Osmotically assisted reverse osmosis for high salinity brine treatment
This work evaluates a novel osmotically assisted reverse osmosis (OARO) process for dewatering high salinity brines using readily available membranes and equipment. While traditional reverse osmosis processes are limited to treating brines with osmotic pressures below the membrane burst pressure, in...
Saved in:
Published in | Desalination Vol. 421; no. C; pp. 3 - 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.11.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work evaluates a novel osmotically assisted reverse osmosis (OARO) process for dewatering high salinity brines using readily available membranes and equipment. While traditional reverse osmosis processes are limited to treating brines with osmotic pressures below the membrane burst pressure, in OARO, the osmotic pressure difference across a membrane is reduced with a permeate side saline sweep. A series of OARO stages can be used to sequentially reduce the concentration of the feed until a traditional RO process can obtain fully desalinated water. This paper develops an OARO model to identify feasible operating conditions for this process and to estimate the water recovery and energy consumption across a range of brine feed concentrations. For a feed of 100–140g/L sodium chloride, we estimate that the OARO process is capable of a 35–50% water recovery with an energy consumption of 6–19kWh per m3 of product water. The results suggest that an OARO dewatering process improves upon the recovery of reverse osmosis for high salinity brines and has a comparable or lower energy consumption than mechanical vapor compression.
•Osmotically assisted reverse osmosis (OARO) treats high salinity brines.•OARO is a membrane-based process that uses equipment common in RO and FO.•OARO brine treatment consumes less energy than evaporative processes. |
---|---|
AbstractList | This work evaluates a novel osmotically assisted reverse osmosis (OARO) process for dewatering high salinity brines using readily available membranes and equipment. While traditional reverse osmosis processes are limited to treating brines with osmotic pressures below the membrane burst pressure, in OARO, the osmotic pressure difference across a membrane is reduced with a permeate side saline sweep. A series of OARO stages can be used to sequentially reduce the concentration of the feed until a traditional RO process can obtain fully desalinated water. This paper develops an OARO model to identify feasible operating conditions for this process and to estimate the water recovery and energy consumption across a range of brine feed concentrations. For a feed of 100–140g/L sodium chloride, we estimate that the OARO process is capable of a 35–50% water recovery with an energy consumption of 6–19kWh per m3 of product water. The results suggest that an OARO dewatering process improves upon the recovery of reverse osmosis for high salinity brines and has a comparable or lower energy consumption than mechanical vapor compression.
•Osmotically assisted reverse osmosis (OARO) treats high salinity brines.•OARO is a membrane-based process that uses equipment common in RO and FO.•OARO brine treatment consumes less energy than evaporative processes. Here, this work evaluates a novel osmotically assisted reverse osmosis (OARO) process for dewatering high salinity brines using readily available membranes and equipment. While traditional reverse osmosis processes are limited to treating brines with osmotic pressures below the membrane burst pressure, in OARO, the osmotic pressure difference across a membrane is reduced with a permeate side saline sweep. A series of OARO stages can be used to sequentially reduce the concentration of the feed until a traditional RO process can obtain fully desalinated water. This paper develops an OARO model to identify feasible operating conditions for this process and to estimate the water recovery and energy consumption across a range of brine feed concentrations. For a feed of 100–140 g/L sodium chloride, we estimate that the OARO process is capable of a 35–50% water recovery with an energy consumption of 6–19 kWh per m3 of product water. Finally, the results suggest that an OARO dewatering process improves upon the recovery of reverse osmosis for high salinity brines and has a comparable or lower energy consumption than mechanical vapor compression. |
Author | Siefert, Nicholas S. Bartholomew, Timothy V. Mey, Laura Arena, Jason T. Mauter, Meagan S. |
Author_xml | – sequence: 1 givenname: Timothy V. surname: Bartholomew fullname: Bartholomew, Timothy V. organization: Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA – sequence: 2 givenname: Laura orcidid: 0000-0002-7100-0441 surname: Mey fullname: Mey, Laura organization: Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA – sequence: 3 givenname: Jason T. surname: Arena fullname: Arena, Jason T. organization: National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Rd., P.O. Box 10940, Pittsburgh, PA 15236, USA – sequence: 4 givenname: Nicholas S. surname: Siefert fullname: Siefert, Nicholas S. organization: National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Rd., P.O. Box 10940, Pittsburgh, PA 15236, USA – sequence: 5 givenname: Meagan S. surname: Mauter fullname: Mauter, Meagan S. email: mauter@cmu.edu organization: Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA |
BackLink | https://www.osti.gov/servlets/purl/1479651$$D View this record in Osti.gov |
BookMark | eNp9kE1LAzEQhoNUsK3-Ai-L913zMdmPgwcpVoVCL3oO2eysTdkmkoRC_72p9expmJn3fWd4FmTmvENC7hmtGGX1474aMOqp4pQ1FYWKMn5F5qxtRAlQw4zMKWWs7FgNN2QR4z63vBNiTtbbePDJGj1Np0LHaGPCoQh4xBCx8HmZR8XoQ7GzX7siH7HOplPRB-uwSAF1OqBLt-R61FPEu7-6JJ_rl4_VW7nZvr6vnjelgaZNpaxl2_MBBtNKlOMosGFdDcB5w9kIWmsUQEFw6BvgKE0nJY694KJngutOLMnDJdfHZFU0NqHZGe8cmqQYNF0tWRaJi8gEH2PAUX0He9DhpBhVZ15qr355qTMvRUFlGtn1dHFh_v9oMZzj0RkcbDinD97-6_8B9oZ2jg |
CitedBy_id | crossref_primary_10_1016_j_desal_2021_115190 crossref_primary_10_1016_j_desal_2024_117893 crossref_primary_10_1016_j_seppur_2022_121113 crossref_primary_10_1007_s11356_021_13332_8 crossref_primary_10_1016_j_memsci_2022_120508 crossref_primary_10_1016_j_watres_2021_117311 crossref_primary_10_1115_1_4043571 crossref_primary_10_1002_gch2_202300304 crossref_primary_10_1016_j_watres_2021_117794 crossref_primary_10_1016_j_desal_2019_01_001 crossref_primary_10_1038_s43586_023_00287_y crossref_primary_10_1016_j_jclepro_2022_135124 crossref_primary_10_1016_j_memsci_2019_117607 crossref_primary_10_1016_j_desal_2023_117008 crossref_primary_10_1016_j_desal_2024_117647 crossref_primary_10_1016_j_desal_2021_115069 crossref_primary_10_1002_aic_17865 crossref_primary_10_1016_j_seppur_2023_124503 crossref_primary_10_1016_j_watres_2022_118076 crossref_primary_10_1016_j_desal_2023_117121 crossref_primary_10_1016_j_energy_2020_118733 crossref_primary_10_1016_j_memsci_2020_118279 crossref_primary_10_1021_acs_est_4c01639 crossref_primary_10_1016_j_scitotenv_2018_05_247 crossref_primary_10_1016_j_seppur_2021_118875 crossref_primary_10_1016_j_eti_2021_101541 crossref_primary_10_1016_j_memsci_2023_121686 crossref_primary_10_3390_membranes11030183 crossref_primary_10_1021_acs_est_9b04788 crossref_primary_10_3390_membranes9080092 crossref_primary_10_1016_j_memsci_2018_03_065 crossref_primary_10_1016_j_memsci_2019_117574 crossref_primary_10_1016_j_desal_2023_116827 crossref_primary_10_1021_acs_est_8b02771 crossref_primary_10_1016_j_desal_2023_117238 crossref_primary_10_1016_j_desal_2021_115055 crossref_primary_10_1016_j_scitotenv_2020_137523 crossref_primary_10_1016_j_desal_2023_116789 crossref_primary_10_1038_s41545_022_00153_6 crossref_primary_10_1016_j_desal_2024_117670 crossref_primary_10_1007_s40726_019_00120_9 crossref_primary_10_1016_j_desal_2021_115170 crossref_primary_10_1016_j_memsci_2021_119819 crossref_primary_10_1016_j_jwpe_2023_104535 crossref_primary_10_2166_wst_2019_161 crossref_primary_10_1016_j_joule_2022_05_004 crossref_primary_10_1016_j_isci_2023_105966 crossref_primary_10_1039_D0EE01653E crossref_primary_10_31857_S2218117223040028 crossref_primary_10_1016_j_desal_2019_01_025 crossref_primary_10_1016_j_desal_2020_114791 crossref_primary_10_1016_j_seppur_2024_128124 crossref_primary_10_1016_j_scitotenv_2019_07_351 crossref_primary_10_1021_acs_iecr_9b00630 crossref_primary_10_1016_j_desal_2023_116970 crossref_primary_10_2200_S01110ED1V01Y202106SDE003 crossref_primary_10_1016_j_memsci_2021_119703 crossref_primary_10_1016_j_desal_2024_117684 crossref_primary_10_1016_j_cherd_2020_07_029 crossref_primary_10_1016_j_jenvman_2021_113681 crossref_primary_10_1016_j_watres_2023_120716 crossref_primary_10_1016_j_memsci_2017_10_048 crossref_primary_10_1016_j_mineng_2023_108238 crossref_primary_10_1016_j_enconman_2020_113665 crossref_primary_10_1016_j_memsci_2022_121122 crossref_primary_10_1016_j_memsci_2022_121246 crossref_primary_10_1016_j_psep_2023_07_032 crossref_primary_10_1016_j_solmat_2023_112334 crossref_primary_10_1016_j_desal_2022_115737 crossref_primary_10_1061__ASCE_EE_1943_7870_0002040 crossref_primary_10_1016_j_memsci_2021_119156 crossref_primary_10_1021_acs_estlett_8b00274 crossref_primary_10_1016_j_psep_2020_12_007 crossref_primary_10_1016_j_desal_2020_114323 crossref_primary_10_1016_j_seppur_2021_119874 crossref_primary_10_1016_j_watres_2019_115317 crossref_primary_10_2139_ssrn_4127038 crossref_primary_10_1016_j_desal_2017_12_015 crossref_primary_10_1016_j_memsci_2018_03_015 crossref_primary_10_1016_j_desal_2021_114976 crossref_primary_10_1016_j_desal_2022_115827 crossref_primary_10_1016_j_desal_2022_115948 crossref_primary_10_1016_j_rser_2021_111815 crossref_primary_10_1016_j_scitotenv_2023_162376 crossref_primary_10_1039_C9EW01055F crossref_primary_10_1016_j_memsci_2021_119720 crossref_primary_10_1016_j_watres_2022_118969 crossref_primary_10_1016_j_desal_2020_114335 crossref_primary_10_1016_j_seppur_2023_123854 crossref_primary_10_1016_j_scitotenv_2022_153887 crossref_primary_10_1016_j_marpolbul_2020_111773 crossref_primary_10_1021_acssuschemeng_8b02466 crossref_primary_10_1016_j_desal_2022_115839 crossref_primary_10_1021_acs_est_3c06774 crossref_primary_10_1007_s11696_023_02867_4 crossref_primary_10_1016_j_gce_2021_02_002 crossref_primary_10_1073_pnas_2022196118 crossref_primary_10_1016_j_desal_2022_116126 crossref_primary_10_1038_s41467_021_22684_1 crossref_primary_10_1007_s11356_023_31327_5 crossref_primary_10_1016_j_applthermaleng_2023_121306 crossref_primary_10_1016_j_memsci_2020_118488 crossref_primary_10_1080_00219592_2023_2294934 crossref_primary_10_1134_S2517751621050097 crossref_primary_10_17122_ntj_oil_2021_4_36_50 crossref_primary_10_1021_acs_est_2c00839 crossref_primary_10_1021_acs_est_7b05774 crossref_primary_10_1016_j_desal_2020_114630 crossref_primary_10_1016_j_desal_2021_115008 crossref_primary_10_1016_j_memsci_2021_119182 crossref_primary_10_3390_w14010060 crossref_primary_10_2139_ssrn_4163359 crossref_primary_10_1016_j_desal_2018_07_011 crossref_primary_10_1016_j_jenvman_2022_116239 crossref_primary_10_1016_j_cej_2024_149005 crossref_primary_10_1016_j_cep_2022_108944 crossref_primary_10_1021_acs_est_1c01638 crossref_primary_10_1016_j_seppur_2024_127913 crossref_primary_10_1134_S2517751623040029 crossref_primary_10_1016_j_memsci_2020_118017 crossref_primary_10_1021_acsestengg_2c00013 crossref_primary_10_1039_D0EE00341G crossref_primary_10_1016_j_desal_2021_114941 crossref_primary_10_1016_j_desal_2023_116407 crossref_primary_10_1016_j_enconman_2021_114589 crossref_primary_10_22227_1997_0935_2021_6_698_719 crossref_primary_10_1016_j_enconman_2020_112783 crossref_primary_10_1016_j_desal_2021_115517 crossref_primary_10_1016_j_memsci_2024_122581 crossref_primary_10_21272_jes_2022_9_2__f2 crossref_primary_10_1016_j_desal_2018_02_002 crossref_primary_10_1016_j_desal_2024_117598 crossref_primary_10_1021_acs_iecr_4c00517 crossref_primary_10_1016_j_memsci_2018_11_067 |
Cites_doi | 10.1126/science.1200488 10.1016/S0376-7388(96)00354-7 10.1016/j.desal.2011.08.027 10.1016/j.desal.2016.11.018 10.1016/j.memsci.2013.10.068 10.1016/j.memsci.2010.08.010 10.1016/j.memsci.2006.05.048 10.1021/es401966e 10.1016/j.memsci.2008.07.020 10.1016/j.memsci.2014.12.046 10.1016/j.ijggc.2017.03.032 10.1016/j.desal.2010.06.017 10.1016/j.memsci.2006.07.049 10.1016/0011-9164(94)00130-8 10.1016/j.memsci.2010.11.014 10.1016/j.memsci.2005.10.048 10.1016/j.memsci.2014.04.008 10.1021/ja01279a066 10.1016/j.desal.2006.08.020 10.1016/j.ces.2010.01.002 10.1016/0021-9797(86)90252-3 10.1016/j.desal.2005.05.017 10.1016/j.desal.2014.12.038 10.1016/j.memsci.2012.02.014 10.1136/oem.54.4.288 10.1021/es304519p 10.1016/j.desal.2006.12.009 10.1016/j.memsci.2003.09.015 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
CorporateAuthor | National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States) |
CorporateAuthor_xml | – name: National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1016/j.desal.2017.04.012 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4464 |
EndPage | 11 |
ExternalDocumentID | 1479651 10_1016_j_desal_2017_04_012 S0011916416319579 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SST SSZ T5K ~02 ~G- 29F 6TJ AAQXK AAXKI AAYXX ABEFU ABTAH ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW WUQ ZY4 ~KM AALMO AAPBV ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c478t-5658b2d4dc85e5ff3e71964422721f4aaae3404324b742e5c955efb323b132a93 |
IEDL.DBID | AIKHN |
ISSN | 0011-9164 |
IngestDate | Mon Jul 03 03:57:34 EDT 2023 Thu Sep 26 19:14:15 EDT 2024 Fri Feb 23 02:28:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-5658b2d4dc85e5ff3e71964422721f4aaae3404324b742e5c955efb323b132a93 |
Notes | USDOE Office of Fossil Energy (FE) CBET-1554117; CBET-1215845 |
ORCID | 0000-0002-7100-0441 0000000271000441 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1479651 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1479651 crossref_primary_10_1016_j_desal_2017_04_012 elsevier_sciencedirect_doi_10_1016_j_desal_2017_04_012 |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Desalination |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tan, Ng (bb0120) 2008; 324 Xu, Hancock, Guerra, Cath, Drewes (bb0160) 2009 Koren, Nadav (bb0155) 1994; 98 Cath, Childress, Elimelech (bb0040) 2006; 281 Achilli, Cath, Childress (bb0085) 2010; 364 Tiraferri, Yip, Phillip, Schiffman, Elimelech (bb0140) 2011; 367 Alkhudhiri, Darwish, Hilal (bb0025) 2012; 287 Wohlert, C. W., Apparatus and methods for solution processing using reverse osmosis. United States Patent US20130270186 A1, Oct 17, 2013. Thiel, Tow, Banchik, Chung, Lienhard (bb0030) 2015; 366 Fritzmann, Löwenberg, Wintgens, Melin (bb0035) 2007; 216 Oh, Lee, Elimelech, Lee, Hong (bb0045) 2014; 465 Al-Sahali, Ettouney (bb0020) 2007; 214 Sawyer, J. E.; Lucas, A. L.; Davis, V. M.; Dombek, B. D.; George, E. K., Treatment of waters with multiple contaminants. United States Patent US20140021135 A1, Jan 23, 2014. Elimelech, Phillip (bb0055) 2011; 333 Arena, Jain, Lopano, Hakala, Bartholomew, Mauter, Siefert (bb0015) 2017 Shaffer, Arias Chavez, Ben-Sasson, Romero-Vargas Castrillon, Yip, Elimelech (bb0005) 2013; 47 Arena, Bartholomew, Mauter, Siefert (bb0165) February 13–17, 2017 Anastasio, Arena, Cole, McCutcheon (bb0145) 2015; 479 Achilli, Childress (bb0050) 2010; 261 Maynard (bb0135) 1997; 54 Kim, Hoek (bb0110) 2005; 186 Loeb, Titelman, Korngold, Freiman (bb0075) 1997; 129 She, Jin, Tang (bb0095) 2012; 401–402 Washburn (bb0100) 2003 Cohen, Probstein (bb0105) 1986; 114 Lakerveld, Kuhn, Kramer, Jansens, Grievink (bb0070) 2010; 65 McCutcheon, Elimelech (bb0080) 2006; 284 McCutcheon, McGinnis, Elimelech (bb0115) 2006; 278 Schwinge, Wiley, Fane (bb0125) 2004; 229 Scatchard, Hamer, Wood (bb0090) 1938; 60 Coday, Heil, Xu, Cath (bb0150) 2013; 47 Kaplan, Mamrosh, Salih, Dastgheib (bb0010) 2017; 404 Xie, Murdoch, Ladner (bb0130) 2014; 453 Oh (10.1016/j.desal.2017.04.012_bb0045) 2014; 465 Arena (10.1016/j.desal.2017.04.012_bb0015) 2017 McCutcheon (10.1016/j.desal.2017.04.012_bb0080) 2006; 284 Tiraferri (10.1016/j.desal.2017.04.012_bb0140) 2011; 367 Koren (10.1016/j.desal.2017.04.012_bb0155) 1994; 98 Shaffer (10.1016/j.desal.2017.04.012_bb0005) 2013; 47 Schwinge (10.1016/j.desal.2017.04.012_bb0125) 2004; 229 Thiel (10.1016/j.desal.2017.04.012_bb0030) 2015; 366 Fritzmann (10.1016/j.desal.2017.04.012_bb0035) 2007; 216 Anastasio (10.1016/j.desal.2017.04.012_bb0145) 2015; 479 10.1016/j.desal.2017.04.012_bb0060 Achilli (10.1016/j.desal.2017.04.012_bb0085) 2010; 364 She (10.1016/j.desal.2017.04.012_bb0095) 2012; 401–402 10.1016/j.desal.2017.04.012_bb0065 Kim (10.1016/j.desal.2017.04.012_bb0110) 2005; 186 Arena (10.1016/j.desal.2017.04.012_bb0165) 2017 Washburn (10.1016/j.desal.2017.04.012_bb0100) 2003 Kaplan (10.1016/j.desal.2017.04.012_bb0010) 2017; 404 Cath (10.1016/j.desal.2017.04.012_bb0040) 2006; 281 Cohen (10.1016/j.desal.2017.04.012_bb0105) 1986; 114 Al-Sahali (10.1016/j.desal.2017.04.012_bb0020) 2007; 214 Alkhudhiri (10.1016/j.desal.2017.04.012_bb0025) 2012; 287 Xu (10.1016/j.desal.2017.04.012_bb0160) 2009 McCutcheon (10.1016/j.desal.2017.04.012_bb0115) 2006; 278 Scatchard (10.1016/j.desal.2017.04.012_bb0090) 1938; 60 Elimelech (10.1016/j.desal.2017.04.012_bb0055) 2011; 333 Loeb (10.1016/j.desal.2017.04.012_bb0075) 1997; 129 Tan (10.1016/j.desal.2017.04.012_bb0120) 2008; 324 Lakerveld (10.1016/j.desal.2017.04.012_bb0070) 2010; 65 Achilli (10.1016/j.desal.2017.04.012_bb0050) 2010; 261 Coday (10.1016/j.desal.2017.04.012_bb0150) 2013; 47 Maynard (10.1016/j.desal.2017.04.012_bb0135) 1997; 54 Xie (10.1016/j.desal.2017.04.012_bb0130) 2014; 453 |
References_xml | – volume: 278 start-page: 114 year: 2006 ident: bb0115 article-title: Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance publication-title: J. Membr. Sci. contributor: fullname: Elimelech – volume: 366 start-page: 94 year: 2015 ident: bb0030 article-title: Energy consumption in desalinating produced water from shale oil and gas extraction publication-title: Desalination contributor: fullname: Lienhard – volume: 261 start-page: 205 year: 2010 ident: bb0050 article-title: Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation — review publication-title: Desalination contributor: fullname: Childress – year: 2017 ident: bb0015 article-title: Management and dewatering of brines extracted from geologic carbon storage sites publication-title: Int. J. Greenhouse Gas Control contributor: fullname: Siefert – volume: 114 start-page: 194 year: 1986 ident: bb0105 article-title: Colloidal fouling of reverse osmosis membranes publication-title: J. Colloid Interface Sci. contributor: fullname: Probstein – volume: 367 start-page: 340 year: 2011 ident: bb0140 article-title: Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure publication-title: J. Membr. Sci. contributor: fullname: Elimelech – volume: 98 start-page: 41 year: 1994 ident: bb0155 article-title: Mechanical vapour compression to treat oil field produced water publication-title: Desalination contributor: fullname: Nadav – volume: 216 start-page: 1 year: 2007 ident: bb0035 article-title: State-of-the-art of reverse osmosis desalination publication-title: Desalination contributor: fullname: Melin – volume: 47 start-page: 9569 year: 2013 ident: bb0005 article-title: Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions publication-title: Environ. Sci. Technol. contributor: fullname: Elimelech – volume: 54 start-page: 288 year: 1997 ident: bb0135 article-title: The Merck index: 12th edition 1996 publication-title: Occup. Environ. Med. contributor: fullname: Maynard – year: 2003 ident: bb0100 article-title: International Critical Tables of Numerical Data, Physics, Chemistry and Technology contributor: fullname: Washburn – volume: 465 start-page: 159 year: 2014 ident: bb0045 article-title: Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis publication-title: J. Membr. Sci. contributor: fullname: Hong – volume: 479 start-page: 240 year: 2015 ident: bb0145 article-title: Impact of temperature on power density in closed-loop pressure retarded osmosis for grid storage publication-title: J. Membr. Sci. contributor: fullname: McCutcheon – volume: 284 start-page: 237 year: 2006 ident: bb0080 article-title: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis publication-title: J. Membr. Sci. contributor: fullname: Elimelech – volume: 186 start-page: 111 year: 2005 ident: bb0110 article-title: Modeling concentration polarization in reverse osmosis processes publication-title: Desalination contributor: fullname: Hoek – volume: 281 start-page: 70 year: 2006 ident: bb0040 article-title: Forward osmosis: principles, applications, and recent developments publication-title: J. Membr. Sci. contributor: fullname: Elimelech – volume: 229 start-page: 53 year: 2004 ident: bb0125 article-title: Novel spacer design improves observed flux publication-title: J. Membr. Sci. contributor: fullname: Fane – volume: 453 start-page: 92 year: 2014 ident: bb0130 article-title: Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance publication-title: J. Membr. Sci. contributor: fullname: Ladner – volume: 214 start-page: 227 year: 2007 ident: bb0020 article-title: Developments in thermal desalination processes: design, energy, and costing aspects publication-title: Desalination contributor: fullname: Ettouney – volume: 324 start-page: 209 year: 2008 ident: bb0120 article-title: Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations publication-title: J. Membr. Sci. contributor: fullname: Ng – year: February 13–17, 2017 ident: bb0165 publication-title: Dewatering of high salinity brines by osmotically assisted reverse osmosis contributor: fullname: Siefert – volume: 47 start-page: 2386 year: 2013 ident: bb0150 article-title: Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes publication-title: Environ. Sci. Technol. contributor: fullname: Cath – volume: 401–402 start-page: 262 year: 2012 ident: bb0095 article-title: Osmotic power production from salinity gradient resource by pressure retarded osmosis: effects of operating conditions and reverse solute diffusion publication-title: J. Membr. Sci. contributor: fullname: Tang – volume: 60 start-page: 3061 year: 1938 ident: bb0090 article-title: Isotonic solutions. I. The chemical potential of water in aqueous solutions of sodium chloride, potassium chloride, sulfuric acid, sucrose, urea and glycerol at 25°1 publication-title: J. Am. Chem. Soc. contributor: fullname: Wood – volume: 404 start-page: 87 year: 2017 ident: bb0010 article-title: Assessment of desalination technologies for treatment of a highly saline brine from a potential CO publication-title: Desalination contributor: fullname: Dastgheib – volume: 129 start-page: 243 year: 1997 ident: bb0075 article-title: Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane publication-title: J. Membr. Sci. contributor: fullname: Freiman – volume: 364 start-page: 233 year: 2010 ident: bb0085 article-title: Selection of inorganic-based draw solutions for forward osmosis applications publication-title: J. Membr. Sci. contributor: fullname: Childress – volume: 333 start-page: 712 year: 2011 ident: bb0055 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science contributor: fullname: Phillip – volume: 65 start-page: 2689 year: 2010 ident: bb0070 article-title: Membrane assisted crystallization using reverse osmosis: influence of solubility characteristics on experimental application and energy saving potential publication-title: Chem. Eng. Sci. contributor: fullname: Grievink – volume: 287 start-page: 2 year: 2012 ident: bb0025 article-title: Membrane distillation: a comprehensive review publication-title: Desalination contributor: fullname: Hilal – year: 2009 ident: bb0160 article-title: An integrated framework for treatment and management of produced water: technical assessment of produced water treatment technologies publication-title: Department of Energy, Research Partnership to Secure Energy for America Project 07122–12 contributor: fullname: Drewes – volume: 333 start-page: 712 issue: 6043 year: 2011 ident: 10.1016/j.desal.2017.04.012_bb0055 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science doi: 10.1126/science.1200488 contributor: fullname: Elimelech – ident: 10.1016/j.desal.2017.04.012_bb0060 – volume: 129 start-page: 243 issue: 2 year: 1997 ident: 10.1016/j.desal.2017.04.012_bb0075 article-title: Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00354-7 contributor: fullname: Loeb – volume: 287 start-page: 2 year: 2012 ident: 10.1016/j.desal.2017.04.012_bb0025 article-title: Membrane distillation: a comprehensive review publication-title: Desalination doi: 10.1016/j.desal.2011.08.027 contributor: fullname: Alkhudhiri – year: 2009 ident: 10.1016/j.desal.2017.04.012_bb0160 article-title: An integrated framework for treatment and management of produced water: technical assessment of produced water treatment technologies contributor: fullname: Xu – volume: 404 start-page: 87 year: 2017 ident: 10.1016/j.desal.2017.04.012_bb0010 article-title: Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site publication-title: Desalination doi: 10.1016/j.desal.2016.11.018 contributor: fullname: Kaplan – volume: 453 start-page: 92 year: 2014 ident: 10.1016/j.desal.2017.04.012_bb0130 article-title: Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.068 contributor: fullname: Xie – volume: 364 start-page: 233 issue: 1–2 year: 2010 ident: 10.1016/j.desal.2017.04.012_bb0085 article-title: Selection of inorganic-based draw solutions for forward osmosis applications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.08.010 contributor: fullname: Achilli – volume: 281 start-page: 70 issue: 1–2 year: 2006 ident: 10.1016/j.desal.2017.04.012_bb0040 article-title: Forward osmosis: principles, applications, and recent developments publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.05.048 contributor: fullname: Cath – volume: 47 start-page: 9569 issue: 17 year: 2013 ident: 10.1016/j.desal.2017.04.012_bb0005 article-title: Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions publication-title: Environ. Sci. Technol. doi: 10.1021/es401966e contributor: fullname: Shaffer – volume: 324 start-page: 209 issue: 1–2 year: 2008 ident: 10.1016/j.desal.2017.04.012_bb0120 article-title: Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.07.020 contributor: fullname: Tan – volume: 479 start-page: 240 year: 2015 ident: 10.1016/j.desal.2017.04.012_bb0145 article-title: Impact of temperature on power density in closed-loop pressure retarded osmosis for grid storage publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.12.046 contributor: fullname: Anastasio – year: 2017 ident: 10.1016/j.desal.2017.04.012_bb0165 contributor: fullname: Arena – year: 2017 ident: 10.1016/j.desal.2017.04.012_bb0015 article-title: Management and dewatering of brines extracted from geologic carbon storage sites publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2017.03.032 contributor: fullname: Arena – volume: 261 start-page: 205 issue: 3 year: 2010 ident: 10.1016/j.desal.2017.04.012_bb0050 article-title: Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation — review publication-title: Desalination doi: 10.1016/j.desal.2010.06.017 contributor: fullname: Achilli – volume: 284 start-page: 237 issue: 1–2 year: 2006 ident: 10.1016/j.desal.2017.04.012_bb0080 article-title: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.07.049 contributor: fullname: McCutcheon – volume: 98 start-page: 41 issue: 1 year: 1994 ident: 10.1016/j.desal.2017.04.012_bb0155 article-title: Mechanical vapour compression to treat oil field produced water publication-title: Desalination doi: 10.1016/0011-9164(94)00130-8 contributor: fullname: Koren – volume: 367 start-page: 340 issue: 1–2 year: 2011 ident: 10.1016/j.desal.2017.04.012_bb0140 article-title: Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.014 contributor: fullname: Tiraferri – volume: 278 start-page: 114 issue: 1–2 year: 2006 ident: 10.1016/j.desal.2017.04.012_bb0115 article-title: Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.10.048 contributor: fullname: McCutcheon – volume: 465 start-page: 159 year: 2014 ident: 10.1016/j.desal.2017.04.012_bb0045 article-title: Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.04.008 contributor: fullname: Oh – volume: 60 start-page: 3061 issue: 12 year: 1938 ident: 10.1016/j.desal.2017.04.012_bb0090 article-title: Isotonic solutions. I. The chemical potential of water in aqueous solutions of sodium chloride, potassium chloride, sulfuric acid, sucrose, urea and glycerol at 25°1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01279a066 contributor: fullname: Scatchard – year: 2003 ident: 10.1016/j.desal.2017.04.012_bb0100 contributor: fullname: Washburn – volume: 214 start-page: 227 issue: 1 year: 2007 ident: 10.1016/j.desal.2017.04.012_bb0020 article-title: Developments in thermal desalination processes: design, energy, and costing aspects publication-title: Desalination doi: 10.1016/j.desal.2006.08.020 contributor: fullname: Al-Sahali – volume: 65 start-page: 2689 issue: 9 year: 2010 ident: 10.1016/j.desal.2017.04.012_bb0070 article-title: Membrane assisted crystallization using reverse osmosis: influence of solubility characteristics on experimental application and energy saving potential publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.01.002 contributor: fullname: Lakerveld – volume: 114 start-page: 194 issue: 1 year: 1986 ident: 10.1016/j.desal.2017.04.012_bb0105 article-title: Colloidal fouling of reverse osmosis membranes publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(86)90252-3 contributor: fullname: Cohen – volume: 186 start-page: 111 issue: 1 year: 2005 ident: 10.1016/j.desal.2017.04.012_bb0110 article-title: Modeling concentration polarization in reverse osmosis processes publication-title: Desalination doi: 10.1016/j.desal.2005.05.017 contributor: fullname: Kim – volume: 366 start-page: 94 year: 2015 ident: 10.1016/j.desal.2017.04.012_bb0030 article-title: Energy consumption in desalinating produced water from shale oil and gas extraction publication-title: Desalination doi: 10.1016/j.desal.2014.12.038 contributor: fullname: Thiel – ident: 10.1016/j.desal.2017.04.012_bb0065 – volume: 401–402 start-page: 262 year: 2012 ident: 10.1016/j.desal.2017.04.012_bb0095 article-title: Osmotic power production from salinity gradient resource by pressure retarded osmosis: effects of operating conditions and reverse solute diffusion publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.02.014 contributor: fullname: She – volume: 54 start-page: 288 issue: 4 year: 1997 ident: 10.1016/j.desal.2017.04.012_bb0135 article-title: The Merck index: 12th edition 1996 publication-title: Occup. Environ. Med. doi: 10.1136/oem.54.4.288 contributor: fullname: Maynard – volume: 47 start-page: 2386 issue: 5 year: 2013 ident: 10.1016/j.desal.2017.04.012_bb0150 article-title: Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes publication-title: Environ. Sci. Technol. doi: 10.1021/es304519p contributor: fullname: Coday – volume: 216 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.desal.2017.04.012_bb0035 article-title: State-of-the-art of reverse osmosis desalination publication-title: Desalination doi: 10.1016/j.desal.2006.12.009 contributor: fullname: Fritzmann – volume: 229 start-page: 53 issue: 1–2 year: 2004 ident: 10.1016/j.desal.2017.04.012_bb0125 article-title: Novel spacer design improves observed flux publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2003.09.015 contributor: fullname: Schwinge |
SSID | ssj0012933 |
Score | 2.6088307 |
Snippet | This work evaluates a novel osmotically assisted reverse osmosis (OARO) process for dewatering high salinity brines using readily available membranes and... Here, this work evaluates a novel osmotically assisted reverse osmosis (OARO) process for dewatering high salinity brines using readily available membranes and... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 3 |
SubjectTerms | ENGINEERING INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
Title | Osmotically assisted reverse osmosis for high salinity brine treatment |
URI | https://dx.doi.org/10.1016/j.desal.2017.04.012 https://www.osti.gov/servlets/purl/1479651 |
Volume | 421 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIpSqDwwElo7dh5jVVEVEGWhUrfITmypCLVVW4Yu_Hbu8qjKAANjHF0UfY7vvovvPgPcihTDsgpizwU682QW4prraePFxlkMt0hBHPUOv4yD0UQ-TdW0BoOqF4bKKkvfX_j03FuXI90Sze5yNqMeXxInC4hRcNpsqkMTw5GIGtDsPz6PxrvNBFGeKE9_A8mgEh_Ky7wyu9a0BcHDXPKUi98CVGOBa24v9gyP4agkjaxfvNcJ1Oz8FA73pATPYPiaH8iDiH9sGRJimr2MkT7Tam3ZAm_iEEOGykigmOHbzHAxb5mh7j-2Kzc_h8nw4W0w8sozErxUhtHGQz4WGZHJLI2UVc75NiSJLSkEpnZOaq2tL3PZPYNJsFVprJR1xhe-wTxUx_4FNOaLub0Elvai2KnASEuqZpxrxY3jaSit5pj2BC24q4BJloUURlLViL0nOY4J4Zj0ZII4tiCowEt-zGiCzvpvwzZBTUakY5tSwQ9acRnGgeJX_31sGw7oqugjvIbGZvVpb5BQbEwH6vdfvFN-Nt8US8lB |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYoDG2Hqk-V0oeHjo3Aie0kI0JFUB5dQGKz7MSWqCpAQAf-fe_yQHRoh66xHFmfc3ffxXefCXn2EwjLQsaekzr1eBqCzbW08WLjLIRboCAOe4dHY9mb8reZmFVIp-yFwbLKwvfnPj3z1sWTZoFmczWfY48vipNJZBQMD5uOSA3YQAzWWWv3B73x_jDBL26Ux7-BOKEUH8rKvFK70XgEwcJM8pT5vwWo6hJs7iD2dM_JWUEaaTtf1wWp2MUlOT2QErwi3ffsQh5A_HNHgRDj7qUU9ZnWG0uXMAiPKDBUigLFFFYzB2PeUYPdf3Rfbn5Npt3XSafnFXckeAkPo60HfCwyfsrTJBJWOBfYECW2uO9Daue41toGPJPdM5AEW5HEQlhnAj8wkIfqOLgh1cVyYW8JTVpR7IQ03KKqGWNaMONYEnKrGaQ9sk5eSmDUKpfCUGWN2IfKcFSIo2pxBTjWiSzBUz92VIGz_ntiA6HGSahjm2DBD8xiPIylYHf_fe0TOe5NRkM17I8HDXKCI3lP4T2pbtdf9gHIxdY8Fh_PN_dQyzU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osmotically+assisted+reverse+osmosis+for+high+salinity+brine+treatment&rft.jtitle=Desalination&rft.au=Bartholomew%2C+Timothy+V.&rft.au=Mey%2C+Laura&rft.au=Arena%2C+Jason+T.&rft.au=Siefert%2C+Nicholas+S.&rft.date=2017-11-01&rft.pub=Elsevier&rft.issn=0011-9164&rft.eissn=1873-4464&rft.volume=421&rft.issue=C&rft_id=info:doi/10.1016%2Fj.desal.2017.04.012&rft.externalDocID=1479651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-9164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-9164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-9164&client=summon |