015; 43
Ma (ref_124) 2006; 168
Mukaigasa (ref_100) 2018; 115
Hanahan (ref_76) 2011; 144
Arlt (ref_103) 2009; 28
Innamorato (ref_126) 2008; 181
Hamdam (ref_145) 2012; 287
Kwak (ref_101) 2003; 23
Iizuka (ref_121) 2005; 10
Wang (ref_44) 2016; 62
Yarosz (ref_144) 2018; 18
ref_23
ref_20
He (ref_54) 2001; 276
Mitsuishi (ref_35) 2012; 22
Burgener (ref_131) 2019; 20
ref_71
Zahra (ref_81) 2020; 10
Pickering (ref_102) 2012; 287
Singh (ref_43) 2013; 34
Rushworth (ref_107) 2011; 71
Thimmulappa (ref_120) 2006; 116
Shan (ref_60) 2015; 22
Wu (ref_73) 2011; 123
Nioi (ref_63) 2005; 25
Hirotsu (ref_51) 2012; 40
Gureev (ref_118) 2019; 10
ref_75
Clarke (ref_108) 2012; 72
Kim (ref_64) 2013; 32
Zhang (ref_62) 2006; 26
Yuan (ref_24) 2006; 45
DeNicola (ref_88) 2015; 47
Kang (ref_22) 2010; 285
Ikeda (ref_67) 2000; 275
Wu (ref_21) 2014; 28
Suzuki (ref_38) 2013; 33
Romero (ref_87) 2017; 23
Poganik (ref_47) 2019; 33
DeNicola (ref_34) 2011; 475
Wakabayashi (ref_72) 2003; 35
Bagger (ref_119) 2016; 44
Chapman (ref_78) 2018; 34
Harada (ref_93) 2011; 508
Aguiar (ref_117) 2016; 41
Yang (ref_41) 2011; 129
Harding (ref_99) 2003; 11
Canning (ref_3) 2015; 88
ref_89
Hou (ref_137) 2020; 72
ref_142
Hentze (ref_46) 2018; 19
Miao (ref_30) 2005; 280
Piantadosi (ref_115) 2008; 103
Singh (ref_85) 2013; 123
Pajares (ref_109) 2016; 12
Dhakshinamoorthy (ref_52) 2005; 280
Cullinan (ref_27) 2003; 23
Kerins (ref_94) 2018; 29
Pajares (ref_96) 2017; 11
Tang (ref_122) 2014; 20
Zhang (ref_79) 2014; 34
Jaramillo (ref_1) 2013; 27
Huang (ref_25) 2002; 277
Jain (ref_110) 2010; 285
Ludtmann (ref_112) 2014; 457
Page (ref_134) 2014; 6
Holmstrom (ref_111) 2013; 2
Harvey (ref_132) 2011; 3
Ohl (ref_138) 2018; 9
Merry (ref_116) 2016; 594
Rockwell (ref_143) 2012; 188
Wakabayashi (ref_36) 2014; 34
Sangokoya (ref_40) 2010; 116
Li (ref_42) 2011; 132
Itoh (ref_8) 2003; 8
Cuadrado (ref_80) 2019; 18
Reichard (ref_53) 2007; 35
Nair (ref_31) 2008; 99
Uruno (ref_83) 2013; 33
Ogryzko (ref_58) 1996; 87
Pan (ref_65) 2016; 26
Zhao (ref_146) 2016; 6
Hayder (ref_39) 2018; 9
Brown (ref_59) 2008; 68
Rushworth (ref_32) 2012; 120
Tanaka (ref_90) 2012; 27
Wang (ref_5) 2013; 73
Ganner (ref_17) 2020; 524
Seelige (ref_135) 2016; 16
Sekine (ref_66) 2016; 36
Reisman (ref_74) 2009; 108
Lunt (ref_86) 2011; 27
Maruyama (ref_92) 2008; 477
Hiramoto (ref_140) 2014; 7
Taniguchi (ref_9) 2016; 590
Nagaraj (ref_139) 2007; 13
Ma (ref_14) 2012; 32
Hast (ref_12) 2013; 73
Wang (ref_95) 2012; 197
Osburn (ref_125) 2008; 104
Olagnier (ref_133) 2018; 9
Wruck (ref_130) 2011; 286
ref_37
Apopa (ref_26) 2008; 22
Rushworth (ref_33) 2008; 181
Chen (ref_147) 2017; 142
Sanghvi (ref_28) 2019; 178
Pi (ref_91) 2010; 285
Venugopal (ref_55) 1996; 93
Malhotra (ref_49) 2010; 38
Noel (ref_148) 2018; 200
Baird (ref_7) 2013; 110
Chorley (ref_50) 2012; 40
Kapeta (ref_104) 2010; 285
Ansell (ref_68) 2005; 243
Yates (ref_82) 2009; 30
Chowdhry (ref_18) 2013; 32
Umemura (ref_11) 2016; 29
ref_45
Jang (ref_105) 2014; 32
McMahon (ref_4) 2004; 279
Bambouskova (ref_129) 2018; 556
Swann (ref_136) 2007; 117
Hayes (ref_70) 2014; 39
Uruno (ref_84) 2016; 36
Maj (ref_149) 2017; 18
Ki (ref_61) 2005; 25
Yoh (ref_123) 2001; 60
Hoetzenecker (ref_128) 2011; 18
Goldstein (ref_48) 2016; 16
Anedda (ref_113) 2013; 61
Sha (ref_141) 2015; 83
Kwak (ref_29) 2002; 22
Moi (ref_69) 1994; 91
Katoh (ref_57) 2001; 6
Chen (ref_15) 2009; 34
References_xml – volume: 22
  start-page: 63
  year: 2008
  ident: ref_26
  article-title: Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells
  publication-title: J. Biochem. Mol. Toxicol.
  doi: 10.1002/jbt.20212
– volume: 32
  start-page: 1506
  year: 2012
  ident: ref_14
  article-title: PALB2 interacts with KEAP1 to promote NRF2 nuclear accumulation and function
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.06271-11
– volume: 6
  start-page: 38619
  year: 2016
  ident: ref_146
  article-title: Nuclear Factor Erythroid 2-related Factor 2 Deficiency Exacerbates Lupus Nephritis in B6/lpr mice by Regulating Th17 Cell Function
  publication-title: Sci. Rep.
  doi: 10.1038/srep38619
– volume: 17
  start-page: 3145
  year: 1998
  ident: ref_56
  article-title: Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202237
– volume: 275
  start-page: 33142
  year: 2000
  ident: ref_67
  article-title: Suppression of rat thromboxane synthase gene transcription by peroxisome proliferator-activated receptor gamma in macrophages via an interaction with NRF2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002319200
– volume: 457
  start-page: 415
  year: 2014
  ident: ref_112
  article-title: Nrf2 affects the efficiency of mitochondrial fatty acid oxidation
  publication-title: Biochem. J.
  doi: 10.1042/BJ20130863
– volume: 280
  start-page: 20340
  year: 2005
  ident: ref_30
  article-title: Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: Direct cross-talk between phase I and II drug-metabolizing enzymes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412081200
– volume: 285
  start-page: 8171
  year: 2010
  ident: ref_104
  article-title: Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.031575
– volume: 277
  start-page: 42769
  year: 2002
  ident: ref_25
  article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206911200
– volume: 20
  start-page: 1311
  year: 2019
  ident: ref_131
  article-title: SDHA gain-of-function engages inflammatory mitochondrial retrograde signaling via KEAP1-Nrf2
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0482-2
– volume: 120
  start-page: 5188
  year: 2012
  ident: ref_32
  article-title: The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance
  publication-title: Blood
  doi: 10.1182/blood-2012-04-422121
– volume: 11
  start-page: 543
  year: 2017
  ident: ref_96
  article-title: Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.01.006
– volume: 287
  start-page: 10556
  year: 2012
  ident: ref_145
  article-title: Loss of transcription factor nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) leads to dysregulation of immune functions, redox homeostasis, and intracellular signaling in dendritic cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.322420
– volume: 44
  start-page: D917
  year: 2016
  ident: ref_119
  article-title: BloodSpot: A database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1101
– volume: 287
  start-page: 10021
  year: 2012
  ident: ref_102
  article-title: Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.277145
– volume: 9
  start-page: 1552
  year: 2018
  ident: ref_138
  article-title: Nrf2 Is a Central Regulator of Metabolic Reprogramming of Myeloid-Derived Suppressor Cells in Steady State and Sepsis
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01552
– volume: 556
  start-page: 501
  year: 2018
  ident: ref_129
  article-title: Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis
  publication-title: Nature
  doi: 10.1038/s41586-018-0052-z
– volume: 181
  start-page: 680
  year: 2008
  ident: ref_126
  article-title: The transcription factor Nrf2 is a therapeutic target against brain inflammation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.1.680
– volume: 28
  start-page: 3983
  year: 2009
  ident: ref_103
  article-title: Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2)
  publication-title: Oncogene
  doi: 10.1038/onc.2009.264
– volume: 28
  start-page: 708
  year: 2014
  ident: ref_21
  article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.238246.114
– volume: 144
  start-page: 646
  year: 2011
  ident: ref_76
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 20
  start-page: 13079
  year: 2014
  ident: ref_122
  article-title: Role of Nrf2 in chronic liver disease
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v20.i36.13079
– volume: 36
  start-page: 1655
  year: 2016
  ident: ref_84
  article-title: Nrf2-Mediated Regulation of Skeletal Muscle Glycogen Metabolism
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01095-15
– volume: 285
  start-page: 9292
  year: 2010
  ident: ref_91
  article-title: Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.093955
– volume: 280
  start-page: 16891
  year: 2005
  ident: ref_52
  article-title: Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500166200
– volume: 72
  start-page: 1321
  year: 2012
  ident: ref_108
  article-title: Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3213
– volume: 33
  start-page: 2996
  year: 2013
  ident: ref_83
  article-title: The Keap1-Nrf2 system prevents onset of diabetes mellitus
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00225-13
– volume: 88
  start-page: 101
  year: 2015
  ident: ref_3
  article-title: Structural basis of Keap1 interactions with Nrf2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.05.034
– volume: 3
  start-page: 78ra32
  year: 2011
  ident: ref_132
  article-title: Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3002042
– volume: 12
  start-page: 213
  year: 2010
  ident: ref_10
  article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2021
– volume: 91
  start-page: 9926
  year: 1994
  ident: ref_69
  article-title: Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.21.9926
– volume: 18
  start-page: 128
  year: 2011
  ident: ref_128
  article-title: ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression
  publication-title: Nat. Med.
  doi: 10.1038/nm.2557
– volume: 200
  start-page: 1929
  year: 2018
  ident: ref_148
  article-title: KEAP1 Editing Using CRISPR/Cas9 for Therapeutic NRF2 Activation in Primary Human T Lymphocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700812
– volume: 40
  start-page: 10228
  year: 2012
  ident: ref_51
  article-title: Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks827
– volume: 25
  start-page: 4150
  year: 2005
  ident: ref_61
  article-title: Glucocorticoid receptor (GR)-associated SMRT binding to C/EBPbeta TAD and Nrf2 Neh4/5: Role of SMRT recruited to GR in GSTA2 gene repression
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.10.4150-4165.2005
– ident: ref_45
  doi: 10.1371/journal.pone.0051111
– volume: 36
  start-page: 407
  year: 2016
  ident: ref_66
  article-title: The Mediator Subunit MED16 Transduces NRF2-Activating Signals into Antioxidant Gene Expression
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00785-15
– ident: ref_97
  doi: 10.1371/journal.pgen.1003701
– volume: 73
  start-page: 3097
  year: 2013
  ident: ref_5
  article-title: RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3386
– volume: 129
  start-page: 983
  year: 2011
  ident: ref_41
  article-title: MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-011-1604-1
– volume: 123
  start-page: 590
  year: 2011
  ident: ref_73
  article-title: Beneficial role of Nrf2 in regulating NADPH generation and consumption
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfr183
– volume: 19
  start-page: 327
  year: 2018
  ident: ref_46
  article-title: A brave new world of RNA-binding proteins
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.130
– volume: 62
  start-page: 39
  year: 2016
  ident: ref_44
  article-title: MicroRNA-153 Regulates NRF2 Expression and is Associated with Breast Carcinogenesis
  publication-title: Clin. Lab.
  doi: 10.7754/Clin.Lab.2015.150518
– volume: 18
  start-page: e14
  year: 2018
  ident: ref_144
  article-title: The Role of Reactive Oxygen Species in Regulating T Cell-mediated Immunity and Disease
  publication-title: Immune Netw.
  doi: 10.4110/in.2018.18.e14
– volume: 38
  start-page: 5718
  year: 2010
  ident: ref_49
  article-title: Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq212
– volume: 10
  start-page: 1113
  year: 2005
  ident: ref_121
  article-title: Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2005.00905.x
– volume: 142
  start-page: 111
  year: 2017
  ident: ref_147
  article-title: Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2017.06.136
– volume: 168
  start-page: 1960
  year: 2006
  ident: ref_124
  article-title: Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2006.051113
– volume: 30
  start-page: 1024
  year: 2009
  ident: ref_82
  article-title: Genetic versus chemoprotective activation of Nrf2 signaling: Overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp100
– ident: ref_75
  doi: 10.1016/j.jhep.2020.01.023
– volume: 32
  start-page: 514
  year: 2013
  ident: ref_64
  article-title: The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains
  publication-title: Oncogene
  doi: 10.1038/onc.2012.59
– volume: 285
  start-page: 21258
  year: 2010
  ident: ref_22
  article-title: CR6-interacting factor 1 (CRIF1) regulates NF-E2-related factor 2 (NRF2) protein stability by proteasome-mediated degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.084590
– volume: 34
  start-page: 11929
  year: 2014
  ident: ref_79
  article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1860-14.2014
– volume: 35
  start-page: 238
  year: 2003
  ident: ref_72
  article-title: Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation
  publication-title: Nat. Genet.
  doi: 10.1038/ng1248
– volume: 83
  start-page: 77
  year: 2015
  ident: ref_141
  article-title: Loss of Nrf2 in bone marrow-derived macrophages impairs antigen-driven CD8(+) T cell function by limiting GSH and Cys availability
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.02.004
– volume: 18
  start-page: 1332
  year: 2017
  ident: ref_149
  article-title: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3868
– volume: 117
  start-page: 1137
  year: 2007
  ident: ref_136
  article-title: Immune surveillance of tumors
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI31405
– volume: 107
  start-page: 18838
  year: 2010
  ident: ref_6
  article-title: Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1007387107
– volume: 110
  start-page: 15259
  year: 2013
  ident: ref_7
  article-title: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1305687110
– volume: 132
  start-page: 75
  year: 2011
  ident: ref_42
  article-title: Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2010.12.004
– volume: 123
  start-page: 2921
  year: 2013
  ident: ref_85
  article-title: Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI66353
– volume: 26
  start-page: 7942
  year: 2006
  ident: ref_62
  article-title: BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00700-06
– volume: 27
  start-page: 1711
  year: 2012
  ident: ref_90
  article-title: Dysregulated expression of fatty acid oxidation enzymes and iron-regulatory genes in livers of Nrf2-null mice
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/j.1440-1746.2012.07180.x
– volume: 29
  start-page: 935
  year: 2016
  ident: ref_11
  article-title: p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.04.006
– volume: 25
  start-page: 10895
  year: 2005
  ident: ref_63
  article-title: The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.24.10895-10906.2005
– volume: 103
  start-page: 1232
  year: 2008
  ident: ref_115
  article-title: Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000338597.71702.ad
– volume: 34
  start-page: 663
  year: 2009
  ident: ref_15
  article-title: Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.04.029
– volume: 27
  start-page: 2179
  year: 2013
  ident: ref_1
  article-title: The emerging role of the Nrf2-Keap1 signaling pathway in cancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.225680.113
– volume: 12
  start-page: 1902
  year: 2016
  ident: ref_109
  article-title: Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1208889
– volume: 279
  start-page: 31556
  year: 2004
  ident: ref_4
  article-title: Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M403061200
– volume: 210
  start-page: 1529
  year: 2013
  ident: ref_16
  article-title: BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20121337
– volume: 22
  start-page: 651
  year: 2015
  ident: ref_60
  article-title: ATF3 protects pulmonary resident cells from acute and ventilator-induced lung injury by preventing Nrf2 degradation
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2014.5987
– volume: 39
  start-page: 199
  year: 2014
  ident: ref_70
  article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2014.02.002
– volume: 294
  start-page: 327
  year: 2019
  ident: ref_77
  article-title: Hyperactivity of the transcription factor Nrf2 causes metabolic reprogramming in mouse esophagus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.005963
– volume: 34
  start-page: 653
  year: 2014
  ident: ref_36
  article-title: Notch-Nrf2 axis: Regulation of Nrf2 gene expression and cytoprotection by notch signaling
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01408-13
– volume: 116
  start-page: 4338
  year: 2010
  ident: ref_40
  article-title: microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease
  publication-title: Blood
  doi: 10.1182/blood-2009-04-214817
– volume: 7
  start-page: 85
  year: 2017
  ident: ref_2
  article-title: The KEAP1-NRF2 System in Cancer
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2017.00085
– volume: 115
  start-page: 2758
  year: 2018
  ident: ref_100
  article-title: Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1714056115
– volume: 243
  start-page: 27
  year: 2005
  ident: ref_68
  article-title: Repression of cancer protective genes by 17beta-estradiol: Ligand-dependent interaction between human Nrf2 and estrogen receptor alpha
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2005.08.002
– volume: 285
  start-page: 22576
  year: 2010
  ident: ref_110
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.118976
– volume: 16
  start-page: 2605
  year: 2016
  ident: ref_48
  article-title: Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.08.010
– volume: 6
  start-page: 1026
  year: 2014
  ident: ref_134
  article-title: Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.02.027
– volume: 87
  start-page: 953
  year: 1996
  ident: ref_58
  article-title: The transcriptional coactivators p300 and CBP are histone acetyltransferases
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)82001-2
– volume: 34
  start-page: 21
  year: 2018
  ident: ref_78
  article-title: NRF2 and the Hallmarks of Cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.022
– volume: 116
  start-page: 984
  year: 2006
  ident: ref_120
  article-title: Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI25790
– volume: 508
  start-page: 101
  year: 2011
  ident: ref_93
  article-title: Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2011.02.001
– volume: 7
  start-page: 835
  year: 2014
  ident: ref_140
  article-title: Myeloid lineage-specific deletion of antioxidant system enhances tumor metastasis
  publication-title: Cancer Prev. Res. (Phila.)
  doi: 10.1158/1940-6207.CAPR-14-0094
– volume: 33
  start-page: 2402
  year: 2013
  ident: ref_38
  article-title: Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00065-13
– volume: 99
  start-page: 2070
  year: 2008
  ident: ref_31
  article-title: Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6604703
– volume: 9
  start-page: 402
  year: 2018
  ident: ref_39
  article-title: Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2018.00402
– volume: 11
  start-page: 619
  year: 2003
  ident: ref_99
  article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00105-9
– volume: 47
  start-page: 1475
  year: 2015
  ident: ref_88
  article-title: NRF2 regulates serine biosynthesis in non-small cell lung cancer
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3421
– volume: 33
  start-page: 14636
  year: 2019
  ident: ref_47
  article-title: Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1
  publication-title: FASEB J.
  doi: 10.1096/fj.201901930R
– volume: 2
  start-page: 761
  year: 2013
  ident: ref_111
  article-title: Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration
  publication-title: Biol. Open
  doi: 10.1242/bio.20134853
– volume: 61
  start-page: 395
  year: 2013
  ident: ref_113
  article-title: The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.04.007
– volume: 286
  start-page: 4493
  year: 2011
  ident: ref_130
  article-title: Nrf2 induces interleukin-6 (IL-6) expression via an antioxidant response element within the IL-6 promoter
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.162008
– volume: 6
  start-page: 857
  year: 2001
  ident: ref_57
  article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2001.00469.x
– volume: 477
  start-page: 139
  year: 2008
  ident: ref_92
  article-title: Nrf2 regulates the alternative first exons of CD36 in macrophages through specific antioxidant response elements
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2008.06.004
– volume: 9
  start-page: 3506
  year: 2018
  ident: ref_133
  article-title: Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05861-7
– volume: 287
  start-page: 6539
  year: 2012
  ident: ref_13
  article-title: Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.316471
– ident: ref_37
  doi: 10.1371/journal.pone.0008579
– volume: 34
  start-page: 1165
  year: 2013
  ident: ref_43
  article-title: MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgt026
– volume: 71
  start-page: 1999
  year: 2011
  ident: ref_107
  article-title: High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-3018
– volume: 41
  start-page: 64
  year: 2016
  ident: ref_117
  article-title: Moderate-Intensity Physical Exercise Protects Against Experimental 6-Hydroxydopamine-Induced Hemiparkinsonism Through Nrf2-Antioxidant Response Element Pathway
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-015-1709-8
– ident: ref_89
  doi: 10.7554/eLife.28083
– volume: 60
  start-page: 1343
  year: 2001
  ident: ref_123
  article-title: Nrf2-deficient female mice develop lupus-like autoimmune nephritis
  publication-title: Kidney Int.
  doi: 10.1046/j.1523-1755.2001.00939.x
– volume: 594
  start-page: 5195
  year: 2016
  ident: ref_116
  article-title: Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice
  publication-title: J. Physiol.
  doi: 10.1113/JP271957
– volume: 68
  start-page: 364
  year: 2008
  ident: ref_59
  article-title: Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-regulated stress pathway
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-2170
– volume: 9
  start-page: 403
  year: 2018
  ident: ref_114
  article-title: The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0436-x
– volume: 23
  start-page: 7198
  year: 2003
  ident: ref_27
  article-title: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.20.7198-7209.2003
– volume: 10
  start-page: 435
  year: 2019
  ident: ref_118
  article-title: Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1alpha Signaling Pathways
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00435
– volume: 290
  start-page: 29854
  year: 2015
  ident: ref_106
  article-title: The Nuclear Factor (Erythroid-derived 2)-like 2 and Proteasome Maturation Protein Axis Mediate Bortezomib Resistance in Multiple Myeloma
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.664953
– ident: ref_98
  doi: 10.1101/655159
– ident: ref_142
  doi: 10.1128/MCB.00063-17
– volume: 73
  start-page: 2199
  year: 2013
  ident: ref_12
  article-title: Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-4400
– volume: 27
  start-page: 441
  year: 2011
  ident: ref_86
  article-title: Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154237
– volume: 45
  start-page: 841
  year: 2006
  ident: ref_24
  article-title: Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.20234
– volume: 26
  start-page: 190
  year: 2016
  ident: ref_65
  article-title: SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.4
– volume: 181
  start-page: 6730
  year: 2008
  ident: ref_33
  article-title: Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.10.6730
– volume: 197
  start-page: 857
  year: 2012
  ident: ref_95
  article-title: The impact of the unfolded protein response on human disease
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201110131
– volume: 22
  start-page: 66
  year: 2012
  ident: ref_35
  article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.05.016
– ident: ref_23
  doi: 10.1093/carcin/bgaa039
– ident: ref_20
  doi: 10.1371/journal.pgen.1006762
– volume: 32
  start-page: 2616
  year: 2014
  ident: ref_105
  article-title: Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.1764
– volume: 8
  start-page: 379
  year: 2003
  ident: ref_8
  article-title: Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2003.00640.x
– volume: 40
  start-page: 7416
  year: 2012
  ident: ref_50
  article-title: Identification of novel NRF2-regulated genes by ChIP-Seq: Influence on retinoid X receptor alpha
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks409
– volume: 23
  start-page: 8786
  year: 2003
  ident: ref_101
  article-title: Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.23.8786-8794.2003
– volume: 18
  start-page: 295
  year: 2019
  ident: ref_80
  article-title: Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-018-0008-x
– volume: 72
  start-page: 167
  year: 2020
  ident: ref_137
  article-title: The immunobiology of hepatocellular carcinoma in humans and mice: Basic concepts and therapeutic implications
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2019.08.014
– volume: 13
  start-page: 828
  year: 2007
  ident: ref_139
  article-title: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer
  publication-title: Nat. Med.
  doi: 10.1038/nm1609
– volume: 32
  start-page: 3765
  year: 2013
  ident: ref_18
  article-title: Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
  publication-title: Oncogene
  doi: 10.1038/onc.2012.388
– ident: ref_71
  doi: 10.1371/journal.pone.0039006
– volume: 22
  start-page: 2883
  year: 2002
  ident: ref_29
  article-title: Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: Role of antioxidant response element-like sequences in the nrf2 promoter
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.9.2883-2892.2002
– volume: 188
  start-page: 1630
  year: 2012
  ident: ref_143
  article-title: Th2 skewing by activation of Nrf2 in CD4(+) T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101712
– volume: 43
  start-page: 611
  year: 2015
  ident: ref_19
  article-title: Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of beta-TrCP and GSK-3
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20150011
– volume: 93
  start-page: 14960
  year: 1996
  ident: ref_55
  article-title: Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.25.14960
– volume: 178
  start-page: 807
  year: 2019
  ident: ref_28
  article-title: The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase
  publication-title: Cell
  doi: 10.1016/j.cell.2019.07.031
– volume: 475
  start-page: 106
  year: 2011
  ident: ref_34
  article-title: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
  publication-title: Nature
  doi: 10.1038/nature10189
– volume: 7
  start-page: 11624
  year: 2016
  ident: ref_127
  article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11624
– volume: 29
  start-page: 1756
  year: 2018
  ident: ref_94
  article-title: The Roles of NRF2 in Modulating Cellular Iron Homeostasis
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7176
– volume: 16
  start-page: 2348
  year: 2016
  ident: ref_135
  article-title: Nrf2 Induces IL-17D to Mediate Tumor and Virus Surveillance
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.07.075
– volume: 524
  start-page: 895
  year: 2020
  ident: ref_17
  article-title: The acetyltransferase p300 regulates NRF2 stability and localization
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.02.006
– volume: 10
  start-page: 159
  year: 2020
  ident: ref_81
  article-title: Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.00159
– volume: 23
  start-page: 1362
  year: 2017
  ident: ref_87
  article-title: Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis
  publication-title: Nat. Med.
  doi: 10.1038/nm.4407
– volume: 276
  start-page: 20858
  year: 2001
  ident: ref_54
  article-title: Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101198200
– volume: 108
  start-page: 35
  year: 2009
  ident: ref_74
  article-title: Increased Nrf2 activation in livers from Keap1-knockdown mice increases expression of cytoprotective genes that detoxify electrophiles more than those that detoxify reactive oxygen species
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfn267
– volume: 104
  start-page: 218
  year: 2008
  ident: ref_125
  article-title: Genetic or pharmacologic amplification of nrf2 signaling inhibits acute inflammatory liver injury in mice
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfn079
– volume: 590
  start-page: 2375
  year: 2016
  ident: ref_9
  article-title: p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12301
– volume: 35
  start-page: 7074
  year: 2007
  ident: ref_53
  article-title: Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm638
SSID ssj0023259
Score 2.7097397
SecondaryResourceType review_article
Snippet Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4777
SubjectTerms Animals
Autophagy
Binding sites
Breast cancer
Endoplasmic reticulum
Gene expression
Gene Expression Regulation
Humans
Hydrocarbons
Inflammation - physiopathology
Kinases
Metabolism
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Oxidative Stress
Phosphorylation
Proteins
Review
Transcription factors
Unfolded Protein Response
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66IngR31ZXiaAnLdo0jxYPImIRDx5Whb2VPFHRrrrrwX_vJO12XUWvzUDLTJr5JvkyH0L7LHHGQB0Qu5T5ptqaxVJpF_PcMacN0doEtsUNv7qn133Wbzbchg2tcrwmhoXaDLTfIz-GVEIoh9mVn72-xV41yp-uNhIas2jOty7zlC7RnxRcKQliaQnkoJiznNfE9xTK_OPHp5ch1D4pFUJMp6RfOPMnXfJb_imW0GIDHPF5HellNGOrFTRfS0l-rqLTm15BjrDEIfmMlwJcBDkdDMgU34ZbIbhXk2ItlpXB9f2VNXRfXN5dXMWNMEKsqchGcZYl0qkMoFMiDIG6UsrcaWbT3NgsdZyeGJZoQZXkVnlZMSFJLikD1yvFtEvXUacaVHYTYWXgqWSMSeYoVwAIBGR8aaWSigD6jtDh2DelbrqGe_GK5xKqB-_J8rsnI3TQWr_W3TL-sOuO3Vw2_8ywnEQ4QnvtMMx2f4QhKzv4qG1OfCtTGqGNOirtiwCIAvokMCKm4tUa-E7a0yPV40PoqC1SDlmZbf3_WdtogfhqOxAGu6gzev-wOwBJRmo3zLsvMWngig
  priority: 102
  providerName: ProQuest
Title NRF2, a Transcription Factor for Stress Response and Beyond
URI https://www.ncbi.nlm.nih.gov/pubmed/32640524
https://www.proquest.com/docview/2422468709
https://www.proquest.com/docview/2422009134
https://pubmed.ncbi.nlm.nih.gov/PMC7369905
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oRPBFvDsvI4I-aXVrk6ZFRFSsIjhkOthbyRUVrZdN0H_vSbsW5wV86UOT0nJOkvN9zcn5ADZZy2qNPMCzAXNFtRXzhFTWC2PLrNK-UjrPtmiH51160WO9MSjVRocG7P9K7ZyeVPf1Yff95eMQJ_yBY5xI2ffu7h_7yGMCyjkfhwmMSdxN0Uta7ScgbMhl09wPD88t0EUK_I-nR4PTD8T5PXHySyRKZmB6CCHJUeHzWRgz2RxMFqKSH_Ow3-4k_g4RJA9D5aJAklxYhyBGJdf5-RDSKdJjDRGZJsVJlgXoJqc3J-feUCLBU5RHAy-KWsLKCEFUi2sfGaYQsVXMBLE2UWBD2tSspTiVIjTSCYxx4ceCMnSClEzZYBFq2VNmloFIjXcFY0wwS0OJ0IBj7BdGSCF9xOF12C5tk6ph_XAnY_GQIo9wlky_WrIOW1Xv56Juxh_91kozp6XzU4QNPg1xJYnrsFE147h3mxkiM09vRZ-mK2pK67BUeKV6EUJSxKE-tvARf1UdXE3t0Zbs7javrc2DEOMzW_nn56_ClO8IeJ5DuAa1weubWUeUMpANGOc9jtcoOWvAxPFp-6rTcHGDNfKh-QlDcOon
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxJvQFoxET7Bq1s9dIVQhIEppyaG0Um5bP0URbEqTCvVP8RsZ29m0AcGt1_Vo15oZe75Zj-cDeCHK4BzmAUVgIjbVtqLQxoZC1kEE66i1LlVbjOTwkH8ci_EK_OruwsSyym5PTBu1m9j4j3wLQwnlEr2r3j75UUTWqHi62lFoZLfY9ec_MWWbvtl5j_bdpHTw4eDdsJizChSWq2pWVFWpg6kQd5TKUUzKtK6DFZ7VzlcsSN53orSKGy29iZxcStNac4HzNkbYwPC91-A6Bt5-XFFqfJHgMZrI2UqMeYUUtcyF9ozV_a3jr9-nmGsxrpRaDoF_4do_yzMvxbvBHbg9B6rkbfasu7Di23twI1NXnt-H16P9AX1FNEnBrtt6yCDR9xBEwuRzuoVC9nMRrie6dSTfl3kAh1eisoew2k5a_xiIcfhUCyG0CFwaBCAKEYb22mhDEe334GWnm8bOu5RHsoxvDWYrUZPNZU32YHMhfZK7c_xDbr1TczNfo9PmwqN68HwxjKsrHpno1k_Oskw_tk7lPXiUrbL4EAJfRLsUR9SSvRYCsXP38kh7_CV18FZMIgoQT_4_rWdwc3jwaa_Z2xntrsEtGjP9VKy4Dquz0zO_gXBoZp4mHyRwdNVO_xuV6h4O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAviHe3FDASPUG0Gzu2EyGEECVqKVqhQqW9BT_VVpBt2a1Q_xq_jrGdbLsguPUaj_IYjz3fxDPzATznubcW44DMMx6aahueKW18JirPvbHUGBuzLcZi56D4MOGTFfjV18KEtMp-T4wbtZ2a8I98iK6EFgKtqxr6Li3i03b95uQ0CwxS4aS1p9NIJrLnzn9i-DZ7vbuNc71Faf3-y7udrGMYyEwhy3lWlrnyukQMkktLMUBTqvKGO1ZZVzIvipHluZGFVsLpwM8lFa1UwfEbtObGM7zvNbguGc_DGpOTi2CP0UjUlqP_ywSvREq6Z6waDY-Ov88w7mKFlHLZHf6Fcf9M1bzk--rbcKsDreRtsrI7sOLau3Aj0Vie34NX4_2aviSKRMfXb0OkjlQ-BFEx-RwrUsh-Ssh1RLWWpNqZ-3BwJSp7AKvttHXrQLTFq4pzrrgvhEYwIhFtKKe00hSR_wBe9LppTNexPBBnfGswcgmabC5rcgBbC-mT1KnjH3KbvZqbbr3OmgvrGsCzxTCutHB8olo3PUsyo9BGtRjAwzQriwchCEbkS3FELs3XQiB08V4eaY8OYzdvyQQiAr7x_9d6CjfR3JuPu-O9R7BGQ9Af8xY3YXX-48w9RmQ010-iCRL4etU2_xu0biJE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NRF2%2C+a+Transcription+Factor+for+Stress+Response+and+Beyond&rft.jtitle=International+journal+of+molecular+sciences&rft.au=He%2C+Feng&rft.au=Ru%2C+Xiaoli&rft.au=Wen%2C+Tao&rft.date=2020-07-06&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=21&rft.issue=13&rft.spage=4777&rft_id=info:doi/10.3390%2Fijms21134777&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms21134777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon