Renin–Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) pla...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 21; p. 8038
Main Authors Hrenak, Jaroslav, Simko, Fedor
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.10.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1–9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin–angiotensin system and reducing the pathogen’s cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
AbstractList Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg 9 -bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1–9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin–angiotensin system and reducing the pathogen’s cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1–9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin–angiotensin system and reducing the pathogen’s cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19.Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg -bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
Author Hrenak, Jaroslav
Simko, Fedor
AuthorAffiliation 3 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovak
4 Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak
2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
1 Department of Cardiovascular Surgery, Inselspital – University Hospital of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland; jaroslav.hrenak@insel.ch
AuthorAffiliation_xml – name: 3 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovak
– name: 4 Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak
– name: 2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
– name: 1 Department of Cardiovascular Surgery, Inselspital – University Hospital of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland; jaroslav.hrenak@insel.ch
Author_xml – sequence: 1
  givenname: Jaroslav
  surname: Hrenak
  fullname: Hrenak, Jaroslav
– sequence: 2
  givenname: Fedor
  orcidid: 0000-0002-9922-4885
  surname: Simko
  fullname: Simko, Fedor
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33126657$$D View this record in MEDLINE/PubMed
BookMark eNptkU1LHEEQhpugxI_k5lkavHhwY3_PtIfAYmIiCBGTnJvemZrdXma6N909wt7yH_yH-SW2aGQVT1VQTz1U8e6hLR88IHRAySfONTl1yyExymhNeP0O7VLB2IQQVW1t9DtoL6UlIYwzqd-jHc4pU0pWu2h5A975f3_vpn7uQgafnMc_1ynDcIanHl8OqxCz9Rlf93YNEZdxXgC-tnkR5uAhuYRDh6fNmAHfQFq5aHOIa_zFpRwhpWLzbQwDfEDbne0TfHyq--j3xddf598nVz--XZ5PryaNqOo8ES0XlnUtY7aTQKyVdUsUtbNZ04Ho6prxmeaVtVApVWndEk3LjlaNIBSA8H30-dG7GmcDtA34HG1vVtENNq5NsM68nHi3MPNwa4qPV6oqguMnQQx_RkjZDC410PfWQxiTYUIqQSURdUGPXqHLMEZf3jNMilpqpiUr1OHmRc-n_I-hACePQBNDShG6Z4QS85Cy2Uy54OwV3rhsswsP_7j-7aV7ukqtvw
CitedBy_id crossref_primary_10_3390_biomedicines10092150
crossref_primary_10_1002_med_21875
crossref_primary_10_1016_j_heliyon_2023_e22056
crossref_primary_10_4103_sja_sja_1155_20
crossref_primary_10_1007_s11560_021_00507_0
crossref_primary_10_1111_obr_13225
crossref_primary_10_3390_ijms22094762
crossref_primary_10_1016_j_fsi_2022_08_007
crossref_primary_10_1016_j_biopha_2020_111193
crossref_primary_10_1016_j_bcp_2024_116547
crossref_primary_10_3389_fphar_2022_842512
crossref_primary_10_3390_antiox10030467
crossref_primary_10_1016_j_bcp_2023_115978
crossref_primary_10_3390_ijms222111483
crossref_primary_10_3390_vaccines11010174
crossref_primary_10_3390_ijms22063217
crossref_primary_10_1152_ajplung_00372_2024
crossref_primary_10_3389_fimmu_2025_1553283
crossref_primary_10_1016_j_biopha_2021_111856
crossref_primary_10_1186_s12951_022_01519_1
crossref_primary_10_1155_2024_4936265
crossref_primary_10_3390_ijms222312955
crossref_primary_10_1007_s10616_024_00692_5
crossref_primary_10_1155_2022_9650650
crossref_primary_10_1134_S1990750822040035
crossref_primary_10_3389_fmed_2022_791284
crossref_primary_10_3390_biomedicines12122893
crossref_primary_10_1016_j_ejphar_2024_176392
crossref_primary_10_18097_pbmc20226803157
crossref_primary_10_1042_CS20210182
crossref_primary_10_1016_j_intimp_2024_112304
crossref_primary_10_3389_fmed_2023_1203827
crossref_primary_10_3390_ijms23116350
crossref_primary_10_3390_cells12121664
crossref_primary_10_1016_j_matt_2021_03_016
crossref_primary_10_3390_ijms22157975
crossref_primary_10_1097_CCM_0000000000005495
crossref_primary_10_1042_CS20220235
crossref_primary_10_1016_j_intimp_2024_111522
crossref_primary_10_3390_biomedicines10081844
crossref_primary_10_3390_ijms242417600
crossref_primary_10_2174_0113862073259884231024111447
crossref_primary_10_1007_s11033_022_07166_x
crossref_primary_10_1016_j_biopha_2022_113961
crossref_primary_10_1016_j_biopha_2023_115127
crossref_primary_10_3389_fphys_2021_806062
crossref_primary_10_3390_ijms242417522
crossref_primary_10_20960_nh_04299
crossref_primary_10_1080_10408363_2021_1942782
crossref_primary_10_3389_fmed_2023_1280951
crossref_primary_10_3390_microorganisms12030583
crossref_primary_10_3390_toxics12080560
Cites_doi 10.1038/ncomms4595
10.1056/NEJMsr2005760
10.1097/SHK.0000000000000633
10.1161/HYPERTENSIONAHA.113.01274
10.1152/ajplung.00498.2016
10.1113/expphysiol.2007.041855
10.1111/jch.14011
10.1038/srep07027
10.1093/eurheartj/ehaa414
10.1016/j.cell.2020.02.052
10.1002/cpt.1863
10.1161/01.HYP.0000107777.91185.89
10.1371/journal.pone.0213096
10.1016/j.ijcard.2015.04.092
10.1016/j.taap.2018.04.025
10.1097/MJT.0000000000001226
10.1016/j.omtm.2020.05.013
10.1128/JVI.00127-20
10.1016/j.ijcard.2016.10.069
10.1042/CS20130449
10.1161/CIRCRESAHA.113.301811
10.1074/jbc.M200581200
10.1016/j.virusres.2014.03.010
10.1186/s13054-017-1882-z
10.1111/eci.12708
10.18632/oncotarget.8409
10.1073/pnas.0711241105
10.1016/j.bcp.2015.03.009
10.1164/rccm.201609-1773CP
10.1161/ATVBAHA.118.311282
10.1038/s41368-020-0074-x
10.1074/jbc.M002615200
10.1111/jcpt.13246
10.1016/j.pupt.2019.101833
10.1016/j.jss.2013.06.052
10.1152/ajpheart.00723.2018
10.1186/s13054-020-03141-9
10.1128/JVI.01248-09
10.1186/s40635-015-0044-3
10.2174/157340811795713756
10.3389/fphar.2016.00146
10.1038/ncomms4594
10.1042/CS20180547
10.4149/gpb_2020019
10.4196/kjpp.2018.22.4.447
10.3390/ijms17071098
10.1155/2014/703175
10.1371/journal.pone.0110165
10.1152/ajprenal.00270.2018
10.2147/COPD.S158634
10.1007/s00134-020-05985-9
10.1093/ajh/hpu086
10.3892/mmr.2017.7546
10.1177/0885066619855021
10.1186/s13054-020-02942-2
10.2174/1381612811319170009
10.1038/nm1267
10.1101/2020.05.14.090332
10.1152/ajplung.00071.2009
10.1186/s40842-017-0044-1
10.2174/1381612821666150909093927
10.1016/j.bcp.2018.08.045
10.1186/s13054-017-1823-x
10.1007/s00134-005-2625-1
10.1152/physrev.00032.2017
10.1161/CIRCULATIONAHA.104.510461
10.1152/ajprenal.00625.2018
10.1161/01.RES.87.5.e1
10.4049/jimmunol.1900579
10.1038/s41586-020-2016-3
10.1093/jtm/taaa041
10.1016/j.tem.2017.06.002
10.1124/pr.118.017129
10.4187/respcare.04716
10.1164/rccm.202001-0179LE
10.1186/s12931-020-01445-6
10.1023/A:1026215712983
10.1042/CS20120162
10.1016/j.lfs.2018.04.010
10.1042/BJ20040634
10.1038/nature02145
10.1038/hr.2009.209
10.1016/j.bbrc.2004.05.114
10.1161/01.HYP.0000237862.94083.45
10.1177/1470320313507622
10.1038/s41374-019-0289-7
10.1099/vir.0.043919-0
10.2147/COPD.S104097
10.1042/CS20130436
10.1016/j.yjmcc.2013.11.017
10.3390/molecules23020265
10.1002/path.1570
10.7554/eLife.57555
10.1097/00004872-200410000-00020
10.1016/j.yexmp.2014.07.003
10.1016/j.coph.2006.03.001
10.1371/journal.pone.0085958
10.1161/HYPERTENSIONAHA.115.06892
10.2337/dc20-0895
10.4266/kjccm.2016.00976
10.1007/s11906-020-01101-w
10.1152/ajpheart.00481.2008
10.1016/j.peptides.2005.01.009
10.1016/j.yexmp.2019.104350
10.1007/s40265-015-0509-4
10.1016/j.biopha.2017.07.091
10.1152/ajpregu.00292.2006
10.1007/s00109-012-0859-2
10.1016/S2213-2600(20)30116-8
10.1161/HYPERTENSIONAHA.120.15572
10.1093/eurheartj/ehaa373
10.1002/path.2987
10.1042/CS20120619
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms21218038
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7663767
33126657
10_3390_ijms21218038
Genre Journal Article
Review
GrantInformation_xml – fundername: Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
  grantid: 1/0035/19 and 2/0112/19
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
COVID
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-4d34a2fd22af5e0aa58d061abbcfe4f8823b937aae766799d0914d396c401ee03
IEDL.DBID 7X7
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:03:59 EDT 2025
Thu Jul 10 20:27:48 EDT 2025
Fri Jul 25 19:59:05 EDT 2025
Wed Feb 19 02:30:19 EST 2025
Tue Jul 01 04:15:45 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords COVID-19
ACE2
SARS-CoV-2
ARDS
renin–angiotensin system
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-4d34a2fd22af5e0aa58d061abbcfe4f8823b937aae766799d0914d396c401ee03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors equally contributed to this work.
ORCID 0000-0002-9922-4885
0000-0002-1891-0470
OpenAccessLink https://www.proquest.com/docview/2548592952?pq-origsite=%requestingapplication%
PMID 33126657
PQID 2548592952
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7663767
proquest_miscellaneous_2456415048
proquest_journals_2548592952
pubmed_primary_33126657
crossref_primary_10_3390_ijms21218038
crossref_citationtrail_10_3390_ijms21218038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201028
PublicationDateYYYYMMDD 2020-10-28
PublicationDate_xml – month: 10
  year: 2020
  text: 20201028
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Oudit (ref_87) 2020; 41
Huang (ref_33) 2014; 5
Xu (ref_97) 2020; 21
Hofmann (ref_72) 2004; 319
Zheng (ref_104) 2015; 95
ref_11
ref_98
Tipnis (ref_22) 2000; 275
ref_19
Patoulias (ref_85) 2020; 22
Cha (ref_106) 2018; 22
Hoffmann (ref_69) 2020; 181
Dijkman (ref_73) 2012; 93
Hamming (ref_46) 2004; 203
Simko (ref_12) 1999; 48
Zhang (ref_116) 2020; 46
Lutter (ref_115) 2011; 225
Fang (ref_80) 2020; 8
Zhang (ref_117) 2017; 21
Steckelings (ref_20) 2017; 28
Zou (ref_31) 2014; 5
Doobay (ref_44) 2007; 292
Wang (ref_4) 2019; 58
Dutra (ref_100) 2019; 2019
Iwata (ref_51) 2011; 7
Vickers (ref_40) 2002; 277
Simko (ref_13) 2003; 17
Palau (ref_50) 2019; 317
Alabed (ref_70) 2020; 18
Romero (ref_110) 2019; 316
McKinney (ref_103) 2014; 126
Khan (ref_118) 2017; 21
Haga (ref_56) 2008; 105
Kim (ref_78) 2017; 32
Pham (ref_5) 2017; 195
Pierrakos (ref_7) 2012; 4
ref_74
Sriram (ref_82) 2020; 108
Pan (ref_66) 2020; 578
Diaz (ref_81) 2020; 27
Maca (ref_2) 2017; 62
Zambelli (ref_36) 2015; 3
Jia (ref_49) 2009; 297
Li (ref_101) 2018; 206
Wan (ref_67) 2020; 94
Gajic (ref_3) 2005; 31
Jia (ref_18) 2016; 46
Simko (ref_14) 2014; 2014
Donoghue (ref_43) 2000; 87
Ferrario (ref_89) 2005; 111
Gembardt (ref_45) 2005; 26
Santos (ref_23) 2014; 63
Vaduganathan (ref_86) 2020; 382
Burchill (ref_91) 2012; 123
ref_84
Arendse (ref_94) 2019; 71
Zhang (ref_111) 2012; 18
Hamming (ref_88) 2008; 93
Sodhi (ref_38) 2019; 203
Mogi (ref_96) 2010; 33
Ocaranza (ref_24) 2014; 127
Yang (ref_107) 2004; 43
Ye (ref_35) 2020; 113
Xu (ref_47) 2020; 12
ref_57
ref_52
Quinton (ref_37) 2018; 98
Zhao (ref_68) 2020; 202
Gonzalez (ref_105) 2018; 156
Kim (ref_75) 2016; 11
Gonzalez (ref_108) 2014; 126
Chen (ref_119) 2013; 185
Deng (ref_113) 2014; 97
Santos (ref_8) 2019; 316
Hrenak (ref_10) 2015; 21
Edsfeldt (ref_59) 2020; 24
Glowacka (ref_71) 2010; 84
Camargo (ref_92) 2015; 474
Kuba (ref_65) 2005; 11
Kobori (ref_95) 2013; 19
Xia (ref_61) 2013; 113
Conte (ref_112) 2016; 7
Zhang (ref_114) 2018; 350
Silva (ref_102) 2019; 133
Li (ref_64) 2003; 426
Kornilov (ref_58) 2020; 24
Netea (ref_26) 2020; 9
Lin (ref_109) 2008; 295
Lenglet (ref_99) 2017; 47
Xiao (ref_53) 2016; 7
Guo (ref_83) 2020; 76
Ocaranza (ref_90) 2006; 48
Wu (ref_9) 2018; 38
ref_32
Sodhi (ref_27) 2018; 314
Simko (ref_15) 2015; 190
Soto (ref_77) 2017; 3
Hrenak (ref_25) 2020; 39
Wang (ref_41) 2016; 68
Furuhashi (ref_93) 2015; 28
Rice (ref_39) 2004; 383
Paulis (ref_21) 2016; 76
Liu (ref_62) 2014; 185
Kuba (ref_28) 2006; 6
Patel (ref_16) 2017; 94
Campbell (ref_42) 2004; 22
Vadivel (ref_34) 2012; 90
Nie (ref_29) 2014; 15
Yang (ref_63) 2014; 4
ref_1
Sama (ref_60) 2020; 41
Mascolo (ref_17) 2017; 227
Patel (ref_54) 2014; 66
Kaku (ref_6) 2019; 35
ref_48
Xu (ref_55) 2017; 16
Cao (ref_30) 2019; 99
Lai (ref_76) 2018; 13
Davis (ref_79) 2020; 43
References_xml – volume: 5
  start-page: 3595
  year: 2014
  ident: ref_33
  article-title: Angiotensin II plasma levels are linked to disease severity and predict fatal outcomes in H7N9-infected patients
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4595
– volume: 382
  start-page: 1653
  year: 2020
  ident: ref_86
  article-title: Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsr2005760
– volume: 4
  start-page: 7
  year: 2012
  ident: ref_7
  article-title: Acute respiratory distress syndrome: Pathophysiology and therapeutic options
  publication-title: J. Clin. Med. Res.
– volume: 46
  start-page: 239
  year: 2016
  ident: ref_18
  article-title: Pulmonary Angiotensin-Converting Enzyme 2 (ACE2) and Inflammatory Lung Disease
  publication-title: Shock
  doi: 10.1097/SHK.0000000000000633
– volume: 63
  start-page: 1138
  year: 2014
  ident: ref_23
  article-title: Angiotensin-(1-7)
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.113.01274
– volume: 314
  start-page: L17
  year: 2018
  ident: ref_27
  article-title: Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration
  publication-title: Am. J. Physiol. Lung. Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00498.2016
– volume: 93
  start-page: 631
  year: 2008
  ident: ref_88
  article-title: Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2007.041855
– ident: ref_98
  doi: 10.1111/jch.14011
– volume: 4
  start-page: 7027
  year: 2014
  ident: ref_63
  article-title: Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury
  publication-title: Sci. Rep.
  doi: 10.1038/srep07027
– volume: 41
  start-page: 1818
  year: 2020
  ident: ref_87
  article-title: Plasma angiotensin-converting enzyme 2: Novel biomarker in heart failure with implications for COVID-19
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa414
– volume: 181
  start-page: 271
  year: 2020
  ident: ref_69
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 108
  start-page: 236
  year: 2020
  ident: ref_82
  article-title: Risks of ACE inhibitor and ARB usage in COVID-19: Evaluating the evidence
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1002/cpt.1863
– volume: 43
  start-page: 229
  year: 2004
  ident: ref_107
  article-title: Ac-SDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000107777.91185.89
– ident: ref_1
– ident: ref_32
  doi: 10.1371/journal.pone.0213096
– volume: 190
  start-page: 128
  year: 2015
  ident: ref_15
  article-title: Effects of captopril, spironolactone, and simvastatin on the cardiovascular system of non-diseased Wistar rats
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2015.04.092
– volume: 350
  start-page: 1
  year: 2018
  ident: ref_114
  article-title: N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) attenuates silicotic fibrosis by suppressing apoptosis of alveolar type II epithelial cells via mediation of endoplasmic reticulum stress
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2018.04.025
– ident: ref_57
  doi: 10.1097/MJT.0000000000001226
– volume: 18
  start-page: 1
  year: 2020
  ident: ref_70
  article-title: Airways expression of SARS-CoV-2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2020.05.013
– volume: 94
  start-page: e00127
  year: 2020
  ident: ref_67
  article-title: Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.00127-20
– volume: 227
  start-page: 734
  year: 2017
  ident: ref_17
  article-title: New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2016.10.069
– volume: 127
  start-page: 549
  year: 2014
  ident: ref_24
  article-title: Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system
  publication-title: Clin. Sci.
  doi: 10.1042/CS20130449
– volume: 113
  start-page: 1087
  year: 2013
  ident: ref_61
  article-title: Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.113.301811
– volume: 277
  start-page: 14838
  year: 2002
  ident: ref_40
  article-title: Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M200581200
– volume: 185
  start-page: 64
  year: 2014
  ident: ref_62
  article-title: Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2014.03.010
– volume: 21
  start-page: 305
  year: 2017
  ident: ref_117
  article-title: Recombinant human ACE2: Acing out angiotensin II in ARDS therapy
  publication-title: Crit. Care
  doi: 10.1186/s13054-017-1882-z
– volume: 47
  start-page: 117
  year: 2017
  ident: ref_99
  article-title: Alamandine abrogates neutrophil degranulation in atherosclerotic mice. Eur
  publication-title: J. Clin. Investig.
  doi: 10.1111/eci.12708
– volume: 7
  start-page: 33841
  year: 2016
  ident: ref_112
  article-title: Preventive and therapeutic effects of thymosin β4 N-terminal fragment Ac-SDKP in the bleomycin model of pulmonary fibrosis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8409
– volume: 105
  start-page: 7809
  year: 2008
  ident: ref_56
  article-title: Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711241105
– volume: 95
  start-page: 38
  year: 2015
  ident: ref_104
  article-title: Treatment with angiotensin-(1-9) alleviates the cardiomyopathy in streptozotocin-induced diabetic rats
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2015.03.009
– volume: 195
  start-page: 860
  year: 2017
  ident: ref_5
  article-title: Fifty years of research in ARDS. The epidemiology of acute respiratory distress syndrome. A 50th birthday review
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201609-1773CP
– volume: 38
  start-page: e108
  year: 2018
  ident: ref_9
  article-title: Renin-Angiotensin System and Cardiovascular Functions
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.118.311282
– volume: 12
  start-page: 8
  year: 2020
  ident: ref_47
  article-title: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa
  publication-title: Int. J. Oral Sci.
  doi: 10.1038/s41368-020-0074-x
– volume: 275
  start-page: 33238
  year: 2000
  ident: ref_22
  article-title: A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002615200
– ident: ref_84
  doi: 10.1111/jcpt.13246
– volume: 58
  start-page: 101833
  year: 2019
  ident: ref_4
  article-title: Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation
  publication-title: Pulm. Pharmacol. Ther.
  doi: 10.1016/j.pupt.2019.101833
– volume: 185
  start-page: 740
  year: 2013
  ident: ref_119
  article-title: Angiotensin-(1-7) attenuates lung fibrosis by way of Mas receptor in acute lung injury
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2013.06.052
– volume: 316
  start-page: H958
  year: 2019
  ident: ref_8
  article-title: The renin-angiotensin system: Going beyond the classical paradigms
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00723.2018
– volume: 24
  start-page: 452
  year: 2020
  ident: ref_58
  article-title: Plasma levels of soluble ACE2 are associated with sex, Metabolic Syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-03141-9
– volume: 84
  start-page: 1198
  year: 2010
  ident: ref_71
  article-title: Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63
  publication-title: J. Virol.
  doi: 10.1128/JVI.01248-09
– volume: 3
  start-page: 44
  year: 2015
  ident: ref_36
  article-title: Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome
  publication-title: Intensive Care Med. Exp.
  doi: 10.1186/s40635-015-0044-3
– volume: 7
  start-page: 42
  year: 2011
  ident: ref_51
  article-title: Ectodomain shedding of ACE and ACE2 as regulators of their protein functions
  publication-title: Curr. Enzym. Inhib.
  doi: 10.2174/157340811795713756
– volume: 7
  start-page: 146
  year: 2016
  ident: ref_53
  article-title: Protein Kinase C-δ Mediates Shedding of Angiotensin-Converting Enzyme 2 from Proximal Tubular Cells
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2016.00146
– volume: 5
  start-page: 3594
  year: 2014
  ident: ref_31
  article-title: Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4594
– volume: 133
  start-page: 629
  year: 2019
  ident: ref_102
  article-title: Alamandine attenuates arterial remodelling induced by transverse aortic constriction in mice
  publication-title: Clin. Sci.
  doi: 10.1042/CS20180547
– volume: 39
  start-page: 203
  year: 2020
  ident: ref_25
  article-title: Renin-angiotensin system and SARS-CoV-2 interaction: Underlying mechanisms and potential clinical implications
  publication-title: Gen. Physiol. Biophys.
  doi: 10.4149/gpb_2020019
– volume: 22
  start-page: 447
  year: 2018
  ident: ref_106
  article-title: Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor
  publication-title: Korean J. Physiol. Pharmacol.
  doi: 10.4196/kjpp.2018.22.4.447
– volume: 18
  start-page: 5283
  year: 2012
  ident: ref_111
  article-title: Antifibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline on bile duct ligation induced liver fibrosis in rats
  publication-title: World J. Gastroenterol.
– ident: ref_11
  doi: 10.3390/ijms17071098
– volume: 2014
  start-page: 703175
  year: 2014
  ident: ref_14
  article-title: Hypertension and cardiovascular remodelling in rats exposed to continuous light: Protection by ACE-inhibition and melatonin
  publication-title: Mediators Inflamm.
  doi: 10.1155/2014/703175
– ident: ref_74
  doi: 10.1371/journal.pone.0110165
– volume: 316
  start-page: F195
  year: 2019
  ident: ref_110
  article-title: A Renal release of N-acetyl-seryl-aspartyl-lysyl-proline is part of an antifibrotic peptidergic system in the kidney
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00270.2018
– volume: 474
  start-page: 693
  year: 2015
  ident: ref_92
  article-title: Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors
  publication-title: Amino Acids
– volume: 13
  start-page: 867
  year: 2018
  ident: ref_76
  article-title: Comparative effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on the risk of pneumonia and severe exacerbations in patients with COPD
  publication-title: Int. J. Chronic Obstr. Pulm. Dis.
  doi: 10.2147/COPD.S158634
– volume: 46
  start-page: 586
  year: 2020
  ident: ref_116
  article-title: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-020-05985-9
– volume: 28
  start-page: 15
  year: 2015
  ident: ref_93
  article-title: Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker
  publication-title: Am. J. Hypertens.
  doi: 10.1093/ajh/hpu086
– volume: 16
  start-page: 7432
  year: 2017
  ident: ref_55
  article-title: Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2017.7546
– volume: 35
  start-page: 723
  year: 2019
  ident: ref_6
  article-title: Acute respiratory distress syndrome: Etiology, pathogenesis, and summary on management
  publication-title: J. Intensive Care Med.
  doi: 10.1177/0885066619855021
– volume: 24
  start-page: 221
  year: 2020
  ident: ref_59
  article-title: Age and sex differences in soluble ACE2 may give insights for COVID-19
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-02942-2
– volume: 19
  start-page: 3033
  year: 2013
  ident: ref_95
  article-title: Angiotensin II blockade and renal protection
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612811319170009
– volume: 11
  start-page: 875
  year: 2005
  ident: ref_65
  article-title: A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury
  publication-title: Nat. Med.
  doi: 10.1038/nm1267
– ident: ref_48
  doi: 10.1101/2020.05.14.090332
– volume: 297
  start-page: L84
  year: 2009
  ident: ref_49
  article-title: Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00071.2009
– volume: 3
  start-page: 6
  year: 2017
  ident: ref_77
  article-title: Renin Angiotensin system-modifying therapies are associated with improved pulmonary health
  publication-title: Clin. Diabetes Endocrinol.
  doi: 10.1186/s40842-017-0044-1
– volume: 21
  start-page: 5135
  year: 2015
  ident: ref_10
  article-title: N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP): Potential target molecule in research of heart, kidney and brain
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612821666150909093927
– volume: 156
  start-page: 357
  year: 2018
  ident: ref_105
  article-title: Angiotensin-(1-9) reduces cardiovascular and renal inflammation in experimental renin-independent hypertension
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2018.08.045
– volume: 21
  start-page: 234
  year: 2017
  ident: ref_118
  article-title: A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome
  publication-title: Crit. Care
  doi: 10.1186/s13054-017-1823-x
– volume: 31
  start-page: 922
  year: 2005
  ident: ref_3
  article-title: Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-005-2625-1
– volume: 98
  start-page: 1417
  year: 2018
  ident: ref_37
  article-title: Integrative Physiology of Pneumonia
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00032.2017
– volume: 111
  start-page: 2605
  year: 2005
  ident: ref_89
  article-title: Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.104.510461
– volume: 317
  start-page: F333
  year: 2019
  ident: ref_50
  article-title: Role of ADAM17 in kidney disease
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00625.2018
– volume: 87
  start-page: E1
  year: 2000
  ident: ref_43
  article-title: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.87.5.e1
– volume: 203
  start-page: 3000
  year: 2019
  ident: ref_38
  article-title: Dynamic variation of pulmonary ACE2 is required to modulate neutrophilic inflammation in response to Pseudomonas aeruginosa lung infection in mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1900579
– volume: 578
  start-page: 559
  year: 2020
  ident: ref_66
  article-title: Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass
  publication-title: Nature
  doi: 10.1038/s41586-020-2016-3
– volume: 27
  start-page: taaa041
  year: 2020
  ident: ref_81
  article-title: Hypothesis: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19
  publication-title: J. Travel. Med.
