Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function

Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 19; no. 1; p. 259
Main Authors Luo, Jie, Zhou, Jing-Jing, Zhang, Jin-Zhi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.01.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
AbstractList Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid ( Aux/IAA ) family, the auxin response factor ( ARF ) family, small auxin upregulated RNA ( SAUR ), and the auxin-responsive Gretchen Hagen3 ( GH3 ) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the ( ) family, the ( ) family, ( ), and the ( ) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
Author Luo, Jie
Zhang, Jin-Zhi
Zhou, Jing-Jing
AuthorAffiliation 2 Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
1 College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; luojie@mail.hzau.edu.cn
AuthorAffiliation_xml – name: 2 Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
– name: 1 College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; luojie@mail.hzau.edu.cn
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0003-1495-8239
  surname: Luo
  fullname: Luo, Jie
– sequence: 2
  givenname: Jing-Jing
  surname: Zhou
  fullname: Zhou, Jing-Jing
– sequence: 3
  givenname: Jin-Zhi
  surname: Zhang
  fullname: Zhang, Jin-Zhi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29337875$$D View this record in MEDLINE/PubMed
BookMark eNptkctP3DAQxq0KVF699VxZ6oXDLtjjJI57QFohFpC2KuJxthzHoV4lNtgxgv8e89SCOI1n_JtP38xsoTXnnUHoJyV7jAmyb5dDpIJQAqX4hjZpATAlpOJrK-8NtBXjkhBgGfqONkAwxmtebqLFLN3vn85m-Ng4g-dqsP0Dtg6f9cqN8Q_-63ujU68CvhhD0mMKZoLPzXUujda7CVauxfPk9FO2g9Y71Ufz4zVuo6v50eXhyXTx7_j0cLaY6oLX45QDbaoSmBBMtIUq65ZSVXWVpkJAY5oOFKt5AbwuhCBVS4qiM9RAwwR02TbbRgcvujepGUyrjRuD6uVNsIMKD9IrKz_-OPtfXvs7WXJRASmzwO6rQPC3ycRRDjZq0-ehjU9RUlGLklcEIKO_P6FLn4LL40mgRBQlVM_Ur1VH71beFp0BeAF08DEG00ltx-cVZoO2l5TIp2vK1WvmpsmnpjfdL_FHQ2aeww
CitedBy_id crossref_primary_10_3390_agronomy13112782
crossref_primary_10_1093_jxb_eraa430
crossref_primary_10_1111_nph_18556
crossref_primary_10_3390_ijms25189818
crossref_primary_10_1007_s12374_020_09292_0
crossref_primary_10_3389_fpls_2023_1284403
crossref_primary_10_7717_peerj_16560
crossref_primary_10_3390_ijms242015357
crossref_primary_10_3390_plants12020227
crossref_primary_10_1186_s12870_023_04498_z
crossref_primary_10_1016_j_tibs_2022_06_004
crossref_primary_10_1016_j_biocontrol_2024_105690
crossref_primary_10_1093_g3journal_jkac222
crossref_primary_10_3390_ijms20194703
crossref_primary_10_3390_agronomy14061198
crossref_primary_10_3390_genes15121648
crossref_primary_10_1016_j_genrep_2023_101799
crossref_primary_10_1016_j_plaphy_2024_109452
crossref_primary_10_1016_j_scienta_2022_111244
crossref_primary_10_1038_s41586_020_2094_2
crossref_primary_10_1371_journal_pone_0272500
crossref_primary_10_32604_biocell_2021_014499
crossref_primary_10_1021_acsami_4c19726
crossref_primary_10_1007_s10681_021_02825_9
crossref_primary_10_1093_jxb_erad132
crossref_primary_10_1016_j_cej_2024_158057
crossref_primary_10_1093_jxb_erad372
crossref_primary_10_3390_agronomy11081524
crossref_primary_10_1007_s11240_024_02863_w
crossref_primary_10_1016_j_plantsci_2022_111568
crossref_primary_10_32604_phyton_2023_043151
crossref_primary_10_1093_botlinnean_boaa091
crossref_primary_10_3389_fpls_2022_886700
crossref_primary_10_1007_s10725_020_00616_1
crossref_primary_10_1073_pnas_2309007120
crossref_primary_10_3390_ijms232012495
crossref_primary_10_1016_j_envexpbot_2019_03_003
crossref_primary_10_7717_peerj_13710
crossref_primary_10_3390_ijms20153707
crossref_primary_10_3390_bacteria3040030
crossref_primary_10_1016_j_cj_2024_06_003
crossref_primary_10_1016_j_hpj_2023_11_008
crossref_primary_10_3390_plants9060705
crossref_primary_10_3390_horticulturae9111167
crossref_primary_10_1002_ldr_3717
crossref_primary_10_3390_ijms26020604
crossref_primary_10_7717_peerj_15212
crossref_primary_10_1038_s41598_022_16255_7
crossref_primary_10_3390_horticulturae10010027
crossref_primary_10_3389_fpls_2020_01235
crossref_primary_10_3390_cells9030641
crossref_primary_10_1007_s11816_025_00959_z
crossref_primary_10_1016_j_indcrop_2023_116904
crossref_primary_10_3390_antiox12122019
crossref_primary_10_32604_biocell_2023_023543
crossref_primary_10_1007_s11756_021_00763_4
crossref_primary_10_3390_ijms20246343
crossref_primary_10_1016_j_cub_2019_04_047
crossref_primary_10_1111_ppl_14387
crossref_primary_10_1002_ps_6198
crossref_primary_10_3390_ijms25169081
crossref_primary_10_3390_plants12071492
crossref_primary_10_1007_s10681_022_02999_w
crossref_primary_10_3390_plants10112484
crossref_primary_10_1111_tpj_15541
crossref_primary_10_1186_s12870_024_04827_w
crossref_primary_10_3390_ijms23147528
crossref_primary_10_1016_j_cpb_2024_100357
crossref_primary_10_3390_plants11040538
crossref_primary_10_7717_peerj_15440
crossref_primary_10_1016_j_pmpp_2022_101807
crossref_primary_10_1186_s12864_024_10313_2
crossref_primary_10_3390_ijms232113386
crossref_primary_10_1016_j_rhisph_2022_100572
crossref_primary_10_3390_ijms21239234
crossref_primary_10_1021_acs_jafc_3c04712
crossref_primary_10_1186_s12864_023_09263_y
crossref_primary_10_3390_plants11101347
crossref_primary_10_1002_csc2_20681
crossref_primary_10_1016_j_scienta_2025_113979
crossref_primary_10_1134_S1021443723600435
crossref_primary_10_3390_genes13061041
crossref_primary_10_1371_journal_pone_0298303
crossref_primary_10_48130_opr_0024_0025
crossref_primary_10_7717_peerj_8829
crossref_primary_10_1007_s11105_023_01379_5
crossref_primary_10_1111_tpj_15515
crossref_primary_10_3390_ijms24044210
crossref_primary_10_1111_tpj_15516
crossref_primary_10_1371_journal_pgen_1009384
crossref_primary_10_1038_s41598_022_14568_1
crossref_primary_10_1016_j_jia_2023_04_031
crossref_primary_10_1007_s00299_023_02990_2
crossref_primary_10_17660_ActaHortic_2024_1411_5
crossref_primary_10_3390_ijms25147812
crossref_primary_10_1007_s11356_021_18144_4
crossref_primary_10_1016_j_plantsci_2024_112204
crossref_primary_10_1093_hr_uhab024
crossref_primary_10_1093_jambio_lxad296
crossref_primary_10_1371_journal_pone_0277293
crossref_primary_10_1016_j_gene_2021_145782
crossref_primary_10_1111_nph_17946
crossref_primary_10_36953_ECJ_12842364
crossref_primary_10_3390_life13091917
crossref_primary_10_3389_fpls_2024_1494579
crossref_primary_10_1016_j_scienta_2022_111568
crossref_primary_10_1007_s11103_019_00871_5
crossref_primary_10_3390_f15010095
crossref_primary_10_1093_jxb_erad051
crossref_primary_10_3390_ijms23179762
crossref_primary_10_3390_ijms23158643
crossref_primary_10_1007_s10725_023_00992_4
crossref_primary_10_3389_fpls_2024_1284125
crossref_primary_10_1111_tpj_14677
crossref_primary_10_1002_pld3_166
crossref_primary_10_48130_grares_0024_0005
crossref_primary_10_3389_fmicb_2021_809690
crossref_primary_10_1093_plphys_kiab565
crossref_primary_10_1093_bbb_zbae080
crossref_primary_10_3390_plants9121812
crossref_primary_10_1111_pce_15171
crossref_primary_10_3390_ijms20133235
crossref_primary_10_1016_j_ijbiomac_2023_123671
crossref_primary_10_1093_plphys_kiab568
crossref_primary_10_3390_plants11121550
crossref_primary_10_1007_s00344_022_10842_8
crossref_primary_10_1007_s11248_023_00337_x
crossref_primary_10_1093_plcell_koad168
crossref_primary_10_1111_jipb_13759
crossref_primary_10_3389_fnut_2024_1417526
crossref_primary_10_1186_s12870_020_02504_2
crossref_primary_10_1007_s11427_021_2024_0
crossref_primary_10_3390_f13081255
crossref_primary_10_1007_s11033_019_04611_2
crossref_primary_10_1016_j_jhazmat_2020_122811
crossref_primary_10_1016_j_jplph_2020_153333
crossref_primary_10_5808_gi_22056
crossref_primary_10_1002_saj2_20768
crossref_primary_10_1093_jxb_erad088
crossref_primary_10_3390_f13101705
crossref_primary_10_1186_s12864_024_10195_4
crossref_primary_10_1007_s00344_019_10040_z
crossref_primary_10_1007_s00122_019_03290_8
crossref_primary_10_3390_agronomy14092005
crossref_primary_10_1016_j_sajb_2024_11_039
crossref_primary_10_48130_SeedBio_2023_0017
crossref_primary_10_1016_j_indcrop_2024_118565
crossref_primary_10_3390_foods10071643
crossref_primary_10_3390_ijms21051807
crossref_primary_10_3390_app12031231
crossref_primary_10_3390_ijms21041333
crossref_primary_10_1016_j_cj_2022_02_010
crossref_primary_10_1007_s00344_023_10983_4
crossref_primary_10_1007_s10886_024_01536_4
crossref_primary_10_1007_s12298_024_01497_8
crossref_primary_10_1111_tpj_15983
crossref_primary_10_1007_s10142_022_00833_z
crossref_primary_10_3390_ijms19092759
crossref_primary_10_3389_fgene_2023_1099489
crossref_primary_10_1016_j_indcrop_2022_116117
crossref_primary_10_3390_genes13020181
crossref_primary_10_1016_j_micres_2020_126480
crossref_primary_10_1016_j_plantsci_2022_111221
crossref_primary_10_3390_ijms25137473
crossref_primary_10_1186_s12864_022_09098_z
crossref_primary_10_3390_plants13192684
crossref_primary_10_1038_s41598_023_27779_x
crossref_primary_10_3390_horticulturae8100899
crossref_primary_10_1016_j_xplc_2024_101039
crossref_primary_10_3390_ijms24043948
crossref_primary_10_1007_s11103_023_01354_4
crossref_primary_10_1016_j_ecoenv_2024_116991
crossref_primary_10_3390_biom9010012
crossref_primary_10_1016_j_cj_2023_11_006
crossref_primary_10_1007_s00299_024_03348_y
crossref_primary_10_1016_j_jplph_2023_153995
crossref_primary_10_1094_PHYTO_11_22_0419_R
crossref_primary_10_3390_ijms241411408
crossref_primary_10_1016_j_plantsci_2021_110903
crossref_primary_10_1016_j_hpj_2022_07_004
crossref_primary_10_1016_j_scienta_2025_114065
crossref_primary_10_1038_s41477_020_0739_7
crossref_primary_10_58728_joinabt_1484526
crossref_primary_10_1186_s12284_024_00750_8
crossref_primary_10_1016_j_ijbiomac_2024_138746
crossref_primary_10_3390_f11111233
crossref_primary_10_1016_j_plantsci_2024_112365
crossref_primary_10_1093_hr_uhad125
crossref_primary_10_1038_s41598_021_85886_z
crossref_primary_10_1007_s11105_019_01157_2
crossref_primary_10_1093_plphys_kiac589
crossref_primary_10_1111_tpj_16132
crossref_primary_10_3390_agronomy10020313
crossref_primary_10_13005_bbra_2747
crossref_primary_10_1038_s41467_020_16147_2
crossref_primary_10_1093_jxb_erab357
crossref_primary_10_7717_peerj_16836
crossref_primary_10_1016_j_ecoenv_2020_110779
crossref_primary_10_1186_s12864_020_06947_7
crossref_primary_10_1186_s12870_024_05540_4
crossref_primary_10_3389_fmicb_2023_1294402
crossref_primary_10_3390_f11121288
crossref_primary_10_1007_s11103_022_01255_y
crossref_primary_10_3390_genes13071181
crossref_primary_10_1016_j_scitotenv_2023_166644
crossref_primary_10_3389_fpls_2022_943662
crossref_primary_10_1002_ps_8637
crossref_primary_10_58728_joinabt_1530990
crossref_primary_10_1186_s12864_023_09850_z
crossref_primary_10_1007_s00299_019_02395_0
crossref_primary_10_3390_ijms242216184
crossref_primary_10_3390_ijms25021343
crossref_primary_10_1007_s00344_022_10822_y
crossref_primary_10_1016_j_plaphy_2024_109069
crossref_primary_10_3390_genes15030388
crossref_primary_10_7717_peerj_13798
crossref_primary_10_1111_jipb_12747
crossref_primary_10_3390_ijms25042260
crossref_primary_10_1093_treephys_tpad028
crossref_primary_10_1111_tpj_16109
crossref_primary_10_3390_ijms26052277
crossref_primary_10_1016_j_cropd_2025_100095
crossref_primary_10_3390_plants12152842
crossref_primary_10_1016_j_bbrc_2020_05_049
crossref_primary_10_1016_j_ecoenv_2019_110090
crossref_primary_10_3390_plants9040458
crossref_primary_10_3389_fpls_2023_1067920
crossref_primary_10_1093_nar_gkac773
crossref_primary_10_1111_jmi_12847
crossref_primary_10_52586_4974
crossref_primary_10_3390_life12081283
crossref_primary_10_3390_genes14061206
crossref_primary_10_3390_ijms232415729
crossref_primary_10_1016_j_chemosphere_2024_141335
crossref_primary_10_1186_s12870_020_02729_1
crossref_primary_10_3389_fpls_2022_948099
crossref_primary_10_3390_ijms21249437
crossref_primary_10_1016_j_scitotenv_2022_160611
crossref_primary_10_48130_opr_0024_0018
crossref_primary_10_3389_fpls_2023_1114988
crossref_primary_10_1007_s11103_024_01476_3
crossref_primary_10_1016_j_celrep_2024_115083
crossref_primary_10_1007_s10681_023_03156_7
crossref_primary_10_1111_mpp_70063
crossref_primary_10_3390_agriculture14112019
crossref_primary_10_3390_agronomy12071544
crossref_primary_10_1016_j_plantsci_2020_110771
crossref_primary_10_3389_fgene_2021_685788
crossref_primary_10_3390_ijms26031102
crossref_primary_10_17660_ActaHortic_2021_1307_47
crossref_primary_10_1016_j_plaphy_2023_107832
crossref_primary_10_1186_s12864_024_10623_5
crossref_primary_10_1073_pnas_2209781120
crossref_primary_10_1016_j_ijbiomac_2023_125750
crossref_primary_10_1016_j_plaphy_2024_109365
crossref_primary_10_3390_plants13243538
crossref_primary_10_1007_s10265_023_01494_0
crossref_primary_10_1177_1176934321994127
crossref_primary_10_1111_tpj_15112
crossref_primary_10_1007_s00299_023_03079_6
crossref_primary_10_1111_pbi_14554
crossref_primary_10_3390_plants12061382
crossref_primary_10_3390_genes15030325
crossref_primary_10_3390_plants11111472
crossref_primary_10_1007_s00425_020_03490_3
crossref_primary_10_32615_bp_2023_001
crossref_primary_10_3389_fpls_2024_1512645
crossref_primary_10_3390_ijms22158207
crossref_primary_10_1186_s12864_024_10004_y
crossref_primary_10_1155_2022_8445484
crossref_primary_10_1186_s12870_024_04765_7
crossref_primary_10_1016_j_jhazmat_2022_130427
crossref_primary_10_1186_s12870_023_04598_w
crossref_primary_10_1007_s12298_024_01493_y
crossref_primary_10_3389_fpls_2024_1433161
crossref_primary_10_3390_ijms25063470
crossref_primary_10_1007_s12298_021_01054_7
crossref_primary_10_3390_genes15060760
crossref_primary_10_3390_horticulturae11010076
crossref_primary_10_3389_fpls_2022_818233
crossref_primary_10_3390_agronomy11040691
crossref_primary_10_1016_j_scienta_2021_110692
crossref_primary_10_3390_genes10100730
crossref_primary_10_3390_plants11233301
crossref_primary_10_3390_plants11151898
crossref_primary_10_1038_s41598_025_92527_2
crossref_primary_10_1186_s12870_023_04716_8
crossref_primary_10_3389_fpls_2024_1404980
crossref_primary_10_5010_JPB_2019_46_3_180
crossref_primary_10_3389_fpls_2024_1395938
crossref_primary_10_1016_j_indcrop_2024_118713
crossref_primary_10_3390_horticulturae9121265
crossref_primary_10_3390_biology11081192
crossref_primary_10_1186_s12864_024_10624_4
crossref_primary_10_1007_s00299_021_02712_6
crossref_primary_10_1093_plphys_kiab272
crossref_primary_10_3389_fpls_2025_1509193
crossref_primary_10_1186_s12864_024_10467_z
crossref_primary_10_1016_j_envexpbot_2019_04_006
crossref_primary_10_3390_su141811170
crossref_primary_10_1016_j_plantsci_2020_110603
crossref_primary_10_1093_jxb_erac152
crossref_primary_10_3389_fpls_2024_1418319
crossref_primary_10_3389_fgene_2021_737293
crossref_primary_10_3390_f10111043
crossref_primary_10_1155_2021_3102399
crossref_primary_10_1016_j_jia_2023_05_004
crossref_primary_10_1038_s41598_021_90082_0
crossref_primary_10_3389_fpls_2024_1421734
crossref_primary_10_1186_s12870_021_03314_w
crossref_primary_10_1111_pbi_13930
crossref_primary_10_1038_s41588_024_01943_z
crossref_primary_10_3389_fpls_2022_922919
crossref_primary_10_1111_ppl_70098
crossref_primary_10_3390_ijms21207596
crossref_primary_10_1007_s00122_025_04857_4
crossref_primary_10_1093_plphys_kiae090
crossref_primary_10_33158_ASB_r163_v9_2023
crossref_primary_10_3390_ijms24032414
crossref_primary_10_1016_j_envexpbot_2019_04_014
crossref_primary_10_3390_ijms231911122
crossref_primary_10_3390_agronomy12102511
crossref_primary_10_3390_plants13202940
crossref_primary_10_1080_21655979_2019_1692610
crossref_primary_10_3390_ijms20051098
crossref_primary_10_1016_S2095_3119_20_63480_3
crossref_primary_10_1007_s00018_019_03164_8
crossref_primary_10_1186_s12284_024_00747_3
crossref_primary_10_1016_j_plaphy_2018_03_010
crossref_primary_10_1111_pce_14580
crossref_primary_10_3389_fpls_2021_668548
crossref_primary_10_48130_mpb_0024_0011
Cites_doi 10.1038/nature10791
10.1016/j.tplants.2016.05.007
10.1038/ncomms11388
10.1101/gad.229402
10.1007/s11103-012-9917-y
10.1038/ncomms8395
10.1080/09168451.2016.1224641
10.1016/j.tplants.2016.02.002
10.1093/jxb/erx004
10.1186/1471-2229-7-59
10.1104/pp.15.00402
10.1104/pp.124.4.1728
10.1093/pcp/pcu215
10.1126/science.1151461
10.1126/science.279.5355.1371
10.1016/j.molp.2015.10.008
10.1007/s12041-013-0306-3
10.1016/j.cell.2017.09.030
10.1111/j.1365-313X.2004.02016.x
10.1007/s00438-012-0675-y
10.1093/pcp/pcs022
10.1101/gr.1239303
10.1038/nature03542
10.1073/pnas.1600739113
10.1093/jxb/erw508
10.1242/dev.025932
10.1093/pcp/pcx125
10.1080/00380768.2017.1314178
10.1023/A:1015255030047
10.1038/sj.emboj.7600659
10.1371/journal.pgen.1006301
10.1111/tpj.12644
10.1111/j.1365-313X.2006.02882.x
10.1074/jbc.M300299200
10.1371/journal.pgen.1005365
10.3390/ijms18102107
10.1111/j.1399-3054.2008.01055.x
10.1007/s11103-013-0039-y
10.1111/tpj.12106
10.1016/j.plantsci.2012.04.005
10.3389/fpls.2015.00918
10.1111/j.1365-313X.2004.02254.x
10.1093/pcp/pcs101
10.1371/journal.pone.0107495
10.1111/tpj.13108
10.1016/j.tplants.2016.11.010
10.1038/ncomms15706
10.1105/tpc.018630
10.1016/j.plaphy.2006.10.026
10.1016/j.cub.2010.09.007
10.1105/tpc.114.133744
10.1093/jxb/erx295
10.1105/tpc.113.112417
10.3389/fpls.2015.00388
10.1074/jbc.M306330200
10.1038/nature05731
10.1016/j.tplants.2015.10.019
10.1093/mp/ssr074
10.1016/j.jplph.2017.03.018
10.1093/pcp/pcp176
10.1016/j.pbi.2014.06.006
10.1242/dev.126.4.711
10.1371/journal.pone.0043414
10.1093/jxb/erx228
10.1038/nchembio.926
10.1104/pp.17.00765
10.1186/s12864-017-3722-6
10.1242/dev.131870
10.1105/tpc.106.043489
10.1104/pp.15.00587
10.1105/tpc.13.3.465
10.1038/s41598-017-11327-5
10.1093/emboj/17.5.1405
10.1111/j.1365-313X.2011.04698.x
10.1046/j.1365-313X.2003.01909.x
10.1101/cshperspect.a001628
10.1006/jmbi.1995.0454
10.1073/pnas.91.1.326
10.1038/nature08670
10.1105/tpc.010244
10.1093/pcp/pcu124
10.1105/tpc.107.055798
10.1093/nar/gkw1102
10.1104/pp.111.186999
10.1093/jxb/erx232
10.1046/j.1365-313x.1996.10030403.x
10.1016/j.devcel.2005.05.014
10.1111/j.1365-313X.2011.04885.x
10.1016/j.plantsci.2012.04.003
10.1038/nature12211
10.1016/S0014-5793(99)00819-4
10.1093/dnares/8.5.193
10.1105/tpc.15.00101
10.1111/j.1469-8137.2012.04053.x
10.3389/fpls.2015.00770
10.1105/tpc.107.050963
10.1074/jbc.M115.648253
10.1023/A:1015207114117
10.1105/tpc.113.117838
10.1016/j.plantsci.2015.04.018
10.1038/s41598-017-00501-4
10.1371/journal.ppat.1005847
10.1073/pnas.0911967106
10.1093/pcp/pcx102
10.1111/j.1744-7909.2012.01155.x
10.1016/0022-2836(85)90280-3
10.1007/s10142-010-0174-3
10.1007/s00438-015-1063-1
10.3390/ijms140713645
10.1371/journal.pone.0151522
10.1104/pp.123.2.563
10.1016/j.pbi.2007.08.014
10.1007/s11032-015-0222-8
10.1111/jipb.12531
10.1105/tpc.105.033415
10.1046/j.1365-313X.1996.09040441.x
10.1007/s11105-015-0856-z
10.1186/s12870-017-1165-5
10.1105/tpc.105.039172
10.1016/j.cub.2016.12.016
10.1093/jxb/erp009
10.1073/pnas.94.22.11786
10.1105/tpc.114.132753
10.1007/s10142-005-0005-0
10.1111/j.1365-313X.2011.04745.x
10.1093/jxb/eru249
10.1371/journal.pone.0078859
10.1242/dev.033811
10.1093/treephys/23.17.1181
10.1146/annurev-arplant-043015-112122
10.1105/tpc.105.036723
10.1006/jmbi.1993.1555
10.1111/nph.14246
10.1371/journal.pgen.1006607
10.1073/pnas.1419525112
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms19010259
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC5796205
29337875
10_3390_ijms19010259
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-721b65239939d4a58d11a6f6c1992bebf2a387427849906d044fe1e2b392f7873
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:10:51 EDT 2025
Mon Jul 21 11:07:16 EDT 2025
Fri Jul 25 19:58:46 EDT 2025
Wed Feb 19 02:44:24 EST 2025
Tue Jul 01 01:45:05 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Aux/IAA gene family
auxin
regulation
function
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-721b65239939d4a58d11a6f6c1992bebf2a387427849906d044fe1e2b392f7873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1495-8239
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms19010259
PMID 29337875
PQID 2109452622
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5796205
proquest_miscellaneous_1989576022
proquest_journals_2109452622
pubmed_primary_29337875
crossref_citationtrail_10_3390_ijms19010259
crossref_primary_10_3390_ijms19010259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-16
PublicationDateYYYYMMDD 2018-01-16
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-16
  day: 16
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_93
Ito (ref_67) 2016; 113
Weijers (ref_44) 2016; 67
Lee (ref_13) 2012; 8
Causier (ref_74) 2012; 158
Wang (ref_126) 2005; 17
Dinesh (ref_68) 2016; 21
Deng (ref_129) 2012; 194
Jain (ref_28) 2006; 6
Winkler (ref_56) 2017; 8
ref_98
Bassa (ref_131) 2012; 53
Schmutz (ref_39) 2010; 463
Thimm (ref_78) 2004; 37
Fukaki (ref_83) 2006; 48
Oeller (ref_30) 1993; 233
Rogg (ref_118) 2001; 13
Nagpal (ref_107) 2000; 123
Vassileva (ref_119) 2010; 20
Bassa (ref_24) 2012; 53
Noda (ref_61) 2003; 278
Wu (ref_34) 2012; 287
Tian (ref_22) 2003; 36
Guilfoyle (ref_5) 2007; 10
Overvoorde (ref_18) 2005; 17
Yang (ref_104) 2004; 40
Jing (ref_101) 2015; 6
Salehin (ref_63) 2015; 27
(ref_102) 2017; 214
Rinaldi (ref_16) 2012; 79
Parry (ref_11) 2009; 106
Morgan (ref_57) 1999; 454
Goldfarb (ref_1) 2003; 23
ref_29
Szemenyei (ref_52) 2008; 319
Trenner (ref_14) 2017; 68
ref_27
Jung (ref_135) 2015; 236
ref_26
Parcy (ref_66) 2016; 21
Qiao (ref_50) 2015; 6
Sun (ref_86) 2013; 25
Tan (ref_12) 2007; 446
Guseman (ref_106) 2015; 142
Song (ref_134) 2013; 14
Notaguchi (ref_116) 2012; 54
Dharmasiri (ref_20) 2005; 9
Hamann (ref_110) 2002; 16
Terrile (ref_81) 2012; 70
Tatematsu (ref_117) 2004; 16
Hagen (ref_51) 2002; 49
Iglesias (ref_88) 2017; 69
ref_75
Chaabouni (ref_121) 2009; 60
Yamamuro (ref_84) 2016; 9
Wang (ref_79) 2014; 21
Shani (ref_92) 2017; 27
Moss (ref_54) 2015; 169
Sato (ref_120) 2008; 133
Zhu (ref_136) 2012; 5
Theologis (ref_31) 1985; 183
Tian (ref_15) 1999; 126
Kim (ref_58) 1997; 94
Olcay (ref_35) 2013; 35
Yang (ref_71) 2016; 7
Sellaro (ref_87) 2011; 68
Shannon (ref_77) 2003; 13
Zhang (ref_139) 2014; 65
Hayashi (ref_21) 2003; 278
Liscum (ref_19) 2002; 49
Ploense (ref_115) 2009; 136
Nystedt (ref_38) 2013; 497
Ramos (ref_53) 2001; 13
Herud (ref_94) 2016; 85
Su (ref_130) 2014; 55
Saito (ref_114) 2017; 63
Ueta (ref_128) 2017; 7
Tabata (ref_109) 2009; 51
Singh (ref_37) 2015; 6
Mironova (ref_55) 2017; 22
Wen (ref_82) 2014; 80
Kitomi (ref_137) 2012; 190
Kloosterman (ref_122) 2006; 44
Israeli (ref_3) 2017; 58
Kang (ref_96) 2013; 74
Kepinski (ref_32) 2005; 435
Kong (ref_70) 2016; 21
Nilsson (ref_123) 2008; 20
Liu (ref_140) 2015; 6
Guillotin (ref_132) 2017; 213
Jiang (ref_90) 2014; 26
Han (ref_73) 2014; 111
Guilfoyle (ref_65) 2015; 27
Oughtred (ref_76) 2017; 45
Chen (ref_100) 2000; 124
ref_64
Wang (ref_124) 2017; 69
Weijers (ref_10) 2005; 24
Benhamed (ref_85) 2006; 18
Leyser (ref_113) 1996; 10
Sundberg (ref_2) 2009; 1
Mazzucato (ref_125) 2015; 35
Ishizaki (ref_45) 2017; 81
Hardtke (ref_111) 1998; 17
Koenig (ref_127) 2009; 136
Hu (ref_91) 2017; 68
Han (ref_99) 2017; 69
Singh (ref_43) 2017; 7
Xie (ref_33) 2015; 290
Lavy (ref_9) 2016; 143
Gan (ref_25) 2013; 92
ref_36
Li (ref_62) 2016; 7
Dreher (ref_8) 2006; 18
Bowman (ref_41) 2017; 171
Guilfoyle (ref_59) 2012; 190
Thakur (ref_133) 2001; 8
Wang (ref_17) 2013; 82
Yu (ref_23) 2015; 56
Abel (ref_6) 1995; 251
Cui (ref_97) 2017; 59
Korasick (ref_60) 2015; 290
ref_108
Jun (ref_138) 2011; 68
ref_47
ref_46
Abel (ref_7) 1994; 91
Wang (ref_49) 2010; 10
ref_42
Perrotrechenmann (ref_4) 2010; 2
Gilkerson (ref_72) 2015; 168
Wang (ref_103) 2015; 27
Kim (ref_105) 1996; 9
Brunoud (ref_69) 2012; 482
Shin (ref_89) 2007; 19
Shi (ref_80) 2017; 68
Kumar (ref_40) 2015; 33
ref_48
Chen (ref_95) 2017; 58
Rouse (ref_112) 1998; 279
References_xml – volume: 482
  start-page: 103
  year: 2012
  ident: ref_69
  article-title: A novel sensor to map auxin response and distribution at high spatio-temporal resolution
  publication-title: Nature
  doi: 10.1038/nature10791
– volume: 21
  start-page: 546
  year: 2016
  ident: ref_70
  article-title: 26S Proteasome: Hunter and prey in auxin signaling
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.05.007
– volume: 7
  start-page: 11388
  year: 2016
  ident: ref_71
  article-title: Arabidopsis proteasome regulator1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11388
– volume: 16
  start-page: 1610
  year: 2002
  ident: ref_110
  article-title: The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning
  publication-title: Genes Dev.
  doi: 10.1101/gad.229402
– volume: 79
  start-page: 359
  year: 2012
  ident: ref_16
  article-title: A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-012-9917-y
– volume: 6
  start-page: 7395
  year: 2015
  ident: ref_101
  article-title: Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8395
– volume: 81
  start-page: 73
  year: 2017
  ident: ref_45
  article-title: Evolution of land plants: Insights from molecular studies on basal lineages
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2016.1224641
– volume: 21
  start-page: 574
  year: 2016
  ident: ref_66
  article-title: A Glimpse beyond structures in auxin-Dependent transcription
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.02.002
– volume: 68
  start-page: 1361
  year: 2017
  ident: ref_91
  article-title: Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx004
– ident: ref_26
  doi: 10.1186/1471-2229-7-59
– volume: 168
  start-page: 708
  year: 2015
  ident: ref_72
  article-title: Lysine residues are not required for proteasome-mediated proteolysis of the auxin/indole acidic acid protein IAA1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00402
– volume: 124
  start-page: 1728
  year: 2000
  ident: ref_100
  article-title: Aux/IAA proteins are phosphorylated by phytochrome in vitro
  publication-title: Plant Physiol.
  doi: 10.1104/pp.124.4.1728
– volume: 56
  start-page: 700
  year: 2015
  ident: ref_23
  article-title: Comprehensive genome-wide analysis of the Aux/IAA gene family in eucalyptus: Evidence for the role of EgrIAA4 in wood formation
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu215
– volume: 319
  start-page: 1384
  year: 2008
  ident: ref_52
  article-title: TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis
  publication-title: Science
  doi: 10.1126/science.1151461
– volume: 279
  start-page: 1371
  year: 1998
  ident: ref_112
  article-title: Changes in auxin response from mutations in an AUX/IAA gene
  publication-title: Science
  doi: 10.1126/science.279.5355.1371
– volume: 9
  start-page: 57
  year: 2016
  ident: ref_84
  article-title: Epigenetic modifications and plant hormone action
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.10.008
– volume: 92
  start-page: 513
  year: 2013
  ident: ref_25
  article-title: Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus)
  publication-title: J. Genet.
  doi: 10.1007/s12041-013-0306-3
– volume: 171
  start-page: 287
  year: 2017
  ident: ref_41
  article-title: Insights into land plant evolution garnered from the Marchantia polymorpha Genome
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.030
– volume: 37
  start-page: 914
  year: 2004
  ident: ref_78
  article-title: Mapman: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02016.x
– volume: 287
  start-page: 295
  year: 2012
  ident: ref_34
  article-title: Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model
  publication-title: Mol. Genet. Genom.
  doi: 10.1007/s00438-012-0675-y
– volume: 53
  start-page: 659
  year: 2012
  ident: ref_24
  article-title: Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcs022
– volume: 13
  start-page: 2498
  year: 2003
  ident: ref_77
  article-title: Cytoscape: A software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– volume: 435
  start-page: 446
  year: 2005
  ident: ref_32
  article-title: The Arabidopsis F-box protein TIR1 is an auxin receptor
  publication-title: Nature
  doi: 10.1038/nature03542
– volume: 113
  start-page: 6562
  year: 2016
  ident: ref_67
  article-title: Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1600739113
– volume: 68
  start-page: 1239
  year: 2017
  ident: ref_80
  article-title: Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw508
– volume: 136
  start-page: 1509
  year: 2009
  ident: ref_115
  article-title: A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning
  publication-title: Development
  doi: 10.1242/dev.025932
– volume: 58
  start-page: 1891
  year: 2017
  ident: ref_95
  article-title: Rice inositol polyphosphate kinase (OsIPK2) directly interacts with OsIAA11 to regulate lateral root formation
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcx125
– volume: 63
  start-page: 163
  year: 2017
  ident: ref_114
  article-title: Transcriptional repressor IAA17 is involved in nitrogen use by modulating cytosolic glutamine synthetase GLN1; 2 in Arabidopsis roots
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2017.1314178
– volume: 49
  start-page: 387
  year: 2002
  ident: ref_19
  article-title: Genetics of Aux/IAA and ARF action in plant growth and development
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1015255030047
– volume: 24
  start-page: 1874
  year: 2005
  ident: ref_10
  article-title: Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600659
– ident: ref_75
  doi: 10.1371/journal.pgen.1006301
– volume: 80
  start-page: 424
  year: 2014
  ident: ref_82
  article-title: UBC13, an E2 enzyme for Lys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability
  publication-title: Plant J.
  doi: 10.1111/tpj.12644
– volume: 48
  start-page: 380
  year: 2006
  ident: ref_83
  article-title: PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02882.x
– volume: 278
  start-page: 23797
  year: 2003
  ident: ref_21
  article-title: Yokonolide B, A novel inhibitor of auxin action, blocks degradation of AUX/IAA factors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M300299200
– ident: ref_42
  doi: 10.1371/journal.pgen.1005365
– ident: ref_29
  doi: 10.3390/ijms18102107
– volume: 133
  start-page: 397
  year: 2008
  ident: ref_120
  article-title: Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2008.01055.x
– volume: 82
  start-page: 71
  year: 2013
  ident: ref_17
  article-title: A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-013-0039-y
– volume: 74
  start-page: 86
  year: 2013
  ident: ref_96
  article-title: OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation
  publication-title: Plant J.
  doi: 10.1111/tpj.12106
– volume: 190
  start-page: 116
  year: 2012
  ident: ref_137
  article-title: OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2012.04.005
– volume: 6
  start-page: 918
  year: 2015
  ident: ref_37
  article-title: Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00918
– volume: 40
  start-page: 772
  year: 2004
  ident: ref_104
  article-title: The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02254.x
– volume: 53
  start-page: 1583
  year: 2012
  ident: ref_131
  article-title: Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcs101
– ident: ref_48
  doi: 10.1371/journal.pone.0107495
– volume: 85
  start-page: 269
  year: 2016
  ident: ref_94
  article-title: Auxin responsiveness of the MONOPTEROS-BODENLOS module in primary root initiation critically depends on the nuclear import kinetics of the Aux/IAA inhibitor BODENLOS
  publication-title: Plant J.
  doi: 10.1111/tpj.13108
– volume: 22
  start-page: 225
  year: 2017
  ident: ref_55
  article-title: The systems biology of auxin in developing embryos
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.11.010
– volume: 8
  start-page: 15706
  year: 2017
  ident: ref_56
  article-title: Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15706
– volume: 16
  start-page: 379
  year: 2004
  ident: ref_117
  article-title: MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.018630
– volume: 44
  start-page: 766
  year: 2006
  ident: ref_122
  article-title: Isolation and characterization of a novel potato Auxin/Indole-3-Acetic Acid family member (StIAA2) that is involved in petiole hyponasty and shoot morphogenesis
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2006.10.026
– volume: 35
  start-page: 365
  year: 2013
  ident: ref_35
  article-title: Genome-wide analysis of Aux/IAA genes in Vitis vinifera: Cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses
  publication-title: Acta Physiol. Plant.
– volume: 20
  start-page: 1697
  year: 2010
  ident: ref_119
  article-title: A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.09.007
– volume: 27
  start-page: 9
  year: 2015
  ident: ref_63
  article-title: SCFTIR1/AFB-Based auxin perception: Mechanism and role in plant growth and development
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.133744
– volume: 69
  start-page: 213
  year: 2017
  ident: ref_88
  article-title: Multiple links between shade avoidance and auxin networks
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx295
– volume: 25
  start-page: 2102
  year: 2013
  ident: ref_86
  article-title: PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.112417
– volume: 6
  start-page: 388
  year: 2015
  ident: ref_140
  article-title: Expression of wild-type PtrIAA14.1, a poplar Aux/IAA gene causes morphological changes in Arabidopsis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00388
– volume: 278
  start-page: 43516
  year: 2003
  ident: ref_61
  article-title: Molecular recognition in dimerization between PB1 domains
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M306330200
– volume: 446
  start-page: 640
  year: 2007
  ident: ref_12
  article-title: Mechanism of auxin perception by the TIR1 ubiquitin ligase
  publication-title: Nature
  doi: 10.1038/nature05731
– volume: 21
  start-page: 302
  year: 2016
  ident: ref_68
  article-title: Structural biology of nuclear auxin action
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.10.019
– volume: 5
  start-page: 154
  year: 2012
  ident: ref_136
  article-title: A gain-of-function mutation in OsIAA11 affects lateral root development in rice
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr074
– volume: 214
  start-page: 16
  year: 2017
  ident: ref_102
  article-title: Plant hormone signaling in flowering: An epigenetic point of view
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2017.03.018
– volume: 51
  start-page: 164
  year: 2009
  ident: ref_109
  article-title: Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcp176
– volume: 21
  start-page: 51
  year: 2014
  ident: ref_79
  article-title: Diversity and specificity: Auxin perception and signaling through the TIR1/AFB pathway
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2014.06.006
– volume: 126
  start-page: 711
  year: 1999
  ident: ref_15
  article-title: Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene
  publication-title: Development
  doi: 10.1242/dev.126.4.711
– ident: ref_108
  doi: 10.1371/journal.pone.0043414
– volume: 69
  start-page: 255
  year: 2017
  ident: ref_124
  article-title: Recent advances in auxin research in rice and their implications for crop improvement
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx228
– volume: 8
  start-page: 477
  year: 2012
  ident: ref_13
  article-title: A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.926
– ident: ref_64
  doi: 10.1104/pp.17.00765
– ident: ref_47
  doi: 10.1186/s12864-017-3722-6
– volume: 143
  start-page: 3226
  year: 2016
  ident: ref_9
  article-title: Mechanisms of auxin signaling
  publication-title: Development
  doi: 10.1242/dev.131870
– volume: 18
  start-page: 2893
  year: 2006
  ident: ref_85
  article-title: Arabidopsis GCN5, HD1, and TAF1/HAF2 Interact to regulate histone acetylation required for light-responsive gene expression
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.043489
– volume: 169
  start-page: 803
  year: 2015
  ident: ref_54
  article-title: Rate motifs tune auxin/indole-3-acetic acid degradation dynamics
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00587
– volume: 13
  start-page: 465
  year: 2001
  ident: ref_118
  article-title: A gain-of-function mutation in IAA28 suppresses lateral root development
  publication-title: Plant Cell
  doi: 10.1105/tpc.13.3.465
– volume: 7
  start-page: 10895
  year: 2017
  ident: ref_43
  article-title: Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11327-5
– volume: 2
  start-page: a001446
  year: 2010
  ident: ref_4
  article-title: Cellular responses to auxin: Division versus expansion
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 17
  start-page: 1405
  year: 1998
  ident: ref_111
  article-title: The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.5.1405
– volume: 68
  start-page: 433
  year: 2011
  ident: ref_138
  article-title: OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04698.x
– volume: 36
  start-page: 643
  year: 2003
  ident: ref_22
  article-title: Regulation of Arabidopsis SHY2/IAA3 protein turnover
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01909.x
– volume: 1
  start-page: a001628
  year: 2009
  ident: ref_2
  article-title: Distinct and dynamic auxin activities during reproductive development
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a001628
– volume: 251
  start-page: 533
  year: 1995
  ident: ref_6
  article-title: The PS-IAA4/5-like family of early Auxin-inducible mRNAs in Arabidopsis thaliana
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0454
– volume: 91
  start-page: 326
  year: 1994
  ident: ref_7
  article-title: Early auxin-induced genes encode short-lived nuclear proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.1.326
– volume: 463
  start-page: 178
  year: 2010
  ident: ref_39
  article-title: Genome sequence of the palaeopolyploid soybean
  publication-title: Nature
  doi: 10.1038/nature08670
– volume: 13
  start-page: 2349
  year: 2001
  ident: ref_53
  article-title: Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent
  publication-title: Plant Cell
  doi: 10.1105/tpc.010244
– volume: 55
  start-page: 1969
  year: 2014
  ident: ref_130
  article-title: The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu124
– volume: 20
  start-page: 843
  year: 2008
  ident: ref_123
  article-title: Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.055798
– volume: 45
  start-page: D369
  year: 2017
  ident: ref_76
  article-title: The BioGRID interaction database: 2017 update
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkw1102
– volume: 158
  start-page: 423
  year: 2012
  ident: ref_74
  article-title: The TOPLESS interactome: A framework for gene repression in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.186999
– volume: 69
  start-page: 189
  year: 2017
  ident: ref_99
  article-title: Integration of multiple signaling pathways shapes the auxin response
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx232
– volume: 10
  start-page: 403
  year: 1996
  ident: ref_113
  article-title: Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1996.10030403.x
– volume: 9
  start-page: 109
  year: 2005
  ident: ref_20
  article-title: Plant development is regulated by a family of auxin receptor F box proteins
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2005.05.014
– volume: 70
  start-page: 492
  year: 2012
  ident: ref_81
  article-title: Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04885.x
– volume: 190
  start-page: 82
  year: 2012
  ident: ref_59
  article-title: Getting a grasp on domain III/IV responsible for auxin response factor–IAA protein interactions
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2012.04.003
– volume: 497
  start-page: 579
  year: 2013
  ident: ref_38
  article-title: The Norway spruce genome sequence and conifer genome evolution
  publication-title: Nature
  doi: 10.1038/nature12211
– volume: 454
  start-page: 283
  year: 1999
  ident: ref_57
  article-title: Biochemical characterization of recombinant polypeptides corresponding to the predicted βαα fold in Aux/IAA proteins
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)00819-4
– volume: 8
  start-page: 193
  year: 2001
  ident: ref_133
  article-title: OsIAA1, an Aux/IAA cDNA from rice, and changes in its expression as influenced by auxin and light
  publication-title: DNA Res.
  doi: 10.1093/dnares/8.5.193
– volume: 27
  start-page: 574
  year: 2015
  ident: ref_103
  article-title: Cleavage of indole-3-acetic acid inducible28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00101
– volume: 194
  start-page: 379
  year: 2012
  ident: ref_129
  article-title: The tomato SlIAA15 is involved in trichome formation and axillary shoot development
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04053.x
– volume: 6
  start-page: 770
  year: 2015
  ident: ref_50
  article-title: A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00770
– volume: 19
  start-page: 2440
  year: 2007
  ident: ref_89
  article-title: The Arabidopsis transcription factor MYB77 modulates auxin signal transduction
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.050963
– volume: 290
  start-page: 12868
  year: 2015
  ident: ref_60
  article-title: Defining a two-pronged structural model for PB1 (Phox/Bem1p) domain interaction in plant auxin responses
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.648253
– volume: 49
  start-page: 373
  year: 2002
  ident: ref_51
  article-title: Auxin-responsive gene expression: Genes, promoters and regulatory factors
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1015207114117
– volume: 26
  start-page: 230
  year: 2014
  ident: ref_90
  article-title: Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid—And auxin-mediated signaling in jasmonic acid—Induced leaf senescence
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117838
– volume: 236
  start-page: 304
  year: 2015
  ident: ref_135
  article-title: OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2015.04.018
– volume: 7
  start-page: 507
  year: 2017
  ident: ref_128
  article-title: Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00501-4
– ident: ref_98
  doi: 10.1371/journal.ppat.1005847
– volume: 106
  start-page: 22540
  year: 2009
  ident: ref_11
  article-title: Complex regulation of the TIR1/AFB family of auxin receptors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911967106
– volume: 58
  start-page: 1661
  year: 2017
  ident: ref_3
  article-title: Auxin response dynamics during wild-type and entire flower development in tomato
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcx102
– volume: 54
  start-page: 760
  year: 2012
  ident: ref_116
  article-title: Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2012.01155.x
– volume: 183
  start-page: 53
  year: 1985
  ident: ref_31
  article-title: Rapid induction of specific mRNAs by auxin in pea epicotyl tissue
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(85)90280-3
– volume: 10
  start-page: 533
  year: 2010
  ident: ref_49
  article-title: Auxin-related gene families in abiotic stress response in Sorghum bicolor
  publication-title: Funct. Integr. Genom.
  doi: 10.1007/s10142-010-0174-3
– volume: 290
  start-page: 2089
  year: 2015
  ident: ref_33
  article-title: The ARF, AUX/IAA and GH3 gene families in citrus: Genome-wide identification and expression analysis during fruitlet drop from abscission zone A
  publication-title: Mol. Genet. Genom.
  doi: 10.1007/s00438-015-1063-1
– volume: 14
  start-page: 13645
  year: 2013
  ident: ref_134
  article-title: Ectopic Overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) Gene OsIAA4 in Rice Induces Morphological Changes and Reduces Responsiveness to Auxin
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140713645
– volume: 7
  start-page: 47
  year: 2016
  ident: ref_62
  article-title: A review of auxin response factors (ARFs) in plants
  publication-title: Front. Plant Sci.
– ident: ref_46
  doi: 10.1371/journal.pone.0151522
– volume: 123
  start-page: 563
  year: 2000
  ident: ref_107
  article-title: AXR2 Encodes a Member of the Aux/IAA Protein Family
  publication-title: Plant Physiol.
  doi: 10.1104/pp.123.2.563
– volume: 10
  start-page: 453
  year: 2007
  ident: ref_5
  article-title: Auxin response factors
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2007.08.014
– volume: 35
  start-page: 22
  year: 2015
  ident: ref_125
  article-title: A TILLING allele of the tomato Aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-015-0222-8
– volume: 59
  start-page: 496
  year: 2017
  ident: ref_97
  article-title: A zinc finger protein, interacted with cyclophilin, affects root development via IAA pathway in rice
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12531
– volume: 17
  start-page: 2676
  year: 2005
  ident: ref_126
  article-title: The tomato Aux/IAA transcription factor IAA9 Is involved in fruit development and leaf morphogenesis
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.033415
– volume: 9
  start-page: 441
  year: 1996
  ident: ref_105
  article-title: Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1996.09040441.x
– volume: 33
  start-page: 1552
  year: 2015
  ident: ref_40
  article-title: Genomic Survey, Gene Expression, and Interaction Analysis Suggest Diverse Roles of ARF and Aux/IAA Proteins in Solanaceae
  publication-title: Plant Mol. Biol. Rep.
  doi: 10.1007/s11105-015-0856-z
– ident: ref_36
  doi: 10.1186/s12870-017-1165-5
– volume: 18
  start-page: 699
  year: 2006
  ident: ref_8
  article-title: The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.039172
– volume: 27
  start-page: 437
  year: 2017
  ident: ref_92
  article-title: Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.12.016
– volume: 60
  start-page: 1349
  year: 2009
  ident: ref_121
  article-title: Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp009
– volume: 94
  start-page: 11786
  year: 1997
  ident: ref_58
  article-title: Protein–protein interactions among the Aux/IAA proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.22.11786
– volume: 27
  start-page: 33
  year: 2015
  ident: ref_65
  article-title: The PB1 domain in auxin response factor and Aux/IAA proteins: A versatile protein interaction module in the Auxin response
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.132753
– volume: 6
  start-page: 47
  year: 2006
  ident: ref_28
  article-title: Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa)
  publication-title: Funct. Integr. Genom.
  doi: 10.1007/s10142-005-0005-0
– volume: 68
  start-page: 919
  year: 2011
  ident: ref_87
  article-title: Repression of shade-avoidance reactions by sunfleck induction of HY5 expression in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04745.x
– volume: 65
  start-page: 4919
  year: 2014
  ident: ref_139
  article-title: The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru249
– ident: ref_27
  doi: 10.1371/journal.pone.0078859
– volume: 136
  start-page: 2997
  year: 2009
  ident: ref_127
  article-title: Auxin patterns Solanum lycopersicum leaf morphogenesis
  publication-title: Development
  doi: 10.1242/dev.033811
– volume: 23
  start-page: 1181
  year: 2003
  ident: ref_1
  article-title: Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda)
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/23.17.1181
– volume: 68
  start-page: 539
  year: 2017
  ident: ref_14
  article-title: Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB-AUX/IAA-ARF module
  publication-title: J. Exp. Bot.
– volume: 67
  start-page: 539
  year: 2016
  ident: ref_44
  article-title: Transcriptional responses to the auxin hormone
  publication-title: Ann. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043015-112122
– volume: 142
  start-page: 905
  year: 2015
  ident: ref_106
  article-title: Auxin-induced degradation dynamics set the pace for lateral root development
  publication-title: Development
– volume: 17
  start-page: 3282
  year: 2005
  ident: ref_18
  article-title: Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.036723
– volume: 233
  start-page: 789
  year: 1993
  ident: ref_30
  article-title: Structural Characterization of the early indoleacetic acid-inducible genes, PS-IAA4/5 and PS-IAA6, of Pea (Pisum sativum L.)
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1555
– volume: 213
  start-page: 1124
  year: 2017
  ident: ref_132
  article-title: Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom)
  publication-title: New Phytol.
  doi: 10.1111/nph.14246
– ident: ref_93
  doi: 10.1371/journal.pgen.1006607
– volume: 111
  start-page: 18613
  year: 2014
  ident: ref_73
  article-title: Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1419525112
SSID ssj0023259
Score 2.6328413
SecondaryResourceType review_article
Snippet Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 259
SubjectTerms Genes
Proteins
Review
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-ELyIb9cXEfSkYdskzaZeZBHXB-rBB3graZPiinZXuwv6751pu9VV9Fgy0DaT5JsvmcxHyG6qpAlDo5kNrGXSB4KilRBMJipJrRTA33Af8upand3Li4fgodpwy6u0ytGaWCzUtpfgHnkTqEmIcticH_VfGapG4elqJaExSaZ9QBpM6dKd05pwCV6IpfmAQUwFoSoT3wXQ_Gb36SVHLATID8ch6Vec-TNd8hv-dObJXBU40nbp6QUy4bJFMlNKSX4skcv28L153m5TrCNNSzkL2s0oihIN8kN6NZLBpbdFxdjhmzugN6UQPbjmgJrM0g6AHD4tk_vOyd3xGauUElgiW3rAgMbFKsBrqiK00gTa-r5RqUowuTR2ccqN0C1U1QCC4ynrSZk63_EYoqMUpqxYIVNZL3NrhAJ4JVbwRBiYqdxT2ggHHuSBjgXXnmuQ_VFnRUlVRhzVLJ4joBPYtdH3rm2Qvdq6X5bP-MNuc9TvUTWJ8ujL5Q2yUzfD8MczDZO53jCPMOULKJOHNqulm-oXQSQj4OeCBmmNObA2wNLa4y1Z97EosY03dLkXrP__WRtkFuInTAZkvtokU-A_twUxyiDeLgbiJzMU42w
  priority: 102
  providerName: ProQuest
Title Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function
URI https://www.ncbi.nlm.nih.gov/pubmed/29337875
https://www.proquest.com/docview/2109452622
https://www.proquest.com/docview/1989576022
https://pubmed.ncbi.nlm.nih.gov/PMC5796205
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6wWAvZW23Nf0IKrRPrVtbkmV5MEY2mn7QlNEtkDcjWzJNSd2PJND-97uLY5Ou7UtfDEYnDHcSv_tZp_sB7ORKmjg22rOhtZ4MkKBoJYQnM5XlVgrkb_QfsnOhTrryrBf25qBSG506cPgqtSM9qe7D4ODx_ukHbvjvxDiRsh_2r2-GhGsI3_E8LCImRaRl0JH1eQKmDWFclr2_mEHtgJHVR5NSw1lsepFw_l83OQNE7U-wNM0gWasM-TLMuWIFPpSakk-rcN4aPx6etlqMGkqzUteC9QtG6kSj4TfWqfRw2Z9J69jxg9tnl6UiPcZon5nCsjaiHb19hm776O-vE28qmeBlMtIjD_lcqkK6rypiK02obRAYlauMqkxTl-bcCB2RvAYyHV9ZX8rcBY6nmCbl6ALxBRaK28KtAUMUy6zgmTC4ZbmvtBEOQ8lDnQqufdeAvcpZSTbtJ06yFoMEeQV5OZn1cgN2a-u7so_GG3abld-TajEkSEtjkkLnvAHb9TDuAzrcMIW7HQ8Tqv1C7uSTzdcyTPWHqvg2IHoWwNqAemw_Hyn6V5Ne23RVl_vh-rtnbsBHzLGoYNAL1CYsYGjdFuYxo7QJ81EvwqduHzdh8efRxe_LJiFL2Jws3n8ifvXy
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQ9N4QcA-KAww0vbErCa24yZICFVAaVm7B7ZJe8uc2NE6bekgrWD_FH8jd0kT1qHxtscop3ycz7772Xf3A9jJtDJRZEJuA2u58hGghFpKrlKdZlZJxG-0Dzk60P1j9fUkOFmC33UtDKVV1mtiuVDbSUp75G2EJhHRYQvx4eo7J9YoOl2tKTQqs9h31z8RshXvB59wfHeF6H0--tjnc1YBnqpOOOUIeRIdUEmnjKwyQWh93-hMp5SImbgkE0aGHWKgQDDgaesplTnfiQQjiQzNW-Jzl-GBkujJqTK996UBeFKU5Gw--jyug0hXifYo6LXH55cF-V4MMaJFF_hPXHs7PfOGv-s9hkfzQJV1K8t6AksufwqrFXXl9ToMu7Nf7UG3y6hvNavoM9g4Z0SCNC3esVFNu8sOyw61sx9uj32riO_RFPaYyS3roVOlqw04vhcdbsJKPsndM2DoLFMrRSoNrgzC06GRDi1GBGEiRei5FrytlRWn87blxJ5xESN8IdXGN1Xbgt1G-qpq13GH3Hat93g-aYv4r4m14E1zG6cbnaGY3E1mRUwpZgjRPJLZqoapeRFGThJ_LmhBZ2EAGwFq5b14Jx-flS29qSJYeMHz_3_Wa1jrH42G8XBwsP8CHmLsRomI3NfbsIJj6V5ifDRNXpVGyeD0vmfBHzpVHi0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUC8VC3n0gMj0SdqbWI73gQJoe2x6tJ2VRUq9S04sQOLINs2u6L9a_w6ZjZHuyB462MUK8ccnvns8XwArzOtTBSZkNvAWq58BCihlpKrVKeZVRLxG61DHg31_qn6cBacLcCv-iwMlVXWc-JsorbjlNbIOwhNIqLDFqKTVWURx7v99-cXnBikaKe1ptMoTeTAXf9E-Fa8G-yirjeF6O992tnnFcMAT1U3nHCEP4kO6HinjKwyQWh93-hMp1SUmbgkE0aGXWKjQGDgaesplTnfiQSzigxNXeJz78Fil1BRCxa394bHJw3ck2JG1eZjBOQ6iHRZdi9l5HVG334UFIkx4YjmA-JfWe6fxZq3ol9_GZaqtJX1SjtbgQWXP4L7JZHl9WM47E2vOoNej1EXa1aSabBRzogSaVK8ZUc1CS_7OOtXO710W-zEfam4w7aYyS3rY4ilqydweidSfAqtfJy758AwdKZWilQanCeEp0MjHdqPCMJEitBzbXhTCytOqybmxKXxPUYwQ6KNb4u2DZvN6POyecc_xq3Vco8rFy7iG4Nrw6vmNjof7aiY3I2nRUwFZwjYPBrzrFRT8yLMoyT-XNCG7pwCmwHU2Hv-Tj76OmvwTeeDhRe8-P9nvYQH6AHx4WB4sAoPMZGjqkTu6zVooSrdOiZLk2SjskoGn-_aEX4Depgjvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aux%2FIAA+Gene+Family+in+Plants%3A+Molecular+Structure%2C+Regulation%2C+and+Function&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Luo%2C+Jie&rft.au=Zhou%2C+Jing-Jing&rft.au=Zhang%2C+Jin-Zhi&rft.date=2018-01-16&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=19&rft.issue=1&rft_id=info:doi/10.3390%2Fijms19010259&rft_id=info%3Apmid%2F29337875&rft.externalDocID=PMC5796205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon