The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer
Abstract The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We revea...
Saved in:
Published in | Nucleic acids research Vol. 48; no. 15; pp. 8576 - 8590 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
04.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3′UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional ‘super’-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models. |
---|---|
AbstractList | Abstract
The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3′UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional ‘super’-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models. The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3′UTR-, miRNA- and m 6 A-dependent regulation and suggests enhancement of cell cycle progression by m 6 A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional ‘super’-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models. The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3'UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional 'super'-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models.The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3'UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional 'super'-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models. The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3′UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional ‘super’-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models. |
Author | Michl, Patrick Wedler, Alice Müller, Simon Busch, Bianca Misiak, Claudia Bley, Nadine Haase, Jacob Lederer, Marcell Hüttelmaier, Stefan Bertoldo, Jean Borges Glaß, Markus Fuchs, Tommy |
Author_xml | – sequence: 1 givenname: Simon surname: Müller fullname: Müller, Simon email: simon.mueller@medizin.uni-halle.de – sequence: 2 givenname: Nadine surname: Bley fullname: Bley, Nadine – sequence: 3 givenname: Bianca surname: Busch fullname: Busch, Bianca – sequence: 4 givenname: Markus surname: Glaß fullname: Glaß, Markus – sequence: 5 givenname: Marcell surname: Lederer fullname: Lederer, Marcell – sequence: 6 givenname: Claudia surname: Misiak fullname: Misiak, Claudia – sequence: 7 givenname: Tommy surname: Fuchs fullname: Fuchs, Tommy – sequence: 8 givenname: Alice surname: Wedler fullname: Wedler, Alice – sequence: 9 givenname: Jacob surname: Haase fullname: Haase, Jacob – sequence: 10 givenname: Jean Borges surname: Bertoldo fullname: Bertoldo, Jean Borges – sequence: 11 givenname: Patrick surname: Michl fullname: Michl, Patrick – sequence: 12 givenname: Stefan orcidid: 0000-0001-9335-4227 surname: Hüttelmaier fullname: Hüttelmaier, Stefan email: stefan.huettelmaier@medizin.uni-halle.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32761127$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAURi1URKeFFXvkFUKCtP5L7GyQStVpK1WAUFlbHuc6Y8jYwU4qeADeG7czRRQhVl7cc89n3e8A7YUYAKHnlBxR0vLjYNJx_9WYpuaP0ILyhlWibdgeWhBO6ooSofbRQc5fCKGC1uIJ2udMNpQyuUA_r9eAY7DRwWQG_On9SbXyofOhx2OKE_iAL8-X7N1Hin3GBndp7nuzGuANHmOeqimZkG3y4-RjKII8j5AqCGsTLCQcHT5jy6pL_gYC7iEAhu9jgpwLjovc3nFP0WNnhgzPdu8h-rw8uz69qK4-nF-enlxVVkg1VYpySkAo1QHlloIizjHiQAnm6pXiDSEdkcwR4lrXSSpdWzPCmbGOSdE4fojebr3jvNpAZyGU_w96TH5j0g8djdcPJ8GvdR9vtBSStLUsglc7QYrfZsiT3vhsYRhMgDhnzQSnijZMqoK--DPrd8j97QtAt4BNMecETls_mds7lmg_aEr0bb-69Kt3_Zad13_t3Gv_Tb_c0nEe_wv-Agxvtq8 |
CitedBy_id | crossref_primary_10_1038_s41598_023_45449_w crossref_primary_10_1002_cam4_6989 crossref_primary_10_1186_s12890_023_02545_x crossref_primary_10_1038_s44318_024_00082_9 crossref_primary_10_1007_s00018_025_05596_x crossref_primary_10_1155_2021_5537804 crossref_primary_10_1186_s40164_023_00429_8 crossref_primary_10_1038_s41420_023_01645_1 crossref_primary_10_1186_s12943_023_01746_6 crossref_primary_10_1016_j_gendis_2023_06_017 crossref_primary_10_1158_1541_7786_MCR_22_0231 crossref_primary_10_1038_s41419_023_05736_w crossref_primary_10_1093_narcan_zcaf006 crossref_primary_10_1007_s10616_023_00594_y crossref_primary_10_1016_j_semcancer_2022_05_009 crossref_primary_10_1158_0008_5472_CAN_22_1289 crossref_primary_10_3390_cancers14092121 crossref_primary_10_3892_mmr_2022_12796 crossref_primary_10_1002_mc_23746 crossref_primary_10_1111_cpr_13692 crossref_primary_10_3389_fmolb_2021_632219 crossref_primary_10_1038_s42003_024_07055_y crossref_primary_10_1016_j_ymthe_2022_01_019 crossref_primary_10_3390_ijms21186835 crossref_primary_10_1186_s12943_022_01652_3 crossref_primary_10_3389_fphar_2022_947363 crossref_primary_10_1007_s11010_024_05040_x crossref_primary_10_1038_s41420_022_01113_2 crossref_primary_10_1038_s41392_023_01638_7 crossref_primary_10_1016_j_sjbs_2023_103569 crossref_primary_10_1084_jem_20210360 crossref_primary_10_1007_s12041_021_01322_1 crossref_primary_10_3389_fphar_2024_1448872 crossref_primary_10_1016_j_bcp_2024_116555 crossref_primary_10_3390_ijms25147506 crossref_primary_10_1016_j_cbi_2024_111107 crossref_primary_10_1007_s11427_024_2648_0 crossref_primary_10_1186_s11658_023_00493_2 crossref_primary_10_1038_s43018_021_00315_4 crossref_primary_10_2174_0118715206256546231108095912 crossref_primary_10_1158_0008_5472_CAN_20_4107 crossref_primary_10_1186_s13046_021_01952_4 crossref_primary_10_1093_nar_gkae046 crossref_primary_10_1186_s12943_022_01680_z crossref_primary_10_3389_fonc_2021_647737 crossref_primary_10_1080_15476286_2024_2303558 crossref_primary_10_1093_nar_gkac108 crossref_primary_10_1177_09603271231180856 crossref_primary_10_3390_biology10050407 crossref_primary_10_1016_j_biopha_2024_116365 crossref_primary_10_1016_j_csbj_2022_09_017 crossref_primary_10_1080_08916934_2023_2167983 crossref_primary_10_3389_fimmu_2025_1531246 crossref_primary_10_1038_s41419_023_05831_y crossref_primary_10_1038_s41420_024_02092_2 crossref_primary_10_1016_j_drudis_2023_103580 crossref_primary_10_1186_s13046_023_02810_1 crossref_primary_10_1111_1440_1681_13754 crossref_primary_10_1111_1440_1681_13875 crossref_primary_10_1021_acscentsci_2c00107 crossref_primary_10_1080_15476286_2020_1812894 crossref_primary_10_1016_j_heliyon_2024_e29682 crossref_primary_10_1186_s12967_023_04651_0 crossref_primary_10_3390_v15071431 crossref_primary_10_3389_fcell_2024_1372899 crossref_primary_10_1038_s41418_021_00804_0 crossref_primary_10_1007_s10495_023_01893_7 crossref_primary_10_1111_cas_15636 crossref_primary_10_1186_s13045_024_01546_5 crossref_primary_10_1016_j_gendis_2023_101201 crossref_primary_10_1111_jog_16242 crossref_primary_10_1186_s13045_023_01477_7 crossref_primary_10_1038_s42003_025_07492_3 crossref_primary_10_1080_15476286_2021_2010983 crossref_primary_10_1042_EBC20220025 crossref_primary_10_1002_cac2_12161 crossref_primary_10_1016_j_intimp_2023_109737 crossref_primary_10_1016_j_intimp_2024_113079 crossref_primary_10_1186_s13045_022_01304_5 crossref_primary_10_4103_egjp_egjp_24_24 crossref_primary_10_1016_j_bbagrm_2023_194967 crossref_primary_10_1111_1749_4877_12927 crossref_primary_10_1016_j_gendis_2024_101214 crossref_primary_10_1016_j_canlet_2023_216075 crossref_primary_10_3389_fmed_2024_1314075 crossref_primary_10_1007_s10637_021_01148_9 crossref_primary_10_1186_s12864_022_08522_8 crossref_primary_10_1002_1873_3468_14710 crossref_primary_10_1016_j_isci_2022_105194 crossref_primary_10_3390_cancers13235913 crossref_primary_10_1016_j_molmed_2023_03_005 crossref_primary_10_3389_fgene_2024_1461386 crossref_primary_10_1007_s00401_024_02788_w crossref_primary_10_1038_s41568_022_00497_8 crossref_primary_10_1186_s12943_023_01792_0 crossref_primary_10_1002_cac2_12458 crossref_primary_10_1038_s12276_022_00795_z crossref_primary_10_1186_s12964_024_01854_w crossref_primary_10_1007_s12035_024_04042_6 crossref_primary_10_1186_s12943_021_01415_6 crossref_primary_10_3390_cancers13112686 |
Cites_doi | 10.1093/nar/gky1012 10.1038/nature11247 10.1038/onc.2010.340 10.1038/s41568-019-0143-7 10.1038/nmeth.3485 10.4161/cc.9.13.12061 10.1007/s00018-012-1186-z 10.1038/s41388-019-0715-8 10.1038/nrm2621 10.1016/j.tranon.2017.07.008 10.1002/hep.26997 10.1155/2018/4217259 10.1016/j.molcel.2009.06.007 10.1038/s41556-018-0045-z 10.1038/nmeth.3810 10.4161/cc.9.10.11598 10.1038/nrg3813 10.1186/s12864-015-1273-2 10.1016/j.trecan.2017.05.003 10.1093/nar/gky229 10.1002/0471250953.bi1112s47 10.1016/j.stem.2013.03.005 10.1101/gad.182568.111 10.1007/978-3-319-29073-7_7 10.1038/sj.onc.1210563 10.1016/j.celrep.2016.03.052 10.1038/sj.onc.1210823 10.1101/gad.287540.116 10.1073/pnas.0506580102 10.1128/MCB.22.12.3959-3969.2002 10.1016/j.stem.2009.05.026 10.3389/fgene.2015.00161 10.1200/JCO.2014.55.9880 10.1016/j.semcancer.2014.07.006 10.1093/nar/gkw099 10.1016/j.celrep.2014.03.015 10.1093/nar/gkaa216 10.1158/0008-5472.CAN-18-2965 10.1016/j.cels.2015.12.004 10.1158/1535-7163.1427.3.11 10.1093/nar/gku1024 10.1016/j.cell.2010.03.009 10.1016/j.cell.2007.12.033 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020 The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020 – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkaa653 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 8590 |
ExternalDocumentID | PMC7470957 32761127 10_1093_nar_gkaa653 10.1093/nar/gkaa653 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: GRK1591 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFULF AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL CAG CIDKT CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN ESTFP F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M49 M~E NU- OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROX ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAYXX ABEJV ABGNP ACUTJ AFYAG AMNDL CITATION OVT ADIXU CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c478t-81310e488de13c1e80ff20fe842f5b83600d072f00f9fd717f952032acf2746f3 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:27:04 EDT 2025 Fri Jul 11 05:14:32 EDT 2025 Wed Feb 19 02:30:34 EST 2025 Tue Jul 01 02:07:28 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 28 03:20:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-81310e488de13c1e80ff20fe842f5b83600d072f00f9fd717f952032acf2746f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9335-4227 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkaa653 |
PMID | 32761127 |
PQID | 2431816278 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7470957 proquest_miscellaneous_2431816278 pubmed_primary_32761127 crossref_citationtrail_10_1093_nar_gkaa653 crossref_primary_10_1093_nar_gkaa653 oup_primary_10_1093_nar_gkaa653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-04 |
PublicationDateYYYYMMDD | 2020-09-04 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Muller (2020090320032037600_B16) 2019; 47 Kobel (2020090320032037600_B10) 2007; 26 Busch (2020090320032037600_B14) 2016; 44 Van Nostrand (2020090320032037600_B23) 2016; 13 Yang (2020090320032037600_B25) 2015; 16 Shyh-Chang (2020090320032037600_B42) 2013; 12 Huang (2020090320032037600_B12) 2018; 20 Emmrich (2020090320032037600_B19) 2010; 9 Miles (2020090320032037600_B20) 2012; 26 Cao (2020090320032037600_B39) 2018; 2018 Bell (2020090320032037600_B34) 2015; 33 Muller (2020090320032037600_B8) 2018; 46 Bell (2020090320032037600_B6) 2013; 70 Hattori (2020090320032037600_B1) 2016; 907 Jonson (2020090320032037600_B15) 2014; 7 Julian (2020090320032037600_B18) 2015; 6 Liberzon (2020090320032037600_B29) 2015; 1 Lan (2020090320032037600_B43) 2019; 79 Hafner (2020090320032037600_B5) 2010; 141 Wang (2020090320032037600_B37) 2008; 27 Gerstberger (2020090320032037600_B33) 2014; 15 Lange (2020090320032037600_B41) 2009; 5 Dweep (2020090320032037600_B22) 2015; 12 Subramanian (2020090320032037600_B28) 2005; 102 Marshall (2020090320032037600_B30) 2010; 29 Lederer (2020090320032037600_B7) 2014; 29 Liu (2020090320032037600_B27) 2015; 43 Degrauwe (2020090320032037600_B2) 2016; 30 Lange (2020090320032037600_B40) 2010; 9 Kent (2020090320032037600_B17) 2019; 19 Ianevski (2020090320032037600_B31) 2020; 48 Rosenfeld (2020090320032037600_B32) 2019; 38 Gangaraju (2020090320032037600_B38) 2009; 10 Gutschner (2020090320032037600_B9) 2014; 59 Quinlan (2020090320032037600_B26) 2014; 47 Consortium (2020090320032037600_B24) 2012; 489 Sakaue-Sawano (2020090320032037600_B35) 2008; 132 Conway (2020090320032037600_B4) 2016; 15 Lemm (2020090320032037600_B11) 2002; 22 Mahapatra (2020090320032037600_B21) 2017; 10 Pereira (2020090320032037600_B3) 2017; 3 Fry (2020090320032037600_B36) 2004; 3 Elcheva (2020090320032037600_B13) 2009; 35 |
References_xml | – volume: 47 start-page: 375 year: 2019 ident: 2020090320032037600_B16 article-title: IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1012 – volume: 489 start-page: 57 year: 2012 ident: 2020090320032037600_B24 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 29 start-page: 6172 year: 2010 ident: 2020090320032037600_B30 article-title: TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells publication-title: Oncogene doi: 10.1038/onc.2010.340 – volume: 19 start-page: 326 year: 2019 ident: 2020090320032037600_B17 article-title: The broken cycle: E2F dysfunction in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0143-7 – volume: 12 start-page: 697 year: 2015 ident: 2020090320032037600_B22 article-title: miRWalk2.0: a comprehensive atlas of microRNA-target interactions publication-title: Nat. Methods doi: 10.1038/nmeth.3485 – volume: 9 start-page: 2555 year: 2010 ident: 2020090320032037600_B19 article-title: Checks and balances: E2F-microRNA crosstalk in cancer control publication-title: Cell Cycle doi: 10.4161/cc.9.13.12061 – volume: 70 start-page: 2657 year: 2013 ident: 2020090320032037600_B6 article-title: Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-012-1186-z – volume: 38 start-page: 4169 year: 2019 ident: 2020090320032037600_B32 article-title: VICKZ1 enhances tumor progression and metastasis in lung adenocarcinomas in mice publication-title: Oncogene doi: 10.1038/s41388-019-0715-8 – volume: 10 start-page: 116 year: 2009 ident: 2020090320032037600_B38 article-title: MicroRNAs: key regulators of stem cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2621 – volume: 10 start-page: 818 year: 2017 ident: 2020090320032037600_B21 article-title: A novel IMP1 inhibitor, BTYNB, targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation publication-title: Transl Oncol doi: 10.1016/j.tranon.2017.07.008 – volume: 59 start-page: 1900 year: 2014 ident: 2020090320032037600_B9 article-title: Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.26997 – volume: 2018 start-page: 4217259 year: 2018 ident: 2020090320032037600_B39 article-title: The roles of insulin-like growth factor 2 mRNA-binding protein 2 in cancer and cancer stem cells publication-title: Stem Cells Int. doi: 10.1155/2018/4217259 – volume: 35 start-page: 240 year: 2009 ident: 2020090320032037600_B13 article-title: CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.06.007 – volume: 20 start-page: 285 year: 2018 ident: 2020090320032037600_B12 article-title: Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0045-z – volume: 13 start-page: 508 year: 2016 ident: 2020090320032037600_B23 article-title: Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP) publication-title: Nat. Methods doi: 10.1038/nmeth.3810 – volume: 9 start-page: 1893 year: 2010 ident: 2020090320032037600_B40 article-title: Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells publication-title: Cell Cycle doi: 10.4161/cc.9.10.11598 – volume: 15 start-page: 829 year: 2014 ident: 2020090320032037600_B33 article-title: A census of human RNA-binding proteins publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3813 – volume: 16 start-page: 51 year: 2015 ident: 2020090320032037600_B25 article-title: CLIPdb: a CLIP-seq database for protein-RNA interactions publication-title: BMC Genomics doi: 10.1186/s12864-015-1273-2 – volume: 3 start-page: 506 year: 2017 ident: 2020090320032037600_B3 article-title: RNA-binding proteins in cancer: old players and new actors publication-title: Trends Cancer doi: 10.1016/j.trecan.2017.05.003 – volume: 46 start-page: 6285 year: 2018 ident: 2020090320032037600_B8 article-title: IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky229 – volume: 47 year: 2014 ident: 2020090320032037600_B26 article-title: BEDTools: the Swiss-Army Tool for genome feature analysis publication-title: Curr Protoc Bioinformatics doi: 10.1002/0471250953.bi1112s47 – volume: 12 start-page: 395 year: 2013 ident: 2020090320032037600_B42 article-title: Lin28: primal regulator of growth and metabolism in stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.03.005 – volume: 26 start-page: 356 year: 2012 ident: 2020090320032037600_B20 article-title: Pumilio facilitates miRNA regulation of the E2F3 oncogene publication-title: Genes Dev. doi: 10.1101/gad.182568.111 – volume: 907 start-page: 153 year: 2016 ident: 2020090320032037600_B1 article-title: Regulation of stem cell self-renewal and oncogenesis by RNA-binding proteins publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-29073-7_7 – volume: 26 start-page: 7584 year: 2007 ident: 2020090320032037600_B10 article-title: Expression of the RNA-binding protein IMP1 correlates with poor prognosis in ovarian carcinoma publication-title: Oncogene doi: 10.1038/sj.onc.1210563 – volume: 15 start-page: 666 year: 2016 ident: 2020090320032037600_B4 article-title: Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.03.052 – volume: 27 start-page: 1905 year: 2008 ident: 2020090320032037600_B37 article-title: c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle publication-title: Oncogene doi: 10.1038/sj.onc.1210823 – volume: 30 start-page: 2459 year: 2016 ident: 2020090320032037600_B2 article-title: IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer publication-title: Genes Dev. doi: 10.1101/gad.287540.116 – volume: 102 start-page: 15545 year: 2005 ident: 2020090320032037600_B28 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506580102 – volume: 22 start-page: 3959 year: 2002 ident: 2020090320032037600_B11 article-title: Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.12.3959-3969.2002 – volume: 5 start-page: 320 year: 2009 ident: 2020090320032037600_B41 article-title: Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.026 – volume: 6 start-page: 161 year: 2015 ident: 2020090320032037600_B18 article-title: Transcriptional control of stem cell fate by E2Fs and pocket proteins publication-title: Front Genet doi: 10.3389/fgene.2015.00161 – volume: 33 start-page: 1285 year: 2015 ident: 2020090320032037600_B34 article-title: IGF2BP1 harbors prognostic significance by gene gain and diverse expression in neuroblastoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2014.55.9880 – volume: 29 start-page: 3 year: 2014 ident: 2020090320032037600_B7 article-title: The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2014.07.006 – volume: 44 start-page: 3845 year: 2016 ident: 2020090320032037600_B14 article-title: The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw099 – volume: 7 start-page: 539 year: 2014 ident: 2020090320032037600_B15 article-title: IMP3 RNP safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.03.015 – volume: 48 start-page: W488 year: 2020 ident: 2020090320032037600_B31 article-title: SynergyFinder 2.0: visual analytics of multi-drug combination synergies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa216 – volume: 79 start-page: 1285 year: 2019 ident: 2020090320032037600_B43 article-title: The critical role of RNA m(6)A methylation in cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-2965 – volume: 1 start-page: 417 year: 2015 ident: 2020090320032037600_B29 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst. doi: 10.1016/j.cels.2015.12.004 – volume: 3 start-page: 1427 year: 2004 ident: 2020090320032037600_B36 article-title: Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.1427.3.11 – volume: 43 start-page: D197 year: 2015 ident: 2020090320032037600_B27 article-title: MeT-DB: a database of transcriptome methylation in mammalian cells publication-title: Nucleic. Acids. Res. doi: 10.1093/nar/gku1024 – volume: 141 start-page: 129 year: 2010 ident: 2020090320032037600_B5 article-title: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP publication-title: Cell doi: 10.1016/j.cell.2010.03.009 – volume: 132 start-page: 487 year: 2008 ident: 2020090320032037600_B35 article-title: Visualizing spatiotemporal dynamics of multicellular cell-cycle progression publication-title: Cell doi: 10.1016/j.cell.2007.12.033 |
SSID | ssj0014154 |
Score | 2.6131284 |
Snippet | Abstract
The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse... The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8576 |
SubjectTerms | 3' Untranslated Regions - genetics Animals Cell Line, Tumor E2F Transcription Factors - genetics E2F1 Transcription Factor - genetics Gene Expression Regulation, Neoplastic - genetics Humans Mice Molecular Biology Neoplasms - genetics Neoplasms - pathology RNA-Binding Proteins - drug effects RNA-Binding Proteins - genetics Small Molecule Libraries - pharmacology |
Title | The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32761127 https://www.proquest.com/docview/2431816278 https://pubmed.ncbi.nlm.nih.gov/PMC7470957 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1db9MwFL2CvcALgo2P8lGMNPGAsOY4Tpw-lqll8DAQ2qS-RbZjdxXgVEkqwQ_gf3PtpNU6TfCcGyvScXzP8fU9BjjWuO4Lbk1oP2NU5CqhSmQZRTGhTJ5oraro9nmen12Kz4tsMRyQbW8p4U_SE6-ak-V3pfIsmHpi-g0W-RdfFrtiAeag3iUqmmqKYmjDu_HuXuLZa2a7xilvHo28lmvmD-HBQBLJtEf1Edyx_hCOph4F8s_f5C2Jxzbjfvgh3DvdXtl2BH8QdFJ7UzuLnJp8O58G4RuyE4l-DCtPPn2c8w9fE7JqiSJVs1kuQ-_Ue7Ku2452IXFtlxEcoN2sbUOtvwpToyG1IzM-p1UTVkiCM88S-2s4SOsJDm5i3GO4nM8uTs_ocM8CNUIWHS0S5HgW_-TKJqlJbMGc48zZQnCX6dDlwSomuWPMTVyF-s9NsnDxujIONW3u0idw4GtvnwFJeKVRcSnDXFBqWjvkT0hRCme50FKM4N0WhNIMJuThLowfZV8MT0tErBwQG8HxLnjde2_cHvYa0fx3xJst0iUiEkoiytt605Yc-VOR5FwWI3jaI78bKOUyRzYqRyD35sQuIDhz7z_xq6vo0I0aDamrfP7fL3sB93kQ8LFC9RIOumZjXyHL6fQY7ko2G8c9gnGc738BAPH-Ig |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+oncofetal+RNA-binding+protein+IGF2BP1+is+a+druggable%2C+post-transcriptional+super-enhancer+of+E2F-driven+gene+expression+in+cancer&rft.jtitle=Nucleic+acids+research&rft.au=M%C3%BCller%2C+Simon&rft.au=Bley%2C+Nadine&rft.au=Busch%2C+Bianca&rft.au=Gla%C3%9F%2C+Markus&rft.date=2020-09-04&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=48&rft.issue=15&rft.spage=8576&rft.epage=8590&rft_id=info:doi/10.1093%2Fnar%2Fgkaa653&rft_id=info%3Apmid%2F32761127&rft.externalDocID=PMC7470957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |