Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generatio...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 22; p. 8695 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.11.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence. |
---|---|
AbstractList | Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence. Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence. |
Author | Alam, Md. Mahabub Parvin, Khursheda Anee, Taufika Islam Hossen, Md. Shahadat Bhuyan, M. H. M. Borhannuddin Bhuiyan, Tasnim Farha Zulfiqar, Faisal Nahar, Kamrun Hasanuzzaman, Mirza Fujita, Masayuki |
AuthorAffiliation | 4 Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh 7 Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan; ch.faisal.zulfiqar@gmail.com 5 Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; farhatasnim28@gmail.com (T.F.B.); knahar84@yahoo.com (K.N.) 1 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; taufiqaislam@gmail.com (T.I.A.); shamim1983@yahoo.com (M.M.A.) 2 Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh; razon_sau@yahoo.com 3 Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan; hirasau@gmail.com 6 Independent Researcher, Dhaka 1207, Bangladesh |
AuthorAffiliation_xml | – name: 6 Independent Researcher, Dhaka 1207, Bangladesh; shahadat.hossen32@yahoo.com – name: 3 Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan; hirasau@gmail.com – name: 1 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; taufiqaislam@gmail.com (T.I.A.); shamim1983@yahoo.com (M.M.A.) – name: 5 Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; farhatasnim28@gmail.com (T.F.B.); knahar84@yahoo.com (K.N.) – name: 2 Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh; razon_sau@yahoo.com – name: 4 Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh – name: 7 Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan; ch.faisal.zulfiqar@gmail.com |
Author_xml | – sequence: 1 givenname: Mirza orcidid: 0000-0002-0461-8743 surname: Hasanuzzaman fullname: Hasanuzzaman, Mirza – sequence: 2 givenname: M. H. M. Borhannuddin orcidid: 0000-0002-7602-3087 surname: Bhuyan fullname: Bhuyan, M. H. M. Borhannuddin – sequence: 3 givenname: Khursheda surname: Parvin fullname: Parvin, Khursheda – sequence: 4 givenname: Tasnim Farha surname: Bhuiyan fullname: Bhuiyan, Tasnim Farha – sequence: 5 givenname: Taufika Islam orcidid: 0000-0003-4306-5544 surname: Anee fullname: Anee, Taufika Islam – sequence: 6 givenname: Kamrun surname: Nahar fullname: Nahar, Kamrun – sequence: 7 givenname: Md. Shahadat orcidid: 0000-0003-4122-3967 surname: Hossen fullname: Hossen, Md. Shahadat – sequence: 8 givenname: Faisal orcidid: 0000-0001-5428-5695 surname: Zulfiqar fullname: Zulfiqar, Faisal – sequence: 9 givenname: Md. Mahabub surname: Alam fullname: Alam, Md. Mahabub – sequence: 10 givenname: Masayuki surname: Fujita fullname: Fujita, Masayuki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33218014$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtvEzEURi1URB-wY40ssWFBwO-xWSBVVQpIRUUprC3Hc6c4zNjBngn03-OmoQoVK1u6x5_O9XeMDmKKgNBzSt5wbsjbsBoKo4xpZeQjdEQFYzNCVHOwdz9Ex6WsCGGcSfMEHXLOqCZUHKEfC7ieejeGFHHq8OLyCn-G0S1TH8qAQ8RfehfHgqfYQsbzuAk5xQHi6Hp8NWYo5R0-xQvYBPi1DQBfh3j-ew057Lj5JrQQPTxFjzvXF3i2O0_Qt_P517OPs4vLD5_OTi9mXjR6nCmt2oZK7RrnSaukok45oN4boxu-ZJ5J3jWdMkZIKYVknaCN6qimDsBpx0_Q-7vc9bQcoL0Vyq636yrk8o1NLth_JzF8t9dpYxtltKK6BrzaBeT0c4Iy2iEUD339CkhTsUwoToloiKjoywfoKk051vW2FKuSylTqxb7RvcrfHirw-g7wOZWSobtHKLG3Ndv9mivOHuA-jNsS6z6h__-jPz84q44 |
CitedBy_id | crossref_primary_10_3389_fpls_2022_1036254 crossref_primary_10_1007_s00344_025_11649_z crossref_primary_10_1093_plphys_kiad033 crossref_primary_10_3390_plants11020145 crossref_primary_10_1016_j_sajb_2023_06_029 crossref_primary_10_1093_jxb_erad141 crossref_primary_10_3389_fpls_2022_1074889 crossref_primary_10_3390_plants13081154 crossref_primary_10_3390_su14126973 crossref_primary_10_1016_j_stress_2024_100435 crossref_primary_10_1111_ppl_14005 crossref_primary_10_3390_plants11091217 crossref_primary_10_3390_su14084576 crossref_primary_10_1007_s00343_024_4164_z crossref_primary_10_3390_ijms242216222 crossref_primary_10_1016_j_heliyon_2023_e20205 crossref_primary_10_1007_s00344_024_11610_6 crossref_primary_10_3389_fpls_2024_1332426 crossref_primary_10_3390_antiox12091682 crossref_primary_10_3390_horticulturae9020244 crossref_primary_10_1080_11263504_2025_2452183 crossref_primary_10_7717_peerj_14251 crossref_primary_10_1038_s41467_024_46290_z crossref_primary_10_3390_horticulturae11010034 crossref_primary_10_52711_0974_360X_2024_00548 crossref_primary_10_3390_ijms24032442 crossref_primary_10_1007_s11738_023_03634_4 crossref_primary_10_3390_plants12091892 crossref_primary_10_1016_j_biteb_2025_102043 crossref_primary_10_1016_j_postharvbio_2023_112328 crossref_primary_10_3390_agriculture13071358 crossref_primary_10_1080_01904167_2024_2415471 crossref_primary_10_1080_87559129_2024_2430652 crossref_primary_10_1111_jipb_13880 crossref_primary_10_1007_s11103_021_01167_3 crossref_primary_10_1016_j_envexpbot_2021_104767 crossref_primary_10_1016_j_ijbiomac_2024_135859 crossref_primary_10_1016_j_jece_2024_115189 crossref_primary_10_1016_j_pmpp_2025_102614 crossref_primary_10_3390_plants14010035 crossref_primary_10_1080_17429145_2024_2327378 crossref_primary_10_1007_s12633_024_03094_6 crossref_primary_10_3389_fpls_2022_1012145 crossref_primary_10_3390_life11111156 crossref_primary_10_3390_plants12122248 crossref_primary_10_3389_fpls_2024_1340287 crossref_primary_10_3389_fpls_2024_1424760 crossref_primary_10_1139_cjb_2022_0136 crossref_primary_10_1007_s40502_023_00773_1 crossref_primary_10_1016_j_ecoenv_2024_117220 crossref_primary_10_3390_metabo14050283 crossref_primary_10_3390_plants11233251 crossref_primary_10_3389_fpls_2024_1441884 crossref_primary_10_13080_z_a_2023_110_005 crossref_primary_10_1016_j_envexpbot_2021_104395 crossref_primary_10_1007_s10811_024_03255_5 crossref_primary_10_3389_fpls_2022_772948 crossref_primary_10_3390_ijms23147529 crossref_primary_10_1002_fes3_70007 crossref_primary_10_1016_j_envpol_2021_118738 crossref_primary_10_1007_s10725_023_01084_z crossref_primary_10_32604_biocell_2022_021732 crossref_primary_10_3390_ijms24010296 crossref_primary_10_3390_horticulturae9111177 crossref_primary_10_3390_plants10040670 crossref_primary_10_1007_s11356_024_34915_1 crossref_primary_10_1016_j_plaphy_2023_108272 crossref_primary_10_1016_j_ecoenv_2024_116431 crossref_primary_10_3390_agriculture13061242 crossref_primary_10_1016_j_phytochem_2024_114231 crossref_primary_10_3390_ijms222312615 crossref_primary_10_3390_antiox11030565 crossref_primary_10_1007_s11368_024_03807_9 crossref_primary_10_1016_j_plaphy_2022_06_017 crossref_primary_10_3390_agriculture11100908 crossref_primary_10_3390_ijms252010934 crossref_primary_10_1016_j_niox_2024_07_002 crossref_primary_10_1080_15226514_2021_1957771 crossref_primary_10_3389_fevo_2022_945695 crossref_primary_10_1094_PHYTO_07_22_0271_FI crossref_primary_10_3390_plants12040832 crossref_primary_10_32615_ps_2022_006 crossref_primary_10_3390_plants13192774 crossref_primary_10_3390_horticulturae10111186 crossref_primary_10_1007_s11356_024_32176_6 crossref_primary_10_1016_j_sajb_2023_10_041 crossref_primary_10_1134_S1021443724605895 crossref_primary_10_1111_jbi_15040 crossref_primary_10_1016_j_gene_2023_147215 crossref_primary_10_17660_ActaHortic_2023_1368_13 crossref_primary_10_21448_ijsm_1401066 crossref_primary_10_1016_j_bcab_2024_103366 crossref_primary_10_1016_j_ecoenv_2025_117879 crossref_primary_10_7717_peerj_12556 crossref_primary_10_1002_bab_2406 crossref_primary_10_1002_cbdv_202200247 crossref_primary_10_1016_j_scienta_2023_112118 crossref_primary_10_3390_f15081351 crossref_primary_10_3389_fpls_2024_1332583 crossref_primary_10_1016_j_stress_2023_100185 crossref_primary_10_3390_plants12051190 crossref_primary_10_1016_j_sajb_2024_11_029 crossref_primary_10_1111_jipb_13601 crossref_primary_10_1111_ppl_13361 crossref_primary_10_3390_plants11010098 crossref_primary_10_1016_j_pbi_2021_102048 crossref_primary_10_21448_ijsm_1136546 crossref_primary_10_3390_antiox12081614 crossref_primary_10_3390_plants12071560 crossref_primary_10_1016_j_jafr_2024_101253 crossref_primary_10_3390_plants12051156 crossref_primary_10_1016_j_biortech_2023_129511 crossref_primary_10_1051_bioconf_20249606006 crossref_primary_10_1007_s00344_022_10804_0 crossref_primary_10_1007_s42729_025_02223_3 crossref_primary_10_1080_26388081_2024_2441148 crossref_primary_10_1111_pce_14608 crossref_primary_10_1007_s11356_023_31497_2 crossref_primary_10_3390_ijms22179326 crossref_primary_10_3390_plants12152803 crossref_primary_10_3390_ijms25020708 crossref_primary_10_1016_j_stress_2024_100577 crossref_primary_10_1007_s11356_024_34658_z crossref_primary_10_3389_fmars_2022_1043462 crossref_primary_10_3390_plants12152809 crossref_primary_10_1111_ppl_70116 crossref_primary_10_1016_j_scienta_2022_111661 crossref_primary_10_1007_s00344_022_10839_3 crossref_primary_10_1007_s11829_024_10121_1 crossref_primary_10_1371_journal_pone_0295945 crossref_primary_10_1002_npp2_22 crossref_primary_10_1016_j_ijbiomac_2023_124192 crossref_primary_10_3390_plants12112142 crossref_primary_10_5114_bta_2023_130729 crossref_primary_10_1007_s00344_022_10793_0 crossref_primary_10_1007_s00122_023_04313_1 crossref_primary_10_1016_j_cpb_2025_100462 crossref_primary_10_1016_j_envexpbot_2023_105350 crossref_primary_10_1016_j_jafr_2023_100643 crossref_primary_10_1007_s11356_024_35185_7 crossref_primary_10_1007_s10653_024_02209_7 crossref_primary_10_3390_plants10020360 crossref_primary_10_1016_j_envexpbot_2022_104863 crossref_primary_10_31466_kfbd_1387429 crossref_primary_10_1515_znc_2024_0115 crossref_primary_10_3390_plants10040733 crossref_primary_10_1007_s00709_022_01753_2 crossref_primary_10_1186_s12870_024_06036_x crossref_primary_10_1016_j_indcrop_2024_119273 crossref_primary_10_1016_j_jhazmat_2024_134263 crossref_primary_10_1080_00275514_2024_2324250 crossref_primary_10_3390_land10040357 crossref_primary_10_3389_fmars_2021_797613 crossref_primary_10_3389_fnut_2022_995250 crossref_primary_10_3390_plants11091184 crossref_primary_10_1016_j_stress_2024_100394 crossref_primary_10_3390_horticulturae7060132 crossref_primary_10_3389_fpls_2021_672873 crossref_primary_10_1007_s44154_025_00211_2 crossref_primary_10_1111_gcb_70074 crossref_primary_10_3390_horticulturae9060673 crossref_primary_10_1016_j_scitotenv_2025_178405 crossref_primary_10_1016_j_plaphy_2021_11_009 crossref_primary_10_1016_j_plaphy_2022_10_033 crossref_primary_10_3390_plants10122800 crossref_primary_10_1080_17429145_2024_2375508 crossref_primary_10_3389_fpls_2022_847175 crossref_primary_10_3390_ijms252111820 crossref_primary_10_1016_j_envres_2023_116585 crossref_primary_10_1007_s10725_023_01002_3 crossref_primary_10_1016_j_plaphy_2024_109294 crossref_primary_10_1007_s11756_024_01836_w crossref_primary_10_1007_s11104_022_05395_4 crossref_primary_10_1186_s12870_024_05668_3 crossref_primary_10_1038_s41598_025_89055_4 crossref_primary_10_1071_FP23102 crossref_primary_10_1080_07060661_2022_2089235 crossref_primary_10_3390_foods13233909 crossref_primary_10_3389_fpls_2025_1458467 crossref_primary_10_1007_s10725_025_01298_3 crossref_primary_10_1021_acsami_4c11833 crossref_primary_10_3390_plants12234029 crossref_primary_10_1016_j_foodchem_2021_130913 crossref_primary_10_1016_j_plaphy_2023_107936 crossref_primary_10_1111_ppl_14413 crossref_primary_10_3390_antiox11122488 crossref_primary_10_1111_ppl_70109 crossref_primary_10_1021_acsomega_4c07946 crossref_primary_10_1016_j_pmpp_2025_102570 crossref_primary_10_1016_j_plaphy_2024_108893 crossref_primary_10_3390_antiox10060944 crossref_primary_10_1002_etc_5936 crossref_primary_10_3390_ijms22062950 crossref_primary_10_1016_j_sajb_2023_09_055 crossref_primary_10_1016_j_jhazmat_2024_134164 crossref_primary_10_1038_s41598_023_38268_6 crossref_primary_10_1007_s00344_022_10614_4 crossref_primary_10_3389_fmicb_2023_1168415 crossref_primary_10_1007_s12517_023_11777_4 crossref_primary_10_1186_s12284_025_00777_5 crossref_primary_10_3390_ijms242417252 crossref_primary_10_1007_s11240_022_02411_4 crossref_primary_10_3389_fpls_2023_1211210 crossref_primary_10_1111_1750_3841_16774 crossref_primary_10_1007_s11104_025_07322_9 crossref_primary_10_1007_s43621_025_00855_0 crossref_primary_10_3389_fpls_2022_967968 crossref_primary_10_1016_j_jhazmat_2023_130969 crossref_primary_10_3390_horticulturae9050538 crossref_primary_10_3390_genes14051078 crossref_primary_10_1016_j_envexpbot_2023_105307 crossref_primary_10_1007_s12298_021_01057_4 crossref_primary_10_1038_s41598_023_38403_3 crossref_primary_10_1007_s00299_024_03238_3 crossref_primary_10_1038_s41598_024_68005_6 crossref_primary_10_3390_agrochemicals2020015 crossref_primary_10_3390_ijpb16010032 crossref_primary_10_1016_j_postharvbio_2024_112801 crossref_primary_10_3390_ijms23105416 crossref_primary_10_3390_plants13060862 crossref_primary_10_1007_s13762_025_06437_x crossref_primary_10_1016_j_emcon_2024_100421 crossref_primary_10_32615_ps_2021_065 crossref_primary_10_3390_plants12193509 crossref_primary_10_1007_s12042_024_09362_4 crossref_primary_10_3389_fpls_2022_1042855 crossref_primary_10_12737_2782_490X_2023_12_17 crossref_primary_10_1016_j_jhazmat_2024_137058 crossref_primary_10_3389_fpls_2024_1397552 crossref_primary_10_3390_horticulturae10030259 crossref_primary_10_1016_j_jplph_2023_154124 crossref_primary_10_1134_S1062359023605323 crossref_primary_10_1007_s11738_023_03565_0 crossref_primary_10_1186_s12870_021_03276_z crossref_primary_10_1186_s12870_024_05184_4 crossref_primary_10_12688_f1000research_25247_4 crossref_primary_10_1088_1755_1315_1359_1_012092 crossref_primary_10_3390_plants10010037 crossref_primary_10_1016_j_ecoenv_2023_115217 crossref_primary_10_1155_2024_4610926 crossref_primary_10_1007_s00299_024_03319_3 crossref_primary_10_3390_ijms23116167 crossref_primary_10_1093_treephys_tpac126 crossref_primary_10_1080_10643389_2024_2332135 crossref_primary_10_1111_ppl_13887 crossref_primary_10_3390_app11188710 crossref_primary_10_1016_j_jhazmat_2023_132453 crossref_primary_10_1016_j_bbrc_2022_10_033 crossref_primary_10_3390_agriculture14081337 crossref_primary_10_1007_s42976_021_00222_5 crossref_primary_10_3389_fpls_2022_997768 crossref_primary_10_3390_ijms26010289 crossref_primary_10_1007_s11356_025_35905_7 crossref_primary_10_1016_j_crmicr_2024_100285 crossref_primary_10_1016_j_marenvres_2022_105838 crossref_primary_10_1093_jxb_erad219 crossref_primary_10_1002_fft2_106 crossref_primary_10_1016_j_lwt_2022_113990 crossref_primary_10_1007_s42976_024_00559_7 crossref_primary_10_3389_fpls_2023_1121886 crossref_primary_10_3390_ijms25010070 crossref_primary_10_1186_s12870_024_05095_4 crossref_primary_10_1186_s12870_024_06037_w crossref_primary_10_1111_nph_20134 crossref_primary_10_1007_s13205_022_03282_4 crossref_primary_10_3390_antiox10040611 crossref_primary_10_1016_j_cj_2023_06_001 crossref_primary_10_1016_j_plaphy_2025_109580 crossref_primary_10_3390_ijms232416200 crossref_primary_10_3390_antiox13091128 crossref_primary_10_5010_JPB_2023_50_027_215 crossref_primary_10_3389_fpls_2023_1105162 crossref_primary_10_1007_s42729_024_01732_x crossref_primary_10_1111_nph_19382 crossref_primary_10_3390_stresses4020020 crossref_primary_10_1016_j_microc_2023_109133 crossref_primary_10_3390_genes16040367 crossref_primary_10_1016_j_postharvbio_2024_112956 crossref_primary_10_3389_fpls_2022_1049954 crossref_primary_10_1016_j_heliyon_2024_e34742 crossref_primary_10_1016_j_postharvbio_2024_113249 crossref_primary_10_3390_ijms25179367 crossref_primary_10_1016_j_plaphy_2023_108320 crossref_primary_10_1186_s40538_024_00724_4 crossref_primary_10_3389_fpls_2021_660274 crossref_primary_10_3390_molecules28145344 crossref_primary_10_32604_phyton_2025_061462 crossref_primary_10_3390_plants13101401 crossref_primary_10_1007_s42729_024_02101_4 crossref_primary_10_31857_S1026347024020037 crossref_primary_10_3390_plants12213714 crossref_primary_10_3390_plants10102085 crossref_primary_10_1186_s42397_022_00120_z crossref_primary_10_1016_j_indcrop_2023_117222 crossref_primary_10_1007_s10343_022_00651_0 crossref_primary_10_1039_D4EN00770K crossref_primary_10_1007_s00299_021_02751_z crossref_primary_10_1007_s00344_023_10915_2 crossref_primary_10_1016_j_sajb_2023_05_038 crossref_primary_10_3389_fpls_2023_1284480 |
Cites_doi | 10.5772/60746 10.1007/s11738-018-2649-0 10.1111/ppl.12710 10.1111/pbi.12556 10.1007/s00709-016-0965-z 10.1038/s41598-018-36334-y 10.1007/s00709-014-0662-8 10.1016/j.ecoenv.2019.109814 10.1016/j.scienta.2020.109713 10.1016/j.cj.2013.08.002 10.1007/s40502-018-0375-7 10.1590/0001-3765201820170482 10.1016/j.scienta.2019.108647 10.1021/bi300650n 10.1007/s10646-016-1740-9 10.1071/CP17028 10.15666/aeer/1602_20592072 10.1016/j.jplph.2006.02.011 10.1515/biolog-2016-0050 10.1155/2012/217037 10.1007/s11356-015-4532-5 10.3389/fpls.2014.00685 10.1007/s00709-019-01354-6 10.1038/s41598-018-27726-1 10.3390/plants9020188 10.3390/antiox9080681 10.1111/j.1365-313X.2005.02422.x 10.1007/s11099-008-0018-8 10.1038/s41598-020-67260-7 10.1104/pp.18.01493 10.1039/9781782622208 10.3389/fpls.2019.01440 10.3390/plants7030064 10.1016/j.scienta.2017.12.007 10.1007/s11356-014-2934-4 10.1038/srep09871 10.3389/fpls.2017.00185 10.1104/pp.16.00434 10.1080/17429145.2012.747629 10.1104/pp.114.255356 10.1016/j.scienta.2005.12.006 10.1007/s13762-019-02234-5 10.1016/j.ecoenv.2017.06.010 10.1007/978-981-10-5254-5 10.1016/j.postharvbio.2016.03.009 10.1016/j.scienta.2018.03.021 10.1146/annurev.arplant.59.032607.092752 10.1111/j.1365-3040.2005.01327.x 10.1016/j.scitotenv.2018.11.402 10.1016/j.jenvman.2019.04.035 10.3390/antiox8040105 10.3923/ajps.2017.65.77 10.1016/j.bcab.2020.101591 10.1080/17429145.2019.1629033 10.1016/j.biocel.2006.02.010 10.3389/fpls.2019.01725 10.1016/j.plaphy.2019.12.007 10.1016/S1001-0742(07)60099-0 10.4161/psb.23681 10.1111/ppl.12819 10.3390/molecules23020388 10.1111/jipb.12167 10.3389/fpls.2019.00166 10.1038/s41598-018-38053-w 10.1007/s11356-019-05946-w 10.3389/fpls.2016.00276 10.1111/jac.12148 10.3389/fpls.2019.00916 10.1016/j.fct.2012.09.021 10.1146/annurev.arplant.58.032806.103946 10.1093/carcin/21.3.361 10.1111/pce.13089 10.31545/intagr/113259 10.1007/s11032-016-0564-x 10.1007/s11356-016-7295-8 10.1093/pcp/pcy226 10.1073/pnas.1618922114 10.1007/978-3-319-75088-0 10.1080/14620316.2017.1373037 10.1016/j.plaphy.2016.04.004 10.1111/tpj.13299 10.1016/j.plaphy.2010.08.016 10.1016/j.plantsci.2011.03.015 10.1021/acsomega.8b00242 10.1093/aob/mcf096 10.1016/j.scienta.2020.109290 10.3390/molecules15085196 10.1146/annurev-arplant-050312-120132 10.1201/9780824746568 10.3389/fenvs.2014.00070 10.1371/journal.pone.0058042 10.1038/s41598-018-21097-3 10.1614/WS-D-13-00096.1 10.1016/j.scitotenv.2018.11.213 10.1007/s00709-017-1140-x 10.3389/fpls.2017.01082 10.1614/WS-04-135R.1 10.1016/j.phytochem.2015.03.004 10.1016/j.tplants.2017.11.007 10.1016/j.phytochem.2019.112199 10.1093/pcp/pcq133 10.1080/17429145.2018.1458913 10.1038/35081161 10.1016/j.envexpbot.2017.02.010 10.1016/j.ecoenv.2019.109404 10.1016/j.envexpbot.2018.02.001 10.1016/j.scienta.2019.108816 10.1146/annurev-arplant-043014-114822 10.3389/fpls.2017.01042 10.1080/17429145.2017.1362052 10.1016/j.ecoenv.2020.110469 10.3389/fpls.2019.00800 10.1186/s12870-017-1087-2 10.1016/j.ecoenv.2019.109894 10.1016/j.pbi.2004.03.005 10.1016/j.jplph.2018.09.019 10.1016/j.envexpbot.2014.11.012 10.1080/14693062.2020.1728209 10.3390/ijms18010200 10.3389/fpls.2017.01061 10.1007/s00299-017-2139-7 10.3389/fpls.2016.01144 10.1007/s10646-019-02019-z 10.1007/s11738-018-2690-z 10.1002/9781119468677 10.3389/fpls.2018.01388 10.3390/plants9050633 10.32615/bp.2019.031 10.1590/S0100-83582016340100001 10.1088/1755-1315/260/1/012153 10.1074/jbc.272.52.33158 10.1146/annurev.arplant.55.031903.141701 10.1007/978-981-15-0025-1 10.1007/s10535-014-0460-3 10.1111/j.1365-3040.2011.02383.x 10.3389/fpls.2017.00365 10.1016/j.pestbp.2010.11.001 10.1007/s11356-014-3917-1 10.1105/tpc.113.109827 10.1038/srep35424 10.3389/fpls.2017.00203 10.1016/j.envexpbot.2013.11.010 10.1016/j.envexpbot.2014.06.021 10.1016/j.scienta.2015.12.004 10.1016/j.envpol.2018.11.030 10.1016/j.plantsci.2015.01.017 10.1007/s12298-018-00640-6 10.1016/j.bcab.2019.101197 10.1113/jphysiol.2003.049478 10.1016/j.phytochem.2014.09.016 10.1155/2013/585431 10.3389/fpls.2016.00139 10.1016/j.plaphy.2016.01.011 10.1016/j.ecoenv.2015.11.026 10.1016/j.ecoenv.2018.04.014 10.1093/jxb/err317 10.1089/ars.2017.7164 10.1007/s00344-018-9810-2 10.1111/pce.13504 10.1038/s41598-018-35420-5 10.1007/978-3-030-06118-0 10.1016/j.scienta.2018.06.069 10.1016/j.tplants.2016.08.002 10.3389/fpls.2016.01968 10.3390/antiox8090384 10.1016/j.plaphy.2016.06.026 10.3390/plants9020215 10.1016/j.plgene.2019.100173 10.1016/j.scitotenv.2020.136837 10.1016/j.plaphy.2010.04.008 10.1016/j.plaphy.2018.02.021 10.20944/preprints201901.0143.v1 10.1016/j.pestbp.2015.06.002 10.1007/s12298-019-00678-0 10.3389/fpls.2018.00521 10.3389/fpls.2017.01147 10.1016/S2095-3119(18)62143-4 10.3390/plants8070196 10.1080/17429145.2018.1556356 10.1016/j.scienta.2017.10.009 10.1186/s40529-019-0262-1 10.3390/ijms14059643 10.1080/17429145.2017.1308568 10.1111/nph.14011 10.19071/jpsp.2016.v2.3076 10.1111/j.1365-3040.2011.02336.x 10.5935/1806-6690.20170041 10.1080/14620316.2015.1117226 10.1007/s10535-017-0727-6 10.1186/s12870-018-1457-4 10.1006/anbo.1998.0811 10.17221/182/2017-PSE 10.1074/jbc.M603761200 10.3389/fpls.2014.00771 10.3390/ijms160613561 10.1007/s12010-018-2784-5 10.1074/jbc.M710465200 10.1007/s11240-012-0273-z 10.1016/j.jbiotec.2010.07.011 10.1016/j.jphotobiol.2014.01.010 10.1016/B978-0-12-803158-2.00011-4 10.1016/j.jplph.2014.12.014 10.1111/pce.12711 10.1016/j.plaphy.2019.03.040 10.1016/j.envexpbot.2005.01.002 10.32615/ps.2019.115 10.1080/01904168909364043 10.1093/jxb/erv437 10.1016/j.ecoenv.2017.11.046 10.1016/j.ecoenv.2017.09.045 10.3389/fpls.2016.01104 10.1093/nar/gkn680 10.3389/fpls.2020.00480 10.1016/j.freeradbiomed.2016.02.028 10.4067/S0718-58392014000400010 10.1016/j.rsci.2018.06.002 10.1007/978-3-642-10305-6 10.3389/fpls.2017.00785 10.1016/j.phytochem.2009.12.014 10.1007/s11738-014-1530-z 10.1016/j.sajb.2017.12.006 10.1007/s00425-020-03423-0 10.1038/s41598-019-40362-7 10.1104/pp.16.00166 10.1104/pp.16.00375 10.1016/j.envexpbot.2018.10.017 10.1126/scisignal.2000448 10.1007/s11306-011-0296-1 10.1016/j.chemosphere.2017.08.078 10.3389/fpls.2016.01519 10.1007/s00425-011-1379-y 10.1093/jxb/ert430 10.1007/978-3-319-71873-6 10.1016/j.jplph.2009.05.016 10.1146/annurev-arplant-042817-040322 10.1104/pp.16.00359 10.1016/j.copbio.2010.03.002 10.3389/fpls.2018.00716 10.1016/j.ecoenv.2017.11.063 10.3390/molecules24224194 10.3389/fpls.2017.00613 10.1016/j.envpol.2005.01.035 10.1016/j.cell.2016.08.029 10.3389/fenvs.2014.00053 10.1016/j.envexpbot.2018.12.009 10.1186/s12864-017-3596-7 10.1111/j.1399-3054.2011.01457.x 10.1016/j.gene.2014.03.026 10.1016/j.envexpbot.2020.104078 10.1016/j.envexpbot.2014.06.015 10.1038/s41467-019-10475-8 10.3390/antiox7020028 10.1007/s00128-019-02653-7 10.1007/s11738-018-2747-z 10.1016/j.tplants.2011.03.007 10.1371/journal.pone.0094862 10.3389/fpls.2013.00272 10.1002/9781119324928 10.1111/jpi.12429 10.1016/j.tplants.2017.01.003 10.1007/s12298-019-00744-7 10.1007/978-3-030-20732-8 10.1093/jxb/erw080 10.1093/aob/mcv098 10.3389/fpls.2016.00301 10.1038/s41893-019-0286-2 10.30848/PJB2019-5(12) 10.1007/s10535-014-0447-0 10.1111/j.1744-7909.2007.00599.x 10.1016/j.plaphy.2016.11.014 10.3390/f11010068 10.3389/fpls.2020.00696 10.1371/journal.pone.0173378 10.1155/2014/757219 10.1007/s13562-012-0107-4 10.1111/j.1744-7909.2007.00358.x |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms21228695 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7698618 33218014 10_3390_ijms21228695 |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-686d7158a7ac0d6561a6ae1cc99873b2c253f7f6994555452f4176f181aeea8a3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 13:28:11 EDT 2025 Fri Jul 11 09:36:10 EDT 2025 Fri Jul 25 20:20:38 EDT 2025 Thu Apr 03 07:08:11 EDT 2025 Tue Jul 01 04:15:50 EDT 2025 Thu Apr 24 22:49:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | abiotic stress tolerance antioxidant defense system oxidative stress reactive oxygen species abiotic stress |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-686d7158a7ac0d6561a6ae1cc99873b2c253f7f6994555452f4176f181aeea8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7602-3087 0000-0002-0461-8743 0000-0003-4122-3967 0000-0003-4306-5544 0000-0001-5428-5695 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21228695 |
PMID | 33218014 |
PQID | 2463299469 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7698618 proquest_miscellaneous_2463104704 proquest_journals_2463299469 pubmed_primary_33218014 crossref_primary_10_3390_ijms21228695 crossref_citationtrail_10_3390_ijms21228695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201118 |
PublicationDateYYYYMMDD | 2020-11-18 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201118 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Mattila (ref_97) 2020; 252 ref_139 ref_90 Alves (ref_167) 2018; 90 Ahmad (ref_47) 2019; 38 Olsen (ref_224) 2010; 71 ref_250 ref_131 Kaya (ref_203) 2016; 124 Rasheed (ref_284) 2017; 93 ref_132 Wilkinson (ref_294) 2012; 63 Lin (ref_60) 2007; 19 ref_135 Waszczak (ref_13) 2018; 69 Li (ref_99) 2018; 9 Tammam (ref_296) 2019; 14 Zhu (ref_4) 2016; 167 (ref_184) 2020; 176 Ren (ref_200) 2018; 148 Kerchev (ref_30) 2016; 171 Kumari (ref_192) 2015; 109 Koua (ref_253) 2009; 37 Bienert (ref_18) 2007; 282 Shen (ref_188) 2015; 252 Shafiq (ref_212) 2014; 36 Huang (ref_9) 2019; 10 Dai (ref_193) 2019; 245 Nahar (ref_71) 2018; 25 Nahar (ref_69) 2017; 254 Damanik (ref_240) 2019; 260 Djanaguiraman (ref_274) 2018; 41 Soengas (ref_275) 2018; 3 Dietz (ref_23) 2016; 171 Qiu (ref_246) 2019; 26 (ref_95) 2016; 26 Lima (ref_124) 2018; 149 Hoshika (ref_142) 2015; 5 Frankel (ref_57) 2012; 51 Nahar (ref_84) 2017; 26 Foyer (ref_8) 2005; 29 Farmer (ref_51) 2013; 64 Han (ref_109) 2017; 8 Secenji (ref_257) 2009; 166 Paoletti (ref_141) 2005; 137 Bhuiyan (ref_259) 2019; 20 Bhuyan (ref_144) 2019; 25 Couto (ref_251) 2016; 95 Noctor (ref_32) 2002; 89 Tewari (ref_152) 2006; 108 Fahad (ref_101) 2016; 202 Passaia (ref_254) 2015; 234 Chung (ref_263) 2019; 10 ref_77 Salah (ref_119) 2019; 9 Parvez (ref_271) 2020; 187 Mahmud (ref_89) 2018; 147 Kochian (ref_148) 2015; 66 Wilkinson (ref_160) 1989; 12 Pandey (ref_195) 2018; 158 Urban (ref_127) 2016; 105 Wang (ref_297) 2019; 103 Sarker (ref_72) 2018; 186 ref_269 ref_268 ref_149 Jan (ref_110) 2018; 40 Ding (ref_180) 2016; 18 ref_140 Demidchik (ref_49) 2015; 109 Liu (ref_201) 2019; 655 ref_143 ref_146 Long (ref_158) 2017; 8 ref_267 Yu (ref_150) 1999; 83 Yang (ref_161) 2008; 46 Hasanuzzaman (ref_272) 2013; 14 ref_216 ref_218 Agostinetto (ref_168) 2016; 34 ref_217 Qi (ref_186) 2019; 42 Sarkar (ref_235) 2016; 2 Vaultier (ref_133) 2015; 114 Blasco (ref_199) 2018; 235 Quan (ref_19) 2008; 50 Mantysaari (ref_292) 2010; 51 Ahanger (ref_82) 2020; 147 Kumar (ref_44) 2015; 116 Ghanbari (ref_108) 2018; 229 Hsu (ref_111) 2019; 60 Ahmad (ref_157) 2014; 9 Rady (ref_261) 2020; 266 Shavrukov (ref_159) 2015; 67 Das (ref_227) 2014; 2 Lehmann (ref_63) 2012; 8 Singh (ref_211) 2016; 71 Huihui (ref_14) 2020; 195 Seminario (ref_208) 2017; 8 Turrens (ref_34) 2003; 552 Apel (ref_134) 2004; 55 Chen (ref_283) 2019; 10 Stewart (ref_291) 2020; 11 Marjorie (ref_128) 2020; 259 Molassiotis (ref_151) 2006; 56 Sisa (ref_225) 2010; 15 Hassan (ref_260) 2020; 26 Palma (ref_249) 2016; 118 Latif (ref_210) 2016; 91 Zboinska (ref_92) 2019; 166 Tewari (ref_153) 2007; 49 Fahad (ref_65) 2017; 8 Gill (ref_226) 2015; 22 Ozyigit (ref_255) 2016; 7 Yang (ref_130) 2020; 34 Shengxin (ref_123) 2016; 7 Yesbergenova (ref_45) 2005; 42 Bottega (ref_281) 2017; 63 Seymen (ref_286) 2021; 275 Wang (ref_277) 2013; 113 Dangl (ref_11) 2001; 411 Rezayian (ref_73) 2020; 16 ref_115 ref_236 Bian (ref_147) 2013; 1 Madesis (ref_232) 2017; 36 Li (ref_117) 2018; 16 ref_239 ref_230 Fujimori (ref_1) 2019; 2 Hasanuzzaman (ref_164) 2018; 126 Hossain (ref_175) 2019; 25 ref_113 Sekmen (ref_179) 2014; 99 Mazid (ref_156) 2011; 7 Guo (ref_105) 2016; 8 Lemoine (ref_295) 2013; 4 Wang (ref_3) 2016; 14 Cheng (ref_81) 2020; 188 Gill (ref_20) 2010; 48 Vuleta (ref_122) 2016; 100 Chawla (ref_78) 2013; 22 Mohammadrezakhani (ref_280) 2019; 14 Dias (ref_174) 2018; 231 ref_221 ref_220 ref_222 Kamal (ref_298) 2019; 57 Qados (ref_213) 2014; 1 Dias (ref_190) 2020; 170 Dursun (ref_243) 2018; 22 Liebthal (ref_10) 2018; 28 Mishra (ref_176) 2019; 139 Duhoux (ref_299) 2015; 63 Miller (ref_21) 2009; 2 Hasanuzzaman (ref_85) 2017; 8 Xiao (ref_183) 2020; 11 Benekos (ref_300) 2010; 150 Zonouri (ref_215) 2014; 3 Hamim (ref_170) 2017; 16 Wani (ref_279) 2018; 40 Hasanuzzaman (ref_66) 2018; 115 Mansoor (ref_273) 2013; 12 Xie (ref_7) 2019; 11 ref_17 ref_16 ref_15 Saha (ref_59) 2015; 59 Berni (ref_205) 2019; 161 Razaji (ref_214) 2014; 1 Raja (ref_24) 2017; 137 Sarwar (ref_104) 2018; 8 Calzone (ref_136) 2019; 656 Mir (ref_198) 2018; 8 Cicero (ref_258) 2015; 116 Karuppanapandian (ref_41) 2011; 5 Alsahli (ref_265) 2019; 51 Uzildaya (ref_67) 2012; 182 Hussain (ref_75) 2019; 9 Pakkish (ref_182) 2016; 198 Tohge (ref_126) 2017; 22 (ref_31) 2016; 57 Liu (ref_76) 2019; 256 Karkute (ref_237) 2019; 63 Dong (ref_256) 2016; 7 Cheng (ref_282) 2016; 7 Bela (ref_252) 2015; 176 Gu (ref_289) 2017; 8 Men (ref_287) 2020; 10 Tajti (ref_238) 2020; 149 Xu (ref_29) 2016; 67 Saad (ref_242) 2018; 231 Demarsy (ref_293) 2018; 23 Mohammadi (ref_171) 2017; 111 Alencar (ref_244) 2019; 10 Jin (ref_102) 2015; 6 Choudhury (ref_61) 2013; 8 Ashraf (ref_116) 2012; 7 Wang (ref_172) 2017; 63 Tenhaken (ref_39) 2015; 5 Gilroy (ref_33) 2016; 171 Heyno (ref_42) 2011; 234 (ref_50) 2006; 38 Hasanuzzaman (ref_70) 2017; 12 Voesenek (ref_112) 2008; 59 Marnett (ref_62) 2000; 21 Nahar (ref_83) 2016; 23 Naz (ref_207) 2016; 48 Tripathi (ref_129) 2017; 110 Strid (ref_245) 2019; 9 Xu (ref_166) 2015; 125 Awad (ref_121) 2015; 167 Liu (ref_145) 2018; 9 Diao (ref_107) 2017; 8 Soares (ref_6) 2019; 161 Fiedler (ref_114) 2007; 94 Hasanuzzaman (ref_87) 2019; 28 Jensen (ref_53) 2007; 58 Mathur (ref_93) 2014; 137 Lu (ref_189) 2017; 8 Kuchitsu (ref_37) 2015; 112 Yadu (ref_270) 2019; 16 Zha (ref_125) 2019; 6 Ai (ref_241) 2018; 9 Rady (ref_266) 2018; 240 ref_58 Jia (ref_185) 2019; 257 Bose (ref_26) 2014; 65 ref_54 ref_177 ref_52 Sun (ref_154) 2007; 164 Alam (ref_209) 2014; 58 Shi (ref_278) 2014; 56 Choudhury (ref_12) 2017; 90 Gupta (ref_91) 2017; 40 Sharma (ref_56) 1997; 272 Huang (ref_36) 2016; 171 ref_181 Laloi (ref_28) 2004; 7 Zhang (ref_100) 2018; 17 Spormann (ref_162) 2019; 241 Hasanuzzaman (ref_86) 2018; 13 Ghosh (ref_138) 2020; 714 Sofo (ref_228) 2015; 16 Sahoo (ref_234) 2016; 36 Abbas (ref_74) 2018; 148 Hasanuzzaman (ref_219) 2014; 2014 ref_68 ref_285 AbdElgawad (ref_79) 2016; 7 Anjum (ref_48) 2015; 22 Acebes (ref_229) 2018; 164 Suzuki (ref_25) 2012; 35 Akram (ref_173) 2018; 255 Nahar (ref_233) 2016; 7 ref_290 Cao (ref_178) 2019; 60 Yamashita (ref_96) 2008; 283 Mittler (ref_22) 2011; 16 Awasthi (ref_103) 2017; 68 Rihan (ref_276) 2017; 12 Zhao (ref_288) 2017; 7 Vighi (ref_262) 2017; 61 Luan (ref_118) 2018; 8 Mahmud (ref_88) 2017; 144 ref_194 ref_197 ref_196 Dumont (ref_64) 2019; 10 Nishiyama (ref_120) 2011; 142 Liu (ref_163) 2014; 74 Yildizli (ref_231) 2018; 40 Akram (ref_206) 2017; 8 Singh (ref_27) 2019; 18 Ramel (ref_187) 2013; 25 Liu (ref_223) 2014; 543 Pereira (ref_155) 2010; 48 Mittler (ref_5) 2017; 22 Sandalio (ref_165) 2011; 34 Srivastava (ref_264) 2018; 23 Yoon (ref_202) 2011; 99 Carocho (ref_204) 2013; 51 ref_46 ref_43 Zhang (ref_106) 2016; 211 Langaro (ref_169) 2017; 48 Das (ref_248) 2015; 2 ref_40 Kale (ref_55) 2017; 114 Dolker (ref_137) 2019; 182 Skirycz (ref_38) 2010; 212 Shimakawa (ref_98) 2019; 179 ref_2 Steffens (ref_35) 2014; 5 Bulbovas (ref_191) 2014; 21 Siddiqui (ref_80) 2017; 187 Kuk (ref_247) 2006; 54 |
References_xml | – ident: ref_94 doi: 10.5772/60746 – volume: 40 start-page: 73 year: 2018 ident: ref_110 article-title: Cold stress modulates osmolytes and antioxidant system in Calendula officinalis publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-018-2649-0 – volume: 164 start-page: 45 year: 2018 ident: ref_229 article-title: Class III peroxidases in cellulose deficient cultured maize cells during cell wall remodeling publication-title: Physiol. Plant. doi: 10.1111/ppl.12710 – volume: 14 start-page: 1986 year: 2016 ident: ref_3 article-title: The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12556 – volume: 254 start-page: 445 year: 2017 ident: ref_69 article-title: Insights into spermine-induced combined high temperature and drought tolerance in mung bean: Osmoregulation and roles of antioxidant and glyoxalase system publication-title: Protoplasma doi: 10.1007/s00709-016-0965-z – volume: 9 start-page: 484 year: 2019 ident: ref_119 article-title: γ-aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings publication-title: Sci. Rep. doi: 10.1038/s41598-018-36334-y – volume: 252 start-page: 77 year: 2015 ident: ref_188 article-title: High light acclimation of Oryza sativa L. leaves involves specific photosynthetic-sourced changes of NADPH/NADP+ in the midvein publication-title: Protoplasma doi: 10.1007/s00709-014-0662-8 – volume: 6 start-page: 1123 year: 2015 ident: ref_102 article-title: Physiological and metabolic changes of purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses publication-title: Front. Plant Sci. – volume: 187 start-page: 109814 year: 2020 ident: ref_271 article-title: Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.109814 – volume: 275 start-page: 109713 year: 2021 ident: ref_286 article-title: How does the flooding stress occurring in different harvest times affect the morpho-physiological and biochemical characteristics of spinach? publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2020.109713 – volume: 149 start-page: 5 year: 2020 ident: ref_238 article-title: Exogenous methylglyoxal enhances the reactive aldehyde detoxification capability and frost-hardiness of wheat publication-title: Plant. Physiol. Biochem. – volume: 1 start-page: 91 year: 2013 ident: ref_147 article-title: Molecular approaches unravel the mechanism of acid soil tolerance in plants publication-title: Crop J. doi: 10.1016/j.cj.2013.08.002 – volume: 23 start-page: 385 year: 2018 ident: ref_264 article-title: Effect of salinity on morpho-physiological aspects, antioxidant enzymatic studies and yield attributes in wheat genotypes publication-title: Indian J. Plant. Physiol. doi: 10.1007/s40502-018-0375-7 – volume: 90 start-page: 1533 year: 2018 ident: ref_167 article-title: Effect of herbicides in the oxidative stress in crop winter species publication-title: An. Acad. Bras. Ciênc. doi: 10.1590/0001-3765201820170482 – volume: 257 start-page: 108647 year: 2019 ident: ref_185 article-title: ROS production and scavenging in three cherry rootstocks under short-term waterlogging conditions publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.108647 – volume: 51 start-page: 6371 year: 2012 ident: ref_57 article-title: Identification of oxidized amino acid residues in the vicinity of the Mn(4)CaO(5) cluster of Photosystem II: Implications for the identification of oxygen channels within the Photosystem publication-title: Biochemistry doi: 10.1021/bi300650n – volume: 26 start-page: 58 year: 2017 ident: ref_84 article-title: Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems publication-title: Ecotoxicology doi: 10.1007/s10646-016-1740-9 – volume: 68 start-page: 823 year: 2017 ident: ref_103 article-title: Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance publication-title: Crop Past. Sci. doi: 10.1071/CP17028 – volume: 16 start-page: 2059 year: 2018 ident: ref_117 article-title: Evaluation of physiological indices of waterlogging tolerance of different maize varieties in South China publication-title: App. Ecol. Environ. Res. doi: 10.15666/aeer/1602_20592072 – volume: 164 start-page: 536 year: 2007 ident: ref_154 article-title: Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays) publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2006.02.011 – volume: 71 start-page: 402 year: 2016 ident: ref_211 article-title: Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants publication-title: Biologia doi: 10.1515/biolog-2016-0050 – volume: 12 start-page: 3196 year: 2013 ident: ref_273 article-title: Effect of heat stress on lipid peroxidation and antioxidant enzymes in mung bean (Vigna radiata L.) seedlings publication-title: Afr. J. Biotechnol. – ident: ref_40 doi: 10.1155/2012/217037 – volume: 22 start-page: 10375 year: 2015 ident: ref_226 article-title: Superoxide dismutase—Mentor of abiotic stress tolerance in crop plants. Environ publication-title: Sci. Pollut. Res. doi: 10.1007/s11356-015-4532-5 – volume: 5 start-page: 685 year: 2014 ident: ref_35 article-title: The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00685 – volume: 256 start-page: 1217 year: 2019 ident: ref_76 article-title: High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice publication-title: Protoplasma doi: 10.1007/s00709-019-01354-6 – volume: 8 start-page: 9655 year: 2018 ident: ref_118 article-title: Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: A proteomics approach publication-title: Sci. Rep. doi: 10.1038/s41598-018-27726-1 – ident: ref_177 doi: 10.3390/plants9020188 – volume: 1 start-page: 432 year: 2014 ident: ref_214 article-title: The effects of seed priming by ascorbic acid on some morphological and biochemical aspects of rapeseed (Brassica napus L.) under drought stress condition publication-title: Int. J. Biosci. – ident: ref_16 doi: 10.3390/antiox9080681 – volume: 42 start-page: 862 year: 2005 ident: ref_45 article-title: The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02422.x – volume: 16 start-page: 1 year: 2020 ident: ref_73 article-title: Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress publication-title: J. Soil. Sci. Plant. Nutr. – volume: 46 start-page: 107 year: 2008 ident: ref_161 article-title: Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat publication-title: Photosynthetica doi: 10.1007/s11099-008-0018-8 – volume: 10 start-page: 1 year: 2020 ident: ref_287 article-title: Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress publication-title: Sci. Rep. doi: 10.1038/s41598-020-67260-7 – volume: 179 start-page: 1479 year: 2019 ident: ref_98 article-title: What quantity of photosystem I is optimum for safe photosynthesis? publication-title: Plant Physiol. doi: 10.1104/pp.18.01493 – ident: ref_17 doi: 10.1039/9781782622208 – volume: 6 start-page: 1440 year: 2019 ident: ref_125 article-title: Morphological and physiological stress responses of lettuce to different intensities of continuous light publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01440 – ident: ref_181 doi: 10.3390/plants7030064 – volume: 231 start-page: 31 year: 2018 ident: ref_174 article-title: Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2017.12.007 – volume: 21 start-page: 10514 year: 2014 ident: ref_191 article-title: Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. Sambaíba and Tracajá) cultivated in Amazonian areas publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-2934-4 – volume: 5 start-page: 09871 year: 2015 ident: ref_142 article-title: Ozone-induced stomatal sluggishness changes carbon and water balance of temperate decidGenkiKatata, Makoto Deushi, Makoto Watanabe, Takayoshi Koike & Elena Paolettiuous forests publication-title: Sci. Rep. doi: 10.1038/srep09871 – volume: 8 start-page: 185 year: 2017 ident: ref_158 article-title: Effects of ow pH on photosynthesis, related physiological parameters, and nutrient profiles of Citrus publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00185 – volume: 171 start-page: 1606 year: 2016 ident: ref_33 article-title: ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants publication-title: Plant Physiol. doi: 10.1104/pp.16.00434 – volume: 9 start-page: 1 year: 2014 ident: ref_157 article-title: Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea publication-title: J. Plant Interact. doi: 10.1080/17429145.2012.747629 – volume: 167 start-page: 1592 year: 2015 ident: ref_121 article-title: 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions publication-title: Plant Physiol. doi: 10.1104/pp.114.255356 – volume: 108 start-page: 7 year: 2006 ident: ref_152 article-title: Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2005.12.006 – volume: 16 start-page: 8401 year: 2019 ident: ref_270 article-title: Dimethylthiourea antagonizes oxidative responses by up-regulating expressions of pyrroline-5-carboxylate synthetase and antioxidant genes under arsenic stress publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-019-02234-5 – volume: 144 start-page: 216 year: 2017 ident: ref_88 article-title: Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.06.010 – ident: ref_217 doi: 10.1007/978-981-10-5254-5 – volume: 118 start-page: 68 year: 2016 ident: ref_249 article-title: Putrescine treatment increases the antioxidant response and carbohydrate content in zucchini fruit stored at low temperature publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2016.03.009 – volume: 235 start-page: 349 year: 2018 ident: ref_199 article-title: Hydrogen sulphide increase the tolerance to alkalinity stress in cabbage plants (Brassica oleracea L.’Bronco’) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.03.021 – volume: 59 start-page: 313 year: 2008 ident: ref_112 article-title: Flooding stress: Acclimations and genetic diversity publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092752 – volume: 29 start-page: 1056 year: 2005 ident: ref_8 article-title: Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01327.x – volume: 656 start-page: 589 year: 2019 ident: ref_136 article-title: Cross-talk between physiological and biochemical adjustments by Punica granatum cv. Dente di cavallo mitigates the effects of salinity and ozone stress publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.402 – volume: 241 start-page: 226 year: 2019 ident: ref_162 article-title: Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L. publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.04.035 – ident: ref_43 doi: 10.3390/antiox8040105 – volume: 16 start-page: 65 year: 2017 ident: ref_170 article-title: Oxidative stress and photosynthesis reduction of cultivated (Glycine max L.) and wild soybean (G. tomentella L.) exposed to drought and paraquat publication-title: Asian J. Plant Sci. doi: 10.3923/ajps.2017.65.77 – ident: ref_194 doi: 10.1016/j.bcab.2020.101591 – volume: 14 start-page: 347 year: 2019 ident: ref_280 article-title: Assessment of exogenous application of proline on antioxidant compounds in three Citrus species under low temperature stress publication-title: J. Plant Interact. doi: 10.1080/17429145.2019.1629033 – volume: 38 start-page: 1482 year: 2006 ident: ref_50 article-title: An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemilumin escence assay publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2006.02.010 – volume: 10 start-page: 1725 year: 2019 ident: ref_263 article-title: Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01725 – volume: 147 start-page: 31 year: 2020 ident: ref_82 article-title: Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.12.007 – volume: 19 start-page: 596 year: 2007 ident: ref_60 article-title: Oxidative stress and DNA damages induced by cadmium accumulation publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(07)60099-0 – volume: 8 start-page: e23681 year: 2013 ident: ref_61 article-title: Reactive oxygen species signaling in plants under abiotic stress publication-title: Plant Signal. Behav. doi: 10.4161/psb.23681 – volume: 166 start-page: 688 year: 2019 ident: ref_92 article-title: Interaction between the signaling molecules hydrogen sulfide and hydrogen peroxide and their role in vacuolar H+-ATPase regulation in cadmium-stressed cucumber roots publication-title: Physiol. Plant. doi: 10.1111/ppl.12819 – ident: ref_197 doi: 10.3390/molecules23020388 – volume: 56 start-page: 1064 year: 2014 ident: ref_278 article-title: Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon L. Pers.) by exogenous calcium publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12167 – volume: 11 start-page: 9732325 year: 2019 ident: ref_7 article-title: The roles of environmental factors in regulation of oxidative stress in plant publication-title: Biomed Res. Int. – volume: 10 start-page: 166 year: 2019 ident: ref_64 article-title: Consequences of oxidative stress on plant glycolytic and respiratory metabolism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00166 – volume: 9 start-page: 1259 year: 2019 ident: ref_245 article-title: Multiple roles for vitamin B6 in plant acclimation to UV-B publication-title: Sci. Rep. doi: 10.1038/s41598-018-38053-w – volume: 8 start-page: 71 year: 2016 ident: ref_105 article-title: Responses of unsaturated fatty acid in membrane lipid and antioxidant enzymes to chilling stress in sweet sorghum (Sorghum bicolor L. Moench) seedling publication-title: J. Agric. Sci. – volume: 26 start-page: 27761 year: 2019 ident: ref_246 article-title: Investigating the effect of methyl jasmonate and melatonin on resistance of Malus crabapple ‘Hong Jiu’ to ozone stress publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05946-w – volume: 7 start-page: 276 year: 2016 ident: ref_79 article-title: High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2016.00276 – volume: 202 start-page: 139 year: 2016 ident: ref_101 article-title: Exogenously applied plant growth regulators affect heat-stressed rice pollens publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12148 – volume: 10 start-page: 916 year: 2019 ident: ref_244 article-title: Photoinhibition of photosystem I provides oxidative protection during imbalanced photosynthetic electron transport in Arabidopsis thaliana publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00916 – volume: 51 start-page: 15 year: 2013 ident: ref_204 article-title: A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2012.09.021 – volume: 58 start-page: 459 year: 2007 ident: ref_53 article-title: Oxidative modifications to cellular components in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.58.032806.103946 – volume: 21 start-page: 361 year: 2000 ident: ref_62 article-title: Oxyradicals and DNA damage publication-title: Carcinogenesis doi: 10.1093/carcin/21.3.361 – volume: 41 start-page: 1065 year: 2018 ident: ref_274 article-title: Sensitivity of sorghum pollen and pistil to high-temperature stress publication-title: Plant Cell Environ. doi: 10.1111/pce.13089 – volume: 34 start-page: 115 year: 2020 ident: ref_130 article-title: ABA alleviated soybean seedling stress exposed to UV-C radiation publication-title: Int. Agrophys. doi: 10.31545/intagr/113259 – volume: 36 start-page: 144 year: 2016 ident: ref_234 article-title: Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene publication-title: Mol. Breed. doi: 10.1007/s11032-016-0564-x – volume: 23 start-page: 21206 year: 2016 ident: ref_83 article-title: Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7295-8 – volume: 60 start-page: 562 year: 2019 ident: ref_178 article-title: Melatonin alleviates copper toxicity via improving copper sequestration and ROS scavenging in cucumber publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcy226 – volume: 114 start-page: 2988 year: 2017 ident: ref_55 article-title: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1618922114 – ident: ref_216 doi: 10.1007/978-3-319-75088-0 – volume: 93 start-page: 385 year: 2017 ident: ref_284 article-title: Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato publication-title: J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2017.1373037 – volume: 105 start-page: 1 year: 2016 ident: ref_127 article-title: Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.04.004 – volume: 90 start-page: 856 year: 2017 ident: ref_12 article-title: Reactive oxygen species, abiotic stress and stress combination publication-title: Plant J. doi: 10.1111/tpj.13299 – volume: 48 start-page: 909 year: 2010 ident: ref_20 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.08.016 – volume: 182 start-page: 59 year: 2012 ident: ref_67 article-title: Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress publication-title: Plant Sci. doi: 10.1016/j.plantsci.2011.03.015 – volume: 3 start-page: 5237 year: 2018 ident: ref_275 article-title: Effect of temperature stress on antioxidant defenses in Brassica oleracea publication-title: ACS Omega doi: 10.1021/acsomega.8b00242 – volume: 89 start-page: 841 year: 2002 ident: ref_32 article-title: Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration? publication-title: Ann. Bot. doi: 10.1093/aob/mcf096 – volume: 266 start-page: 109290 year: 2020 ident: ref_261 article-title: Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2020.109290 – volume: 15 start-page: 5196 year: 2010 ident: ref_225 article-title: Photochemistry of flavonoids publication-title: Molecules doi: 10.3390/molecules15085196 – volume: 64 start-page: 429 year: 2013 ident: ref_51 article-title: ROS-mediated lipid peroxidation and RES-activated signaling publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120132 – ident: ref_149 doi: 10.1201/9780824746568 – volume: 2 start-page: 70 year: 2015 ident: ref_248 article-title: Oxidative environment and redox homeostasis in plants: Dissecting out significant contribution of major cellular organelles publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2014.00070 – ident: ref_58 doi: 10.1371/journal.pone.0058042 – volume: 8 start-page: 28 year: 2018 ident: ref_198 article-title: Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxalase system in maize seedlings publication-title: Sci. Rep. doi: 10.1038/s41598-018-21097-3 – volume: 63 start-page: 91 year: 2015 ident: ref_299 article-title: Molecular mechanisms of herbicide resistance publication-title: Weed Sci. doi: 10.1614/WS-D-13-00096.1 – volume: 655 start-page: 1448 year: 2019 ident: ref_201 article-title: Separate and combined effects of glyphosate and copper on growth and antioxidative enzymes in Salvinia natans (L.) All publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.213 – volume: 255 start-page: 163 year: 2018 ident: ref_173 article-title: Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress publication-title: Protoplasma doi: 10.1007/s00709-017-1140-x – volume: 8 start-page: 1082 year: 2017 ident: ref_289 article-title: Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01082 – volume: 54 start-page: 6 year: 2006 ident: ref_247 article-title: Mechanism of paraquat tolerance in cucumber leaves of various ages publication-title: Weed Sci. doi: 10.1614/WS-04-135R.1 – volume: 116 start-page: 69 year: 2015 ident: ref_258 article-title: Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses publication-title: Phytochem doi: 10.1016/j.phytochem.2015.03.004 – volume: 48 start-page: 877 year: 2016 ident: ref_207 article-title: Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water-deficit conditions publication-title: Pak. J. Bot. – volume: 23 start-page: 260 year: 2018 ident: ref_293 article-title: Coping with ‘Dark Sides of the Sun’ through photoreceptor signaling publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.11.007 – volume: 170 start-page: 112199 year: 2020 ident: ref_190 article-title: The antioxidant system in Olea europaea to enhanced UV-B radiation also depends on flavonoids and secoiridoids publication-title: Phytochemistry doi: 10.1016/j.phytochem.2019.112199 – volume: 51 start-page: 1745 year: 2010 ident: ref_292 article-title: Contributions of visible and ultraviolet parts of sunlight to photoinhibition publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq133 – volume: 13 start-page: 203 year: 2018 ident: ref_86 article-title: Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms publication-title: J. Plant Interact. doi: 10.1080/17429145.2018.1458913 – volume: 411 start-page: 826 year: 2001 ident: ref_11 article-title: Plant pathogens and integrated defense responses to infection publication-title: Nature doi: 10.1038/35081161 – volume: 137 start-page: 142 year: 2017 ident: ref_24 article-title: Abiotic stress: Interplay between ROS, hormones and MAPKs publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2017.02.010 – volume: 182 start-page: 109404 year: 2019 ident: ref_137 article-title: Negative impacts of elevated ozone on dominant species of semi-natural grassland vegetation in Indo-Gangetic plain publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.109404 – volume: 94 start-page: 2 year: 2007 ident: ref_114 article-title: Soil redox potential: Importance, field measurements, and observations publication-title: Adv. Agron. – volume: 149 start-page: 59 year: 2018 ident: ref_124 article-title: Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.02.001 – volume: 259 start-page: 108816 year: 2020 ident: ref_128 article-title: Solar UV irradiation effects on photosynthetic performance, biochemical markers, and gene expression in highbush blueberry (Vaccinium corymbosum L.) cultivars publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.108816 – volume: 66 start-page: 571 year: 2015 ident: ref_148 article-title: Plant adaptation to acid soils: The molecular basis for crop aluminum resistance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043014-114822 – volume: 8 start-page: 1042 year: 2017 ident: ref_208 article-title: Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01042 – volume: 12 start-page: 323 year: 2017 ident: ref_70 article-title: Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced oxidative stress in rapeseed publication-title: J. Plant Interact. doi: 10.1080/17429145.2017.1362052 – volume: 195 start-page: 110469 year: 2020 ident: ref_14 article-title: Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110469 – volume: 10 start-page: 800 year: 2019 ident: ref_9 article-title: Mechanisms of ROS regulation of plant development and stress responses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00800 – ident: ref_236 doi: 10.1186/s12870-017-1087-2 – volume: 188 start-page: 109894 year: 2020 ident: ref_81 article-title: Thymol confers tolerance to salt stress by activating anti-oxidative defense and modulating Na+ homeostasis in rice root publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.109894 – volume: 7 start-page: 323 year: 2004 ident: ref_28 article-title: Reactive oxygen signalling: The latest news publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2004.03.005 – volume: 231 start-page: 234 year: 2018 ident: ref_242 article-title: A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes publication-title: J. Plant. Physiol. doi: 10.1016/j.jplph.2018.09.019 – volume: 114 start-page: 144 year: 2015 ident: ref_133 article-title: Ozone sensing and early signaling in plants: An outline from the cloud publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2014.11.012 – ident: ref_2 doi: 10.1080/14693062.2020.1728209 – ident: ref_250 doi: 10.3390/ijms18010200 – volume: 8 start-page: 1061 year: 2017 ident: ref_85 article-title: Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01061 – volume: 36 start-page: 791 year: 2017 ident: ref_232 article-title: Plant glutathione transferase-mediated stress tolerance: Functions and biotechnological applications publication-title: Plant Cell Rep. doi: 10.1007/s00299-017-2139-7 – volume: 22 start-page: 1 year: 2018 ident: ref_243 article-title: The responses of antioxidant system against the heavy metal-induced stress in tomato publication-title: Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi – volume: 7 start-page: 1144 year: 2016 ident: ref_123 article-title: Morphological, photosynthetic, and physiological responses of rapeseed leaf to different combinations of red and blue lights at the rosette stage publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01144 – volume: 28 start-page: 261 year: 2019 ident: ref_87 article-title: Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L. publication-title: Ecotoxicology doi: 10.1007/s10646-019-02019-z – volume: 40 start-page: 122 year: 2018 ident: ref_231 article-title: Effects of exogenous myo-inositol on leaf water status and oxidative stress of Capsicum annuum under drought stress publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-018-2690-z – ident: ref_220 doi: 10.1002/9781119468677 – volume: 9 start-page: 1388 year: 2018 ident: ref_241 article-title: Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01388 – ident: ref_290 doi: 10.3390/plants9050633 – volume: 63 start-page: 268 year: 2019 ident: ref_237 article-title: Heterologous expression of the AtDREB1A gene in tomato confers tolerance to chilling stress publication-title: Biol. Plant. doi: 10.32615/bp.2019.031 – volume: 34 start-page: 1 year: 2016 ident: ref_168 article-title: Changes in photosynthesis and oxidative stress in wheat plants submmited to herbicides application publication-title: Planta Daninha doi: 10.1590/S0100-83582016340100001 – volume: 260 start-page: 012153 year: 2019 ident: ref_240 article-title: Effect of benzyl amino purin (BAP) and gibberellin acid (GA3) to chlorophyll and antioxidant enzymes of soybean (Glycine max L. Merill.) genotypes in response to inundation conditions publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/260/1/012153 – volume: 272 start-page: 33158 year: 1997 ident: ref_56 article-title: Primary structure characterization of the photosystem II D1 and D2 subunits publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.52.33158 – volume: 55 start-page: 373 year: 2004 ident: ref_134 article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – ident: ref_15 doi: 10.1007/978-981-15-0025-1 – volume: 59 start-page: 139 year: 2015 ident: ref_59 article-title: Modulation of NaCl induced DNA damage and oxidative stress in mungbean by pretreatment with sublethal dose publication-title: Biol. Plant doi: 10.1007/s10535-014-0460-3 – volume: 34 start-page: 1874 year: 2011 ident: ref_165 article-title: Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: Role of reactive oxygen species publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02383.x – volume: 8 start-page: 365 year: 2017 ident: ref_189 article-title: Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00365 – volume: 99 start-page: 65 year: 2011 ident: ref_202 article-title: Tolerance to paraquat-mediated oxidative and environmental stresses in squash (Cucurbita spp.) leaves of various ages publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2010.11.001 – volume: 22 start-page: 4099 year: 2015 ident: ref_48 article-title: Lipids and proteins—Major targets of oxidative modifications in abiotic stressed plants publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3917-1 – volume: 25 start-page: 1445 year: 2013 ident: ref_187 article-title: Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen publication-title: Plant Cell doi: 10.1105/tpc.113.109827 – volume: 18 start-page: 35424 year: 2016 ident: ref_180 article-title: Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings publication-title: Sci. Rep. doi: 10.1038/srep35424 – volume: 8 start-page: 203 year: 2017 ident: ref_107 article-title: Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00203 – volume: 99 start-page: 141 year: 2014 ident: ref_179 article-title: Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2013.11.010 – volume: 109 start-page: 212 year: 2015 ident: ref_49 article-title: Mechanisms of oxidative stress in plants: From classical chemistry to cell biology publication-title: Environ. Expt. Bot. doi: 10.1016/j.envexpbot.2014.06.021 – volume: 198 start-page: 318 year: 2016 ident: ref_182 article-title: The use and mechanism of NO to prevent frost damage to flower of apricot publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.12.004 – volume: 245 start-page: 380 year: 2019 ident: ref_193 article-title: Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.11.030 – ident: ref_68 – volume: 234 start-page: 22 year: 2015 ident: ref_254 article-title: Glutathione peroxidases as redox sensor proteins in plant cells publication-title: Plant Sci. doi: 10.1016/j.plantsci.2015.01.017 – volume: 25 start-page: 443 year: 2019 ident: ref_175 article-title: Acetate-induced modulation of ascorbate: Glutathione cycle and restriction of sodium accumulation in shoot confer salt tolerance in Lens culinaris Medik publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-018-00640-6 – volume: 20 start-page: 101197 year: 2019 ident: ref_259 article-title: Mitigation of PEG-induced drought stress in rapeseed (Brassica rapa L.) by exogenous application of osmolytes publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2019.101197 – volume: 552 start-page: 335 year: 2003 ident: ref_34 article-title: Mitochondrial formation of reactive oxygen species publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.049478 – volume: 112 start-page: 22 year: 2015 ident: ref_37 article-title: Reactive oxygen species in cell wall metabolism and development in plants publication-title: Phytochemistry doi: 10.1016/j.phytochem.2014.09.016 – ident: ref_54 doi: 10.1155/2013/585431 – volume: 7 start-page: 139 year: 2016 ident: ref_256 article-title: Glutathione S-transferase gene family in Gossypium raimondii and G. arboreum: Comparative genomic study and their expression under salt stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00139 – volume: 100 start-page: 166 year: 2016 ident: ref_122 article-title: Adaptive flexibility of enzymatic antioxidants SOD, APX and CAT to high light stress: The clonal perennial monocot Iris pumila as a study case publication-title: Plant. Physiol. Biochem. doi: 10.1016/j.plaphy.2016.01.011 – volume: 124 start-page: 470 year: 2016 ident: ref_203 article-title: Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.11.026 – volume: 158 start-page: 59 year: 2018 ident: ref_195 article-title: Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.04.014 – volume: 63 start-page: 527 year: 2012 ident: ref_294 article-title: How is ozone pollution reducing our food supply? publication-title: J. Exp. Bot. doi: 10.1093/jxb/err317 – volume: 28 start-page: 609 year: 2018 ident: ref_10 article-title: Peroxiredoxins and redox signaling in plants publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7164 – volume: 38 start-page: 70 year: 2019 ident: ref_47 article-title: Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-018-9810-2 – volume: 42 start-page: 1458 year: 2019 ident: ref_186 article-title: Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling publication-title: Plant Cell Environ. doi: 10.1111/pce.13504 – volume: 57 start-page: 1364 year: 2016 ident: ref_31 article-title: ROS generation in peroxisomes and its role in cell signaling publication-title: Plant Cell Physiol. – volume: 8 start-page: 1 year: 2018 ident: ref_104 article-title: Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism publication-title: Sci. Rep. doi: 10.1038/s41598-018-35420-5 – ident: ref_269 doi: 10.1007/978-3-030-06118-0 – volume: 240 start-page: 614 year: 2018 ident: ref_266 article-title: Up-regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.06.069 – volume: 22 start-page: 11 year: 2017 ident: ref_5 article-title: ROS are good publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 7 start-page: 1968 year: 2017 ident: ref_288 article-title: Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01968 – ident: ref_46 doi: 10.3390/antiox8090384 – volume: 110 start-page: 70 year: 2017 ident: ref_129 article-title: Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.06.026 – ident: ref_131 doi: 10.3390/plants9020215 – volume: 18 start-page: 100 year: 2019 ident: ref_27 article-title: Reactive oxygen species-mediated signaling during abiotic stress publication-title: Plant Gene doi: 10.1016/j.plgene.2019.100173 – volume: 714 start-page: 136837 year: 2020 ident: ref_138 article-title: Effect of water deficit stress on an Indian wheat cultivar (Triticum aestivum L. HD 2967), under ambient and elevated level of ozone publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136837 – volume: 48 start-page: 683 year: 2010 ident: ref_155 article-title: Aluminum-induced oxidative stress in cucumber publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.04.008 – volume: 126 start-page: 173 year: 2018 ident: ref_164 article-title: Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.02.021 – ident: ref_146 doi: 10.20944/preprints201901.0143.v1 – volume: 3 start-page: 178 year: 2014 ident: ref_215 article-title: Effect of foliar spraying of ascorbic acid on chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, hydrogen peroxide, leaf temperature and leaf relative water content under drought stress in grapes publication-title: Bull. Environ. Pharmacol. Life Sci. – volume: 125 start-page: 53 year: 2015 ident: ref_166 article-title: Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-structural disorders in crickweed (Malachium aquaticum L.) publication-title: Pestic Biochem Physiol. doi: 10.1016/j.pestbp.2015.06.002 – volume: 25 start-page: 865 year: 2019 ident: ref_144 article-title: Explicating physiological and biochemical responses of wheat cultivars under acidity stress: Insight into the antioxidant defense and glyoxalase systems publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-019-00678-0 – volume: 5 start-page: 709 year: 2011 ident: ref_41 article-title: Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms publication-title: Aust. J. Crop Sci. – ident: ref_140 – volume: 9 start-page: 521 year: 2018 ident: ref_99 article-title: Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00521 – volume: 8 start-page: 1147 year: 2017 ident: ref_65 article-title: Crop production under drought and heat stress: Plant responses and management options publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01147 – volume: 17 start-page: 2683 year: 2018 ident: ref_100 article-title: Effects of short-term heat stress on PSII and subsequent recovery for senescent leaves of Vitis vinifera L. cv. Red Globe publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(18)62143-4 – ident: ref_285 doi: 10.3390/plants8070196 – volume: 14 start-page: 87 year: 2019 ident: ref_296 article-title: Nickel and ozone stresses induce differential growth, antioxidant activity and mRNA transcription in Oryza sativa cultivars publication-title: J. Plant Interact. doi: 10.1080/17429145.2018.1556356 – volume: 229 start-page: 167 year: 2018 ident: ref_108 article-title: Controlled drought stress affects the chilling-hardening capacity of tomato seedlings as indicated by changes in phenol metabolisms, antioxidant enzymes activity, osmolytes concentration and abscisic acid accumulation publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2017.10.009 – volume: 60 start-page: 14 year: 2019 ident: ref_111 article-title: Biochemical responses of rice roots to cold stress publication-title: Bot. Stud. doi: 10.1186/s40529-019-0262-1 – volume: 14 start-page: 9643 year: 2013 ident: ref_272 article-title: Physiological, biochemical, molecular mechanisms of heat stress tolerance in plants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms14059643 – volume: 12 start-page: 143 year: 2017 ident: ref_276 article-title: Advances in physiological and molecular aspects of plant cold tolerance publication-title: J. Plant Interact. doi: 10.1080/17429145.2017.1308568 – volume: 211 start-page: 1295 year: 2016 ident: ref_106 article-title: Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice publication-title: New Phytol. doi: 10.1111/nph.14011 – volume: 2 start-page: 22 year: 2016 ident: ref_235 article-title: Temperature stress induced antioxidative and biochemical changes in wheat (Triticum aestivum L.) cultivars publication-title: J. Plant Stress Physiol. doi: 10.19071/jpsp.2016.v2.3076 – volume: 35 start-page: 259 year: 2012 ident: ref_25 article-title: ROS and redox signaling in the response of plants to abiotic stress publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02336.x – volume: 48 start-page: 358 year: 2017 ident: ref_169 article-title: Oxidative stress caused by the use of preemergent herbicides in rice crops publication-title: Rev. Ciênc. Agron. doi: 10.5935/1806-6690.20170041 – volume: 91 start-page: 129 year: 2016 ident: ref_210 article-title: Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid publication-title: J. Hort. Sci. Biotechnol. doi: 10.1080/14620316.2015.1117226 – volume: 61 start-page: 540 year: 2017 ident: ref_262 article-title: Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress publication-title: Biol. Plant. doi: 10.1007/s10535-017-0727-6 – ident: ref_239 doi: 10.1186/s12870-018-1457-4 – volume: 83 start-page: 175 year: 1999 ident: ref_150 article-title: Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins publication-title: Ann. Bot. doi: 10.1006/anbo.1998.0811 – ident: ref_230 doi: 10.1007/978-3-319-75088-0 – ident: ref_267 – volume: 63 start-page: 271 year: 2017 ident: ref_281 article-title: Antioxidant response to cold stress in two oil plants of the genus Jatropha publication-title: Plant Soil Environ. doi: 10.17221/182/2017-PSE – volume: 282 start-page: 1183 year: 2007 ident: ref_18 article-title: Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603761200 – volume: 5 start-page: 771 year: 2015 ident: ref_39 article-title: Cell wall remodeling under abiotic stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00771 – volume: 16 start-page: 13561 year: 2015 ident: ref_228 article-title: Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms160613561 – volume: 186 start-page: 999 year: 2018 ident: ref_72 article-title: Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-018-2784-5 – volume: 283 start-page: 28380 year: 2008 ident: ref_96 article-title: Quality control of photosystem II: Reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M710465200 – volume: 113 start-page: 353 year: 2013 ident: ref_277 article-title: Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice publication-title: Plant Cell Tiss. Organ. Cult. doi: 10.1007/s11240-012-0273-z – volume: 150 start-page: 195 year: 2010 ident: ref_300 article-title: Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2010.07.011 – volume: 137 start-page: 116 year: 2014 ident: ref_93 article-title: Photosynthesis: Limitations in response to high temperature stress publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2014.01.010 – ident: ref_218 doi: 10.1016/B978-0-12-803158-2.00011-4 – volume: 176 start-page: 192 year: 2015 ident: ref_252 article-title: Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2014.12.014 – volume: 40 start-page: 509 year: 2017 ident: ref_91 article-title: NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity publication-title: Plant Cell Environ. doi: 10.1111/pce.12711 – volume: 139 start-page: 620 year: 2019 ident: ref_176 article-title: ROS management is mediated by ascorbate-glutathione-α-tocopherol triad in co-ordination with secondary metabolic pathway under cadmium stress in Withania somnifera publication-title: Plant. Physiol. Biochem. doi: 10.1016/j.plaphy.2019.03.040 – volume: 56 start-page: 54 year: 2006 ident: ref_151 article-title: Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh) publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2005.01.002 – volume: 57 start-page: 1025 year: 2019 ident: ref_298 article-title: Mitigation mechanism of ozone-induced reduction in net photosynthesis of Bangladeshi wheat under soil salinity stress publication-title: Photosynthetica doi: 10.32615/ps.2019.115 – volume: 12 start-page: 1379 year: 1989 ident: ref_160 article-title: Sorghum seedling growth as influenced by H+, Ca2+, and Mn2+ concentrations publication-title: J. Plant Nutr. doi: 10.1080/01904168909364043 – volume: 67 start-page: 15 year: 2015 ident: ref_159 article-title: Good and bad protons: Genetic aspects of acidity stress responses in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv437 – volume: 148 start-page: 851 year: 2018 ident: ref_200 article-title: Response of antioxidative system in rice (Oryza sativa) leaves to simulated acid rain stress publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.11.046 – volume: 147 start-page: 990 year: 2018 ident: ref_89 article-title: Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.09.045 – volume: 7 start-page: 1104 year: 2016 ident: ref_233 article-title: Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2016.01104 – volume: 37 start-page: 261 year: 2009 ident: ref_253 article-title: PeroxiBase: A database with new tools for peroxidase family classification publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn680 – volume: 11 start-page: 480 year: 2020 ident: ref_291 article-title: Growth and essential carotenoid micronutrients in Lemna gibba as a function of growth light intensity publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00480 – volume: 95 start-page: 27 year: 2016 ident: ref_251 article-title: The role of glutathione reductase and related enzymes on cellular redox homoeostasis network publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.02.028 – volume: 74 start-page: 438 year: 2014 ident: ref_163 article-title: Effect of picloram herbicide on physiological responses of Eupatorium adenophorum Spreng publication-title: Chil. J. Agric. Res. doi: 10.4067/S0718-58392014000400010 – volume: 25 start-page: 185 year: 2018 ident: ref_71 article-title: Antioxidant protection mechanisms reveal significant response in drought-induced oxidative stress in some traditional rice of Assam, India publication-title: Rice Sci. doi: 10.1016/j.rsci.2018.06.002 – ident: ref_115 doi: 10.1007/978-3-642-10305-6 – volume: 8 start-page: 785 year: 2017 ident: ref_109 article-title: Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00785 – volume: 71 start-page: 605 year: 2010 ident: ref_224 article-title: Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato publication-title: Phytochemistry doi: 10.1016/j.phytochem.2009.12.014 – volume: 36 start-page: 1539 year: 2014 ident: ref_212 article-title: Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-014-1530-z – volume: 115 start-page: 50 year: 2018 ident: ref_66 article-title: Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2017.12.006 – volume: 252 start-page: 19 year: 2020 ident: ref_97 article-title: Effects of low temperature on photoinhibition and singlet oxygen production in four natural accessions of Arabidopsis publication-title: Planta doi: 10.1007/s00425-020-03423-0 – volume: 9 start-page: 1 year: 2019 ident: ref_75 article-title: Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids publication-title: Sci. Rep. doi: 10.1038/s41598-019-40362-7 – volume: 171 start-page: 1551 year: 2016 ident: ref_36 article-title: The roles of mitochondrial reactive oxygen species in cellular signaling and stress responses in plants publication-title: Plant. Physiol. doi: 10.1104/pp.16.00166 – volume: 171 start-page: 1541 year: 2016 ident: ref_23 article-title: Redox- and reactive oxygen species-dependent signaling in and from the photosynthesizing chloroplast publication-title: Plant. Physiol. doi: 10.1104/pp.16.00375 – ident: ref_143 doi: 10.1007/978-3-030-06118-0 – volume: 161 start-page: 98 year: 2019 ident: ref_205 article-title: Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.10.017 – volume: 2 start-page: ra45 year: 2009 ident: ref_21 article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli publication-title: Sci. Signal. doi: 10.1126/scisignal.2000448 – volume: 8 start-page: 143 year: 2012 ident: ref_63 article-title: Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress publication-title: Metabolomics doi: 10.1007/s11306-011-0296-1 – volume: 187 start-page: 385 year: 2017 ident: ref_80 article-title: Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: Oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.08.078 – volume: 7 start-page: 1519 year: 2016 ident: ref_282 article-title: Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01519 – volume: 234 start-page: 35 year: 2011 ident: ref_42 article-title: Oxygen activation at the plasma membrane: Relation between superoxide and hydroxyl radical production by isolated membranes publication-title: Planta doi: 10.1007/s00425-011-1379-y – volume: 65 start-page: 1241 year: 2014 ident: ref_26 article-title: ROS homeostasis in halophytes in the context of salinity stress tolerance publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert430 – ident: ref_132 doi: 10.1007/978-3-319-71873-6 – volume: 166 start-page: 1878 year: 2009 ident: ref_257 article-title: Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2009.05.016 – volume: 69 start-page: 209 year: 2018 ident: ref_13 article-title: Reactive oxygen species in plant signaling publication-title: Ann. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040322 – volume: 171 start-page: 1704 year: 2016 ident: ref_30 article-title: Lack of GLYCOLATE OXIDASE1, but not GLYCOLATE OXIDASE2, attenuates the photorespiratory phenotype of CATALASE2- deficient Arabidopsis publication-title: Plant. Physiol. doi: 10.1104/pp.16.00359 – volume: 212 start-page: 197 year: 2010 ident: ref_38 article-title: More from less: Plant growth under limited water publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2010.03.002 – volume: 9 start-page: 716 year: 2018 ident: ref_145 article-title: Silicon priming created an enhanced tolerance in alfalfa (Medicago sativa L.) seedlings in response to high alkaline stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00716 – volume: 148 start-page: 825 year: 2018 ident: ref_74 article-title: Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.11.063 – ident: ref_90 doi: 10.3390/molecules24224194 – volume: 8 start-page: 613 year: 2017 ident: ref_206 article-title: Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00613 – volume: 137 start-page: 483 year: 2005 ident: ref_141 article-title: Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2005.01.035 – volume: 167 start-page: 313 year: 2016 ident: ref_4 article-title: Abiotic stress signaling and responses in plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 26 start-page: 1950 year: 2016 ident: ref_95 article-title: Production of reactive oxygen species by photosystem II as a response to light and temperature stress publication-title: Front. Plant Sci. – volume: 2 start-page: 53 year: 2014 ident: ref_227 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2014.00053 – volume: 161 start-page: 4 year: 2019 ident: ref_6 article-title: Plants facing oxidative challenges—A little help from the antioxidant networks publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.12.009 – ident: ref_77 doi: 10.1186/s12864-017-3596-7 – volume: 142 start-page: 35 year: 2011 ident: ref_120 article-title: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2011.01457.x – volume: 543 start-page: 145 year: 2014 ident: ref_223 article-title: Identification of the flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase genes from Antarctic moss and their regulation during abiotic stress publication-title: Gene doi: 10.1016/j.gene.2014.03.026 – volume: 1 start-page: 189 year: 2014 ident: ref_213 article-title: Effect of Ascorbic Acid antioxidant on Soybean (Glycine max L.) plants grown under water stress conditions publication-title: Int. J. Advan. Res. Biol Sci. – volume: 176 start-page: 104078 year: 2020 ident: ref_184 article-title: Short-term nitrate supply decreases fermentation and oxidative stress caused by waterlogging in soybean plants publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2020.104078 – volume: 109 start-page: 276 year: 2015 ident: ref_192 article-title: Effects of ambient and elevated CO2 and ozone on physiological characteristics, antioxidative defense system and metabolites of potato in relation to ozone flux publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2014.06.015 – volume: 10 start-page: 2602 year: 2019 ident: ref_283 article-title: Adiponectin receptor PAQR-2 signaling senses low temperature to promote C. elegans longevity by regulating autophagy publication-title: Nat. Commun. doi: 10.1038/s41467-019-10475-8 – ident: ref_221 doi: 10.1007/978-3-030-06118-0 – ident: ref_222 doi: 10.3390/antiox7020028 – volume: 103 start-page: 428 year: 2019 ident: ref_297 article-title: Responses of antioxidant enzymes to chronic free-air ozone stress in rice (Oryza sativa L.) cultivars with different ozone-sensitivities publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-019-02653-7 – volume: 40 start-page: 167 year: 2018 ident: ref_279 article-title: Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L. publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-018-2747-z – volume: 16 start-page: 300 year: 2011 ident: ref_22 article-title: ROS signaling: The new wave? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2011.03.007 – ident: ref_135 doi: 10.1371/journal.pone.0094862 – volume: 4 start-page: 272 year: 2013 ident: ref_295 article-title: Source-to-sink transport of sugar and regulation by environmental factors publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00272 – ident: ref_52 doi: 10.1002/9781119324928 – volume: 63 start-page: e12429 year: 2017 ident: ref_172 article-title: Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress publication-title: J. Pineal Res. doi: 10.1111/jpi.12429 – ident: ref_113 doi: 10.1007/978-981-10-5254-5 – volume: 7 start-page: 1976 year: 2012 ident: ref_116 article-title: Waterlogging stress in plants: A review publication-title: Afr. J. Agric. Res. – volume: 22 start-page: 308 year: 2017 ident: ref_126 article-title: Leveraging natural variance towards enhanced understanding of phytochemical sunscreens publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.01.003 – volume: 26 start-page: 233 year: 2020 ident: ref_260 article-title: Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure publication-title: Physiol. Mol. Biol. Plant. doi: 10.1007/s12298-019-00744-7 – ident: ref_268 doi: 10.1007/978-3-030-20732-8 – volume: 7 start-page: 165 year: 2011 ident: ref_156 article-title: Significance of sulphur nutrition against metal induced oxidative stress in plants publication-title: J. Stress Physiol. Biochem. – volume: 67 start-page: 3831 year: 2016 ident: ref_29 article-title: Spreading the news: Subcellular and organellar reactive oxygen species production and signalling publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw080 – volume: 116 start-page: 663 year: 2015 ident: ref_44 article-title: Seed birth to death: Dual functions of reactive oxygen species in seed physiology publication-title: Ann. Bot. doi: 10.1093/aob/mcv098 – volume: 7 start-page: 301 year: 2016 ident: ref_255 article-title: Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00301 – volume: 2 start-page: 386 year: 2019 ident: ref_1 article-title: A multi-model assessment of food security implications of climate change mitigation publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0286-2 – volume: 51 start-page: 1551 year: 2019 ident: ref_265 article-title: Salicylic acid alleviates salinity stress through the modulation of biochemical attributes and some key antioxidants in wheat seedlings publication-title: Pak. J. Bot. doi: 10.30848/PJB2019-5(12) – volume: 58 start-page: 697 year: 2014 ident: ref_209 article-title: Alleviation of osmotic stress in Brassica napus, B. campestris, and B. juncea by ascorbic acid application publication-title: Biol. Plant. doi: 10.1007/s10535-014-0447-0 – volume: 50 start-page: 2 year: 2008 ident: ref_19 article-title: Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network publication-title: J. Integrat. Plant Biol. doi: 10.1111/j.1744-7909.2007.00599.x – volume: 111 start-page: 129 year: 2017 ident: ref_171 article-title: Molecular and physiological responses of Iranian Perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress publication-title: Plant. Physiol. Biochem. doi: 10.1016/j.plaphy.2016.11.014 – ident: ref_139 doi: 10.3390/f11010068 – volume: 11 start-page: 696 year: 2020 ident: ref_183 article-title: Hydrogen sulfide alleviates waterlogging-induced damage in Peach seedlings via enhancing antioxidative system and inhibiting ethylene synthesis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00696 – ident: ref_196 doi: 10.1371/journal.pone.0173378 – volume: 2014 start-page: 757219 year: 2014 ident: ref_219 article-title: Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties publication-title: BioMed Res. Int. doi: 10.1155/2014/757219 – volume: 22 start-page: 27 year: 2013 ident: ref_78 article-title: Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.) publication-title: J. Plant Biochem. Biotechnol. doi: 10.1007/s13562-012-0107-4 – volume: 49 start-page: 313 year: 2007 ident: ref_153 article-title: Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2007.00358.x |
SSID | ssj0023259 |
Score | 2.6821744 |
SecondaryResourceType | review_article |
Snippet | Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8695 |
SubjectTerms | Abiotic stress Antioxidants Apoptosis Carbohydrates Chloroplasts Climate change Endoplasmic reticulum Environmental conditions Fatty acids Free radicals Gene expression Gene Expression Regulation, Plant Homeostasis Lipids Metabolism Mitochondria Oxidation Oxidative Stress Photosynthesis Plants - metabolism Polyamines Productivity Proteins Reactive oxygen species Reactive Oxygen Species - metabolism Review Signal Transduction |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6alEIupe86SYsK7amIrCxbknsJIWwIhbSQ7cLejCxLdNNd7zZ2Dvn3mbG9j6SkZw2ymJHmYY2-D-BzakVsZQjcOVHwREnBMwxTPJSFKEqRBtmyNVz8UOfj5PsknfQ_3Oq-rXLlE1tHXS4c_SM_inEedJ1YzR0v_3JijaLb1Z5CYweeEnQZtXTpyabgknFLliYwBnGVZqprfJdY5h9Nr-Y1eu3YKGKW2A5J_-SZD9slt-LP2Qt43ieO7KSz9Et44qtX8Kyjkrx9DX8uO1J5VDNbBHb5c8QufIMWnk3rOZtWjNiJmprRm7FrNtw8b8M5R-17kW_shHU3Be0EntbBhlsEAGzFQPoGxmfDX6fnvCdS4C7RpuHKqFKL1Fht3aDEDE5YZb1wDmstLYvYxakMOihUb5oS6XhIhFYBg7_13hor38Jutaj8e2BWZzaL8SS7RBDujRkUrvTlQHiPcU_4CL6udJm7HmWcyC5mOVYbpPl8W_MRfFlLLzt0jUfkDldmyfszVuebHRHBp_Uwng668rCVX9x0MgRGMUgieNdZcf0hKTG9wQoxAn3PvmsBQt6-P1JNf7cI3FplRgmz__9lHcBeTNU5NQ2aQ9htrm_8B0xhmuJju0_vABFt8Ro priority: 102 providerName: ProQuest |
Title | Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33218014 https://www.proquest.com/docview/2463299469 https://www.proquest.com/docview/2463104704 https://pubmed.ncbi.nlm.nih.gov/PMC7698618 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dT9swED_xoU28oH0TYJUnsacpW5zEH5k0TYDaIaSyqaxS3yLHsbVCSaENEvz3nJMma8d4yUsuTnQ_X353sn0_gAOmaKgia32taebHPKJ-gjTl2zyjWU6ZjSq1hv4ZPxnGpyM2WoNGbXThwPl_SzunJzWcTT7f3dx_x4D_5ipOLNm_jC-u5vgHDiVP2DpsIicJF6L9uF1PwLSBJfW290dPbMHzKEKiC2i8yk2PEs5_900uEVHvBWwvMkhyWEP-EtZM8Qqe1ZqS96_hclCry6O_ydSSwc9z0jclQj0Zz6_IuCBOpqicE3d4bEa6f8-54Zjn1cGRr-SQ1EsG1QDGfQfpLikBkEaK9A0Me93fxyf-QlHB17GQpc8lzwVlUgmlgxxTOaq4MlRrLLpElIU6ZJEVlidJzJhTH7foS24xC1DGKKmit7BRTAuzA0SJRCUhhrSOqWuAI4NM5yYPqDFIgNR48KnxZaoX7cad6sUkxbLDgZAug-DBx9b6um6z8YTdfgNL2syVNMQphqyKhb4HH9rbGCZu7UMVZnpb27iuFEHswbsaxfZFDfweiBV8WwPXgnv1TjH-U7XiFjyRnMrdJ8fcg63QVehu46Dch41ydmveYxpTZh1YFyOBV9n70YHNo-7Zr0HHEQvrVHP3AR3V9dk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPRE4oa24ntICFUwVZb2i1SH9LeUsexxUKbLU0q1D_Fb2Qcb3a3ILj1bMu2PDP-ZmzPfABvMk2Z5s7FxtAyTgWncY4wFbuqpGVFM8c7tobRnhgepZ_H2XgFfvW5MP5bZX8mdgd1NTX-jnyD4Th4dGI09-HsR-xZo_zrak-hEdRix17-xJCteb_9CeW7ztjW4PDjMJ6xCsQmlaqNhRKVpJnSUpukQneGaqEtNQYDD8lLZljGnXQC58oyz8DtUiqFQyTU1mqlOY57A24i8CbeouR4EeBx1pGzUcS8WGS5CB_tOc-Tjcm30wZRginhmSyWIfAvv_bP75lLeLd1D-7OHFWyGTTrPqzY-gHcCtSVlw_h-34gsUexkqkj-18OyMi2qFEnk-aUTGri2ZDahvgctXMyWKTT4ZgHXX7KO7JJwstEN4D16yCDJcIB0jOePoKja9nix7BaT2v7FIiWuc4Znhwmpb7OjkpKU9kqodYizlIbwdt-Lwszq2ruyTVOCoxu_M4Xyzsfwfq891mo5vGPfmu9WIqZTTfFQgMjeD1vRmv0Tyy6ttOL0McXv0jSCJ4EKc4n4hzdKYxII5BX5Dvv4Ct9X22pJ1-7it9S5EpQ9ez_y3oFt4eHo91id3tv5zncYf5mwH9YVGuw2p5f2BfoPrXly05nCRxft5H8Bpa3LOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gRuMLwe9F1JrIk9nctt1td02IIXIXEEEDktzb0u228RT2kF1i-Nf865xud-8Ojb7x3EnbzEdnpp3OD-B1oihT3NpQa1qEseA0zNBNhbYsaFHSxPIWrWH_QOwcxx_GyXgJfvV_YVxZZX8mtgd1OdXujnzAcB48OjGbG9iuLOLz9ujd-Y_QIUi5l9YeTsOryJ65-onpW725u42y3mBsNPzyfifsEAZCHcu0CUUqSkmTVEmloxJDG6qEMlRrTEIkL5hmCbfSClw3SRwat42pFBa9ojJGpYrjvLfgtuQJdTYmx_Nkj7MWqI2i_wtFkglfdM95Fg0m385q9BgsFQ7VYtEd_hXj_lmqueD7Rquw0gWtZMtr2X1YMtUDuONhLK8ewvdDD2iPIiZTSw4_HZF906B2nU7qMzKpiENGamri_qtdkOH8ax3OedT-VXlLtoh_pWgnMG4fZLgAPkB69NNHcHwjLH4My9W0Mk-BKJmpjOEpomPqeu6kUaFLU0bUGPS51ATwpudlrrsO5w5o4zTHTMdxPl_kfAAbM-pz39njH3TrvVjyzr7rfK6NAbyaDaNluucWVZnppadxjTCiOIAnXoqzhTjH0Aqz0wDkNfnOCFzX7-sj1eRr2_1biiwVNF37_7Zewl00j_zj7sHeM7jH3CWBq11M12G5ubg0zzGSaooXrcoSOLlpG_kNeccxHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+ROS+Metabolism+in+Plants+under+Environmental+Stress%3A+A+Review+of+Recent+Experimental+Evidence&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Hasanuzzaman%2C+Mirza&rft.au=Bhuyan%2C+M+H+M+Borhannuddin&rft.au=Parvin%2C+Khursheda&rft.au=Bhuiyan%2C+Tasnim+Farha&rft.date=2020-11-18&rft.eissn=1422-0067&rft.volume=21&rft.issue=22&rft_id=info:doi/10.3390%2Fijms21228695&rft_id=info%3Apmid%2F33218014&rft.externalDocID=33218014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |