Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence

Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generatio...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 22; p. 8695
Main Authors Hasanuzzaman, Mirza, Bhuyan, M. H. M. Borhannuddin, Parvin, Khursheda, Bhuiyan, Tasnim Farha, Anee, Taufika Islam, Nahar, Kamrun, Hossen, Md. Shahadat, Zulfiqar, Faisal, Alam, Md. Mahabub, Fujita, Masayuki
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.11.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
AbstractList Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Author Alam, Md. Mahabub
Parvin, Khursheda
Anee, Taufika Islam
Hossen, Md. Shahadat
Bhuyan, M. H. M. Borhannuddin
Bhuiyan, Tasnim Farha
Zulfiqar, Faisal
Nahar, Kamrun
Hasanuzzaman, Mirza
Fujita, Masayuki
AuthorAffiliation 4 Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
7 Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan; ch.faisal.zulfiqar@gmail.com
5 Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; farhatasnim28@gmail.com (T.F.B.); knahar84@yahoo.com (K.N.)
1 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; taufiqaislam@gmail.com (T.I.A.); shamim1983@yahoo.com (M.M.A.)
2 Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh; razon_sau@yahoo.com
3 Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan; hirasau@gmail.com
6 Independent Researcher, Dhaka 1207, Bangladesh
AuthorAffiliation_xml – name: 6 Independent Researcher, Dhaka 1207, Bangladesh; shahadat.hossen32@yahoo.com
– name: 3 Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan; hirasau@gmail.com
– name: 1 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; taufiqaislam@gmail.com (T.I.A.); shamim1983@yahoo.com (M.M.A.)
– name: 5 Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; farhatasnim28@gmail.com (T.F.B.); knahar84@yahoo.com (K.N.)
– name: 2 Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh; razon_sau@yahoo.com
– name: 4 Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
– name: 7 Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan; ch.faisal.zulfiqar@gmail.com
Author_xml – sequence: 1
  givenname: Mirza
  orcidid: 0000-0002-0461-8743
  surname: Hasanuzzaman
  fullname: Hasanuzzaman, Mirza
– sequence: 2
  givenname: M. H. M. Borhannuddin
  orcidid: 0000-0002-7602-3087
  surname: Bhuyan
  fullname: Bhuyan, M. H. M. Borhannuddin
– sequence: 3
  givenname: Khursheda
  surname: Parvin
  fullname: Parvin, Khursheda
– sequence: 4
  givenname: Tasnim Farha
  surname: Bhuiyan
  fullname: Bhuiyan, Tasnim Farha
– sequence: 5
  givenname: Taufika Islam
  orcidid: 0000-0003-4306-5544
  surname: Anee
  fullname: Anee, Taufika Islam
– sequence: 6
  givenname: Kamrun
  surname: Nahar
  fullname: Nahar, Kamrun
– sequence: 7
  givenname: Md. Shahadat
  orcidid: 0000-0003-4122-3967
  surname: Hossen
  fullname: Hossen, Md. Shahadat
– sequence: 8
  givenname: Faisal
  orcidid: 0000-0001-5428-5695
  surname: Zulfiqar
  fullname: Zulfiqar, Faisal
– sequence: 9
  givenname: Md. Mahabub
  surname: Alam
  fullname: Alam, Md. Mahabub
– sequence: 10
  givenname: Masayuki
  surname: Fujita
  fullname: Fujita, Masayuki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33218014$$D View this record in MEDLINE/PubMed
BookMark eNptkUtvEzEURi1URB-wY40ssWFBwO-xWSBVVQpIRUUprC3Hc6c4zNjBngn03-OmoQoVK1u6x5_O9XeMDmKKgNBzSt5wbsjbsBoKo4xpZeQjdEQFYzNCVHOwdz9Ex6WsCGGcSfMEHXLOqCZUHKEfC7ieejeGFHHq8OLyCn-G0S1TH8qAQ8RfehfHgqfYQsbzuAk5xQHi6Hp8NWYo5R0-xQvYBPi1DQBfh3j-ew057Lj5JrQQPTxFjzvXF3i2O0_Qt_P517OPs4vLD5_OTi9mXjR6nCmt2oZK7RrnSaukok45oN4boxu-ZJ5J3jWdMkZIKYVknaCN6qimDsBpx0_Q-7vc9bQcoL0Vyq636yrk8o1NLth_JzF8t9dpYxtltKK6BrzaBeT0c4Iy2iEUD339CkhTsUwoToloiKjoywfoKk051vW2FKuSylTqxb7RvcrfHirw-g7wOZWSobtHKLG3Ndv9mivOHuA-jNsS6z6h__-jPz84q44
CitedBy_id crossref_primary_10_3389_fpls_2022_1036254
crossref_primary_10_1007_s00344_025_11649_z
crossref_primary_10_1093_plphys_kiad033
crossref_primary_10_3390_plants11020145
crossref_primary_10_1016_j_sajb_2023_06_029
crossref_primary_10_1093_jxb_erad141
crossref_primary_10_3389_fpls_2022_1074889
crossref_primary_10_3390_plants13081154
crossref_primary_10_3390_su14126973
crossref_primary_10_1016_j_stress_2024_100435
crossref_primary_10_1111_ppl_14005
crossref_primary_10_3390_plants11091217
crossref_primary_10_3390_su14084576
crossref_primary_10_1007_s00343_024_4164_z
crossref_primary_10_3390_ijms242216222
crossref_primary_10_1016_j_heliyon_2023_e20205
crossref_primary_10_1007_s00344_024_11610_6
crossref_primary_10_3389_fpls_2024_1332426
crossref_primary_10_3390_antiox12091682
crossref_primary_10_3390_horticulturae9020244
crossref_primary_10_1080_11263504_2025_2452183
crossref_primary_10_7717_peerj_14251
crossref_primary_10_1038_s41467_024_46290_z
crossref_primary_10_3390_horticulturae11010034
crossref_primary_10_52711_0974_360X_2024_00548
crossref_primary_10_3390_ijms24032442
crossref_primary_10_1007_s11738_023_03634_4
crossref_primary_10_3390_plants12091892
crossref_primary_10_1016_j_biteb_2025_102043
crossref_primary_10_1016_j_postharvbio_2023_112328
crossref_primary_10_3390_agriculture13071358
crossref_primary_10_1080_01904167_2024_2415471
crossref_primary_10_1080_87559129_2024_2430652
crossref_primary_10_1111_jipb_13880
crossref_primary_10_1007_s11103_021_01167_3
crossref_primary_10_1016_j_envexpbot_2021_104767
crossref_primary_10_1016_j_ijbiomac_2024_135859
crossref_primary_10_1016_j_jece_2024_115189
crossref_primary_10_1016_j_pmpp_2025_102614
crossref_primary_10_3390_plants14010035
crossref_primary_10_1080_17429145_2024_2327378
crossref_primary_10_1007_s12633_024_03094_6
crossref_primary_10_3389_fpls_2022_1012145
crossref_primary_10_3390_life11111156
crossref_primary_10_3390_plants12122248
crossref_primary_10_3389_fpls_2024_1340287
crossref_primary_10_3389_fpls_2024_1424760
crossref_primary_10_1139_cjb_2022_0136
crossref_primary_10_1007_s40502_023_00773_1
crossref_primary_10_1016_j_ecoenv_2024_117220
crossref_primary_10_3390_metabo14050283
crossref_primary_10_3390_plants11233251
crossref_primary_10_3389_fpls_2024_1441884
crossref_primary_10_13080_z_a_2023_110_005
crossref_primary_10_1016_j_envexpbot_2021_104395
crossref_primary_10_1007_s10811_024_03255_5
crossref_primary_10_3389_fpls_2022_772948
crossref_primary_10_3390_ijms23147529
crossref_primary_10_1002_fes3_70007
crossref_primary_10_1016_j_envpol_2021_118738
crossref_primary_10_1007_s10725_023_01084_z
crossref_primary_10_32604_biocell_2022_021732
crossref_primary_10_3390_ijms24010296
crossref_primary_10_3390_horticulturae9111177
crossref_primary_10_3390_plants10040670
crossref_primary_10_1007_s11356_024_34915_1
crossref_primary_10_1016_j_plaphy_2023_108272
crossref_primary_10_1016_j_ecoenv_2024_116431
crossref_primary_10_3390_agriculture13061242
crossref_primary_10_1016_j_phytochem_2024_114231
crossref_primary_10_3390_ijms222312615
crossref_primary_10_3390_antiox11030565
crossref_primary_10_1007_s11368_024_03807_9
crossref_primary_10_1016_j_plaphy_2022_06_017
crossref_primary_10_3390_agriculture11100908
crossref_primary_10_3390_ijms252010934
crossref_primary_10_1016_j_niox_2024_07_002
crossref_primary_10_1080_15226514_2021_1957771
crossref_primary_10_3389_fevo_2022_945695
crossref_primary_10_1094_PHYTO_07_22_0271_FI
crossref_primary_10_3390_plants12040832
crossref_primary_10_32615_ps_2022_006
crossref_primary_10_3390_plants13192774
crossref_primary_10_3390_horticulturae10111186
crossref_primary_10_1007_s11356_024_32176_6
crossref_primary_10_1016_j_sajb_2023_10_041
crossref_primary_10_1134_S1021443724605895
crossref_primary_10_1111_jbi_15040
crossref_primary_10_1016_j_gene_2023_147215
crossref_primary_10_17660_ActaHortic_2023_1368_13
crossref_primary_10_21448_ijsm_1401066
crossref_primary_10_1016_j_bcab_2024_103366
crossref_primary_10_1016_j_ecoenv_2025_117879
crossref_primary_10_7717_peerj_12556
crossref_primary_10_1002_bab_2406
crossref_primary_10_1002_cbdv_202200247
crossref_primary_10_1016_j_scienta_2023_112118
crossref_primary_10_3390_f15081351
crossref_primary_10_3389_fpls_2024_1332583
crossref_primary_10_1016_j_stress_2023_100185
crossref_primary_10_3390_plants12051190
crossref_primary_10_1016_j_sajb_2024_11_029
crossref_primary_10_1111_jipb_13601
crossref_primary_10_1111_ppl_13361
crossref_primary_10_3390_plants11010098
crossref_primary_10_1016_j_pbi_2021_102048
crossref_primary_10_21448_ijsm_1136546
crossref_primary_10_3390_antiox12081614
crossref_primary_10_3390_plants12071560
crossref_primary_10_1016_j_jafr_2024_101253
crossref_primary_10_3390_plants12051156
crossref_primary_10_1016_j_biortech_2023_129511
crossref_primary_10_1051_bioconf_20249606006
crossref_primary_10_1007_s00344_022_10804_0
crossref_primary_10_1007_s42729_025_02223_3
crossref_primary_10_1080_26388081_2024_2441148
crossref_primary_10_1111_pce_14608
crossref_primary_10_1007_s11356_023_31497_2
crossref_primary_10_3390_ijms22179326
crossref_primary_10_3390_plants12152803
crossref_primary_10_3390_ijms25020708
crossref_primary_10_1016_j_stress_2024_100577
crossref_primary_10_1007_s11356_024_34658_z
crossref_primary_10_3389_fmars_2022_1043462
crossref_primary_10_3390_plants12152809
crossref_primary_10_1111_ppl_70116
crossref_primary_10_1016_j_scienta_2022_111661
crossref_primary_10_1007_s00344_022_10839_3
crossref_primary_10_1007_s11829_024_10121_1
crossref_primary_10_1371_journal_pone_0295945
crossref_primary_10_1002_npp2_22
crossref_primary_10_1016_j_ijbiomac_2023_124192
crossref_primary_10_3390_plants12112142
crossref_primary_10_5114_bta_2023_130729
crossref_primary_10_1007_s00344_022_10793_0
crossref_primary_10_1007_s00122_023_04313_1
crossref_primary_10_1016_j_cpb_2025_100462
crossref_primary_10_1016_j_envexpbot_2023_105350
crossref_primary_10_1016_j_jafr_2023_100643
crossref_primary_10_1007_s11356_024_35185_7
crossref_primary_10_1007_s10653_024_02209_7
crossref_primary_10_3390_plants10020360
crossref_primary_10_1016_j_envexpbot_2022_104863
crossref_primary_10_31466_kfbd_1387429
crossref_primary_10_1515_znc_2024_0115
crossref_primary_10_3390_plants10040733
crossref_primary_10_1007_s00709_022_01753_2
crossref_primary_10_1186_s12870_024_06036_x
crossref_primary_10_1016_j_indcrop_2024_119273
crossref_primary_10_1016_j_jhazmat_2024_134263
crossref_primary_10_1080_00275514_2024_2324250
crossref_primary_10_3390_land10040357
crossref_primary_10_3389_fmars_2021_797613
crossref_primary_10_3389_fnut_2022_995250
crossref_primary_10_3390_plants11091184
crossref_primary_10_1016_j_stress_2024_100394
crossref_primary_10_3390_horticulturae7060132
crossref_primary_10_3389_fpls_2021_672873
crossref_primary_10_1007_s44154_025_00211_2
crossref_primary_10_1111_gcb_70074
crossref_primary_10_3390_horticulturae9060673
crossref_primary_10_1016_j_scitotenv_2025_178405
crossref_primary_10_1016_j_plaphy_2021_11_009
crossref_primary_10_1016_j_plaphy_2022_10_033
crossref_primary_10_3390_plants10122800
crossref_primary_10_1080_17429145_2024_2375508
crossref_primary_10_3389_fpls_2022_847175
crossref_primary_10_3390_ijms252111820
crossref_primary_10_1016_j_envres_2023_116585
crossref_primary_10_1007_s10725_023_01002_3
crossref_primary_10_1016_j_plaphy_2024_109294
crossref_primary_10_1007_s11756_024_01836_w
crossref_primary_10_1007_s11104_022_05395_4
crossref_primary_10_1186_s12870_024_05668_3
crossref_primary_10_1038_s41598_025_89055_4
crossref_primary_10_1071_FP23102
crossref_primary_10_1080_07060661_2022_2089235
crossref_primary_10_3390_foods13233909
crossref_primary_10_3389_fpls_2025_1458467
crossref_primary_10_1007_s10725_025_01298_3
crossref_primary_10_1021_acsami_4c11833
crossref_primary_10_3390_plants12234029
crossref_primary_10_1016_j_foodchem_2021_130913
crossref_primary_10_1016_j_plaphy_2023_107936
crossref_primary_10_1111_ppl_14413
crossref_primary_10_3390_antiox11122488
crossref_primary_10_1111_ppl_70109
crossref_primary_10_1021_acsomega_4c07946
crossref_primary_10_1016_j_pmpp_2025_102570
crossref_primary_10_1016_j_plaphy_2024_108893
crossref_primary_10_3390_antiox10060944
crossref_primary_10_1002_etc_5936
crossref_primary_10_3390_ijms22062950
crossref_primary_10_1016_j_sajb_2023_09_055
crossref_primary_10_1016_j_jhazmat_2024_134164
crossref_primary_10_1038_s41598_023_38268_6
crossref_primary_10_1007_s00344_022_10614_4
crossref_primary_10_3389_fmicb_2023_1168415
crossref_primary_10_1007_s12517_023_11777_4
crossref_primary_10_1186_s12284_025_00777_5
crossref_primary_10_3390_ijms242417252
crossref_primary_10_1007_s11240_022_02411_4
crossref_primary_10_3389_fpls_2023_1211210
crossref_primary_10_1111_1750_3841_16774
crossref_primary_10_1007_s11104_025_07322_9
crossref_primary_10_1007_s43621_025_00855_0
crossref_primary_10_3389_fpls_2022_967968
crossref_primary_10_1016_j_jhazmat_2023_130969
crossref_primary_10_3390_horticulturae9050538
crossref_primary_10_3390_genes14051078
crossref_primary_10_1016_j_envexpbot_2023_105307
crossref_primary_10_1007_s12298_021_01057_4
crossref_primary_10_1038_s41598_023_38403_3
crossref_primary_10_1007_s00299_024_03238_3
crossref_primary_10_1038_s41598_024_68005_6
crossref_primary_10_3390_agrochemicals2020015
crossref_primary_10_3390_ijpb16010032
crossref_primary_10_1016_j_postharvbio_2024_112801
crossref_primary_10_3390_ijms23105416
crossref_primary_10_3390_plants13060862
crossref_primary_10_1007_s13762_025_06437_x
crossref_primary_10_1016_j_emcon_2024_100421
crossref_primary_10_32615_ps_2021_065
crossref_primary_10_3390_plants12193509
crossref_primary_10_1007_s12042_024_09362_4
crossref_primary_10_3389_fpls_2022_1042855
crossref_primary_10_12737_2782_490X_2023_12_17
crossref_primary_10_1016_j_jhazmat_2024_137058
crossref_primary_10_3389_fpls_2024_1397552
crossref_primary_10_3390_horticulturae10030259
crossref_primary_10_1016_j_jplph_2023_154124
crossref_primary_10_1134_S1062359023605323
crossref_primary_10_1007_s11738_023_03565_0
crossref_primary_10_1186_s12870_021_03276_z
crossref_primary_10_1186_s12870_024_05184_4
crossref_primary_10_12688_f1000research_25247_4
crossref_primary_10_1088_1755_1315_1359_1_012092
crossref_primary_10_3390_plants10010037
crossref_primary_10_1016_j_ecoenv_2023_115217
crossref_primary_10_1155_2024_4610926
crossref_primary_10_1007_s00299_024_03319_3
crossref_primary_10_3390_ijms23116167
crossref_primary_10_1093_treephys_tpac126
crossref_primary_10_1080_10643389_2024_2332135
crossref_primary_10_1111_ppl_13887
crossref_primary_10_3390_app11188710
crossref_primary_10_1016_j_jhazmat_2023_132453
crossref_primary_10_1016_j_bbrc_2022_10_033
crossref_primary_10_3390_agriculture14081337
crossref_primary_10_1007_s42976_021_00222_5
crossref_primary_10_3389_fpls_2022_997768
crossref_primary_10_3390_ijms26010289
crossref_primary_10_1007_s11356_025_35905_7
crossref_primary_10_1016_j_crmicr_2024_100285
crossref_primary_10_1016_j_marenvres_2022_105838
crossref_primary_10_1093_jxb_erad219
crossref_primary_10_1002_fft2_106
crossref_primary_10_1016_j_lwt_2022_113990
crossref_primary_10_1007_s42976_024_00559_7
crossref_primary_10_3389_fpls_2023_1121886
crossref_primary_10_3390_ijms25010070
crossref_primary_10_1186_s12870_024_05095_4
crossref_primary_10_1186_s12870_024_06037_w
crossref_primary_10_1111_nph_20134
crossref_primary_10_1007_s13205_022_03282_4
crossref_primary_10_3390_antiox10040611
crossref_primary_10_1016_j_cj_2023_06_001
crossref_primary_10_1016_j_plaphy_2025_109580
crossref_primary_10_3390_ijms232416200
crossref_primary_10_3390_antiox13091128
crossref_primary_10_5010_JPB_2023_50_027_215
crossref_primary_10_3389_fpls_2023_1105162
crossref_primary_10_1007_s42729_024_01732_x
crossref_primary_10_1111_nph_19382
crossref_primary_10_3390_stresses4020020
crossref_primary_10_1016_j_microc_2023_109133
crossref_primary_10_3390_genes16040367
crossref_primary_10_1016_j_postharvbio_2024_112956
crossref_primary_10_3389_fpls_2022_1049954
crossref_primary_10_1016_j_heliyon_2024_e34742
crossref_primary_10_1016_j_postharvbio_2024_113249
crossref_primary_10_3390_ijms25179367
crossref_primary_10_1016_j_plaphy_2023_108320
crossref_primary_10_1186_s40538_024_00724_4
crossref_primary_10_3389_fpls_2021_660274
crossref_primary_10_3390_molecules28145344
crossref_primary_10_32604_phyton_2025_061462
crossref_primary_10_3390_plants13101401
crossref_primary_10_1007_s42729_024_02101_4
crossref_primary_10_31857_S1026347024020037
crossref_primary_10_3390_plants12213714
crossref_primary_10_3390_plants10102085
crossref_primary_10_1186_s42397_022_00120_z
crossref_primary_10_1016_j_indcrop_2023_117222
crossref_primary_10_1007_s10343_022_00651_0
crossref_primary_10_1039_D4EN00770K
crossref_primary_10_1007_s00299_021_02751_z
crossref_primary_10_1007_s00344_023_10915_2
crossref_primary_10_1016_j_sajb_2023_05_038
crossref_primary_10_3389_fpls_2023_1284480
Cites_doi 10.5772/60746
10.1007/s11738-018-2649-0
10.1111/ppl.12710
10.1111/pbi.12556
10.1007/s00709-016-0965-z
10.1038/s41598-018-36334-y
10.1007/s00709-014-0662-8
10.1016/j.ecoenv.2019.109814
10.1016/j.scienta.2020.109713
10.1016/j.cj.2013.08.002
10.1007/s40502-018-0375-7
10.1590/0001-3765201820170482
10.1016/j.scienta.2019.108647
10.1021/bi300650n
10.1007/s10646-016-1740-9
10.1071/CP17028
10.15666/aeer/1602_20592072
10.1016/j.jplph.2006.02.011
10.1515/biolog-2016-0050
10.1155/2012/217037
10.1007/s11356-015-4532-5
10.3389/fpls.2014.00685
10.1007/s00709-019-01354-6
10.1038/s41598-018-27726-1
10.3390/plants9020188
10.3390/antiox9080681
10.1111/j.1365-313X.2005.02422.x
10.1007/s11099-008-0018-8
10.1038/s41598-020-67260-7
10.1104/pp.18.01493
10.1039/9781782622208
10.3389/fpls.2019.01440
10.3390/plants7030064
10.1016/j.scienta.2017.12.007
10.1007/s11356-014-2934-4
10.1038/srep09871
10.3389/fpls.2017.00185
10.1104/pp.16.00434
10.1080/17429145.2012.747629
10.1104/pp.114.255356
10.1016/j.scienta.2005.12.006
10.1007/s13762-019-02234-5
10.1016/j.ecoenv.2017.06.010
10.1007/978-981-10-5254-5
10.1016/j.postharvbio.2016.03.009
10.1016/j.scienta.2018.03.021
10.1146/annurev.arplant.59.032607.092752
10.1111/j.1365-3040.2005.01327.x
10.1016/j.scitotenv.2018.11.402
10.1016/j.jenvman.2019.04.035
10.3390/antiox8040105
10.3923/ajps.2017.65.77
10.1016/j.bcab.2020.101591
10.1080/17429145.2019.1629033
10.1016/j.biocel.2006.02.010
10.3389/fpls.2019.01725
10.1016/j.plaphy.2019.12.007
10.1016/S1001-0742(07)60099-0
10.4161/psb.23681
10.1111/ppl.12819
10.3390/molecules23020388
10.1111/jipb.12167
10.3389/fpls.2019.00166
10.1038/s41598-018-38053-w
10.1007/s11356-019-05946-w
10.3389/fpls.2016.00276
10.1111/jac.12148
10.3389/fpls.2019.00916
10.1016/j.fct.2012.09.021
10.1146/annurev.arplant.58.032806.103946
10.1093/carcin/21.3.361
10.1111/pce.13089
10.31545/intagr/113259
10.1007/s11032-016-0564-x
10.1007/s11356-016-7295-8
10.1093/pcp/pcy226
10.1073/pnas.1618922114
10.1007/978-3-319-75088-0
10.1080/14620316.2017.1373037
10.1016/j.plaphy.2016.04.004
10.1111/tpj.13299
10.1016/j.plaphy.2010.08.016
10.1016/j.plantsci.2011.03.015
10.1021/acsomega.8b00242
10.1093/aob/mcf096
10.1016/j.scienta.2020.109290
10.3390/molecules15085196
10.1146/annurev-arplant-050312-120132
10.1201/9780824746568
10.3389/fenvs.2014.00070
10.1371/journal.pone.0058042
10.1038/s41598-018-21097-3
10.1614/WS-D-13-00096.1
10.1016/j.scitotenv.2018.11.213
10.1007/s00709-017-1140-x
10.3389/fpls.2017.01082
10.1614/WS-04-135R.1
10.1016/j.phytochem.2015.03.004
10.1016/j.tplants.2017.11.007
10.1016/j.phytochem.2019.112199
10.1093/pcp/pcq133
10.1080/17429145.2018.1458913
10.1038/35081161
10.1016/j.envexpbot.2017.02.010
10.1016/j.ecoenv.2019.109404
10.1016/j.envexpbot.2018.02.001
10.1016/j.scienta.2019.108816
10.1146/annurev-arplant-043014-114822
10.3389/fpls.2017.01042
10.1080/17429145.2017.1362052
10.1016/j.ecoenv.2020.110469
10.3389/fpls.2019.00800
10.1186/s12870-017-1087-2
10.1016/j.ecoenv.2019.109894
10.1016/j.pbi.2004.03.005
10.1016/j.jplph.2018.09.019
10.1016/j.envexpbot.2014.11.012
10.1080/14693062.2020.1728209
10.3390/ijms18010200
10.3389/fpls.2017.01061
10.1007/s00299-017-2139-7
10.3389/fpls.2016.01144
10.1007/s10646-019-02019-z
10.1007/s11738-018-2690-z
10.1002/9781119468677
10.3389/fpls.2018.01388
10.3390/plants9050633
10.32615/bp.2019.031
10.1590/S0100-83582016340100001
10.1088/1755-1315/260/1/012153
10.1074/jbc.272.52.33158
10.1146/annurev.arplant.55.031903.141701
10.1007/978-981-15-0025-1
10.1007/s10535-014-0460-3
10.1111/j.1365-3040.2011.02383.x
10.3389/fpls.2017.00365
10.1016/j.pestbp.2010.11.001
10.1007/s11356-014-3917-1
10.1105/tpc.113.109827
10.1038/srep35424
10.3389/fpls.2017.00203
10.1016/j.envexpbot.2013.11.010
10.1016/j.envexpbot.2014.06.021
10.1016/j.scienta.2015.12.004
10.1016/j.envpol.2018.11.030
10.1016/j.plantsci.2015.01.017
10.1007/s12298-018-00640-6
10.1016/j.bcab.2019.101197
10.1113/jphysiol.2003.049478
10.1016/j.phytochem.2014.09.016
10.1155/2013/585431
10.3389/fpls.2016.00139
10.1016/j.plaphy.2016.01.011
10.1016/j.ecoenv.2015.11.026
10.1016/j.ecoenv.2018.04.014
10.1093/jxb/err317
10.1089/ars.2017.7164
10.1007/s00344-018-9810-2
10.1111/pce.13504
10.1038/s41598-018-35420-5
10.1007/978-3-030-06118-0
10.1016/j.scienta.2018.06.069
10.1016/j.tplants.2016.08.002
10.3389/fpls.2016.01968
10.3390/antiox8090384
10.1016/j.plaphy.2016.06.026
10.3390/plants9020215
10.1016/j.plgene.2019.100173
10.1016/j.scitotenv.2020.136837
10.1016/j.plaphy.2010.04.008
10.1016/j.plaphy.2018.02.021
10.20944/preprints201901.0143.v1
10.1016/j.pestbp.2015.06.002
10.1007/s12298-019-00678-0
10.3389/fpls.2018.00521
10.3389/fpls.2017.01147
10.1016/S2095-3119(18)62143-4
10.3390/plants8070196
10.1080/17429145.2018.1556356
10.1016/j.scienta.2017.10.009
10.1186/s40529-019-0262-1
10.3390/ijms14059643
10.1080/17429145.2017.1308568
10.1111/nph.14011
10.19071/jpsp.2016.v2.3076
10.1111/j.1365-3040.2011.02336.x
10.5935/1806-6690.20170041
10.1080/14620316.2015.1117226
10.1007/s10535-017-0727-6
10.1186/s12870-018-1457-4
10.1006/anbo.1998.0811
10.17221/182/2017-PSE
10.1074/jbc.M603761200
10.3389/fpls.2014.00771
10.3390/ijms160613561
10.1007/s12010-018-2784-5
10.1074/jbc.M710465200
10.1007/s11240-012-0273-z
10.1016/j.jbiotec.2010.07.011
10.1016/j.jphotobiol.2014.01.010
10.1016/B978-0-12-803158-2.00011-4
10.1016/j.jplph.2014.12.014
10.1111/pce.12711
10.1016/j.plaphy.2019.03.040
10.1016/j.envexpbot.2005.01.002
10.32615/ps.2019.115
10.1080/01904168909364043
10.1093/jxb/erv437
10.1016/j.ecoenv.2017.11.046
10.1016/j.ecoenv.2017.09.045
10.3389/fpls.2016.01104
10.1093/nar/gkn680
10.3389/fpls.2020.00480
10.1016/j.freeradbiomed.2016.02.028
10.4067/S0718-58392014000400010
10.1016/j.rsci.2018.06.002
10.1007/978-3-642-10305-6
10.3389/fpls.2017.00785
10.1016/j.phytochem.2009.12.014
10.1007/s11738-014-1530-z
10.1016/j.sajb.2017.12.006
10.1007/s00425-020-03423-0
10.1038/s41598-019-40362-7
10.1104/pp.16.00166
10.1104/pp.16.00375
10.1016/j.envexpbot.2018.10.017
10.1126/scisignal.2000448
10.1007/s11306-011-0296-1
10.1016/j.chemosphere.2017.08.078
10.3389/fpls.2016.01519
10.1007/s00425-011-1379-y
10.1093/jxb/ert430
10.1007/978-3-319-71873-6
10.1016/j.jplph.2009.05.016
10.1146/annurev-arplant-042817-040322
10.1104/pp.16.00359
10.1016/j.copbio.2010.03.002
10.3389/fpls.2018.00716
10.1016/j.ecoenv.2017.11.063
10.3390/molecules24224194
10.3389/fpls.2017.00613
10.1016/j.envpol.2005.01.035
10.1016/j.cell.2016.08.029
10.3389/fenvs.2014.00053
10.1016/j.envexpbot.2018.12.009
10.1186/s12864-017-3596-7
10.1111/j.1399-3054.2011.01457.x
10.1016/j.gene.2014.03.026
10.1016/j.envexpbot.2020.104078
10.1016/j.envexpbot.2014.06.015
10.1038/s41467-019-10475-8
10.3390/antiox7020028
10.1007/s00128-019-02653-7
10.1007/s11738-018-2747-z
10.1016/j.tplants.2011.03.007
10.1371/journal.pone.0094862
10.3389/fpls.2013.00272
10.1002/9781119324928
10.1111/jpi.12429
10.1016/j.tplants.2017.01.003
10.1007/s12298-019-00744-7
10.1007/978-3-030-20732-8
10.1093/jxb/erw080
10.1093/aob/mcv098
10.3389/fpls.2016.00301
10.1038/s41893-019-0286-2
10.30848/PJB2019-5(12)
10.1007/s10535-014-0447-0
10.1111/j.1744-7909.2007.00599.x
10.1016/j.plaphy.2016.11.014
10.3390/f11010068
10.3389/fpls.2020.00696
10.1371/journal.pone.0173378
10.1155/2014/757219
10.1007/s13562-012-0107-4
10.1111/j.1744-7909.2007.00358.x
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/ijms21228695
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7698618
33218014
10_3390_ijms21228695
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-686d7158a7ac0d6561a6ae1cc99873b2c253f7f6994555452f4176f181aeea8a3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 13:28:11 EDT 2025
Fri Jul 11 09:36:10 EDT 2025
Fri Jul 25 20:20:38 EDT 2025
Thu Apr 03 07:08:11 EDT 2025
Tue Jul 01 04:15:50 EDT 2025
Thu Apr 24 22:49:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords abiotic stress tolerance
antioxidant defense system
oxidative stress
reactive oxygen species
abiotic stress
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-686d7158a7ac0d6561a6ae1cc99873b2c253f7f6994555452f4176f181aeea8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7602-3087
0000-0002-0461-8743
0000-0003-4122-3967
0000-0003-4306-5544
0000-0001-5428-5695
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21228695
PMID 33218014
PQID 2463299469
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7698618
proquest_miscellaneous_2463104704
proquest_journals_2463299469
pubmed_primary_33218014
crossref_primary_10_3390_ijms21228695
crossref_citationtrail_10_3390_ijms21228695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201118
PublicationDateYYYYMMDD 2020-11-18
PublicationDate_xml – month: 11
  year: 2020
  text: 20201118
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Mattila (ref_97) 2020; 252
ref_139
ref_90
Alves (ref_167) 2018; 90
Ahmad (ref_47) 2019; 38
Olsen (ref_224) 2010; 71
ref_250
ref_131
Kaya (ref_203) 2016; 124
Rasheed (ref_284) 2017; 93
ref_132
Wilkinson (ref_294) 2012; 63
Lin (ref_60) 2007; 19
ref_135
Waszczak (ref_13) 2018; 69
Li (ref_99) 2018; 9
Tammam (ref_296) 2019; 14
Zhu (ref_4) 2016; 167
(ref_184) 2020; 176
Ren (ref_200) 2018; 148
Kerchev (ref_30) 2016; 171
Kumari (ref_192) 2015; 109
Koua (ref_253) 2009; 37
Bienert (ref_18) 2007; 282
Shen (ref_188) 2015; 252
Shafiq (ref_212) 2014; 36
Huang (ref_9) 2019; 10
Dai (ref_193) 2019; 245
Nahar (ref_71) 2018; 25
Nahar (ref_69) 2017; 254
Damanik (ref_240) 2019; 260
Djanaguiraman (ref_274) 2018; 41
Soengas (ref_275) 2018; 3
Dietz (ref_23) 2016; 171
Qiu (ref_246) 2019; 26
(ref_95) 2016; 26
Lima (ref_124) 2018; 149
Hoshika (ref_142) 2015; 5
Frankel (ref_57) 2012; 51
Nahar (ref_84) 2017; 26
Foyer (ref_8) 2005; 29
Farmer (ref_51) 2013; 64
Han (ref_109) 2017; 8
Secenji (ref_257) 2009; 166
Paoletti (ref_141) 2005; 137
Bhuiyan (ref_259) 2019; 20
Bhuyan (ref_144) 2019; 25
Couto (ref_251) 2016; 95
Noctor (ref_32) 2002; 89
Tewari (ref_152) 2006; 108
Fahad (ref_101) 2016; 202
Passaia (ref_254) 2015; 234
Chung (ref_263) 2019; 10
ref_77
Salah (ref_119) 2019; 9
Parvez (ref_271) 2020; 187
Mahmud (ref_89) 2018; 147
Kochian (ref_148) 2015; 66
Wilkinson (ref_160) 1989; 12
Pandey (ref_195) 2018; 158
Urban (ref_127) 2016; 105
Wang (ref_297) 2019; 103
Sarker (ref_72) 2018; 186
ref_269
ref_268
ref_149
Jan (ref_110) 2018; 40
Ding (ref_180) 2016; 18
ref_140
Demidchik (ref_49) 2015; 109
Liu (ref_201) 2019; 655
ref_143
ref_146
Long (ref_158) 2017; 8
ref_267
Yu (ref_150) 1999; 83
Yang (ref_161) 2008; 46
Hasanuzzaman (ref_272) 2013; 14
ref_216
ref_218
Agostinetto (ref_168) 2016; 34
ref_217
Qi (ref_186) 2019; 42
Sarkar (ref_235) 2016; 2
Vaultier (ref_133) 2015; 114
Blasco (ref_199) 2018; 235
Quan (ref_19) 2008; 50
Mantysaari (ref_292) 2010; 51
Ahanger (ref_82) 2020; 147
Kumar (ref_44) 2015; 116
Ghanbari (ref_108) 2018; 229
Hsu (ref_111) 2019; 60
Ahmad (ref_157) 2014; 9
Rady (ref_261) 2020; 266
Shavrukov (ref_159) 2015; 67
Das (ref_227) 2014; 2
Lehmann (ref_63) 2012; 8
Singh (ref_211) 2016; 71
Huihui (ref_14) 2020; 195
Seminario (ref_208) 2017; 8
Turrens (ref_34) 2003; 552
Apel (ref_134) 2004; 55
Chen (ref_283) 2019; 10
Stewart (ref_291) 2020; 11
Marjorie (ref_128) 2020; 259
Molassiotis (ref_151) 2006; 56
Sisa (ref_225) 2010; 15
Hassan (ref_260) 2020; 26
Palma (ref_249) 2016; 118
Latif (ref_210) 2016; 91
Zboinska (ref_92) 2019; 166
Tewari (ref_153) 2007; 49
Fahad (ref_65) 2017; 8
Gill (ref_226) 2015; 22
Ozyigit (ref_255) 2016; 7
Yang (ref_130) 2020; 34
Shengxin (ref_123) 2016; 7
Yesbergenova (ref_45) 2005; 42
Bottega (ref_281) 2017; 63
Seymen (ref_286) 2021; 275
Wang (ref_277) 2013; 113
Dangl (ref_11) 2001; 411
Rezayian (ref_73) 2020; 16
ref_115
ref_236
Bian (ref_147) 2013; 1
Madesis (ref_232) 2017; 36
Li (ref_117) 2018; 16
ref_239
ref_230
Fujimori (ref_1) 2019; 2
Hasanuzzaman (ref_164) 2018; 126
Hossain (ref_175) 2019; 25
ref_113
Sekmen (ref_179) 2014; 99
Mazid (ref_156) 2011; 7
Guo (ref_105) 2016; 8
Lemoine (ref_295) 2013; 4
Wang (ref_3) 2016; 14
Cheng (ref_81) 2020; 188
Gill (ref_20) 2010; 48
Vuleta (ref_122) 2016; 100
Chawla (ref_78) 2013; 22
Mohammadrezakhani (ref_280) 2019; 14
Dias (ref_174) 2018; 231
ref_221
ref_220
ref_222
Kamal (ref_298) 2019; 57
Qados (ref_213) 2014; 1
Dias (ref_190) 2020; 170
Dursun (ref_243) 2018; 22
Liebthal (ref_10) 2018; 28
Mishra (ref_176) 2019; 139
Duhoux (ref_299) 2015; 63
Miller (ref_21) 2009; 2
Hasanuzzaman (ref_85) 2017; 8
Xiao (ref_183) 2020; 11
Benekos (ref_300) 2010; 150
Zonouri (ref_215) 2014; 3
Hamim (ref_170) 2017; 16
Wani (ref_279) 2018; 40
Hasanuzzaman (ref_66) 2018; 115
Mansoor (ref_273) 2013; 12
Xie (ref_7) 2019; 11
ref_17
ref_16
ref_15
Saha (ref_59) 2015; 59
Berni (ref_205) 2019; 161
Razaji (ref_214) 2014; 1
Raja (ref_24) 2017; 137
Sarwar (ref_104) 2018; 8
Calzone (ref_136) 2019; 656
Mir (ref_198) 2018; 8
Cicero (ref_258) 2015; 116
Karuppanapandian (ref_41) 2011; 5
Alsahli (ref_265) 2019; 51
Uzildaya (ref_67) 2012; 182
Hussain (ref_75) 2019; 9
Pakkish (ref_182) 2016; 198
Tohge (ref_126) 2017; 22
(ref_31) 2016; 57
Liu (ref_76) 2019; 256
Karkute (ref_237) 2019; 63
Dong (ref_256) 2016; 7
Cheng (ref_282) 2016; 7
Bela (ref_252) 2015; 176
Gu (ref_289) 2017; 8
Men (ref_287) 2020; 10
Tajti (ref_238) 2020; 149
Xu (ref_29) 2016; 67
Saad (ref_242) 2018; 231
Demarsy (ref_293) 2018; 23
Mohammadi (ref_171) 2017; 111
Alencar (ref_244) 2019; 10
Jin (ref_102) 2015; 6
Choudhury (ref_61) 2013; 8
Ashraf (ref_116) 2012; 7
Wang (ref_172) 2017; 63
Tenhaken (ref_39) 2015; 5
Gilroy (ref_33) 2016; 171
Heyno (ref_42) 2011; 234
(ref_50) 2006; 38
Hasanuzzaman (ref_70) 2017; 12
Voesenek (ref_112) 2008; 59
Marnett (ref_62) 2000; 21
Nahar (ref_83) 2016; 23
Naz (ref_207) 2016; 48
Tripathi (ref_129) 2017; 110
Strid (ref_245) 2019; 9
Xu (ref_166) 2015; 125
Awad (ref_121) 2015; 167
Liu (ref_145) 2018; 9
Diao (ref_107) 2017; 8
Soares (ref_6) 2019; 161
Fiedler (ref_114) 2007; 94
Hasanuzzaman (ref_87) 2019; 28
Jensen (ref_53) 2007; 58
Mathur (ref_93) 2014; 137
Lu (ref_189) 2017; 8
Kuchitsu (ref_37) 2015; 112
Yadu (ref_270) 2019; 16
Zha (ref_125) 2019; 6
Ai (ref_241) 2018; 9
Rady (ref_266) 2018; 240
ref_58
Jia (ref_185) 2019; 257
Bose (ref_26) 2014; 65
ref_54
ref_177
ref_52
Sun (ref_154) 2007; 164
Alam (ref_209) 2014; 58
Shi (ref_278) 2014; 56
Choudhury (ref_12) 2017; 90
Gupta (ref_91) 2017; 40
Sharma (ref_56) 1997; 272
Huang (ref_36) 2016; 171
ref_181
Laloi (ref_28) 2004; 7
Zhang (ref_100) 2018; 17
Spormann (ref_162) 2019; 241
Hasanuzzaman (ref_86) 2018; 13
Ghosh (ref_138) 2020; 714
Sofo (ref_228) 2015; 16
Sahoo (ref_234) 2016; 36
Abbas (ref_74) 2018; 148
Hasanuzzaman (ref_219) 2014; 2014
ref_68
ref_285
AbdElgawad (ref_79) 2016; 7
Anjum (ref_48) 2015; 22
Acebes (ref_229) 2018; 164
Suzuki (ref_25) 2012; 35
Akram (ref_173) 2018; 255
Nahar (ref_233) 2016; 7
ref_290
Cao (ref_178) 2019; 60
Yamashita (ref_96) 2008; 283
Mittler (ref_22) 2011; 16
Awasthi (ref_103) 2017; 68
Rihan (ref_276) 2017; 12
Zhao (ref_288) 2017; 7
Vighi (ref_262) 2017; 61
Luan (ref_118) 2018; 8
Mahmud (ref_88) 2017; 144
ref_194
ref_197
ref_196
Dumont (ref_64) 2019; 10
Nishiyama (ref_120) 2011; 142
Liu (ref_163) 2014; 74
Yildizli (ref_231) 2018; 40
Akram (ref_206) 2017; 8
Singh (ref_27) 2019; 18
Ramel (ref_187) 2013; 25
Liu (ref_223) 2014; 543
Pereira (ref_155) 2010; 48
Mittler (ref_5) 2017; 22
Sandalio (ref_165) 2011; 34
Srivastava (ref_264) 2018; 23
Yoon (ref_202) 2011; 99
Carocho (ref_204) 2013; 51
ref_46
ref_43
Zhang (ref_106) 2016; 211
Langaro (ref_169) 2017; 48
Das (ref_248) 2015; 2
ref_40
Kale (ref_55) 2017; 114
Dolker (ref_137) 2019; 182
Skirycz (ref_38) 2010; 212
Shimakawa (ref_98) 2019; 179
ref_2
Steffens (ref_35) 2014; 5
Bulbovas (ref_191) 2014; 21
Siddiqui (ref_80) 2017; 187
Kuk (ref_247) 2006; 54
References_xml – ident: ref_94
  doi: 10.5772/60746
– volume: 40
  start-page: 73
  year: 2018
  ident: ref_110
  article-title: Cold stress modulates osmolytes and antioxidant system in Calendula officinalis
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-018-2649-0
– volume: 164
  start-page: 45
  year: 2018
  ident: ref_229
  article-title: Class III peroxidases in cellulose deficient cultured maize cells during cell wall remodeling
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12710
– volume: 14
  start-page: 1986
  year: 2016
  ident: ref_3
  article-title: The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12556
– volume: 254
  start-page: 445
  year: 2017
  ident: ref_69
  article-title: Insights into spermine-induced combined high temperature and drought tolerance in mung bean: Osmoregulation and roles of antioxidant and glyoxalase system
  publication-title: Protoplasma
  doi: 10.1007/s00709-016-0965-z
– volume: 9
  start-page: 484
  year: 2019
  ident: ref_119
  article-title: γ-aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36334-y
– volume: 252
  start-page: 77
  year: 2015
  ident: ref_188
  article-title: High light acclimation of Oryza sativa L. leaves involves specific photosynthetic-sourced changes of NADPH/NADP+ in the midvein
  publication-title: Protoplasma
  doi: 10.1007/s00709-014-0662-8
– volume: 6
  start-page: 1123
  year: 2015
  ident: ref_102
  article-title: Physiological and metabolic changes of purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses
  publication-title: Front. Plant Sci.
– volume: 187
  start-page: 109814
  year: 2020
  ident: ref_271
  article-title: Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.109814
– volume: 275
  start-page: 109713
  year: 2021
  ident: ref_286
  article-title: How does the flooding stress occurring in different harvest times affect the morpho-physiological and biochemical characteristics of spinach?
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2020.109713
– volume: 149
  start-page: 5
  year: 2020
  ident: ref_238
  article-title: Exogenous methylglyoxal enhances the reactive aldehyde detoxification capability and frost-hardiness of wheat
  publication-title: Plant. Physiol. Biochem.
– volume: 1
  start-page: 91
  year: 2013
  ident: ref_147
  article-title: Molecular approaches unravel the mechanism of acid soil tolerance in plants
  publication-title: Crop J.
  doi: 10.1016/j.cj.2013.08.002
– volume: 23
  start-page: 385
  year: 2018
  ident: ref_264
  article-title: Effect of salinity on morpho-physiological aspects, antioxidant enzymatic studies and yield attributes in wheat genotypes
  publication-title: Indian J. Plant. Physiol.
  doi: 10.1007/s40502-018-0375-7
– volume: 90
  start-page: 1533
  year: 2018
  ident: ref_167
  article-title: Effect of herbicides in the oxidative stress in crop winter species
  publication-title: An. Acad. Bras. Ciênc.
  doi: 10.1590/0001-3765201820170482
– volume: 257
  start-page: 108647
  year: 2019
  ident: ref_185
  article-title: ROS production and scavenging in three cherry rootstocks under short-term waterlogging conditions
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2019.108647
– volume: 51
  start-page: 6371
  year: 2012
  ident: ref_57
  article-title: Identification of oxidized amino acid residues in the vicinity of the Mn(4)CaO(5) cluster of Photosystem II: Implications for the identification of oxygen channels within the Photosystem
  publication-title: Biochemistry
  doi: 10.1021/bi300650n
– volume: 26
  start-page: 58
  year: 2017
  ident: ref_84
  article-title: Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-016-1740-9
– volume: 68
  start-page: 823
  year: 2017
  ident: ref_103
  article-title: Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance
  publication-title: Crop Past. Sci.
  doi: 10.1071/CP17028
– volume: 16
  start-page: 2059
  year: 2018
  ident: ref_117
  article-title: Evaluation of physiological indices of waterlogging tolerance of different maize varieties in South China
  publication-title: App. Ecol. Environ. Res.
  doi: 10.15666/aeer/1602_20592072
– volume: 164
  start-page: 536
  year: 2007
  ident: ref_154
  article-title: Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays)
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2006.02.011
– volume: 71
  start-page: 402
  year: 2016
  ident: ref_211
  article-title: Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants
  publication-title: Biologia
  doi: 10.1515/biolog-2016-0050
– volume: 12
  start-page: 3196
  year: 2013
  ident: ref_273
  article-title: Effect of heat stress on lipid peroxidation and antioxidant enzymes in mung bean (Vigna radiata L.) seedlings
  publication-title: Afr. J. Biotechnol.
– ident: ref_40
  doi: 10.1155/2012/217037
– volume: 22
  start-page: 10375
  year: 2015
  ident: ref_226
  article-title: Superoxide dismutase—Mentor of abiotic stress tolerance in crop plants. Environ
  publication-title: Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4532-5
– volume: 5
  start-page: 685
  year: 2014
  ident: ref_35
  article-title: The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00685
– volume: 256
  start-page: 1217
  year: 2019
  ident: ref_76
  article-title: High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice
  publication-title: Protoplasma
  doi: 10.1007/s00709-019-01354-6
– volume: 8
  start-page: 9655
  year: 2018
  ident: ref_118
  article-title: Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: A proteomics approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27726-1
– ident: ref_177
  doi: 10.3390/plants9020188
– volume: 1
  start-page: 432
  year: 2014
  ident: ref_214
  article-title: The effects of seed priming by ascorbic acid on some morphological and biochemical aspects of rapeseed (Brassica napus L.) under drought stress condition
  publication-title: Int. J. Biosci.
– ident: ref_16
  doi: 10.3390/antiox9080681
– volume: 42
  start-page: 862
  year: 2005
  ident: ref_45
  article-title: The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02422.x
– volume: 16
  start-page: 1
  year: 2020
  ident: ref_73
  article-title: Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress
  publication-title: J. Soil. Sci. Plant. Nutr.
– volume: 46
  start-page: 107
  year: 2008
  ident: ref_161
  article-title: Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat
  publication-title: Photosynthetica
  doi: 10.1007/s11099-008-0018-8
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_287
  article-title: Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67260-7
– volume: 179
  start-page: 1479
  year: 2019
  ident: ref_98
  article-title: What quantity of photosystem I is optimum for safe photosynthesis?
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.01493
– ident: ref_17
  doi: 10.1039/9781782622208
– volume: 6
  start-page: 1440
  year: 2019
  ident: ref_125
  article-title: Morphological and physiological stress responses of lettuce to different intensities of continuous light
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01440
– ident: ref_181
  doi: 10.3390/plants7030064
– volume: 231
  start-page: 31
  year: 2018
  ident: ref_174
  article-title: Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2017.12.007
– volume: 21
  start-page: 10514
  year: 2014
  ident: ref_191
  article-title: Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. Sambaíba and Tracajá) cultivated in Amazonian areas
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-2934-4
– volume: 5
  start-page: 09871
  year: 2015
  ident: ref_142
  article-title: Ozone-induced stomatal sluggishness changes carbon and water balance of temperate decidGenkiKatata, Makoto Deushi, Makoto Watanabe, Takayoshi Koike & Elena Paolettiuous forests
  publication-title: Sci. Rep.
  doi: 10.1038/srep09871
– volume: 8
  start-page: 185
  year: 2017
  ident: ref_158
  article-title: Effects of ow pH on photosynthesis, related physiological parameters, and nutrient profiles of Citrus
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00185
– volume: 171
  start-page: 1606
  year: 2016
  ident: ref_33
  article-title: ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00434
– volume: 9
  start-page: 1
  year: 2014
  ident: ref_157
  article-title: Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2012.747629
– volume: 167
  start-page: 1592
  year: 2015
  ident: ref_121
  article-title: 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.255356
– volume: 108
  start-page: 7
  year: 2006
  ident: ref_152
  article-title: Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2005.12.006
– volume: 16
  start-page: 8401
  year: 2019
  ident: ref_270
  article-title: Dimethylthiourea antagonizes oxidative responses by up-regulating expressions of pyrroline-5-carboxylate synthetase and antioxidant genes under arsenic stress
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-019-02234-5
– volume: 144
  start-page: 216
  year: 2017
  ident: ref_88
  article-title: Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L.
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.06.010
– ident: ref_217
  doi: 10.1007/978-981-10-5254-5
– volume: 118
  start-page: 68
  year: 2016
  ident: ref_249
  article-title: Putrescine treatment increases the antioxidant response and carbohydrate content in zucchini fruit stored at low temperature
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2016.03.009
– volume: 235
  start-page: 349
  year: 2018
  ident: ref_199
  article-title: Hydrogen sulphide increase the tolerance to alkalinity stress in cabbage plants (Brassica oleracea L.’Bronco’)
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.03.021
– volume: 59
  start-page: 313
  year: 2008
  ident: ref_112
  article-title: Flooding stress: Acclimations and genetic diversity
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092752
– volume: 29
  start-page: 1056
  year: 2005
  ident: ref_8
  article-title: Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01327.x
– volume: 656
  start-page: 589
  year: 2019
  ident: ref_136
  article-title: Cross-talk between physiological and biochemical adjustments by Punica granatum cv. Dente di cavallo mitigates the effects of salinity and ozone stress
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.402
– volume: 241
  start-page: 226
  year: 2019
  ident: ref_162
  article-title: Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L.
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.04.035
– ident: ref_43
  doi: 10.3390/antiox8040105
– volume: 16
  start-page: 65
  year: 2017
  ident: ref_170
  article-title: Oxidative stress and photosynthesis reduction of cultivated (Glycine max L.) and wild soybean (G. tomentella L.) exposed to drought and paraquat
  publication-title: Asian J. Plant Sci.
  doi: 10.3923/ajps.2017.65.77
– ident: ref_194
  doi: 10.1016/j.bcab.2020.101591
– volume: 14
  start-page: 347
  year: 2019
  ident: ref_280
  article-title: Assessment of exogenous application of proline on antioxidant compounds in three Citrus species under low temperature stress
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2019.1629033
– volume: 38
  start-page: 1482
  year: 2006
  ident: ref_50
  article-title: An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemilumin escence assay
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2006.02.010
– volume: 10
  start-page: 1725
  year: 2019
  ident: ref_263
  article-title: Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01725
– volume: 147
  start-page: 31
  year: 2020
  ident: ref_82
  article-title: Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.12.007
– volume: 19
  start-page: 596
  year: 2007
  ident: ref_60
  article-title: Oxidative stress and DNA damages induced by cadmium accumulation
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(07)60099-0
– volume: 8
  start-page: e23681
  year: 2013
  ident: ref_61
  article-title: Reactive oxygen species signaling in plants under abiotic stress
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.23681
– volume: 166
  start-page: 688
  year: 2019
  ident: ref_92
  article-title: Interaction between the signaling molecules hydrogen sulfide and hydrogen peroxide and their role in vacuolar H+-ATPase regulation in cadmium-stressed cucumber roots
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12819
– ident: ref_197
  doi: 10.3390/molecules23020388
– volume: 56
  start-page: 1064
  year: 2014
  ident: ref_278
  article-title: Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon L. Pers.) by exogenous calcium
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12167
– volume: 11
  start-page: 9732325
  year: 2019
  ident: ref_7
  article-title: The roles of environmental factors in regulation of oxidative stress in plant
  publication-title: Biomed Res. Int.
– volume: 10
  start-page: 166
  year: 2019
  ident: ref_64
  article-title: Consequences of oxidative stress on plant glycolytic and respiratory metabolism
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00166
– volume: 9
  start-page: 1259
  year: 2019
  ident: ref_245
  article-title: Multiple roles for vitamin B6 in plant acclimation to UV-B
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38053-w
– volume: 8
  start-page: 71
  year: 2016
  ident: ref_105
  article-title: Responses of unsaturated fatty acid in membrane lipid and antioxidant enzymes to chilling stress in sweet sorghum (Sorghum bicolor L. Moench) seedling
  publication-title: J. Agric. Sci.
– volume: 26
  start-page: 27761
  year: 2019
  ident: ref_246
  article-title: Investigating the effect of methyl jasmonate and melatonin on resistance of Malus crabapple ‘Hong Jiu’ to ozone stress
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05946-w
– volume: 7
  start-page: 276
  year: 2016
  ident: ref_79
  article-title: High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2016.00276
– volume: 202
  start-page: 139
  year: 2016
  ident: ref_101
  article-title: Exogenously applied plant growth regulators affect heat-stressed rice pollens
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.12148
– volume: 10
  start-page: 916
  year: 2019
  ident: ref_244
  article-title: Photoinhibition of photosystem I provides oxidative protection during imbalanced photosynthetic electron transport in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00916
– volume: 51
  start-page: 15
  year: 2013
  ident: ref_204
  article-title: A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2012.09.021
– volume: 58
  start-page: 459
  year: 2007
  ident: ref_53
  article-title: Oxidative modifications to cellular components in plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.58.032806.103946
– volume: 21
  start-page: 361
  year: 2000
  ident: ref_62
  article-title: Oxyradicals and DNA damage
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/21.3.361
– volume: 41
  start-page: 1065
  year: 2018
  ident: ref_274
  article-title: Sensitivity of sorghum pollen and pistil to high-temperature stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13089
– volume: 34
  start-page: 115
  year: 2020
  ident: ref_130
  article-title: ABA alleviated soybean seedling stress exposed to UV-C radiation
  publication-title: Int. Agrophys.
  doi: 10.31545/intagr/113259
– volume: 36
  start-page: 144
  year: 2016
  ident: ref_234
  article-title: Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-016-0564-x
– volume: 23
  start-page: 21206
  year: 2016
  ident: ref_83
  article-title: Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-7295-8
– volume: 60
  start-page: 562
  year: 2019
  ident: ref_178
  article-title: Melatonin alleviates copper toxicity via improving copper sequestration and ROS scavenging in cucumber
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcy226
– volume: 114
  start-page: 2988
  year: 2017
  ident: ref_55
  article-title: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1618922114
– ident: ref_216
  doi: 10.1007/978-3-319-75088-0
– volume: 93
  start-page: 385
  year: 2017
  ident: ref_284
  article-title: Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato
  publication-title: J. Hortic. Sci. Biotechnol.
  doi: 10.1080/14620316.2017.1373037
– volume: 105
  start-page: 1
  year: 2016
  ident: ref_127
  article-title: Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.04.004
– volume: 90
  start-page: 856
  year: 2017
  ident: ref_12
  article-title: Reactive oxygen species, abiotic stress and stress combination
  publication-title: Plant J.
  doi: 10.1111/tpj.13299
– volume: 48
  start-page: 909
  year: 2010
  ident: ref_20
  article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.08.016
– volume: 182
  start-page: 59
  year: 2012
  ident: ref_67
  article-title: Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2011.03.015
– volume: 3
  start-page: 5237
  year: 2018
  ident: ref_275
  article-title: Effect of temperature stress on antioxidant defenses in Brassica oleracea
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00242
– volume: 89
  start-page: 841
  year: 2002
  ident: ref_32
  article-title: Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration?
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcf096
– volume: 266
  start-page: 109290
  year: 2020
  ident: ref_261
  article-title: Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2020.109290
– volume: 15
  start-page: 5196
  year: 2010
  ident: ref_225
  article-title: Photochemistry of flavonoids
  publication-title: Molecules
  doi: 10.3390/molecules15085196
– volume: 64
  start-page: 429
  year: 2013
  ident: ref_51
  article-title: ROS-mediated lipid peroxidation and RES-activated signaling
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120132
– ident: ref_149
  doi: 10.1201/9780824746568
– volume: 2
  start-page: 70
  year: 2015
  ident: ref_248
  article-title: Oxidative environment and redox homeostasis in plants: Dissecting out significant contribution of major cellular organelles
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2014.00070
– ident: ref_58
  doi: 10.1371/journal.pone.0058042
– volume: 8
  start-page: 28
  year: 2018
  ident: ref_198
  article-title: Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxalase system in maize seedlings
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21097-3
– volume: 63
  start-page: 91
  year: 2015
  ident: ref_299
  article-title: Molecular mechanisms of herbicide resistance
  publication-title: Weed Sci.
  doi: 10.1614/WS-D-13-00096.1
– volume: 655
  start-page: 1448
  year: 2019
  ident: ref_201
  article-title: Separate and combined effects of glyphosate and copper on growth and antioxidative enzymes in Salvinia natans (L.) All
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.213
– volume: 255
  start-page: 163
  year: 2018
  ident: ref_173
  article-title: Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress
  publication-title: Protoplasma
  doi: 10.1007/s00709-017-1140-x
– volume: 8
  start-page: 1082
  year: 2017
  ident: ref_289
  article-title: Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01082
– volume: 54
  start-page: 6
  year: 2006
  ident: ref_247
  article-title: Mechanism of paraquat tolerance in cucumber leaves of various ages
  publication-title: Weed Sci.
  doi: 10.1614/WS-04-135R.1
– volume: 116
  start-page: 69
  year: 2015
  ident: ref_258
  article-title: Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses
  publication-title: Phytochem
  doi: 10.1016/j.phytochem.2015.03.004
– volume: 48
  start-page: 877
  year: 2016
  ident: ref_207
  article-title: Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water-deficit conditions
  publication-title: Pak. J. Bot.
– volume: 23
  start-page: 260
  year: 2018
  ident: ref_293
  article-title: Coping with ‘Dark Sides of the Sun’ through photoreceptor signaling
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.11.007
– volume: 170
  start-page: 112199
  year: 2020
  ident: ref_190
  article-title: The antioxidant system in Olea europaea to enhanced UV-B radiation also depends on flavonoids and secoiridoids
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2019.112199
– volume: 51
  start-page: 1745
  year: 2010
  ident: ref_292
  article-title: Contributions of visible and ultraviolet parts of sunlight to photoinhibition
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcq133
– volume: 13
  start-page: 203
  year: 2018
  ident: ref_86
  article-title: Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2018.1458913
– volume: 411
  start-page: 826
  year: 2001
  ident: ref_11
  article-title: Plant pathogens and integrated defense responses to infection
  publication-title: Nature
  doi: 10.1038/35081161
– volume: 137
  start-page: 142
  year: 2017
  ident: ref_24
  article-title: Abiotic stress: Interplay between ROS, hormones and MAPKs
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2017.02.010
– volume: 182
  start-page: 109404
  year: 2019
  ident: ref_137
  article-title: Negative impacts of elevated ozone on dominant species of semi-natural grassland vegetation in Indo-Gangetic plain
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.109404
– volume: 94
  start-page: 2
  year: 2007
  ident: ref_114
  article-title: Soil redox potential: Importance, field measurements, and observations
  publication-title: Adv. Agron.
– volume: 149
  start-page: 59
  year: 2018
  ident: ref_124
  article-title: Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.02.001
– volume: 259
  start-page: 108816
  year: 2020
  ident: ref_128
  article-title: Solar UV irradiation effects on photosynthetic performance, biochemical markers, and gene expression in highbush blueberry (Vaccinium corymbosum L.) cultivars
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2019.108816
– volume: 66
  start-page: 571
  year: 2015
  ident: ref_148
  article-title: Plant adaptation to acid soils: The molecular basis for crop aluminum resistance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043014-114822
– volume: 8
  start-page: 1042
  year: 2017
  ident: ref_208
  article-title: Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01042
– volume: 12
  start-page: 323
  year: 2017
  ident: ref_70
  article-title: Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced oxidative stress in rapeseed
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2017.1362052
– volume: 195
  start-page: 110469
  year: 2020
  ident: ref_14
  article-title: Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110469
– volume: 10
  start-page: 800
  year: 2019
  ident: ref_9
  article-title: Mechanisms of ROS regulation of plant development and stress responses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00800
– ident: ref_236
  doi: 10.1186/s12870-017-1087-2
– volume: 188
  start-page: 109894
  year: 2020
  ident: ref_81
  article-title: Thymol confers tolerance to salt stress by activating anti-oxidative defense and modulating Na+ homeostasis in rice root
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.109894
– volume: 7
  start-page: 323
  year: 2004
  ident: ref_28
  article-title: Reactive oxygen signalling: The latest news
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2004.03.005
– volume: 231
  start-page: 234
  year: 2018
  ident: ref_242
  article-title: A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes
  publication-title: J. Plant. Physiol.
  doi: 10.1016/j.jplph.2018.09.019
– volume: 114
  start-page: 144
  year: 2015
  ident: ref_133
  article-title: Ozone sensing and early signaling in plants: An outline from the cloud
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2014.11.012
– ident: ref_2
  doi: 10.1080/14693062.2020.1728209
– ident: ref_250
  doi: 10.3390/ijms18010200
– volume: 8
  start-page: 1061
  year: 2017
  ident: ref_85
  article-title: Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01061
– volume: 36
  start-page: 791
  year: 2017
  ident: ref_232
  article-title: Plant glutathione transferase-mediated stress tolerance: Functions and biotechnological applications
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-017-2139-7
– volume: 22
  start-page: 1
  year: 2018
  ident: ref_243
  article-title: The responses of antioxidant system against the heavy metal-induced stress in tomato
  publication-title: Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi
– volume: 7
  start-page: 1144
  year: 2016
  ident: ref_123
  article-title: Morphological, photosynthetic, and physiological responses of rapeseed leaf to different combinations of red and blue lights at the rosette stage
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01144
– volume: 28
  start-page: 261
  year: 2019
  ident: ref_87
  article-title: Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L.
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-019-02019-z
– volume: 40
  start-page: 122
  year: 2018
  ident: ref_231
  article-title: Effects of exogenous myo-inositol on leaf water status and oxidative stress of Capsicum annuum under drought stress
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-018-2690-z
– ident: ref_220
  doi: 10.1002/9781119468677
– volume: 9
  start-page: 1388
  year: 2018
  ident: ref_241
  article-title: Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01388
– ident: ref_290
  doi: 10.3390/plants9050633
– volume: 63
  start-page: 268
  year: 2019
  ident: ref_237
  article-title: Heterologous expression of the AtDREB1A gene in tomato confers tolerance to chilling stress
  publication-title: Biol. Plant.
  doi: 10.32615/bp.2019.031
– volume: 34
  start-page: 1
  year: 2016
  ident: ref_168
  article-title: Changes in photosynthesis and oxidative stress in wheat plants submmited to herbicides application
  publication-title: Planta Daninha
  doi: 10.1590/S0100-83582016340100001
– volume: 260
  start-page: 012153
  year: 2019
  ident: ref_240
  article-title: Effect of benzyl amino purin (BAP) and gibberellin acid (GA3) to chlorophyll and antioxidant enzymes of soybean (Glycine max L. Merill.) genotypes in response to inundation conditions
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/260/1/012153
– volume: 272
  start-page: 33158
  year: 1997
  ident: ref_56
  article-title: Primary structure characterization of the photosystem II D1 and D2 subunits
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.52.33158
– volume: 55
  start-page: 373
  year: 2004
  ident: ref_134
  article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.55.031903.141701
– ident: ref_15
  doi: 10.1007/978-981-15-0025-1
– volume: 59
  start-page: 139
  year: 2015
  ident: ref_59
  article-title: Modulation of NaCl induced DNA damage and oxidative stress in mungbean by pretreatment with sublethal dose
  publication-title: Biol. Plant
  doi: 10.1007/s10535-014-0460-3
– volume: 34
  start-page: 1874
  year: 2011
  ident: ref_165
  article-title: Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: Role of reactive oxygen species
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02383.x
– volume: 8
  start-page: 365
  year: 2017
  ident: ref_189
  article-title: Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00365
– volume: 99
  start-page: 65
  year: 2011
  ident: ref_202
  article-title: Tolerance to paraquat-mediated oxidative and environmental stresses in squash (Cucurbita spp.) leaves of various ages
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2010.11.001
– volume: 22
  start-page: 4099
  year: 2015
  ident: ref_48
  article-title: Lipids and proteins—Major targets of oxidative modifications in abiotic stressed plants
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3917-1
– volume: 25
  start-page: 1445
  year: 2013
  ident: ref_187
  article-title: Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.109827
– volume: 18
  start-page: 35424
  year: 2016
  ident: ref_180
  article-title: Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings
  publication-title: Sci. Rep.
  doi: 10.1038/srep35424
– volume: 8
  start-page: 203
  year: 2017
  ident: ref_107
  article-title: Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00203
– volume: 99
  start-page: 141
  year: 2014
  ident: ref_179
  article-title: Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2013.11.010
– volume: 109
  start-page: 212
  year: 2015
  ident: ref_49
  article-title: Mechanisms of oxidative stress in plants: From classical chemistry to cell biology
  publication-title: Environ. Expt. Bot.
  doi: 10.1016/j.envexpbot.2014.06.021
– volume: 198
  start-page: 318
  year: 2016
  ident: ref_182
  article-title: The use and mechanism of NO to prevent frost damage to flower of apricot
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2015.12.004
– volume: 245
  start-page: 380
  year: 2019
  ident: ref_193
  article-title: Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.11.030
– ident: ref_68
– volume: 234
  start-page: 22
  year: 2015
  ident: ref_254
  article-title: Glutathione peroxidases as redox sensor proteins in plant cells
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2015.01.017
– volume: 25
  start-page: 443
  year: 2019
  ident: ref_175
  article-title: Acetate-induced modulation of ascorbate: Glutathione cycle and restriction of sodium accumulation in shoot confer salt tolerance in Lens culinaris Medik
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-018-00640-6
– volume: 20
  start-page: 101197
  year: 2019
  ident: ref_259
  article-title: Mitigation of PEG-induced drought stress in rapeseed (Brassica rapa L.) by exogenous application of osmolytes
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2019.101197
– volume: 552
  start-page: 335
  year: 2003
  ident: ref_34
  article-title: Mitochondrial formation of reactive oxygen species
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.049478
– volume: 112
  start-page: 22
  year: 2015
  ident: ref_37
  article-title: Reactive oxygen species in cell wall metabolism and development in plants
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2014.09.016
– ident: ref_54
  doi: 10.1155/2013/585431
– volume: 7
  start-page: 139
  year: 2016
  ident: ref_256
  article-title: Glutathione S-transferase gene family in Gossypium raimondii and G. arboreum: Comparative genomic study and their expression under salt stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00139
– volume: 100
  start-page: 166
  year: 2016
  ident: ref_122
  article-title: Adaptive flexibility of enzymatic antioxidants SOD, APX and CAT to high light stress: The clonal perennial monocot Iris pumila as a study case
  publication-title: Plant. Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.01.011
– volume: 124
  start-page: 470
  year: 2016
  ident: ref_203
  article-title: Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.11.026
– volume: 158
  start-page: 59
  year: 2018
  ident: ref_195
  article-title: Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.04.014
– volume: 63
  start-page: 527
  year: 2012
  ident: ref_294
  article-title: How is ozone pollution reducing our food supply?
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err317
– volume: 28
  start-page: 609
  year: 2018
  ident: ref_10
  article-title: Peroxiredoxins and redox signaling in plants
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7164
– volume: 38
  start-page: 70
  year: 2019
  ident: ref_47
  article-title: Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-018-9810-2
– volume: 42
  start-page: 1458
  year: 2019
  ident: ref_186
  article-title: Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13504
– volume: 57
  start-page: 1364
  year: 2016
  ident: ref_31
  article-title: ROS generation in peroxisomes and its role in cell signaling
  publication-title: Plant Cell Physiol.
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_104
  article-title: Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35420-5
– ident: ref_269
  doi: 10.1007/978-3-030-06118-0
– volume: 240
  start-page: 614
  year: 2018
  ident: ref_266
  article-title: Up-regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.06.069
– volume: 22
  start-page: 11
  year: 2017
  ident: ref_5
  article-title: ROS are good
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 7
  start-page: 1968
  year: 2017
  ident: ref_288
  article-title: Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01968
– ident: ref_46
  doi: 10.3390/antiox8090384
– volume: 110
  start-page: 70
  year: 2017
  ident: ref_129
  article-title: Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.06.026
– ident: ref_131
  doi: 10.3390/plants9020215
– volume: 18
  start-page: 100
  year: 2019
  ident: ref_27
  article-title: Reactive oxygen species-mediated signaling during abiotic stress
  publication-title: Plant Gene
  doi: 10.1016/j.plgene.2019.100173
– volume: 714
  start-page: 136837
  year: 2020
  ident: ref_138
  article-title: Effect of water deficit stress on an Indian wheat cultivar (Triticum aestivum L. HD 2967), under ambient and elevated level of ozone
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136837
– volume: 48
  start-page: 683
  year: 2010
  ident: ref_155
  article-title: Aluminum-induced oxidative stress in cucumber
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.04.008
– volume: 126
  start-page: 173
  year: 2018
  ident: ref_164
  article-title: Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.02.021
– ident: ref_146
  doi: 10.20944/preprints201901.0143.v1
– volume: 3
  start-page: 178
  year: 2014
  ident: ref_215
  article-title: Effect of foliar spraying of ascorbic acid on chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, hydrogen peroxide, leaf temperature and leaf relative water content under drought stress in grapes
  publication-title: Bull. Environ. Pharmacol. Life Sci.
– volume: 125
  start-page: 53
  year: 2015
  ident: ref_166
  article-title: Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-structural disorders in crickweed (Malachium aquaticum L.)
  publication-title: Pestic Biochem Physiol.
  doi: 10.1016/j.pestbp.2015.06.002
– volume: 25
  start-page: 865
  year: 2019
  ident: ref_144
  article-title: Explicating physiological and biochemical responses of wheat cultivars under acidity stress: Insight into the antioxidant defense and glyoxalase systems
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-019-00678-0
– volume: 5
  start-page: 709
  year: 2011
  ident: ref_41
  article-title: Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms
  publication-title: Aust. J. Crop Sci.
– ident: ref_140
– volume: 9
  start-page: 521
  year: 2018
  ident: ref_99
  article-title: Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00521
– volume: 8
  start-page: 1147
  year: 2017
  ident: ref_65
  article-title: Crop production under drought and heat stress: Plant responses and management options
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01147
– volume: 17
  start-page: 2683
  year: 2018
  ident: ref_100
  article-title: Effects of short-term heat stress on PSII and subsequent recovery for senescent leaves of Vitis vinifera L. cv. Red Globe
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(18)62143-4
– ident: ref_285
  doi: 10.3390/plants8070196
– volume: 14
  start-page: 87
  year: 2019
  ident: ref_296
  article-title: Nickel and ozone stresses induce differential growth, antioxidant activity and mRNA transcription in Oryza sativa cultivars
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2018.1556356
– volume: 229
  start-page: 167
  year: 2018
  ident: ref_108
  article-title: Controlled drought stress affects the chilling-hardening capacity of tomato seedlings as indicated by changes in phenol metabolisms, antioxidant enzymes activity, osmolytes concentration and abscisic acid accumulation
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2017.10.009
– volume: 60
  start-page: 14
  year: 2019
  ident: ref_111
  article-title: Biochemical responses of rice roots to cold stress
  publication-title: Bot. Stud.
  doi: 10.1186/s40529-019-0262-1
– volume: 14
  start-page: 9643
  year: 2013
  ident: ref_272
  article-title: Physiological, biochemical, molecular mechanisms of heat stress tolerance in plants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms14059643
– volume: 12
  start-page: 143
  year: 2017
  ident: ref_276
  article-title: Advances in physiological and molecular aspects of plant cold tolerance
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2017.1308568
– volume: 211
  start-page: 1295
  year: 2016
  ident: ref_106
  article-title: Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice
  publication-title: New Phytol.
  doi: 10.1111/nph.14011
– volume: 2
  start-page: 22
  year: 2016
  ident: ref_235
  article-title: Temperature stress induced antioxidative and biochemical changes in wheat (Triticum aestivum L.) cultivars
  publication-title: J. Plant Stress Physiol.
  doi: 10.19071/jpsp.2016.v2.3076
– volume: 35
  start-page: 259
  year: 2012
  ident: ref_25
  article-title: ROS and redox signaling in the response of plants to abiotic stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02336.x
– volume: 48
  start-page: 358
  year: 2017
  ident: ref_169
  article-title: Oxidative stress caused by the use of preemergent herbicides in rice crops
  publication-title: Rev. Ciênc. Agron.
  doi: 10.5935/1806-6690.20170041
– volume: 91
  start-page: 129
  year: 2016
  ident: ref_210
  article-title: Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid
  publication-title: J. Hort. Sci. Biotechnol.
  doi: 10.1080/14620316.2015.1117226
– volume: 61
  start-page: 540
  year: 2017
  ident: ref_262
  article-title: Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-017-0727-6
– ident: ref_239
  doi: 10.1186/s12870-018-1457-4
– volume: 83
  start-page: 175
  year: 1999
  ident: ref_150
  article-title: Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.1998.0811
– ident: ref_230
  doi: 10.1007/978-3-319-75088-0
– ident: ref_267
– volume: 63
  start-page: 271
  year: 2017
  ident: ref_281
  article-title: Antioxidant response to cold stress in two oil plants of the genus Jatropha
  publication-title: Plant Soil Environ.
  doi: 10.17221/182/2017-PSE
– volume: 282
  start-page: 1183
  year: 2007
  ident: ref_18
  article-title: Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M603761200
– volume: 5
  start-page: 771
  year: 2015
  ident: ref_39
  article-title: Cell wall remodeling under abiotic stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00771
– volume: 16
  start-page: 13561
  year: 2015
  ident: ref_228
  article-title: Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160613561
– volume: 186
  start-page: 999
  year: 2018
  ident: ref_72
  article-title: Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-018-2784-5
– volume: 283
  start-page: 28380
  year: 2008
  ident: ref_96
  article-title: Quality control of photosystem II: Reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M710465200
– volume: 113
  start-page: 353
  year: 2013
  ident: ref_277
  article-title: Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice
  publication-title: Plant Cell Tiss. Organ. Cult.
  doi: 10.1007/s11240-012-0273-z
– volume: 150
  start-page: 195
  year: 2010
  ident: ref_300
  article-title: Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2010.07.011
– volume: 137
  start-page: 116
  year: 2014
  ident: ref_93
  article-title: Photosynthesis: Limitations in response to high temperature stress
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2014.01.010
– ident: ref_218
  doi: 10.1016/B978-0-12-803158-2.00011-4
– volume: 176
  start-page: 192
  year: 2015
  ident: ref_252
  article-title: Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2014.12.014
– volume: 40
  start-page: 509
  year: 2017
  ident: ref_91
  article-title: NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12711
– volume: 139
  start-page: 620
  year: 2019
  ident: ref_176
  article-title: ROS management is mediated by ascorbate-glutathione-α-tocopherol triad in co-ordination with secondary metabolic pathway under cadmium stress in Withania somnifera
  publication-title: Plant. Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.03.040
– volume: 56
  start-page: 54
  year: 2006
  ident: ref_151
  article-title: Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh)
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2005.01.002
– volume: 57
  start-page: 1025
  year: 2019
  ident: ref_298
  article-title: Mitigation mechanism of ozone-induced reduction in net photosynthesis of Bangladeshi wheat under soil salinity stress
  publication-title: Photosynthetica
  doi: 10.32615/ps.2019.115
– volume: 12
  start-page: 1379
  year: 1989
  ident: ref_160
  article-title: Sorghum seedling growth as influenced by H+, Ca2+, and Mn2+ concentrations
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904168909364043
– volume: 67
  start-page: 15
  year: 2015
  ident: ref_159
  article-title: Good and bad protons: Genetic aspects of acidity stress responses in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv437
– volume: 148
  start-page: 851
  year: 2018
  ident: ref_200
  article-title: Response of antioxidative system in rice (Oryza sativa) leaves to simulated acid rain stress
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.11.046
– volume: 147
  start-page: 990
  year: 2018
  ident: ref_89
  article-title: Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.09.045
– volume: 7
  start-page: 1104
  year: 2016
  ident: ref_233
  article-title: Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2016.01104
– volume: 37
  start-page: 261
  year: 2009
  ident: ref_253
  article-title: PeroxiBase: A database with new tools for peroxidase family classification
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn680
– volume: 11
  start-page: 480
  year: 2020
  ident: ref_291
  article-title: Growth and essential carotenoid micronutrients in Lemna gibba as a function of growth light intensity
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00480
– volume: 95
  start-page: 27
  year: 2016
  ident: ref_251
  article-title: The role of glutathione reductase and related enzymes on cellular redox homoeostasis network
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.02.028
– volume: 74
  start-page: 438
  year: 2014
  ident: ref_163
  article-title: Effect of picloram herbicide on physiological responses of Eupatorium adenophorum Spreng
  publication-title: Chil. J. Agric. Res.
  doi: 10.4067/S0718-58392014000400010
– volume: 25
  start-page: 185
  year: 2018
  ident: ref_71
  article-title: Antioxidant protection mechanisms reveal significant response in drought-induced oxidative stress in some traditional rice of Assam, India
  publication-title: Rice Sci.
  doi: 10.1016/j.rsci.2018.06.002
– ident: ref_115
  doi: 10.1007/978-3-642-10305-6
– volume: 8
  start-page: 785
  year: 2017
  ident: ref_109
  article-title: Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00785
– volume: 71
  start-page: 605
  year: 2010
  ident: ref_224
  article-title: Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2009.12.014
– volume: 36
  start-page: 1539
  year: 2014
  ident: ref_212
  article-title: Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-014-1530-z
– volume: 115
  start-page: 50
  year: 2018
  ident: ref_66
  article-title: Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L.
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2017.12.006
– volume: 252
  start-page: 19
  year: 2020
  ident: ref_97
  article-title: Effects of low temperature on photoinhibition and singlet oxygen production in four natural accessions of Arabidopsis
  publication-title: Planta
  doi: 10.1007/s00425-020-03423-0
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_75
  article-title: Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40362-7
– volume: 171
  start-page: 1551
  year: 2016
  ident: ref_36
  article-title: The roles of mitochondrial reactive oxygen species in cellular signaling and stress responses in plants
  publication-title: Plant. Physiol.
  doi: 10.1104/pp.16.00166
– volume: 171
  start-page: 1541
  year: 2016
  ident: ref_23
  article-title: Redox- and reactive oxygen species-dependent signaling in and from the photosynthesizing chloroplast
  publication-title: Plant. Physiol.
  doi: 10.1104/pp.16.00375
– ident: ref_143
  doi: 10.1007/978-3-030-06118-0
– volume: 161
  start-page: 98
  year: 2019
  ident: ref_205
  article-title: Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.10.017
– volume: 2
  start-page: ra45
  year: 2009
  ident: ref_21
  article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2000448
– volume: 8
  start-page: 143
  year: 2012
  ident: ref_63
  article-title: Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0296-1
– volume: 187
  start-page: 385
  year: 2017
  ident: ref_80
  article-title: Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: Oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.08.078
– volume: 7
  start-page: 1519
  year: 2016
  ident: ref_282
  article-title: Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01519
– volume: 234
  start-page: 35
  year: 2011
  ident: ref_42
  article-title: Oxygen activation at the plasma membrane: Relation between superoxide and hydroxyl radical production by isolated membranes
  publication-title: Planta
  doi: 10.1007/s00425-011-1379-y
– volume: 65
  start-page: 1241
  year: 2014
  ident: ref_26
  article-title: ROS homeostasis in halophytes in the context of salinity stress tolerance
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert430
– ident: ref_132
  doi: 10.1007/978-3-319-71873-6
– volume: 166
  start-page: 1878
  year: 2009
  ident: ref_257
  article-title: Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2009.05.016
– volume: 69
  start-page: 209
  year: 2018
  ident: ref_13
  article-title: Reactive oxygen species in plant signaling
  publication-title: Ann. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042817-040322
– volume: 171
  start-page: 1704
  year: 2016
  ident: ref_30
  article-title: Lack of GLYCOLATE OXIDASE1, but not GLYCOLATE OXIDASE2, attenuates the photorespiratory phenotype of CATALASE2- deficient Arabidopsis
  publication-title: Plant. Physiol.
  doi: 10.1104/pp.16.00359
– volume: 212
  start-page: 197
  year: 2010
  ident: ref_38
  article-title: More from less: Plant growth under limited water
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2010.03.002
– volume: 9
  start-page: 716
  year: 2018
  ident: ref_145
  article-title: Silicon priming created an enhanced tolerance in alfalfa (Medicago sativa L.) seedlings in response to high alkaline stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00716
– volume: 148
  start-page: 825
  year: 2018
  ident: ref_74
  article-title: Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.11.063
– ident: ref_90
  doi: 10.3390/molecules24224194
– volume: 8
  start-page: 613
  year: 2017
  ident: ref_206
  article-title: Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00613
– volume: 137
  start-page: 483
  year: 2005
  ident: ref_141
  article-title: Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2005.01.035
– volume: 167
  start-page: 313
  year: 2016
  ident: ref_4
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 26
  start-page: 1950
  year: 2016
  ident: ref_95
  article-title: Production of reactive oxygen species by photosystem II as a response to light and temperature stress
  publication-title: Front. Plant Sci.
– volume: 2
  start-page: 53
  year: 2014
  ident: ref_227
  article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2014.00053
– volume: 161
  start-page: 4
  year: 2019
  ident: ref_6
  article-title: Plants facing oxidative challenges—A little help from the antioxidant networks
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.12.009
– ident: ref_77
  doi: 10.1186/s12864-017-3596-7
– volume: 142
  start-page: 35
  year: 2011
  ident: ref_120
  article-title: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2011.01457.x
– volume: 543
  start-page: 145
  year: 2014
  ident: ref_223
  article-title: Identification of the flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase genes from Antarctic moss and their regulation during abiotic stress
  publication-title: Gene
  doi: 10.1016/j.gene.2014.03.026
– volume: 1
  start-page: 189
  year: 2014
  ident: ref_213
  article-title: Effect of Ascorbic Acid antioxidant on Soybean (Glycine max L.) plants grown under water stress conditions
  publication-title: Int. J. Advan. Res. Biol Sci.
– volume: 176
  start-page: 104078
  year: 2020
  ident: ref_184
  article-title: Short-term nitrate supply decreases fermentation and oxidative stress caused by waterlogging in soybean plants
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2020.104078
– volume: 109
  start-page: 276
  year: 2015
  ident: ref_192
  article-title: Effects of ambient and elevated CO2 and ozone on physiological characteristics, antioxidative defense system and metabolites of potato in relation to ozone flux
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2014.06.015
– volume: 10
  start-page: 2602
  year: 2019
  ident: ref_283
  article-title: Adiponectin receptor PAQR-2 signaling senses low temperature to promote C. elegans longevity by regulating autophagy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10475-8
– ident: ref_221
  doi: 10.1007/978-3-030-06118-0
– ident: ref_222
  doi: 10.3390/antiox7020028
– volume: 103
  start-page: 428
  year: 2019
  ident: ref_297
  article-title: Responses of antioxidant enzymes to chronic free-air ozone stress in rice (Oryza sativa L.) cultivars with different ozone-sensitivities
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-019-02653-7
– volume: 40
  start-page: 167
  year: 2018
  ident: ref_279
  article-title: Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-018-2747-z
– volume: 16
  start-page: 300
  year: 2011
  ident: ref_22
  article-title: ROS signaling: The new wave?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2011.03.007
– ident: ref_135
  doi: 10.1371/journal.pone.0094862
– volume: 4
  start-page: 272
  year: 2013
  ident: ref_295
  article-title: Source-to-sink transport of sugar and regulation by environmental factors
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00272
– ident: ref_52
  doi: 10.1002/9781119324928
– volume: 63
  start-page: e12429
  year: 2017
  ident: ref_172
  article-title: Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12429
– ident: ref_113
  doi: 10.1007/978-981-10-5254-5
– volume: 7
  start-page: 1976
  year: 2012
  ident: ref_116
  article-title: Waterlogging stress in plants: A review
  publication-title: Afr. J. Agric. Res.
– volume: 22
  start-page: 308
  year: 2017
  ident: ref_126
  article-title: Leveraging natural variance towards enhanced understanding of phytochemical sunscreens
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.01.003
– volume: 26
  start-page: 233
  year: 2020
  ident: ref_260
  article-title: Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure
  publication-title: Physiol. Mol. Biol. Plant.
  doi: 10.1007/s12298-019-00744-7
– ident: ref_268
  doi: 10.1007/978-3-030-20732-8
– volume: 7
  start-page: 165
  year: 2011
  ident: ref_156
  article-title: Significance of sulphur nutrition against metal induced oxidative stress in plants
  publication-title: J. Stress Physiol. Biochem.
– volume: 67
  start-page: 3831
  year: 2016
  ident: ref_29
  article-title: Spreading the news: Subcellular and organellar reactive oxygen species production and signalling
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw080
– volume: 116
  start-page: 663
  year: 2015
  ident: ref_44
  article-title: Seed birth to death: Dual functions of reactive oxygen species in seed physiology
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcv098
– volume: 7
  start-page: 301
  year: 2016
  ident: ref_255
  article-title: Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00301
– volume: 2
  start-page: 386
  year: 2019
  ident: ref_1
  article-title: A multi-model assessment of food security implications of climate change mitigation
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0286-2
– volume: 51
  start-page: 1551
  year: 2019
  ident: ref_265
  article-title: Salicylic acid alleviates salinity stress through the modulation of biochemical attributes and some key antioxidants in wheat seedlings
  publication-title: Pak. J. Bot.
  doi: 10.30848/PJB2019-5(12)
– volume: 58
  start-page: 697
  year: 2014
  ident: ref_209
  article-title: Alleviation of osmotic stress in Brassica napus, B. campestris, and B. juncea by ascorbic acid application
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-014-0447-0
– volume: 50
  start-page: 2
  year: 2008
  ident: ref_19
  article-title: Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network
  publication-title: J. Integrat. Plant Biol.
  doi: 10.1111/j.1744-7909.2007.00599.x
– volume: 111
  start-page: 129
  year: 2017
  ident: ref_171
  article-title: Molecular and physiological responses of Iranian Perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress
  publication-title: Plant. Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.11.014
– ident: ref_139
  doi: 10.3390/f11010068
– volume: 11
  start-page: 696
  year: 2020
  ident: ref_183
  article-title: Hydrogen sulfide alleviates waterlogging-induced damage in Peach seedlings via enhancing antioxidative system and inhibiting ethylene synthesis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00696
– ident: ref_196
  doi: 10.1371/journal.pone.0173378
– volume: 2014
  start-page: 757219
  year: 2014
  ident: ref_219
  article-title: Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/757219
– volume: 22
  start-page: 27
  year: 2013
  ident: ref_78
  article-title: Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.)
  publication-title: J. Plant Biochem. Biotechnol.
  doi: 10.1007/s13562-012-0107-4
– volume: 49
  start-page: 313
  year: 2007
  ident: ref_153
  article-title: Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2007.00358.x
SSID ssj0023259
Score 2.6821744
SecondaryResourceType review_article
Snippet Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8695
SubjectTerms Abiotic stress
Antioxidants
Apoptosis
Carbohydrates
Chloroplasts
Climate change
Endoplasmic reticulum
Environmental conditions
Fatty acids
Free radicals
Gene expression
Gene Expression Regulation, Plant
Homeostasis
Lipids
Metabolism
Mitochondria
Oxidation
Oxidative Stress
Photosynthesis
Plants - metabolism
Polyamines
Productivity
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Review
Signal Transduction
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6alEIupe86SYsK7amIrCxbknsJIWwIhbSQ7cLejCxLdNNd7zZ2Dvn3mbG9j6SkZw2ymJHmYY2-D-BzakVsZQjcOVHwREnBMwxTPJSFKEqRBtmyNVz8UOfj5PsknfQ_3Oq-rXLlE1tHXS4c_SM_inEedJ1YzR0v_3JijaLb1Z5CYweeEnQZtXTpyabgknFLliYwBnGVZqprfJdY5h9Nr-Y1eu3YKGKW2A5J_-SZD9slt-LP2Qt43ieO7KSz9Et44qtX8Kyjkrx9DX8uO1J5VDNbBHb5c8QufIMWnk3rOZtWjNiJmprRm7FrNtw8b8M5R-17kW_shHU3Be0EntbBhlsEAGzFQPoGxmfDX6fnvCdS4C7RpuHKqFKL1Fht3aDEDE5YZb1wDmstLYvYxakMOihUb5oS6XhIhFYBg7_13hor38Jutaj8e2BWZzaL8SS7RBDujRkUrvTlQHiPcU_4CL6udJm7HmWcyC5mOVYbpPl8W_MRfFlLLzt0jUfkDldmyfszVuebHRHBp_Uwng668rCVX9x0MgRGMUgieNdZcf0hKTG9wQoxAn3PvmsBQt6-P1JNf7cI3FplRgmz__9lHcBeTNU5NQ2aQ9htrm_8B0xhmuJju0_vABFt8Ro
  priority: 102
  providerName: ProQuest
Title Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence
URI https://www.ncbi.nlm.nih.gov/pubmed/33218014
https://www.proquest.com/docview/2463299469
https://www.proquest.com/docview/2463104704
https://pubmed.ncbi.nlm.nih.gov/PMC7698618
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dT9swED_xoU28oH0TYJUnsacpW5zEH5k0TYDaIaSyqaxS3yLHsbVCSaENEvz3nJMma8d4yUsuTnQ_X353sn0_gAOmaKgia32taebHPKJ-gjTl2zyjWU6ZjSq1hv4ZPxnGpyM2WoNGbXThwPl_SzunJzWcTT7f3dx_x4D_5ipOLNm_jC-u5vgHDiVP2DpsIicJF6L9uF1PwLSBJfW290dPbMHzKEKiC2i8yk2PEs5_900uEVHvBWwvMkhyWEP-EtZM8Qqe1ZqS96_hclCry6O_ydSSwc9z0jclQj0Zz6_IuCBOpqicE3d4bEa6f8-54Zjn1cGRr-SQ1EsG1QDGfQfpLikBkEaK9A0Me93fxyf-QlHB17GQpc8lzwVlUgmlgxxTOaq4MlRrLLpElIU6ZJEVlidJzJhTH7foS24xC1DGKKmit7BRTAuzA0SJRCUhhrSOqWuAI4NM5yYPqDFIgNR48KnxZaoX7cad6sUkxbLDgZAug-DBx9b6um6z8YTdfgNL2syVNMQphqyKhb4HH9rbGCZu7UMVZnpb27iuFEHswbsaxfZFDfweiBV8WwPXgnv1TjH-U7XiFjyRnMrdJ8fcg63QVehu46Dch41ydmveYxpTZh1YFyOBV9n70YHNo-7Zr0HHEQvrVHP3AR3V9dk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPRE4oa24ntICFUwVZb2i1SH9LeUsexxUKbLU0q1D_Fb2Qcb3a3ILj1bMu2PDP-ZmzPfABvMk2Z5s7FxtAyTgWncY4wFbuqpGVFM8c7tobRnhgepZ_H2XgFfvW5MP5bZX8mdgd1NTX-jnyD4Th4dGI09-HsR-xZo_zrak-hEdRix17-xJCteb_9CeW7ztjW4PDjMJ6xCsQmlaqNhRKVpJnSUpukQneGaqEtNQYDD8lLZljGnXQC58oyz8DtUiqFQyTU1mqlOY57A24i8CbeouR4EeBx1pGzUcS8WGS5CB_tOc-Tjcm30wZRginhmSyWIfAvv_bP75lLeLd1D-7OHFWyGTTrPqzY-gHcCtSVlw_h-34gsUexkqkj-18OyMi2qFEnk-aUTGri2ZDahvgctXMyWKTT4ZgHXX7KO7JJwstEN4D16yCDJcIB0jOePoKja9nix7BaT2v7FIiWuc4Znhwmpb7OjkpKU9kqodYizlIbwdt-Lwszq2ruyTVOCoxu_M4Xyzsfwfq891mo5vGPfmu9WIqZTTfFQgMjeD1vRmv0Tyy6ttOL0McXv0jSCJ4EKc4n4hzdKYxII5BX5Dvv4Ct9X22pJ1-7it9S5EpQ9ez_y3oFt4eHo91id3tv5zncYf5mwH9YVGuw2p5f2BfoPrXly05nCRxft5H8Bpa3LOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gRuMLwe9F1JrIk9nctt1td02IIXIXEEEDktzb0u228RT2kF1i-Nf865xud-8Ojb7x3EnbzEdnpp3OD-B1oihT3NpQa1qEseA0zNBNhbYsaFHSxPIWrWH_QOwcxx_GyXgJfvV_YVxZZX8mtgd1OdXujnzAcB48OjGbG9iuLOLz9ujd-Y_QIUi5l9YeTsOryJ65-onpW725u42y3mBsNPzyfifsEAZCHcu0CUUqSkmTVEmloxJDG6qEMlRrTEIkL5hmCbfSClw3SRwat42pFBa9ojJGpYrjvLfgtuQJdTYmx_Nkj7MWqI2i_wtFkglfdM95Fg0m385q9BgsFQ7VYtEd_hXj_lmqueD7Rquw0gWtZMtr2X1YMtUDuONhLK8ewvdDD2iPIiZTSw4_HZF906B2nU7qMzKpiENGamri_qtdkOH8ax3OedT-VXlLtoh_pWgnMG4fZLgAPkB69NNHcHwjLH4My9W0Mk-BKJmpjOEpomPqeu6kUaFLU0bUGPS51ATwpudlrrsO5w5o4zTHTMdxPl_kfAAbM-pz39njH3TrvVjyzr7rfK6NAbyaDaNluucWVZnppadxjTCiOIAnXoqzhTjH0Aqz0wDkNfnOCFzX7-sj1eRr2_1biiwVNF37_7Zewl00j_zj7sHeM7jH3CWBq11M12G5ubg0zzGSaooXrcoSOLlpG_kNeccxHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+ROS+Metabolism+in+Plants+under+Environmental+Stress%3A+A+Review+of+Recent+Experimental+Evidence&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Hasanuzzaman%2C+Mirza&rft.au=Bhuyan%2C+M+H+M+Borhannuddin&rft.au=Parvin%2C+Khursheda&rft.au=Bhuiyan%2C+Tasnim+Farha&rft.date=2020-11-18&rft.eissn=1422-0067&rft.volume=21&rft.issue=22&rft_id=info:doi/10.3390%2Fijms21228695&rft_id=info%3Apmid%2F33218014&rft.externalDocID=33218014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon