Magnetic Fields and Reactive Oxygen Species
Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of m...
Saved in:
Published in | International journal of molecular sciences Vol. 18; no. 10; p. 2175 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.10.2017
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles. |
---|---|
AbstractList | Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles. Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles. |
Author | Zhang, Xin Wang, Huizhen |
AuthorAffiliation | 3 Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 1 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; huizhenwang@hmfl.ac.cn 2 School of Life Sciences, University of Science and Technology of China, Hefei 230027, China |
AuthorAffiliation_xml | – name: 1 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; huizhenwang@hmfl.ac.cn – name: 2 School of Life Sciences, University of Science and Technology of China, Hefei 230027, China – name: 3 Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China |
Author_xml | – sequence: 1 givenname: Huizhen surname: Wang fullname: Wang, Huizhen – sequence: 2 givenname: Xin orcidid: 0000-0002-3499-2189 surname: Zhang fullname: Zhang, Xin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29057846$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLw0AQxhdRtK3ePEvAi6DRfWUfF0GKL1AEH-dls5nULemmZpOi_70pPqjF0wzMbz6-b2aINkMdAKF9gk8Z0_jMT2eRKIIpkdkGGhBOaYqxkJsr_Q4axjjFmDKa6W20QzXOpOJigI7v7SRA611y5aEqYmJDkTyCda1fQPLw_jGBkDzNwXmIu2irtFWEve86Qi9Xl8_jm_Tu4fp2fHGXOi5Vm0rCNSOMKWWZhTJ3ZUG1znSuGbiCFFhiwWQOShWW8yKXgCnHludSS15ax0bo_Et33uUzKByEtrGVmTd-ZpsPU1tv_k6CfzWTemEyIYTKRC9w9C3Q1G8dxNbMfHRQVTZA3UVDdMY5o5ToHj1cQ6d114Q-Xk-JTCgq-iwjdLDq6NfKzx174OQLcE0dYwPlL0KwWb7JrL6px-ka7nxrW18v8_jq_6VPBK2Unw |
CitedBy_id | crossref_primary_10_1007_s43630_024_00565_y crossref_primary_10_1002_jcp_27492 crossref_primary_10_1080_09553002_2024_2369105 crossref_primary_10_3390_bioengineering10101176 crossref_primary_10_1155_2021_7103345 crossref_primary_10_1016_j_tiv_2019_104609 crossref_primary_10_1111_jfbc_13512 crossref_primary_10_1063_5_0191803 crossref_primary_10_12680_balneo_2024_705 crossref_primary_10_3390_jcm13061619 crossref_primary_10_1016_j_bej_2020_107855 crossref_primary_10_1051_bioconf_202412703003 crossref_primary_10_1016_j_pbiomolbio_2024_01_003 crossref_primary_10_1038_s41598_019_53983_9 crossref_primary_10_1007_s00343_021_0493_3 crossref_primary_10_1038_s41598_023_35767_4 crossref_primary_10_1016_j_transproceed_2022_05_029 crossref_primary_10_1002_bem_22128 crossref_primary_10_1016_j_etap_2023_104320 crossref_primary_10_3390_ijms222011159 crossref_primary_10_1016_j_xinn_2021_100077 crossref_primary_10_1098_rsif_2022_0325 crossref_primary_10_1007_s10439_024_03519_8 crossref_primary_10_1021_acs_jpcb_2c00143 crossref_primary_10_3389_fpubh_2021_724239 crossref_primary_10_34133_research_0097 crossref_primary_10_3390_app13084721 crossref_primary_10_1016_j_bioelechem_2022_108196 crossref_primary_10_1080_09553002_2021_1969465 crossref_primary_10_1111_1440_1681_12979 crossref_primary_10_3389_fchem_2023_1197210 crossref_primary_10_3390_ijms25168973 crossref_primary_10_4103_ACCJ_ACCJ_4_22 crossref_primary_10_1016_j_envres_2018_01_035 crossref_primary_10_1002_anie_202105675 crossref_primary_10_1002_bem_22495 crossref_primary_10_1080_09553002_2019_1642543 crossref_primary_10_3389_fpubh_2021_710484 crossref_primary_10_3389_fmolb_2022_1103648 crossref_primary_10_3390_ijms25073644 crossref_primary_10_1038_s42003_021_02181_3 crossref_primary_10_2174_1871527321666220614121439 crossref_primary_10_3390_antiox12010108 crossref_primary_10_3390_cancers13174485 crossref_primary_10_1371_journal_pone_0192894 crossref_primary_10_1007_s12015_023_10535_z crossref_primary_10_1016_j_tiv_2020_104963 crossref_primary_10_3390_cells11030443 crossref_primary_10_1134_S0006350922020191 crossref_primary_10_1093_nsr_nwae145 crossref_primary_10_3390_antiox12010073 crossref_primary_10_1039_D2NA00229A crossref_primary_10_1038_s41598_021_88695_6 crossref_primary_10_1186_s12645_021_00076_w crossref_primary_10_1038_s41598_023_46758_w crossref_primary_10_3390_ijms19082237 crossref_primary_10_1002_bies_201800017 crossref_primary_10_3390_ijms232415727 crossref_primary_10_1002_rmb2_12606 crossref_primary_10_1038_s42003_022_03389_7 crossref_primary_10_3390_ijms25105074 crossref_primary_10_1016_j_bpj_2023_10_020 crossref_primary_10_3390_app9245318 crossref_primary_10_29233_sdufeffd_1029835 crossref_primary_10_1002_jmri_29704 crossref_primary_10_3390_polym13111883 crossref_primary_10_1134_S0006350918050093 crossref_primary_10_53941_hm_2025_100003 crossref_primary_10_1038_s41598_021_98083_9 crossref_primary_10_1080_09553002_2019_1643050 crossref_primary_10_1007_s11356_020_10039_0 crossref_primary_10_3389_fphar_2022_1062119 crossref_primary_10_3390_biom12121824 crossref_primary_10_3389_fbioe_2022_795871 crossref_primary_10_1007_s00709_022_01768_9 crossref_primary_10_3390_ijms21082952 crossref_primary_10_1016_j_actbio_2020_07_009 crossref_primary_10_7868_S086981391810009X crossref_primary_10_1016_j_foodcont_2024_110692 crossref_primary_10_1038_s41467_021_21468_x crossref_primary_10_34133_research_0320 crossref_primary_10_1016_j_fsi_2020_01_062 crossref_primary_10_1007_s43032_022_01144_1 crossref_primary_10_1016_j_btre_2019_e00334 crossref_primary_10_1073_pnas_2018043118 crossref_primary_10_3390_ijms25189857 crossref_primary_10_1002_smll_202204219 crossref_primary_10_1134_S0031918X19060036 crossref_primary_10_3390_f15010138 crossref_primary_10_1080_15368378_2020_1830289 crossref_primary_10_1016_j_isci_2022_105536 crossref_primary_10_3390_antiox13081017 crossref_primary_10_3390_foods13193058 crossref_primary_10_1080_09553002_2019_1589017 crossref_primary_10_1080_15368378_2025_2460971 crossref_primary_10_3390_bios12080627 crossref_primary_10_1016_j_jksus_2024_103184 crossref_primary_10_29233_sdufeffd_1226265 crossref_primary_10_1002_bem_22174 crossref_primary_10_3390_biom13071112 crossref_primary_10_1155_2019_3782074 crossref_primary_10_1002_jcla_23493 crossref_primary_10_1080_15368378_2020_1851250 crossref_primary_10_1002_bem_22299 crossref_primary_10_1002_bem_22332 crossref_primary_10_1146_annurev_publhealth_040218_044106 crossref_primary_10_1007_s12640_023_00679_8 crossref_primary_10_1134_S1990793123010037 crossref_primary_10_1016_j_molstruc_2023_135741 crossref_primary_10_1109_ACCESS_2023_3308225 crossref_primary_10_1021_acssuschemeng_2c07622 crossref_primary_10_1016_j_neulet_2019_02_026 crossref_primary_10_3390_ijms22073772 crossref_primary_10_1007_s12210_019_00848_y crossref_primary_10_1080_15368378_2022_2073547 crossref_primary_10_4103_ATN_ATN_D_24_00021 crossref_primary_10_1109_LMAG_2020_2974150 crossref_primary_10_18632_aging_204597 crossref_primary_10_1007_s00432_021_03787_0 crossref_primary_10_3390_plants12152887 crossref_primary_10_1002_ange_202105675 crossref_primary_10_1021_jacsau_1c00332 crossref_primary_10_3389_fonc_2024_1417621 crossref_primary_10_1002_bem_22427 crossref_primary_10_3390_app14041343 crossref_primary_10_1080_19420889_2022_2027698 crossref_primary_10_1080_09553002_2022_2055803 crossref_primary_10_3390_ijms22115785 crossref_primary_10_1002_bem_22309 crossref_primary_10_3389_fpubh_2022_994758 crossref_primary_10_1116_1_5135170 crossref_primary_10_1080_09603123_2021_1910212 crossref_primary_10_1016_j_tranon_2021_101103 crossref_primary_10_31083_j_fbl2810252 crossref_primary_10_1038_s41598_022_18210_y crossref_primary_10_1016_j_jplph_2025_154453 crossref_primary_10_3390_ijms24087576 crossref_primary_10_1016_j_envres_2019_03_063 crossref_primary_10_1155_2018_1427412 crossref_primary_10_1093_jambio_lxad302 crossref_primary_10_3389_fpls_2024_1390031 crossref_primary_10_1039_C9RA02001B crossref_primary_10_3390_plants11151955 crossref_primary_10_1016_j_pbiomolbio_2024_03_001 crossref_primary_10_1021_acsanm_1c00852 crossref_primary_10_1155_2018_5076271 crossref_primary_10_12944_CRNFSJ_11_3_19 crossref_primary_10_1002_biot_202000233 crossref_primary_10_1016_j_bbrc_2025_151414 crossref_primary_10_3390_ijms23073622 crossref_primary_10_1007_s11010_019_03667_9 crossref_primary_10_1016_j_brainresbull_2024_111090 crossref_primary_10_1080_10937404_2018_1427914 |
Cites_doi | 10.1097/00062752-199502010-00008 10.1002/bem.21815 10.1007/s12010-010-9156-0 10.1080/152165401753311762 10.1016/j.toxlet.2009.11.010 10.1002/bem.21954 10.1007/s12035-015-9354-4 10.1097/01.HP.0000262572.64418.38 10.1016/j.bbamcr.2006.03.003 10.1038/srep19398 10.1016/j.neuint.2013.02.002 10.3109/15368378.2012.721845 10.1002/cbf.976 10.1016/j.fertnstert.2010.04.078 10.2741/3141 10.3109/10715761003667554 10.1002/bem.20580 10.1007/s11010-005-5074-9 10.1039/c3fo60116a 10.1007/s00411-006-0038-3 10.1080/09553002.2016.1206227 10.1016/j.mrgentox.2015.10.004 10.3109/09553002.2016.1135261 10.1002/bab.1495 10.1080/09168451.2017.1308243 10.2741/1667 10.1242/jeb.202.8.891 10.1080/09553000802460206 10.1016/j.drup.2004.01.004 10.3109/15368378.2012.683844 10.1016/j.reprotox.2016.06.016 10.3109/15368378.2013.773910 10.1002/bem.21702 10.1002/(SICI)1097-4644(19991215)75:4<710::AID-JCB16>3.0.CO;2-Z 10.18632/oncotarget.9479 10.1016/j.bbamcr.2013.02.011 10.1002/term.1671 10.1002/jcp.25606 10.1016/j.mehy.2015.10.004 10.1196/annals.1378.006 10.1002/jor.20530 10.1002/bem.20199 10.1155/2012/740280 10.1002/bem.10191 10.1016/S0891-5849(99)00242-7 10.1016/j.mrgentox.2011.11.003 10.1002/bem.21732 10.3109/09553002.2016.1136851 10.1016/j.mrfmmm.2008.12.005 10.1016/j.neuro.2014.07.009 10.1080/10715760400000968 10.1269/jrr.11049 10.1016/j.neulet.2010.02.018 10.1371/journal.pone.0022753 10.4149/gpb_2013059 10.1167/iovs.07-1333 10.1002/jcp.22981 10.1007/s00411-010-0306-0 10.1159/000445599 10.1111/j.1749-6632.1997.tb46249.x 10.1556/ABiol.61.2010.2.4 10.1371/journal.pone.0093065 10.2478/v10001-010-0041-4 10.1042/BJ20061653 10.1002/jbm.b.33031 10.1016/j.yexcr.2003.10.032 10.1098/rsif.2014.0097 10.1073/pnas.0407065101 10.1007/978-981-10-3579-1 10.1002/bem.21697 10.1016/j.biomaterials.2013.12.098 10.1002/bem.21900 10.1016/j.fertnstert.2008.08.022 10.1002/term.2031 10.3109/15368378.2011.587930 10.1159/000324003 10.1016/j.jphotobiol.2003.10.003 10.3109/09553002.2016.1117678 10.1007/s12010-009-8722-9 10.1371/journal.pone.0113530 10.1155/2013/529173 10.1016/0014-5793(95)01266-X 10.1080/10715760290021225 10.3109/09553002.2016.1150619 10.1016/j.bbamcr.2004.09.005 10.1002/biof.48 10.1002/bem.20624 10.1016/j.freeradbiomed.2009.12.005 10.1016/j.biopha.2016.05.032 10.1016/j.lfs.2014.12.003 10.1016/j.jor.2017.06.016 10.1016/j.ptsp.2016.10.003 10.1016/j.ijcard.2012.02.020 10.1016/j.mrfmmm.2013.12.002 10.1016/0925-4439(95)00012-S 10.3109/15368378.2010.502451 10.1016/j.cccn.2003.10.012 10.1016/j.biopha.2007.03.001 10.1667/RR0595.1 10.1089/scd.2008.0266 10.1002/bem.21968 10.1016/j.biomaterials.2011.08.075 10.1002/bem.20617 10.3109/15368378.2013.791991 10.1039/c3pp50451d 10.1002/jcp.21674 10.1016/j.joca.2008.06.002 10.3109/09553002.2014.995384 10.18632/oncotarget.14480 10.1016/j.biocel.2014.10.013 10.1371/journal.pone.0006446 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 2017 by the authors. 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms18102175 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest research library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC5666856 29057846 10_3390_ijms18102175 |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR IPNFZ ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-7149313388a3aefbcfd29959b93ecd1d070637be88da44db7e0240a4b7974fac3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:04:16 EDT 2025 Fri Jul 11 04:58:13 EDT 2025 Fri Jul 25 19:54:05 EDT 2025 Wed Feb 19 02:44:02 EST 2025 Tue Jul 01 03:30:06 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | extremely low frequency electromagnetic field (ELF-EMF) static magnetic field (SMF) reactive oxygen species (ROS) magnetic field (MF) radio frequency electromagnetic radiation (RF-EMR) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-7149313388a3aefbcfd29959b93ecd1d070637be88da44db7e0240a4b7974fac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3499-2189 |
OpenAccessLink | https://www.proquest.com/docview/1965682631?pq-origsite=%requestingapplication% |
PMID | 29057846 |
PQID | 1965682631 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5666856 proquest_miscellaneous_1954432219 proquest_journals_1965682631 pubmed_primary_29057846 crossref_primary_10_3390_ijms18102175 crossref_citationtrail_10_3390_ijms18102175 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-18 |
PublicationDateYYYYMMDD | 2017-10-18 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ilhan (ref_115) 2004; 340 ref_92 Silva (ref_104) 2016; 92 Zhou (ref_17) 2017; 24 Lee (ref_113) 2004; 73 Irmak (ref_117) 2002; 20 Fini (ref_18) 2008; 62 Lupke (ref_60) 2006; 1763 ref_97 Osera (ref_71) 2015; 36 Calabro (ref_27) 2013; 34 Dansen (ref_7) 2001; 51 Kesari (ref_99) 2011; 164 Luukkonen (ref_93) 2009; 662 Frahm (ref_24) 2010; 192 Wolf (ref_81) 2005; 1743 Morabito (ref_77) 2010; 48 Patruno (ref_51) 2015; 121 Kim (ref_75) 2012; 33 Duan (ref_83) 2013; 4 ref_23 Storz (ref_13) 2005; 10 Lupke (ref_61) 2004; 38 Palumbo (ref_73) 2006; 27 Buldak (ref_78) 2012; 33 ref_28 Bae (ref_35) 2011; 32 Deutschlander (ref_21) 1999; 202 ref_26 Fasseas (ref_108) 2015; 91 Ongaro (ref_14) 2015; 9 Foster (ref_90) 2007; 92 Limoli (ref_45) 2004; 101 Lim (ref_67) 2015; 28 Bekhite (ref_34) 2013; 167 Sadeghipour (ref_66) 2012; 31 Park (ref_62) 2013; 62 Yang (ref_64) 2015; 44 Friedman (ref_109) 2007; 405 Feng (ref_57) 2016; 38 Yin (ref_3) 2016; 82 Sullivan (ref_31) 2011; 32 Sefidbakht (ref_95) 2014; 13 Agarwal (ref_91) 2009; 92 Shine (ref_37) 2012; 33 Bajpai (ref_41) 2014; 102 Richter (ref_6) 1995; 1271 Bonekamp (ref_8) 2009; 35 Calcabrini (ref_59) 2017; 64 Lu (ref_94) 2012; 2012 Zmyslony (ref_107) 2004; 25 Tang (ref_48) 2016; 37 Garip (ref_50) 2010; 61 Jochem (ref_112) 2005; 56 Kesari (ref_54) 2015; 794 Luukkonen (ref_103) 2010; 31 Kesari (ref_101) 2011; 30 Zeni (ref_106) 2007; 167 Zhang (ref_47) 2016; 7 Csillag (ref_38) 2014; 11 Feng (ref_56) 2016; 92 Chen (ref_79) 2014; 57 Mannerling (ref_49) 2010; 49 Luukkonen (ref_53) 2014; 760 Poniedzialek (ref_30) 2013; 32 Zhang (ref_46) 2017; 8 Falone (ref_87) 2009; 219 Zhao (ref_33) 2011; 32 Lantow (ref_105) 2006; 45 Kock (ref_88) 2014; 44 Jeong (ref_63) 2017; 81 Vincenzi (ref_70) 2017; 232 Sauer (ref_43) 2004; 294 Pelicano (ref_11) 2004; 7 Manikonda (ref_85) 2014; 33 Allen (ref_2) 2000; 28 Ozguner (ref_116) 2005; 277 Koh (ref_65) 2008; 84 Bagkos (ref_5) 2015; 85 Ciejka (ref_89) 2011; 62 Manta (ref_102) 2014; 33 Ma (ref_86) 2013; 2013 Varani (ref_16) 2009; 17 Campisi (ref_98) 2010; 473 Sauer (ref_42) 1999; 75 Zablotskii (ref_32) 2014; 35 Bekhite (ref_36) 2010; 19 Kumar (ref_100) 2011; 95 Staniek (ref_4) 2002; 36 Duong (ref_68) 2016; 92 Feng (ref_58) 2016; 92 Jouni (ref_111) 2012; 741 Ayse (ref_52) 2010; 29 Politanski (ref_44) 2010; 23 Fu (ref_39) 2016; 37 Benassi (ref_55) 2016; 53 Ferroni (ref_72) 2017; 11 Liou (ref_12) 2010; 44 Hong (ref_74) 2012; 53 Morabito (ref_80) 2010; 26 Segal (ref_10) 1997; 832 Okano (ref_25) 2008; 13 Roy (ref_82) 1995; 376 Ongaro (ref_15) 2012; 227 Kesari (ref_114) 2010; 162 Benazzo (ref_19) 2008; 26 Babior (ref_9) 1995; 2 Romeo (ref_40) 2016; 6 Krath (ref_20) 2017; 14 Falone (ref_69) 2016; 92 ref_1 Bekhite (ref_22) 2016; 65 Poniedzialek (ref_76) 2013; 32 Barbul (ref_110) 2013; 1833 Yao (ref_96) 2008; 49 Cordisco (ref_29) 2006; 1090 Goraca (ref_84) 2010; 61 27003876 - Bioelectromagnetics. 2016 May;37(4):212-22 23781995 - Electromagn Biol Med. 2014 Jun;33(2):118-31 17495663 - Health Phys. 2007 Jun;92(6):609-20 21887222 - PLoS One. 2011;6(8):e22753 20582429 - Radiat Environ Biophys. 2010 Nov;49(4):731-41 14732250 - J Photochem Photobiol B. 2004 Jan 23;73(1-2):43-8 25111744 - Neurotoxicology. 2014 Sep;44:358-64 20005945 - Free Radic Biol Med. 2010 Feb 15;48(4):579-89 19115234 - J Cell Physiol. 2009 May;219(2):334-43 26689947 - Int J Radiat Biol. 2016;92(2):107-15 25800450 - Biomed Environ Sci. 2015 Mar;28(3):231-4 19459143 - Biofactors. 2009 Jul-Aug;35(4):346-55 21306983 - Int J Occup Med Environ Health. 2010;23(4):377-84 23764910 - Food Funct. 2013 Aug;4(8):1252-62 12069101 - Free Radic Res. 2002 Apr;36(4):381-7 10572253 - J Cell Biochem. 1999 Dec 15;75(4):710-23 24374227 - Mutat Res. 2014 Feb;760:33-41 24142888 - J Biomed Mater Res B Appl Biomater. 2014 Apr;102(3):524-32 15522966 - Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):16052-7 23255506 - J Tissue Eng Regen Med. 2015 Dec;9(12 ):E229-38 21240569 - Appl Biochem Biotechnol. 2011 Jun;164(4):546-59 10699758 - Free Radic Biol Med. 2000 Feb 1;28(3):463-99 25488006 - Int J Radiat Biol. 2015 Mar;91(3):286-93 27639248 - J Cell Physiol. 2017 May;232(5):1200-1208 15777847 - Biochim Biophys Acta. 2005 Mar 22;1743(1-2):120-9 28061454 - Oncotarget. 2017 Feb 21;8(8):13126-13141 15197754 - Bioelectromagnetics. 2004 Jul;25(5):324-8 19016143 - Int J Radiat Biol. 2008 Nov;84(11):945-55 19768389 - Appl Biochem Biotechnol. 2010 Sep;162(2):416-28 27310130 - Cell Physiol Biochem. 2016;38(6):2489-99 19913603 - Toxicol Lett. 2010 Feb 15;192(3):330-6 27856169 - Phys Ther Sport. 2017 Mar;24:32-38 24217848 - Bioelectromagnetics. 2013 Dec;34(8):618-29 23481041 - Biochim Biophys Acta. 2013 Jun;1833(6):1396-408 20156525 - Neurosci Lett. 2010 Mar 31;473(1):52-5 26053437 - J Tissue Eng Regen Med. 2017 May;11(5):1332-1342 26474928 - Med Hypotheses. 2015 Dec;85(6):810-8 26807660 - Bioelectromagnetics. 2016 Feb;37(2):89-98 24334533 - Gen Physiol Biophys. 2014;33(1):81-90 16552570 - Radiat Environ Biophys. 2006 May;45(1):55-62 20610864 - J Physiol Pharmacol. 2010 Jun;61(3):333-8 23411410 - Neurochem Int. 2013 Mar;62(4):418-24 22253132 - Bioelectromagnetics. 2012 Jul;33(5):428-37 26762783 - Sci Rep. 2016 Jan 14;6:19398 26223801 - Mol Neurobiol. 2016 Aug;53(6):4247-4260 18640059 - Osteoarthritis Cartilage. 2009 Feb;17(2):252-62 24886806 - Photochem Photobiol Sci. 2014 Jul;13(7):1082-92 18508647 - Front Biosci. 2008 May 01;13:6106-25 26350014 - Zhejiang Da Xue Xue Bao Yi Xue Ban. 2015 May;44(3):323-8 15621717 - Free Radic Res. 2004 Sep;38(9):985-93 23631724 - Electromagn Biol Med. 2013 Dec;32(4):560-8 25498893 - Life Sci. 2015 Jan 15;121:117-23 21225886 - Bioelectromagnetics. 2011 Feb;32(2):94-101 17456048 - Biochem J. 2007 Aug 1;405(3):559-68 22535669 - Bioelectromagnetics. 2012 Dec;33(8):641-51 26653983 - Mutat Res Genet Toxicol Environ Mutagen. 2015 Dec;794:46-51 27223425 - Oncotarget. 2016 Jul 5;7(27):41527-41539 27001710 - Biotechnol Appl Biochem. 2017 May;64(3):415-422 16132717 - Mol Cell Biochem. 2005 Sep;277(1-2):73-80 16340042 - J Physiol Pharmacol. 2005 Dec;56 Suppl 6:91-9 23137127 - Electromagn Biol Med. 2013 Sep;32(3):333-41 7599228 - Biochim Biophys Acta. 1995 May 24;1271(1):67-74 10085262 - J Exp Biol. 1999 Apr;202 (Pt 8):891-908 27346840 - Reprod Toxicol. 2016 Oct;65:46-58 18436834 - Invest Ophthalmol Vis Sci. 2008 May;49(5):2009-15 20519170 - Acta Biol Hung. 2010 Jun;61(2):158-67 20370557 - Free Radic Res. 2010 May;44(5):479-96 20707646 - Electromagn Biol Med. 2010 Aug;29(3):122-30 11569916 - IUBMB Life. 2001 Apr;51(4):223-30 15769673 - Front Biosci. 2005 May 01;10:1881-96 25423171 - PLoS One. 2014 Nov 25;9(11):e113530 15023522 - Exp Cell Res. 2004 Apr 1;294(2):313-24 19135463 - Mutat Res. 2009 Mar 9;662(1-2):54-8 7498533 - FEBS Lett. 1995 Dec 4;376(3):164-6 22314568 - J Physiol Pharmacol. 2011 Dec;62(6):657-61 18176941 - J Orthop Res. 2008 May;26(5):631-42 17384247 - Ann N Y Acad Sci. 2006 Dec;1090:59-68 21830213 - J Cell Physiol. 2012 Jun;227(6):2461-9 12415560 - Cell Biochem Funct. 2002 Dec;20(4):279-83 24647908 - J R Soc Interface. 2014 Mar 19;11(95):20140097 17459652 - Biomed Pharmacother. 2008 Dec;62(10):709-15 9704049 - Ann N Y Acad Sci. 1997 Dec 15;832:215-22 24681944 - PLoS One. 2014 Mar 28;9(3):e93065 28736490 - J Orthop. 2017 Jun 29;14 (3):410-415 22047460 - Electromagn Biol Med. 2011 Dec;30(4):219-34 15158766 - Drug Resist Updat. 2004 Apr;7(2):97-110 26850078 - Int J Radiat Biol. 2016;92 (3):148-55 22465345 - Int J Cardiol. 2013 Aug 10;167(3):798-808 22302048 - J Radiat Res. 2012;53(1):79-86 18804757 - Fertil Steril. 2009 Oct;92(4):1318-25 21220925 - Cell Physiol Biochem. 2010;26(6):947-58 21225891 - Bioelectromagnetics. 2011 Feb;32(2):140-7 24312697 - Oxid Med Cell Longev. 2013;2013:529173 9371972 - Curr Opin Hematol. 1995 Jan;2(1):55-60 16342194 - Bioelectromagnetics. 2006 Feb;27(2):159-62 26882219 - Int J Radiat Biol. 2016;92(4):195-201 25708841 - Bioelectromagnetics. 2015 Apr;36(3):219-32 26940444 - Int J Radiat Biol. 2016 May;92 (5):281-6 20564172 - Bioelectromagnetics. 2010 Sep;31(6):417-24 22108253 - Mutat Res. 2012 Jan 24;741(1-2):116-21 19649291 - PLoS One. 2009 Jul 31;4(7):e6446 21911251 - Biomaterials. 2011 Dec;32(35):9401-14 22676212 - Electromagn Biol Med. 2012 Dec;31(4):425-35 22778799 - Oxid Med Cell Longev. 2012;2012:740280 25450462 - Int J Biochem Cell Biol. 2014 Dec;57:108-14 19788349 - Stem Cells Dev. 2010 May;19(5):731-43 14734207 - Clin Chim Acta. 2004 Feb;340(1-2):153-62 27470406 - Biomed Pharmacother. 2016 Aug;82:628-39 16713449 - Biochim Biophys Acta. 2006 Apr;1763(4):402-12 28351214 - Biosci Biotechnol Biochem. 2017 Jul;81(7):1356-1362 20723534 - Fertil Steril. 2011 Mar 15;95(4):1500-2 17316071 - Radiat Res. 2007 Mar;167(3):306-11 27442448 - Int J Radiat Biol. 2016 Oct;92 (10 ):596-602 22180328 - Bioelectromagnetics. 2012 Jul;33(5):383-93 24439412 - Biomaterials. 2014 Mar;35(10):3164-71 |
References_xml | – volume: 2 start-page: 55 year: 1995 ident: ref_9 article-title: The respiratory burst oxidase publication-title: Curr. Opin. Hematol. doi: 10.1097/00062752-199502010-00008 – volume: 34 start-page: 618 year: 2013 ident: ref_27 article-title: Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells publication-title: Bioelectromagnetics doi: 10.1002/bem.21815 – volume: 164 start-page: 546 year: 2011 ident: ref_99 article-title: Effects of radiofrequency electromagnetic wave exposure from cellular phones on the reproductive pattern in male Wistar rats publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-010-9156-0 – volume: 51 start-page: 223 year: 2001 ident: ref_7 article-title: The peroxisome in oxidative stress publication-title: IUBMB Life doi: 10.1080/152165401753311762 – volume: 61 start-page: 333 year: 2010 ident: ref_84 article-title: Effects of extremely low frequency magnetic field on the parameters of oxidative stress in heart publication-title: J. Physiol. Pharmacol. – volume: 192 start-page: 330 year: 2010 ident: ref_24 article-title: Exposure to ELF magnetic fields modulate redox related protein expression in mouse macrophages publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2009.11.010 – volume: 37 start-page: 89 year: 2016 ident: ref_48 article-title: Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT publication-title: Bioelectromagnetics doi: 10.1002/bem.21954 – volume: 53 start-page: 4247 year: 2016 ident: ref_55 article-title: Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the Pro-Parkinson’s disease toxin MPP+ publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9354-4 – volume: 92 start-page: 609 year: 2007 ident: ref_90 article-title: Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines publication-title: Health Phys. doi: 10.1097/01.HP.0000262572.64418.38 – volume: 1763 start-page: 402 year: 2006 ident: ref_60 article-title: Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2006.03.003 – volume: 6 start-page: 19398 year: 2016 ident: ref_40 article-title: Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field publication-title: Sci. Rep. doi: 10.1038/srep19398 – volume: 62 start-page: 418 year: 2013 ident: ref_62 article-title: Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2013.02.002 – volume: 32 start-page: 333 year: 2013 ident: ref_76 article-title: The effect of electromagnetic field on reactive oxygen species production in human neutrophils In Vitro publication-title: Electromagn. Biol. Med. doi: 10.3109/15368378.2012.721845 – volume: 20 start-page: 279 year: 2002 ident: ref_117 article-title: Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits publication-title: Cell Biochem. Funct. doi: 10.1002/cbf.976 – volume: 95 start-page: 1500 year: 2011 ident: ref_100 article-title: Influence of microwave exposure on fertility of male rats publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2010.04.078 – volume: 13 start-page: 6106 year: 2008 ident: ref_25 article-title: Effects of static magnetic fields in biology: Role of free radicals publication-title: Front. Biosci. doi: 10.2741/3141 – volume: 44 start-page: 479 year: 2010 ident: ref_12 article-title: Reactive oxygen species in cancer publication-title: Free Radic. Res. doi: 10.3109/10715761003667554 – volume: 31 start-page: 417 year: 2010 ident: ref_103 article-title: Combined effects of 872 MHz radiofrequency radiation and ferrous chloride on reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells publication-title: Bioelectromagnetics doi: 10.1002/bem.20580 – volume: 277 start-page: 73 year: 2005 ident: ref_116 article-title: A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Prognostic value of malondialdehyde, N-acetyl-beta-d-glucosaminidase and nitric oxide determination publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-005-5074-9 – volume: 4 start-page: 1252 year: 2013 ident: ref_83 article-title: The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure publication-title: Food Funct. doi: 10.1039/c3fo60116a – volume: 45 start-page: 55 year: 2006 ident: ref_105 article-title: ROS release and Hsp70 expression after exposure to 1800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes publication-title: Radiat. Environ. Biophys. doi: 10.1007/s00411-006-0038-3 – volume: 92 start-page: 596 year: 2016 ident: ref_56 article-title: NADPH oxidase-produced superoxide mediated a 50-Hz magnetic field-induced epidermal growth factor receptor clustering publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553002.2016.1206227 – volume: 28 start-page: 231 year: 2015 ident: ref_67 article-title: Protective effect of 10-Hz, 1-mT electromagnetic field exposure against hypoxia/reoxygenation injury in HK-2 cells publication-title: Biomed. Environ. Sci. – volume: 794 start-page: 46 year: 2015 ident: ref_54 article-title: Genomic instability induced by 50 Hz magnetic fields is a dynamically evolving process not blocked by antioxidant treatment publication-title: Mutat. Res. doi: 10.1016/j.mrgentox.2015.10.004 – volume: 92 start-page: 148 year: 2016 ident: ref_58 article-title: Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3beta signaling pathway publication-title: Int. J. Radiat. Biol. doi: 10.3109/09553002.2016.1135261 – volume: 64 start-page: 415 year: 2017 ident: ref_59 article-title: Effect of extremely low-frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line NCTC 2544 publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1495 – volume: 81 start-page: 1356 year: 2017 ident: ref_63 article-title: Extremely low-frequency electromagnetic field promotes astrocytic differentiation of human bone marrow mesenchymal stem cells by modulating SIRT1 expression publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2017.1308243 – volume: 10 start-page: 1881 year: 2005 ident: ref_13 article-title: Reactive oxygen species in tumor progression publication-title: Front. Biosci. doi: 10.2741/1667 – volume: 202 start-page: 891 year: 1999 ident: ref_21 article-title: The case for light-dependent magnetic orientation in animals publication-title: J. Exp. Biol. doi: 10.1242/jeb.202.8.891 – volume: 84 start-page: 945 year: 2008 ident: ref_65 article-title: A 60-Hz sinusoidal magnetic field induces apoptosis of prostate cancer cells through reactive oxygen species publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553000802460206 – volume: 7 start-page: 97 year: 2004 ident: ref_11 article-title: ROS stress in cancer cells and therapeutic implications publication-title: Drug Resist. Updates doi: 10.1016/j.drup.2004.01.004 – volume: 31 start-page: 425 year: 2012 ident: ref_66 article-title: Effects of extremely low-frequency pulsed electromagnetic fields on morphological and biochemical properties of human breast carcinoma cells (T47D) publication-title: Electromagn. Biol. Med. doi: 10.3109/15368378.2012.683844 – volume: 65 start-page: 46 year: 2016 ident: ref_22 article-title: Differential effects of high and low strength magnetic fields on mouse embryonic development and vasculogenesis of embryonic stem cells publication-title: Reprod. Toxicol. doi: 10.1016/j.reprotox.2016.06.016 – volume: 32 start-page: 560 year: 2013 ident: ref_30 article-title: Reactive oxygen species (ROS) production in human peripheral blood neutrophils exposed In Vitro to static magnetic field publication-title: Electromagn. Biol. Med. doi: 10.3109/15368378.2013.773910 – volume: 33 start-page: 428 year: 2012 ident: ref_37 article-title: Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean publication-title: Bioelectromagnetics doi: 10.1002/bem.21702 – volume: 75 start-page: 710 year: 1999 ident: ref_42 article-title: Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells publication-title: J. Cell. Biochem. doi: 10.1002/(SICI)1097-4644(19991215)75:4<710::AID-JCB16>3.0.CO;2-Z – volume: 7 start-page: 41527 year: 2016 ident: ref_47 article-title: Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation publication-title: Oncotarget doi: 10.18632/oncotarget.9479 – volume: 1833 start-page: 1396 year: 2013 ident: ref_110 article-title: Low electric fields induce ligand-independent activation of EGF receptor and ERK via electrochemical elevation of H(+) and ROS concentrations publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2013.02.011 – volume: 9 start-page: E229 year: 2015 ident: ref_14 article-title: Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.1671 – volume: 232 start-page: 1200 year: 2017 ident: ref_70 article-title: Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25606 – volume: 56 start-page: 91 year: 2005 ident: ref_112 article-title: Influence of melatonin on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes—An In Vitro study publication-title: J. Physiol. Pharmacol. – volume: 85 start-page: 810 year: 2015 ident: ref_5 article-title: Mitochondrial emitted electromagnetic signals mediate retrograde signaling publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2015.10.004 – volume: 1090 start-page: 59 year: 2006 ident: ref_29 article-title: Magnetic fields protect from apoptosis via redox alteration publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1378.006 – volume: 26 start-page: 631 year: 2008 ident: ref_19 article-title: Cartilage repair with osteochondral autografts in sheep: Effect of biophysical stimulation with pulsed electromagnetic fields publication-title: J. Orthop. Res. doi: 10.1002/jor.20530 – volume: 27 start-page: 159 year: 2006 ident: ref_73 article-title: Effects on apoptosis and reactive oxygen species formation by Jurkat cells exposed to 50 Hz electromagnetic fields publication-title: Bioelectromagnetics doi: 10.1002/bem.20199 – volume: 2012 start-page: 740280 year: 2012 ident: ref_94 article-title: Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2012/740280 – volume: 25 start-page: 324 year: 2004 ident: ref_107 article-title: Acute exposure to 930 MHz CW electromagnetic radiation a In Vitro ffects reactive oxygen species level in rat lymphocytes treated by iron ions publication-title: Bioelectromagnetics doi: 10.1002/bem.10191 – volume: 28 start-page: 463 year: 2000 ident: ref_2 article-title: Oxidative stress and gene regulation publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(99)00242-7 – volume: 741 start-page: 116 year: 2012 ident: ref_111 article-title: Oxidative stress in broad bean (Vicia faba L.) induced by static magnetic field under natural radioactivity publication-title: Mutat. Res. doi: 10.1016/j.mrgentox.2011.11.003 – volume: 33 start-page: 641 year: 2012 ident: ref_78 article-title: Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells publication-title: Bioelectromagnetics doi: 10.1002/bem.21732 – volume: 92 start-page: 195 year: 2016 ident: ref_68 article-title: Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS publication-title: Int. J. Radiat. Biol. doi: 10.3109/09553002.2016.1136851 – volume: 662 start-page: 54 year: 2009 ident: ref_93 article-title: Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation publication-title: Mutat. Res. doi: 10.1016/j.mrfmmm.2008.12.005 – volume: 44 start-page: 358 year: 2014 ident: ref_88 article-title: Assessment of the neurotoxic potential of exposure to 50 Hz extremely low frequency electromagnetic fields (ELF-EMF) in naive and chemically stressed PC12 cells publication-title: Neurotoxicology doi: 10.1016/j.neuro.2014.07.009 – volume: 38 start-page: 985 year: 2004 ident: ref_61 article-title: Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells publication-title: Free Radic. Res. doi: 10.1080/10715760400000968 – volume: 53 start-page: 79 year: 2012 ident: ref_74 article-title: Extremely low frequency magnetic fields do not elicit oxidative stress in MCF10A cells publication-title: J. Radiat. Res. doi: 10.1269/jrr.11049 – volume: 473 start-page: 52 year: 2010 ident: ref_98 article-title: Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.02.018 – ident: ref_26 doi: 10.1371/journal.pone.0022753 – volume: 33 start-page: 81 year: 2014 ident: ref_85 article-title: Extremely low frequency magnetic fields induce oxidative stress in rat brain publication-title: Gen. Physiol. Biophys. doi: 10.4149/gpb_2013059 – volume: 49 start-page: 2009 year: 2008 ident: ref_96 article-title: Effect of superposed electromagnetic noise on DNA damage of lens epithelial cells induced by microwave radiation publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.07-1333 – volume: 227 start-page: 2461 year: 2012 ident: ref_15 article-title: Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22981 – volume: 49 start-page: 731 year: 2010 ident: ref_49 article-title: Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells publication-title: Radiat. Environ. Biophys. doi: 10.1007/s00411-010-0306-0 – volume: 38 start-page: 2489 year: 2016 ident: ref_57 article-title: Mitochondrial ROS release and subsequent akt activation potentially mediated the anti-apoptotic effect of a 50-Hz magnetic field on FL cells publication-title: Cell. Physiol. Biochem. doi: 10.1159/000445599 – volume: 832 start-page: 215 year: 1997 ident: ref_10 article-title: The NADPH oxidase of phagocytic leukocytes publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1997.tb46249.x – volume: 61 start-page: 158 year: 2010 ident: ref_50 article-title: Effect of ELF-EMF on number of apoptotic cells; correlation with reactive oxygen species and HSP publication-title: Acta Biol. Hung. doi: 10.1556/ABiol.61.2010.2.4 – ident: ref_97 doi: 10.1371/journal.pone.0093065 – volume: 23 start-page: 377 year: 2010 ident: ref_44 article-title: Static magnetic field affects oxidative stress in mouse cochlea publication-title: Int. J. Occup. Med. Environ. Health doi: 10.2478/v10001-010-0041-4 – volume: 405 start-page: 559 year: 2007 ident: ref_109 article-title: Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies publication-title: Biochem. J. doi: 10.1042/BJ20061653 – volume: 102 start-page: 524 year: 2014 ident: ref_41 article-title: Synergistic effect of static magnetic field and HA-Fe3O4 magnetic composites on viability of S. aureus and E. coli bacteria publication-title: J. Biomed. Mater. Res. B doi: 10.1002/jbm.b.33031 – volume: 294 start-page: 313 year: 2004 ident: ref_43 article-title: Involvement of reactive oxygen species in cardiotrophin-1-induced proliferation of cardiomyocytes differentiated from murine embryonic stem cells publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2003.10.032 – volume: 11 start-page: 20140097 year: 2014 ident: ref_38 article-title: Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.0097 – volume: 101 start-page: 16052 year: 2004 ident: ref_45 article-title: Cell-density-dependent regulation of neural precursor cell function publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0407065101 – ident: ref_1 doi: 10.1007/978-981-10-3579-1 – ident: ref_23 – volume: 44 start-page: 323 year: 2015 ident: ref_64 article-title: Extremely low frequency electromagnetic field induces apoptosis of osteosarcoma cells via oxidative stress publication-title: Zhejian. Da Xue Xue Bao – volume: 33 start-page: 383 year: 2012 ident: ref_75 article-title: Time-varying magnetic fields of 60 Hz at 7 mT induce DNA double-strand breaks and activate DNA damage checkpoints without apoptosis publication-title: Bioelectromagnetics doi: 10.1002/bem.21697 – volume: 35 start-page: 3164 year: 2014 ident: ref_32 article-title: Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.12.098 – volume: 36 start-page: 219 year: 2015 ident: ref_71 article-title: Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2-induced ROS production by increasing MnSOD activity publication-title: Bioelectromagnetics doi: 10.1002/bem.21900 – volume: 92 start-page: 1318 year: 2009 ident: ref_91 article-title: Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: An In Vitro pilot study publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2008.08.022 – volume: 11 start-page: 1332 year: 2017 ident: ref_72 article-title: Treatment by Therapeutic Magnetic Resonance (TMR) increases fibroblastic activity and keratinocyte differentiation in an In Vitro model of 3D artificial skin publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.2031 – volume: 30 start-page: 219 year: 2011 ident: ref_101 article-title: 900-MHz microwave radiation promotes oxidation in rat brain publication-title: Electromagn. Biol. Med. doi: 10.3109/15368378.2011.587930 – volume: 26 start-page: 947 year: 2010 ident: ref_80 article-title: Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation publication-title: Cell. Physiol. Biochem. doi: 10.1159/000324003 – volume: 73 start-page: 43 year: 2004 ident: ref_113 article-title: Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: A chemiluminescence study publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2003.10.003 – volume: 92 start-page: 107 year: 2016 ident: ref_104 article-title: Effect of cell phone-like electromagnetic radiation on primary human thyroid cells publication-title: Int. J. Radiat. Biol. doi: 10.3109/09553002.2016.1117678 – volume: 162 start-page: 416 year: 2010 ident: ref_114 article-title: Microwave exposure affecting reproductive system in male rats publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8722-9 – ident: ref_28 doi: 10.1371/journal.pone.0113530 – volume: 2013 start-page: 529173 year: 2013 ident: ref_86 article-title: Protective effects of low-frequency magnetic fields on cardiomyocytes from ischemia reperfusion injury via ROS and NO/ONOO publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2013/529173 – volume: 376 start-page: 164 year: 1995 ident: ref_82 article-title: The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)01266-X – volume: 36 start-page: 381 year: 2002 ident: ref_4 article-title: Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways publication-title: Free Radic. Res. doi: 10.1080/10715760290021225 – volume: 92 start-page: 281 year: 2016 ident: ref_69 article-title: Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells publication-title: Int. J. Radiat. Biol. doi: 10.3109/09553002.2016.1150619 – volume: 1743 start-page: 120 year: 2005 ident: ref_81 article-title: 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanism publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2004.09.005 – volume: 35 start-page: 346 year: 2009 ident: ref_8 article-title: Reactive oxygen species and peroxisomes: Struggling for balance publication-title: BioFactors doi: 10.1002/biof.48 – volume: 32 start-page: 140 year: 2011 ident: ref_31 article-title: Effects of static magnetic fields on the growth of various types of human cells publication-title: Bioelectromagnetics doi: 10.1002/bem.20624 – volume: 48 start-page: 579 year: 2010 ident: ref_77 article-title: Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.12.005 – volume: 82 start-page: 628 year: 2016 ident: ref_3 article-title: Neuroprotective effects of lotus seedpod procyanidins on extremely low frequency electromagnetic field-induced neurotoxicity in primary cultured hippocampal neurons publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.05.032 – volume: 121 start-page: 117 year: 2015 ident: ref_51 article-title: Effects of extremely low frequency electromagnetic field (ELF-EMF) on catalase, cytochrome P450 and nitric oxide synthase in erythro-leukemic cells publication-title: Life Sci. doi: 10.1016/j.lfs.2014.12.003 – volume: 14 start-page: 410 year: 2017 ident: ref_20 article-title: Electromagnetic transduction therapy in non-specific low back pain: A prospective randomised controlled trial publication-title: J. Orthop. doi: 10.1016/j.jor.2017.06.016 – volume: 24 start-page: 32 year: 2017 ident: ref_17 article-title: Pulsed electromagnetic field ameliorates cartilage degeneration by inhibiting mitogen-activated protein kinases in a rat model of osteoarthritis publication-title: Phys. Ther. Sport doi: 10.1016/j.ptsp.2016.10.003 – volume: 167 start-page: 798 year: 2013 ident: ref_34 article-title: Static magnetic fields increase cardiomyocyte differentiation of Flk-1+ cells derived from mouse embryonic stem cells via Ca2+ influx and ROS production publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2012.02.020 – volume: 760 start-page: 33 year: 2014 ident: ref_53 article-title: Induction of genomic instability, oxidative processes, and mitochondrial activity by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells publication-title: Mutat. Res. doi: 10.1016/j.mrfmmm.2013.12.002 – volume: 1271 start-page: 67 year: 1995 ident: ref_6 article-title: Oxidants in mitochondria: From physiology to diseases publication-title: Biochim. Biophys. Acta doi: 10.1016/0925-4439(95)00012-S – volume: 29 start-page: 122 year: 2010 ident: ref_52 article-title: Differentiation of K562 cells under ELF-EMF applied at different time courses publication-title: Electromagn. Biol. Med. doi: 10.3109/15368378.2010.502451 – volume: 340 start-page: 153 year: 2004 ident: ref_115 article-title: Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain publication-title: Clin. Chim. Acta doi: 10.1016/j.cccn.2003.10.012 – volume: 62 start-page: 709 year: 2008 ident: ref_18 article-title: Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2007.03.001 – volume: 167 start-page: 306 year: 2007 ident: ref_106 article-title: Formation of reactive oxygen species in L929 cells after exposure to 900 MHz RF radiation with and without co-exposure to 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone publication-title: Radiat. Res. doi: 10.1667/RR0595.1 – volume: 19 start-page: 731 year: 2010 ident: ref_36 article-title: Static electromagnetic fields induce vasculogenesis and chondro-osteogenesis of mouse embryonic stem cells by reactive oxygen species-mediated up-regulation of vascular endothelial growth factor publication-title: Stem Cells Dev. doi: 10.1089/scd.2008.0266 – volume: 37 start-page: 212 year: 2016 ident: ref_39 article-title: Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field publication-title: Bioelectromagnetics doi: 10.1002/bem.21968 – volume: 32 start-page: 9401 year: 2011 ident: ref_35 article-title: The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.075 – volume: 32 start-page: 94 year: 2011 ident: ref_33 article-title: Cellular ATP content was decreased by a homogeneous 8.5 T static magnetic field exposure: Role of reactive oxygen species publication-title: Bioelectromagnetics doi: 10.1002/bem.20617 – volume: 33 start-page: 118 year: 2014 ident: ref_102 article-title: Reactive oxygen species elevation and recovery in Drosophila bodies and ovaries following short-term and long-term exposure to DECT base EMF publication-title: Electromagn. Biol. Med. doi: 10.3109/15368378.2013.791991 – volume: 13 start-page: 1082 year: 2014 ident: ref_95 article-title: Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c3pp50451d – volume: 219 start-page: 334 year: 2009 ident: ref_87 article-title: Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21674 – volume: 62 start-page: 657 year: 2011 ident: ref_89 article-title: Effects of extremely low frequency magnetic field on oxidative balance in brain of rats publication-title: J. Physiol. Pharmacol. – volume: 17 start-page: 252 year: 2009 ident: ref_16 article-title: Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2008.06.002 – volume: 91 start-page: 286 year: 2015 ident: ref_108 article-title: Response of Caenorhabditis elegans to wireless devices radiation exposure publication-title: Int. J. Radiat. Biol. doi: 10.3109/09553002.2014.995384 – volume: 8 start-page: 13126 year: 2017 ident: ref_46 article-title: Cell type- and density-dependent effect of 1 T static magnetic field on cell proliferation publication-title: Oncotarget doi: 10.18632/oncotarget.14480 – volume: 57 start-page: 108 year: 2014 ident: ref_79 article-title: Power frequency magnetic fields induced reactive oxygen species-related autophagy in mouse embryonic fibroblasts publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2014.10.013 – ident: ref_92 doi: 10.1371/journal.pone.0006446 – reference: 20370557 - Free Radic Res. 2010 May;44(5):479-96 – reference: 25498893 - Life Sci. 2015 Jan 15;121:117-23 – reference: 24142888 - J Biomed Mater Res B Appl Biomater. 2014 Apr;102(3):524-32 – reference: 27223425 - Oncotarget. 2016 Jul 5;7(27):41527-41539 – reference: 12069101 - Free Radic Res. 2002 Apr;36(4):381-7 – reference: 16340042 - J Physiol Pharmacol. 2005 Dec;56 Suppl 6:91-9 – reference: 25111744 - Neurotoxicology. 2014 Sep;44:358-64 – reference: 20564172 - Bioelectromagnetics. 2010 Sep;31(6):417-24 – reference: 20610864 - J Physiol Pharmacol. 2010 Jun;61(3):333-8 – reference: 27310130 - Cell Physiol Biochem. 2016;38(6):2489-99 – reference: 25450462 - Int J Biochem Cell Biol. 2014 Dec;57:108-14 – reference: 26762783 - Sci Rep. 2016 Jan 14;6:19398 – reference: 7498533 - FEBS Lett. 1995 Dec 4;376(3):164-6 – reference: 22302048 - J Radiat Res. 2012;53(1):79-86 – reference: 27856169 - Phys Ther Sport. 2017 Mar;24:32-38 – reference: 26053437 - J Tissue Eng Regen Med. 2017 May;11(5):1332-1342 – reference: 15158766 - Drug Resist Updat. 2004 Apr;7(2):97-110 – reference: 7599228 - Biochim Biophys Acta. 1995 May 24;1271(1):67-74 – reference: 19459143 - Biofactors. 2009 Jul-Aug;35(4):346-55 – reference: 19768389 - Appl Biochem Biotechnol. 2010 Sep;162(2):416-28 – reference: 22108253 - Mutat Res. 2012 Jan 24;741(1-2):116-21 – reference: 21887222 - PLoS One. 2011;6(8):e22753 – reference: 23781995 - Electromagn Biol Med. 2014 Jun;33(2):118-31 – reference: 24681944 - PLoS One. 2014 Mar 28;9(3):e93065 – reference: 25708841 - Bioelectromagnetics. 2015 Apr;36(3):219-32 – reference: 20707646 - Electromagn Biol Med. 2010 Aug;29(3):122-30 – reference: 20582429 - Radiat Environ Biophys. 2010 Nov;49(4):731-41 – reference: 20723534 - Fertil Steril. 2011 Mar 15;95(4):1500-2 – reference: 15023522 - Exp Cell Res. 2004 Apr 1;294(2):313-24 – reference: 22535669 - Bioelectromagnetics. 2012 Dec;33(8):641-51 – reference: 23764910 - Food Funct. 2013 Aug;4(8):1252-62 – reference: 22047460 - Electromagn Biol Med. 2011 Dec;30(4):219-34 – reference: 20005945 - Free Radic Biol Med. 2010 Feb 15;48(4):579-89 – reference: 22253132 - Bioelectromagnetics. 2012 Jul;33(5):428-37 – reference: 26474928 - Med Hypotheses. 2015 Dec;85(6):810-8 – reference: 28351214 - Biosci Biotechnol Biochem. 2017 Jul;81(7):1356-1362 – reference: 27470406 - Biomed Pharmacother. 2016 Aug;82:628-39 – reference: 15777847 - Biochim Biophys Acta. 2005 Mar 22;1743(1-2):120-9 – reference: 17384247 - Ann N Y Acad Sci. 2006 Dec;1090:59-68 – reference: 10085262 - J Exp Biol. 1999 Apr;202 (Pt 8):891-908 – reference: 17316071 - Radiat Res. 2007 Mar;167(3):306-11 – reference: 25423171 - PLoS One. 2014 Nov 25;9(11):e113530 – reference: 27442448 - Int J Radiat Biol. 2016 Oct;92 (10 ):596-602 – reference: 21220925 - Cell Physiol Biochem. 2010;26(6):947-58 – reference: 24439412 - Biomaterials. 2014 Mar;35(10):3164-71 – reference: 25488006 - Int J Radiat Biol. 2015 Mar;91(3):286-93 – reference: 22676212 - Electromagn Biol Med. 2012 Dec;31(4):425-35 – reference: 16552570 - Radiat Environ Biophys. 2006 May;45(1):55-62 – reference: 26807660 - Bioelectromagnetics. 2016 Feb;37(2):89-98 – reference: 10572253 - J Cell Biochem. 1999 Dec 15;75(4):710-23 – reference: 19016143 - Int J Radiat Biol. 2008 Nov;84(11):945-55 – reference: 21306983 - Int J Occup Med Environ Health. 2010;23(4):377-84 – reference: 21225886 - Bioelectromagnetics. 2011 Feb;32(2):94-101 – reference: 19135463 - Mutat Res. 2009 Mar 9;662(1-2):54-8 – reference: 24647908 - J R Soc Interface. 2014 Mar 19;11(95):20140097 – reference: 24312697 - Oxid Med Cell Longev. 2013;2013:529173 – reference: 12415560 - Cell Biochem Funct. 2002 Dec;20(4):279-83 – reference: 23255506 - J Tissue Eng Regen Med. 2015 Dec;9(12 ):E229-38 – reference: 17459652 - Biomed Pharmacother. 2008 Dec;62(10):709-15 – reference: 21225891 - Bioelectromagnetics. 2011 Feb;32(2):140-7 – reference: 26350014 - Zhejiang Da Xue Xue Bao Yi Xue Ban. 2015 May;44(3):323-8 – reference: 27003876 - Bioelectromagnetics. 2016 May;37(4):212-22 – reference: 26882219 - Int J Radiat Biol. 2016;92(4):195-201 – reference: 17495663 - Health Phys. 2007 Jun;92(6):609-20 – reference: 23137127 - Electromagn Biol Med. 2013 Sep;32(3):333-41 – reference: 21911251 - Biomaterials. 2011 Dec;32(35):9401-14 – reference: 18640059 - Osteoarthritis Cartilage. 2009 Feb;17(2):252-62 – reference: 21830213 - J Cell Physiol. 2012 Jun;227(6):2461-9 – reference: 23481041 - Biochim Biophys Acta. 2013 Jun;1833(6):1396-408 – reference: 26689947 - Int J Radiat Biol. 2016;92(2):107-15 – reference: 20156525 - Neurosci Lett. 2010 Mar 31;473(1):52-5 – reference: 28736490 - J Orthop. 2017 Jun 29;14 (3):410-415 – reference: 15522966 - Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):16052-7 – reference: 9371972 - Curr Opin Hematol. 1995 Jan;2(1):55-60 – reference: 28061454 - Oncotarget. 2017 Feb 21;8(8):13126-13141 – reference: 18508647 - Front Biosci. 2008 May 01;13:6106-25 – reference: 24217848 - Bioelectromagnetics. 2013 Dec;34(8):618-29 – reference: 15769673 - Front Biosci. 2005 May 01;10:1881-96 – reference: 24334533 - Gen Physiol Biophys. 2014;33(1):81-90 – reference: 23411410 - Neurochem Int. 2013 Mar;62(4):418-24 – reference: 23631724 - Electromagn Biol Med. 2013 Dec;32(4):560-8 – reference: 18804757 - Fertil Steril. 2009 Oct;92(4):1318-25 – reference: 15197754 - Bioelectromagnetics. 2004 Jul;25(5):324-8 – reference: 24374227 - Mutat Res. 2014 Feb;760:33-41 – reference: 15621717 - Free Radic Res. 2004 Sep;38(9):985-93 – reference: 18176941 - J Orthop Res. 2008 May;26(5):631-42 – reference: 19649291 - PLoS One. 2009 Jul 31;4(7):e6446 – reference: 21240569 - Appl Biochem Biotechnol. 2011 Jun;164(4):546-59 – reference: 26850078 - Int J Radiat Biol. 2016;92 (3):148-55 – reference: 22778799 - Oxid Med Cell Longev. 2012;2012:740280 – reference: 27001710 - Biotechnol Appl Biochem. 2017 May;64(3):415-422 – reference: 9704049 - Ann N Y Acad Sci. 1997 Dec 15;832:215-22 – reference: 19788349 - Stem Cells Dev. 2010 May;19(5):731-43 – reference: 24886806 - Photochem Photobiol Sci. 2014 Jul;13(7):1082-92 – reference: 26940444 - Int J Radiat Biol. 2016 May;92 (5):281-6 – reference: 16342194 - Bioelectromagnetics. 2006 Feb;27(2):159-62 – reference: 18436834 - Invest Ophthalmol Vis Sci. 2008 May;49(5):2009-15 – reference: 20519170 - Acta Biol Hung. 2010 Jun;61(2):158-67 – reference: 19913603 - Toxicol Lett. 2010 Feb 15;192(3):330-6 – reference: 19115234 - J Cell Physiol. 2009 May;219(2):334-43 – reference: 10699758 - Free Radic Biol Med. 2000 Feb 1;28(3):463-99 – reference: 22314568 - J Physiol Pharmacol. 2011 Dec;62(6):657-61 – reference: 25800450 - Biomed Environ Sci. 2015 Mar;28(3):231-4 – reference: 26223801 - Mol Neurobiol. 2016 Aug;53(6):4247-4260 – reference: 16132717 - Mol Cell Biochem. 2005 Sep;277(1-2):73-80 – reference: 16713449 - Biochim Biophys Acta. 2006 Apr;1763(4):402-12 – reference: 14734207 - Clin Chim Acta. 2004 Feb;340(1-2):153-62 – reference: 22180328 - Bioelectromagnetics. 2012 Jul;33(5):383-93 – reference: 17456048 - Biochem J. 2007 Aug 1;405(3):559-68 – reference: 27639248 - J Cell Physiol. 2017 May;232(5):1200-1208 – reference: 26653983 - Mutat Res Genet Toxicol Environ Mutagen. 2015 Dec;794:46-51 – reference: 27346840 - Reprod Toxicol. 2016 Oct;65:46-58 – reference: 22465345 - Int J Cardiol. 2013 Aug 10;167(3):798-808 – reference: 11569916 - IUBMB Life. 2001 Apr;51(4):223-30 – reference: 14732250 - J Photochem Photobiol B. 2004 Jan 23;73(1-2):43-8 |
SSID | ssj0023259 |
Score | 2.5645628 |
SecondaryResourceType | review_article |
Snippet | Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2175 |
SubjectTerms | Magnetic fields Reactive oxygen species Review Rodents |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50Ivgi_rY6pYI-jbC1SZPuSUQcIqggCnsrSZP6A-3UTnD_vXdttzlFn3vQcpfcfZdcvw_gkPPyNsiyTKWKCSkcM4ExTHOtrM2kziq2zyt5ficu-lG_PnAr6rHKcU4sE7UdpHRG3ibmO4lYmAfHr2-MVKPodrWW0JiHBaIuo5Eu1Z82XDwsxdICrEFMRl1ZDb5zbPPbj08vBRY3QuTRbEn6hTN_jkt-qz-9FViugaN_UkV6FeZcvgaLlZTkaB1al_o-px8S_R7NpBW-zq1_43SZzvzrzxEuFL8Um3fFBtz1zm5Pz1kthMBSoeIhU9jGcGomY3Shy0ya2ZB4wkyXu9QGFret5Mq4OLZaCCJMJuYyLYzCbiHTKd-ERj7I3Tb4IjLWWN7JOrEWLnQ66oYI-gLXEYpnNvKgNfZFktYs4SRW8Zxgt0CeS757zoOjifVrxY7xh11z7Nak3iNFMo2oBweTx7i66cpC527wQTbEzxdiWvVgq4rC5EVhF7EmwicP1Ex8JgbEnD37JH98KBm0EcPKOJI7_3_WLiyFVMRpfiVuQmP4_uH2EIIMzX65zr4A6QvafA priority: 102 providerName: ProQuest |
Title | Magnetic Fields and Reactive Oxygen Species |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29057846 https://www.proquest.com/docview/1965682631 https://www.proquest.com/docview/1954432219 https://pubmed.ncbi.nlm.nih.gov/PMC5666856 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LS8NAEB5qRfAivo2PEEFPEm2zm2x6EFGxFqEqYqG3sJvd-EDjIy3Yf-9M0oT66CWXnSQws7vzfezsNwB7jOWnQdpNRCxcHnDjqqZSrmRSaJ0EMinUPq-DTo9f9f1-Dcpuo2MHZv9SO-on1ft8Ofz6GJ3ggj8mxomU_ejp-TXDREXo2p-BWcxJgpZol1fnCQgb_FZR9v7nDZIDbiFqCQkDT-amP4Dzd93kRCJqL8LCGEE6p0XIl6Bm0mWYK3pKjlbgoCsfUrqZ6LSpOC1zZKqdOyPzfc25-RrhjHHyrvMmW4Ve--L-vOOOOyK4MRfhwBXIZxixyhB9aRIVJ9ojwTDVYibWTY3rN2BCmTDUknNSTiYJM8mVQNqQyJitQT19S80GONxXWmnWSBqh5MYz0m95iP6apsEFS7RvwUHpiygey4VT14qXCGkDOTGadKIF-5X1eyGTMcVuu3RrVMY6IlHDAGkOa1qwWw3jNKezC5matyHZkFCfh_urBetFFKofleGzQPyIT2VAEto_R9Knx1xKG8FsEPrB5tRvbsG8Rx1_8wLdbagPPodmB2HIQNkwI_oCn2H70obZs4vr2zubEoNv53PvG6li32I |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUNVeEPQZyiOVyglZJLZjJweEqsJqKY9KFUh7S-3YaanaLJBFZf9Uf2Nnks3CFrU3zhkl1nge38TjbwDeCdGcBjlW6kIzqaRnNraWGWG0c6UyZcv2eaL6Z_LjIBnMwe_uLgy1VXYxsQnUbljQP_JtYr5TiIVFvHtxyWhqFJ2udiM0WrM49ONfWLLVOwd7uL-bnPf2Tz_02WSqACukTkdMY00gqDJLcT2-tEXpOJFu2Uz4wsUOfUAJbX2aOiMlsQ8TDZiRViP0Lk0h8L2PYAETb0QepQe3BZ7gzXC2GHMeU0mm2kZ7IbJo-_z7zxqTKVUAyWwKvIdr_27PvJPvekuwOAGq4fvWspZhzlfP4HE7unL8HLaOzdeKLkCGPeqBq0NTufCzN034DD_djNEww2a4va9fwNmDqOglzFfDyr-GUCbWWSeiMkqN9NybJOMIMmMfSS1KlwSw1ekiLyas5DQc40eO1QlpLr-ruQA2p9IXLRvHP-RWO7XmE5-s81sLCuDt9DF6Ex2RmMoPr0mG-AA5hvEAXrW7MP0QzxDbIlwLQM_sz1SAmLpnn1Tn3xrGbsTMKk3Uyv-XtQFP-qfHR_nRwcnhG3jKCUBQ70y6CvOjq2u_hvBnZNcbmwvhy0Mb-R_8dBeq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXBAVKoEAq0VNl7cZ27OSAEKKs-qIgRKW9BTu22yLIFrJVu3-NX8dMHtsuCG49Z5RY43l8E4-_AXgpRHMa5FjQpWZSSc9sYi0zwmjngjKhZfs8UNuHcnecjpfgV38Xhtoq-5jYBGo3Kekf-YCY7xRiYZEMQtcW8XFr9Pr0B6MJUnTS2o_TaE1kz8_OsXyrX-1s4V5vcD569_ntNusmDLBS6mzKNNYHgqq0DNfmgy2D40TAZXPhS5c49AcltPVZ5oyUxERMlGBGWo0wPJhS4HtvwE0t0oR8TI8viz3Bm0FtCeY_ptJctU33QuTDwcnX7zUmVqoG0sV0-BfG_bNV80ruG92Dux1ojd-0VnYflny1ArfaMZazB7D53hxVdBkyHlE_XB2bysWfvGlCafzhYoZGGjeD7n39EA6vRUWPYLmaVP4xxDK1zjoxDMPMSM-9SXOOgDPxQ6lFcGkEm70uirJjKKdBGd8KrFRIc8VVzUWwMZc-bZk5_iG31qu16PyzLi6tKYL1-WP0LDouMZWfnJEMcQNyDOkRrLa7MP8QzxHnInSLQC_sz1yAWLsXn1Qnxw17N-JnlaXqyf-X9QJuo3kX-zsHe0_hDicsQW002RosT3-e-WeIhKb2eWNyMXy5bhv_DdOIG-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Fields+and+Reactive+Oxygen+Species&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Wang%2C+Huizhen&rft.au=Zhang%2C+Xin&rft.date=2017-10-18&rft.eissn=1422-0067&rft.volume=18&rft.issue=10&rft_id=info:doi/10.3390%2Fijms18102175&rft_id=info%3Apmid%2F29057846&rft.externalDocID=29057846 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |