Mechanisms of Antidepressant Response to Electroconvulsive Therapy Studied With Perfusion Magnetic Resonance Imaging
Converging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this relates to antidepressant response is less clear. Arterial spin-labeled functional magnetic resonance imaging tracks absolute changes in cerebral blood flow (...
Saved in:
Published in | Biological psychiatry (1969) Vol. 85; no. 6; pp. 466 - 476 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-3223 1873-2402 1873-2402 |
DOI | 10.1016/j.biopsych.2018.09.021 |
Cover
Loading…
Abstract | Converging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this relates to antidepressant response is less clear. Arterial spin-labeled functional magnetic resonance imaging tracks absolute changes in cerebral blood flow (CBF) linked with brain function and offers a potentially powerful tool when observing neurofunctional plasticity with functional magnetic resonance imaging.
Using arterial spin-labeled functional magnetic resonance imaging, we measured global and regional CBF associated with clinically prescribed ECT and therapeutic response in patients (n = 57, 30 female) before ECT, after two treatments, after completing an ECT treatment “index” (∼4 weeks), and after long-term follow-up (6 months). Age- and sex-matched control subjects were also scanned twice (n = 36, 19 female), ∼4 weeks apart.
Patients with lower baseline global CBF were more likely to respond to ECT. Regional CBF increased in the right anterior hippocampus in all patients irrespective of clinical outcome, both after 2 treatments and after ECT index. However, hippocampal CBF increases postindex were more pronounced in nonresponders. ECT responders exhibited CBF increases in the dorsomedial thalamus and motor cortex near the vertex ECT electrode, as well as decreased CBF within lateral frontoparietal regions.
ECT induces functional neuroplasticity in the hippocampus, which could represent functional precursors of ECT-induced increases in hippocampal volume reported previously. However, excessive functional neuroplasticity within the hippocampus may not be conducive to positive clinical outcome. Instead, our results suggest that although hippocampal plasticity may contribute to antidepressant response in ECT, balanced plasticity in regions relevant to seizure physiology including thalamocortical networks may also play a critical role. |
---|---|
AbstractList | AbstractBackgroundConverging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this relates to antidepressant response is less clear. Arterial spin-labeled functional magnetic resonance imaging tracks absolute changes in cerebral blood flow (CBF) linked with brain function and offers a potentially powerful tool when observing neurofunctional plasticity with functional magnetic resonance imaging. MethodsUsing arterial spin-labeled functional magnetic resonance imaging, we measured global and regional CBF associated with clinically prescribed ECT and therapeutic response in patients ( n = 57, 30 female) before ECT, after two treatments, after completing an ECT treatment “index” (∼4 weeks), and after long-term follow-up (6 months). Age- and sex-matched control subjects were also scanned twice ( n = 36, 19 female), ∼4 weeks apart. ResultsPatients with lower baseline global CBF were more likely to respond to ECT. Regional CBF increased in the right anterior hippocampus in all patients irrespective of clinical outcome, both after 2 treatments and after ECT index. However, hippocampal CBF increases postindex were more pronounced in nonresponders. ECT responders exhibited CBF increases in the dorsomedial thalamus and motor cortex near the vertex ECT electrode, as well as decreased CBF within lateral frontoparietal regions. ConclusionsECT induces functional neuroplasticity in the hippocampus, which could represent functional precursors of ECT-induced increases in hippocampal volume reported previously. However, excessive functional neuroplasticity within the hippocampus may not be conducive to positive clinical outcome. Instead, our results suggest that although hippocampal plasticity may contribute to antidepressant response in ECT, balanced plasticity in regions relevant to seizure physiology including thalamocortical networks may also play a critical role. Converging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this relates to antidepressant response is less clear. Arterial spin-labeled functional magnetic resonance imaging tracks absolute changes in cerebral blood flow (CBF) linked with brain function and offers a potentially powerful tool when observing neurofunctional plasticity with functional magnetic resonance imaging.BACKGROUNDConverging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this relates to antidepressant response is less clear. Arterial spin-labeled functional magnetic resonance imaging tracks absolute changes in cerebral blood flow (CBF) linked with brain function and offers a potentially powerful tool when observing neurofunctional plasticity with functional magnetic resonance imaging.Using arterial spin-labeled functional magnetic resonance imaging, we measured global and regional CBF associated with clinically prescribed ECT and therapeutic response in patients (n = 57, 30 female) before ECT, after two treatments, after completing an ECT treatment "index" (∼4 weeks), and after long-term follow-up (6 months). Age- and sex-matched control subjects were also scanned twice (n = 36, 19 female), ∼4 weeks apart.METHODSUsing arterial spin-labeled functional magnetic resonance imaging, we measured global and regional CBF associated with clinically prescribed ECT and therapeutic response in patients (n = 57, 30 female) before ECT, after two treatments, after completing an ECT treatment "index" (∼4 weeks), and after long-term follow-up (6 months). Age- and sex-matched control subjects were also scanned twice (n = 36, 19 female), ∼4 weeks apart.Patients with lower baseline global CBF were more likely to respond to ECT. Regional CBF increased in the right anterior hippocampus in all patients irrespective of clinical outcome, both after 2 treatments and after ECT index. However, hippocampal CBF increases postindex were more pronounced in nonresponders. ECT responders exhibited CBF increases in the dorsomedial thalamus and motor cortex near the vertex ECT electrode, as well as decreased CBF within lateral frontoparietal regions.RESULTSPatients with lower baseline global CBF were more likely to respond to ECT. Regional CBF increased in the right anterior hippocampus in all patients irrespective of clinical outcome, both after 2 treatments and after ECT index. However, hippocampal CBF increases postindex were more pronounced in nonresponders. ECT responders exhibited CBF increases in the dorsomedial thalamus and motor cortex near the vertex ECT electrode, as well as decreased CBF within lateral frontoparietal regions.ECT induces functional neuroplasticity in the hippocampus, which could represent functional precursors of ECT-induced increases in hippocampal volume reported previously. However, excessive functional neuroplasticity within the hippocampus may not be conducive to positive clinical outcome. Instead, our results suggest that although hippocampal plasticity may contribute to antidepressant response in ECT, balanced plasticity in regions relevant to seizure physiology including thalamocortical networks may also play a critical role.CONCLUSIONSECT induces functional neuroplasticity in the hippocampus, which could represent functional precursors of ECT-induced increases in hippocampal volume reported previously. However, excessive functional neuroplasticity within the hippocampus may not be conducive to positive clinical outcome. Instead, our results suggest that although hippocampal plasticity may contribute to antidepressant response in ECT, balanced plasticity in regions relevant to seizure physiology including thalamocortical networks may also play a critical role. Converging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this relates to antidepressant response is less clear. Arterial spin-labeled functional magnetic resonance imaging tracks absolute changes in cerebral blood flow (CBF) linked with brain function and offers a potentially powerful tool when observing neurofunctional plasticity with functional magnetic resonance imaging. Using arterial spin-labeled functional magnetic resonance imaging, we measured global and regional CBF associated with clinically prescribed ECT and therapeutic response in patients (n = 57, 30 female) before ECT, after two treatments, after completing an ECT treatment "index" (∼4 weeks), and after long-term follow-up (6 months). Age- and sex-matched control subjects were also scanned twice (n = 36, 19 female), ∼4 weeks apart. Patients with lower baseline global CBF were more likely to respond to ECT. Regional CBF increased in the right anterior hippocampus in all patients irrespective of clinical outcome, both after 2 treatments and after ECT index. However, hippocampal CBF increases postindex were more pronounced in nonresponders. ECT responders exhibited CBF increases in the dorsomedial thalamus and motor cortex near the vertex ECT electrode, as well as decreased CBF within lateral frontoparietal regions. ECT induces functional neuroplasticity in the hippocampus, which could represent functional precursors of ECT-induced increases in hippocampal volume reported previously. However, excessive functional neuroplasticity within the hippocampus may not be conducive to positive clinical outcome. Instead, our results suggest that although hippocampal plasticity may contribute to antidepressant response in ECT, balanced plasticity in regions relevant to seizure physiology including thalamocortical networks may also play a critical role. |
Author | Vasavada, Megha Wade, Benjamin Woods, Roger P. Leaver, Amber M. Narr, Katherine L. Joshi, Shantanu H. Espinoza, Randall |
Author_xml | – sequence: 1 givenname: Amber M. surname: Leaver fullname: Leaver, Amber M. email: amber.leaver@northwestern.edu organization: Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California – sequence: 2 givenname: Megha surname: Vasavada fullname: Vasavada, Megha organization: Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California – sequence: 3 givenname: Shantanu H. surname: Joshi fullname: Joshi, Shantanu H. organization: Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California – sequence: 4 givenname: Benjamin surname: Wade fullname: Wade, Benjamin organization: Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California – sequence: 5 givenname: Roger P. surname: Woods fullname: Woods, Roger P. organization: Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California – sequence: 6 givenname: Randall orcidid: 0000-0003-2895-4212 surname: Espinoza fullname: Espinoza, Randall organization: Department of Neurology, and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California – sequence: 7 givenname: Katherine L. surname: Narr fullname: Narr, Katherine L. organization: Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30424864$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9rFDEUxYNU7Lb6FUoefdlp_pHJgIilVC20KLbiY8hm7uxmnUnGJLOw394M2_ahD1YIhIRzDpfzuyfoyAcPCJ1RUlFC5fm2Wrkwpr3dVIxQVZGmIoy-Qguqar5kgrAjtCCEyCVnjB-jk5S25VkzRt-gY04EE0qKBcq3YDfGuzQkHDp84bNrYYyQkvEZ_4A0Bp8A54CverA5Bhv8buqT2wG-30A04x7f5al10OJfLm_wd4jdlFzw-NasPWRn55TgjbeArwezdn79Fr3uTJ_g3cN9in5-vrq__Lq8-fbl-vLiZmlFrfJS2gYYlUrVXb1ihIExVgrKy1_byIbzleBWqY4RorixiteCEC44UbJuBZH8FL0_5I4x_JkgZT24ZKHvjYcwJc0oL_LSnyjSswfptBqg1WN0g4l7_dhUEciDwMaQUoTuSUKJnpHorX5EomckmjS6ICnGD8-M1mWTS0M5Gte_bP90sEMpaucg6mQdlDJbFwsQ3Qb3csTHZxG2d95Z0_-GPaRtmKIvGDTViWmi7-a1mbeGqnIaJv4d8D8T_AXAPtZ8 |
CitedBy_id | crossref_primary_10_1016_j_biopsych_2019_07_010 crossref_primary_10_1016_j_biopsych_2019_01_009 crossref_primary_10_5498_wjp_v12_i5_708 crossref_primary_10_1016_j_neuroimage_2024_120671 crossref_primary_10_7554_eLife_49115 crossref_primary_10_3389_fpsyt_2023_1170625 crossref_primary_10_1038_s41386_020_0711_2 crossref_primary_10_1016_j_brs_2021_12_003 crossref_primary_10_3389_fphys_2023_1096297 crossref_primary_10_1017_S0033291720001518 crossref_primary_10_1186_s12888_023_05239_0 crossref_primary_10_1002_hbm_24910 crossref_primary_10_1016_j_bpsc_2020_06_015 crossref_primary_10_1016_j_euroneuro_2020_01_017 crossref_primary_10_1016_j_neubiorev_2022_104643 crossref_primary_10_1017_S0033291722003555 crossref_primary_10_1038_s41386_023_01677_2 crossref_primary_10_1016_j_jpsychires_2021_02_011 crossref_primary_10_1055_a_2049_9967 crossref_primary_10_1016_j_brs_2020_04_017 crossref_primary_10_1038_s41380_020_0666_z crossref_primary_10_1177_15500594211044066 crossref_primary_10_1016_j_brs_2020_04_014 crossref_primary_10_1038_s41398_022_02304_2 crossref_primary_10_3390_neuroglia5030021 crossref_primary_10_1016_j_pnpbp_2020_110048 crossref_primary_10_1016_j_psychres_2022_114732 crossref_primary_10_1016_j_brs_2022_10_007 crossref_primary_10_1016_j_bbi_2020_05_069 crossref_primary_10_1016_j_jpsychires_2021_06_009 crossref_primary_10_1016_j_neurom_2021_09_003 crossref_primary_10_1111_epi_17831 crossref_primary_10_1007_s40473_024_00286_7 crossref_primary_10_1017_S0033291723002040 crossref_primary_10_1016_j_biopsych_2021_05_023 crossref_primary_10_1016_j_biopsych_2021_11_016 crossref_primary_10_1007_s12264_021_00638_3 crossref_primary_10_1038_s41398_021_01314_w crossref_primary_10_2147_NDT_S499134 crossref_primary_10_1016_j_brs_2020_05_015 crossref_primary_10_1016_j_neuroimage_2021_117895 crossref_primary_10_1038_s41398_021_01641_y crossref_primary_10_1111_bdi_13288 crossref_primary_10_3389_fpsyg_2020_00080 crossref_primary_10_1080_13554794_2022_2044861 crossref_primary_10_1007_s44194_024_00037_6 crossref_primary_10_3928_02793695_20230222_02 |
Cites_doi | 10.1016/j.bpsc.2015.09.001 10.1016/j.biopsych.2018.05.017 10.1111/j.1528-1157.1982.tb05074.x 10.1038/mp.2014.78 10.1093/brain/awp028 10.1016/j.jpsychires.2016.05.012 10.1073/pnas.1321399111 10.1056/NEJMct075234 10.1016/S0006-3223(00)00228-6 10.1192/bjp.bp.106.023036 10.1111/j.1528-1167.2007.00919.x 10.1016/j.mri.2007.07.003 10.1016/j.bpsc.2017.01.011 10.4088/JCP.v65n0406 10.1038/jcbfm.1992.127 10.1016/j.neuroimage.2011.10.029 10.1038/npp.2011.220 10.1038/tp.2016.267 10.1126/science.1222941 10.1016/j.yebeh.2003.10.020 10.1016/j.humov.2007.05.009 10.1523/ENEURO.0005-14.2014 10.1192/bjp.2017.11 10.1001/archpsyc.57.6.581 10.1111/acps.12251 10.1111/j.1535-7511.2010.01363.x 10.3389/fpsyt.2018.00092 10.1176/appi.ajp.2010.09091379 10.1016/j.euroneuro.2008.12.007 10.1523/JNEUROSCI.20-13-05153.2000 10.1523/JNEUROSCI.0237-07.2007 10.1038/npp.2016.48 10.1038/tp.2015.100 10.1038/npp.2017.165 10.1001/archpsyc.1994.03950110044007 10.1111/j.1528-1157.1987.tb03696.x 10.1038/tp.2016.54 10.1001/archneurpsyc.1956.02330210040005 10.1523/JNEUROSCI.19-12-05034.1999 10.1016/j.eplepsyres.2011.08.007 10.1001/jamapsychiatry.2016.0316 10.1111/j.1399-5618.2012.00997.x 10.1016/j.brs.2011.07.004 10.1016/j.biopsych.2015.02.029 10.1179/174313206X153842 10.1001/archpsyc.57.5.425 10.1038/s41398-017-0020-7 10.1503/jpn.150177 10.1097/01.WCB.0000117688.98763.23 10.1192/bjp.134.4.382 10.1038/tp.2016.102 10.1093/cercor/bhv207 10.1146/annurev.physiol.63.1.815 10.1016/j.pscychresns.2013.09.004 10.1038/tp.2014.124 10.1192/bjp.bp.109.066183 10.1038/tp.2014.21 10.1111/j.1528-1167.2007.01408.x 10.3389/fpsyt.2013.00010 10.1016/S1053-8119(03)00204-0 10.1177/070674371105600104 10.1016/S0006-3223(02)01866-8 10.1017/S0033291717000605 10.1093/brain/89.3.499 |
ContentType | Journal Article |
Copyright | 2018 Society of Biological Psychiatry Society of Biological Psychiatry Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Society of Biological Psychiatry – notice: Society of Biological Psychiatry – notice: Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.biopsych.2018.09.021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1873-2402 |
EndPage | 476 |
ExternalDocumentID | 30424864 10_1016_j_biopsych_2018_09_021 S0006322318318924 1_s2_0_S0006322318318924 |
Genre | Controlled Clinical Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U01 MH110008 – fundername: NIMH NIH HHS grantid: R01 MH092301 – fundername: NIMH NIH HHS grantid: K24 MH102743 |
GroupedDBID | --- --K --M -DZ .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABCQX ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ACDAQ ACGFO ACIEU ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM L7B M29 M2V M39 M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SEL SES SPCBC SSH SSN SSZ T5K UNMZH UPT UV1 WH7 Z5R ZCA ~G- .GJ 3O- 53G AAQXK ABDPE ABWVN ABXDB ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AHHHB AIGII APXCP ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HEG HMK HMO HMQ HVGLF HZ~ H~9 R2- SNS UAP WUQ XJT XOL ZGI ZKB ZXP AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR RIG ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c478t-6c9e216887f7b202eaac6413216d96933b43c88f20083ac8374003430867d4063 |
IEDL.DBID | AIKHN |
ISSN | 0006-3223 1873-2402 |
IngestDate | Fri Sep 05 14:24:50 EDT 2025 Wed Feb 19 02:31:02 EST 2025 Thu Apr 24 22:53:19 EDT 2025 Tue Jul 01 03:38:40 EDT 2025 Fri Feb 23 02:33:10 EST 2024 Fri Aug 22 09:50:37 EDT 2025 Tue Aug 26 17:00:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | fMRI Depression Seizure Electroconvulsive therapy Cerebral blood flow Hippocampus |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-6c9e216887f7b202eaac6413216d96933b43c88f20083ac8374003430867d4063 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-2895-4212 |
PMID | 30424864 |
PQID | 2133432014 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2133432014 pubmed_primary_30424864 crossref_primary_10_1016_j_biopsych_2018_09_021 crossref_citationtrail_10_1016_j_biopsych_2018_09_021 elsevier_sciencedirect_doi_10_1016_j_biopsych_2018_09_021 elsevier_clinicalkeyesjournals_1_s2_0_S0006322318318924 elsevier_clinicalkey_doi_10_1016_j_biopsych_2018_09_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-15 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biological psychiatry (1969) |
PublicationTitleAlternate | Biol Psychiatry |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Leaver, Espinoza, Pirnia, Joshi, Woods, Narr (bib14) 2016; 1 Takano, Motohashi, Uema, Ogawa, Ohnishi, Nishikawa, Matsuda (bib48) 2011; 97 Margerison, Corsellis (bib57) 1966; 89 Lee, Deng, Kim, Laine, Lisanby, Peterchev (bib71) 2012; 59 Waarde, Scholte, Oudheusden, Verwey, Denys, Wingen (bib64) 2015; 20 Enev, McNally, Varghese, Zubal, Ostroff, Blumenfeld (bib22) 2007; 48 Grafton, Hamilton (bib67) 2007; 26 Madsen, Treschow, Bengzon, Bolwig, Lindvall, Tingström (bib16) 2000; 47 Bolwig (bib61) 2011; 56 Hamilton (bib30) 1980; 41 Blumenfeld, Westerveld, Ostroff, Vanderhill, Freeman, Necochea (bib5) 2003; 19 Nierenberg, DeCecco (bib33) 2001; 62 Suppl 16 Lisanby (bib4) 2007; 357 Leaver, Espinoza, Joshi, Vasavada, Njau, Woods, Narr (bib36) 2016; 26 Worsley, Evans, Marrett, Neelin (bib40) 1992; 12 Jan Shah, Wadoo, Latoo (bib62) 2013; 6 Wade, Joshi, Njau, Leaver, Vasavada, Woods (bib23) 2016; 41 Perera, Coplan, Lisanby, Lipira, Arif, Carpio (bib50) 2007; 27 Abbott, Lemke, Gopal, Thoma, Bustillo, Calhoun, Turner (bib8) 2013; 4 Blumenfeld, Varghese, Purcaro, Motelow, Enev, McNally (bib46) 2009; 132 van Buel, Patas, Peters, Bosker, Eisel, Klein (bib51) 2015; 5 Jiang, Abbott, Jiang, Du, Espinoza, Narr (bib65) 2018; 43 Hanson, Owens, Nemeroff (bib18) 2011; 36 (bib28) 2000 Szabo, Hirsch, Krause, Ende, Henn, Sartorius, Gass (bib56) 2007; 29 Wade, Sui, Hellemann, Leaver, Espinoza, Woods (bib66) 2017; 7 Blumenfeld, McCormick (bib45) 2000; 20 Takamiya, Chung, Liang, Graff-Guerrero, Mimura, Kishimoto (bib53) 2018; 212 McNally, Blumenfeld (bib20) 2004; 5 Njau, Joshi, Leaver, Vasavada, Fleet, Espinoza, Narr (bib38) 2016; 80 Lyden, Espinoza, Pirnia, Clark, Joshi, Leaver (bib7) 2014; 4 Redlich, Opel, Grotegerd, Dohm, Zaremba, Bürger (bib42) 2016; 73 McCormick, Contreras (bib59) 2001; 63 Njau, Joshi, Espinoza, Leaver, Vasavada, Marquina (bib37) 2017; 42 Sheehan, Lecrubier, Sheehan, Amorim, Janavs, Weiller (bib29) 1998; 59 Suppl 2 Takano, Motohashi, Uema, Ogawa, Ohnishi, Nishikawa (bib58) 2007; 190 Fukushima, Kohsaka, Fukushima, Kato (bib69) 1987; 28 Sackeim, Prudic, Devanand, Nobler, Lisanby, Peyser (bib26) 2000; 57 Fink (bib2) 2014; 129 Salgado-Benftez, Briones, Fernandez-Guardiola (bib74) 1982; 23 Vasavada, Leaver, Njau, Joshi, Ercoli, Hellemann (bib39) 2017; 33 Oltedal, Narr, Abbott, Anand, Argyelan, Bartsch (bib54) 2018; 84 Chen, Madsen, Wegener, Nyengaard (bib15) 2009; 19 Bertram, Zhang, Williamson (bib60) 2008; 49 Argyelan, Lencz, Kaliora, Sarpal, Weissman, Kingsley (bib19) 2016; 6 Dukart, Regen, Kherif, Colla, Bajbouj, Heuser (bib24) 2014; 111 Eisch, Petrik (bib17) 2012; 338 Montgomery, Asberg (bib31) 1979; 134 Leaver, Wade, Vasavada, Hellemann, Joshi, Espinoza, Narr (bib35) 2018; 9 Dierckx, Heijnen, van den Broek, Birkenhäger (bib1) 2012; 14 Husain, Rush, Fink, Knapp, Petrides, Rummans (bib3) 2004; 65 Insel, Cuthbert, Garvey, Heinssen, Pine, Quinn (bib72) 2010; 167 Rush, Trivedi, Ibrahim, Carmody, Arnow, Klein (bib32) 2003; 54 Pirnia, Joshi, Leaver, Vasavada, Njau, Woods (bib34) 2016; 6 Nobler (bib6) 1994; 51 Lisanby, Maddox, Prudic, Devanand, Sackeim (bib55) 2000; 57 d’Elia (bib63) 1970; 215 Sheline, Sanghavi, Mintun, Gado (bib12) 1999; 19 Tendolkar, van Beek, van Oostrom, Mulder, Janzing, Voshaar, van Eijndhoven (bib10) 2013; 214 Bai, Loo, Al Abed, Dokos (bib70) 2012; 5 Wang, Aguirre, Rao, Wang, Fernández-Seara, Childress, Detre (bib27) 2008; 26 Wilkinson, Sanacora, Bloch (bib52) 2017; 2 French, Gernandt, Livingston (bib68) 1956; 75 Kellner, Knapp, Husain, Rasmussen, Sampson, Cullum (bib25) 2010; 196 Krook-Magnuson, Szabo, Armstrong, Oijala, Soltesz (bib73) 2014; 1 van Waarde, Scholte, van Oudheusden, Verwey, Denys, van Wingen (bib9) 2015; 20 Bolwig (bib21) 2014; 30 Joshi, Espinoza, Pirnia, Shi, Wang, Ayers (bib11) 2015; 79 Abbott, Jones, Lemke, Gallegos, McClintock, Mayer (bib13) 2014; 4 Miller (bib47) 2010; 10 Cano, Martínez-Zalacaín, Bernabéu-Sanz, Contreras-Rodríguez, Hernández-Ribas, Via (bib49) 2017; 7 Kellner, Pritchett, Beale, Coffey (bib43) 1997 Redlich, Bürger, Dohm, Grotegerd, Opel, Zaremba (bib41) 2017; 47 Nersesyan, Hyder, Rothman, Blumenfeld (bib44) 2004; 24 Dukart (10.1016/j.biopsych.2018.09.021_bib24) 2014; 111 Abbott (10.1016/j.biopsych.2018.09.021_bib8) 2013; 4 Wang (10.1016/j.biopsych.2018.09.021_bib27) 2008; 26 Hamilton (10.1016/j.biopsych.2018.09.021_bib30) 1980; 41 Nersesyan (10.1016/j.biopsych.2018.09.021_bib44) 2004; 24 Tendolkar (10.1016/j.biopsych.2018.09.021_bib10) 2013; 214 Sackeim (10.1016/j.biopsych.2018.09.021_bib26) 2000; 57 Bai (10.1016/j.biopsych.2018.09.021_bib70) 2012; 5 Perera (10.1016/j.biopsych.2018.09.021_bib50) 2007; 27 Husain (10.1016/j.biopsych.2018.09.021_bib3) 2004; 65 Njau (10.1016/j.biopsych.2018.09.021_bib38) 2016; 80 Chen (10.1016/j.biopsych.2018.09.021_bib15) 2009; 19 Vasavada (10.1016/j.biopsych.2018.09.021_bib39) 2017; 33 d’Elia (10.1016/j.biopsych.2018.09.021_bib63) 1970; 215 Blumenfeld (10.1016/j.biopsych.2018.09.021_bib5) 2003; 19 Sheline (10.1016/j.biopsych.2018.09.021_bib12) 1999; 19 Redlich (10.1016/j.biopsych.2018.09.021_bib42) 2016; 73 Takano (10.1016/j.biopsych.2018.09.021_bib58) 2007; 190 Salgado-Benftez (10.1016/j.biopsych.2018.09.021_bib74) 1982; 23 Insel (10.1016/j.biopsych.2018.09.021_bib72) 2010; 167 Bolwig (10.1016/j.biopsych.2018.09.021_bib61) 2011; 56 (10.1016/j.biopsych.2018.09.021_bib28) 2000 Takano (10.1016/j.biopsych.2018.09.021_bib48) 2011; 97 Kellner (10.1016/j.biopsych.2018.09.021_bib43) 1997 van Waarde (10.1016/j.biopsych.2018.09.021_bib9) 2015; 20 Blumenfeld (10.1016/j.biopsych.2018.09.021_bib46) 2009; 132 Leaver (10.1016/j.biopsych.2018.09.021_bib14) 2016; 1 Enev (10.1016/j.biopsych.2018.09.021_bib22) 2007; 48 Szabo (10.1016/j.biopsych.2018.09.021_bib56) 2007; 29 McCormick (10.1016/j.biopsych.2018.09.021_bib59) 2001; 63 Abbott (10.1016/j.biopsych.2018.09.021_bib13) 2014; 4 Bolwig (10.1016/j.biopsych.2018.09.021_bib21) 2014; 30 van Buel (10.1016/j.biopsych.2018.09.021_bib51) 2015; 5 Sheehan (10.1016/j.biopsych.2018.09.021_bib29) 1998; 59 Suppl 2 Fink (10.1016/j.biopsych.2018.09.021_bib2) 2014; 129 Dierckx (10.1016/j.biopsych.2018.09.021_bib1) 2012; 14 Leaver (10.1016/j.biopsych.2018.09.021_bib35) 2018; 9 Worsley (10.1016/j.biopsych.2018.09.021_bib40) 1992; 12 Wade (10.1016/j.biopsych.2018.09.021_bib23) 2016; 41 Krook-Magnuson (10.1016/j.biopsych.2018.09.021_bib73) 2014; 1 Joshi (10.1016/j.biopsych.2018.09.021_bib11) 2015; 79 Kellner (10.1016/j.biopsych.2018.09.021_bib25) 2010; 196 Wilkinson (10.1016/j.biopsych.2018.09.021_bib52) 2017; 2 Lisanby (10.1016/j.biopsych.2018.09.021_bib55) 2000; 57 Pirnia (10.1016/j.biopsych.2018.09.021_bib34) 2016; 6 Blumenfeld (10.1016/j.biopsych.2018.09.021_bib45) 2000; 20 Lisanby (10.1016/j.biopsych.2018.09.021_bib4) 2007; 357 Jan Shah (10.1016/j.biopsych.2018.09.021_bib62) 2013; 6 Nobler (10.1016/j.biopsych.2018.09.021_bib6) 1994; 51 Leaver (10.1016/j.biopsych.2018.09.021_bib36) 2016; 26 Hanson (10.1016/j.biopsych.2018.09.021_bib18) 2011; 36 McNally (10.1016/j.biopsych.2018.09.021_bib20) 2004; 5 Oltedal (10.1016/j.biopsych.2018.09.021_bib54) 2018; 84 Redlich (10.1016/j.biopsych.2018.09.021_bib41) 2017; 47 Eisch (10.1016/j.biopsych.2018.09.021_bib17) 2012; 338 Nierenberg (10.1016/j.biopsych.2018.09.021_bib33) 2001; 62 Suppl 16 Grafton (10.1016/j.biopsych.2018.09.021_bib67) 2007; 26 Lee (10.1016/j.biopsych.2018.09.021_bib71) 2012; 59 Lyden (10.1016/j.biopsych.2018.09.021_bib7) 2014; 4 Bertram (10.1016/j.biopsych.2018.09.021_bib60) 2008; 49 French (10.1016/j.biopsych.2018.09.021_bib68) 1956; 75 Margerison (10.1016/j.biopsych.2018.09.021_bib57) 1966; 89 Fukushima (10.1016/j.biopsych.2018.09.021_bib69) 1987; 28 Montgomery (10.1016/j.biopsych.2018.09.021_bib31) 1979; 134 Waarde (10.1016/j.biopsych.2018.09.021_bib64) 2015; 20 Takamiya (10.1016/j.biopsych.2018.09.021_bib53) 2018; 212 Rush (10.1016/j.biopsych.2018.09.021_bib32) 2003; 54 Miller (10.1016/j.biopsych.2018.09.021_bib47) 2010; 10 Jiang (10.1016/j.biopsych.2018.09.021_bib65) 2018; 43 Cano (10.1016/j.biopsych.2018.09.021_bib49) 2017; 7 Argyelan (10.1016/j.biopsych.2018.09.021_bib19) 2016; 6 Madsen (10.1016/j.biopsych.2018.09.021_bib16) 2000; 47 Wade (10.1016/j.biopsych.2018.09.021_bib66) 2017; 7 Njau (10.1016/j.biopsych.2018.09.021_bib37) 2017; 42 30777169 - Biol Psychiatry. 2019 Mar 15;85(6):439-440 |
References_xml | – volume: 190 start-page: 63 year: 2007 end-page: 68 ident: bib58 article-title: Changes in regional cerebral blood flow during acute electroconvulsive therapy in patients with depression: Positron emission tomographic study publication-title: Br J Psychiatry – volume: 59 start-page: 2110 year: 2012 end-page: 2123 ident: bib71 article-title: Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: Influence of white matter anisotropic conductivity publication-title: Neuroimage – volume: 338 start-page: 72 year: 2012 end-page: 75 ident: bib17 article-title: Depression and hippocampal neurogenesis: a road to remission? publication-title: Science – volume: 79 start-page: 282 year: 2015 end-page: 292 ident: bib11 article-title: Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression publication-title: Biol Psychiatry – volume: 47 start-page: 1043 year: 2000 end-page: 1049 ident: bib16 article-title: Increased neurogenesis in a model of electroconvulsive therapy publication-title: Biol Psychiatry – volume: 6 start-page: e789 year: 2016 ident: bib19 article-title: Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy publication-title: Transl Psychiatry – volume: 167 start-page: 748 year: 2010 end-page: 751 ident: bib72 article-title: Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders publication-title: Am J Psychiatry – year: 1997 ident: bib43 article-title: Handbook of ECT – volume: 19 start-page: 329 year: 2009 end-page: 338 ident: bib15 article-title: Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus publication-title: Eur Neuropsychopharmacol – volume: 9 start-page: 92 year: 2018 ident: bib35 article-title: Fronto-temporal connectivity predicts ECT outcome in major depression publication-title: Front Psychiatry – volume: 33 start-page: 278 year: 2017 end-page: 285 ident: bib39 article-title: Short- and long-term cognitive outcomes in patients with major depression treated with electroconvulsive therapy publication-title: J ECT – volume: 89 start-page: 499 year: 1966 end-page: 530 ident: bib57 article-title: Epilepsy and the temporal lobes: A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes publication-title: Brain J Neurol – volume: 20 start-page: 5153 year: 2000 end-page: 5162 ident: bib45 article-title: Corticothalamic inputs control the pattern of activity generated in thalamocortical networks publication-title: J Neurosci – volume: 4 start-page: e483 year: 2014 ident: bib13 article-title: Hippocampal structural and functional changes associated with electroconvulsive therapy response publication-title: Transl Psychiatry – volume: 5 start-page: e609 year: 2015 ident: bib51 article-title: Immune and neurotrophin stimulation by electroconvulsive therapy: Is some inflammation needed after all? publication-title: Transl Psychiatry – volume: 80 start-page: 45 year: 2016 end-page: 51 ident: bib38 article-title: Variations in myo-inositol in fronto-limbic regions and clinical response to electroconvulsive therapy in major depression publication-title: J Psychiatr Res – volume: 14 start-page: 146 year: 2012 end-page: 150 ident: bib1 article-title: Efficacy of electroconvulsive therapy in bipolar versus unipolar major depression: a meta-analysis publication-title: Bipolar Disord – volume: 215 start-page: 1 year: 1970 end-page: 98 ident: bib63 article-title: Unilateral electroconvulsive therapy publication-title: Acta Psychiatr Scand Suppl – volume: 62 Suppl 16 start-page: 5 year: 2001 end-page: 9 ident: bib33 article-title: Definitions of antidepressant treatment response, remission, nonresponse, partial response, and other relevant outcomes: A focus on treatment-resistant depression publication-title: J Clin Psychiatry – volume: 48 start-page: 238 year: 2007 end-page: 244 ident: bib22 article-title: Imaging onset and propagation of ECT-induced seizures publication-title: Epilepsia – volume: 6 start-page: e832 year: 2016 ident: bib34 article-title: Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex publication-title: Transl Psychiatry – volume: 75 start-page: 260 year: 1956 end-page: 274 ident: bib68 article-title: Regional differences in seizure susceptibility in monkey cortex publication-title: AMA Arch Neurol Psychiatry – volume: 27 start-page: 4894 year: 2007 end-page: 4901 ident: bib50 article-title: Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates publication-title: J Neurosci – volume: 57 start-page: 581 year: 2000 end-page: 590 ident: bib55 article-title: The effects of electroconvulsive therapy on memory of autobiographical and public events publication-title: Arch Gen Psychiatry – volume: 132 start-page: 999 year: 2009 end-page: 1012 ident: bib46 article-title: Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures publication-title: Brain J Neurol – volume: 134 start-page: 382 year: 1979 end-page: 389 ident: bib31 article-title: A new depression scale designed to be sensitive to change publication-title: Br J Psychiatry – volume: 28 start-page: 651 year: 1987 end-page: 657 ident: bib69 article-title: Motor cortical kindling in cats: A comparison of adult cats and kittens publication-title: Epilepsia – volume: 59 Suppl 2 start-page: 22 year: 1998 end-page: 33 ident: bib29 article-title: The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10 publication-title: J Clin Psychiatry – volume: 41 start-page: 21 year: 1980 end-page: 24 ident: bib30 article-title: Rating depressive patients publication-title: J Clin Psychiatry – volume: 19 start-page: 1556 year: 2003 end-page: 1566 ident: bib5 article-title: Selective frontal, parietal, and temporal networks in generalized seizures publication-title: Neuroimage – volume: 196 start-page: 226 year: 2010 end-page: 234 ident: bib25 article-title: Bifrontal, bitemporal and right unilateral electrode placement in ECT: Randomised trial publication-title: Br J Psychiatry – volume: 10 start-page: 80 year: 2010 end-page: 81 ident: bib47 article-title: Are generalized tonic–clonic seizures really “generalized”? publication-title: Epilepsy Curr – volume: 56 start-page: 13 year: 2011 end-page: 18 ident: bib61 article-title: How does electroconvulsive therapy work? Theories on its mechanism publication-title: Can J Psychiatry – volume: 63 start-page: 815 year: 2001 end-page: 846 ident: bib59 article-title: On the cellular and network bases of epileptic seizures publication-title: Annu Rev Physiol – volume: 23 start-page: 597 year: 1982 end-page: 606 ident: bib74 article-title: Purkinje Cell responses to a cerebral penicillin-induced epileptogenic focus in the cat publication-title: Epilepsia – volume: 12 start-page: 900 year: 1992 end-page: 918 ident: bib40 article-title: A three-dimensional statistical analysis for CBF activation studies in human brain publication-title: J Cereb Blood Flow Metab – volume: 129 start-page: 417 year: 2014 end-page: 426 ident: bib2 article-title: What was learned: studies by the consortium for research in ECT (CORE) 1997–2011 publication-title: Acta Psychiatr Scand – volume: 7 start-page: 1270 year: 2017 ident: bib66 article-title: Inter and intra-hemispheric structural imaging markers predict depression relapse after electroconvulsive therapy: A multisite study publication-title: Transl Psychiatry – volume: 26 start-page: 590 year: 2007 end-page: 616 ident: bib67 article-title: Evidence for a distributed hierarchy of action representation in the brain publication-title: Hum Mov Sci – volume: 42 start-page: 6 year: 2017 end-page: 16 ident: bib37 article-title: Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression publication-title: J Psychiatry Neurosci – volume: 20 start-page: 609 year: 2015 end-page: 614 ident: bib64 article-title: A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression publication-title: Mol Psychiatry – volume: 19 start-page: 5034 year: 1999 end-page: 5043 ident: bib12 article-title: Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression publication-title: J Neurosci – volume: 1 start-page: 77 year: 2016 end-page: 86 ident: bib14 article-title: Modulation of intrinsic brain activity by electroconvulsive therapy in major depression publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging – volume: 7 start-page: e1023 year: 2017 ident: bib49 article-title: Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression: A longitudinal neuroimaging study publication-title: Transl Psychiatry – volume: 212 start-page: 19 year: 2018 end-page: 26 ident: bib53 article-title: Effect of electroconvulsive therapy on hippocampal and amygdala volumes: Systematic review and meta-analysis publication-title: Br J Psychiatry – volume: 4 start-page: e380 year: 2014 ident: bib7 article-title: Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression publication-title: Transl Psychiatry – volume: 26 start-page: 4337 year: 2016 end-page: 4346 ident: bib36 article-title: Desynchronization and plasticity of striato-frontal connectivity in major depressive disorder publication-title: Cereb Cortex – volume: 5 start-page: 3 year: 2004 end-page: 12 ident: bib20 article-title: Focal network involvement in generalized seizures: New insights from electroconvulsive therapy publication-title: Epilepsy Behav – volume: 84 start-page: 574 year: 2018 end-page: 581 ident: bib54 article-title: Volume of the human hippocampus and clinical response following electroconvulsive therapy publication-title: Biol Psychiatry – volume: 43 start-page: 1078 year: 2018 end-page: 1087 ident: bib65 article-title: SMRI biomarkers predict electroconvulsive treatment outcomes: accuracy with independent data sets publication-title: Neuropsychopharmacology – volume: 29 start-page: 256 year: 2007 end-page: 259 ident: bib56 article-title: Diffusion weighted MRI in the early phase after electroconvulsive therapy publication-title: Neurol Res – volume: 2 start-page: 327 year: 2017 end-page: 335 ident: bib52 article-title: Hippocampal volume changes following electroconvulsive therapy: a systematic review and meta-analysis publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging – volume: 20 start-page: 609 year: 2015 end-page: 614 ident: bib9 article-title: A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression publication-title: Mol Psychiatry – volume: 36 start-page: 2589 year: 2011 end-page: 2602 ident: bib18 article-title: Depression, antidepressants, and neurogenesis: A critical reappraisal publication-title: Neuropsychopharmacology – volume: 24 start-page: 589 year: 2004 end-page: 599 ident: bib44 article-title: Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats publication-title: J Cereb Blood Flow Metab – volume: 6 start-page: 31 year: 2013 end-page: 36 ident: bib62 article-title: Electroconvulsive therapy (ECT): Important parameters which influence its effectiveness publication-title: Br J Med Pract – volume: 30 start-page: 138 year: 2014 end-page: 142 ident: bib21 article-title: Neuroimaging and electroconvulsive therapy: A review publication-title: J ECT – volume: 51 start-page: 884 year: 1994 end-page: 897 ident: bib6 article-title: Regional cerebral blood flow in mood disorders, III publication-title: Arch Gen Psychiatry – volume: 97 start-page: 225 year: 2011 end-page: 228 ident: bib48 article-title: Differences in cerebral blood flow between missed and generalized seizures with electroconvulsive therapy: A positron emission tomographic study publication-title: Epilepsy Res – year: 2000 ident: bib28 article-title: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition: DSM-IV-TR® – volume: 73 start-page: 557 year: 2016 end-page: 564 ident: bib42 article-title: Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data publication-title: JAMA Psychiatry – volume: 65 start-page: 485 year: 2004 end-page: 491 ident: bib3 article-title: Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): A Consortium for Research in ECT (CORE) report publication-title: J Clin Psychiatry – volume: 26 start-page: 261 year: 2008 end-page: 269 ident: bib27 article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx publication-title: Magn Reson Imaging – volume: 54 start-page: 573 year: 2003 end-page: 583 ident: bib32 article-title: The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression publication-title: Biol Psychiatry – volume: 1 year: 2014 ident: bib73 article-title: Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy publication-title: eNeuro – volume: 57 start-page: 425 year: 2000 end-page: 434 ident: bib26 article-title: A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities publication-title: Arch Gen Psychiatry – volume: 357 start-page: 1939 year: 2007 end-page: 1945 ident: bib4 article-title: Electroconvulsive therapy for depression publication-title: N Engl J Med – volume: 47 start-page: 2166 year: 2017 end-page: 2176 ident: bib41 article-title: Effects of electroconvulsive therapy on amygdala function in major depression: A longitudinal functional magnetic resonance imaging study publication-title: Psychol Med – volume: 49 start-page: 256 year: 2008 end-page: 268 ident: bib60 article-title: Multiple roles of midline dorsal thalamic nuclei in induction and spread of limbic seizures publication-title: Epilepsia – volume: 111 start-page: 1156 year: 2014 end-page: 1161 ident: bib24 article-title: Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders publication-title: Proc Natl Acad Sci U S A – volume: 214 start-page: 197 year: 2013 end-page: 203 ident: bib10 article-title: Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression: Alongitudinal pilot study publication-title: Psychiatry Res – volume: 4 start-page: 10 year: 2013 ident: bib8 article-title: Electroconvulsive therapy response in major depressive disorder: A pilot functional network connectivity resting state FMRI investigation publication-title: Front Psychiatry – volume: 41 start-page: 2481 year: 2016 end-page: 2491 ident: bib23 article-title: Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder publication-title: Neuropsychopharmacology – volume: 5 start-page: 408 year: 2012 end-page: 421 ident: bib70 article-title: A computational model of direct brain excitation induced by electroconvulsive therapy: Comparison among three conventional electrode placements publication-title: Brain Stimul – volume: 41 start-page: 21 year: 1980 ident: 10.1016/j.biopsych.2018.09.021_bib30 article-title: Rating depressive patients publication-title: J Clin Psychiatry – volume: 30 start-page: 138 year: 2014 ident: 10.1016/j.biopsych.2018.09.021_bib21 article-title: Neuroimaging and electroconvulsive therapy: A review publication-title: J ECT – volume: 1 start-page: 77 year: 2016 ident: 10.1016/j.biopsych.2018.09.021_bib14 article-title: Modulation of intrinsic brain activity by electroconvulsive therapy in major depression publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging doi: 10.1016/j.bpsc.2015.09.001 – volume: 84 start-page: 574 year: 2018 ident: 10.1016/j.biopsych.2018.09.021_bib54 article-title: Volume of the human hippocampus and clinical response following electroconvulsive therapy publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2018.05.017 – volume: 23 start-page: 597 year: 1982 ident: 10.1016/j.biopsych.2018.09.021_bib74 article-title: Purkinje Cell responses to a cerebral penicillin-induced epileptogenic focus in the cat publication-title: Epilepsia doi: 10.1111/j.1528-1157.1982.tb05074.x – volume: 20 start-page: 609 year: 2015 ident: 10.1016/j.biopsych.2018.09.021_bib9 article-title: A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression publication-title: Mol Psychiatry doi: 10.1038/mp.2014.78 – volume: 132 start-page: 999 year: 2009 ident: 10.1016/j.biopsych.2018.09.021_bib46 article-title: Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures publication-title: Brain J Neurol doi: 10.1093/brain/awp028 – volume: 80 start-page: 45 year: 2016 ident: 10.1016/j.biopsych.2018.09.021_bib38 article-title: Variations in myo-inositol in fronto-limbic regions and clinical response to electroconvulsive therapy in major depression publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2016.05.012 – volume: 111 start-page: 1156 year: 2014 ident: 10.1016/j.biopsych.2018.09.021_bib24 article-title: Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1321399111 – volume: 357 start-page: 1939 year: 2007 ident: 10.1016/j.biopsych.2018.09.021_bib4 article-title: Electroconvulsive therapy for depression publication-title: N Engl J Med doi: 10.1056/NEJMct075234 – volume: 47 start-page: 1043 year: 2000 ident: 10.1016/j.biopsych.2018.09.021_bib16 article-title: Increased neurogenesis in a model of electroconvulsive therapy publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(00)00228-6 – volume: 33 start-page: 278 year: 2017 ident: 10.1016/j.biopsych.2018.09.021_bib39 article-title: Short- and long-term cognitive outcomes in patients with major depression treated with electroconvulsive therapy publication-title: J ECT – volume: 190 start-page: 63 year: 2007 ident: 10.1016/j.biopsych.2018.09.021_bib58 article-title: Changes in regional cerebral blood flow during acute electroconvulsive therapy in patients with depression: Positron emission tomographic study publication-title: Br J Psychiatry doi: 10.1192/bjp.bp.106.023036 – volume: 6 start-page: 31 year: 2013 ident: 10.1016/j.biopsych.2018.09.021_bib62 article-title: Electroconvulsive therapy (ECT): Important parameters which influence its effectiveness publication-title: Br J Med Pract – volume: 48 start-page: 238 year: 2007 ident: 10.1016/j.biopsych.2018.09.021_bib22 article-title: Imaging onset and propagation of ECT-induced seizures publication-title: Epilepsia doi: 10.1111/j.1528-1167.2007.00919.x – volume: 26 start-page: 261 year: 2008 ident: 10.1016/j.biopsych.2018.09.021_bib27 article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2007.07.003 – year: 2000 ident: 10.1016/j.biopsych.2018.09.021_bib28 – volume: 2 start-page: 327 year: 2017 ident: 10.1016/j.biopsych.2018.09.021_bib52 article-title: Hippocampal volume changes following electroconvulsive therapy: a systematic review and meta-analysis publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging doi: 10.1016/j.bpsc.2017.01.011 – volume: 20 start-page: 609 year: 2015 ident: 10.1016/j.biopsych.2018.09.021_bib64 article-title: A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression publication-title: Mol Psychiatry doi: 10.1038/mp.2014.78 – volume: 65 start-page: 485 year: 2004 ident: 10.1016/j.biopsych.2018.09.021_bib3 article-title: Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): A Consortium for Research in ECT (CORE) report publication-title: J Clin Psychiatry doi: 10.4088/JCP.v65n0406 – volume: 12 start-page: 900 year: 1992 ident: 10.1016/j.biopsych.2018.09.021_bib40 article-title: A three-dimensional statistical analysis for CBF activation studies in human brain publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1992.127 – volume: 215 start-page: 1 year: 1970 ident: 10.1016/j.biopsych.2018.09.021_bib63 article-title: Unilateral electroconvulsive therapy publication-title: Acta Psychiatr Scand Suppl – volume: 59 start-page: 2110 year: 2012 ident: 10.1016/j.biopsych.2018.09.021_bib71 article-title: Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: Influence of white matter anisotropic conductivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.029 – volume: 59 Suppl 2 start-page: 22 year: 1998 ident: 10.1016/j.biopsych.2018.09.021_bib29 article-title: The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10 publication-title: J Clin Psychiatry – volume: 36 start-page: 2589 year: 2011 ident: 10.1016/j.biopsych.2018.09.021_bib18 article-title: Depression, antidepressants, and neurogenesis: A critical reappraisal publication-title: Neuropsychopharmacology doi: 10.1038/npp.2011.220 – volume: 7 start-page: e1023 year: 2017 ident: 10.1016/j.biopsych.2018.09.021_bib49 article-title: Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression: A longitudinal neuroimaging study publication-title: Transl Psychiatry doi: 10.1038/tp.2016.267 – volume: 338 start-page: 72 year: 2012 ident: 10.1016/j.biopsych.2018.09.021_bib17 article-title: Depression and hippocampal neurogenesis: a road to remission? publication-title: Science doi: 10.1126/science.1222941 – volume: 5 start-page: 3 year: 2004 ident: 10.1016/j.biopsych.2018.09.021_bib20 article-title: Focal network involvement in generalized seizures: New insights from electroconvulsive therapy publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2003.10.020 – volume: 26 start-page: 590 year: 2007 ident: 10.1016/j.biopsych.2018.09.021_bib67 article-title: Evidence for a distributed hierarchy of action representation in the brain publication-title: Hum Mov Sci doi: 10.1016/j.humov.2007.05.009 – volume: 1 year: 2014 ident: 10.1016/j.biopsych.2018.09.021_bib73 article-title: Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy publication-title: eNeuro doi: 10.1523/ENEURO.0005-14.2014 – volume: 212 start-page: 19 year: 2018 ident: 10.1016/j.biopsych.2018.09.021_bib53 article-title: Effect of electroconvulsive therapy on hippocampal and amygdala volumes: Systematic review and meta-analysis publication-title: Br J Psychiatry doi: 10.1192/bjp.2017.11 – volume: 57 start-page: 581 year: 2000 ident: 10.1016/j.biopsych.2018.09.021_bib55 article-title: The effects of electroconvulsive therapy on memory of autobiographical and public events publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.57.6.581 – volume: 129 start-page: 417 year: 2014 ident: 10.1016/j.biopsych.2018.09.021_bib2 article-title: What was learned: studies by the consortium for research in ECT (CORE) 1997–2011 publication-title: Acta Psychiatr Scand doi: 10.1111/acps.12251 – volume: 10 start-page: 80 year: 2010 ident: 10.1016/j.biopsych.2018.09.021_bib47 article-title: Are generalized tonic–clonic seizures really “generalized”? publication-title: Epilepsy Curr doi: 10.1111/j.1535-7511.2010.01363.x – volume: 9 start-page: 92 year: 2018 ident: 10.1016/j.biopsych.2018.09.021_bib35 article-title: Fronto-temporal connectivity predicts ECT outcome in major depression publication-title: Front Psychiatry doi: 10.3389/fpsyt.2018.00092 – year: 1997 ident: 10.1016/j.biopsych.2018.09.021_bib43 – volume: 167 start-page: 748 year: 2010 ident: 10.1016/j.biopsych.2018.09.021_bib72 article-title: Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2010.09091379 – volume: 19 start-page: 329 year: 2009 ident: 10.1016/j.biopsych.2018.09.021_bib15 article-title: Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus publication-title: Eur Neuropsychopharmacol doi: 10.1016/j.euroneuro.2008.12.007 – volume: 20 start-page: 5153 year: 2000 ident: 10.1016/j.biopsych.2018.09.021_bib45 article-title: Corticothalamic inputs control the pattern of activity generated in thalamocortical networks publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-13-05153.2000 – volume: 27 start-page: 4894 year: 2007 ident: 10.1016/j.biopsych.2018.09.021_bib50 article-title: Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0237-07.2007 – volume: 41 start-page: 2481 year: 2016 ident: 10.1016/j.biopsych.2018.09.021_bib23 article-title: Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.48 – volume: 5 start-page: e609 year: 2015 ident: 10.1016/j.biopsych.2018.09.021_bib51 article-title: Immune and neurotrophin stimulation by electroconvulsive therapy: Is some inflammation needed after all? publication-title: Transl Psychiatry doi: 10.1038/tp.2015.100 – volume: 43 start-page: 1078 year: 2018 ident: 10.1016/j.biopsych.2018.09.021_bib65 article-title: SMRI biomarkers predict electroconvulsive treatment outcomes: accuracy with independent data sets publication-title: Neuropsychopharmacology doi: 10.1038/npp.2017.165 – volume: 51 start-page: 884 year: 1994 ident: 10.1016/j.biopsych.2018.09.021_bib6 article-title: Regional cerebral blood flow in mood disorders, III publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1994.03950110044007 – volume: 28 start-page: 651 year: 1987 ident: 10.1016/j.biopsych.2018.09.021_bib69 article-title: Motor cortical kindling in cats: A comparison of adult cats and kittens publication-title: Epilepsia doi: 10.1111/j.1528-1157.1987.tb03696.x – volume: 6 start-page: e789 year: 2016 ident: 10.1016/j.biopsych.2018.09.021_bib19 article-title: Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy publication-title: Transl Psychiatry doi: 10.1038/tp.2016.54 – volume: 75 start-page: 260 year: 1956 ident: 10.1016/j.biopsych.2018.09.021_bib68 article-title: Regional differences in seizure susceptibility in monkey cortex publication-title: AMA Arch Neurol Psychiatry doi: 10.1001/archneurpsyc.1956.02330210040005 – volume: 19 start-page: 5034 year: 1999 ident: 10.1016/j.biopsych.2018.09.021_bib12 article-title: Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-12-05034.1999 – volume: 97 start-page: 225 year: 2011 ident: 10.1016/j.biopsych.2018.09.021_bib48 article-title: Differences in cerebral blood flow between missed and generalized seizures with electroconvulsive therapy: A positron emission tomographic study publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2011.08.007 – volume: 73 start-page: 557 year: 2016 ident: 10.1016/j.biopsych.2018.09.021_bib42 article-title: Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2016.0316 – volume: 14 start-page: 146 year: 2012 ident: 10.1016/j.biopsych.2018.09.021_bib1 article-title: Efficacy of electroconvulsive therapy in bipolar versus unipolar major depression: a meta-analysis publication-title: Bipolar Disord doi: 10.1111/j.1399-5618.2012.00997.x – volume: 5 start-page: 408 year: 2012 ident: 10.1016/j.biopsych.2018.09.021_bib70 article-title: A computational model of direct brain excitation induced by electroconvulsive therapy: Comparison among three conventional electrode placements publication-title: Brain Stimul doi: 10.1016/j.brs.2011.07.004 – volume: 79 start-page: 282 year: 2015 ident: 10.1016/j.biopsych.2018.09.021_bib11 article-title: Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2015.02.029 – volume: 29 start-page: 256 year: 2007 ident: 10.1016/j.biopsych.2018.09.021_bib56 article-title: Diffusion weighted MRI in the early phase after electroconvulsive therapy publication-title: Neurol Res doi: 10.1179/174313206X153842 – volume: 57 start-page: 425 year: 2000 ident: 10.1016/j.biopsych.2018.09.021_bib26 article-title: A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.57.5.425 – volume: 7 start-page: 1270 year: 2017 ident: 10.1016/j.biopsych.2018.09.021_bib66 article-title: Inter and intra-hemispheric structural imaging markers predict depression relapse after electroconvulsive therapy: A multisite study publication-title: Transl Psychiatry doi: 10.1038/s41398-017-0020-7 – volume: 62 Suppl 16 start-page: 5 year: 2001 ident: 10.1016/j.biopsych.2018.09.021_bib33 article-title: Definitions of antidepressant treatment response, remission, nonresponse, partial response, and other relevant outcomes: A focus on treatment-resistant depression publication-title: J Clin Psychiatry – volume: 42 start-page: 6 year: 2017 ident: 10.1016/j.biopsych.2018.09.021_bib37 article-title: Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression publication-title: J Psychiatry Neurosci doi: 10.1503/jpn.150177 – volume: 24 start-page: 589 year: 2004 ident: 10.1016/j.biopsych.2018.09.021_bib44 article-title: Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats publication-title: J Cereb Blood Flow Metab doi: 10.1097/01.WCB.0000117688.98763.23 – volume: 134 start-page: 382 year: 1979 ident: 10.1016/j.biopsych.2018.09.021_bib31 article-title: A new depression scale designed to be sensitive to change publication-title: Br J Psychiatry doi: 10.1192/bjp.134.4.382 – volume: 6 start-page: e832 year: 2016 ident: 10.1016/j.biopsych.2018.09.021_bib34 article-title: Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex publication-title: Transl Psychiatry doi: 10.1038/tp.2016.102 – volume: 26 start-page: 4337 year: 2016 ident: 10.1016/j.biopsych.2018.09.021_bib36 article-title: Desynchronization and plasticity of striato-frontal connectivity in major depressive disorder publication-title: Cereb Cortex doi: 10.1093/cercor/bhv207 – volume: 63 start-page: 815 year: 2001 ident: 10.1016/j.biopsych.2018.09.021_bib59 article-title: On the cellular and network bases of epileptic seizures publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.63.1.815 – volume: 214 start-page: 197 year: 2013 ident: 10.1016/j.biopsych.2018.09.021_bib10 article-title: Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression: Alongitudinal pilot study publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2013.09.004 – volume: 4 start-page: e483 year: 2014 ident: 10.1016/j.biopsych.2018.09.021_bib13 article-title: Hippocampal structural and functional changes associated with electroconvulsive therapy response publication-title: Transl Psychiatry doi: 10.1038/tp.2014.124 – volume: 196 start-page: 226 year: 2010 ident: 10.1016/j.biopsych.2018.09.021_bib25 article-title: Bifrontal, bitemporal and right unilateral electrode placement in ECT: Randomised trial publication-title: Br J Psychiatry doi: 10.1192/bjp.bp.109.066183 – volume: 4 start-page: e380 year: 2014 ident: 10.1016/j.biopsych.2018.09.021_bib7 article-title: Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression publication-title: Transl Psychiatry doi: 10.1038/tp.2014.21 – volume: 49 start-page: 256 year: 2008 ident: 10.1016/j.biopsych.2018.09.021_bib60 article-title: Multiple roles of midline dorsal thalamic nuclei in induction and spread of limbic seizures publication-title: Epilepsia doi: 10.1111/j.1528-1167.2007.01408.x – volume: 4 start-page: 10 year: 2013 ident: 10.1016/j.biopsych.2018.09.021_bib8 article-title: Electroconvulsive therapy response in major depressive disorder: A pilot functional network connectivity resting state FMRI investigation publication-title: Front Psychiatry doi: 10.3389/fpsyt.2013.00010 – volume: 19 start-page: 1556 year: 2003 ident: 10.1016/j.biopsych.2018.09.021_bib5 article-title: Selective frontal, parietal, and temporal networks in generalized seizures publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00204-0 – volume: 56 start-page: 13 year: 2011 ident: 10.1016/j.biopsych.2018.09.021_bib61 article-title: How does electroconvulsive therapy work? Theories on its mechanism publication-title: Can J Psychiatry doi: 10.1177/070674371105600104 – volume: 54 start-page: 573 year: 2003 ident: 10.1016/j.biopsych.2018.09.021_bib32 article-title: The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(02)01866-8 – volume: 47 start-page: 2166 year: 2017 ident: 10.1016/j.biopsych.2018.09.021_bib41 article-title: Effects of electroconvulsive therapy on amygdala function in major depression: A longitudinal functional magnetic resonance imaging study publication-title: Psychol Med doi: 10.1017/S0033291717000605 – volume: 89 start-page: 499 year: 1966 ident: 10.1016/j.biopsych.2018.09.021_bib57 article-title: Epilepsy and the temporal lobes: A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes publication-title: Brain J Neurol doi: 10.1093/brain/89.3.499 – reference: 30777169 - Biol Psychiatry. 2019 Mar 15;85(6):439-440 |
SSID | ssj0007221 |
Score | 2.491219 |
Snippet | Converging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this relates to... AbstractBackgroundConverging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 466 |
SubjectTerms | Adult Brain - blood supply Cerebral blood flow Depression Depression - physiopathology Depression - therapy Electroconvulsive Therapy Female fMRI Functional Neuroimaging Hippocampus Humans Magnetic Resonance Imaging Male Psychiatric/Mental Health Seizure Time Factors Young Adult |
Title | Mechanisms of Antidepressant Response to Electroconvulsive Therapy Studied With Perfusion Magnetic Resonance Imaging |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006322318318924 https://www.clinicalkey.es/playcontent/1-s2.0-S0006322318318924 https://dx.doi.org/10.1016/j.biopsych.2018.09.021 https://www.ncbi.nlm.nih.gov/pubmed/30424864 https://www.proquest.com/docview/2133432014 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SDX1cSrt9bR9BhV6dtWWtbB2XJWHTsqGUhOYmZK-UOiR2iL2HXvrbO2PJS0sJLe3RgrHMzGge1jczAO-ly7mNExcZjFYjITBPMbyQ0Vo57uJcmKygQuHViVyeiQ_ns_MdWAy1MASrDLbf2_TeWoeVaeDm9KaqqMYX3St6N1TKJMc0Yhf2eKrkbAR78-OPy5OtQc44D4PzZEQEPxUKXx4UVdPjignllfctT3lyl4-6KwbtfdHRY3gUgkg299_5BHZsPYZ7fqzktzE8WAxT3MZwfxUuz59Ct7JU5lu11y1rHJvXXRVwsMhd9tmDZS3rGnboZ-MQIn1zRfh2duqbDzAPO1yzL1X3lX2yt25Df9vYylzUVA1Jb2mohYdlx9f9_KNncHZ0eLpYRmHoQlSioLpIlsryRKLtcVnBY26NKSV6OlxbK6nStBBpmeeOcBOpKTG_FdTjJsXUKFtjdJA-h1Hd1PYlsMw4tBZFFrvYiUzlxpbCYIiARDnGhW4Cs4HNugwdyWkwxpUeoGeXehCPJvHoWGkUzwSmW7ob35PjjxTZIEU9VJyijdToNv6N0rbhqLc60S3Xsf5NHSegtpS_aPRf7fpuUDWN-kJ3OKa2zabVPEmpFBgT2wm88Dq45QH9mRK5FK_-Y-fX8BCfFKHsktkbGHW3G_sWw66u2Ifdg-_JfjhcPwCCPywO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiiXCpbXtjyMxDXdxPE6ybFatdpCUyG0Fb1ZTtYuqdqkarIHLvx2ZmJnC0IVCK5OJo4843nY38wAvJc25SaMbKDRWw2EwDhF80IGy8xyG6ZCJwUlCucncn4qPpxNzzZgNuTCEKzS636n03tt7UcmfjUn11VFOb5oXtG6oVBGKYYR9-C-mMYJ4fr2vt_iPBLOfds8GdDrP6UJX-wVVdOjignjlfYFT3l0l4W6ywPtLdHhY9j2LiTbd3_5BDZMPYIHrqnktxFszYYebiN4mPur86fQ5YaSfKv2qmWNZft1V3kULK4t--ygsoZ1DTtwnXEIj766JHQ7W7jSA8yBDpfsS9V9ZZ_MjV3RWRvL9XlNuZD0lYYKeBh2dNV3P3oGp4cHi9k88C0XghLZ1AWyzAyPJGoemxQ85EbrUqKdw7FlJrM4LkRcpqkl1ESsS4xuBVW4iTEwSpboG8TPYbNuavMSWKIt6ooiCW1oRZKl2pRCo4OARCl6hXYM02GZVenrkVNbjEs1AM8u1MAeRexRYaaQPWOYrOmuXUWOP1IkAxfVkG-KGlKh0fg3StP6jd6qSLVcheo3YRxDtqb8RZ7_atZ3g6gplBe6wdG1aVat4lFMicAY1o7hhZPB9RrQuZRIpdj5j5nfwtZ8kR-r46OTj7vwCJ9khLeLpq9gs7tZmdfogHXFm36D_QASiCzZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Antidepressant+Response+to+Electroconvulsive+Therapy+Studied+With+Perfusion+Magnetic+Resonance+Imaging&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Leaver%2C+Amber+M&rft.au=Vasavada%2C+Megha&rft.au=Joshi%2C+Shantanu+H&rft.au=Wade%2C+Benjamin&rft.date=2019-03-15&rft.issn=1873-2402&rft.eissn=1873-2402&rft.volume=85&rft.issue=6&rft.spage=466&rft_id=info:doi/10.1016%2Fj.biopsych.2018.09.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322318X00067%2Fcov150h.gif |