  doi: 10.1093/jtm/taaa041
– volume: 28
  start-page: 684
  year: 2017
  ident: ref_20
  article-title: Centrally Mediated Cardiovascular Actions of the Angiotensin II Type 2 Receptor
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2017.06.002
– volume: 71
  start-page: 539
  year: 2019
  ident: ref_94
  article-title: Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.118.017129
– volume: 62
  start-page: 113
  year: 2017
  ident: ref_2
  article-title: Past and Present ARDS Mortality Rates: A Systematic Review
  publication-title: Respir. Care
  doi: 10.4187/respcare.04716
– volume: 202
  start-page: 756
  year: 2020
  ident: ref_68
  article-title: Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan COVID-19
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.202001-0179LE
– volume: 21
  start-page: 182
  year: 2020
  ident: ref_97
  article-title: SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis
  publication-title: Respir. Res.
  doi: 10.1186/s12931-020-01445-6
– volume: 17
  start-page: 287
  year: 2003
  ident: ref_13
  article-title: ACE-inhibition and angiotensin II receptor blockers in chronic heart failure: Pathophysiological consideration of the unresolved battle
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1023/A:1026215712983
– volume: 123
  start-page: 649
  year: 2012
  ident: ref_91
  article-title: Combination renin-angiotensin system blockade and angiotensin-converting enzyme 2 in experimental myocardial infarction: Implications for future therapeutic directions
  publication-title: Clin. Sci.
  doi: 10.1042/CS20120162
– volume: 206
  start-page: 106
  year: 2018
  ident: ref_101
  article-title: Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2018.04.010
– volume: 383
  start-page: 45
  year: 2004
  ident: ref_39
  article-title: Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism
  publication-title: Biochem. J.
  doi: 10.1042/BJ20040634
– volume: 2019
  start-page: 2401081
  year: 2019
  ident: ref_100
  article-title: Angiotensin-(1-7) and alamandine promote anti-inflammatory response in macrophages in vitro and in vivo
  publication-title: Mediat. Inflamm.
– volume: 426
  start-page: 450
  year: 2003
  ident: ref_64
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
  doi: 10.1038/nature02145
– volume: 33
  start-page: 116
  year: 2010
  ident: ref_96
  article-title: Remote control of brain angiotensin II levels by angiotensin receptor blockers
  publication-title: Hypertens. Res.
  doi: 10.1038/hr.2009.209
– volume: 319
  start-page: 1216
  year: 2004
  ident: ref_72
  article-title: Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.05.114
– volume: 48
  start-page: 572
  year: 2006
  ident: ref_90
  article-title: Enalapril attenuates downregulation of Angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000237862.94083.45
– volume: 15
  start-page: 585
  year: 2014
  ident: ref_29
  article-title: Angiotensin-converting enzyme I/D polymorphism is associated with pneumonia risk: A meta-analysis
  publication-title: J. Renin Angiotensin Aldosterone Syst.
  doi: 10.1177/1470320313507622
– volume: 99
  start-page: 1770
  year: 2019
  ident: ref_30
  article-title: Ang-(1-7) treatment attenuates lipopolysaccharide-induced early pulmonary fibrosis
  publication-title: Lab. Investig.
  doi: 10.1038/s41374-019-0289-7
– volume: 93
  start-page: 1924
  year: 2012
  ident: ref_73
  article-title: Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.043919-0
– volume: 11
  start-page: 2159
  year: 2016
  ident: ref_75
  article-title: The association of renin-angiotensin system blockades and pneumonia requiring admission in patients with COPD
  publication-title: Int. J. Chronic Obstr. Pulm. Dis.
  doi: 10.2147/COPD.S104097
– volume: 126
  start-page: 815
  year: 2014
  ident: ref_103
  article-title: Angiotensin-(1-7) and angiotensin-(1-9): Function in cardiac and vascular remodelling
  publication-title: Clin. Sci.
  doi: 10.1042/CS20130436
– volume: 66
  start-page: 167
  year: 2014
  ident: ref_54
  article-title: Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: A positive feedback mechanism in the RAS
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2013.11.017
– ident: ref_19
  doi: 10.3390/molecules23020265
– volume: 203
  start-page: 631
  year: 2004
  ident: ref_46
  article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
  publication-title: J. Pathol.
  doi: 10.1002/path.1570
– volume: 9
  start-page: e57555
  year: 2020
  ident: ref_26
  article-title: Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome
  publication-title: Elife
  doi: 10.7554/eLife.57555
– volume: 22
  start-page: 1971
  year: 2004
  ident: ref_42
  article-title: Evidence against a major role for angiotensin converting enzyme-related carboxypeptidase (ACE2) in angiotensin peptide metabolism in the human coronary circulation
  publication-title: J. Hypertens.
  doi: 10.1097/00004872-200410000-00020
– volume: 97
  start-page: 176
  year: 2014
  ident: ref_113
  article-title: Ac-SDKP suppresses epithelial-mesenchymal transition in A549 cells via HSP27 signaling
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2014.07.003
– volume: 6
  start-page: 271
  year: 2006
  ident: ref_28
  article-title: Angiotensin-converting enzyme 2 in lung diseases
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2006.03.001
– ident: ref_52
  doi: 10.1371/journal.pone.0085958
– volume: 68
  start-page: 365
  year: 2016
  ident: ref_41
  article-title: Angiotensin-converting enzyme 2 metabolizes and partially inactivates Pyr-Apelin-13 and Apelin-17: Physiological effects in the cardiovascular system
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.115.06892
– volume: 43
  start-page: 2113
  year: 2020
  ident: ref_79
  article-title: Influence of renin-angiotensin system inhibitors on lower-respiratory tract infections in type 2 diabetes: The frmantle diabetes study phase II
  publication-title: Diabetes Care
  doi: 10.2337/dc20-0895
– volume: 32
  start-page: 154
  year: 2017
  ident: ref_78
  article-title: Effect of renin-angiotensin system blockage in patients with acute respiratory distress syndrome: A retrospective case control study
  publication-title: Korean J. Crit. Care Med.
  doi: 10.4266/kjccm.2016.00976
– volume: 22
  start-page: 90
  year: 2020
  ident: ref_85
  article-title: Renin-angiotensin system inhibitors and COVID-19: A systematic review and meta-analysis. Evidence for significant geographical disparities
  publication-title: Curr. Hypertens. Rep.
  doi: 10.1007/s11906-020-01101-w
– volume: 295
  start-page: H1253
  year: 2008
  ident: ref_109
  article-title: Prevention of aortic fibrosis by N-acetyl-seryl-aspartyl-lysyl-proline in angiotensin II-induced hypertension
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00481.2008
– volume: 26
  start-page: 1270
  year: 2005
  ident: ref_45
  article-title: Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents
  publication-title: Peptides
  doi: 10.1016/j.peptides.2005.01.009
– volume: 113
  start-page: 104350
  year: 2020
  ident: ref_35
  article-title: ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2019.104350
– volume: 76
  start-page: 1
  year: 2016
  ident: ref_21
  article-title: Combined Angiotensin Receptor Modulation in the Management of Cardio-Metabolic Disorders
  publication-title: Drugs
  doi: 10.1007/s40265-015-0509-4
– volume: 94
  start-page: 317
  year: 2017
  ident: ref_16
  article-title: Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.07.091
– volume: 292
  start-page: R373
  year: 2007
  ident: ref_44
  article-title: Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin–angiotensin system
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00292.2006
– volume: 90
  start-page: 637
  year: 2012
  ident: ref_34
  article-title: Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-012-0859-2
– volume: 8
  start-page: e21
  year: 2020
  ident: ref_80
  article-title: Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30116-8
– volume: 76
  start-page: e13
  year: 2020
  ident: ref_83
  article-title: Decreased mortality of COVID-19 with renin-angiotensin-aldosterone system inhibitors therapy in patients with hypertension: A meta-analysis
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.120.15572
– volume: 41
  start-page: 1810
  year: 2020
  ident: ref_60
  article-title: Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa373
– volume: 225
  start-page: 618
  year: 2011
  ident: ref_115
  article-title: Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist
  publication-title: J. Pathol.
  doi: 10.1002/path.2987
– volume: 48
  start-page: 1
  year: 1999
  ident: ref_12
  article-title: Heart failure and angiotensin converting enzyme inhibition: Problems and perspectives
  publication-title: Physiol. Res.
– volume: 126
  start-page: 85
  year: 2014
  ident: ref_108
  article-title: N-acetyl-seryl-aspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats
  publication-title: Clin. Sci.
  doi: 10.1042/CS20120619
SSID ssj0023259
Score 2.513337
SecondaryResourceType review_article
Snippet Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8038
SubjectTerms ADAM17 Protein - metabolism
Angiotensin-Converting Enzyme 2
Animals
Avian flu
Bacterial infections
Betacoronavirus
Capillary Permeability - physiology
Chemokines
Coronavirus Infections - pathology
COVID-19
Cytokines
Enzymes
Gene expression
Humans
Hypertension
Inflammation
Inflammation - pathology
Lavage
Lung - immunology
Lung - pathology
Lungs
Mice
Mortality
Neutrophils
Pandemics
Pathogenesis
Peptides
Peptidyl-Dipeptidase A - metabolism
Permeability
Physiology
Pneumonia
Pneumonia, Viral - pathology
Pulmonary Edema - pathology
Rats
Renin-Angiotensin System - physiology
Respiratory distress syndrome
Respiratory system
Review
SARS-CoV-2
Severe Acute Respiratory Syndrome - pathology
Severe acute respiratory syndrome coronavirus 2
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-TNF
Ventilators
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB7BVkhcEG35WaCVkcoJBTaOnTiVEFq1RYAEQoiVuEW240DQ4gCbldgb79A37JN0nOymbPk5e-w4M7bnG439DcA3gU5Jc6o9R7XpMcYyT6mMeVJIE5ugI1n1bu3kNDzsseNLfjkDk2qjYwUOXg3tXD2p3kN_5_F-tI8bfs9FnBiy7-Y3twM8gX3RCcQsfECfFLktesKafALChqpsmo_eyAt5HNZX4F_0nnZOLxDn_xcnn3mig0VYGENI0q1t_hFmjP0Ec3VRydFnuDk3Nrd_nn537VVeVBfULamJyb-TriVHt9Xf2pKc9SUCboLNiALJGWLB4sodffmAFBnp6mFpyPm_VDz5mdcvS3C0muZgCXoHvy5-HHrjigqeZpEoPZYGTNIspVRm3HSk5CJFhy6V0plhGaLtQCFekdJEYRjFcYpoAvvEocYwzJhOsAwtW1izCoRyjC2FivwUQ0weaxVzFbmhmI61oH4btieqTPSYbtxVvegnGHY4xSfPFd-GrUb6rqbZeENuY2KVZLJWEpyA4AjzOG3DZtOM28TlPqQ1xRBlHG0Ogl-GQ6zURmw-FAQ-dQmoNkRT5m0EHAX3dIvNrysqblSTo8NZe39a6zBPXZiOLo-KDWiVD0PzBbFMqb5Wy_Qv2tL1Kw
  priority: 102
  providerName: Scholars Portal
Title Renin–Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome
URI https://www.ncbi.nlm.nih.gov/pubmed/33126657
https://www.proquest.com/docview/2548592952
https://www.proquest.com/docview/2456415048
https://pubmed.ncbi.nlm.nih.gov/PMC7663767
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BKyQuiH8WyspIcEJWN46dOFzQAl0KUqvVikp7i2zHaVO1TmGzB268A2_IkzCTZH8KgksunjiRx575xh5_A_BSo1NySjhOVJtcSllya0vJjTY-8_HIyPbe2tFxcngiP8_VvN9wW_RplSub2Brqona0R76PgYxW6MuVeHv1lVPVKDpd7Uto3IRdoi6jlK50vgm4YtEWS4vQB_FEZUmX-B5jmL9fnV8u0GpHekQ3U7Zd0l848890yS3_M7kLd3rgyMadpu_BDR_uw62ulOT3B3A-86EKv378HIfTqm7T0gPr6MjfsHFgny5boB0aNr0wCLMZNiP2Y1NEgPUpGbxqweqSjd2y8Wy2OYBnH6ruPgn21pEbPISTycGX94e8r6PAnUx1w2URSyPKQghTKj8yRukC3bix1pVeloixY4soxRifJkmaZQViCHwnSxwGX96P4kewE-rgnwATCiNKbdOoQH2ozNlM2ZS6ki5zWkQDeL0aytz1JONU6-Iix2CDBj7fHvgBvFpLX3XkGv-Q21tpJe-X2CLfTIgBvFg34-KgEw8TfL1EGSLLQcgrsYvHnRLXH4rjSNCx0wDSa-pdCxDx9vWWUJ21BNw4TESC8_T_v_UMbgsKztHRCb0HO823pX-OCKaxw3aa4lNPPg5h993B8XQ2JJ-i8Hkk9W_nVvbP
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRQg2iDcDBYxEVyhq4tiJU6lCI0o1Qx-qqlaaXbAdp6RqncJkhLrrP_Q_-Ci-hOt4MjMFwa5rO05yr-1zrh_nArwTCEqaUx04qc2AMVYGSpUskEKazMShZO29td29ZHDEPo_4aAl-dndh3LHKbk5sJ-qi1m6NfA0DGcERyzn9cP4tcFmj3O5ql0LDd4ttc_EDQ7bxxnAT_btK6danw4-DYJpVINAsFU3AiphJWhaUypKbUEouCgQ1qZQuDSuRccYKMVtKkyZJmmUFIio-kyUaQxFjwhjbvQW38R9DN6LS0TzAi2mbnC1CzAsSniX-oH0cZ-FadXI2RpSIROhuwixC4F-89s_jmQt4t_UA7k-JKun7nvUQlox9BHd86sqLx3ByYGxlf11e9e1xVbfH4C3x8ufrpG_J8Kwl9rYh-6cSaT3BYuSaZB8ZZ33sJthqTOqS9PWkMeRgvuFPNit_fwVb82IKT-DoRiz8FJZtbc1zIJRjBCtUGhXof55plXGVuqaYzrSgUQ_ed6bM9VTU3OXWOM0xuHGGzxcN34PVWe1zL-bxj3ornVfy6ZAe5_MO2IO3s2IcjG6HRVpTT7COE-dBis2wiWfeibMXxXFE3TZXD9Jr7p1VcELf10ts9bUV_EYzOdGdF___rDdwd3C4u5PvDPe2X8I96hYGEGSpWIHl5vvEvEL21KjXbZcl8OWmx8hv4QUv_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VIhAviGtZKGAk-oSiTXzJBQmhFcuqS6FaVVTat2A7TknVOoXNCvWt_9C_6ef0SxjnsrsFwVuf7TjRXHzOxOMZgNcxgpIWVHuu1KbHOc89pXLuyViaxDBf8vre2pfdcHuff5qK6RpcdHdhXFpltyfWG3VWavePvI-BTCwQywXt521axGQ4en_yw3MdpNxJa9dOozGRHXP6C8O32bvxEHW9Reno49cP217bYcDTPIorj2eMS5pnlMpcGF9KEWcIcFIpnRueI_tkCvFbShOFYZQkGaIrPpOEGsMSY3yG696AmxETgfOxaLoM9hitG7UFiH9eKJKwSbpnLPH7xeHxDBEjiH13K2YVDv_iuH-maq5g3-ge3G1JKxk0VnYf1ox9ALeaNpanD-Fwz9jCXp6dD-xBUdYp8ZY0pdDfkoEl4-Oa5NuKTI4kUnyCw8g7yQTZZ3ngNttiRsqcDPS8MmRvefhPhkVzlwVXaworPIL9a5HwY1i3pTVPgFCB0WysoiBDWxCJVolQkVuK60THNOjBm06UqW4LnLs-G0cpBjpO8Omq4HuwtZh90hT2-Me8zU4raeves3RpjD14tRhGx3SnLdKaco5zXKEepNscl9holLh4EWMBdUdePYiuqHcxwRX9vjpii-918W8UkyvA8_T_n_USbqN3pJ_HuzvP4A51_wgQb2m8CevVz7l5jkSqUi9qiyXw7bpd5De4pTQ1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renin%E2%80%93Angiotensin+System%3A+An+Important+Player+in+the+Pathogenesis+of+Acute+Respiratory+Distress+Syndrome&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Hrenak%2C+Jaroslav&rft.au=Simko%2C+Fedor&rft.date=2020-10-28&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=21&rft.issue=21&rft.spage=8038&rft_id=info:doi/10.3390%2Fijms21218038&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon