The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer

Abstract The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We revea...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 48; no. 15; pp. 8576 - 8590
Main Authors Müller, Simon, Bley, Nadine, Busch, Bianca, Glaß, Markus, Lederer, Marcell, Misiak, Claudia, Fuchs, Tommy, Wedler, Alice, Haase, Jacob, Bertoldo, Jean Borges, Michl, Patrick, Hüttelmaier, Stefan
Format Journal Article
LanguageEnglish
Published England Oxford University Press 04.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3′UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional ‘super’-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models.
AbstractList Abstract The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3′UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional ‘super’-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models.
The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3′UTR-, miRNA- and m 6 A-dependent regulation and suggests enhancement of cell cycle progression by m 6 A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional ‘super’-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models.
The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3'UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional 'super'-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models.The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3'UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional 'super'-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models.
The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3′UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional ‘super’-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models.
Author Michl, Patrick
Wedler, Alice
Müller, Simon
Busch, Bianca
Misiak, Claudia
Bley, Nadine
Haase, Jacob
Lederer, Marcell
Hüttelmaier, Stefan
Bertoldo, Jean Borges
Glaß, Markus
Fuchs, Tommy
Author_xml – sequence: 1
  givenname: Simon
  surname: Müller
  fullname: Müller, Simon
  email: simon.mueller@medizin.uni-halle.de
– sequence: 2
  givenname: Nadine
  surname: Bley
  fullname: Bley, Nadine
– sequence: 3
  givenname: Bianca
  surname: Busch
  fullname: Busch, Bianca
– sequence: 4
  givenname: Markus
  surname: Glaß
  fullname: Glaß, Markus
– sequence: 5
  givenname: Marcell
  surname: Lederer
  fullname: Lederer, Marcell
– sequence: 6
  givenname: Claudia
  surname: Misiak
  fullname: Misiak, Claudia
– sequence: 7
  givenname: Tommy
  surname: Fuchs
  fullname: Fuchs, Tommy
– sequence: 8
  givenname: Alice
  surname: Wedler
  fullname: Wedler, Alice
– sequence: 9
  givenname: Jacob
  surname: Haase
  fullname: Haase, Jacob
– sequence: 10
  givenname: Jean Borges
  surname: Bertoldo
  fullname: Bertoldo, Jean Borges
– sequence: 11
  givenname: Patrick
  surname: Michl
  fullname: Michl, Patrick
– sequence: 12
  givenname: Stefan
  orcidid: 0000-0001-9335-4227
  surname: Hüttelmaier
  fullname: Hüttelmaier, Stefan
  email: stefan.huettelmaier@medizin.uni-halle.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32761127$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi1URKeFFXvkFUKCtP5L7GyQStVpK1WAUFlbHuc6Y8jYwU4qeADeG7czRRQhVl7cc89n3e8A7YUYAKHnlBxR0vLjYNJx_9WYpuaP0ILyhlWibdgeWhBO6ooSofbRQc5fCKGC1uIJ2udMNpQyuUA_r9eAY7DRwWQG_On9SbXyofOhx2OKE_iAL8-X7N1Hin3GBndp7nuzGuANHmOeqimZkG3y4-RjKII8j5AqCGsTLCQcHT5jy6pL_gYC7iEAhu9jgpwLjovc3nFP0WNnhgzPdu8h-rw8uz69qK4-nF-enlxVVkg1VYpySkAo1QHlloIizjHiQAnm6pXiDSEdkcwR4lrXSSpdWzPCmbGOSdE4fojebr3jvNpAZyGU_w96TH5j0g8djdcPJ8GvdR9vtBSStLUsglc7QYrfZsiT3vhsYRhMgDhnzQSnijZMqoK--DPrd8j97QtAt4BNMecETls_mds7lmg_aEr0bb-69Kt3_Zad13_t3Gv_Tb_c0nEe_wv-Agxvtq8
CitedBy_id crossref_primary_10_1038_s41598_023_45449_w
crossref_primary_10_1002_cam4_6989
crossref_primary_10_1186_s12890_023_02545_x
crossref_primary_10_1038_s44318_024_00082_9
crossref_primary_10_1007_s00018_025_05596_x
crossref_primary_10_1155_2021_5537804
crossref_primary_10_1186_s40164_023_00429_8
crossref_primary_10_1038_s41420_023_01645_1
crossref_primary_10_1186_s12943_023_01746_6
crossref_primary_10_1016_j_gendis_2023_06_017
crossref_primary_10_1158_1541_7786_MCR_22_0231
crossref_primary_10_1038_s41419_023_05736_w
crossref_primary_10_1093_narcan_zcaf006
crossref_primary_10_1007_s10616_023_00594_y
crossref_primary_10_1016_j_semcancer_2022_05_009
crossref_primary_10_1158_0008_5472_CAN_22_1289
crossref_primary_10_3390_cancers14092121
crossref_primary_10_3892_mmr_2022_12796
crossref_primary_10_1002_mc_23746
crossref_primary_10_1111_cpr_13692
crossref_primary_10_3389_fmolb_2021_632219
crossref_primary_10_1038_s42003_024_07055_y
crossref_primary_10_1016_j_ymthe_2022_01_019
crossref_primary_10_3390_ijms21186835
crossref_primary_10_1186_s12943_022_01652_3
crossref_primary_10_3389_fphar_2022_947363
crossref_primary_10_1007_s11010_024_05040_x
crossref_primary_10_1038_s41420_022_01113_2
crossref_primary_10_1038_s41392_023_01638_7
crossref_primary_10_1016_j_sjbs_2023_103569
crossref_primary_10_1084_jem_20210360
crossref_primary_10_1007_s12041_021_01322_1
crossref_primary_10_3389_fphar_2024_1448872
crossref_primary_10_1016_j_bcp_2024_116555
crossref_primary_10_3390_ijms25147506
crossref_primary_10_1016_j_cbi_2024_111107
crossref_primary_10_1007_s11427_024_2648_0
crossref_primary_10_1186_s11658_023_00493_2
crossref_primary_10_1038_s43018_021_00315_4
crossref_primary_10_2174_0118715206256546231108095912
crossref_primary_10_1158_0008_5472_CAN_20_4107
crossref_primary_10_1186_s13046_021_01952_4
crossref_primary_10_1093_nar_gkae046
crossref_primary_10_1186_s12943_022_01680_z
crossref_primary_10_3389_fonc_2021_647737
crossref_primary_10_1080_15476286_2024_2303558
crossref_primary_10_1093_nar_gkac108
crossref_primary_10_1177_09603271231180856
crossref_primary_10_3390_biology10050407
crossref_primary_10_1016_j_biopha_2024_116365
crossref_primary_10_1016_j_csbj_2022_09_017
crossref_primary_10_1080_08916934_2023_2167983
crossref_primary_10_3389_fimmu_2025_1531246
crossref_primary_10_1038_s41419_023_05831_y
crossref_primary_10_1038_s41420_024_02092_2
crossref_primary_10_1016_j_drudis_2023_103580
crossref_primary_10_1186_s13046_023_02810_1
crossref_primary_10_1111_1440_1681_13754
crossref_primary_10_1111_1440_1681_13875
crossref_primary_10_1021_acscentsci_2c00107
crossref_primary_10_1080_15476286_2020_1812894
crossref_primary_10_1016_j_heliyon_2024_e29682
crossref_primary_10_1186_s12967_023_04651_0
crossref_primary_10_3390_v15071431
crossref_primary_10_3389_fcell_2024_1372899
crossref_primary_10_1038_s41418_021_00804_0
crossref_primary_10_1007_s10495_023_01893_7
crossref_primary_10_1111_cas_15636
crossref_primary_10_1186_s13045_024_01546_5
crossref_primary_10_1016_j_gendis_2023_101201
crossref_primary_10_1111_jog_16242
crossref_primary_10_1186_s13045_023_01477_7
crossref_primary_10_1038_s42003_025_07492_3
crossref_primary_10_1080_15476286_2021_2010983
crossref_primary_10_1042_EBC20220025
crossref_primary_10_1002_cac2_12161
crossref_primary_10_1016_j_intimp_2023_109737
crossref_primary_10_1016_j_intimp_2024_113079
crossref_primary_10_1186_s13045_022_01304_5
crossref_primary_10_4103_egjp_egjp_24_24
crossref_primary_10_1016_j_bbagrm_2023_194967
crossref_primary_10_1111_1749_4877_12927
crossref_primary_10_1016_j_gendis_2024_101214
crossref_primary_10_1016_j_canlet_2023_216075
crossref_primary_10_3389_fmed_2024_1314075
crossref_primary_10_1007_s10637_021_01148_9
crossref_primary_10_1186_s12864_022_08522_8
crossref_primary_10_1002_1873_3468_14710
crossref_primary_10_1016_j_isci_2022_105194
crossref_primary_10_3390_cancers13235913
crossref_primary_10_1016_j_molmed_2023_03_005
crossref_primary_10_3389_fgene_2024_1461386
crossref_primary_10_1007_s00401_024_02788_w
crossref_primary_10_1038_s41568_022_00497_8
crossref_primary_10_1186_s12943_023_01792_0
crossref_primary_10_1002_cac2_12458
crossref_primary_10_1038_s12276_022_00795_z
crossref_primary_10_1186_s12964_024_01854_w
crossref_primary_10_1007_s12035_024_04042_6
crossref_primary_10_1186_s12943_021_01415_6
crossref_primary_10_3390_cancers13112686
Cites_doi 10.1093/nar/gky1012
10.1038/nature11247
10.1038/onc.2010.340
10.1038/s41568-019-0143-7
10.1038/nmeth.3485
10.4161/cc.9.13.12061
10.1007/s00018-012-1186-z
10.1038/s41388-019-0715-8
10.1038/nrm2621
10.1016/j.tranon.2017.07.008
10.1002/hep.26997
10.1155/2018/4217259
10.1016/j.molcel.2009.06.007
10.1038/s41556-018-0045-z
10.1038/nmeth.3810
10.4161/cc.9.10.11598
10.1038/nrg3813
10.1186/s12864-015-1273-2
10.1016/j.trecan.2017.05.003
10.1093/nar/gky229
10.1002/0471250953.bi1112s47
10.1016/j.stem.2013.03.005
10.1101/gad.182568.111
10.1007/978-3-319-29073-7_7
10.1038/sj.onc.1210563
10.1016/j.celrep.2016.03.052
10.1038/sj.onc.1210823
10.1101/gad.287540.116
10.1073/pnas.0506580102
10.1128/MCB.22.12.3959-3969.2002
10.1016/j.stem.2009.05.026
10.3389/fgene.2015.00161
10.1200/JCO.2014.55.9880
10.1016/j.semcancer.2014.07.006
10.1093/nar/gkw099
10.1016/j.celrep.2014.03.015
10.1093/nar/gkaa216
10.1158/0008-5472.CAN-18-2965
10.1016/j.cels.2015.12.004
10.1158/1535-7163.1427.3.11
10.1093/nar/gku1024
10.1016/j.cell.2010.03.009
10.1016/j.cell.2007.12.033
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020
The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020
– notice: The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkaa653
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 8590
ExternalDocumentID PMC7470957
32761127
10_1093_nar_gkaa653
10.1093/nar/gkaa653
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: GRK1591
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CAG
CIDKT
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
ESTFP
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
M~E
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROX
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
ACUTJ
AFYAG
AMNDL
CITATION
OVT
ADIXU
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c478t-81310e488de13c1e80ff20fe842f5b83600d072f00f9fd717f952032acf2746f3
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:27:04 EDT 2025
Fri Jul 11 05:14:32 EDT 2025
Wed Feb 19 02:30:34 EST 2025
Tue Jul 01 02:07:28 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 28 03:20:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-81310e488de13c1e80ff20fe842f5b83600d072f00f9fd717f952032acf2746f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9335-4227
OpenAccessLink https://dx.doi.org/10.1093/nar/gkaa653
PMID 32761127
PQID 2431816278
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7470957
proquest_miscellaneous_2431816278
pubmed_primary_32761127
crossref_citationtrail_10_1093_nar_gkaa653
crossref_primary_10_1093_nar_gkaa653
oup_primary_10_1093_nar_gkaa653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-04
PublicationDateYYYYMMDD 2020-09-04
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Muller (2020090320032037600_B16) 2019; 47
Kobel (2020090320032037600_B10) 2007; 26
Busch (2020090320032037600_B14) 2016; 44
Van Nostrand (2020090320032037600_B23) 2016; 13
Yang (2020090320032037600_B25) 2015; 16
Shyh-Chang (2020090320032037600_B42) 2013; 12
Huang (2020090320032037600_B12) 2018; 20
Emmrich (2020090320032037600_B19) 2010; 9
Miles (2020090320032037600_B20) 2012; 26
Cao (2020090320032037600_B39) 2018; 2018
Bell (2020090320032037600_B34) 2015; 33
Muller (2020090320032037600_B8) 2018; 46
Bell (2020090320032037600_B6) 2013; 70
Hattori (2020090320032037600_B1) 2016; 907
Jonson (2020090320032037600_B15) 2014; 7
Julian (2020090320032037600_B18) 2015; 6
Liberzon (2020090320032037600_B29) 2015; 1
Lan (2020090320032037600_B43) 2019; 79
Hafner (2020090320032037600_B5) 2010; 141
Wang (2020090320032037600_B37) 2008; 27
Gerstberger (2020090320032037600_B33) 2014; 15
Lange (2020090320032037600_B41) 2009; 5
Dweep (2020090320032037600_B22) 2015; 12
Subramanian (2020090320032037600_B28) 2005; 102
Marshall (2020090320032037600_B30) 2010; 29
Lederer (2020090320032037600_B7) 2014; 29
Liu (2020090320032037600_B27) 2015; 43
Degrauwe (2020090320032037600_B2) 2016; 30
Lange (2020090320032037600_B40) 2010; 9
Kent (2020090320032037600_B17) 2019; 19
Ianevski (2020090320032037600_B31) 2020; 48
Rosenfeld (2020090320032037600_B32) 2019; 38
Gangaraju (2020090320032037600_B38) 2009; 10
Gutschner (2020090320032037600_B9) 2014; 59
Quinlan (2020090320032037600_B26) 2014; 47
Consortium (2020090320032037600_B24) 2012; 489
Sakaue-Sawano (2020090320032037600_B35) 2008; 132
Conway (2020090320032037600_B4) 2016; 15
Lemm (2020090320032037600_B11) 2002; 22
Mahapatra (2020090320032037600_B21) 2017; 10
Pereira (2020090320032037600_B3) 2017; 3
Fry (2020090320032037600_B36) 2004; 3
Elcheva (2020090320032037600_B13) 2009; 35
References_xml – volume: 47
  start-page: 375
  year: 2019
  ident: 2020090320032037600_B16
  article-title: IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1012
– volume: 489
  start-page: 57
  year: 2012
  ident: 2020090320032037600_B24
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 29
  start-page: 6172
  year: 2010
  ident: 2020090320032037600_B30
  article-title: TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells
  publication-title: Oncogene
  doi: 10.1038/onc.2010.340
– volume: 19
  start-page: 326
  year: 2019
  ident: 2020090320032037600_B17
  article-title: The broken cycle: E2F dysfunction in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-019-0143-7
– volume: 12
  start-page: 697
  year: 2015
  ident: 2020090320032037600_B22
  article-title: miRWalk2.0: a comprehensive atlas of microRNA-target interactions
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3485
– volume: 9
  start-page: 2555
  year: 2010
  ident: 2020090320032037600_B19
  article-title: Checks and balances: E2F-microRNA crosstalk in cancer control
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.13.12061
– volume: 70
  start-page: 2657
  year: 2013
  ident: 2020090320032037600_B6
  article-title: Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-012-1186-z
– volume: 38
  start-page: 4169
  year: 2019
  ident: 2020090320032037600_B32
  article-title: VICKZ1 enhances tumor progression and metastasis in lung adenocarcinomas in mice
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0715-8
– volume: 10
  start-page: 116
  year: 2009
  ident: 2020090320032037600_B38
  article-title: MicroRNAs: key regulators of stem cells
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2621
– volume: 10
  start-page: 818
  year: 2017
  ident: 2020090320032037600_B21
  article-title: A novel IMP1 inhibitor, BTYNB, targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2017.07.008
– volume: 59
  start-page: 1900
  year: 2014
  ident: 2020090320032037600_B9
  article-title: Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.26997
– volume: 2018
  start-page: 4217259
  year: 2018
  ident: 2020090320032037600_B39
  article-title: The roles of insulin-like growth factor 2 mRNA-binding protein 2 in cancer and cancer stem cells
  publication-title: Stem Cells Int.
  doi: 10.1155/2018/4217259
– volume: 35
  start-page: 240
  year: 2009
  ident: 2020090320032037600_B13
  article-title: CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.06.007
– volume: 20
  start-page: 285
  year: 2018
  ident: 2020090320032037600_B12
  article-title: Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0045-z
– volume: 13
  start-page: 508
  year: 2016
  ident: 2020090320032037600_B23
  article-title: Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3810
– volume: 9
  start-page: 1893
  year: 2010
  ident: 2020090320032037600_B40
  article-title: Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.10.11598
– volume: 15
  start-page: 829
  year: 2014
  ident: 2020090320032037600_B33
  article-title: A census of human RNA-binding proteins
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3813
– volume: 16
  start-page: 51
  year: 2015
  ident: 2020090320032037600_B25
  article-title: CLIPdb: a CLIP-seq database for protein-RNA interactions
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1273-2
– volume: 3
  start-page: 506
  year: 2017
  ident: 2020090320032037600_B3
  article-title: RNA-binding proteins in cancer: old players and new actors
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2017.05.003
– volume: 46
  start-page: 6285
  year: 2018
  ident: 2020090320032037600_B8
  article-title: IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky229
– volume: 47
  year: 2014
  ident: 2020090320032037600_B26
  article-title: BEDTools: the Swiss-Army Tool for genome feature analysis
  publication-title: Curr Protoc Bioinformatics
  doi: 10.1002/0471250953.bi1112s47
– volume: 12
  start-page: 395
  year: 2013
  ident: 2020090320032037600_B42
  article-title: Lin28: primal regulator of growth and metabolism in stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.03.005
– volume: 26
  start-page: 356
  year: 2012
  ident: 2020090320032037600_B20
  article-title: Pumilio facilitates miRNA regulation of the E2F3 oncogene
  publication-title: Genes Dev.
  doi: 10.1101/gad.182568.111
– volume: 907
  start-page: 153
  year: 2016
  ident: 2020090320032037600_B1
  article-title: Regulation of stem cell self-renewal and oncogenesis by RNA-binding proteins
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-29073-7_7
– volume: 26
  start-page: 7584
  year: 2007
  ident: 2020090320032037600_B10
  article-title: Expression of the RNA-binding protein IMP1 correlates with poor prognosis in ovarian carcinoma
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210563
– volume: 15
  start-page: 666
  year: 2016
  ident: 2020090320032037600_B4
  article-title: Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.03.052
– volume: 27
  start-page: 1905
  year: 2008
  ident: 2020090320032037600_B37
  article-title: c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210823
– volume: 30
  start-page: 2459
  year: 2016
  ident: 2020090320032037600_B2
  article-title: IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.287540.116
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2020090320032037600_B28
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0506580102
– volume: 22
  start-page: 3959
  year: 2002
  ident: 2020090320032037600_B11
  article-title: Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.12.3959-3969.2002
– volume: 5
  start-page: 320
  year: 2009
  ident: 2020090320032037600_B41
  article-title: Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.026
– volume: 6
  start-page: 161
  year: 2015
  ident: 2020090320032037600_B18
  article-title: Transcriptional control of stem cell fate by E2Fs and pocket proteins
  publication-title: Front Genet
  doi: 10.3389/fgene.2015.00161
– volume: 33
  start-page: 1285
  year: 2015
  ident: 2020090320032037600_B34
  article-title: IGF2BP1 harbors prognostic significance by gene gain and diverse expression in neuroblastoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2014.55.9880
– volume: 29
  start-page: 3
  year: 2014
  ident: 2020090320032037600_B7
  article-title: The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2014.07.006
– volume: 44
  start-page: 3845
  year: 2016
  ident: 2020090320032037600_B14
  article-title: The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw099
– volume: 7
  start-page: 539
  year: 2014
  ident: 2020090320032037600_B15
  article-title: IMP3 RNP safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.03.015
– volume: 48
  start-page: W488
  year: 2020
  ident: 2020090320032037600_B31
  article-title: SynergyFinder 2.0: visual analytics of multi-drug combination synergies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa216
– volume: 79
  start-page: 1285
  year: 2019
  ident: 2020090320032037600_B43
  article-title: The critical role of RNA m(6)A methylation in cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-2965
– volume: 1
  start-page: 417
  year: 2015
  ident: 2020090320032037600_B29
  article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.004
– volume: 3
  start-page: 1427
  year: 2004
  ident: 2020090320032037600_B36
  article-title: Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.1427.3.11
– volume: 43
  start-page: D197
  year: 2015
  ident: 2020090320032037600_B27
  article-title: MeT-DB: a database of transcriptome methylation in mammalian cells
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/gku1024
– volume: 141
  start-page: 129
  year: 2010
  ident: 2020090320032037600_B5
  article-title: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.009
– volume: 132
  start-page: 487
  year: 2008
  ident: 2020090320032037600_B35
  article-title: Visualizing spatiotemporal dynamics of multicellular cell-cycle progression
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.033
SSID ssj0014154
Score 2.6131284
Snippet Abstract The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse...
The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8576
SubjectTerms 3' Untranslated Regions - genetics
Animals
Cell Line, Tumor
E2F Transcription Factors - genetics
E2F1 Transcription Factor - genetics
Gene Expression Regulation, Neoplastic - genetics
Humans
Mice
Molecular Biology
Neoplasms - genetics
Neoplasms - pathology
RNA-Binding Proteins - drug effects
RNA-Binding Proteins - genetics
Small Molecule Libraries - pharmacology
Title The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/32761127
https://www.proquest.com/docview/2431816278
https://pubmed.ncbi.nlm.nih.gov/PMC7470957
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1db9MwFL2CvcALgo2P8lGMNPGAsOY4Tpw-lqll8DAQ2qS-RbZjdxXgVEkqwQ_gf3PtpNU6TfCcGyvScXzP8fU9BjjWuO4Lbk1oP2NU5CqhSmQZRTGhTJ5oraro9nmen12Kz4tsMRyQbW8p4U_SE6-ak-V3pfIsmHpi-g0W-RdfFrtiAeag3iUqmmqKYmjDu_HuXuLZa2a7xilvHo28lmvmD-HBQBLJtEf1Edyx_hCOph4F8s_f5C2Jxzbjfvgh3DvdXtl2BH8QdFJ7UzuLnJp8O58G4RuyE4l-DCtPPn2c8w9fE7JqiSJVs1kuQ-_Ue7Ku2452IXFtlxEcoN2sbUOtvwpToyG1IzM-p1UTVkiCM88S-2s4SOsJDm5i3GO4nM8uTs_ocM8CNUIWHS0S5HgW_-TKJqlJbMGc48zZQnCX6dDlwSomuWPMTVyF-s9NsnDxujIONW3u0idw4GtvnwFJeKVRcSnDXFBqWjvkT0hRCme50FKM4N0WhNIMJuThLowfZV8MT0tErBwQG8HxLnjde2_cHvYa0fx3xJst0iUiEkoiytt605Yc-VOR5FwWI3jaI78bKOUyRzYqRyD35sQuIDhz7z_xq6vo0I0aDamrfP7fL3sB93kQ8LFC9RIOumZjXyHL6fQY7ko2G8c9gnGc738BAPH-Ig
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+oncofetal+RNA-binding+protein+IGF2BP1+is+a+druggable%2C+post-transcriptional+super-enhancer+of+E2F-driven+gene+expression+in+cancer&rft.jtitle=Nucleic+acids+research&rft.au=M%C3%BCller%2C+Simon&rft.au=Bley%2C+Nadine&rft.au=Busch%2C+Bianca&rft.au=Gla%C3%9F%2C+Markus&rft.date=2020-09-04&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=48&rft.issue=15&rft.spage=8576&rft.epage=8590&rft_id=info:doi/10.1093%2Fnar%2Fgkaa653&rft_id=info%3Apmid%2F32761127&rft.externalDocID=PMC7470957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon