Patterns of CAG repeat instability in the central nervous system and periphery in Huntington’s disease and in spinocerebellar ataxia type 1

Abstract The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quan...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 29; no. 15; pp. 2551 - 2567
Main Authors Mouro Pinto, Ricardo, Arning, Larissa, Giordano, James V, Razghandi, Pedram, Andrew, Marissa A, Gillis, Tammy, Correia, Kevin, Mysore, Jayalakshmi S, Grote Urtubey, Debora-M, Parwez, Constanze R, von Hein, Sarah M, Clark, H Brent, Nguyen, Huu Phuc, Förster, Eckart, Beller, Allison, Jayadaev, Suman, Keene, C Dirk, Bird, Thomas D, Lucente, Diane, Vonsattel, Jean-Paul, Orr, Harry, Saft, Carsten, Petrasch-Parwez, Elisabeth, Wheeler, Vanessa C
Format Journal Article
LanguageEnglish
Published England Oxford University Press 29.08.2020
Online AccessGet full text

Cover

Loading…
Abstract Abstract The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
AbstractList The expanded HTT CAG repeat causing Huntington's disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.The expanded HTT CAG repeat causing Huntington's disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
Abstract The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans -factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
Author Lucente, Diane
Beller, Allison
Keene, C Dirk
Orr, Harry
Razghandi, Pedram
Arning, Larissa
Wheeler, Vanessa C
Jayadaev, Suman
Förster, Eckart
Mouro Pinto, Ricardo
Saft, Carsten
Mysore, Jayalakshmi S
Gillis, Tammy
Nguyen, Huu Phuc
Vonsattel, Jean-Paul
Correia, Kevin
von Hein, Sarah M
Grote Urtubey, Debora-M
Parwez, Constanze R
Andrew, Marissa A
Clark, H Brent
Bird, Thomas D
Giordano, James V
Petrasch-Parwez, Elisabeth
AuthorAffiliation 9 Department of Medicine , University of Washington, Seattle, Washington 98195, USA
11 Department of Pathology and Cell Biology , Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
5 Department of Neurology , Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
7 Department of Pathology , University of Washington, Seattle, Washington 98195, USA
6 Department of Laboratory Medicine and Pathology , Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
8 Department of Neurology , University of Washington, Seattle, Washington 98195, USA
10 Geriatrics Research Education and Clinical Center , VA Puget Sound Medical Center, Seattle, WA 98108, USA
4 Department of Neuroanatomy and Molecular Brain Research , Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
3 Department of Human Genetics , Ruhr-University Bochum, Bochum 44780, Germany
2 Department of N
AuthorAffiliation_xml – name: 3 Department of Human Genetics , Ruhr-University Bochum, Bochum 44780, Germany
– name: 9 Department of Medicine , University of Washington, Seattle, Washington 98195, USA
– name: 7 Department of Pathology , University of Washington, Seattle, Washington 98195, USA
– name: 4 Department of Neuroanatomy and Molecular Brain Research , Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
– name: 8 Department of Neurology , University of Washington, Seattle, Washington 98195, USA
– name: 1 Molecular Neurogenetics Unit , Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
– name: 6 Department of Laboratory Medicine and Pathology , Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
– name: 11 Department of Pathology and Cell Biology , Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
– name: 2 Department of Neurology , Harvard Medical School, Boston, MA 02115, USA
– name: 10 Geriatrics Research Education and Clinical Center , VA Puget Sound Medical Center, Seattle, WA 98108, USA
– name: 5 Department of Neurology , Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
Author_xml – sequence: 1
  givenname: Ricardo
  surname: Mouro Pinto
  fullname: Mouro Pinto, Ricardo
  email: RMOUROPINTO@mgh.harvard.edu
  organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 2
  givenname: Larissa
  surname: Arning
  fullname: Arning, Larissa
  email: Larissa.Arning@ruhr-uni-bochum.de
  organization: Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
– sequence: 3
  givenname: James V
  surname: Giordano
  fullname: Giordano, James V
  email: jvgiorda@eckerd.edu
  organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 4
  givenname: Pedram
  surname: Razghandi
  fullname: Razghandi, Pedram
  email: razghandi.pedram@gmail.com
  organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 5
  givenname: Marissa A
  surname: Andrew
  fullname: Andrew, Marissa A
  email: MANDREW@PARTNERS.ORG
  organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 6
  givenname: Tammy
  surname: Gillis
  fullname: Gillis, Tammy
  email: gillis@helix.mgh.harvard.edu
  organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 7
  givenname: Kevin
  surname: Correia
  fullname: Correia, Kevin
  email: Kevin_Correia@DFCI.HARVARD.EDU
  organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 8
  givenname: Jayalakshmi S
  surname: Mysore
  fullname: Mysore, Jayalakshmi S
  email: SRINIDHI@HELIX.MGH.HARVARD.EDU
  organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 9
  givenname: Debora-M
  surname: Grote Urtubey
  fullname: Grote Urtubey, Debora-M
  email: Debora-Michele.GroteUrtubey@ruhr-uni-bochum.de
  organization: Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
– sequence: 10
  givenname: Constanze R
  surname: Parwez
  fullname: Parwez, Constanze R
  email: Constanze.Parwez@hhu.de
  organization: Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
– sequence: 11
  givenname: Sarah M
  surname: von Hein
  fullname: von Hein, Sarah M
  email: s.von-hein@klinikum-bochum.de
  organization: Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
– sequence: 12
  givenname: H Brent
  surname: Clark
  fullname: Clark, H Brent
  email: clark002@umn.edu
  organization: Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
– sequence: 13
  givenname: Huu Phuc
  surname: Nguyen
  fullname: Nguyen, Huu Phuc
  email: huu.nguyen-r7w@rub.de
  organization: Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
– sequence: 14
  givenname: Eckart
  surname: Förster
  fullname: Förster, Eckart
  email: Eckart.Foerster@rub.de
  organization: Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
– sequence: 15
  givenname: Allison
  surname: Beller
  fullname: Beller, Allison
  email: allisonbeller@gmail.com
  organization: Department of Pathology, University of Washington, Seattle, Washington 98195, USA
– sequence: 16
  givenname: Suman
  surname: Jayadaev
  fullname: Jayadaev, Suman
  email: sumie@uw.edu
  organization: Department of Neurology, University of Washington, Seattle, Washington 98195, USA
– sequence: 17
  givenname: C Dirk
  surname: Keene
  fullname: Keene, C Dirk
  email: cdkeene@uw.edu
  organization: Department of Pathology, University of Washington, Seattle, Washington 98195, USA
– sequence: 18
  givenname: Thomas D
  surname: Bird
  fullname: Bird, Thomas D
  email: tomnroz@uw.edu
  organization: Department of Neurology, University of Washington, Seattle, Washington 98195, USA
– sequence: 19
  givenname: Diane
  surname: Lucente
  fullname: Lucente, Diane
  email: dlucente@partners.org
  organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 20
  givenname: Jean-Paul
  surname: Vonsattel
  fullname: Vonsattel, Jean-Paul
  email: jgv2001@cumc.columbia.edu
  organization: Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
– sequence: 21
  givenname: Harry
  surname: Orr
  fullname: Orr, Harry
  organization: Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
– sequence: 22
  givenname: Carsten
  surname: Saft
  fullname: Saft, Carsten
  email: Carsten.Saft@ruhr-uni-bochum.de
  organization: Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
– sequence: 23
  givenname: Elisabeth
  surname: Petrasch-Parwez
  fullname: Petrasch-Parwez, Elisabeth
  email: elisabeth.petrasch-parwez@rub.de
  organization: Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
– sequence: 24
  givenname: Vanessa C
  surname: Wheeler
  fullname: Wheeler, Vanessa C
  email: Wheeler@helix.mgh.harvard.edu
  organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32761094$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAURS1URKeFFXvkFUJCoXbsOMkGqRpBi1QJFrC2Xpw3M0aJHWyn6uz4AT6gv9cvwdOZIkCIjW3pnXevru8JOXLeISHPOXvDWSvONuP6rO8BuGgfkQWXihUla8QRWbBWyUK1TB2Tkxi_MsaVFPUTcizKWuVduSA_PkFKGFykfkWX5xc04ISQqHUxQWcHm7b5TdMGqUGXAgzUYbj2c6RxGxOOFFxPJwx22mC4Zy9nl6xbJ-_uvt9G2tuIEPGey9M4WecNBuxwGCBQSHBjgabthJQ_JY9XMER8drhPyZf37z4vL4urjxcfludXhZF1k4oqZ5RdZ1BJQAHYVcCb1rCq7kvF2hXKqip7UJ1UVdeAkqpphMknQFdxYOKUvN3rTnM3Yn9IpqdgRwhb7cHqPyfObvTaX-ta1rxiVRZ4dRAI_tuMMenRRrNL5DD_jS6l4A1XvNmhL373-mXy0EEG-B4wwccYcKWNTZCs31nbQXOmdz3r3LM-9Jx3Xv-18yD7b_rlnvbz9F_wJ73dvHo
CitedBy_id crossref_primary_10_1093_nar_gkab899
crossref_primary_10_1016_j_conb_2021_07_001
crossref_primary_10_1016_j_pneurobio_2023_102484
crossref_primary_10_3233_JHD_231516
crossref_primary_10_3390_genes12071071
crossref_primary_10_3390_biology14020129
crossref_primary_10_3390_genes15060807
crossref_primary_10_1093_braincomms_fcad214
crossref_primary_10_1111_cge_14472
crossref_primary_10_7554_eLife_55911
crossref_primary_10_1038_s41467_024_47485_0
crossref_primary_10_1038_s41588_024_02054_5
crossref_primary_10_1038_s41598_022_14183_0
crossref_primary_10_1038_s41598_024_54277_5
crossref_primary_10_1016_j_parkreldis_2022_08_027
crossref_primary_10_1172_jci_insight_176057
crossref_primary_10_1007_s00439_024_02644_7
crossref_primary_10_1093_hmg_ddab129
crossref_primary_10_3233_JHD_200445
crossref_primary_10_3390_ijms241613021
crossref_primary_10_1016_j_neuroimage_2021_118008
crossref_primary_10_1016_S1474_4422_22_00121_1
crossref_primary_10_1038_s41467_024_46554_8
crossref_primary_10_3233_JHD_231523
crossref_primary_10_1093_hmg_ddab170
crossref_primary_10_1002_mds_29035
crossref_primary_10_1007_s10815_022_02594_x
crossref_primary_10_1093_brain_awae007
crossref_primary_10_3390_biomedicines10081863
crossref_primary_10_1016_j_celrep_2021_110078
crossref_primary_10_1055_a_2042_2338
crossref_primary_10_1093_nar_gkab152
crossref_primary_10_1016_j_ebiom_2024_105328
crossref_primary_10_1016_j_neuron_2023_09_036
crossref_primary_10_1073_pnas_2302103120
crossref_primary_10_1093_brain_awad275
crossref_primary_10_1159_000526260
crossref_primary_10_1038_s41467_024_50877_x
crossref_primary_10_32604_biocell_2024_053794
crossref_primary_10_1093_procel_pwae042
crossref_primary_10_1111_cge_13888
crossref_primary_10_1016_j_neuron_2020_11_005
crossref_primary_10_3233_JHD_200433
crossref_primary_10_7759_cureus_47526
crossref_primary_10_1002_acn3_51370
crossref_primary_10_1093_nar_gkae1155
crossref_primary_10_1016_j_cell_2023_09_008
crossref_primary_10_1126_scitranslmed_adn4600
crossref_primary_10_1093_brain_awae312
crossref_primary_10_3233_JHD_200438
crossref_primary_10_1007_s00115_024_01655_z
crossref_primary_10_7554_eLife_89782
crossref_primary_10_1038_s41598_024_52667_3
crossref_primary_10_1016_j_dnarep_2025_103817
crossref_primary_10_1093_hmg_ddae137
crossref_primary_10_3389_fnagi_2022_750629
crossref_primary_10_1038_s41588_024_01653_6
crossref_primary_10_1186_s40478_022_01364_1
crossref_primary_10_1186_s40478_022_01349_0
crossref_primary_10_1016_j_ajhg_2024_03_015
crossref_primary_10_1242_dmm_049453
crossref_primary_10_1016_j_nbd_2023_106376
crossref_primary_10_1007_s00401_021_02269_4
crossref_primary_10_3233_JHD_200423
crossref_primary_10_7554_eLife_89782_2
crossref_primary_10_1093_nar_gkae1204
crossref_primary_10_1016_S1474_4422_22_00189_2
crossref_primary_10_7554_eLife_64674
crossref_primary_10_1093_nar_gkae368
crossref_primary_10_3390_biomedicines11123336
crossref_primary_10_1089_genbio_2021_0012
crossref_primary_10_1093_braincomms_fcae016
crossref_primary_10_3233_JHD_200427
crossref_primary_10_1093_braincomms_fcac279
crossref_primary_10_3233_JHD_200426
crossref_primary_10_1016_S1474_4422_20_30343_4
crossref_primary_10_1093_brain_awae266
crossref_primary_10_3233_JHD_200429
crossref_primary_10_1007_s00415_023_11572_x
Cites_doi 10.1034/j.1399-0004.2003.00108.x
10.1073/pnas.0800048105
10.1016/j.nicl.2018.03.027
10.1212/WNL.0b013e318282514e
10.1093/hmg/4.4.663
10.1093/hmg/ddr421
10.1093/hmg/ddq427
10.3233/JHD-180339
10.1093/hmg/ddm054
10.1093/hmg/ddh186
10.1371/journal.pgen.1003930
10.1007/7854_2014_354
10.1136/jmg.30.12.982
10.1093/hmg/ddg352
10.3233/JHD-160203
10.1212/WNL.45.1.24
10.1016/j.neuron.2015.10.038
10.3174/ajnr.A4760
10.1136/jmg.2007.050930
10.1111/bpa.12426
10.1002/ana.25413
10.1016/j.ebiom.2019.09.020
10.1038/ng0795-344
10.1093/hmg/2.10.1713
10.1007/s00401-005-1092-7
10.1073/pnas.1018748108
10.1016/j.cell.2015.07.003
10.1016/S1474-4422(18)30294-1
10.1093/hmg/4.9.1519
10.1016/S0304-3940(00)01029-6
10.1093/hmg/9.17.2539
10.1016/j.cell.2019.06.036
10.1016/0896-6273(95)90106-X
10.1006/mcpr.1993.1034
10.1038/ng0494-409
10.1007/s004390050513
10.3233/JHD-140092
10.1002/hbm.23923
10.1016/S1474-4422(17)30161-8
10.1111/bpa.12237
10.1097/00005072-198511000-00003
10.1007/s10792-018-0857-7
10.1002/mrdd.1022
10.1002/(SICI)1098-1004(1998)11:1<23::AID-HUMU4>3.0.CO;2-M
10.3233/JHD-170261
10.1016/S1474-4422(09)70178-4
10.1016/S1474-4422(15)00177-5
10.1212/WNL.0b013e318249f683
10.1016/j.nbd.2015.01.004
10.1371/journal.pgen.1003280
10.1371/journal.pcbi.0030235
10.1016/j.nbd.2008.09.014
10.1080/00207454.2018.1489807
10.1186/1752-0509-4-29
10.1038/ng0793-221
10.1093/hmg/ddx006
10.1007/s11682-019-00237-x
10.1371/journal.pone.0028260
10.1002/hbm.24322
10.1093/hmg/ddt551
10.1002/ana.24656
10.1093/hmg/2.12.2063
10.1093/hmg/ddp242
10.1006/geno.1994.1061
10.1016/B978-0-444-63639-3.00008-6
10.1371/journal.pone.0023647
10.1002/mds.25862
10.1101/cshperspect.a024240
10.1371/journal.pone.0044273
10.1016/0092-8674(93)90585-E
10.1093/hmg/ddx286
10.1016/j.pneurobio.2013.01.001
10.1007/BF00225192
10.3389/fnins.2018.00805
10.1073/pnas.1331390100
10.1016/j.dnarep.2007.01.002
10.1093/hmg/8.1.115
10.1093/brain/awz115
10.1002/humu.23580
10.1007/s00109-013-1016-2
10.1093/hmg/ddy375
10.1371/4f8606b742ef3
10.1007/s00415-015-7869-2
10.1016/j.neuron.2018.02.013
10.1038/ng0893-387
10.1136/jnnp.38.10.1000
10.1007/s004390000400
10.1371/journal.pone.0219446
10.1038/ng0297-197
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/hmg/ddaa139
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2083
EndPage 2567
ExternalDocumentID PMC7471505
32761094
10_1093_hmg_ddaa139
10.1093/hmg/ddaa139
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P50 AG005136
– fundername: NINDS NIH HHS
  grantid: R01 NS049206
– fundername: NIA NIH HHS
  grantid: P30 AG066509
– fundername: ;
  grantid: NS049206
GroupedDBID ---
-DZ
-E4
.2P
.I3
.XZ
.ZR
0R~
18M
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBS
EE~
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
SJN
TEORI
TJX
TLC
TMA
TOX
TR2
W8F
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c478t-54604bbce64ae3aeb5a189c057d2609fe4552da6b465b8a646883c468aab51a03
IEDL.DBID TOX
ISSN 0964-6906
1460-2083
IngestDate Thu Aug 21 18:28:44 EDT 2025
Fri Jul 11 02:50:00 EDT 2025
Thu Apr 03 06:57:24 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Tue Jul 01 03:32:28 EDT 2025
Fri May 23 09:42:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-54604bbce64ae3aeb5a189c057d2609fe4552da6b465b8a646883c468aab51a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Ricardo Mouro Pinto, Larissa Arning, James V. Giordano contribution.
OpenAccessLink https://dx.doi.org/10.1093/hmg/ddaa139
PMID 32761094
PQID 2431816185
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7471505
proquest_miscellaneous_2431816185
pubmed_primary_32761094
crossref_citationtrail_10_1093_hmg_ddaa139
crossref_primary_10_1093_hmg_ddaa139
oup_primary_10_1093_hmg_ddaa139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-29
PublicationDateYYYYMMDD 2020-08-29
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Human molecular genetics
PublicationTitleAlternate Hum Mol Genet
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Lee (2020090402223026900_ref29) 2012; 78
Hensman Moss (2020090402223026900_ref36) 2017; 16
Telenius (2020090402223026900_ref8) 1994; 6
Nestor (2020090402223026900_ref84) 2011; 6
Martinez-Horta (2020090402223026900_ref49) 2020
Ueno (2020090402223026900_ref65) 1995; 4
Gatto (2020090402223026900_ref53) 2018; 128
Pinto (2020090402223026900_ref33) 2013; 9
Duyao (2020090402223026900_ref7) 1993; 4
Kovalenko (2020090402223026900_ref24) 2012; 7
Lee (2020090402223026900_ref23) 2011; 6
Zuhlke (2020090402223026900_ref10) 1993; 2
Hoffmann (2020090402223026900_ref59) 2014; 29
Huntington's Disease Collaborative Research Group (2020090402223026900_ref6) 1993; 72
Kennedy (2020090402223026900_ref16) 2000; 9
Wieben (2020090402223026900_ref70) 2019; 14
Rousseaux (2020090402223026900_ref75) 2018; 97
Jimenez-Sanchez (2020090402223026900_ref72) 2017; 7
Wheeler (2020090402223026900_ref12) 2007; 44
Kersten (2020090402223026900_ref52) 2015; 262
Eddy (2020090402223026900_ref50) 2018; 39
Gulmez Sevim (2020090402223026900_ref54) 2019; 39
Ament (2020090402223026900_ref27) 2017; 26
Kaplan (2020090402223026900_ref30) 2007; 3
Klaes (2020090402223026900_ref80) 2016; 37
Carroll (2020090402223026900_ref83) 2015; 14
Zühlke (2020090402223026900_ref39) 1997; 100
Latimer (2020090402223026900_ref62) 2017; 6
Singh-Bains (2020090402223026900_ref81) 2019; 85
Rowley (2020090402223026900_ref51) 2018; 12
Lee (2020090402223026900_ref35) 2017; 26
Banez-Coronel (2020090402223026900_ref73) 2015; 88
Wheeler (2020090402223026900_ref15) 1999; 8
Genetic Modifiers of Huntington's Disease (GeM_HD) Consortium (2020090402223026900_ref28) 2019; 178
Cronin (2020090402223026900_ref4) 2019; 8
Swami (2020090402223026900_ref21) 2009; 18
Aronin (2020090402223026900_ref63) 1995; 15
Mason (2020090402223026900_ref71) 2014; 23
Dragileva (2020090402223026900_ref31) 2009; 33
Takano (2020090402223026900_ref42) 1996; 58
Hoijer (2020090402223026900_ref69) 2018; 39
Gonitel (2020090402223026900_ref20) 2008; 105
Warner (2020090402223026900_ref86) 1993; 7
Tome (2020090402223026900_ref32) 2013; 9
Flower (2020090402223026900_ref37) 2019; 142
Ahveninen (2020090402223026900_ref47) 2018; 18
Hubert (2020090402223026900_ref85) 2011; 20
Cancel (2020090402223026900_ref41) 1998; 11
Chiu (2020090402223026900_ref60) 1975; 38
Kennedy (2020090402223026900_ref17) 2003; 12
Nana (2020090402223026900_ref48) 2014; 3
Kahlem (2020090402223026900_ref64) 2000; 286
Vonsattel (2020090402223026900_ref1) 1985; 44
Orr (2020090402223026900_ref90) 1993; 4
Shelbourne (2020090402223026900_ref19) 2007; 6
Leeflang (2020090402223026900_ref11) 1995; 4
Rubinsztein (2020090402223026900_ref89) 1993; 2
Veitch (2020090402223026900_ref18) 2007; 6
Lee (2020090402223026900_ref22) 2010; 4
Jafar-Nejad (2020090402223026900_ref76) 2011; 108
Stuwe (2020090402223026900_ref58) 2013; 80
Chong (2020090402223026900_ref38) 1995; 10
Bettencourt (2020090402223026900_ref79) 2016; 79
Larson (2020090402223026900_ref25) 2015; 76
Petrasch-Parwez (2020090402223026900_ref55) 2005; 110
Fusilli (2020090402223026900_ref3) 2018; 17
Geraerts (2020090402223026900_ref26) 2016; 5
Gomes-Pereira (2020090402223026900_ref78) 2004; 13
Mangiarini (2020090402223026900_ref14) 1997; 15
Waldvogel (2020090402223026900_ref61) 2015; 22
Rüb (2020090402223026900_ref46) 2016; 26
De Rooij (2020090402223026900_ref13) 1995; 95
Nance (2020090402223026900_ref2) 2001; 7
Rüb (2020090402223026900_ref56) 2015; 25
Burg (2020090402223026900_ref82) 2009; 8
Coppen (2020090402223026900_ref57) 2018; 39
Quarrell (2020090402223026900_ref5) 2012; 4
Rub (2020090402223026900_ref44) 2013; 104
Milunsky (2020090402223026900_ref87) 2003; 64
Goold (2020090402223026900_ref77) 2019; 28
MacDonald (2020090402223026900_ref9) 1993; 30
Watanabe (2020090402223026900_ref40) 2000; 107
Ramirez (2020090402223026900_ref45) 2018; 150
Ciosi (2020090402223026900_ref68) 2019; 48
Riess (2020090402223026900_ref88) 1994; 19
Genis (2020090402223026900_ref43) 1995; 45
Genetic Modifiers of Huntington's Disease (GeM_HD) Consortium (2020090402223026900_ref34) 2015; 162
Lopez Castel (2020090402223026900_ref66) 2011; 20
Yoon (2020090402223026900_ref67) 2003; 100
Fiszer (2020090402223026900_ref74) 2013; 91
References_xml – volume: 64
  start-page: 70
  year: 2003
  ident: 2020090402223026900_ref87
  article-title: XL PCR for the detection of large trinucleotide expansions in juvenile Huntington’s disease
  publication-title: Clin. Genet.
  doi: 10.1034/j.1399-0004.2003.00108.x
– volume: 105
  start-page: 3467
  year: 2008
  ident: 2020090402223026900_ref20
  article-title: DNA instability in postmitotic neurons
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0800048105
– volume: 18
  start-page: 881
  year: 2018
  ident: 2020090402223026900_ref47
  article-title: Reduced amygdala volumes are related to motor and cognitive signs in Huntington's disease: the IMAGE-HD study
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.03.027
– volume: 80
  start-page: 743
  year: 2013
  ident: 2020090402223026900_ref58
  article-title: Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318282514e
– volume: 4
  start-page: 663
  year: 1995
  ident: 2020090402223026900_ref65
  article-title: Somatic mosaicism of CAG repeat in dentatorubral-pallidoluysian atrophy (DRPLA)
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/4.4.663
– volume: 20
  start-page: 4822
  year: 2011
  ident: 2020090402223026900_ref85
  article-title: Xpa deficiency reduces CAG Trinucleotide repeat instability in neuronal tissues in a SCA1 mouse model
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddr421
– volume: 20
  start-page: 1
  year: 2011
  ident: 2020090402223026900_ref66
  article-title: Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq427
– volume: 8
  start-page: 171
  year: 2019
  ident: 2020090402223026900_ref4
  article-title: Clinical presentation and features of juvenile-onset Huntington’s disease: a systematic review
  publication-title: J. Huntington’s Dis.
  doi: 10.3233/JHD-180339
– volume: 6
  start-page: 1133
  year: 2007
  ident: 2020090402223026900_ref19
  article-title: Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm054
– volume: 13
  start-page: 1815
  year: 2004
  ident: 2020090402223026900_ref78
  article-title: Pms2 is a genetic enhancer of trinucleotide CAG.CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddh186
– volume: 9
  start-page: e1003930
  year: 2013
  ident: 2020090402223026900_ref33
  article-title: Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003930
– volume: 22
  start-page: 33
  year: 2015
  ident: 2020090402223026900_ref61
  article-title: The neuropathology of Huntington's disease
  publication-title: Curr. Top. Behav. Neurosci.
  doi: 10.1007/7854_2014_354
– volume: 30
  start-page: 982
  year: 1993
  ident: 2020090402223026900_ref9
  article-title: Gametic but not somatic instability of CAG repeat length in Huntington's disease
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.30.12.982
– volume: 58
  start-page: 1212
  year: 1996
  ident: 2020090402223026900_ref42
  article-title: Somatic mosaicism of expanded CAG repeats in brains of patients with dentatorubral-pallidoluysian atrophy: cellular population-dependent dynamics of mitotic instability
  publication-title: Am. J. Hum. Genet.
– volume: 12
  start-page: 3359
  year: 2003
  ident: 2020090402223026900_ref17
  article-title: Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddg352
– volume: 5
  start-page: 297
  year: 2016
  ident: 2020090402223026900_ref26
  article-title: Comparison of Huntington's disease CAG repeat length stability in human motor cortex and cingulate Gyrus
  publication-title: J. Huntington's Dis.
  doi: 10.3233/JHD-160203
– volume: 45
  start-page: 24
  year: 1995
  ident: 2020090402223026900_ref43
  article-title: Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms
  publication-title: Neurology
  doi: 10.1212/WNL.45.1.24
– volume: 88
  start-page: 667
  year: 2015
  ident: 2020090402223026900_ref73
  article-title: RAN translation in Huntington disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.10.038
– volume: 37
  start-page: 1405
  year: 2016
  ident: 2020090402223026900_ref80
  article-title: MR imaging in Spinocerebellar ataxias: a systematic review
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4760
– volume: 44
  start-page: 695
  year: 2007
  ident: 2020090402223026900_ref12
  article-title: Factors associated with HD CAG repeat instability in Huntington's disease
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.2007.050930
– volume: 26
  start-page: 726
  year: 2016
  ident: 2020090402223026900_ref46
  article-title: Huntington's disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain
  publication-title: Brain Pathol.
  doi: 10.1111/bpa.12426
– volume: 85
  start-page: 396
  year: 2019
  ident: 2020090402223026900_ref81
  article-title: Cerebellar degeneration correlates with motor symptoms in Huntington disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25413
– volume: 48
  start-page: 568
  year: 2019
  ident: 2020090402223026900_ref68
  article-title: A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.09.020
– volume: 10
  start-page: 344
  year: 1995
  ident: 2020090402223026900_ref38
  article-title: Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1
  publication-title: Nat. Genet.
  doi: 10.1038/ng0795-344
– volume: 2
  start-page: 1713
  year: 1993
  ident: 2020090402223026900_ref89
  article-title: Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Huntington's disease and CAG repeat number
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/2.10.1713
– volume: 110
  start-page: 523
  year: 2005
  ident: 2020090402223026900_ref55
  article-title: Is the retina affected in Huntington disease?
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-005-1092-7
– volume: 108
  start-page: 2142
  year: 2011
  ident: 2020090402223026900_ref76
  article-title: Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1018748108
– volume: 162
  start-page: 516
  year: 2015
  ident: 2020090402223026900_ref34
  article-title: Identification of genetic factors that modify clinical onset of Huntington's disease
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.003
– volume: 17
  start-page: 986
  year: 2018
  ident: 2020090402223026900_ref3
  article-title: Biological and clinical manifestations of juvenile Huntington's disease: a retrospective analysis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30294-1
– volume: 4
  start-page: 1519
  year: 1995
  ident: 2020090402223026900_ref11
  article-title: Single sperm analysis of the trinucleotide repeats in the Huntington's disease gene: quantification of the mutation frequency spectrum
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/4.9.1519
– volume: 286
  start-page: 203
  year: 2000
  ident: 2020090402223026900_ref64
  article-title: The expanded CAG repeat associated with juvenile Huntington disease shows a common origin of most or all neurons and glia in human cerebrum
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(00)01029-6
– volume: 9
  start-page: 2539
  year: 2000
  ident: 2020090402223026900_ref16
  article-title: Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington's disease?
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/9.17.2539
– volume: 178
  start-page: 887
  year: 2019
  ident: 2020090402223026900_ref28
  article-title: CAG repeat not Polyglutamine length determines timing of Huntington's disease onset
  publication-title: Cell
  doi: 10.1016/j.cell.2019.06.036
– volume: 15
  start-page: 1193
  year: 1995
  ident: 2020090402223026900_ref63
  article-title: CAG expansion affects the expression of mutant Huntingtin in the Huntington's disease brain
  publication-title: Neuron
  doi: 10.1016/0896-6273(95)90106-X
– volume: 7
  start-page: 235
  year: 1993
  ident: 2020090402223026900_ref86
  article-title: A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes
  publication-title: Mol. Cell Probes
  doi: 10.1006/mcpr.1993.1034
– volume: 6
  start-page: 409
  year: 1994
  ident: 2020090402223026900_ref8
  article-title: Somatic and gonadal mosaicism of the Huntington's disease gene CAG repeat in brain and sperm. [erratum appears in Nat Genet 1994 May;7(1):113]
  publication-title: Nat. Genet.
  doi: 10.1038/ng0494-409
– volume: 100
  start-page: 339
  year: 1997
  ident: 2020090402223026900_ref39
  article-title: CAG repeat analyses in frozen and formalin-fixed tissues following primer extension preamplification for evaluation of mitotic instability of expanded SCA1 alleles
  publication-title: Hum. Genet.
  doi: 10.1007/s004390050513
– volume: 3
  start-page: 45
  year: 2014
  ident: 2020090402223026900_ref48
  article-title: Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington’s disease
  publication-title: J. Huntington’s Dis.
  doi: 10.3233/JHD-140092
– volume: 39
  start-page: 1354
  year: 2018
  ident: 2020090402223026900_ref50
  article-title: Through your eyes or mine? The neural correlates of mental state recognition in Huntington's disease
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23923
– volume: 16
  start-page: 701
  year: 2017
  ident: 2020090402223026900_ref36
  article-title: Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(17)30161-8
– volume: 25
  start-page: 701
  year: 2015
  ident: 2020090402223026900_ref56
  article-title: Huntington's disease (HD): neurodegeneration of Brodmann's primary visual area 17 (BA17)
  publication-title: Brain Pathol.
  doi: 10.1111/bpa.12237
– volume: 44
  start-page: 559
  year: 1985
  ident: 2020090402223026900_ref1
  article-title: Neuropathological classification of Huntington's disease
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/00005072-198511000-00003
– volume: 39
  start-page: 611
  year: 2019
  ident: 2020090402223026900_ref54
  article-title: Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker
  publication-title: Int. Ophthalmol.
  doi: 10.1007/s10792-018-0857-7
– volume: 7
  start-page: 153
  year: 2001
  ident: 2020090402223026900_ref2
  article-title: Juvenile onset Huntington's disease-clinical and research perspectives
  publication-title: Ment. Retard. Dev. Disabil. Res. Rev.
  doi: 10.1002/mrdd.1022
– volume: 11
  start-page: 23
  year: 1998
  ident: 2020090402223026900_ref41
  article-title: Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type 3/Machado-Joseph disease
  publication-title: Hum. Mut.
  doi: 10.1002/(SICI)1098-1004(1998)11:1<23::AID-HUMU4>3.0.CO;2-M
– volume: 6
  start-page: 337
  year: 2017
  ident: 2020090402223026900_ref62
  article-title: Neuropathological comparison of adult onset and juvenile Huntington's disease with cerebellar atrophy: a report of a father and son
  publication-title: J. Huntington's Dis.
  doi: 10.3233/JHD-170261
– volume: 8
  start-page: 765
  year: 2009
  ident: 2020090402223026900_ref82
  article-title: Beyond the brain: widespread pathology in Huntington's disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70178-4
– volume: 14
  start-page: 1135
  year: 2015
  ident: 2020090402223026900_ref83
  article-title: Treating the whole body in Huntington’s disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)00177-5
– volume: 78
  start-page: 690
  year: 2012
  ident: 2020090402223026900_ref29
  article-title: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318249f683
– volume: 76
  start-page: 98
  year: 2015
  ident: 2020090402223026900_ref25
  article-title: Age-, tissue- and length-dependent bidirectional somatic CAG*CTG repeat instability in an allelic series of R6/2 Huntington disease mice
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2015.01.004
– volume: 9
  start-page: e1003280
  year: 2013
  ident: 2020090402223026900_ref32
  article-title: MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003280
– volume: 3
  start-page: e235
  year: 2007
  ident: 2020090402223026900_ref30
  article-title: A universal mechanism ties genotype to phenotype in trinucleotide diseases
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030235
– volume: 33
  start-page: 37
  year: 2009
  ident: 2020090402223026900_ref31
  article-title: Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2008.09.014
– volume: 128
  start-page: 1157
  year: 2018
  ident: 2020090402223026900_ref53
  article-title: Optical coherence tomography (OCT) study in Argentinean Huntington's disease patients
  publication-title: Int. J. Neurosci.
  doi: 10.1080/00207454.2018.1489807
– volume: 4
  start-page: 29
  year: 2010
  ident: 2020090402223026900_ref22
  article-title: A novel approach to investigate tissue-specific trinucleotide repeat instability
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-4-29
– volume: 4
  start-page: 221
  year: 1993
  ident: 2020090402223026900_ref90
  article-title: Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1
  publication-title: Nat. Genet.
  doi: 10.1038/ng0793-221
– volume: 26
  start-page: 913
  year: 2017
  ident: 2020090402223026900_ref27
  article-title: High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddx006
– year: 2020
  ident: 2020090402223026900_ref49
  article-title: Structural brain correlates of irritability and aggression in early manifest Huntington's disease
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-019-00237-x
– volume: 6
  start-page: e28260
  year: 2011
  ident: 2020090402223026900_ref84
  article-title: Correlation of inter-locus polyglutamine toxicity with CAG*CTG triplet repeat expandability and flanking genomic DNA GC content
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0028260
– volume: 39
  start-page: 4776
  year: 2018
  ident: 2020090402223026900_ref57
  article-title: Structural and functional changes of the visual cortex in early Huntington's disease
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24322
– volume: 23
  start-page: 1606
  year: 2014
  ident: 2020090402223026900_ref71
  article-title: Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt551
– volume: 79
  start-page: 983
  year: 2016
  ident: 2020090402223026900_ref79
  article-title: DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24656
– volume: 2
  start-page: 2063
  year: 1993
  ident: 2020090402223026900_ref10
  article-title: Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/2.12.2063
– volume: 18
  start-page: 3039
  year: 2009
  ident: 2020090402223026900_ref21
  article-title: Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp242
– volume: 19
  start-page: 298
  year: 1994
  ident: 2020090402223026900_ref88
  article-title: Precise mapping of the brain alpha 2-adrenergic receptor gene within chromosome 4p16
  publication-title: Genomics
  doi: 10.1006/geno.1994.1061
– volume: 150
  start-page: 105
  year: 2018
  ident: 2020090402223026900_ref45
  article-title: The New York Brain Bank of Columbia University: practical highlights of 35 years of experience
  publication-title: Handb. Clin. Neurol.
  doi: 10.1016/B978-0-444-63639-3.00008-6
– volume: 6
  start-page: e23647
  year: 2011
  ident: 2020090402223026900_ref23
  article-title: Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023647
– volume: 29
  start-page: 831
  year: 2014
  ident: 2020090402223026900_ref59
  article-title: Progressive hepatic mitochondrial dysfunction in premanifest Huntington's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25862
– volume: 7
  start-page: a024240
  year: 2017
  ident: 2020090402223026900_ref72
  article-title: Huntington's disease: mechanisms of pathogenesis and therapeutic strategies
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a024240
– volume: 7
  start-page: e44273
  year: 2012
  ident: 2020090402223026900_ref24
  article-title: Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044273
– volume: 72
  start-page: 971
  year: 1993
  ident: 2020090402223026900_ref6
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90585-E
– volume: 26
  start-page: 3859
  year: 2017
  ident: 2020090402223026900_ref35
  article-title: A modifier of Huntington's disease onset at the MLH1 locus
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddx286
– volume: 104
  start-page: 38
  year: 2013
  ident: 2020090402223026900_ref44
  article-title: Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2013.01.001
– volume: 95
  start-page: 270
  year: 1995
  ident: 2020090402223026900_ref13
  article-title: Somatic expansion of the (CAG)n repeat in Huntington disease brains
  publication-title: Hum. Genet.
  doi: 10.1007/BF00225192
– volume: 12
  start-page: 805
  year: 2018
  ident: 2020090402223026900_ref51
  article-title: Altered Intracortical T1-weighted/T2-weighted ratio signal in Huntington's disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00805
– volume: 100
  start-page: 8834
  year: 2003
  ident: 2020090402223026900_ref67
  article-title: Huntington disease expansion mutations in humans can occur before meiosis is completed
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1331390100
– volume: 6
  start-page: 789
  year: 2007
  ident: 2020090402223026900_ref18
  article-title: Inherited CAG.CTG allele length is a major modifier of somatic mutation length variability in Huntington disease
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2007.01.002
– volume: 8
  start-page: 115
  year: 1999
  ident: 2020090402223026900_ref15
  article-title: Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/8.1.115
– volume: 142
  start-page: 1876
  year: 2019
  ident: 2020090402223026900_ref37
  article-title: MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1
  publication-title: Brain
  doi: 10.1093/brain/awz115
– volume: 39
  start-page: 1262
  year: 2018
  ident: 2020090402223026900_ref69
  article-title: Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing
  publication-title: Hum. Mut.
  doi: 10.1002/humu.23580
– volume: 91
  start-page: 683
  year: 2013
  ident: 2020090402223026900_ref74
  article-title: RNA toxicity in polyglutamine disorders: concepts, models, and progress of research
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-013-1016-2
– volume: 28
  start-page: 650
  year: 2019
  ident: 2020090402223026900_ref77
  article-title: FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy375
– volume: 4
  year: 2012
  ident: 2020090402223026900_ref5
  article-title: The prevalence of juvenile Huntington's disease: a review of the literature and meta-analysis
  publication-title: PLoS Curr.
  doi: 10.1371/4f8606b742ef3
– volume: 262
  start-page: 2457
  year: 2015
  ident: 2020090402223026900_ref52
  article-title: Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression
  publication-title: J. Neurol.
  doi: 10.1007/s00415-015-7869-2
– volume: 97
  start-page: 1235
  year: 2018
  ident: 2020090402223026900_ref75
  article-title: ATXN1-CIC complex is the primary driver of cerebellar pathology in Spinocerebellar ataxia type 1 through a gain-of-function mechanism
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.02.013
– volume: 4
  start-page: 387
  year: 1993
  ident: 2020090402223026900_ref7
  article-title: Trinucleotide repeat length instability and age of onset in Huntington's disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng0893-387
– volume: 38
  start-page: 1000
  year: 1975
  ident: 2020090402223026900_ref60
  article-title: Hepatic morphology in Huntington's chorea
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.38.10.1000
– volume: 107
  start-page: 452
  year: 2000
  ident: 2020090402223026900_ref40
  article-title: Differential somatic CAG repeat instability in variable brain cell lineage in dentatorubral pallidoluysian atrophy (DRPLA): a laser-captured microdissection (LCM)-based analysis
  publication-title: Hum. Genet.
  doi: 10.1007/s004390000400
– volume: 14
  start-page: e0219446
  year: 2019
  ident: 2020090402223026900_ref70
  article-title: Amplification-free long-read sequencing of TCF4 expanded trinucleotide repeats in Fuchs Endothelial Corneal Dystrophy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0219446
– volume: 15
  start-page: 197
  year: 1997
  ident: 2020090402223026900_ref14
  article-title: Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation
  publication-title: Nat. Genet.
  doi: 10.1038/ng0297-197
SSID ssj0016437
Score 2.5784676
Snippet Abstract The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a...
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a...
The expanded HTT CAG repeat causing Huntington's disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a...
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2551
Title Patterns of CAG repeat instability in the central nervous system and periphery in Huntington’s disease and in spinocerebellar ataxia type 1
URI https://www.ncbi.nlm.nih.gov/pubmed/32761094
https://www.proquest.com/docview/2431816185
https://pubmed.ncbi.nlm.nih.gov/PMC7471505
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA4iKF7Et_UZwZOw2O4m6e5RirUqPg4KvS2TR7WgaWkr6M0_4A_w7_lLnNmNxYroZVk2sw8yyeSbncw3jO2DU5ClQkTC4SQXcdVFmY6TyFhb13HmZOoo3_niUrVuxVlbtsMG2eEvIfwsObx_vDu0FgCxCppaXH6JIv_mqj0OFlDsqaDUUyIi3t2Qhvfj3omFZyKZ7Rum_Lk18tta01xg8wEk8qNSq4tsyvklNlOWjXxZYrMXISC-zN6uC35MP-S9Dm8cnfCB66N15V1CfcW-1xc854jyeHgX92gd0N3nJYczB285sR0TvUAh2yqLRyAm_Hh9H_IQwSnksHXY73pc8gaOAhYw4DCC5y5w-pPLayvstnl802hFocJCZEQ9HUVSqKrQ2jglwCXgtIRamhnEcBb9nKzjhJSxBaWFkjoFJVSaJgaPAFrWoJqssmnf826dcWNqeK0DQlpDThPiQmvQeEKc4CDRWYUdfHV_bgL9OFXBeMjLMHiSo67yoKsK2x8L90vWjd_FdlGPf0vsfek4x3lDwRDwDjs5jxE5pVQtQFbYWqnz8YOSuE4s9KLC6hOjYSxAnNyTLb57X3Bzk4-PoHLj3y_bZHMxue5VSoLZYtOjwZPbRnwz0juI7E_Pd4ox_gkEiv-K
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+of+CAG+repeat+instability+in+the+central+nervous+system+and+periphery+in+Huntington%E2%80%99s+disease+and+in+spinocerebellar+ataxia+type+1&rft.jtitle=Human+molecular+genetics&rft.au=Mouro+Pinto%2C+Ricardo&rft.au=Arning%2C+Larissa&rft.au=Giordano%2C+James+V&rft.au=Razghandi%2C+Pedram&rft.date=2020-08-29&rft.issn=0964-6906&rft.eissn=1460-2083&rft.volume=29&rft.issue=15&rft.spage=2551&rft.epage=2567&rft_id=info:doi/10.1093%2Fhmg%2Fddaa139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_hmg_ddaa139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon