Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function
Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/...
Saved in:
Published in | International journal of molecular sciences Vol. 19; no. 1; p. 259 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.01.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes. |
---|---|
AbstractList | Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the
Auxin/Indole-3-Acetic Acid
(
Aux/IAA
) family, the
auxin response factor
(
ARF
) family,
small auxin upregulated RNA
(
SAUR
), and the
auxin-responsive Gretchen Hagen3
(
GH3
) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with
ARFs
to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes. Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the ( ) family, the ( ) family, ( ), and the ( ) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes. Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes. Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes. |
Author | Luo, Jie Zhang, Jin-Zhi Zhou, Jing-Jing |
AuthorAffiliation | 2 Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China 1 College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; luojie@mail.hzau.edu.cn |
AuthorAffiliation_xml | – name: 2 Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China – name: 1 College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; luojie@mail.hzau.edu.cn |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0003-1495-8239 surname: Luo fullname: Luo, Jie – sequence: 2 givenname: Jing-Jing surname: Zhou fullname: Zhou, Jing-Jing – sequence: 3 givenname: Jin-Zhi surname: Zhang fullname: Zhang, Jin-Zhi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29337875$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctP3DAQxq0KVF699VxZ6oXDLtjjJI57QFohFpC2KuJxthzHoV4lNtgxgv8e89SCOI1n_JtP38xsoTXnnUHoJyV7jAmyb5dDpIJQAqX4hjZpATAlpOJrK-8NtBXjkhBgGfqONkAwxmtebqLFLN3vn85m-Ng4g-dqsP0Dtg6f9cqN8Q_-63ujU68CvhhD0mMKZoLPzXUujda7CVauxfPk9FO2g9Y71Ufz4zVuo6v50eXhyXTx7_j0cLaY6oLX45QDbaoSmBBMtIUq65ZSVXWVpkJAY5oOFKt5AbwuhCBVS4qiM9RAwwR02TbbRgcvujepGUyrjRuD6uVNsIMKD9IrKz_-OPtfXvs7WXJRASmzwO6rQPC3ycRRDjZq0-ehjU9RUlGLklcEIKO_P6FLn4LL40mgRBQlVM_Ur1VH71beFp0BeAF08DEG00ltx-cVZoO2l5TIp2vK1WvmpsmnpjfdL_FHQ2aeww |
CitedBy_id | crossref_primary_10_3390_agronomy13112782 crossref_primary_10_1093_jxb_eraa430 crossref_primary_10_1111_nph_18556 crossref_primary_10_3390_ijms25189818 crossref_primary_10_1007_s12374_020_09292_0 crossref_primary_10_3389_fpls_2023_1284403 crossref_primary_10_7717_peerj_16560 crossref_primary_10_3390_ijms242015357 crossref_primary_10_3390_plants12020227 crossref_primary_10_1186_s12870_023_04498_z crossref_primary_10_1016_j_tibs_2022_06_004 crossref_primary_10_1016_j_biocontrol_2024_105690 crossref_primary_10_1093_g3journal_jkac222 crossref_primary_10_3390_ijms20194703 crossref_primary_10_3390_agronomy14061198 crossref_primary_10_3390_genes15121648 crossref_primary_10_1016_j_genrep_2023_101799 crossref_primary_10_1016_j_plaphy_2024_109452 crossref_primary_10_1016_j_scienta_2022_111244 crossref_primary_10_1038_s41586_020_2094_2 crossref_primary_10_1371_journal_pone_0272500 crossref_primary_10_32604_biocell_2021_014499 crossref_primary_10_1021_acsami_4c19726 crossref_primary_10_1007_s10681_021_02825_9 crossref_primary_10_1093_jxb_erad132 crossref_primary_10_1016_j_cej_2024_158057 crossref_primary_10_1093_jxb_erad372 crossref_primary_10_3390_agronomy11081524 crossref_primary_10_1007_s11240_024_02863_w crossref_primary_10_1016_j_plantsci_2022_111568 crossref_primary_10_32604_phyton_2023_043151 crossref_primary_10_1093_botlinnean_boaa091 crossref_primary_10_3389_fpls_2022_886700 crossref_primary_10_1007_s10725_020_00616_1 crossref_primary_10_1073_pnas_2309007120 crossref_primary_10_3390_ijms232012495 crossref_primary_10_1016_j_envexpbot_2019_03_003 crossref_primary_10_7717_peerj_13710 crossref_primary_10_3390_ijms20153707 crossref_primary_10_3390_bacteria3040030 crossref_primary_10_1016_j_cj_2024_06_003 crossref_primary_10_1016_j_hpj_2023_11_008 crossref_primary_10_3390_plants9060705 crossref_primary_10_3390_horticulturae9111167 crossref_primary_10_1002_ldr_3717 crossref_primary_10_3390_ijms26020604 crossref_primary_10_7717_peerj_15212 crossref_primary_10_1038_s41598_022_16255_7 crossref_primary_10_3390_horticulturae10010027 crossref_primary_10_3389_fpls_2020_01235 crossref_primary_10_3390_cells9030641 crossref_primary_10_1007_s11816_025_00959_z crossref_primary_10_1016_j_indcrop_2023_116904 crossref_primary_10_3390_antiox12122019 crossref_primary_10_32604_biocell_2023_023543 crossref_primary_10_1007_s11756_021_00763_4 crossref_primary_10_3390_ijms20246343 crossref_primary_10_1016_j_cub_2019_04_047 crossref_primary_10_1111_ppl_14387 crossref_primary_10_1002_ps_6198 crossref_primary_10_3390_ijms25169081 crossref_primary_10_3390_plants12071492 crossref_primary_10_1007_s10681_022_02999_w crossref_primary_10_3390_plants10112484 crossref_primary_10_1111_tpj_15541 crossref_primary_10_1186_s12870_024_04827_w crossref_primary_10_3390_ijms23147528 crossref_primary_10_1016_j_cpb_2024_100357 crossref_primary_10_3390_plants11040538 crossref_primary_10_7717_peerj_15440 crossref_primary_10_1016_j_pmpp_2022_101807 crossref_primary_10_1186_s12864_024_10313_2 crossref_primary_10_3390_ijms232113386 crossref_primary_10_1016_j_rhisph_2022_100572 crossref_primary_10_3390_ijms21239234 crossref_primary_10_1021_acs_jafc_3c04712 crossref_primary_10_1186_s12864_023_09263_y crossref_primary_10_3390_plants11101347 crossref_primary_10_1002_csc2_20681 crossref_primary_10_1016_j_scienta_2025_113979 crossref_primary_10_1134_S1021443723600435 crossref_primary_10_3390_genes13061041 crossref_primary_10_1371_journal_pone_0298303 crossref_primary_10_48130_opr_0024_0025 crossref_primary_10_7717_peerj_8829 crossref_primary_10_1007_s11105_023_01379_5 crossref_primary_10_1111_tpj_15515 crossref_primary_10_3390_ijms24044210 crossref_primary_10_1111_tpj_15516 crossref_primary_10_1371_journal_pgen_1009384 crossref_primary_10_1038_s41598_022_14568_1 crossref_primary_10_1016_j_jia_2023_04_031 crossref_primary_10_1007_s00299_023_02990_2 crossref_primary_10_17660_ActaHortic_2024_1411_5 crossref_primary_10_3390_ijms25147812 crossref_primary_10_1007_s11356_021_18144_4 crossref_primary_10_1016_j_plantsci_2024_112204 crossref_primary_10_1093_hr_uhab024 crossref_primary_10_1093_jambio_lxad296 crossref_primary_10_1371_journal_pone_0277293 crossref_primary_10_1016_j_gene_2021_145782 crossref_primary_10_1111_nph_17946 crossref_primary_10_36953_ECJ_12842364 crossref_primary_10_3390_life13091917 crossref_primary_10_3389_fpls_2024_1494579 crossref_primary_10_1016_j_scienta_2022_111568 crossref_primary_10_1007_s11103_019_00871_5 crossref_primary_10_3390_f15010095 crossref_primary_10_1093_jxb_erad051 crossref_primary_10_3390_ijms23179762 crossref_primary_10_3390_ijms23158643 crossref_primary_10_1007_s10725_023_00992_4 crossref_primary_10_3389_fpls_2024_1284125 crossref_primary_10_1111_tpj_14677 crossref_primary_10_1002_pld3_166 crossref_primary_10_48130_grares_0024_0005 crossref_primary_10_3389_fmicb_2021_809690 crossref_primary_10_1093_plphys_kiab565 crossref_primary_10_1093_bbb_zbae080 crossref_primary_10_3390_plants9121812 crossref_primary_10_1111_pce_15171 crossref_primary_10_3390_ijms20133235 crossref_primary_10_1016_j_ijbiomac_2023_123671 crossref_primary_10_1093_plphys_kiab568 crossref_primary_10_3390_plants11121550 crossref_primary_10_1007_s00344_022_10842_8 crossref_primary_10_1007_s11248_023_00337_x crossref_primary_10_1093_plcell_koad168 crossref_primary_10_1111_jipb_13759 crossref_primary_10_3389_fnut_2024_1417526 crossref_primary_10_1186_s12870_020_02504_2 crossref_primary_10_1007_s11427_021_2024_0 crossref_primary_10_3390_f13081255 crossref_primary_10_1007_s11033_019_04611_2 crossref_primary_10_1016_j_jhazmat_2020_122811 crossref_primary_10_1016_j_jplph_2020_153333 crossref_primary_10_5808_gi_22056 crossref_primary_10_1002_saj2_20768 crossref_primary_10_1093_jxb_erad088 crossref_primary_10_3390_f13101705 crossref_primary_10_1186_s12864_024_10195_4 crossref_primary_10_1007_s00344_019_10040_z crossref_primary_10_1007_s00122_019_03290_8 crossref_primary_10_3390_agronomy14092005 crossref_primary_10_1016_j_sajb_2024_11_039 crossref_primary_10_48130_SeedBio_2023_0017 crossref_primary_10_1016_j_indcrop_2024_118565 crossref_primary_10_3390_foods10071643 crossref_primary_10_3390_ijms21051807 crossref_primary_10_3390_app12031231 crossref_primary_10_3390_ijms21041333 crossref_primary_10_1016_j_cj_2022_02_010 crossref_primary_10_1007_s00344_023_10983_4 crossref_primary_10_1007_s10886_024_01536_4 crossref_primary_10_1007_s12298_024_01497_8 crossref_primary_10_1111_tpj_15983 crossref_primary_10_1007_s10142_022_00833_z crossref_primary_10_3390_ijms19092759 crossref_primary_10_3389_fgene_2023_1099489 crossref_primary_10_1016_j_indcrop_2022_116117 crossref_primary_10_3390_genes13020181 crossref_primary_10_1016_j_micres_2020_126480 crossref_primary_10_1016_j_plantsci_2022_111221 crossref_primary_10_3390_ijms25137473 crossref_primary_10_1186_s12864_022_09098_z crossref_primary_10_3390_plants13192684 crossref_primary_10_1038_s41598_023_27779_x crossref_primary_10_3390_horticulturae8100899 crossref_primary_10_1016_j_xplc_2024_101039 crossref_primary_10_3390_ijms24043948 crossref_primary_10_1007_s11103_023_01354_4 crossref_primary_10_1016_j_ecoenv_2024_116991 crossref_primary_10_3390_biom9010012 crossref_primary_10_1016_j_cj_2023_11_006 crossref_primary_10_1007_s00299_024_03348_y crossref_primary_10_1016_j_jplph_2023_153995 crossref_primary_10_1094_PHYTO_11_22_0419_R crossref_primary_10_3390_ijms241411408 crossref_primary_10_1016_j_plantsci_2021_110903 crossref_primary_10_1016_j_hpj_2022_07_004 crossref_primary_10_1016_j_scienta_2025_114065 crossref_primary_10_1038_s41477_020_0739_7 crossref_primary_10_58728_joinabt_1484526 crossref_primary_10_1186_s12284_024_00750_8 crossref_primary_10_1016_j_ijbiomac_2024_138746 crossref_primary_10_3390_f11111233 crossref_primary_10_1016_j_plantsci_2024_112365 crossref_primary_10_1093_hr_uhad125 crossref_primary_10_1038_s41598_021_85886_z crossref_primary_10_1007_s11105_019_01157_2 crossref_primary_10_1093_plphys_kiac589 crossref_primary_10_1111_tpj_16132 crossref_primary_10_3390_agronomy10020313 crossref_primary_10_13005_bbra_2747 crossref_primary_10_1038_s41467_020_16147_2 crossref_primary_10_1093_jxb_erab357 crossref_primary_10_7717_peerj_16836 crossref_primary_10_1016_j_ecoenv_2020_110779 crossref_primary_10_1186_s12864_020_06947_7 crossref_primary_10_1186_s12870_024_05540_4 crossref_primary_10_3389_fmicb_2023_1294402 crossref_primary_10_3390_f11121288 crossref_primary_10_1007_s11103_022_01255_y crossref_primary_10_3390_genes13071181 crossref_primary_10_1016_j_scitotenv_2023_166644 crossref_primary_10_3389_fpls_2022_943662 crossref_primary_10_1002_ps_8637 crossref_primary_10_58728_joinabt_1530990 crossref_primary_10_1186_s12864_023_09850_z crossref_primary_10_1007_s00299_019_02395_0 crossref_primary_10_3390_ijms242216184 crossref_primary_10_3390_ijms25021343 crossref_primary_10_1007_s00344_022_10822_y crossref_primary_10_1016_j_plaphy_2024_109069 crossref_primary_10_3390_genes15030388 crossref_primary_10_7717_peerj_13798 crossref_primary_10_1111_jipb_12747 crossref_primary_10_3390_ijms25042260 crossref_primary_10_1093_treephys_tpad028 crossref_primary_10_1111_tpj_16109 crossref_primary_10_3390_ijms26052277 crossref_primary_10_1016_j_cropd_2025_100095 crossref_primary_10_3390_plants12152842 crossref_primary_10_1016_j_bbrc_2020_05_049 crossref_primary_10_1016_j_ecoenv_2019_110090 crossref_primary_10_3390_plants9040458 crossref_primary_10_3389_fpls_2023_1067920 crossref_primary_10_1093_nar_gkac773 crossref_primary_10_1111_jmi_12847 crossref_primary_10_52586_4974 crossref_primary_10_3390_life12081283 crossref_primary_10_3390_genes14061206 crossref_primary_10_3390_ijms232415729 crossref_primary_10_1016_j_chemosphere_2024_141335 crossref_primary_10_1186_s12870_020_02729_1 crossref_primary_10_3389_fpls_2022_948099 crossref_primary_10_3390_ijms21249437 crossref_primary_10_1016_j_scitotenv_2022_160611 crossref_primary_10_48130_opr_0024_0018 crossref_primary_10_3389_fpls_2023_1114988 crossref_primary_10_1007_s11103_024_01476_3 crossref_primary_10_1016_j_celrep_2024_115083 crossref_primary_10_1007_s10681_023_03156_7 crossref_primary_10_1111_mpp_70063 crossref_primary_10_3390_agriculture14112019 crossref_primary_10_3390_agronomy12071544 crossref_primary_10_1016_j_plantsci_2020_110771 crossref_primary_10_3389_fgene_2021_685788 crossref_primary_10_3390_ijms26031102 crossref_primary_10_17660_ActaHortic_2021_1307_47 crossref_primary_10_1016_j_plaphy_2023_107832 crossref_primary_10_1186_s12864_024_10623_5 crossref_primary_10_1073_pnas_2209781120 crossref_primary_10_1016_j_ijbiomac_2023_125750 crossref_primary_10_1016_j_plaphy_2024_109365 crossref_primary_10_3390_plants13243538 crossref_primary_10_1007_s10265_023_01494_0 crossref_primary_10_1177_1176934321994127 crossref_primary_10_1111_tpj_15112 crossref_primary_10_1007_s00299_023_03079_6 crossref_primary_10_1111_pbi_14554 crossref_primary_10_3390_plants12061382 crossref_primary_10_3390_genes15030325 crossref_primary_10_3390_plants11111472 crossref_primary_10_1007_s00425_020_03490_3 crossref_primary_10_32615_bp_2023_001 crossref_primary_10_3389_fpls_2024_1512645 crossref_primary_10_3390_ijms22158207 crossref_primary_10_1186_s12864_024_10004_y crossref_primary_10_1155_2022_8445484 crossref_primary_10_1186_s12870_024_04765_7 crossref_primary_10_1016_j_jhazmat_2022_130427 crossref_primary_10_1186_s12870_023_04598_w crossref_primary_10_1007_s12298_024_01493_y crossref_primary_10_3389_fpls_2024_1433161 crossref_primary_10_3390_ijms25063470 crossref_primary_10_1007_s12298_021_01054_7 crossref_primary_10_3390_genes15060760 crossref_primary_10_3390_horticulturae11010076 crossref_primary_10_3389_fpls_2022_818233 crossref_primary_10_3390_agronomy11040691 crossref_primary_10_1016_j_scienta_2021_110692 crossref_primary_10_3390_genes10100730 crossref_primary_10_3390_plants11233301 crossref_primary_10_3390_plants11151898 crossref_primary_10_1038_s41598_025_92527_2 crossref_primary_10_1186_s12870_023_04716_8 crossref_primary_10_3389_fpls_2024_1404980 crossref_primary_10_5010_JPB_2019_46_3_180 crossref_primary_10_3389_fpls_2024_1395938 crossref_primary_10_1016_j_indcrop_2024_118713 crossref_primary_10_3390_horticulturae9121265 crossref_primary_10_3390_biology11081192 crossref_primary_10_1186_s12864_024_10624_4 crossref_primary_10_1007_s00299_021_02712_6 crossref_primary_10_1093_plphys_kiab272 crossref_primary_10_3389_fpls_2025_1509193 crossref_primary_10_1186_s12864_024_10467_z crossref_primary_10_1016_j_envexpbot_2019_04_006 crossref_primary_10_3390_su141811170 crossref_primary_10_1016_j_plantsci_2020_110603 crossref_primary_10_1093_jxb_erac152 crossref_primary_10_3389_fpls_2024_1418319 crossref_primary_10_3389_fgene_2021_737293 crossref_primary_10_3390_f10111043 crossref_primary_10_1155_2021_3102399 crossref_primary_10_1016_j_jia_2023_05_004 crossref_primary_10_1038_s41598_021_90082_0 crossref_primary_10_3389_fpls_2024_1421734 crossref_primary_10_1186_s12870_021_03314_w crossref_primary_10_1111_pbi_13930 crossref_primary_10_1038_s41588_024_01943_z crossref_primary_10_3389_fpls_2022_922919 crossref_primary_10_1111_ppl_70098 crossref_primary_10_3390_ijms21207596 crossref_primary_10_1007_s00122_025_04857_4 crossref_primary_10_1093_plphys_kiae090 crossref_primary_10_33158_ASB_r163_v9_2023 crossref_primary_10_3390_ijms24032414 crossref_primary_10_1016_j_envexpbot_2019_04_014 crossref_primary_10_3390_ijms231911122 crossref_primary_10_3390_agronomy12102511 crossref_primary_10_3390_plants13202940 crossref_primary_10_1080_21655979_2019_1692610 crossref_primary_10_3390_ijms20051098 crossref_primary_10_1016_S2095_3119_20_63480_3 crossref_primary_10_1007_s00018_019_03164_8 crossref_primary_10_1186_s12284_024_00747_3 crossref_primary_10_1016_j_plaphy_2018_03_010 crossref_primary_10_1111_pce_14580 crossref_primary_10_3389_fpls_2021_668548 crossref_primary_10_48130_mpb_0024_0011 |
Cites_doi | 10.1038/nature10791 10.1016/j.tplants.2016.05.007 10.1038/ncomms11388 10.1101/gad.229402 10.1007/s11103-012-9917-y 10.1038/ncomms8395 10.1080/09168451.2016.1224641 10.1016/j.tplants.2016.02.002 10.1093/jxb/erx004 10.1186/1471-2229-7-59 10.1104/pp.15.00402 10.1104/pp.124.4.1728 10.1093/pcp/pcu215 10.1126/science.1151461 10.1126/science.279.5355.1371 10.1016/j.molp.2015.10.008 10.1007/s12041-013-0306-3 10.1016/j.cell.2017.09.030 10.1111/j.1365-313X.2004.02016.x 10.1007/s00438-012-0675-y 10.1093/pcp/pcs022 10.1101/gr.1239303 10.1038/nature03542 10.1073/pnas.1600739113 10.1093/jxb/erw508 10.1242/dev.025932 10.1093/pcp/pcx125 10.1080/00380768.2017.1314178 10.1023/A:1015255030047 10.1038/sj.emboj.7600659 10.1371/journal.pgen.1006301 10.1111/tpj.12644 10.1111/j.1365-313X.2006.02882.x 10.1074/jbc.M300299200 10.1371/journal.pgen.1005365 10.3390/ijms18102107 10.1111/j.1399-3054.2008.01055.x 10.1007/s11103-013-0039-y 10.1111/tpj.12106 10.1016/j.plantsci.2012.04.005 10.3389/fpls.2015.00918 10.1111/j.1365-313X.2004.02254.x 10.1093/pcp/pcs101 10.1371/journal.pone.0107495 10.1111/tpj.13108 10.1016/j.tplants.2016.11.010 10.1038/ncomms15706 10.1105/tpc.018630 10.1016/j.plaphy.2006.10.026 10.1016/j.cub.2010.09.007 10.1105/tpc.114.133744 10.1093/jxb/erx295 10.1105/tpc.113.112417 10.3389/fpls.2015.00388 10.1074/jbc.M306330200 10.1038/nature05731 10.1016/j.tplants.2015.10.019 10.1093/mp/ssr074 10.1016/j.jplph.2017.03.018 10.1093/pcp/pcp176 10.1016/j.pbi.2014.06.006 10.1242/dev.126.4.711 10.1371/journal.pone.0043414 10.1093/jxb/erx228 10.1038/nchembio.926 10.1104/pp.17.00765 10.1186/s12864-017-3722-6 10.1242/dev.131870 10.1105/tpc.106.043489 10.1104/pp.15.00587 10.1105/tpc.13.3.465 10.1038/s41598-017-11327-5 10.1093/emboj/17.5.1405 10.1111/j.1365-313X.2011.04698.x 10.1046/j.1365-313X.2003.01909.x 10.1101/cshperspect.a001628 10.1006/jmbi.1995.0454 10.1073/pnas.91.1.326 10.1038/nature08670 10.1105/tpc.010244 10.1093/pcp/pcu124 10.1105/tpc.107.055798 10.1093/nar/gkw1102 10.1104/pp.111.186999 10.1093/jxb/erx232 10.1046/j.1365-313x.1996.10030403.x 10.1016/j.devcel.2005.05.014 10.1111/j.1365-313X.2011.04885.x 10.1016/j.plantsci.2012.04.003 10.1038/nature12211 10.1016/S0014-5793(99)00819-4 10.1093/dnares/8.5.193 10.1105/tpc.15.00101 10.1111/j.1469-8137.2012.04053.x 10.3389/fpls.2015.00770 10.1105/tpc.107.050963 10.1074/jbc.M115.648253 10.1023/A:1015207114117 10.1105/tpc.113.117838 10.1016/j.plantsci.2015.04.018 10.1038/s41598-017-00501-4 10.1371/journal.ppat.1005847 10.1073/pnas.0911967106 10.1093/pcp/pcx102 10.1111/j.1744-7909.2012.01155.x 10.1016/0022-2836(85)90280-3 10.1007/s10142-010-0174-3 10.1007/s00438-015-1063-1 10.3390/ijms140713645 10.1371/journal.pone.0151522 10.1104/pp.123.2.563 10.1016/j.pbi.2007.08.014 10.1007/s11032-015-0222-8 10.1111/jipb.12531 10.1105/tpc.105.033415 10.1046/j.1365-313X.1996.09040441.x 10.1007/s11105-015-0856-z 10.1186/s12870-017-1165-5 10.1105/tpc.105.039172 10.1016/j.cub.2016.12.016 10.1093/jxb/erp009 10.1073/pnas.94.22.11786 10.1105/tpc.114.132753 10.1007/s10142-005-0005-0 10.1111/j.1365-313X.2011.04745.x 10.1093/jxb/eru249 10.1371/journal.pone.0078859 10.1242/dev.033811 10.1093/treephys/23.17.1181 10.1146/annurev-arplant-043015-112122 10.1105/tpc.105.036723 10.1006/jmbi.1993.1555 10.1111/nph.14246 10.1371/journal.pgen.1006607 10.1073/pnas.1419525112 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms19010259 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC5796205 29337875 10_3390_ijms19010259 |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR IPNFZ ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-721b65239939d4a58d11a6f6c1992bebf2a387427849906d044fe1e2b392f7873 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:10:51 EDT 2025 Mon Jul 21 11:07:16 EDT 2025 Fri Jul 25 19:58:46 EDT 2025 Wed Feb 19 02:44:24 EST 2025 Tue Jul 01 01:45:05 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Aux/IAA gene family auxin regulation function |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-721b65239939d4a58d11a6f6c1992bebf2a387427849906d044fe1e2b392f7873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1495-8239 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms19010259 |
PMID | 29337875 |
PQID | 2109452622 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5796205 proquest_miscellaneous_1989576022 proquest_journals_2109452622 pubmed_primary_29337875 crossref_citationtrail_10_3390_ijms19010259 crossref_primary_10_3390_ijms19010259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-16 |
PublicationDateYYYYMMDD | 2018-01-16 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_93 Ito (ref_67) 2016; 113 Weijers (ref_44) 2016; 67 Lee (ref_13) 2012; 8 Causier (ref_74) 2012; 158 Wang (ref_126) 2005; 17 Dinesh (ref_68) 2016; 21 Deng (ref_129) 2012; 194 Jain (ref_28) 2006; 6 Winkler (ref_56) 2017; 8 ref_98 Bassa (ref_131) 2012; 53 Schmutz (ref_39) 2010; 463 Thimm (ref_78) 2004; 37 Fukaki (ref_83) 2006; 48 Oeller (ref_30) 1993; 233 Rogg (ref_118) 2001; 13 Nagpal (ref_107) 2000; 123 Vassileva (ref_119) 2010; 20 Bassa (ref_24) 2012; 53 Noda (ref_61) 2003; 278 Wu (ref_34) 2012; 287 Tian (ref_22) 2003; 36 Guilfoyle (ref_5) 2007; 10 Overvoorde (ref_18) 2005; 17 Yang (ref_104) 2004; 40 Jing (ref_101) 2015; 6 Salehin (ref_63) 2015; 27 (ref_102) 2017; 214 Rinaldi (ref_16) 2012; 79 Parry (ref_11) 2009; 106 Morgan (ref_57) 1999; 454 Goldfarb (ref_1) 2003; 23 ref_29 Szemenyei (ref_52) 2008; 319 Trenner (ref_14) 2017; 68 ref_27 Jung (ref_135) 2015; 236 ref_26 Parcy (ref_66) 2016; 21 Qiao (ref_50) 2015; 6 Sun (ref_86) 2013; 25 Tan (ref_12) 2007; 446 Guseman (ref_106) 2015; 142 Song (ref_134) 2013; 14 Notaguchi (ref_116) 2012; 54 Dharmasiri (ref_20) 2005; 9 Hamann (ref_110) 2002; 16 Terrile (ref_81) 2012; 70 Tatematsu (ref_117) 2004; 16 Hagen (ref_51) 2002; 49 Iglesias (ref_88) 2017; 69 ref_75 Chaabouni (ref_121) 2009; 60 Yamamuro (ref_84) 2016; 9 Wang (ref_79) 2014; 21 Shani (ref_92) 2017; 27 Moss (ref_54) 2015; 169 Sato (ref_120) 2008; 133 Zhu (ref_136) 2012; 5 Theologis (ref_31) 1985; 183 Tian (ref_15) 1999; 126 Kim (ref_58) 1997; 94 Olcay (ref_35) 2013; 35 Yang (ref_71) 2016; 7 Sellaro (ref_87) 2011; 68 Shannon (ref_77) 2003; 13 Zhang (ref_139) 2014; 65 Hayashi (ref_21) 2003; 278 Liscum (ref_19) 2002; 49 Ploense (ref_115) 2009; 136 Nystedt (ref_38) 2013; 497 Ramos (ref_53) 2001; 13 Herud (ref_94) 2016; 85 Su (ref_130) 2014; 55 Saito (ref_114) 2017; 63 Ueta (ref_128) 2017; 7 Tabata (ref_109) 2009; 51 Singh (ref_37) 2015; 6 Mironova (ref_55) 2017; 22 Wen (ref_82) 2014; 80 Kitomi (ref_137) 2012; 190 Kloosterman (ref_122) 2006; 44 Israeli (ref_3) 2017; 58 Kang (ref_96) 2013; 74 Kepinski (ref_32) 2005; 435 Kong (ref_70) 2016; 21 Nilsson (ref_123) 2008; 20 Liu (ref_140) 2015; 6 Guillotin (ref_132) 2017; 213 Jiang (ref_90) 2014; 26 Han (ref_73) 2014; 111 Guilfoyle (ref_65) 2015; 27 Oughtred (ref_76) 2017; 45 Chen (ref_100) 2000; 124 ref_64 Wang (ref_124) 2017; 69 Weijers (ref_10) 2005; 24 Benhamed (ref_85) 2006; 18 Leyser (ref_113) 1996; 10 Sundberg (ref_2) 2009; 1 Mazzucato (ref_125) 2015; 35 Ishizaki (ref_45) 2017; 81 Hardtke (ref_111) 1998; 17 Koenig (ref_127) 2009; 136 Hu (ref_91) 2017; 68 Han (ref_99) 2017; 69 Singh (ref_43) 2017; 7 Xie (ref_33) 2015; 290 Lavy (ref_9) 2016; 143 Gan (ref_25) 2013; 92 ref_36 Li (ref_62) 2016; 7 Dreher (ref_8) 2006; 18 Bowman (ref_41) 2017; 171 Guilfoyle (ref_59) 2012; 190 Thakur (ref_133) 2001; 8 Wang (ref_17) 2013; 82 Yu (ref_23) 2015; 56 Abel (ref_6) 1995; 251 Cui (ref_97) 2017; 59 Korasick (ref_60) 2015; 290 ref_108 Jun (ref_138) 2011; 68 ref_47 ref_46 Abel (ref_7) 1994; 91 Wang (ref_49) 2010; 10 ref_42 Perrotrechenmann (ref_4) 2010; 2 Gilkerson (ref_72) 2015; 168 Wang (ref_103) 2015; 27 Kim (ref_105) 1996; 9 Brunoud (ref_69) 2012; 482 Shin (ref_89) 2007; 19 Shi (ref_80) 2017; 68 Kumar (ref_40) 2015; 33 ref_48 Chen (ref_95) 2017; 58 Rouse (ref_112) 1998; 279 |
References_xml | – volume: 482 start-page: 103 year: 2012 ident: ref_69 article-title: A novel sensor to map auxin response and distribution at high spatio-temporal resolution publication-title: Nature doi: 10.1038/nature10791 – volume: 21 start-page: 546 year: 2016 ident: ref_70 article-title: 26S Proteasome: Hunter and prey in auxin signaling publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.05.007 – volume: 7 start-page: 11388 year: 2016 ident: ref_71 article-title: Arabidopsis proteasome regulator1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling publication-title: Nat. Commun. doi: 10.1038/ncomms11388 – volume: 16 start-page: 1610 year: 2002 ident: ref_110 article-title: The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning publication-title: Genes Dev. doi: 10.1101/gad.229402 – volume: 79 start-page: 359 year: 2012 ident: ref_16 article-title: A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility publication-title: Plant Mol. Biol. doi: 10.1007/s11103-012-9917-y – volume: 6 start-page: 7395 year: 2015 ident: ref_101 article-title: Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling publication-title: Nat. Commun. doi: 10.1038/ncomms8395 – volume: 81 start-page: 73 year: 2017 ident: ref_45 article-title: Evolution of land plants: Insights from molecular studies on basal lineages publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2016.1224641 – volume: 21 start-page: 574 year: 2016 ident: ref_66 article-title: A Glimpse beyond structures in auxin-Dependent transcription publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.02.002 – volume: 68 start-page: 1361 year: 2017 ident: ref_91 article-title: Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx004 – ident: ref_26 doi: 10.1186/1471-2229-7-59 – volume: 168 start-page: 708 year: 2015 ident: ref_72 article-title: Lysine residues are not required for proteasome-mediated proteolysis of the auxin/indole acidic acid protein IAA1 publication-title: Plant Physiol. doi: 10.1104/pp.15.00402 – volume: 124 start-page: 1728 year: 2000 ident: ref_100 article-title: Aux/IAA proteins are phosphorylated by phytochrome in vitro publication-title: Plant Physiol. doi: 10.1104/pp.124.4.1728 – volume: 56 start-page: 700 year: 2015 ident: ref_23 article-title: Comprehensive genome-wide analysis of the Aux/IAA gene family in eucalyptus: Evidence for the role of EgrIAA4 in wood formation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu215 – volume: 319 start-page: 1384 year: 2008 ident: ref_52 article-title: TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis publication-title: Science doi: 10.1126/science.1151461 – volume: 279 start-page: 1371 year: 1998 ident: ref_112 article-title: Changes in auxin response from mutations in an AUX/IAA gene publication-title: Science doi: 10.1126/science.279.5355.1371 – volume: 9 start-page: 57 year: 2016 ident: ref_84 article-title: Epigenetic modifications and plant hormone action publication-title: Mol. Plant doi: 10.1016/j.molp.2015.10.008 – volume: 92 start-page: 513 year: 2013 ident: ref_25 article-title: Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus) publication-title: J. Genet. doi: 10.1007/s12041-013-0306-3 – volume: 171 start-page: 287 year: 2017 ident: ref_41 article-title: Insights into land plant evolution garnered from the Marchantia polymorpha Genome publication-title: Cell doi: 10.1016/j.cell.2017.09.030 – volume: 37 start-page: 914 year: 2004 ident: ref_78 article-title: Mapman: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02016.x – volume: 287 start-page: 295 year: 2012 ident: ref_34 article-title: Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model publication-title: Mol. Genet. Genom. doi: 10.1007/s00438-012-0675-y – volume: 53 start-page: 659 year: 2012 ident: ref_24 article-title: Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcs022 – volume: 13 start-page: 2498 year: 2003 ident: ref_77 article-title: Cytoscape: A software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 435 start-page: 446 year: 2005 ident: ref_32 article-title: The Arabidopsis F-box protein TIR1 is an auxin receptor publication-title: Nature doi: 10.1038/nature03542 – volume: 113 start-page: 6562 year: 2016 ident: ref_67 article-title: Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1600739113 – volume: 68 start-page: 1239 year: 2017 ident: ref_80 article-title: Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw508 – volume: 136 start-page: 1509 year: 2009 ident: ref_115 article-title: A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning publication-title: Development doi: 10.1242/dev.025932 – volume: 58 start-page: 1891 year: 2017 ident: ref_95 article-title: Rice inositol polyphosphate kinase (OsIPK2) directly interacts with OsIAA11 to regulate lateral root formation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcx125 – volume: 63 start-page: 163 year: 2017 ident: ref_114 article-title: Transcriptional repressor IAA17 is involved in nitrogen use by modulating cytosolic glutamine synthetase GLN1; 2 in Arabidopsis roots publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2017.1314178 – volume: 49 start-page: 387 year: 2002 ident: ref_19 article-title: Genetics of Aux/IAA and ARF action in plant growth and development publication-title: Plant Mol. Biol. doi: 10.1023/A:1015255030047 – volume: 24 start-page: 1874 year: 2005 ident: ref_10 article-title: Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators publication-title: EMBO J. doi: 10.1038/sj.emboj.7600659 – ident: ref_75 doi: 10.1371/journal.pgen.1006301 – volume: 80 start-page: 424 year: 2014 ident: ref_82 article-title: UBC13, an E2 enzyme for Lys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability publication-title: Plant J. doi: 10.1111/tpj.12644 – volume: 48 start-page: 380 year: 2006 ident: ref_83 article-title: PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02882.x – volume: 278 start-page: 23797 year: 2003 ident: ref_21 article-title: Yokonolide B, A novel inhibitor of auxin action, blocks degradation of AUX/IAA factors publication-title: J. Biol. Chem. doi: 10.1074/jbc.M300299200 – ident: ref_42 doi: 10.1371/journal.pgen.1005365 – ident: ref_29 doi: 10.3390/ijms18102107 – volume: 133 start-page: 397 year: 2008 ident: ref_120 article-title: Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2008.01055.x – volume: 82 start-page: 71 year: 2013 ident: ref_17 article-title: A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level publication-title: Plant Mol. Biol. doi: 10.1007/s11103-013-0039-y – volume: 74 start-page: 86 year: 2013 ident: ref_96 article-title: OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation publication-title: Plant J. doi: 10.1111/tpj.12106 – volume: 190 start-page: 116 year: 2012 ident: ref_137 article-title: OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice publication-title: Plant Sci. doi: 10.1016/j.plantsci.2012.04.005 – volume: 6 start-page: 918 year: 2015 ident: ref_37 article-title: Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00918 – volume: 40 start-page: 772 year: 2004 ident: ref_104 article-title: The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1 publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02254.x – volume: 53 start-page: 1583 year: 2012 ident: ref_131 article-title: Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcs101 – ident: ref_48 doi: 10.1371/journal.pone.0107495 – volume: 85 start-page: 269 year: 2016 ident: ref_94 article-title: Auxin responsiveness of the MONOPTEROS-BODENLOS module in primary root initiation critically depends on the nuclear import kinetics of the Aux/IAA inhibitor BODENLOS publication-title: Plant J. doi: 10.1111/tpj.13108 – volume: 22 start-page: 225 year: 2017 ident: ref_55 article-title: The systems biology of auxin in developing embryos publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.11.010 – volume: 8 start-page: 15706 year: 2017 ident: ref_56 article-title: Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction publication-title: Nat. Commun. doi: 10.1038/ncomms15706 – volume: 16 start-page: 379 year: 2004 ident: ref_117 article-title: MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.018630 – volume: 44 start-page: 766 year: 2006 ident: ref_122 article-title: Isolation and characterization of a novel potato Auxin/Indole-3-Acetic Acid family member (StIAA2) that is involved in petiole hyponasty and shoot morphogenesis publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2006.10.026 – volume: 35 start-page: 365 year: 2013 ident: ref_35 article-title: Genome-wide analysis of Aux/IAA genes in Vitis vinifera: Cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses publication-title: Acta Physiol. Plant. – volume: 20 start-page: 1697 year: 2010 ident: ref_119 article-title: A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.09.007 – volume: 27 start-page: 9 year: 2015 ident: ref_63 article-title: SCFTIR1/AFB-Based auxin perception: Mechanism and role in plant growth and development publication-title: Plant Cell doi: 10.1105/tpc.114.133744 – volume: 69 start-page: 213 year: 2017 ident: ref_88 article-title: Multiple links between shade avoidance and auxin networks publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx295 – volume: 25 start-page: 2102 year: 2013 ident: ref_86 article-title: PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.112417 – volume: 6 start-page: 388 year: 2015 ident: ref_140 article-title: Expression of wild-type PtrIAA14.1, a poplar Aux/IAA gene causes morphological changes in Arabidopsis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00388 – volume: 278 start-page: 43516 year: 2003 ident: ref_61 article-title: Molecular recognition in dimerization between PB1 domains publication-title: J. Biol. Chem. doi: 10.1074/jbc.M306330200 – volume: 446 start-page: 640 year: 2007 ident: ref_12 article-title: Mechanism of auxin perception by the TIR1 ubiquitin ligase publication-title: Nature doi: 10.1038/nature05731 – volume: 21 start-page: 302 year: 2016 ident: ref_68 article-title: Structural biology of nuclear auxin action publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.10.019 – volume: 5 start-page: 154 year: 2012 ident: ref_136 article-title: A gain-of-function mutation in OsIAA11 affects lateral root development in rice publication-title: Mol. Plant doi: 10.1093/mp/ssr074 – volume: 214 start-page: 16 year: 2017 ident: ref_102 article-title: Plant hormone signaling in flowering: An epigenetic point of view publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2017.03.018 – volume: 51 start-page: 164 year: 2009 ident: ref_109 article-title: Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcp176 – volume: 21 start-page: 51 year: 2014 ident: ref_79 article-title: Diversity and specificity: Auxin perception and signaling through the TIR1/AFB pathway publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2014.06.006 – volume: 126 start-page: 711 year: 1999 ident: ref_15 article-title: Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene publication-title: Development doi: 10.1242/dev.126.4.711 – ident: ref_108 doi: 10.1371/journal.pone.0043414 – volume: 69 start-page: 255 year: 2017 ident: ref_124 article-title: Recent advances in auxin research in rice and their implications for crop improvement publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx228 – volume: 8 start-page: 477 year: 2012 ident: ref_13 article-title: A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.926 – ident: ref_64 doi: 10.1104/pp.17.00765 – ident: ref_47 doi: 10.1186/s12864-017-3722-6 – volume: 143 start-page: 3226 year: 2016 ident: ref_9 article-title: Mechanisms of auxin signaling publication-title: Development doi: 10.1242/dev.131870 – volume: 18 start-page: 2893 year: 2006 ident: ref_85 article-title: Arabidopsis GCN5, HD1, and TAF1/HAF2 Interact to regulate histone acetylation required for light-responsive gene expression publication-title: Plant Cell doi: 10.1105/tpc.106.043489 – volume: 169 start-page: 803 year: 2015 ident: ref_54 article-title: Rate motifs tune auxin/indole-3-acetic acid degradation dynamics publication-title: Plant Physiol. doi: 10.1104/pp.15.00587 – volume: 13 start-page: 465 year: 2001 ident: ref_118 article-title: A gain-of-function mutation in IAA28 suppresses lateral root development publication-title: Plant Cell doi: 10.1105/tpc.13.3.465 – volume: 7 start-page: 10895 year: 2017 ident: ref_43 article-title: Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea publication-title: Sci. Rep. doi: 10.1038/s41598-017-11327-5 – volume: 2 start-page: a001446 year: 2010 ident: ref_4 article-title: Cellular responses to auxin: Division versus expansion publication-title: Cold Spring Harb. Perspect. Biol. – volume: 17 start-page: 1405 year: 1998 ident: ref_111 article-title: The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development publication-title: EMBO J. doi: 10.1093/emboj/17.5.1405 – volume: 68 start-page: 433 year: 2011 ident: ref_138 article-title: OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04698.x – volume: 36 start-page: 643 year: 2003 ident: ref_22 article-title: Regulation of Arabidopsis SHY2/IAA3 protein turnover publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01909.x – volume: 1 start-page: a001628 year: 2009 ident: ref_2 article-title: Distinct and dynamic auxin activities during reproductive development publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001628 – volume: 251 start-page: 533 year: 1995 ident: ref_6 article-title: The PS-IAA4/5-like family of early Auxin-inducible mRNAs in Arabidopsis thaliana publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1995.0454 – volume: 91 start-page: 326 year: 1994 ident: ref_7 article-title: Early auxin-induced genes encode short-lived nuclear proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.1.326 – volume: 463 start-page: 178 year: 2010 ident: ref_39 article-title: Genome sequence of the palaeopolyploid soybean publication-title: Nature doi: 10.1038/nature08670 – volume: 13 start-page: 2349 year: 2001 ident: ref_53 article-title: Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent publication-title: Plant Cell doi: 10.1105/tpc.010244 – volume: 55 start-page: 1969 year: 2014 ident: ref_130 article-title: The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu124 – volume: 20 start-page: 843 year: 2008 ident: ref_123 article-title: Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen publication-title: Plant Cell doi: 10.1105/tpc.107.055798 – volume: 45 start-page: D369 year: 2017 ident: ref_76 article-title: The BioGRID interaction database: 2017 update publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkw1102 – volume: 158 start-page: 423 year: 2012 ident: ref_74 article-title: The TOPLESS interactome: A framework for gene repression in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.111.186999 – volume: 69 start-page: 189 year: 2017 ident: ref_99 article-title: Integration of multiple signaling pathways shapes the auxin response publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx232 – volume: 10 start-page: 403 year: 1996 ident: ref_113 article-title: Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter publication-title: Plant J. doi: 10.1046/j.1365-313x.1996.10030403.x – volume: 9 start-page: 109 year: 2005 ident: ref_20 article-title: Plant development is regulated by a family of auxin receptor F box proteins publication-title: Dev. Cell doi: 10.1016/j.devcel.2005.05.014 – volume: 70 start-page: 492 year: 2012 ident: ref_81 article-title: Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04885.x – volume: 190 start-page: 82 year: 2012 ident: ref_59 article-title: Getting a grasp on domain III/IV responsible for auxin response factor–IAA protein interactions publication-title: Plant Sci. doi: 10.1016/j.plantsci.2012.04.003 – volume: 497 start-page: 579 year: 2013 ident: ref_38 article-title: The Norway spruce genome sequence and conifer genome evolution publication-title: Nature doi: 10.1038/nature12211 – volume: 454 start-page: 283 year: 1999 ident: ref_57 article-title: Biochemical characterization of recombinant polypeptides corresponding to the predicted βαα fold in Aux/IAA proteins publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)00819-4 – volume: 8 start-page: 193 year: 2001 ident: ref_133 article-title: OsIAA1, an Aux/IAA cDNA from rice, and changes in its expression as influenced by auxin and light publication-title: DNA Res. doi: 10.1093/dnares/8.5.193 – volume: 27 start-page: 574 year: 2015 ident: ref_103 article-title: Cleavage of indole-3-acetic acid inducible28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.15.00101 – volume: 194 start-page: 379 year: 2012 ident: ref_129 article-title: The tomato SlIAA15 is involved in trichome formation and axillary shoot development publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04053.x – volume: 6 start-page: 770 year: 2015 ident: ref_50 article-title: A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00770 – volume: 19 start-page: 2440 year: 2007 ident: ref_89 article-title: The Arabidopsis transcription factor MYB77 modulates auxin signal transduction publication-title: Plant Cell doi: 10.1105/tpc.107.050963 – volume: 290 start-page: 12868 year: 2015 ident: ref_60 article-title: Defining a two-pronged structural model for PB1 (Phox/Bem1p) domain interaction in plant auxin responses publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.648253 – volume: 49 start-page: 373 year: 2002 ident: ref_51 article-title: Auxin-responsive gene expression: Genes, promoters and regulatory factors publication-title: Plant Mol. Biol. doi: 10.1023/A:1015207114117 – volume: 26 start-page: 230 year: 2014 ident: ref_90 article-title: Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid—And auxin-mediated signaling in jasmonic acid—Induced leaf senescence publication-title: Plant Cell doi: 10.1105/tpc.113.117838 – volume: 236 start-page: 304 year: 2015 ident: ref_135 article-title: OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth publication-title: Plant Sci. doi: 10.1016/j.plantsci.2015.04.018 – volume: 7 start-page: 507 year: 2017 ident: ref_128 article-title: Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9 publication-title: Sci. Rep. doi: 10.1038/s41598-017-00501-4 – ident: ref_98 doi: 10.1371/journal.ppat.1005847 – volume: 106 start-page: 22540 year: 2009 ident: ref_11 article-title: Complex regulation of the TIR1/AFB family of auxin receptors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911967106 – volume: 58 start-page: 1661 year: 2017 ident: ref_3 article-title: Auxin response dynamics during wild-type and entire flower development in tomato publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcx102 – volume: 54 start-page: 760 year: 2012 ident: ref_116 article-title: Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2012.01155.x – volume: 183 start-page: 53 year: 1985 ident: ref_31 article-title: Rapid induction of specific mRNAs by auxin in pea epicotyl tissue publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(85)90280-3 – volume: 10 start-page: 533 year: 2010 ident: ref_49 article-title: Auxin-related gene families in abiotic stress response in Sorghum bicolor publication-title: Funct. Integr. Genom. doi: 10.1007/s10142-010-0174-3 – volume: 290 start-page: 2089 year: 2015 ident: ref_33 article-title: The ARF, AUX/IAA and GH3 gene families in citrus: Genome-wide identification and expression analysis during fruitlet drop from abscission zone A publication-title: Mol. Genet. Genom. doi: 10.1007/s00438-015-1063-1 – volume: 14 start-page: 13645 year: 2013 ident: ref_134 article-title: Ectopic Overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) Gene OsIAA4 in Rice Induces Morphological Changes and Reduces Responsiveness to Auxin publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140713645 – volume: 7 start-page: 47 year: 2016 ident: ref_62 article-title: A review of auxin response factors (ARFs) in plants publication-title: Front. Plant Sci. – ident: ref_46 doi: 10.1371/journal.pone.0151522 – volume: 123 start-page: 563 year: 2000 ident: ref_107 article-title: AXR2 Encodes a Member of the Aux/IAA Protein Family publication-title: Plant Physiol. doi: 10.1104/pp.123.2.563 – volume: 10 start-page: 453 year: 2007 ident: ref_5 article-title: Auxin response factors publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2007.08.014 – volume: 35 start-page: 22 year: 2015 ident: ref_125 article-title: A TILLING allele of the tomato Aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes publication-title: Mol. Breed. doi: 10.1007/s11032-015-0222-8 – volume: 59 start-page: 496 year: 2017 ident: ref_97 article-title: A zinc finger protein, interacted with cyclophilin, affects root development via IAA pathway in rice publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12531 – volume: 17 start-page: 2676 year: 2005 ident: ref_126 article-title: The tomato Aux/IAA transcription factor IAA9 Is involved in fruit development and leaf morphogenesis publication-title: Plant Cell doi: 10.1105/tpc.105.033415 – volume: 9 start-page: 441 year: 1996 ident: ref_105 article-title: Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2 publication-title: Plant J. doi: 10.1046/j.1365-313X.1996.09040441.x – volume: 33 start-page: 1552 year: 2015 ident: ref_40 article-title: Genomic Survey, Gene Expression, and Interaction Analysis Suggest Diverse Roles of ARF and Aux/IAA Proteins in Solanaceae publication-title: Plant Mol. Biol. Rep. doi: 10.1007/s11105-015-0856-z – ident: ref_36 doi: 10.1186/s12870-017-1165-5 – volume: 18 start-page: 699 year: 2006 ident: ref_8 article-title: The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness publication-title: Plant Cell doi: 10.1105/tpc.105.039172 – volume: 27 start-page: 437 year: 2017 ident: ref_92 article-title: Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.12.016 – volume: 60 start-page: 1349 year: 2009 ident: ref_121 article-title: Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp009 – volume: 94 start-page: 11786 year: 1997 ident: ref_58 article-title: Protein–protein interactions among the Aux/IAA proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.22.11786 – volume: 27 start-page: 33 year: 2015 ident: ref_65 article-title: The PB1 domain in auxin response factor and Aux/IAA proteins: A versatile protein interaction module in the Auxin response publication-title: Plant Cell doi: 10.1105/tpc.114.132753 – volume: 6 start-page: 47 year: 2006 ident: ref_28 article-title: Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa) publication-title: Funct. Integr. Genom. doi: 10.1007/s10142-005-0005-0 – volume: 68 start-page: 919 year: 2011 ident: ref_87 article-title: Repression of shade-avoidance reactions by sunfleck induction of HY5 expression in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04745.x – volume: 65 start-page: 4919 year: 2014 ident: ref_139 article-title: The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru249 – ident: ref_27 doi: 10.1371/journal.pone.0078859 – volume: 136 start-page: 2997 year: 2009 ident: ref_127 article-title: Auxin patterns Solanum lycopersicum leaf morphogenesis publication-title: Development doi: 10.1242/dev.033811 – volume: 23 start-page: 1181 year: 2003 ident: ref_1 article-title: Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda) publication-title: Tree Physiol. doi: 10.1093/treephys/23.17.1181 – volume: 68 start-page: 539 year: 2017 ident: ref_14 article-title: Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB-AUX/IAA-ARF module publication-title: J. Exp. Bot. – volume: 67 start-page: 539 year: 2016 ident: ref_44 article-title: Transcriptional responses to the auxin hormone publication-title: Ann. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043015-112122 – volume: 142 start-page: 905 year: 2015 ident: ref_106 article-title: Auxin-induced degradation dynamics set the pace for lateral root development publication-title: Development – volume: 17 start-page: 3282 year: 2005 ident: ref_18 article-title: Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.105.036723 – volume: 233 start-page: 789 year: 1993 ident: ref_30 article-title: Structural Characterization of the early indoleacetic acid-inducible genes, PS-IAA4/5 and PS-IAA6, of Pea (Pisum sativum L.) publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1555 – volume: 213 start-page: 1124 year: 2017 ident: ref_132 article-title: Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom) publication-title: New Phytol. doi: 10.1111/nph.14246 – ident: ref_93 doi: 10.1371/journal.pgen.1006607 – volume: 111 start-page: 18613 year: 2014 ident: ref_73 article-title: Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1419525112 |
SSID | ssj0023259 |
Score | 2.6328413 |
SecondaryResourceType | review_article |
Snippet | Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 259 |
SubjectTerms | Genes Proteins Review |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-ELyIb9cXEfSkYdskzaZeZBHXB-rBB3graZPiinZXuwv6751pu9VV9Fgy0DaT5JsvmcxHyG6qpAlDo5kNrGXSB4KilRBMJipJrRTA33Af8upand3Li4fgodpwy6u0ytGaWCzUtpfgHnkTqEmIcticH_VfGapG4elqJaExSaZ9QBpM6dKd05pwCV6IpfmAQUwFoSoT3wXQ_Gb36SVHLATID8ch6Vec-TNd8hv-dObJXBU40nbp6QUy4bJFMlNKSX4skcv28L153m5TrCNNSzkL2s0oihIN8kN6NZLBpbdFxdjhmzugN6UQPbjmgJrM0g6AHD4tk_vOyd3xGauUElgiW3rAgMbFKsBrqiK00gTa-r5RqUowuTR2ccqN0C1U1QCC4ynrSZk63_EYoqMUpqxYIVNZL3NrhAJ4JVbwRBiYqdxT2ggHHuSBjgXXnmuQ_VFnRUlVRhzVLJ4joBPYtdH3rm2Qvdq6X5bP-MNuc9TvUTWJ8ujL5Q2yUzfD8MczDZO53jCPMOULKJOHNqulm-oXQSQj4OeCBmmNObA2wNLa4y1Z97EosY03dLkXrP__WRtkFuInTAZkvtokU-A_twUxyiDeLgbiJzMU42w priority: 102 providerName: ProQuest |
Title | Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29337875 https://www.proquest.com/docview/2109452622 https://www.proquest.com/docview/1989576022 https://pubmed.ncbi.nlm.nih.gov/PMC5796205 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6wWAvZW23Nf0IKrRPrVtbkmV5MEY2mn7QlNEtkDcjWzJNSd2PJND-97uLY5Ou7UtfDEYnDHcSv_tZp_sB7ORKmjg22rOhtZ4MkKBoJYQnM5XlVgrkb_QfsnOhTrryrBf25qBSG506cPgqtSM9qe7D4ODx_ukHbvjvxDiRsh_2r2-GhGsI3_E8LCImRaRl0JH1eQKmDWFclr2_mEHtgJHVR5NSw1lsepFw_l83OQNE7U-wNM0gWasM-TLMuWIFPpSakk-rcN4aPx6etlqMGkqzUteC9QtG6kSj4TfWqfRw2Z9J69jxg9tnl6UiPcZon5nCsjaiHb19hm776O-vE28qmeBlMtIjD_lcqkK6rypiK02obRAYlauMqkxTl-bcCB2RvAYyHV9ZX8rcBY6nmCbl6ALxBRaK28KtAUMUy6zgmTC4ZbmvtBEOQ8lDnQqufdeAvcpZSTbtJ06yFoMEeQV5OZn1cgN2a-u7so_GG3abld-TajEkSEtjkkLnvAHb9TDuAzrcMIW7HQ8Tqv1C7uSTzdcyTPWHqvg2IHoWwNqAemw_Hyn6V5Ne23RVl_vh-rtnbsBHzLGoYNAL1CYsYGjdFuYxo7QJ81EvwqduHzdh8efRxe_LJiFL2Jws3n8ifvXy |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQ9N4QcA-KAww0vbErCa24yZICFVAaVm7B7ZJe8uc2NE6bekgrWD_FH8jd0kT1qHxtscop3ycz7772Xf3A9jJtDJRZEJuA2u58hGghFpKrlKdZlZJxG-0Dzk60P1j9fUkOFmC33UtDKVV1mtiuVDbSUp75G2EJhHRYQvx4eo7J9YoOl2tKTQqs9h31z8RshXvB59wfHeF6H0--tjnc1YBnqpOOOUIeRIdUEmnjKwyQWh93-hMp5SImbgkE0aGHWKgQDDgaesplTnfiQQjiQzNW-Jzl-GBkujJqTK996UBeFKU5Gw--jyug0hXifYo6LXH55cF-V4MMaJFF_hPXHs7PfOGv-s9hkfzQJV1K8t6AksufwqrFXXl9ToMu7Nf7UG3y6hvNavoM9g4Z0SCNC3esVFNu8sOyw61sx9uj32riO_RFPaYyS3roVOlqw04vhcdbsJKPsndM2DoLFMrRSoNrgzC06GRDi1GBGEiRei5FrytlRWn87blxJ5xESN8IdXGN1Xbgt1G-qpq13GH3Hat93g-aYv4r4m14E1zG6cbnaGY3E1mRUwpZgjRPJLZqoapeRFGThJ_LmhBZ2EAGwFq5b14Jx-flS29qSJYeMHz_3_Wa1jrH42G8XBwsP8CHmLsRomI3NfbsIJj6V5ifDRNXpVGyeD0vmfBHzpVHi0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUC8VC3n0gMj0SdqbWI73gQJoe2x6tJ2VRUq9S04sQOLINs2u6L9a_w6ZjZHuyB462MUK8ccnvns8XwArzOtTBSZkNvAWq58BCihlpKrVKeZVRLxG61DHg31_qn6cBacLcCv-iwMlVXWc-JsorbjlNbIOwhNIqLDFqKTVWURx7v99-cXnBikaKe1ptMoTeTAXf9E-Fa8G-yirjeF6O992tnnFcMAT1U3nHCEP4kO6HinjKwyQWh93-hMp1SUmbgkE0aGXWKjQGDgaesplTnfiQSzigxNXeJz78Fil1BRCxa394bHJw3ck2JG1eZjBOQ6iHRZdi9l5HVG334UFIkx4YjmA-JfWe6fxZq3ol9_GZaqtJX1SjtbgQWXP4L7JZHl9WM47E2vOoNej1EXa1aSabBRzogSaVK8ZUc1CS_7OOtXO710W-zEfam4w7aYyS3rY4ilqydweidSfAqtfJy758AwdKZWilQanCeEp0MjHdqPCMJEitBzbXhTCytOqybmxKXxPUYwQ6KNb4u2DZvN6POyecc_xq3Vco8rFy7iG4Nrw6vmNjof7aiY3I2nRUwFZwjYPBrzrFRT8yLMoyT-XNCG7pwCmwHU2Hv-Tj76OmvwTeeDhRe8-P9nvYQH6AHx4WB4sAoPMZGjqkTu6zVooSrdOiZLk2SjskoGn-_aEX4Depgjvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aux%2FIAA+Gene+Family+in+Plants%3A+Molecular+Structure%2C+Regulation%2C+and+Function&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Luo%2C+Jie&rft.au=Zhou%2C+Jing-Jing&rft.au=Zhang%2C+Jin-Zhi&rft.date=2018-01-16&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=19&rft.issue=1&rft_id=info:doi/10.3390%2Fijms19010259&rft_id=info%3Apmid%2F29337875&rft.externalDocID=PMC5796205 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |