Magnetic Fields and Reactive Oxygen Species

Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of m...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 18; no. 10; p. 2175
Main Authors Wang, Huizhen, Zhang, Xin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.10.2017
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.
AbstractList Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.
Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.
Author Zhang, Xin
Wang, Huizhen
AuthorAffiliation 3 Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
1 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; huizhenwang@hmfl.ac.cn
2 School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
AuthorAffiliation_xml – name: 1 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; huizhenwang@hmfl.ac.cn
– name: 2 School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
– name: 3 Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
Author_xml – sequence: 1
  givenname: Huizhen
  surname: Wang
  fullname: Wang, Huizhen
– sequence: 2
  givenname: Xin
  orcidid: 0000-0002-3499-2189
  surname: Zhang
  fullname: Zhang, Xin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29057846$$D View this record in MEDLINE/PubMed
BookMark eNptkctLw0AQxhdRtK3ePEvAi6DRfWUfF0GKL1AEH-dls5nULemmZpOi_70pPqjF0wzMbz6-b2aINkMdAKF9gk8Z0_jMT2eRKIIpkdkGGhBOaYqxkJsr_Q4axjjFmDKa6W20QzXOpOJigI7v7SRA611y5aEqYmJDkTyCda1fQPLw_jGBkDzNwXmIu2irtFWEve86Qi9Xl8_jm_Tu4fp2fHGXOi5Vm0rCNSOMKWWZhTJ3ZUG1znSuGbiCFFhiwWQOShWW8yKXgCnHludSS15ax0bo_Et33uUzKByEtrGVmTd-ZpsPU1tv_k6CfzWTemEyIYTKRC9w9C3Q1G8dxNbMfHRQVTZA3UVDdMY5o5ToHj1cQ6d114Q-Xk-JTCgq-iwjdLDq6NfKzx174OQLcE0dYwPlL0KwWb7JrL6px-ka7nxrW18v8_jq_6VPBK2Unw
CitedBy_id crossref_primary_10_1007_s43630_024_00565_y
crossref_primary_10_1002_jcp_27492
crossref_primary_10_1080_09553002_2024_2369105
crossref_primary_10_3390_bioengineering10101176
crossref_primary_10_1155_2021_7103345
crossref_primary_10_1016_j_tiv_2019_104609
crossref_primary_10_1111_jfbc_13512
crossref_primary_10_1063_5_0191803
crossref_primary_10_12680_balneo_2024_705
crossref_primary_10_3390_jcm13061619
crossref_primary_10_1016_j_bej_2020_107855
crossref_primary_10_1051_bioconf_202412703003
crossref_primary_10_1016_j_pbiomolbio_2024_01_003
crossref_primary_10_1038_s41598_019_53983_9
crossref_primary_10_1007_s00343_021_0493_3
crossref_primary_10_1038_s41598_023_35767_4
crossref_primary_10_1016_j_transproceed_2022_05_029
crossref_primary_10_1002_bem_22128
crossref_primary_10_1016_j_etap_2023_104320
crossref_primary_10_3390_ijms222011159
crossref_primary_10_1016_j_xinn_2021_100077
crossref_primary_10_1098_rsif_2022_0325
crossref_primary_10_1007_s10439_024_03519_8
crossref_primary_10_1021_acs_jpcb_2c00143
crossref_primary_10_3389_fpubh_2021_724239
crossref_primary_10_34133_research_0097
crossref_primary_10_3390_app13084721
crossref_primary_10_1016_j_bioelechem_2022_108196
crossref_primary_10_1080_09553002_2021_1969465
crossref_primary_10_1111_1440_1681_12979
crossref_primary_10_3389_fchem_2023_1197210
crossref_primary_10_3390_ijms25168973
crossref_primary_10_4103_ACCJ_ACCJ_4_22
crossref_primary_10_1016_j_envres_2018_01_035
crossref_primary_10_1002_anie_202105675
crossref_primary_10_1002_bem_22495
crossref_primary_10_1080_09553002_2019_1642543
crossref_primary_10_3389_fpubh_2021_710484
crossref_primary_10_3389_fmolb_2022_1103648
crossref_primary_10_3390_ijms25073644
crossref_primary_10_1038_s42003_021_02181_3
crossref_primary_10_2174_1871527321666220614121439
crossref_primary_10_3390_antiox12010108
crossref_primary_10_3390_cancers13174485
crossref_primary_10_1371_journal_pone_0192894
crossref_primary_10_1007_s12015_023_10535_z
crossref_primary_10_1016_j_tiv_2020_104963
crossref_primary_10_3390_cells11030443
crossref_primary_10_1134_S0006350922020191
crossref_primary_10_1093_nsr_nwae145
crossref_primary_10_3390_antiox12010073
crossref_primary_10_1039_D2NA00229A
crossref_primary_10_1038_s41598_021_88695_6
crossref_primary_10_1186_s12645_021_00076_w
crossref_primary_10_1038_s41598_023_46758_w
crossref_primary_10_3390_ijms19082237
crossref_primary_10_1002_bies_201800017
crossref_primary_10_3390_ijms232415727
crossref_primary_10_1002_rmb2_12606
crossref_primary_10_1038_s42003_022_03389_7
crossref_primary_10_3390_ijms25105074
crossref_primary_10_1016_j_bpj_2023_10_020
crossref_primary_10_3390_app9245318
crossref_primary_10_29233_sdufeffd_1029835
crossref_primary_10_1002_jmri_29704
crossref_primary_10_3390_polym13111883
crossref_primary_10_1134_S0006350918050093
crossref_primary_10_53941_hm_2025_100003
crossref_primary_10_1038_s41598_021_98083_9
crossref_primary_10_1080_09553002_2019_1643050
crossref_primary_10_1007_s11356_020_10039_0
crossref_primary_10_3389_fphar_2022_1062119
crossref_primary_10_3390_biom12121824
crossref_primary_10_3389_fbioe_2022_795871
crossref_primary_10_1007_s00709_022_01768_9
crossref_primary_10_3390_ijms21082952
crossref_primary_10_1016_j_actbio_2020_07_009
crossref_primary_10_7868_S086981391810009X
crossref_primary_10_1016_j_foodcont_2024_110692
crossref_primary_10_1038_s41467_021_21468_x
crossref_primary_10_34133_research_0320
crossref_primary_10_1016_j_fsi_2020_01_062
crossref_primary_10_1007_s43032_022_01144_1
crossref_primary_10_1016_j_btre_2019_e00334
crossref_primary_10_1073_pnas_2018043118
crossref_primary_10_3390_ijms25189857
crossref_primary_10_1002_smll_202204219
crossref_primary_10_1134_S0031918X19060036
crossref_primary_10_3390_f15010138
crossref_primary_10_1080_15368378_2020_1830289
crossref_primary_10_1016_j_isci_2022_105536
crossref_primary_10_3390_antiox13081017
crossref_primary_10_3390_foods13193058
crossref_primary_10_1080_09553002_2019_1589017
crossref_primary_10_1080_15368378_2025_2460971
crossref_primary_10_3390_bios12080627
crossref_primary_10_1016_j_jksus_2024_103184
crossref_primary_10_29233_sdufeffd_1226265
crossref_primary_10_1002_bem_22174
crossref_primary_10_3390_biom13071112
crossref_primary_10_1155_2019_3782074
crossref_primary_10_1002_jcla_23493
crossref_primary_10_1080_15368378_2020_1851250
crossref_primary_10_1002_bem_22299
crossref_primary_10_1002_bem_22332
crossref_primary_10_1146_annurev_publhealth_040218_044106
crossref_primary_10_1007_s12640_023_00679_8
crossref_primary_10_1134_S1990793123010037
crossref_primary_10_1016_j_molstruc_2023_135741
crossref_primary_10_1109_ACCESS_2023_3308225
crossref_primary_10_1021_acssuschemeng_2c07622
crossref_primary_10_1016_j_neulet_2019_02_026
crossref_primary_10_3390_ijms22073772
crossref_primary_10_1007_s12210_019_00848_y
crossref_primary_10_1080_15368378_2022_2073547
crossref_primary_10_4103_ATN_ATN_D_24_00021
crossref_primary_10_1109_LMAG_2020_2974150
crossref_primary_10_18632_aging_204597
crossref_primary_10_1007_s00432_021_03787_0
crossref_primary_10_3390_plants12152887
crossref_primary_10_1002_ange_202105675
crossref_primary_10_1021_jacsau_1c00332
crossref_primary_10_3389_fonc_2024_1417621
crossref_primary_10_1002_bem_22427
crossref_primary_10_3390_app14041343
crossref_primary_10_1080_19420889_2022_2027698
crossref_primary_10_1080_09553002_2022_2055803
crossref_primary_10_3390_ijms22115785
crossref_primary_10_1002_bem_22309
crossref_primary_10_3389_fpubh_2022_994758
crossref_primary_10_1116_1_5135170
crossref_primary_10_1080_09603123_2021_1910212
crossref_primary_10_1016_j_tranon_2021_101103
crossref_primary_10_31083_j_fbl2810252
crossref_primary_10_1038_s41598_022_18210_y
crossref_primary_10_1016_j_jplph_2025_154453
crossref_primary_10_3390_ijms24087576
crossref_primary_10_1016_j_envres_2019_03_063
crossref_primary_10_1155_2018_1427412
crossref_primary_10_1093_jambio_lxad302
crossref_primary_10_3389_fpls_2024_1390031
crossref_primary_10_1039_C9RA02001B
crossref_primary_10_3390_plants11151955
crossref_primary_10_1016_j_pbiomolbio_2024_03_001
crossref_primary_10_1021_acsanm_1c00852
crossref_primary_10_1155_2018_5076271
crossref_primary_10_12944_CRNFSJ_11_3_19
crossref_primary_10_1002_biot_202000233
crossref_primary_10_1016_j_bbrc_2025_151414
crossref_primary_10_3390_ijms23073622
crossref_primary_10_1007_s11010_019_03667_9
crossref_primary_10_1016_j_brainresbull_2024_111090
crossref_primary_10_1080_10937404_2018_1427914
Cites_doi 10.1097/00062752-199502010-00008
10.1002/bem.21815
10.1007/s12010-010-9156-0
10.1080/152165401753311762
10.1016/j.toxlet.2009.11.010
10.1002/bem.21954
10.1007/s12035-015-9354-4
10.1097/01.HP.0000262572.64418.38
10.1016/j.bbamcr.2006.03.003
10.1038/srep19398
10.1016/j.neuint.2013.02.002
10.3109/15368378.2012.721845
10.1002/cbf.976
10.1016/j.fertnstert.2010.04.078
10.2741/3141
10.3109/10715761003667554
10.1002/bem.20580
10.1007/s11010-005-5074-9
10.1039/c3fo60116a
10.1007/s00411-006-0038-3
10.1080/09553002.2016.1206227
10.1016/j.mrgentox.2015.10.004
10.3109/09553002.2016.1135261
10.1002/bab.1495
10.1080/09168451.2017.1308243
10.2741/1667
10.1242/jeb.202.8.891
10.1080/09553000802460206
10.1016/j.drup.2004.01.004
10.3109/15368378.2012.683844
10.1016/j.reprotox.2016.06.016
10.3109/15368378.2013.773910
10.1002/bem.21702
10.1002/(SICI)1097-4644(19991215)75:4<710::AID-JCB16>3.0.CO;2-Z
10.18632/oncotarget.9479
10.1016/j.bbamcr.2013.02.011
10.1002/term.1671
10.1002/jcp.25606
10.1016/j.mehy.2015.10.004
10.1196/annals.1378.006
10.1002/jor.20530
10.1002/bem.20199
10.1155/2012/740280
10.1002/bem.10191
10.1016/S0891-5849(99)00242-7
10.1016/j.mrgentox.2011.11.003
10.1002/bem.21732
10.3109/09553002.2016.1136851
10.1016/j.mrfmmm.2008.12.005
10.1016/j.neuro.2014.07.009
10.1080/10715760400000968
10.1269/jrr.11049
10.1016/j.neulet.2010.02.018
10.1371/journal.pone.0022753
10.4149/gpb_2013059
10.1167/iovs.07-1333
10.1002/jcp.22981
10.1007/s00411-010-0306-0
10.1159/000445599
10.1111/j.1749-6632.1997.tb46249.x
10.1556/ABiol.61.2010.2.4
10.1371/journal.pone.0093065
10.2478/v10001-010-0041-4
10.1042/BJ20061653
10.1002/jbm.b.33031
10.1016/j.yexcr.2003.10.032
10.1098/rsif.2014.0097
10.1073/pnas.0407065101
10.1007/978-981-10-3579-1
10.1002/bem.21697
10.1016/j.biomaterials.2013.12.098
10.1002/bem.21900
10.1016/j.fertnstert.2008.08.022
10.1002/term.2031
10.3109/15368378.2011.587930
10.1159/000324003
10.1016/j.jphotobiol.2003.10.003
10.3109/09553002.2016.1117678
10.1007/s12010-009-8722-9
10.1371/journal.pone.0113530
10.1155/2013/529173
10.1016/0014-5793(95)01266-X
10.1080/10715760290021225
10.3109/09553002.2016.1150619
10.1016/j.bbamcr.2004.09.005
10.1002/biof.48
10.1002/bem.20624
10.1016/j.freeradbiomed.2009.12.005
10.1016/j.biopha.2016.05.032
10.1016/j.lfs.2014.12.003
10.1016/j.jor.2017.06.016
10.1016/j.ptsp.2016.10.003
10.1016/j.ijcard.2012.02.020
10.1016/j.mrfmmm.2013.12.002
10.1016/0925-4439(95)00012-S
10.3109/15368378.2010.502451
10.1016/j.cccn.2003.10.012
10.1016/j.biopha.2007.03.001
10.1667/RR0595.1
10.1089/scd.2008.0266
10.1002/bem.21968
10.1016/j.biomaterials.2011.08.075
10.1002/bem.20617
10.3109/15368378.2013.791991
10.1039/c3pp50451d
10.1002/jcp.21674
10.1016/j.joca.2008.06.002
10.3109/09553002.2014.995384
10.18632/oncotarget.14480
10.1016/j.biocel.2014.10.013
10.1371/journal.pone.0006446
ContentType Journal Article
Copyright Copyright MDPI AG 2017
2017 by the authors. 2017
Copyright_xml – notice: Copyright MDPI AG 2017
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms18102175
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest research library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC5666856
29057846
10_3390_ijms18102175
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-7149313388a3aefbcfd29959b93ecd1d070637be88da44db7e0240a4b7974fac3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:04:16 EDT 2025
Fri Jul 11 04:58:13 EDT 2025
Fri Jul 25 19:54:05 EDT 2025
Wed Feb 19 02:44:02 EST 2025
Tue Jul 01 03:30:06 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords extremely low frequency electromagnetic field (ELF-EMF)
static magnetic field (SMF)
reactive oxygen species (ROS)
magnetic field (MF)
radio frequency electromagnetic radiation (RF-EMR)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-7149313388a3aefbcfd29959b93ecd1d070637be88da44db7e0240a4b7974fac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3499-2189
OpenAccessLink https://www.proquest.com/docview/1965682631?pq-origsite=%requestingapplication%
PMID 29057846
PQID 1965682631
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5666856
proquest_miscellaneous_1954432219
proquest_journals_1965682631
pubmed_primary_29057846
crossref_primary_10_3390_ijms18102175
crossref_citationtrail_10_3390_ijms18102175
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-18
PublicationDateYYYYMMDD 2017-10-18
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-18
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ilhan (ref_115) 2004; 340
ref_92
Silva (ref_104) 2016; 92
Zhou (ref_17) 2017; 24
Lee (ref_113) 2004; 73
Irmak (ref_117) 2002; 20
Fini (ref_18) 2008; 62
Lupke (ref_60) 2006; 1763
ref_97
Osera (ref_71) 2015; 36
Calabro (ref_27) 2013; 34
Dansen (ref_7) 2001; 51
Kesari (ref_99) 2011; 164
Luukkonen (ref_93) 2009; 662
Frahm (ref_24) 2010; 192
Wolf (ref_81) 2005; 1743
Morabito (ref_77) 2010; 48
Patruno (ref_51) 2015; 121
Kim (ref_75) 2012; 33
Duan (ref_83) 2013; 4
ref_23
Storz (ref_13) 2005; 10
Lupke (ref_61) 2004; 38
Palumbo (ref_73) 2006; 27
Buldak (ref_78) 2012; 33
ref_28
Bae (ref_35) 2011; 32
Deutschlander (ref_21) 1999; 202
ref_26
Fasseas (ref_108) 2015; 91
Ongaro (ref_14) 2015; 9
Foster (ref_90) 2007; 92
Limoli (ref_45) 2004; 101
Lim (ref_67) 2015; 28
Bekhite (ref_34) 2013; 167
Sadeghipour (ref_66) 2012; 31
Park (ref_62) 2013; 62
Yang (ref_64) 2015; 44
Friedman (ref_109) 2007; 405
Feng (ref_57) 2016; 38
Yin (ref_3) 2016; 82
Sullivan (ref_31) 2011; 32
Sefidbakht (ref_95) 2014; 13
Agarwal (ref_91) 2009; 92
Shine (ref_37) 2012; 33
Bajpai (ref_41) 2014; 102
Richter (ref_6) 1995; 1271
Bonekamp (ref_8) 2009; 35
Calcabrini (ref_59) 2017; 64
Lu (ref_94) 2012; 2012
Zmyslony (ref_107) 2004; 25
Tang (ref_48) 2016; 37
Garip (ref_50) 2010; 61
Jochem (ref_112) 2005; 56
Kesari (ref_54) 2015; 794
Luukkonen (ref_103) 2010; 31
Kesari (ref_101) 2011; 30
Zeni (ref_106) 2007; 167
Zhang (ref_47) 2016; 7
Csillag (ref_38) 2014; 11
Feng (ref_56) 2016; 92
Chen (ref_79) 2014; 57
Mannerling (ref_49) 2010; 49
Luukkonen (ref_53) 2014; 760
Poniedzialek (ref_30) 2013; 32
Zhang (ref_46) 2017; 8
Falone (ref_87) 2009; 219
Zhao (ref_33) 2011; 32
Lantow (ref_105) 2006; 45
Kock (ref_88) 2014; 44
Jeong (ref_63) 2017; 81
Vincenzi (ref_70) 2017; 232
Sauer (ref_43) 2004; 294
Pelicano (ref_11) 2004; 7
Manikonda (ref_85) 2014; 33
Allen (ref_2) 2000; 28
Ozguner (ref_116) 2005; 277
Koh (ref_65) 2008; 84
Bagkos (ref_5) 2015; 85
Ciejka (ref_89) 2011; 62
Manta (ref_102) 2014; 33
Ma (ref_86) 2013; 2013
Varani (ref_16) 2009; 17
Campisi (ref_98) 2010; 473
Sauer (ref_42) 1999; 75
Zablotskii (ref_32) 2014; 35
Bekhite (ref_36) 2010; 19
Kumar (ref_100) 2011; 95
Staniek (ref_4) 2002; 36
Duong (ref_68) 2016; 92
Feng (ref_58) 2016; 92
Jouni (ref_111) 2012; 741
Ayse (ref_52) 2010; 29
Politanski (ref_44) 2010; 23
Fu (ref_39) 2016; 37
Benassi (ref_55) 2016; 53
Ferroni (ref_72) 2017; 11
Liou (ref_12) 2010; 44
Hong (ref_74) 2012; 53
Morabito (ref_80) 2010; 26
Segal (ref_10) 1997; 832
Okano (ref_25) 2008; 13
Roy (ref_82) 1995; 376
Ongaro (ref_15) 2012; 227
Kesari (ref_114) 2010; 162
Benazzo (ref_19) 2008; 26
Babior (ref_9) 1995; 2
Romeo (ref_40) 2016; 6
Krath (ref_20) 2017; 14
Falone (ref_69) 2016; 92
ref_1
Bekhite (ref_22) 2016; 65
Poniedzialek (ref_76) 2013; 32
Barbul (ref_110) 2013; 1833
Yao (ref_96) 2008; 49
Cordisco (ref_29) 2006; 1090
Goraca (ref_84) 2010; 61
27003876 - Bioelectromagnetics. 2016 May;37(4):212-22
23781995 - Electromagn Biol Med. 2014 Jun;33(2):118-31
17495663 - Health Phys. 2007 Jun;92(6):609-20
21887222 - PLoS One. 2011;6(8):e22753
20582429 - Radiat Environ Biophys. 2010 Nov;49(4):731-41
14732250 - J Photochem Photobiol B. 2004 Jan 23;73(1-2):43-8
25111744 - Neurotoxicology. 2014 Sep;44:358-64
20005945 - Free Radic Biol Med. 2010 Feb 15;48(4):579-89
19115234 - J Cell Physiol. 2009 May;219(2):334-43
26689947 - Int J Radiat Biol. 2016;92(2):107-15
25800450 - Biomed Environ Sci. 2015 Mar;28(3):231-4
19459143 - Biofactors. 2009 Jul-Aug;35(4):346-55
21306983 - Int J Occup Med Environ Health. 2010;23(4):377-84
23764910 - Food Funct. 2013 Aug;4(8):1252-62
12069101 - Free Radic Res. 2002 Apr;36(4):381-7
10572253 - J Cell Biochem. 1999 Dec 15;75(4):710-23
24374227 - Mutat Res. 2014 Feb;760:33-41
24142888 - J Biomed Mater Res B Appl Biomater. 2014 Apr;102(3):524-32
15522966 - Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):16052-7
23255506 - J Tissue Eng Regen Med. 2015 Dec;9(12 ):E229-38
21240569 - Appl Biochem Biotechnol. 2011 Jun;164(4):546-59
10699758 - Free Radic Biol Med. 2000 Feb 1;28(3):463-99
25488006 - Int J Radiat Biol. 2015 Mar;91(3):286-93
27639248 - J Cell Physiol. 2017 May;232(5):1200-1208
15777847 - Biochim Biophys Acta. 2005 Mar 22;1743(1-2):120-9
28061454 - Oncotarget. 2017 Feb 21;8(8):13126-13141
15197754 - Bioelectromagnetics. 2004 Jul;25(5):324-8
19016143 - Int J Radiat Biol. 2008 Nov;84(11):945-55
19768389 - Appl Biochem Biotechnol. 2010 Sep;162(2):416-28
27310130 - Cell Physiol Biochem. 2016;38(6):2489-99
19913603 - Toxicol Lett. 2010 Feb 15;192(3):330-6
27856169 - Phys Ther Sport. 2017 Mar;24:32-38
24217848 - Bioelectromagnetics. 2013 Dec;34(8):618-29
23481041 - Biochim Biophys Acta. 2013 Jun;1833(6):1396-408
20156525 - Neurosci Lett. 2010 Mar 31;473(1):52-5
26053437 - J Tissue Eng Regen Med. 2017 May;11(5):1332-1342
26474928 - Med Hypotheses. 2015 Dec;85(6):810-8
26807660 - Bioelectromagnetics. 2016 Feb;37(2):89-98
24334533 - Gen Physiol Biophys. 2014;33(1):81-90
16552570 - Radiat Environ Biophys. 2006 May;45(1):55-62
20610864 - J Physiol Pharmacol. 2010 Jun;61(3):333-8
23411410 - Neurochem Int. 2013 Mar;62(4):418-24
22253132 - Bioelectromagnetics. 2012 Jul;33(5):428-37
26762783 - Sci Rep. 2016 Jan 14;6:19398
26223801 - Mol Neurobiol. 2016 Aug;53(6):4247-4260
18640059 - Osteoarthritis Cartilage. 2009 Feb;17(2):252-62
24886806 - Photochem Photobiol Sci. 2014 Jul;13(7):1082-92
18508647 - Front Biosci. 2008 May 01;13:6106-25
26350014 - Zhejiang Da Xue Xue Bao Yi Xue Ban. 2015 May;44(3):323-8
15621717 - Free Radic Res. 2004 Sep;38(9):985-93
23631724 - Electromagn Biol Med. 2013 Dec;32(4):560-8
25498893 - Life Sci. 2015 Jan 15;121:117-23
21225886 - Bioelectromagnetics. 2011 Feb;32(2):94-101
17456048 - Biochem J. 2007 Aug 1;405(3):559-68
22535669 - Bioelectromagnetics. 2012 Dec;33(8):641-51
26653983 - Mutat Res Genet Toxicol Environ Mutagen. 2015 Dec;794:46-51
27223425 - Oncotarget. 2016 Jul 5;7(27):41527-41539
27001710 - Biotechnol Appl Biochem. 2017 May;64(3):415-422
16132717 - Mol Cell Biochem. 2005 Sep;277(1-2):73-80
16340042 - J Physiol Pharmacol. 2005 Dec;56 Suppl 6:91-9
23137127 - Electromagn Biol Med. 2013 Sep;32(3):333-41
7599228 - Biochim Biophys Acta. 1995 May 24;1271(1):67-74
10085262 - J Exp Biol. 1999 Apr;202 (Pt 8):891-908
27346840 - Reprod Toxicol. 2016 Oct;65:46-58
18436834 - Invest Ophthalmol Vis Sci. 2008 May;49(5):2009-15
20519170 - Acta Biol Hung. 2010 Jun;61(2):158-67
20370557 - Free Radic Res. 2010 May;44(5):479-96
20707646 - Electromagn Biol Med. 2010 Aug;29(3):122-30
11569916 - IUBMB Life. 2001 Apr;51(4):223-30
15769673 - Front Biosci. 2005 May 01;10:1881-96
25423171 - PLoS One. 2014 Nov 25;9(11):e113530
15023522 - Exp Cell Res. 2004 Apr 1;294(2):313-24
19135463 - Mutat Res. 2009 Mar 9;662(1-2):54-8
7498533 - FEBS Lett. 1995 Dec 4;376(3):164-6
22314568 - J Physiol Pharmacol. 2011 Dec;62(6):657-61
18176941 - J Orthop Res. 2008 May;26(5):631-42
17384247 - Ann N Y Acad Sci. 2006 Dec;1090:59-68
21830213 - J Cell Physiol. 2012 Jun;227(6):2461-9
12415560 - Cell Biochem Funct. 2002 Dec;20(4):279-83
24647908 - J R Soc Interface. 2014 Mar 19;11(95):20140097
17459652 - Biomed Pharmacother. 2008 Dec;62(10):709-15
9704049 - Ann N Y Acad Sci. 1997 Dec 15;832:215-22
24681944 - PLoS One. 2014 Mar 28;9(3):e93065
28736490 - J Orthop. 2017 Jun 29;14 (3):410-415
22047460 - Electromagn Biol Med. 2011 Dec;30(4):219-34
15158766 - Drug Resist Updat. 2004 Apr;7(2):97-110
26850078 - Int J Radiat Biol. 2016;92 (3):148-55
22465345 - Int J Cardiol. 2013 Aug 10;167(3):798-808
22302048 - J Radiat Res. 2012;53(1):79-86
18804757 - Fertil Steril. 2009 Oct;92(4):1318-25
21220925 - Cell Physiol Biochem. 2010;26(6):947-58
21225891 - Bioelectromagnetics. 2011 Feb;32(2):140-7
24312697 - Oxid Med Cell Longev. 2013;2013:529173
9371972 - Curr Opin Hematol. 1995 Jan;2(1):55-60
16342194 - Bioelectromagnetics. 2006 Feb;27(2):159-62
26882219 - Int J Radiat Biol. 2016;92(4):195-201
25708841 - Bioelectromagnetics. 2015 Apr;36(3):219-32
26940444 - Int J Radiat Biol. 2016 May;92 (5):281-6
20564172 - Bioelectromagnetics. 2010 Sep;31(6):417-24
22108253 - Mutat Res. 2012 Jan 24;741(1-2):116-21
19649291 - PLoS One. 2009 Jul 31;4(7):e6446
21911251 - Biomaterials. 2011 Dec;32(35):9401-14
22676212 - Electromagn Biol Med. 2012 Dec;31(4):425-35
22778799 - Oxid Med Cell Longev. 2012;2012:740280
25450462 - Int J Biochem Cell Biol. 2014 Dec;57:108-14
19788349 - Stem Cells Dev. 2010 May;19(5):731-43
14734207 - Clin Chim Acta. 2004 Feb;340(1-2):153-62
27470406 - Biomed Pharmacother. 2016 Aug;82:628-39
16713449 - Biochim Biophys Acta. 2006 Apr;1763(4):402-12
28351214 - Biosci Biotechnol Biochem. 2017 Jul;81(7):1356-1362
20723534 - Fertil Steril. 2011 Mar 15;95(4):1500-2
17316071 - Radiat Res. 2007 Mar;167(3):306-11
27442448 - Int J Radiat Biol. 2016 Oct;92 (10 ):596-602
22180328 - Bioelectromagnetics. 2012 Jul;33(5):383-93
24439412 - Biomaterials. 2014 Mar;35(10):3164-71
References_xml – volume: 2
  start-page: 55
  year: 1995
  ident: ref_9
  article-title: The respiratory burst oxidase
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/00062752-199502010-00008
– volume: 34
  start-page: 618
  year: 2013
  ident: ref_27
  article-title: Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.21815
– volume: 164
  start-page: 546
  year: 2011
  ident: ref_99
  article-title: Effects of radiofrequency electromagnetic wave exposure from cellular phones on the reproductive pattern in male Wistar rats
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-010-9156-0
– volume: 51
  start-page: 223
  year: 2001
  ident: ref_7
  article-title: The peroxisome in oxidative stress
  publication-title: IUBMB Life
  doi: 10.1080/152165401753311762
– volume: 61
  start-page: 333
  year: 2010
  ident: ref_84
  article-title: Effects of extremely low frequency magnetic field on the parameters of oxidative stress in heart
  publication-title: J. Physiol. Pharmacol.
– volume: 192
  start-page: 330
  year: 2010
  ident: ref_24
  article-title: Exposure to ELF magnetic fields modulate redox related protein expression in mouse macrophages
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2009.11.010
– volume: 37
  start-page: 89
  year: 2016
  ident: ref_48
  article-title: Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.21954
– volume: 53
  start-page: 4247
  year: 2016
  ident: ref_55
  article-title: Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the Pro-Parkinson’s disease toxin MPP+
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-015-9354-4
– volume: 92
  start-page: 609
  year: 2007
  ident: ref_90
  article-title: Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines
  publication-title: Health Phys.
  doi: 10.1097/01.HP.0000262572.64418.38
– volume: 1763
  start-page: 402
  year: 2006
  ident: ref_60
  article-title: Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2006.03.003
– volume: 6
  start-page: 19398
  year: 2016
  ident: ref_40
  article-title: Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field
  publication-title: Sci. Rep.
  doi: 10.1038/srep19398
– volume: 62
  start-page: 418
  year: 2013
  ident: ref_62
  article-title: Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2013.02.002
– volume: 32
  start-page: 333
  year: 2013
  ident: ref_76
  article-title: The effect of electromagnetic field on reactive oxygen species production in human neutrophils In Vitro
  publication-title: Electromagn. Biol. Med.
  doi: 10.3109/15368378.2012.721845
– volume: 20
  start-page: 279
  year: 2002
  ident: ref_117
  article-title: Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits
  publication-title: Cell Biochem. Funct.
  doi: 10.1002/cbf.976
– volume: 95
  start-page: 1500
  year: 2011
  ident: ref_100
  article-title: Influence of microwave exposure on fertility of male rats
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2010.04.078
– volume: 13
  start-page: 6106
  year: 2008
  ident: ref_25
  article-title: Effects of static magnetic fields in biology: Role of free radicals
  publication-title: Front. Biosci.
  doi: 10.2741/3141
– volume: 44
  start-page: 479
  year: 2010
  ident: ref_12
  article-title: Reactive oxygen species in cancer
  publication-title: Free Radic. Res.
  doi: 10.3109/10715761003667554
– volume: 31
  start-page: 417
  year: 2010
  ident: ref_103
  article-title: Combined effects of 872 MHz radiofrequency radiation and ferrous chloride on reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20580
– volume: 277
  start-page: 73
  year: 2005
  ident: ref_116
  article-title: A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Prognostic value of malondialdehyde, N-acetyl-beta-d-glucosaminidase and nitric oxide determination
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-005-5074-9
– volume: 4
  start-page: 1252
  year: 2013
  ident: ref_83
  article-title: The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure
  publication-title: Food Funct.
  doi: 10.1039/c3fo60116a
– volume: 45
  start-page: 55
  year: 2006
  ident: ref_105
  article-title: ROS release and Hsp70 expression after exposure to 1800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes
  publication-title: Radiat. Environ. Biophys.
  doi: 10.1007/s00411-006-0038-3
– volume: 92
  start-page: 596
  year: 2016
  ident: ref_56
  article-title: NADPH oxidase-produced superoxide mediated a 50-Hz magnetic field-induced epidermal growth factor receptor clustering
  publication-title: Int. J. Radiat. Biol.
  doi: 10.1080/09553002.2016.1206227
– volume: 28
  start-page: 231
  year: 2015
  ident: ref_67
  article-title: Protective effect of 10-Hz, 1-mT electromagnetic field exposure against hypoxia/reoxygenation injury in HK-2 cells
  publication-title: Biomed. Environ. Sci.
– volume: 794
  start-page: 46
  year: 2015
  ident: ref_54
  article-title: Genomic instability induced by 50 Hz magnetic fields is a dynamically evolving process not blocked by antioxidant treatment
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrgentox.2015.10.004
– volume: 92
  start-page: 148
  year: 2016
  ident: ref_58
  article-title: Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3beta signaling pathway
  publication-title: Int. J. Radiat. Biol.
  doi: 10.3109/09553002.2016.1135261
– volume: 64
  start-page: 415
  year: 2017
  ident: ref_59
  article-title: Effect of extremely low-frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line NCTC 2544
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1002/bab.1495
– volume: 81
  start-page: 1356
  year: 2017
  ident: ref_63
  article-title: Extremely low-frequency electromagnetic field promotes astrocytic differentiation of human bone marrow mesenchymal stem cells by modulating SIRT1 expression
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2017.1308243
– volume: 10
  start-page: 1881
  year: 2005
  ident: ref_13
  article-title: Reactive oxygen species in tumor progression
  publication-title: Front. Biosci.
  doi: 10.2741/1667
– volume: 202
  start-page: 891
  year: 1999
  ident: ref_21
  article-title: The case for light-dependent magnetic orientation in animals
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.202.8.891
– volume: 84
  start-page: 945
  year: 2008
  ident: ref_65
  article-title: A 60-Hz sinusoidal magnetic field induces apoptosis of prostate cancer cells through reactive oxygen species
  publication-title: Int. J. Radiat. Biol.
  doi: 10.1080/09553000802460206
– volume: 7
  start-page: 97
  year: 2004
  ident: ref_11
  article-title: ROS stress in cancer cells and therapeutic implications
  publication-title: Drug Resist. Updates
  doi: 10.1016/j.drup.2004.01.004
– volume: 31
  start-page: 425
  year: 2012
  ident: ref_66
  article-title: Effects of extremely low-frequency pulsed electromagnetic fields on morphological and biochemical properties of human breast carcinoma cells (T47D)
  publication-title: Electromagn. Biol. Med.
  doi: 10.3109/15368378.2012.683844
– volume: 65
  start-page: 46
  year: 2016
  ident: ref_22
  article-title: Differential effects of high and low strength magnetic fields on mouse embryonic development and vasculogenesis of embryonic stem cells
  publication-title: Reprod. Toxicol.
  doi: 10.1016/j.reprotox.2016.06.016
– volume: 32
  start-page: 560
  year: 2013
  ident: ref_30
  article-title: Reactive oxygen species (ROS) production in human peripheral blood neutrophils exposed In Vitro to static magnetic field
  publication-title: Electromagn. Biol. Med.
  doi: 10.3109/15368378.2013.773910
– volume: 33
  start-page: 428
  year: 2012
  ident: ref_37
  article-title: Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.21702
– volume: 75
  start-page: 710
  year: 1999
  ident: ref_42
  article-title: Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells
  publication-title: J. Cell. Biochem.
  doi: 10.1002/(SICI)1097-4644(19991215)75:4<710::AID-JCB16>3.0.CO;2-Z
– volume: 7
  start-page: 41527
  year: 2016
  ident: ref_47
  article-title: Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9479
– volume: 1833
  start-page: 1396
  year: 2013
  ident: ref_110
  article-title: Low electric fields induce ligand-independent activation of EGF receptor and ERK via electrochemical elevation of H(+) and ROS concentrations
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2013.02.011
– volume: 9
  start-page: E229
  year: 2015
  ident: ref_14
  article-title: Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.1671
– volume: 232
  start-page: 1200
  year: 2017
  ident: ref_70
  article-title: Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25606
– volume: 56
  start-page: 91
  year: 2005
  ident: ref_112
  article-title: Influence of melatonin on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes—An In Vitro study
  publication-title: J. Physiol. Pharmacol.
– volume: 85
  start-page: 810
  year: 2015
  ident: ref_5
  article-title: Mitochondrial emitted electromagnetic signals mediate retrograde signaling
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2015.10.004
– volume: 1090
  start-page: 59
  year: 2006
  ident: ref_29
  article-title: Magnetic fields protect from apoptosis via redox alteration
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1378.006
– volume: 26
  start-page: 631
  year: 2008
  ident: ref_19
  article-title: Cartilage repair with osteochondral autografts in sheep: Effect of biophysical stimulation with pulsed electromagnetic fields
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20530
– volume: 27
  start-page: 159
  year: 2006
  ident: ref_73
  article-title: Effects on apoptosis and reactive oxygen species formation by Jurkat cells exposed to 50 Hz electromagnetic fields
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20199
– volume: 2012
  start-page: 740280
  year: 2012
  ident: ref_94
  article-title: Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2012/740280
– volume: 25
  start-page: 324
  year: 2004
  ident: ref_107
  article-title: Acute exposure to 930 MHz CW electromagnetic radiation a In Vitro ffects reactive oxygen species level in rat lymphocytes treated by iron ions
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.10191
– volume: 28
  start-page: 463
  year: 2000
  ident: ref_2
  article-title: Oxidative stress and gene regulation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(99)00242-7
– volume: 741
  start-page: 116
  year: 2012
  ident: ref_111
  article-title: Oxidative stress in broad bean (Vicia faba L.) induced by static magnetic field under natural radioactivity
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrgentox.2011.11.003
– volume: 33
  start-page: 641
  year: 2012
  ident: ref_78
  article-title: Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.21732
– volume: 92
  start-page: 195
  year: 2016
  ident: ref_68
  article-title: Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS
  publication-title: Int. J. Radiat. Biol.
  doi: 10.3109/09553002.2016.1136851
– volume: 662
  start-page: 54
  year: 2009
  ident: ref_93
  article-title: Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrfmmm.2008.12.005
– volume: 44
  start-page: 358
  year: 2014
  ident: ref_88
  article-title: Assessment of the neurotoxic potential of exposure to 50 Hz extremely low frequency electromagnetic fields (ELF-EMF) in naive and chemically stressed PC12 cells
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2014.07.009
– volume: 38
  start-page: 985
  year: 2004
  ident: ref_61
  article-title: Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells
  publication-title: Free Radic. Res.
  doi: 10.1080/10715760400000968
– volume: 53
  start-page: 79
  year: 2012
  ident: ref_74
  article-title: Extremely low frequency magnetic fields do not elicit oxidative stress in MCF10A cells
  publication-title: J. Radiat. Res.
  doi: 10.1269/jrr.11049
– volume: 473
  start-page: 52
  year: 2010
  ident: ref_98
  article-title: Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.02.018
– ident: ref_26
  doi: 10.1371/journal.pone.0022753
– volume: 33
  start-page: 81
  year: 2014
  ident: ref_85
  article-title: Extremely low frequency magnetic fields induce oxidative stress in rat brain
  publication-title: Gen. Physiol. Biophys.
  doi: 10.4149/gpb_2013059
– volume: 49
  start-page: 2009
  year: 2008
  ident: ref_96
  article-title: Effect of superposed electromagnetic noise on DNA damage of lens epithelial cells induced by microwave radiation
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.07-1333
– volume: 227
  start-page: 2461
  year: 2012
  ident: ref_15
  article-title: Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.22981
– volume: 49
  start-page: 731
  year: 2010
  ident: ref_49
  article-title: Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells
  publication-title: Radiat. Environ. Biophys.
  doi: 10.1007/s00411-010-0306-0
– volume: 38
  start-page: 2489
  year: 2016
  ident: ref_57
  article-title: Mitochondrial ROS release and subsequent akt activation potentially mediated the anti-apoptotic effect of a 50-Hz magnetic field on FL cells
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000445599
– volume: 832
  start-page: 215
  year: 1997
  ident: ref_10
  article-title: The NADPH oxidase of phagocytic leukocytes
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1997.tb46249.x
– volume: 61
  start-page: 158
  year: 2010
  ident: ref_50
  article-title: Effect of ELF-EMF on number of apoptotic cells; correlation with reactive oxygen species and HSP
  publication-title: Acta Biol. Hung.
  doi: 10.1556/ABiol.61.2010.2.4
– ident: ref_97
  doi: 10.1371/journal.pone.0093065
– volume: 23
  start-page: 377
  year: 2010
  ident: ref_44
  article-title: Static magnetic field affects oxidative stress in mouse cochlea
  publication-title: Int. J. Occup. Med. Environ. Health
  doi: 10.2478/v10001-010-0041-4
– volume: 405
  start-page: 559
  year: 2007
  ident: ref_109
  article-title: Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies
  publication-title: Biochem. J.
  doi: 10.1042/BJ20061653
– volume: 102
  start-page: 524
  year: 2014
  ident: ref_41
  article-title: Synergistic effect of static magnetic field and HA-Fe3O4 magnetic composites on viability of S. aureus and E. coli bacteria
  publication-title: J. Biomed. Mater. Res. B
  doi: 10.1002/jbm.b.33031
– volume: 294
  start-page: 313
  year: 2004
  ident: ref_43
  article-title: Involvement of reactive oxygen species in cardiotrophin-1-induced proliferation of cardiomyocytes differentiated from murine embryonic stem cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2003.10.032
– volume: 11
  start-page: 20140097
  year: 2014
  ident: ref_38
  article-title: Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.0097
– volume: 101
  start-page: 16052
  year: 2004
  ident: ref_45
  article-title: Cell-density-dependent regulation of neural precursor cell function
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0407065101
– ident: ref_1
  doi: 10.1007/978-981-10-3579-1
– ident: ref_23
– volume: 44
  start-page: 323
  year: 2015
  ident: ref_64
  article-title: Extremely low frequency electromagnetic field induces apoptosis of osteosarcoma cells via oxidative stress
  publication-title: Zhejian. Da Xue Xue Bao
– volume: 33
  start-page: 383
  year: 2012
  ident: ref_75
  article-title: Time-varying magnetic fields of 60 Hz at 7 mT induce DNA double-strand breaks and activate DNA damage checkpoints without apoptosis
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.21697
– volume: 35
  start-page: 3164
  year: 2014
  ident: ref_32
  article-title: Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.12.098
– volume: 36
  start-page: 219
  year: 2015
  ident: ref_71
  article-title: Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2-induced ROS production by increasing MnSOD activity
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.21900
– volume: 92
  start-page: 1318
  year: 2009
  ident: ref_91
  article-title: Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: An In Vitro pilot study
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2008.08.022
– volume: 11
  start-page: 1332
  year: 2017
  ident: ref_72
  article-title: Treatment by Therapeutic Magnetic Resonance (TMR) increases fibroblastic activity and keratinocyte differentiation in an In Vitro model of 3D artificial skin
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.2031
– volume: 30
  start-page: 219
  year: 2011
  ident: ref_101
  article-title: 900-MHz microwave radiation promotes oxidation in rat brain
  publication-title: Electromagn. Biol. Med.
  doi: 10.3109/15368378.2011.587930
– volume: 26
  start-page: 947
  year: 2010
  ident: ref_80
  article-title: Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000324003
– volume: 73
  start-page: 43
  year: 2004
  ident: ref_113
  article-title: Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: A chemiluminescence study
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2003.10.003
– volume: 92
  start-page: 107
  year: 2016
  ident: ref_104
  article-title: Effect of cell phone-like electromagnetic radiation on primary human thyroid cells
  publication-title: Int. J. Radiat. Biol.
  doi: 10.3109/09553002.2016.1117678
– volume: 162
  start-page: 416
  year: 2010
  ident: ref_114
  article-title: Microwave exposure affecting reproductive system in male rats
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-009-8722-9
– ident: ref_28
  doi: 10.1371/journal.pone.0113530
– volume: 2013
  start-page: 529173
  year: 2013
  ident: ref_86
  article-title: Protective effects of low-frequency magnetic fields on cardiomyocytes from ischemia reperfusion injury via ROS and NO/ONOO
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2013/529173
– volume: 376
  start-page: 164
  year: 1995
  ident: ref_82
  article-title: The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(95)01266-X
– volume: 36
  start-page: 381
  year: 2002
  ident: ref_4
  article-title: Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways
  publication-title: Free Radic. Res.
  doi: 10.1080/10715760290021225
– volume: 92
  start-page: 281
  year: 2016
  ident: ref_69
  article-title: Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells
  publication-title: Int. J. Radiat. Biol.
  doi: 10.3109/09553002.2016.1150619
– volume: 1743
  start-page: 120
  year: 2005
  ident: ref_81
  article-title: 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanism
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2004.09.005
– volume: 35
  start-page: 346
  year: 2009
  ident: ref_8
  article-title: Reactive oxygen species and peroxisomes: Struggling for balance
  publication-title: BioFactors
  doi: 10.1002/biof.48
– volume: 32
  start-page: 140
  year: 2011
  ident: ref_31
  article-title: Effects of static magnetic fields on the growth of various types of human cells
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20624
– volume: 48
  start-page: 579
  year: 2010
  ident: ref_77
  article-title: Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.12.005
– volume: 82
  start-page: 628
  year: 2016
  ident: ref_3
  article-title: Neuroprotective effects of lotus seedpod procyanidins on extremely low frequency electromagnetic field-induced neurotoxicity in primary cultured hippocampal neurons
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.05.032
– volume: 121
  start-page: 117
  year: 2015
  ident: ref_51
  article-title: Effects of extremely low frequency electromagnetic field (ELF-EMF) on catalase, cytochrome P450 and nitric oxide synthase in erythro-leukemic cells
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2014.12.003
– volume: 14
  start-page: 410
  year: 2017
  ident: ref_20
  article-title: Electromagnetic transduction therapy in non-specific low back pain: A prospective randomised controlled trial
  publication-title: J. Orthop.
  doi: 10.1016/j.jor.2017.06.016
– volume: 24
  start-page: 32
  year: 2017
  ident: ref_17
  article-title: Pulsed electromagnetic field ameliorates cartilage degeneration by inhibiting mitogen-activated protein kinases in a rat model of osteoarthritis
  publication-title: Phys. Ther. Sport
  doi: 10.1016/j.ptsp.2016.10.003
– volume: 167
  start-page: 798
  year: 2013
  ident: ref_34
  article-title: Static magnetic fields increase cardiomyocyte differentiation of Flk-1+ cells derived from mouse embryonic stem cells via Ca2+ influx and ROS production
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2012.02.020
– volume: 760
  start-page: 33
  year: 2014
  ident: ref_53
  article-title: Induction of genomic instability, oxidative processes, and mitochondrial activity by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrfmmm.2013.12.002
– volume: 1271
  start-page: 67
  year: 1995
  ident: ref_6
  article-title: Oxidants in mitochondria: From physiology to diseases
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0925-4439(95)00012-S
– volume: 29
  start-page: 122
  year: 2010
  ident: ref_52
  article-title: Differentiation of K562 cells under ELF-EMF applied at different time courses
  publication-title: Electromagn. Biol. Med.
  doi: 10.3109/15368378.2010.502451
– volume: 340
  start-page: 153
  year: 2004
  ident: ref_115
  article-title: Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cccn.2003.10.012
– volume: 62
  start-page: 709
  year: 2008
  ident: ref_18
  article-title: Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2007.03.001
– volume: 167
  start-page: 306
  year: 2007
  ident: ref_106
  article-title: Formation of reactive oxygen species in L929 cells after exposure to 900 MHz RF radiation with and without co-exposure to 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone
  publication-title: Radiat. Res.
  doi: 10.1667/RR0595.1
– volume: 19
  start-page: 731
  year: 2010
  ident: ref_36
  article-title: Static electromagnetic fields induce vasculogenesis and chondro-osteogenesis of mouse embryonic stem cells by reactive oxygen species-mediated up-regulation of vascular endothelial growth factor
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2008.0266
– volume: 37
  start-page: 212
  year: 2016
  ident: ref_39
  article-title: Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.21968
– volume: 32
  start-page: 9401
  year: 2011
  ident: ref_35
  article-title: The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.075
– volume: 32
  start-page: 94
  year: 2011
  ident: ref_33
  article-title: Cellular ATP content was decreased by a homogeneous 8.5 T static magnetic field exposure: Role of reactive oxygen species
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20617
– volume: 33
  start-page: 118
  year: 2014
  ident: ref_102
  article-title: Reactive oxygen species elevation and recovery in Drosophila bodies and ovaries following short-term and long-term exposure to DECT base EMF
  publication-title: Electromagn. Biol. Med.
  doi: 10.3109/15368378.2013.791991
– volume: 13
  start-page: 1082
  year: 2014
  ident: ref_95
  article-title: Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c3pp50451d
– volume: 219
  start-page: 334
  year: 2009
  ident: ref_87
  article-title: Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21674
– volume: 62
  start-page: 657
  year: 2011
  ident: ref_89
  article-title: Effects of extremely low frequency magnetic field on oxidative balance in brain of rats
  publication-title: J. Physiol. Pharmacol.
– volume: 17
  start-page: 252
  year: 2009
  ident: ref_16
  article-title: Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2008.06.002
– volume: 91
  start-page: 286
  year: 2015
  ident: ref_108
  article-title: Response of Caenorhabditis elegans to wireless devices radiation exposure
  publication-title: Int. J. Radiat. Biol.
  doi: 10.3109/09553002.2014.995384
– volume: 8
  start-page: 13126
  year: 2017
  ident: ref_46
  article-title: Cell type- and density-dependent effect of 1 T static magnetic field on cell proliferation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14480
– volume: 57
  start-page: 108
  year: 2014
  ident: ref_79
  article-title: Power frequency magnetic fields induced reactive oxygen species-related autophagy in mouse embryonic fibroblasts
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2014.10.013
– ident: ref_92
  doi: 10.1371/journal.pone.0006446
– reference: 20370557 - Free Radic Res. 2010 May;44(5):479-96
– reference: 25498893 - Life Sci. 2015 Jan 15;121:117-23
– reference: 24142888 - J Biomed Mater Res B Appl Biomater. 2014 Apr;102(3):524-32
– reference: 27223425 - Oncotarget. 2016 Jul 5;7(27):41527-41539
– reference: 12069101 - Free Radic Res. 2002 Apr;36(4):381-7
– reference: 16340042 - J Physiol Pharmacol. 2005 Dec;56 Suppl 6:91-9
– reference: 25111744 - Neurotoxicology. 2014 Sep;44:358-64
– reference: 20564172 - Bioelectromagnetics. 2010 Sep;31(6):417-24
– reference: 20610864 - J Physiol Pharmacol. 2010 Jun;61(3):333-8
– reference: 27310130 - Cell Physiol Biochem. 2016;38(6):2489-99
– reference: 25450462 - Int J Biochem Cell Biol. 2014 Dec;57:108-14
– reference: 26762783 - Sci Rep. 2016 Jan 14;6:19398
– reference: 7498533 - FEBS Lett. 1995 Dec 4;376(3):164-6
– reference: 22302048 - J Radiat Res. 2012;53(1):79-86
– reference: 27856169 - Phys Ther Sport. 2017 Mar;24:32-38
– reference: 26053437 - J Tissue Eng Regen Med. 2017 May;11(5):1332-1342
– reference: 15158766 - Drug Resist Updat. 2004 Apr;7(2):97-110
– reference: 7599228 - Biochim Biophys Acta. 1995 May 24;1271(1):67-74
– reference: 19459143 - Biofactors. 2009 Jul-Aug;35(4):346-55
– reference: 19768389 - Appl Biochem Biotechnol. 2010 Sep;162(2):416-28
– reference: 22108253 - Mutat Res. 2012 Jan 24;741(1-2):116-21
– reference: 21887222 - PLoS One. 2011;6(8):e22753
– reference: 23781995 - Electromagn Biol Med. 2014 Jun;33(2):118-31
– reference: 24681944 - PLoS One. 2014 Mar 28;9(3):e93065
– reference: 25708841 - Bioelectromagnetics. 2015 Apr;36(3):219-32
– reference: 20707646 - Electromagn Biol Med. 2010 Aug;29(3):122-30
– reference: 20582429 - Radiat Environ Biophys. 2010 Nov;49(4):731-41
– reference: 20723534 - Fertil Steril. 2011 Mar 15;95(4):1500-2
– reference: 15023522 - Exp Cell Res. 2004 Apr 1;294(2):313-24
– reference: 22535669 - Bioelectromagnetics. 2012 Dec;33(8):641-51
– reference: 23764910 - Food Funct. 2013 Aug;4(8):1252-62
– reference: 22047460 - Electromagn Biol Med. 2011 Dec;30(4):219-34
– reference: 20005945 - Free Radic Biol Med. 2010 Feb 15;48(4):579-89
– reference: 22253132 - Bioelectromagnetics. 2012 Jul;33(5):428-37
– reference: 26474928 - Med Hypotheses. 2015 Dec;85(6):810-8
– reference: 28351214 - Biosci Biotechnol Biochem. 2017 Jul;81(7):1356-1362
– reference: 27470406 - Biomed Pharmacother. 2016 Aug;82:628-39
– reference: 15777847 - Biochim Biophys Acta. 2005 Mar 22;1743(1-2):120-9
– reference: 17384247 - Ann N Y Acad Sci. 2006 Dec;1090:59-68
– reference: 10085262 - J Exp Biol. 1999 Apr;202 (Pt 8):891-908
– reference: 17316071 - Radiat Res. 2007 Mar;167(3):306-11
– reference: 25423171 - PLoS One. 2014 Nov 25;9(11):e113530
– reference: 27442448 - Int J Radiat Biol. 2016 Oct;92 (10 ):596-602
– reference: 21220925 - Cell Physiol Biochem. 2010;26(6):947-58
– reference: 24439412 - Biomaterials. 2014 Mar;35(10):3164-71
– reference: 25488006 - Int J Radiat Biol. 2015 Mar;91(3):286-93
– reference: 22676212 - Electromagn Biol Med. 2012 Dec;31(4):425-35
– reference: 16552570 - Radiat Environ Biophys. 2006 May;45(1):55-62
– reference: 26807660 - Bioelectromagnetics. 2016 Feb;37(2):89-98
– reference: 10572253 - J Cell Biochem. 1999 Dec 15;75(4):710-23
– reference: 19016143 - Int J Radiat Biol. 2008 Nov;84(11):945-55
– reference: 21306983 - Int J Occup Med Environ Health. 2010;23(4):377-84
– reference: 21225886 - Bioelectromagnetics. 2011 Feb;32(2):94-101
– reference: 19135463 - Mutat Res. 2009 Mar 9;662(1-2):54-8
– reference: 24647908 - J R Soc Interface. 2014 Mar 19;11(95):20140097
– reference: 24312697 - Oxid Med Cell Longev. 2013;2013:529173
– reference: 12415560 - Cell Biochem Funct. 2002 Dec;20(4):279-83
– reference: 23255506 - J Tissue Eng Regen Med. 2015 Dec;9(12 ):E229-38
– reference: 17459652 - Biomed Pharmacother. 2008 Dec;62(10):709-15
– reference: 21225891 - Bioelectromagnetics. 2011 Feb;32(2):140-7
– reference: 26350014 - Zhejiang Da Xue Xue Bao Yi Xue Ban. 2015 May;44(3):323-8
– reference: 27003876 - Bioelectromagnetics. 2016 May;37(4):212-22
– reference: 26882219 - Int J Radiat Biol. 2016;92(4):195-201
– reference: 17495663 - Health Phys. 2007 Jun;92(6):609-20
– reference: 23137127 - Electromagn Biol Med. 2013 Sep;32(3):333-41
– reference: 21911251 - Biomaterials. 2011 Dec;32(35):9401-14
– reference: 18640059 - Osteoarthritis Cartilage. 2009 Feb;17(2):252-62
– reference: 21830213 - J Cell Physiol. 2012 Jun;227(6):2461-9
– reference: 23481041 - Biochim Biophys Acta. 2013 Jun;1833(6):1396-408
– reference: 26689947 - Int J Radiat Biol. 2016;92(2):107-15
– reference: 20156525 - Neurosci Lett. 2010 Mar 31;473(1):52-5
– reference: 28736490 - J Orthop. 2017 Jun 29;14 (3):410-415
– reference: 15522966 - Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):16052-7
– reference: 9371972 - Curr Opin Hematol. 1995 Jan;2(1):55-60
– reference: 28061454 - Oncotarget. 2017 Feb 21;8(8):13126-13141
– reference: 18508647 - Front Biosci. 2008 May 01;13:6106-25
– reference: 24217848 - Bioelectromagnetics. 2013 Dec;34(8):618-29
– reference: 15769673 - Front Biosci. 2005 May 01;10:1881-96
– reference: 24334533 - Gen Physiol Biophys. 2014;33(1):81-90
– reference: 23411410 - Neurochem Int. 2013 Mar;62(4):418-24
– reference: 23631724 - Electromagn Biol Med. 2013 Dec;32(4):560-8
– reference: 18804757 - Fertil Steril. 2009 Oct;92(4):1318-25
– reference: 15197754 - Bioelectromagnetics. 2004 Jul;25(5):324-8
– reference: 24374227 - Mutat Res. 2014 Feb;760:33-41
– reference: 15621717 - Free Radic Res. 2004 Sep;38(9):985-93
– reference: 18176941 - J Orthop Res. 2008 May;26(5):631-42
– reference: 19649291 - PLoS One. 2009 Jul 31;4(7):e6446
– reference: 21240569 - Appl Biochem Biotechnol. 2011 Jun;164(4):546-59
– reference: 26850078 - Int J Radiat Biol. 2016;92 (3):148-55
– reference: 22778799 - Oxid Med Cell Longev. 2012;2012:740280
– reference: 27001710 - Biotechnol Appl Biochem. 2017 May;64(3):415-422
– reference: 9704049 - Ann N Y Acad Sci. 1997 Dec 15;832:215-22
– reference: 19788349 - Stem Cells Dev. 2010 May;19(5):731-43
– reference: 24886806 - Photochem Photobiol Sci. 2014 Jul;13(7):1082-92
– reference: 26940444 - Int J Radiat Biol. 2016 May;92 (5):281-6
– reference: 16342194 - Bioelectromagnetics. 2006 Feb;27(2):159-62
– reference: 18436834 - Invest Ophthalmol Vis Sci. 2008 May;49(5):2009-15
– reference: 20519170 - Acta Biol Hung. 2010 Jun;61(2):158-67
– reference: 19913603 - Toxicol Lett. 2010 Feb 15;192(3):330-6
– reference: 19115234 - J Cell Physiol. 2009 May;219(2):334-43
– reference: 10699758 - Free Radic Biol Med. 2000 Feb 1;28(3):463-99
– reference: 22314568 - J Physiol Pharmacol. 2011 Dec;62(6):657-61
– reference: 25800450 - Biomed Environ Sci. 2015 Mar;28(3):231-4
– reference: 26223801 - Mol Neurobiol. 2016 Aug;53(6):4247-4260
– reference: 16132717 - Mol Cell Biochem. 2005 Sep;277(1-2):73-80
– reference: 16713449 - Biochim Biophys Acta. 2006 Apr;1763(4):402-12
– reference: 14734207 - Clin Chim Acta. 2004 Feb;340(1-2):153-62
– reference: 22180328 - Bioelectromagnetics. 2012 Jul;33(5):383-93
– reference: 17456048 - Biochem J. 2007 Aug 1;405(3):559-68
– reference: 27639248 - J Cell Physiol. 2017 May;232(5):1200-1208
– reference: 26653983 - Mutat Res Genet Toxicol Environ Mutagen. 2015 Dec;794:46-51
– reference: 27346840 - Reprod Toxicol. 2016 Oct;65:46-58
– reference: 22465345 - Int J Cardiol. 2013 Aug 10;167(3):798-808
– reference: 11569916 - IUBMB Life. 2001 Apr;51(4):223-30
– reference: 14732250 - J Photochem Photobiol B. 2004 Jan 23;73(1-2):43-8
SSID ssj0023259
Score 2.5645628
SecondaryResourceType review_article
Snippet Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2175
SubjectTerms Magnetic fields
Reactive oxygen species
Review
Rodents
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50Ivgi_rY6pYI-jbC1SZPuSUQcIqggCnsrSZP6A-3UTnD_vXdttzlFn3vQcpfcfZdcvw_gkPPyNsiyTKWKCSkcM4ExTHOtrM2kziq2zyt5ficu-lG_PnAr6rHKcU4sE7UdpHRG3ibmO4lYmAfHr2-MVKPodrWW0JiHBaIuo5Eu1Z82XDwsxdICrEFMRl1ZDb5zbPPbj08vBRY3QuTRbEn6hTN_jkt-qz-9FViugaN_UkV6FeZcvgaLlZTkaB1al_o-px8S_R7NpBW-zq1_43SZzvzrzxEuFL8Um3fFBtz1zm5Pz1kthMBSoeIhU9jGcGomY3Shy0ya2ZB4wkyXu9QGFret5Mq4OLZaCCJMJuYyLYzCbiHTKd-ERj7I3Tb4IjLWWN7JOrEWLnQ66oYI-gLXEYpnNvKgNfZFktYs4SRW8Zxgt0CeS757zoOjifVrxY7xh11z7Nak3iNFMo2oBweTx7i66cpC527wQTbEzxdiWvVgq4rC5EVhF7EmwicP1Ex8JgbEnD37JH98KBm0EcPKOJI7_3_WLiyFVMRpfiVuQmP4_uH2EIIMzX65zr4A6QvafA
  priority: 102
  providerName: ProQuest
Title Magnetic Fields and Reactive Oxygen Species
URI https://www.ncbi.nlm.nih.gov/pubmed/29057846
https://www.proquest.com/docview/1965682631
https://www.proquest.com/docview/1954432219
https://pubmed.ncbi.nlm.nih.gov/PMC5666856
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LS8NAEB5qRfAivo2PEEFPEm2zm2x6EFGxFqEqYqG3sJvd-EDjIy3Yf-9M0oT66CWXnSQws7vzfezsNwB7jOWnQdpNRCxcHnDjqqZSrmRSaJ0EMinUPq-DTo9f9f1-Dcpuo2MHZv9SO-on1ft8Ofz6GJ3ggj8mxomU_ejp-TXDREXo2p-BWcxJgpZol1fnCQgb_FZR9v7nDZIDbiFqCQkDT-amP4Dzd93kRCJqL8LCGEE6p0XIl6Bm0mWYK3pKjlbgoCsfUrqZ6LSpOC1zZKqdOyPzfc25-RrhjHHyrvMmW4Ve--L-vOOOOyK4MRfhwBXIZxixyhB9aRIVJ9ojwTDVYibWTY3rN2BCmTDUknNSTiYJM8mVQNqQyJitQT19S80GONxXWmnWSBqh5MYz0m95iP6apsEFS7RvwUHpiygey4VT14qXCGkDOTGadKIF-5X1eyGTMcVuu3RrVMY6IlHDAGkOa1qwWw3jNKezC5matyHZkFCfh_urBetFFKofleGzQPyIT2VAEto_R9Knx1xKG8FsEPrB5tRvbsG8Rx1_8wLdbagPPodmB2HIQNkwI_oCn2H70obZs4vr2zubEoNv53PvG6li32I
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUNVeEPQZyiOVyglZJLZjJweEqsJqKY9KFUh7S-3YaanaLJBFZf9Uf2Nnks3CFrU3zhkl1nge38TjbwDeCdGcBjlW6kIzqaRnNraWGWG0c6UyZcv2eaL6Z_LjIBnMwe_uLgy1VXYxsQnUbljQP_JtYr5TiIVFvHtxyWhqFJ2udiM0WrM49ONfWLLVOwd7uL-bnPf2Tz_02WSqACukTkdMY00gqDJLcT2-tEXpOJFu2Uz4wsUOfUAJbX2aOiMlsQ8TDZiRViP0Lk0h8L2PYAETb0QepQe3BZ7gzXC2GHMeU0mm2kZ7IbJo-_z7zxqTKVUAyWwKvIdr_27PvJPvekuwOAGq4fvWspZhzlfP4HE7unL8HLaOzdeKLkCGPeqBq0NTufCzN034DD_djNEww2a4va9fwNmDqOglzFfDyr-GUCbWWSeiMkqN9NybJOMIMmMfSS1KlwSw1ekiLyas5DQc40eO1QlpLr-ruQA2p9IXLRvHP-RWO7XmE5-s81sLCuDt9DF6Ex2RmMoPr0mG-AA5hvEAXrW7MP0QzxDbIlwLQM_sz1SAmLpnn1Tn3xrGbsTMKk3Uyv-XtQFP-qfHR_nRwcnhG3jKCUBQ70y6CvOjq2u_hvBnZNcbmwvhy0Mb-R_8dBeq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXBAVKoEAq0VNl7cZ27OSAEKKs-qIgRKW9BTu22yLIFrJVu3-NX8dMHtsuCG49Z5RY43l8E4-_AXgpRHMa5FjQpWZSSc9sYi0zwmjngjKhZfs8UNuHcnecjpfgV38Xhtoq-5jYBGo3Kekf-YCY7xRiYZEMQtcW8XFr9Pr0B6MJUnTS2o_TaE1kz8_OsXyrX-1s4V5vcD569_ntNusmDLBS6mzKNNYHgqq0DNfmgy2D40TAZXPhS5c49AcltPVZ5oyUxERMlGBGWo0wPJhS4HtvwE0t0oR8TI8viz3Bm0FtCeY_ptJctU33QuTDwcnX7zUmVqoG0sV0-BfG_bNV80ruG92Dux1ojd-0VnYflny1ArfaMZazB7D53hxVdBkyHlE_XB2bysWfvGlCafzhYoZGGjeD7n39EA6vRUWPYLmaVP4xxDK1zjoxDMPMSM-9SXOOgDPxQ6lFcGkEm70uirJjKKdBGd8KrFRIc8VVzUWwMZc-bZk5_iG31qu16PyzLi6tKYL1-WP0LDouMZWfnJEMcQNyDOkRrLa7MP8QzxHnInSLQC_sz1yAWLsXn1Qnxw17N-JnlaXqyf-X9QJuo3kX-zsHe0_hDicsQW002RosT3-e-WeIhKb2eWNyMXy5bhv_DdOIG-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Fields+and+Reactive+Oxygen+Species&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Wang%2C+Huizhen&rft.au=Zhang%2C+Xin&rft.date=2017-10-18&rft.eissn=1422-0067&rft.volume=18&rft.issue=10&rft_id=info:doi/10.3390%2Fijms18102175&rft_id=info%3Apmid%2F29057846&rft.externalDocID=29057846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon