Patterns of CAG repeat instability in the central nervous system and periphery in Huntington’s disease and in spinocerebellar ataxia type 1
Abstract The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quan...
Saved in:
Published in | Human molecular genetics Vol. 29; no. 15; pp. 2551 - 2567 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
29.08.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery. |
---|---|
AbstractList | The expanded HTT CAG repeat causing Huntington's disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.The expanded HTT CAG repeat causing Huntington's disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery. The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery. Abstract The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery. The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans -factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery. |
Author | Lucente, Diane Beller, Allison Keene, C Dirk Orr, Harry Razghandi, Pedram Arning, Larissa Wheeler, Vanessa C Jayadaev, Suman Förster, Eckart Mouro Pinto, Ricardo Saft, Carsten Mysore, Jayalakshmi S Gillis, Tammy Nguyen, Huu Phuc Vonsattel, Jean-Paul Correia, Kevin von Hein, Sarah M Grote Urtubey, Debora-M Parwez, Constanze R Andrew, Marissa A Clark, H Brent Bird, Thomas D Giordano, James V Petrasch-Parwez, Elisabeth |
AuthorAffiliation | 9 Department of Medicine , University of Washington, Seattle, Washington 98195, USA 11 Department of Pathology and Cell Biology , Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA 5 Department of Neurology , Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany 7 Department of Pathology , University of Washington, Seattle, Washington 98195, USA 6 Department of Laboratory Medicine and Pathology , Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA 8 Department of Neurology , University of Washington, Seattle, Washington 98195, USA 10 Geriatrics Research Education and Clinical Center , VA Puget Sound Medical Center, Seattle, WA 98108, USA 4 Department of Neuroanatomy and Molecular Brain Research , Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany 3 Department of Human Genetics , Ruhr-University Bochum, Bochum 44780, Germany 2 Department of N |
AuthorAffiliation_xml | – name: 3 Department of Human Genetics , Ruhr-University Bochum, Bochum 44780, Germany – name: 9 Department of Medicine , University of Washington, Seattle, Washington 98195, USA – name: 7 Department of Pathology , University of Washington, Seattle, Washington 98195, USA – name: 4 Department of Neuroanatomy and Molecular Brain Research , Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany – name: 8 Department of Neurology , University of Washington, Seattle, Washington 98195, USA – name: 1 Molecular Neurogenetics Unit , Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA – name: 6 Department of Laboratory Medicine and Pathology , Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA – name: 11 Department of Pathology and Cell Biology , Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA – name: 2 Department of Neurology , Harvard Medical School, Boston, MA 02115, USA – name: 10 Geriatrics Research Education and Clinical Center , VA Puget Sound Medical Center, Seattle, WA 98108, USA – name: 5 Department of Neurology , Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany |
Author_xml | – sequence: 1 givenname: Ricardo surname: Mouro Pinto fullname: Mouro Pinto, Ricardo email: RMOUROPINTO@mgh.harvard.edu organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 2 givenname: Larissa surname: Arning fullname: Arning, Larissa email: Larissa.Arning@ruhr-uni-bochum.de organization: Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany – sequence: 3 givenname: James V surname: Giordano fullname: Giordano, James V email: jvgiorda@eckerd.edu organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 4 givenname: Pedram surname: Razghandi fullname: Razghandi, Pedram email: razghandi.pedram@gmail.com organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 5 givenname: Marissa A surname: Andrew fullname: Andrew, Marissa A email: MANDREW@PARTNERS.ORG organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 6 givenname: Tammy surname: Gillis fullname: Gillis, Tammy email: gillis@helix.mgh.harvard.edu organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 7 givenname: Kevin surname: Correia fullname: Correia, Kevin email: Kevin_Correia@DFCI.HARVARD.EDU organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 8 givenname: Jayalakshmi S surname: Mysore fullname: Mysore, Jayalakshmi S email: SRINIDHI@HELIX.MGH.HARVARD.EDU organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 9 givenname: Debora-M surname: Grote Urtubey fullname: Grote Urtubey, Debora-M email: Debora-Michele.GroteUrtubey@ruhr-uni-bochum.de organization: Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany – sequence: 10 givenname: Constanze R surname: Parwez fullname: Parwez, Constanze R email: Constanze.Parwez@hhu.de organization: Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany – sequence: 11 givenname: Sarah M surname: von Hein fullname: von Hein, Sarah M email: s.von-hein@klinikum-bochum.de organization: Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany – sequence: 12 givenname: H Brent surname: Clark fullname: Clark, H Brent email: clark002@umn.edu organization: Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA – sequence: 13 givenname: Huu Phuc surname: Nguyen fullname: Nguyen, Huu Phuc email: huu.nguyen-r7w@rub.de organization: Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany – sequence: 14 givenname: Eckart surname: Förster fullname: Förster, Eckart email: Eckart.Foerster@rub.de organization: Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany – sequence: 15 givenname: Allison surname: Beller fullname: Beller, Allison email: allisonbeller@gmail.com organization: Department of Pathology, University of Washington, Seattle, Washington 98195, USA – sequence: 16 givenname: Suman surname: Jayadaev fullname: Jayadaev, Suman email: sumie@uw.edu organization: Department of Neurology, University of Washington, Seattle, Washington 98195, USA – sequence: 17 givenname: C Dirk surname: Keene fullname: Keene, C Dirk email: cdkeene@uw.edu organization: Department of Pathology, University of Washington, Seattle, Washington 98195, USA – sequence: 18 givenname: Thomas D surname: Bird fullname: Bird, Thomas D email: tomnroz@uw.edu organization: Department of Neurology, University of Washington, Seattle, Washington 98195, USA – sequence: 19 givenname: Diane surname: Lucente fullname: Lucente, Diane email: dlucente@partners.org organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 20 givenname: Jean-Paul surname: Vonsattel fullname: Vonsattel, Jean-Paul email: jgv2001@cumc.columbia.edu organization: Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA – sequence: 21 givenname: Harry surname: Orr fullname: Orr, Harry organization: Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA – sequence: 22 givenname: Carsten surname: Saft fullname: Saft, Carsten email: Carsten.Saft@ruhr-uni-bochum.de organization: Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany – sequence: 23 givenname: Elisabeth surname: Petrasch-Parwez fullname: Petrasch-Parwez, Elisabeth email: elisabeth.petrasch-parwez@rub.de organization: Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany – sequence: 24 givenname: Vanessa C surname: Wheeler fullname: Wheeler, Vanessa C email: Wheeler@helix.mgh.harvard.edu organization: Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32761094$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAURS1URKeFFXvkFUJCoXbsOMkGqRpBi1QJFrC2Xpw3M0aJHWyn6uz4AT6gv9cvwdOZIkCIjW3pnXevru8JOXLeISHPOXvDWSvONuP6rO8BuGgfkQWXihUla8QRWbBWyUK1TB2Tkxi_MsaVFPUTcizKWuVduSA_PkFKGFykfkWX5xc04ISQqHUxQWcHm7b5TdMGqUGXAgzUYbj2c6RxGxOOFFxPJwx22mC4Zy9nl6xbJ-_uvt9G2tuIEPGey9M4WecNBuxwGCBQSHBjgabthJQ_JY9XMER8drhPyZf37z4vL4urjxcfludXhZF1k4oqZ5RdZ1BJQAHYVcCb1rCq7kvF2hXKqip7UJ1UVdeAkqpphMknQFdxYOKUvN3rTnM3Yn9IpqdgRwhb7cHqPyfObvTaX-ta1rxiVRZ4dRAI_tuMMenRRrNL5DD_jS6l4A1XvNmhL373-mXy0EEG-B4wwccYcKWNTZCs31nbQXOmdz3r3LM-9Jx3Xv-18yD7b_rlnvbz9F_wJ73dvHo |
CitedBy_id | crossref_primary_10_1093_nar_gkab899 crossref_primary_10_1016_j_conb_2021_07_001 crossref_primary_10_1016_j_pneurobio_2023_102484 crossref_primary_10_3233_JHD_231516 crossref_primary_10_3390_genes12071071 crossref_primary_10_3390_biology14020129 crossref_primary_10_3390_genes15060807 crossref_primary_10_1093_braincomms_fcad214 crossref_primary_10_1111_cge_14472 crossref_primary_10_7554_eLife_55911 crossref_primary_10_1038_s41467_024_47485_0 crossref_primary_10_1038_s41588_024_02054_5 crossref_primary_10_1038_s41598_022_14183_0 crossref_primary_10_1038_s41598_024_54277_5 crossref_primary_10_1016_j_parkreldis_2022_08_027 crossref_primary_10_1172_jci_insight_176057 crossref_primary_10_1007_s00439_024_02644_7 crossref_primary_10_1093_hmg_ddab129 crossref_primary_10_3233_JHD_200445 crossref_primary_10_3390_ijms241613021 crossref_primary_10_1016_j_neuroimage_2021_118008 crossref_primary_10_1016_S1474_4422_22_00121_1 crossref_primary_10_1038_s41467_024_46554_8 crossref_primary_10_3233_JHD_231523 crossref_primary_10_1093_hmg_ddab170 crossref_primary_10_1002_mds_29035 crossref_primary_10_1007_s10815_022_02594_x crossref_primary_10_1093_brain_awae007 crossref_primary_10_3390_biomedicines10081863 crossref_primary_10_1016_j_celrep_2021_110078 crossref_primary_10_1055_a_2042_2338 crossref_primary_10_1093_nar_gkab152 crossref_primary_10_1016_j_ebiom_2024_105328 crossref_primary_10_1016_j_neuron_2023_09_036 crossref_primary_10_1073_pnas_2302103120 crossref_primary_10_1093_brain_awad275 crossref_primary_10_1159_000526260 crossref_primary_10_1038_s41467_024_50877_x crossref_primary_10_32604_biocell_2024_053794 crossref_primary_10_1093_procel_pwae042 crossref_primary_10_1111_cge_13888 crossref_primary_10_1016_j_neuron_2020_11_005 crossref_primary_10_3233_JHD_200433 crossref_primary_10_7759_cureus_47526 crossref_primary_10_1002_acn3_51370 crossref_primary_10_1093_nar_gkae1155 crossref_primary_10_1016_j_cell_2023_09_008 crossref_primary_10_1126_scitranslmed_adn4600 crossref_primary_10_1093_brain_awae312 crossref_primary_10_3233_JHD_200438 crossref_primary_10_1007_s00115_024_01655_z crossref_primary_10_7554_eLife_89782 crossref_primary_10_1038_s41598_024_52667_3 crossref_primary_10_1016_j_dnarep_2025_103817 crossref_primary_10_1093_hmg_ddae137 crossref_primary_10_3389_fnagi_2022_750629 crossref_primary_10_1038_s41588_024_01653_6 crossref_primary_10_1186_s40478_022_01364_1 crossref_primary_10_1186_s40478_022_01349_0 crossref_primary_10_1016_j_ajhg_2024_03_015 crossref_primary_10_1242_dmm_049453 crossref_primary_10_1016_j_nbd_2023_106376 crossref_primary_10_1007_s00401_021_02269_4 crossref_primary_10_3233_JHD_200423 crossref_primary_10_7554_eLife_89782_2 crossref_primary_10_1093_nar_gkae1204 crossref_primary_10_1016_S1474_4422_22_00189_2 crossref_primary_10_7554_eLife_64674 crossref_primary_10_1093_nar_gkae368 crossref_primary_10_3390_biomedicines11123336 crossref_primary_10_1089_genbio_2021_0012 crossref_primary_10_1093_braincomms_fcae016 crossref_primary_10_3233_JHD_200427 crossref_primary_10_1093_braincomms_fcac279 crossref_primary_10_3233_JHD_200426 crossref_primary_10_1016_S1474_4422_20_30343_4 crossref_primary_10_1093_brain_awae266 crossref_primary_10_3233_JHD_200429 crossref_primary_10_1007_s00415_023_11572_x |
Cites_doi | 10.1034/j.1399-0004.2003.00108.x 10.1073/pnas.0800048105 10.1016/j.nicl.2018.03.027 10.1212/WNL.0b013e318282514e 10.1093/hmg/4.4.663 10.1093/hmg/ddr421 10.1093/hmg/ddq427 10.3233/JHD-180339 10.1093/hmg/ddm054 10.1093/hmg/ddh186 10.1371/journal.pgen.1003930 10.1007/7854_2014_354 10.1136/jmg.30.12.982 10.1093/hmg/ddg352 10.3233/JHD-160203 10.1212/WNL.45.1.24 10.1016/j.neuron.2015.10.038 10.3174/ajnr.A4760 10.1136/jmg.2007.050930 10.1111/bpa.12426 10.1002/ana.25413 10.1016/j.ebiom.2019.09.020 10.1038/ng0795-344 10.1093/hmg/2.10.1713 10.1007/s00401-005-1092-7 10.1073/pnas.1018748108 10.1016/j.cell.2015.07.003 10.1016/S1474-4422(18)30294-1 10.1093/hmg/4.9.1519 10.1016/S0304-3940(00)01029-6 10.1093/hmg/9.17.2539 10.1016/j.cell.2019.06.036 10.1016/0896-6273(95)90106-X 10.1006/mcpr.1993.1034 10.1038/ng0494-409 10.1007/s004390050513 10.3233/JHD-140092 10.1002/hbm.23923 10.1016/S1474-4422(17)30161-8 10.1111/bpa.12237 10.1097/00005072-198511000-00003 10.1007/s10792-018-0857-7 10.1002/mrdd.1022 10.1002/(SICI)1098-1004(1998)11:1<23::AID-HUMU4>3.0.CO;2-M 10.3233/JHD-170261 10.1016/S1474-4422(09)70178-4 10.1016/S1474-4422(15)00177-5 10.1212/WNL.0b013e318249f683 10.1016/j.nbd.2015.01.004 10.1371/journal.pgen.1003280 10.1371/journal.pcbi.0030235 10.1016/j.nbd.2008.09.014 10.1080/00207454.2018.1489807 10.1186/1752-0509-4-29 10.1038/ng0793-221 10.1093/hmg/ddx006 10.1007/s11682-019-00237-x 10.1371/journal.pone.0028260 10.1002/hbm.24322 10.1093/hmg/ddt551 10.1002/ana.24656 10.1093/hmg/2.12.2063 10.1093/hmg/ddp242 10.1006/geno.1994.1061 10.1016/B978-0-444-63639-3.00008-6 10.1371/journal.pone.0023647 10.1002/mds.25862 10.1101/cshperspect.a024240 10.1371/journal.pone.0044273 10.1016/0092-8674(93)90585-E 10.1093/hmg/ddx286 10.1016/j.pneurobio.2013.01.001 10.1007/BF00225192 10.3389/fnins.2018.00805 10.1073/pnas.1331390100 10.1016/j.dnarep.2007.01.002 10.1093/hmg/8.1.115 10.1093/brain/awz115 10.1002/humu.23580 10.1007/s00109-013-1016-2 10.1093/hmg/ddy375 10.1371/4f8606b742ef3 10.1007/s00415-015-7869-2 10.1016/j.neuron.2018.02.013 10.1038/ng0893-387 10.1136/jnnp.38.10.1000 10.1007/s004390000400 10.1371/journal.pone.0219446 10.1038/ng0297-197 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | TOX AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/hmg/ddaa139 |
DatabaseName | Oxford Journals Open Access (Activated by CARLI) CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1460-2083 |
EndPage | 2567 |
ExternalDocumentID | PMC7471505 32761094 10_1093_hmg_ddaa139 10.1093/hmg/ddaa139 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P50 AG005136 – fundername: NINDS NIH HHS grantid: R01 NS049206 – fundername: NIA NIH HHS grantid: P30 AG066509 – fundername: ; grantid: NS049206 |
GroupedDBID | --- -DZ -E4 .2P .I3 .XZ .ZR 0R~ 18M 1TH 29I 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM C45 CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBS EE~ EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 ML0 N9A NGC NLBLG NOMLY NOYVH NU- O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO SJN TEORI TJX TLC TMA TOX TR2 W8F WOQ X7H XSW YAYTL YKOAZ YXANX ZKX ~91 AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c478t-54604bbce64ae3aeb5a189c057d2609fe4552da6b465b8a646883c468aab51a03 |
IEDL.DBID | TOX |
ISSN | 0964-6906 1460-2083 |
IngestDate | Thu Aug 21 18:28:44 EDT 2025 Fri Jul 11 02:50:00 EDT 2025 Thu Apr 03 06:57:24 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Tue Jul 01 03:32:28 EDT 2025 Fri May 23 09:42:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-54604bbce64ae3aeb5a189c057d2609fe4552da6b465b8a646883c468aab51a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Ricardo Mouro Pinto, Larissa Arning, James V. Giordano contribution. |
OpenAccessLink | https://dx.doi.org/10.1093/hmg/ddaa139 |
PMID | 32761094 |
PQID | 2431816185 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7471505 proquest_miscellaneous_2431816185 pubmed_primary_32761094 crossref_citationtrail_10_1093_hmg_ddaa139 crossref_primary_10_1093_hmg_ddaa139 oup_primary_10_1093_hmg_ddaa139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-29 |
PublicationDateYYYYMMDD | 2020-08-29 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Human molecular genetics |
PublicationTitleAlternate | Hum Mol Genet |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Lee (2020090402223026900_ref29) 2012; 78 Hensman Moss (2020090402223026900_ref36) 2017; 16 Telenius (2020090402223026900_ref8) 1994; 6 Nestor (2020090402223026900_ref84) 2011; 6 Martinez-Horta (2020090402223026900_ref49) 2020 Ueno (2020090402223026900_ref65) 1995; 4 Gatto (2020090402223026900_ref53) 2018; 128 Pinto (2020090402223026900_ref33) 2013; 9 Duyao (2020090402223026900_ref7) 1993; 4 Kovalenko (2020090402223026900_ref24) 2012; 7 Lee (2020090402223026900_ref23) 2011; 6 Zuhlke (2020090402223026900_ref10) 1993; 2 Hoffmann (2020090402223026900_ref59) 2014; 29 Huntington's Disease Collaborative Research Group (2020090402223026900_ref6) 1993; 72 Kennedy (2020090402223026900_ref16) 2000; 9 Wieben (2020090402223026900_ref70) 2019; 14 Rousseaux (2020090402223026900_ref75) 2018; 97 Jimenez-Sanchez (2020090402223026900_ref72) 2017; 7 Wheeler (2020090402223026900_ref12) 2007; 44 Kersten (2020090402223026900_ref52) 2015; 262 Eddy (2020090402223026900_ref50) 2018; 39 Gulmez Sevim (2020090402223026900_ref54) 2019; 39 Ament (2020090402223026900_ref27) 2017; 26 Kaplan (2020090402223026900_ref30) 2007; 3 Klaes (2020090402223026900_ref80) 2016; 37 Carroll (2020090402223026900_ref83) 2015; 14 Zühlke (2020090402223026900_ref39) 1997; 100 Latimer (2020090402223026900_ref62) 2017; 6 Singh-Bains (2020090402223026900_ref81) 2019; 85 Rowley (2020090402223026900_ref51) 2018; 12 Lee (2020090402223026900_ref35) 2017; 26 Banez-Coronel (2020090402223026900_ref73) 2015; 88 Wheeler (2020090402223026900_ref15) 1999; 8 Genetic Modifiers of Huntington's Disease (GeM_HD) Consortium (2020090402223026900_ref28) 2019; 178 Cronin (2020090402223026900_ref4) 2019; 8 Swami (2020090402223026900_ref21) 2009; 18 Aronin (2020090402223026900_ref63) 1995; 15 Mason (2020090402223026900_ref71) 2014; 23 Dragileva (2020090402223026900_ref31) 2009; 33 Takano (2020090402223026900_ref42) 1996; 58 Hoijer (2020090402223026900_ref69) 2018; 39 Gonitel (2020090402223026900_ref20) 2008; 105 Warner (2020090402223026900_ref86) 1993; 7 Tome (2020090402223026900_ref32) 2013; 9 Flower (2020090402223026900_ref37) 2019; 142 Ahveninen (2020090402223026900_ref47) 2018; 18 Hubert (2020090402223026900_ref85) 2011; 20 Cancel (2020090402223026900_ref41) 1998; 11 Chiu (2020090402223026900_ref60) 1975; 38 Kennedy (2020090402223026900_ref17) 2003; 12 Nana (2020090402223026900_ref48) 2014; 3 Kahlem (2020090402223026900_ref64) 2000; 286 Vonsattel (2020090402223026900_ref1) 1985; 44 Orr (2020090402223026900_ref90) 1993; 4 Shelbourne (2020090402223026900_ref19) 2007; 6 Leeflang (2020090402223026900_ref11) 1995; 4 Rubinsztein (2020090402223026900_ref89) 1993; 2 Veitch (2020090402223026900_ref18) 2007; 6 Lee (2020090402223026900_ref22) 2010; 4 Jafar-Nejad (2020090402223026900_ref76) 2011; 108 Stuwe (2020090402223026900_ref58) 2013; 80 Chong (2020090402223026900_ref38) 1995; 10 Bettencourt (2020090402223026900_ref79) 2016; 79 Larson (2020090402223026900_ref25) 2015; 76 Petrasch-Parwez (2020090402223026900_ref55) 2005; 110 Fusilli (2020090402223026900_ref3) 2018; 17 Geraerts (2020090402223026900_ref26) 2016; 5 Gomes-Pereira (2020090402223026900_ref78) 2004; 13 Mangiarini (2020090402223026900_ref14) 1997; 15 Waldvogel (2020090402223026900_ref61) 2015; 22 Rüb (2020090402223026900_ref46) 2016; 26 De Rooij (2020090402223026900_ref13) 1995; 95 Nance (2020090402223026900_ref2) 2001; 7 Rüb (2020090402223026900_ref56) 2015; 25 Burg (2020090402223026900_ref82) 2009; 8 Coppen (2020090402223026900_ref57) 2018; 39 Quarrell (2020090402223026900_ref5) 2012; 4 Rub (2020090402223026900_ref44) 2013; 104 Milunsky (2020090402223026900_ref87) 2003; 64 Goold (2020090402223026900_ref77) 2019; 28 MacDonald (2020090402223026900_ref9) 1993; 30 Watanabe (2020090402223026900_ref40) 2000; 107 Ramirez (2020090402223026900_ref45) 2018; 150 Ciosi (2020090402223026900_ref68) 2019; 48 Riess (2020090402223026900_ref88) 1994; 19 Genis (2020090402223026900_ref43) 1995; 45 Genetic Modifiers of Huntington's Disease (GeM_HD) Consortium (2020090402223026900_ref34) 2015; 162 Lopez Castel (2020090402223026900_ref66) 2011; 20 Yoon (2020090402223026900_ref67) 2003; 100 Fiszer (2020090402223026900_ref74) 2013; 91 |
References_xml | – volume: 64 start-page: 70 year: 2003 ident: 2020090402223026900_ref87 article-title: XL PCR for the detection of large trinucleotide expansions in juvenile Huntington’s disease publication-title: Clin. Genet. doi: 10.1034/j.1399-0004.2003.00108.x – volume: 105 start-page: 3467 year: 2008 ident: 2020090402223026900_ref20 article-title: DNA instability in postmitotic neurons publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0800048105 – volume: 18 start-page: 881 year: 2018 ident: 2020090402223026900_ref47 article-title: Reduced amygdala volumes are related to motor and cognitive signs in Huntington's disease: the IMAGE-HD study publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2018.03.027 – volume: 80 start-page: 743 year: 2013 ident: 2020090402223026900_ref58 article-title: Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease publication-title: Neurology doi: 10.1212/WNL.0b013e318282514e – volume: 4 start-page: 663 year: 1995 ident: 2020090402223026900_ref65 article-title: Somatic mosaicism of CAG repeat in dentatorubral-pallidoluysian atrophy (DRPLA) publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/4.4.663 – volume: 20 start-page: 4822 year: 2011 ident: 2020090402223026900_ref85 article-title: Xpa deficiency reduces CAG Trinucleotide repeat instability in neuronal tissues in a SCA1 mouse model publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr421 – volume: 20 start-page: 1 year: 2011 ident: 2020090402223026900_ref66 article-title: Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq427 – volume: 8 start-page: 171 year: 2019 ident: 2020090402223026900_ref4 article-title: Clinical presentation and features of juvenile-onset Huntington’s disease: a systematic review publication-title: J. Huntington’s Dis. doi: 10.3233/JHD-180339 – volume: 6 start-page: 1133 year: 2007 ident: 2020090402223026900_ref19 article-title: Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm054 – volume: 13 start-page: 1815 year: 2004 ident: 2020090402223026900_ref78 article-title: Pms2 is a genetic enhancer of trinucleotide CAG.CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddh186 – volume: 9 start-page: e1003930 year: 2013 ident: 2020090402223026900_ref33 article-title: Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003930 – volume: 22 start-page: 33 year: 2015 ident: 2020090402223026900_ref61 article-title: The neuropathology of Huntington's disease publication-title: Curr. Top. Behav. Neurosci. doi: 10.1007/7854_2014_354 – volume: 30 start-page: 982 year: 1993 ident: 2020090402223026900_ref9 article-title: Gametic but not somatic instability of CAG repeat length in Huntington's disease publication-title: J. Med. Genet. doi: 10.1136/jmg.30.12.982 – volume: 58 start-page: 1212 year: 1996 ident: 2020090402223026900_ref42 article-title: Somatic mosaicism of expanded CAG repeats in brains of patients with dentatorubral-pallidoluysian atrophy: cellular population-dependent dynamics of mitotic instability publication-title: Am. J. Hum. Genet. – volume: 12 start-page: 3359 year: 2003 ident: 2020090402223026900_ref17 article-title: Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddg352 – volume: 5 start-page: 297 year: 2016 ident: 2020090402223026900_ref26 article-title: Comparison of Huntington's disease CAG repeat length stability in human motor cortex and cingulate Gyrus publication-title: J. Huntington's Dis. doi: 10.3233/JHD-160203 – volume: 45 start-page: 24 year: 1995 ident: 2020090402223026900_ref43 article-title: Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms publication-title: Neurology doi: 10.1212/WNL.45.1.24 – volume: 88 start-page: 667 year: 2015 ident: 2020090402223026900_ref73 article-title: RAN translation in Huntington disease publication-title: Neuron doi: 10.1016/j.neuron.2015.10.038 – volume: 37 start-page: 1405 year: 2016 ident: 2020090402223026900_ref80 article-title: MR imaging in Spinocerebellar ataxias: a systematic review publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A4760 – volume: 44 start-page: 695 year: 2007 ident: 2020090402223026900_ref12 article-title: Factors associated with HD CAG repeat instability in Huntington's disease publication-title: J. Med. Genet. doi: 10.1136/jmg.2007.050930 – volume: 26 start-page: 726 year: 2016 ident: 2020090402223026900_ref46 article-title: Huntington's disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain publication-title: Brain Pathol. doi: 10.1111/bpa.12426 – volume: 85 start-page: 396 year: 2019 ident: 2020090402223026900_ref81 article-title: Cerebellar degeneration correlates with motor symptoms in Huntington disease publication-title: Ann. Neurol. doi: 10.1002/ana.25413 – volume: 48 start-page: 568 year: 2019 ident: 2020090402223026900_ref68 article-title: A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.09.020 – volume: 10 start-page: 344 year: 1995 ident: 2020090402223026900_ref38 article-title: Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1 publication-title: Nat. Genet. doi: 10.1038/ng0795-344 – volume: 2 start-page: 1713 year: 1993 ident: 2020090402223026900_ref89 article-title: Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Huntington's disease and CAG repeat number publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/2.10.1713 – volume: 110 start-page: 523 year: 2005 ident: 2020090402223026900_ref55 article-title: Is the retina affected in Huntington disease? publication-title: Acta Neuropathol. doi: 10.1007/s00401-005-1092-7 – volume: 108 start-page: 2142 year: 2011 ident: 2020090402223026900_ref76 article-title: Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1018748108 – volume: 162 start-page: 516 year: 2015 ident: 2020090402223026900_ref34 article-title: Identification of genetic factors that modify clinical onset of Huntington's disease publication-title: Cell doi: 10.1016/j.cell.2015.07.003 – volume: 17 start-page: 986 year: 2018 ident: 2020090402223026900_ref3 article-title: Biological and clinical manifestations of juvenile Huntington's disease: a retrospective analysis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30294-1 – volume: 4 start-page: 1519 year: 1995 ident: 2020090402223026900_ref11 article-title: Single sperm analysis of the trinucleotide repeats in the Huntington's disease gene: quantification of the mutation frequency spectrum publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/4.9.1519 – volume: 286 start-page: 203 year: 2000 ident: 2020090402223026900_ref64 article-title: The expanded CAG repeat associated with juvenile Huntington disease shows a common origin of most or all neurons and glia in human cerebrum publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(00)01029-6 – volume: 9 start-page: 2539 year: 2000 ident: 2020090402223026900_ref16 article-title: Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington's disease? publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.17.2539 – volume: 178 start-page: 887 year: 2019 ident: 2020090402223026900_ref28 article-title: CAG repeat not Polyglutamine length determines timing of Huntington's disease onset publication-title: Cell doi: 10.1016/j.cell.2019.06.036 – volume: 15 start-page: 1193 year: 1995 ident: 2020090402223026900_ref63 article-title: CAG expansion affects the expression of mutant Huntingtin in the Huntington's disease brain publication-title: Neuron doi: 10.1016/0896-6273(95)90106-X – volume: 7 start-page: 235 year: 1993 ident: 2020090402223026900_ref86 article-title: A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes publication-title: Mol. Cell Probes doi: 10.1006/mcpr.1993.1034 – volume: 6 start-page: 409 year: 1994 ident: 2020090402223026900_ref8 article-title: Somatic and gonadal mosaicism of the Huntington's disease gene CAG repeat in brain and sperm. [erratum appears in Nat Genet 1994 May;7(1):113] publication-title: Nat. Genet. doi: 10.1038/ng0494-409 – volume: 100 start-page: 339 year: 1997 ident: 2020090402223026900_ref39 article-title: CAG repeat analyses in frozen and formalin-fixed tissues following primer extension preamplification for evaluation of mitotic instability of expanded SCA1 alleles publication-title: Hum. Genet. doi: 10.1007/s004390050513 – volume: 3 start-page: 45 year: 2014 ident: 2020090402223026900_ref48 article-title: Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington’s disease publication-title: J. Huntington’s Dis. doi: 10.3233/JHD-140092 – volume: 39 start-page: 1354 year: 2018 ident: 2020090402223026900_ref50 article-title: Through your eyes or mine? The neural correlates of mental state recognition in Huntington's disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23923 – volume: 16 start-page: 701 year: 2017 ident: 2020090402223026900_ref36 article-title: Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(17)30161-8 – volume: 25 start-page: 701 year: 2015 ident: 2020090402223026900_ref56 article-title: Huntington's disease (HD): neurodegeneration of Brodmann's primary visual area 17 (BA17) publication-title: Brain Pathol. doi: 10.1111/bpa.12237 – volume: 44 start-page: 559 year: 1985 ident: 2020090402223026900_ref1 article-title: Neuropathological classification of Huntington's disease publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-198511000-00003 – volume: 39 start-page: 611 year: 2019 ident: 2020090402223026900_ref54 article-title: Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker publication-title: Int. Ophthalmol. doi: 10.1007/s10792-018-0857-7 – volume: 7 start-page: 153 year: 2001 ident: 2020090402223026900_ref2 article-title: Juvenile onset Huntington's disease-clinical and research perspectives publication-title: Ment. Retard. Dev. Disabil. Res. Rev. doi: 10.1002/mrdd.1022 – volume: 11 start-page: 23 year: 1998 ident: 2020090402223026900_ref41 article-title: Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type 3/Machado-Joseph disease publication-title: Hum. Mut. doi: 10.1002/(SICI)1098-1004(1998)11:1<23::AID-HUMU4>3.0.CO;2-M – volume: 6 start-page: 337 year: 2017 ident: 2020090402223026900_ref62 article-title: Neuropathological comparison of adult onset and juvenile Huntington's disease with cerebellar atrophy: a report of a father and son publication-title: J. Huntington's Dis. doi: 10.3233/JHD-170261 – volume: 8 start-page: 765 year: 2009 ident: 2020090402223026900_ref82 article-title: Beyond the brain: widespread pathology in Huntington's disease publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(09)70178-4 – volume: 14 start-page: 1135 year: 2015 ident: 2020090402223026900_ref83 article-title: Treating the whole body in Huntington’s disease publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(15)00177-5 – volume: 78 start-page: 690 year: 2012 ident: 2020090402223026900_ref29 article-title: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion publication-title: Neurology doi: 10.1212/WNL.0b013e318249f683 – volume: 76 start-page: 98 year: 2015 ident: 2020090402223026900_ref25 article-title: Age-, tissue- and length-dependent bidirectional somatic CAG*CTG repeat instability in an allelic series of R6/2 Huntington disease mice publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2015.01.004 – volume: 9 start-page: e1003280 year: 2013 ident: 2020090402223026900_ref32 article-title: MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003280 – volume: 3 start-page: e235 year: 2007 ident: 2020090402223026900_ref30 article-title: A universal mechanism ties genotype to phenotype in trinucleotide diseases publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030235 – volume: 33 start-page: 37 year: 2009 ident: 2020090402223026900_ref31 article-title: Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.09.014 – volume: 128 start-page: 1157 year: 2018 ident: 2020090402223026900_ref53 article-title: Optical coherence tomography (OCT) study in Argentinean Huntington's disease patients publication-title: Int. J. Neurosci. doi: 10.1080/00207454.2018.1489807 – volume: 4 start-page: 29 year: 2010 ident: 2020090402223026900_ref22 article-title: A novel approach to investigate tissue-specific trinucleotide repeat instability publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-4-29 – volume: 4 start-page: 221 year: 1993 ident: 2020090402223026900_ref90 article-title: Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1 publication-title: Nat. Genet. doi: 10.1038/ng0793-221 – volume: 26 start-page: 913 year: 2017 ident: 2020090402223026900_ref27 article-title: High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddx006 – year: 2020 ident: 2020090402223026900_ref49 article-title: Structural brain correlates of irritability and aggression in early manifest Huntington's disease publication-title: Brain Imaging Behav. doi: 10.1007/s11682-019-00237-x – volume: 6 start-page: e28260 year: 2011 ident: 2020090402223026900_ref84 article-title: Correlation of inter-locus polyglutamine toxicity with CAG*CTG triplet repeat expandability and flanking genomic DNA GC content publication-title: PLoS One doi: 10.1371/journal.pone.0028260 – volume: 39 start-page: 4776 year: 2018 ident: 2020090402223026900_ref57 article-title: Structural and functional changes of the visual cortex in early Huntington's disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24322 – volume: 23 start-page: 1606 year: 2014 ident: 2020090402223026900_ref71 article-title: Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt551 – volume: 79 start-page: 983 year: 2016 ident: 2020090402223026900_ref79 article-title: DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases publication-title: Ann. Neurol. doi: 10.1002/ana.24656 – volume: 2 start-page: 2063 year: 1993 ident: 2020090402223026900_ref10 article-title: Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/2.12.2063 – volume: 18 start-page: 3039 year: 2009 ident: 2020090402223026900_ref21 article-title: Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp242 – volume: 19 start-page: 298 year: 1994 ident: 2020090402223026900_ref88 article-title: Precise mapping of the brain alpha 2-adrenergic receptor gene within chromosome 4p16 publication-title: Genomics doi: 10.1006/geno.1994.1061 – volume: 150 start-page: 105 year: 2018 ident: 2020090402223026900_ref45 article-title: The New York Brain Bank of Columbia University: practical highlights of 35 years of experience publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-444-63639-3.00008-6 – volume: 6 start-page: e23647 year: 2011 ident: 2020090402223026900_ref23 article-title: Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver publication-title: PLoS One doi: 10.1371/journal.pone.0023647 – volume: 29 start-page: 831 year: 2014 ident: 2020090402223026900_ref59 article-title: Progressive hepatic mitochondrial dysfunction in premanifest Huntington's disease publication-title: Mov. Disord. doi: 10.1002/mds.25862 – volume: 7 start-page: a024240 year: 2017 ident: 2020090402223026900_ref72 article-title: Huntington's disease: mechanisms of pathogenesis and therapeutic strategies publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a024240 – volume: 7 start-page: e44273 year: 2012 ident: 2020090402223026900_ref24 article-title: Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice publication-title: PLoS One doi: 10.1371/journal.pone.0044273 – volume: 72 start-page: 971 year: 1993 ident: 2020090402223026900_ref6 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes publication-title: Cell doi: 10.1016/0092-8674(93)90585-E – volume: 26 start-page: 3859 year: 2017 ident: 2020090402223026900_ref35 article-title: A modifier of Huntington's disease onset at the MLH1 locus publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddx286 – volume: 104 start-page: 38 year: 2013 ident: 2020090402223026900_ref44 article-title: Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7 publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2013.01.001 – volume: 95 start-page: 270 year: 1995 ident: 2020090402223026900_ref13 article-title: Somatic expansion of the (CAG)n repeat in Huntington disease brains publication-title: Hum. Genet. doi: 10.1007/BF00225192 – volume: 12 start-page: 805 year: 2018 ident: 2020090402223026900_ref51 article-title: Altered Intracortical T1-weighted/T2-weighted ratio signal in Huntington's disease publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00805 – volume: 100 start-page: 8834 year: 2003 ident: 2020090402223026900_ref67 article-title: Huntington disease expansion mutations in humans can occur before meiosis is completed publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1331390100 – volume: 6 start-page: 789 year: 2007 ident: 2020090402223026900_ref18 article-title: Inherited CAG.CTG allele length is a major modifier of somatic mutation length variability in Huntington disease publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2007.01.002 – volume: 8 start-page: 115 year: 1999 ident: 2020090402223026900_ref15 article-title: Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.1.115 – volume: 142 start-page: 1876 year: 2019 ident: 2020090402223026900_ref37 article-title: MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1 publication-title: Brain doi: 10.1093/brain/awz115 – volume: 39 start-page: 1262 year: 2018 ident: 2020090402223026900_ref69 article-title: Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing publication-title: Hum. Mut. doi: 10.1002/humu.23580 – volume: 91 start-page: 683 year: 2013 ident: 2020090402223026900_ref74 article-title: RNA toxicity in polyglutamine disorders: concepts, models, and progress of research publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-013-1016-2 – volume: 28 start-page: 650 year: 2019 ident: 2020090402223026900_ref77 article-title: FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy375 – volume: 4 year: 2012 ident: 2020090402223026900_ref5 article-title: The prevalence of juvenile Huntington's disease: a review of the literature and meta-analysis publication-title: PLoS Curr. doi: 10.1371/4f8606b742ef3 – volume: 262 start-page: 2457 year: 2015 ident: 2020090402223026900_ref52 article-title: Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression publication-title: J. Neurol. doi: 10.1007/s00415-015-7869-2 – volume: 97 start-page: 1235 year: 2018 ident: 2020090402223026900_ref75 article-title: ATXN1-CIC complex is the primary driver of cerebellar pathology in Spinocerebellar ataxia type 1 through a gain-of-function mechanism publication-title: Neuron doi: 10.1016/j.neuron.2018.02.013 – volume: 4 start-page: 387 year: 1993 ident: 2020090402223026900_ref7 article-title: Trinucleotide repeat length instability and age of onset in Huntington's disease publication-title: Nat. Genet. doi: 10.1038/ng0893-387 – volume: 38 start-page: 1000 year: 1975 ident: 2020090402223026900_ref60 article-title: Hepatic morphology in Huntington's chorea publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.38.10.1000 – volume: 107 start-page: 452 year: 2000 ident: 2020090402223026900_ref40 article-title: Differential somatic CAG repeat instability in variable brain cell lineage in dentatorubral pallidoluysian atrophy (DRPLA): a laser-captured microdissection (LCM)-based analysis publication-title: Hum. Genet. doi: 10.1007/s004390000400 – volume: 14 start-page: e0219446 year: 2019 ident: 2020090402223026900_ref70 article-title: Amplification-free long-read sequencing of TCF4 expanded trinucleotide repeats in Fuchs Endothelial Corneal Dystrophy publication-title: PLoS One doi: 10.1371/journal.pone.0219446 – volume: 15 start-page: 197 year: 1997 ident: 2020090402223026900_ref14 article-title: Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation publication-title: Nat. Genet. doi: 10.1038/ng0297-197 |
SSID | ssj0016437 |
Score | 2.5784676 |
Snippet | Abstract
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a... The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a... The expanded HTT CAG repeat causing Huntington's disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a... The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2551 |
Title | Patterns of CAG repeat instability in the central nervous system and periphery in Huntington’s disease and in spinocerebellar ataxia type 1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32761094 https://www.proquest.com/docview/2431816185 https://pubmed.ncbi.nlm.nih.gov/PMC7471505 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA4iKF7Et_UZwZOw2O4m6e5RirUqPg4KvS2TR7WgaWkr6M0_4A_w7_lLnNmNxYroZVk2sw8yyeSbncw3jO2DU5ClQkTC4SQXcdVFmY6TyFhb13HmZOoo3_niUrVuxVlbtsMG2eEvIfwsObx_vDu0FgCxCppaXH6JIv_mqj0OFlDsqaDUUyIi3t2Qhvfj3omFZyKZ7Rum_Lk18tta01xg8wEk8qNSq4tsyvklNlOWjXxZYrMXISC-zN6uC35MP-S9Dm8cnfCB66N15V1CfcW-1xc854jyeHgX92gd0N3nJYczB285sR0TvUAh2yqLRyAm_Hh9H_IQwSnksHXY73pc8gaOAhYw4DCC5y5w-pPLayvstnl802hFocJCZEQ9HUVSqKrQ2jglwCXgtIRamhnEcBb9nKzjhJSxBaWFkjoFJVSaJgaPAFrWoJqssmnf826dcWNqeK0DQlpDThPiQmvQeEKc4CDRWYUdfHV_bgL9OFXBeMjLMHiSo67yoKsK2x8L90vWjd_FdlGPf0vsfek4x3lDwRDwDjs5jxE5pVQtQFbYWqnz8YOSuE4s9KLC6hOjYSxAnNyTLb57X3Bzk4-PoHLj3y_bZHMxue5VSoLZYtOjwZPbRnwz0juI7E_Pd4ox_gkEiv-K |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+of+CAG+repeat+instability+in+the+central+nervous+system+and+periphery+in+Huntington%E2%80%99s+disease+and+in+spinocerebellar+ataxia+type+1&rft.jtitle=Human+molecular+genetics&rft.au=Mouro+Pinto%2C+Ricardo&rft.au=Arning%2C+Larissa&rft.au=Giordano%2C+James+V&rft.au=Razghandi%2C+Pedram&rft.date=2020-08-29&rft.issn=0964-6906&rft.eissn=1460-2083&rft.volume=29&rft.issue=15&rft.spage=2551&rft.epage=2567&rft_id=info:doi/10.1093%2Fhmg%2Fddaa139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_hmg_ddaa139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon |