Renin–Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome
Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) pla...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 21; p. 8038 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.10.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1–9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin–angiotensin system and reducing the pathogen’s cell entry could be a promising therapeutic strategy in the struggle against COVID-19. |
---|---|
AbstractList | Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg
9
-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1–9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin–angiotensin system and reducing the pathogen’s cell entry could be a promising therapeutic strategy in the struggle against COVID-19. Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1–9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin–angiotensin system and reducing the pathogen’s cell entry could be a promising therapeutic strategy in the struggle against COVID-19. Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19.Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19. Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg -bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19. |
Author | Hrenak, Jaroslav Simko, Fedor |
AuthorAffiliation | 3 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovak 4 Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak 2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak 1 Department of Cardiovascular Surgery, Inselspital – University Hospital of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland; jaroslav.hrenak@insel.ch |
AuthorAffiliation_xml | – name: 3 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovak – name: 4 Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak – name: 2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak – name: 1 Department of Cardiovascular Surgery, Inselspital – University Hospital of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland; jaroslav.hrenak@insel.ch |
Author_xml | – sequence: 1 givenname: Jaroslav surname: Hrenak fullname: Hrenak, Jaroslav – sequence: 2 givenname: Fedor orcidid: 0000-0002-9922-4885 surname: Simko fullname: Simko, Fedor |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33126657$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1LHEEQhpugxI_k5lkavHhwY3_PtIfAYmIiCBGTnJvemZrdXma6N909wt7yH_yH-SW2aGQVT1VQTz1U8e6hLR88IHRAySfONTl1yyExymhNeP0O7VLB2IQQVW1t9DtoL6UlIYwzqd-jHc4pU0pWu2h5A975f3_vpn7uQgafnMc_1ynDcIanHl8OqxCz9Rlf93YNEZdxXgC-tnkR5uAhuYRDh6fNmAHfQFq5aHOIa_zFpRwhpWLzbQwDfEDbne0TfHyq--j3xddf598nVz--XZ5PryaNqOo8ES0XlnUtY7aTQKyVdUsUtbNZ04Ho6prxmeaVtVApVWndEk3LjlaNIBSA8H30-dG7GmcDtA34HG1vVtENNq5NsM68nHi3MPNwa4qPV6oqguMnQQx_RkjZDC410PfWQxiTYUIqQSURdUGPXqHLMEZf3jNMilpqpiUr1OHmRc-n_I-hACePQBNDShG6Z4QS85Cy2Uy54OwV3rhsswsP_7j-7aV7ukqtvw |
CitedBy_id | crossref_primary_10_3390_biomedicines10092150 crossref_primary_10_1002_med_21875 crossref_primary_10_1016_j_heliyon_2023_e22056 crossref_primary_10_4103_sja_sja_1155_20 crossref_primary_10_1007_s11560_021_00507_0 crossref_primary_10_1111_obr_13225 crossref_primary_10_3390_ijms22094762 crossref_primary_10_1016_j_fsi_2022_08_007 crossref_primary_10_1016_j_biopha_2020_111193 crossref_primary_10_1016_j_bcp_2024_116547 crossref_primary_10_3389_fphar_2022_842512 crossref_primary_10_3390_antiox10030467 crossref_primary_10_1016_j_bcp_2023_115978 crossref_primary_10_3390_ijms222111483 crossref_primary_10_3390_vaccines11010174 crossref_primary_10_3390_ijms22063217 crossref_primary_10_1152_ajplung_00372_2024 crossref_primary_10_3389_fimmu_2025_1553283 crossref_primary_10_1016_j_biopha_2021_111856 crossref_primary_10_1186_s12951_022_01519_1 crossref_primary_10_1155_2024_4936265 crossref_primary_10_3390_ijms222312955 crossref_primary_10_1007_s10616_024_00692_5 crossref_primary_10_1155_2022_9650650 crossref_primary_10_1134_S1990750822040035 crossref_primary_10_3389_fmed_2022_791284 crossref_primary_10_3390_biomedicines12122893 crossref_primary_10_1016_j_ejphar_2024_176392 crossref_primary_10_18097_pbmc20226803157 crossref_primary_10_1042_CS20210182 crossref_primary_10_1016_j_intimp_2024_112304 crossref_primary_10_3389_fmed_2023_1203827 crossref_primary_10_3390_ijms23116350 crossref_primary_10_3390_cells12121664 crossref_primary_10_1016_j_matt_2021_03_016 crossref_primary_10_3390_ijms22157975 crossref_primary_10_1097_CCM_0000000000005495 crossref_primary_10_1042_CS20220235 crossref_primary_10_1016_j_intimp_2024_111522 crossref_primary_10_3390_biomedicines10081844 crossref_primary_10_3390_ijms242417600 crossref_primary_10_2174_0113862073259884231024111447 crossref_primary_10_1007_s11033_022_07166_x crossref_primary_10_1016_j_biopha_2022_113961 crossref_primary_10_1016_j_biopha_2023_115127 crossref_primary_10_3389_fphys_2021_806062 crossref_primary_10_3390_ijms242417522 crossref_primary_10_20960_nh_04299 crossref_primary_10_1080_10408363_2021_1942782 crossref_primary_10_3389_fmed_2023_1280951 crossref_primary_10_3390_microorganisms12030583 crossref_primary_10_3390_toxics12080560 |
Cites_doi | 10.1038/ncomms4595 10.1056/NEJMsr2005760 10.1097/SHK.0000000000000633 10.1161/HYPERTENSIONAHA.113.01274 10.1152/ajplung.00498.2016 10.1113/expphysiol.2007.041855 10.1111/jch.14011 10.1038/srep07027 10.1093/eurheartj/ehaa414 10.1016/j.cell.2020.02.052 10.1002/cpt.1863 10.1161/01.HYP.0000107777.91185.89 10.1371/journal.pone.0213096 10.1016/j.ijcard.2015.04.092 10.1016/j.taap.2018.04.025 10.1097/MJT.0000000000001226 10.1016/j.omtm.2020.05.013 10.1128/JVI.00127-20 10.1016/j.ijcard.2016.10.069 10.1042/CS20130449 10.1161/CIRCRESAHA.113.301811 10.1074/jbc.M200581200 10.1016/j.virusres.2014.03.010 10.1186/s13054-017-1882-z 10.1111/eci.12708 10.18632/oncotarget.8409 10.1073/pnas.0711241105 10.1016/j.bcp.2015.03.009 10.1164/rccm.201609-1773CP 10.1161/ATVBAHA.118.311282 10.1038/s41368-020-0074-x 10.1074/jbc.M002615200 10.1111/jcpt.13246 10.1016/j.pupt.2019.101833 10.1016/j.jss.2013.06.052 10.1152/ajpheart.00723.2018 10.1186/s13054-020-03141-9 10.1128/JVI.01248-09 10.1186/s40635-015-0044-3 10.2174/157340811795713756 10.3389/fphar.2016.00146 10.1038/ncomms4594 10.1042/CS20180547 10.4149/gpb_2020019 10.4196/kjpp.2018.22.4.447 10.3390/ijms17071098 10.1155/2014/703175 10.1371/journal.pone.0110165 10.1152/ajprenal.00270.2018 10.2147/COPD.S158634 10.1007/s00134-020-05985-9 10.1093/ajh/hpu086 10.3892/mmr.2017.7546 10.1177/0885066619855021 10.1186/s13054-020-02942-2 10.2174/1381612811319170009 10.1038/nm1267 10.1101/2020.05.14.090332 10.1152/ajplung.00071.2009 10.1186/s40842-017-0044-1 10.2174/1381612821666150909093927 10.1016/j.bcp.2018.08.045 10.1186/s13054-017-1823-x 10.1007/s00134-005-2625-1 10.1152/physrev.00032.2017 10.1161/CIRCULATIONAHA.104.510461 10.1152/ajprenal.00625.2018 10.1161/01.RES.87.5.e1 10.4049/jimmunol.1900579 10.1038/s41586-020-2016-3 10.1093/jtm/taaa041 10.1016/j.tem.2017.06.002 10.1124/pr.118.017129 10.4187/respcare.04716 10.1164/rccm.202001-0179LE 10.1186/s12931-020-01445-6 10.1023/A:1026215712983 10.1042/CS20120162 10.1016/j.lfs.2018.04.010 10.1042/BJ20040634 10.1038/nature02145 10.1038/hr.2009.209 10.1016/j.bbrc.2004.05.114 10.1161/01.HYP.0000237862.94083.45 10.1177/1470320313507622 10.1038/s41374-019-0289-7 10.1099/vir.0.043919-0 10.2147/COPD.S104097 10.1042/CS20130436 10.1016/j.yjmcc.2013.11.017 10.3390/molecules23020265 10.1002/path.1570 10.7554/eLife.57555 10.1097/00004872-200410000-00020 10.1016/j.yexmp.2014.07.003 10.1016/j.coph.2006.03.001 10.1371/journal.pone.0085958 10.1161/HYPERTENSIONAHA.115.06892 10.2337/dc20-0895 10.4266/kjccm.2016.00976 10.1007/s11906-020-01101-w 10.1152/ajpheart.00481.2008 10.1016/j.peptides.2005.01.009 10.1016/j.yexmp.2019.104350 10.1007/s40265-015-0509-4 10.1016/j.biopha.2017.07.091 10.1152/ajpregu.00292.2006 10.1007/s00109-012-0859-2 10.1016/S2213-2600(20)30116-8 10.1161/HYPERTENSIONAHA.120.15572 10.1093/eurheartj/ehaa373 10.1002/path.2987 10.1042/CS20120619 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms21218038 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7663767 33126657 10_3390_ijms21218038 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Vedecká Grantová Agentúra MŠVVaŠ SR a SAV grantid: 1/0035/19 and 2/0112/19 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK COVID K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-4d34a2fd22af5e0aa58d061abbcfe4f8823b937aae766799d0914d396c401ee03 |
IEDL.DBID | 7X7 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:03:59 EDT 2025 Thu Jul 10 20:27:48 EDT 2025 Fri Jul 25 19:59:05 EDT 2025 Wed Feb 19 02:30:19 EST 2025 Tue Jul 01 04:15:45 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | COVID-19 ACE2 SARS-CoV-2 ARDS renin–angiotensin system |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-4d34a2fd22af5e0aa58d061abbcfe4f8823b937aae766799d0914d396c401ee03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors equally contributed to this work. |
ORCID | 0000-0002-9922-4885 0000-0002-1891-0470 |
OpenAccessLink | https://www.proquest.com/docview/2548592952?pq-origsite=%requestingapplication% |
PMID | 33126657 |
PQID | 2548592952 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7663767 proquest_miscellaneous_2456415048 proquest_journals_2548592952 pubmed_primary_33126657 crossref_primary_10_3390_ijms21218038 crossref_citationtrail_10_3390_ijms21218038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201028 |
PublicationDateYYYYMMDD | 2020-10-28 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201028 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Oudit (ref_87) 2020; 41 Huang (ref_33) 2014; 5 Xu (ref_97) 2020; 21 Hofmann (ref_72) 2004; 319 Zheng (ref_104) 2015; 95 ref_11 ref_98 Tipnis (ref_22) 2000; 275 ref_19 Patoulias (ref_85) 2020; 22 Cha (ref_106) 2018; 22 Hoffmann (ref_69) 2020; 181 Dijkman (ref_73) 2012; 93 Hamming (ref_46) 2004; 203 Simko (ref_12) 1999; 48 Zhang (ref_116) 2020; 46 Lutter (ref_115) 2011; 225 Fang (ref_80) 2020; 8 Zhang (ref_117) 2017; 21 Steckelings (ref_20) 2017; 28 Zou (ref_31) 2014; 5 Doobay (ref_44) 2007; 292 Wang (ref_4) 2019; 58 Dutra (ref_100) 2019; 2019 Iwata (ref_51) 2011; 7 Vickers (ref_40) 2002; 277 Simko (ref_13) 2003; 17 Palau (ref_50) 2019; 317 Alabed (ref_70) 2020; 18 Romero (ref_110) 2019; 316 McKinney (ref_103) 2014; 126 Khan (ref_118) 2017; 21 Haga (ref_56) 2008; 105 Kim (ref_78) 2017; 32 Pham (ref_5) 2017; 195 Pierrakos (ref_7) 2012; 4 ref_74 Sriram (ref_82) 2020; 108 Pan (ref_66) 2020; 578 Diaz (ref_81) 2020; 27 Maca (ref_2) 2017; 62 Zambelli (ref_36) 2015; 3 Jia (ref_49) 2009; 297 Li (ref_101) 2018; 206 Wan (ref_67) 2020; 94 Gajic (ref_3) 2005; 31 Jia (ref_18) 2016; 46 Simko (ref_14) 2014; 2014 Donoghue (ref_43) 2000; 87 Ferrario (ref_89) 2005; 111 Gembardt (ref_45) 2005; 26 Santos (ref_23) 2014; 63 Vaduganathan (ref_86) 2020; 382 Burchill (ref_91) 2012; 123 ref_84 Arendse (ref_94) 2019; 71 Zhang (ref_111) 2012; 18 Hamming (ref_88) 2008; 93 Sodhi (ref_38) 2019; 203 Mogi (ref_96) 2010; 33 Ocaranza (ref_24) 2014; 127 Yang (ref_107) 2004; 43 Ye (ref_35) 2020; 113 Xu (ref_47) 2020; 12 ref_57 ref_52 Quinton (ref_37) 2018; 98 Zhao (ref_68) 2020; 202 Gonzalez (ref_105) 2018; 156 Kim (ref_75) 2016; 11 Gonzalez (ref_108) 2014; 126 Chen (ref_119) 2013; 185 Deng (ref_113) 2014; 97 Santos (ref_8) 2019; 316 Hrenak (ref_10) 2015; 21 Edsfeldt (ref_59) 2020; 24 Glowacka (ref_71) 2010; 84 Camargo (ref_92) 2015; 474 Kuba (ref_65) 2005; 11 Kobori (ref_95) 2013; 19 Xia (ref_61) 2013; 113 Conte (ref_112) 2016; 7 Zhang (ref_114) 2018; 350 Silva (ref_102) 2019; 133 Li (ref_64) 2003; 426 Kornilov (ref_58) 2020; 24 Netea (ref_26) 2020; 9 Lin (ref_109) 2008; 295 Lenglet (ref_99) 2017; 47 Xiao (ref_53) 2016; 7 Guo (ref_83) 2020; 76 Ocaranza (ref_90) 2006; 48 Wu (ref_9) 2018; 38 ref_32 Sodhi (ref_27) 2018; 314 Simko (ref_15) 2015; 190 Soto (ref_77) 2017; 3 Hrenak (ref_25) 2020; 39 Wang (ref_41) 2016; 68 Furuhashi (ref_93) 2015; 28 Rice (ref_39) 2004; 383 Paulis (ref_21) 2016; 76 Liu (ref_62) 2014; 185 Kuba (ref_28) 2006; 6 Patel (ref_16) 2017; 94 Campbell (ref_42) 2004; 22 Vadivel (ref_34) 2012; 90 Nie (ref_29) 2014; 15 Yang (ref_63) 2014; 4 ref_1 Sama (ref_60) 2020; 41 Mascolo (ref_17) 2017; 227 Patel (ref_54) 2014; 66 Kaku (ref_6) 2019; 35 ref_48 Xu (ref_55) 2017; 16 Cao (ref_30) 2019; 99 Lai (ref_76) 2018; 13 Davis (ref_79) 2020; 43 |
References_xml | – volume: 5 start-page: 3595 year: 2014 ident: ref_33 article-title: Angiotensin II plasma levels are linked to disease severity and predict fatal outcomes in H7N9-infected patients publication-title: Nat. Commun. doi: 10.1038/ncomms4595 – volume: 382 start-page: 1653 year: 2020 ident: ref_86 article-title: Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsr2005760 – volume: 4 start-page: 7 year: 2012 ident: ref_7 article-title: Acute respiratory distress syndrome: Pathophysiology and therapeutic options publication-title: J. Clin. Med. Res. – volume: 46 start-page: 239 year: 2016 ident: ref_18 article-title: Pulmonary Angiotensin-Converting Enzyme 2 (ACE2) and Inflammatory Lung Disease publication-title: Shock doi: 10.1097/SHK.0000000000000633 – volume: 63 start-page: 1138 year: 2014 ident: ref_23 article-title: Angiotensin-(1-7) publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.113.01274 – volume: 314 start-page: L17 year: 2018 ident: ref_27 article-title: Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration publication-title: Am. J. Physiol. Lung. Cell. Mol. Physiol. doi: 10.1152/ajplung.00498.2016 – volume: 93 start-page: 631 year: 2008 ident: ref_88 article-title: Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2007.041855 – ident: ref_98 doi: 10.1111/jch.14011 – volume: 4 start-page: 7027 year: 2014 ident: ref_63 article-title: Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury publication-title: Sci. Rep. doi: 10.1038/srep07027 – volume: 41 start-page: 1818 year: 2020 ident: ref_87 article-title: Plasma angiotensin-converting enzyme 2: Novel biomarker in heart failure with implications for COVID-19 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa414 – volume: 181 start-page: 271 year: 2020 ident: ref_69 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 108 start-page: 236 year: 2020 ident: ref_82 article-title: Risks of ACE inhibitor and ARB usage in COVID-19: Evaluating the evidence publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1863 – volume: 43 start-page: 229 year: 2004 ident: ref_107 article-title: Ac-SDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction publication-title: Hypertension doi: 10.1161/01.HYP.0000107777.91185.89 – ident: ref_1 – ident: ref_32 doi: 10.1371/journal.pone.0213096 – volume: 190 start-page: 128 year: 2015 ident: ref_15 article-title: Effects of captopril, spironolactone, and simvastatin on the cardiovascular system of non-diseased Wistar rats publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2015.04.092 – volume: 350 start-page: 1 year: 2018 ident: ref_114 article-title: N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) attenuates silicotic fibrosis by suppressing apoptosis of alveolar type II epithelial cells via mediation of endoplasmic reticulum stress publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2018.04.025 – ident: ref_57 doi: 10.1097/MJT.0000000000001226 – volume: 18 start-page: 1 year: 2020 ident: ref_70 article-title: Airways expression of SARS-CoV-2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2020.05.013 – volume: 94 start-page: e00127 year: 2020 ident: ref_67 article-title: Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus publication-title: J. Virol. doi: 10.1128/JVI.00127-20 – volume: 227 start-page: 734 year: 2017 ident: ref_17 article-title: New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2016.10.069 – volume: 127 start-page: 549 year: 2014 ident: ref_24 article-title: Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system publication-title: Clin. Sci. doi: 10.1042/CS20130449 – volume: 113 start-page: 1087 year: 2013 ident: ref_61 article-title: Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.113.301811 – volume: 277 start-page: 14838 year: 2002 ident: ref_40 article-title: Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200581200 – volume: 185 start-page: 64 year: 2014 ident: ref_62 article-title: Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus publication-title: Virus Res. doi: 10.1016/j.virusres.2014.03.010 – volume: 21 start-page: 305 year: 2017 ident: ref_117 article-title: Recombinant human ACE2: Acing out angiotensin II in ARDS therapy publication-title: Crit. Care doi: 10.1186/s13054-017-1882-z – volume: 47 start-page: 117 year: 2017 ident: ref_99 article-title: Alamandine abrogates neutrophil degranulation in atherosclerotic mice. Eur publication-title: J. Clin. Investig. doi: 10.1111/eci.12708 – volume: 7 start-page: 33841 year: 2016 ident: ref_112 article-title: Preventive and therapeutic effects of thymosin β4 N-terminal fragment Ac-SDKP in the bleomycin model of pulmonary fibrosis publication-title: Oncotarget doi: 10.18632/oncotarget.8409 – volume: 105 start-page: 7809 year: 2008 ident: ref_56 article-title: Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711241105 – volume: 95 start-page: 38 year: 2015 ident: ref_104 article-title: Treatment with angiotensin-(1-9) alleviates the cardiomyopathy in streptozotocin-induced diabetic rats publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2015.03.009 – volume: 195 start-page: 860 year: 2017 ident: ref_5 article-title: Fifty years of research in ARDS. The epidemiology of acute respiratory distress syndrome. A 50th birthday review publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201609-1773CP – volume: 38 start-page: e108 year: 2018 ident: ref_9 article-title: Renin-Angiotensin System and Cardiovascular Functions publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.118.311282 – volume: 12 start-page: 8 year: 2020 ident: ref_47 article-title: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa publication-title: Int. J. Oral Sci. doi: 10.1038/s41368-020-0074-x – volume: 275 start-page: 33238 year: 2000 ident: ref_22 article-title: A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002615200 – ident: ref_84 doi: 10.1111/jcpt.13246 – volume: 58 start-page: 101833 year: 2019 ident: ref_4 article-title: Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation publication-title: Pulm. Pharmacol. Ther. doi: 10.1016/j.pupt.2019.101833 – volume: 185 start-page: 740 year: 2013 ident: ref_119 article-title: Angiotensin-(1-7) attenuates lung fibrosis by way of Mas receptor in acute lung injury publication-title: J. Surg. Res. doi: 10.1016/j.jss.2013.06.052 – volume: 316 start-page: H958 year: 2019 ident: ref_8 article-title: The renin-angiotensin system: Going beyond the classical paradigms publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00723.2018 – volume: 24 start-page: 452 year: 2020 ident: ref_58 article-title: Plasma levels of soluble ACE2 are associated with sex, Metabolic Syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19 publication-title: Crit. Care doi: 10.1186/s13054-020-03141-9 – volume: 84 start-page: 1198 year: 2010 ident: ref_71 article-title: Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63 publication-title: J. Virol. doi: 10.1128/JVI.01248-09 – volume: 3 start-page: 44 year: 2015 ident: ref_36 article-title: Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome publication-title: Intensive Care Med. Exp. doi: 10.1186/s40635-015-0044-3 – volume: 7 start-page: 42 year: 2011 ident: ref_51 article-title: Ectodomain shedding of ACE and ACE2 as regulators of their protein functions publication-title: Curr. Enzym. Inhib. doi: 10.2174/157340811795713756 – volume: 7 start-page: 146 year: 2016 ident: ref_53 article-title: Protein Kinase C-δ Mediates Shedding of Angiotensin-Converting Enzyme 2 from Proximal Tubular Cells publication-title: Front. Pharmacol. doi: 10.3389/fphar.2016.00146 – volume: 5 start-page: 3594 year: 2014 ident: ref_31 article-title: Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections publication-title: Nat. Commun. doi: 10.1038/ncomms4594 – volume: 133 start-page: 629 year: 2019 ident: ref_102 article-title: Alamandine attenuates arterial remodelling induced by transverse aortic constriction in mice publication-title: Clin. Sci. doi: 10.1042/CS20180547 – volume: 39 start-page: 203 year: 2020 ident: ref_25 article-title: Renin-angiotensin system and SARS-CoV-2 interaction: Underlying mechanisms and potential clinical implications publication-title: Gen. Physiol. Biophys. doi: 10.4149/gpb_2020019 – volume: 22 start-page: 447 year: 2018 ident: ref_106 article-title: Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor publication-title: Korean J. Physiol. Pharmacol. doi: 10.4196/kjpp.2018.22.4.447 – volume: 18 start-page: 5283 year: 2012 ident: ref_111 article-title: Antifibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline on bile duct ligation induced liver fibrosis in rats publication-title: World J. Gastroenterol. – ident: ref_11 doi: 10.3390/ijms17071098 – volume: 2014 start-page: 703175 year: 2014 ident: ref_14 article-title: Hypertension and cardiovascular remodelling in rats exposed to continuous light: Protection by ACE-inhibition and melatonin publication-title: Mediators Inflamm. doi: 10.1155/2014/703175 – ident: ref_74 doi: 10.1371/journal.pone.0110165 – volume: 316 start-page: F195 year: 2019 ident: ref_110 article-title: A Renal release of N-acetyl-seryl-aspartyl-lysyl-proline is part of an antifibrotic peptidergic system in the kidney publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00270.2018 – volume: 474 start-page: 693 year: 2015 ident: ref_92 article-title: Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors publication-title: Amino Acids – volume: 13 start-page: 867 year: 2018 ident: ref_76 article-title: Comparative effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on the risk of pneumonia and severe exacerbations in patients with COPD publication-title: Int. J. Chronic Obstr. Pulm. Dis. doi: 10.2147/COPD.S158634 – volume: 46 start-page: 586 year: 2020 ident: ref_116 article-title: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target publication-title: Intensive Care Med. doi: 10.1007/s00134-020-05985-9 – volume: 28 start-page: 15 year: 2015 ident: ref_93 article-title: Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hpu086 – volume: 16 start-page: 7432 year: 2017 ident: ref_55 article-title: Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2017.7546 – volume: 35 start-page: 723 year: 2019 ident: ref_6 article-title: Acute respiratory distress syndrome: Etiology, pathogenesis, and summary on management publication-title: J. Intensive Care Med. doi: 10.1177/0885066619855021 – volume: 24 start-page: 221 year: 2020 ident: ref_59 article-title: Age and sex differences in soluble ACE2 may give insights for COVID-19 publication-title: Crit. Care doi: 10.1186/s13054-020-02942-2 – volume: 19 start-page: 3033 year: 2013 ident: ref_95 article-title: Angiotensin II blockade and renal protection publication-title: Curr. Pharm. Des. doi: 10.2174/1381612811319170009 – volume: 11 start-page: 875 year: 2005 ident: ref_65 article-title: A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury publication-title: Nat. Med. doi: 10.1038/nm1267 – ident: ref_48 doi: 10.1101/2020.05.14.090332 – volume: 297 start-page: L84 year: 2009 ident: ref_49 article-title: Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.00071.2009 – volume: 3 start-page: 6 year: 2017 ident: ref_77 article-title: Renin Angiotensin system-modifying therapies are associated with improved pulmonary health publication-title: Clin. Diabetes Endocrinol. doi: 10.1186/s40842-017-0044-1 – volume: 21 start-page: 5135 year: 2015 ident: ref_10 article-title: N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP): Potential target molecule in research of heart, kidney and brain publication-title: Curr. Pharm. Des. doi: 10.2174/1381612821666150909093927 – volume: 156 start-page: 357 year: 2018 ident: ref_105 article-title: Angiotensin-(1-9) reduces cardiovascular and renal inflammation in experimental renin-independent hypertension publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.08.045 – volume: 21 start-page: 234 year: 2017 ident: ref_118 article-title: A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome publication-title: Crit. Care doi: 10.1186/s13054-017-1823-x – volume: 31 start-page: 922 year: 2005 ident: ref_3 article-title: Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients publication-title: Intensive Care Med. doi: 10.1007/s00134-005-2625-1 – volume: 98 start-page: 1417 year: 2018 ident: ref_37 article-title: Integrative Physiology of Pneumonia publication-title: Physiol. Rev. doi: 10.1152/physrev.00032.2017 – volume: 111 start-page: 2605 year: 2005 ident: ref_89 article-title: Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.104.510461 – volume: 317 start-page: F333 year: 2019 ident: ref_50 article-title: Role of ADAM17 in kidney disease publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00625.2018 – volume: 87 start-page: E1 year: 2000 ident: ref_43 article-title: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9 publication-title: Circ. Res. doi: 10.1161/01.RES.87.5.e1 – volume: 203 start-page: 3000 year: 2019 ident: ref_38 article-title: Dynamic variation of pulmonary ACE2 is required to modulate neutrophilic inflammation in response to Pseudomonas aeruginosa lung infection in mice publication-title: J. Immunol. doi: 10.4049/jimmunol.1900579 – volume: 578 start-page: 559 year: 2020 ident: ref_66 article-title: Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass publication-title: Nature doi: 10.1038/s41586-020-2016-3 – volume: 27 start-page: taaa041 year: 2020 ident: ref_81 article-title: Hypothesis: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19 publication-title: J. Travel. Med. doi: 10.1093/jtm/taaa041 – volume: 28 start-page: 684 year: 2017 ident: ref_20 article-title: Centrally Mediated Cardiovascular Actions of the Angiotensin II Type 2 Receptor publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2017.06.002 – volume: 71 start-page: 539 year: 2019 ident: ref_94 article-title: Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure publication-title: Pharmacol. Rev. doi: 10.1124/pr.118.017129 – volume: 62 start-page: 113 year: 2017 ident: ref_2 article-title: Past and Present ARDS Mortality Rates: A Systematic Review publication-title: Respir. Care doi: 10.4187/respcare.04716 – volume: 202 start-page: 756 year: 2020 ident: ref_68 article-title: Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan COVID-19 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.202001-0179LE – volume: 21 start-page: 182 year: 2020 ident: ref_97 article-title: SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis publication-title: Respir. Res. doi: 10.1186/s12931-020-01445-6 – volume: 17 start-page: 287 year: 2003 ident: ref_13 article-title: ACE-inhibition and angiotensin II receptor blockers in chronic heart failure: Pathophysiological consideration of the unresolved battle publication-title: Cardiovasc. Drugs Ther. doi: 10.1023/A:1026215712983 – volume: 123 start-page: 649 year: 2012 ident: ref_91 article-title: Combination renin-angiotensin system blockade and angiotensin-converting enzyme 2 in experimental myocardial infarction: Implications for future therapeutic directions publication-title: Clin. Sci. doi: 10.1042/CS20120162 – volume: 206 start-page: 106 year: 2018 ident: ref_101 article-title: Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways publication-title: Life Sci. doi: 10.1016/j.lfs.2018.04.010 – volume: 383 start-page: 45 year: 2004 ident: ref_39 article-title: Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism publication-title: Biochem. J. doi: 10.1042/BJ20040634 – volume: 2019 start-page: 2401081 year: 2019 ident: ref_100 article-title: Angiotensin-(1-7) and alamandine promote anti-inflammatory response in macrophages in vitro and in vivo publication-title: Mediat. Inflamm. – volume: 426 start-page: 450 year: 2003 ident: ref_64 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature doi: 10.1038/nature02145 – volume: 33 start-page: 116 year: 2010 ident: ref_96 article-title: Remote control of brain angiotensin II levels by angiotensin receptor blockers publication-title: Hypertens. Res. doi: 10.1038/hr.2009.209 – volume: 319 start-page: 1216 year: 2004 ident: ref_72 article-title: Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.05.114 – volume: 48 start-page: 572 year: 2006 ident: ref_90 article-title: Enalapril attenuates downregulation of Angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat publication-title: Hypertension doi: 10.1161/01.HYP.0000237862.94083.45 – volume: 15 start-page: 585 year: 2014 ident: ref_29 article-title: Angiotensin-converting enzyme I/D polymorphism is associated with pneumonia risk: A meta-analysis publication-title: J. Renin Angiotensin Aldosterone Syst. doi: 10.1177/1470320313507622 – volume: 99 start-page: 1770 year: 2019 ident: ref_30 article-title: Ang-(1-7) treatment attenuates lipopolysaccharide-induced early pulmonary fibrosis publication-title: Lab. Investig. doi: 10.1038/s41374-019-0289-7 – volume: 93 start-page: 1924 year: 2012 ident: ref_73 article-title: Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63 publication-title: J. Gen. Virol. doi: 10.1099/vir.0.043919-0 – volume: 11 start-page: 2159 year: 2016 ident: ref_75 article-title: The association of renin-angiotensin system blockades and pneumonia requiring admission in patients with COPD publication-title: Int. J. Chronic Obstr. Pulm. Dis. doi: 10.2147/COPD.S104097 – volume: 126 start-page: 815 year: 2014 ident: ref_103 article-title: Angiotensin-(1-7) and angiotensin-(1-9): Function in cardiac and vascular remodelling publication-title: Clin. Sci. doi: 10.1042/CS20130436 – volume: 66 start-page: 167 year: 2014 ident: ref_54 article-title: Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: A positive feedback mechanism in the RAS publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2013.11.017 – ident: ref_19 doi: 10.3390/molecules23020265 – volume: 203 start-page: 631 year: 2004 ident: ref_46 article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis publication-title: J. Pathol. doi: 10.1002/path.1570 – volume: 9 start-page: e57555 year: 2020 ident: ref_26 article-title: Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome publication-title: Elife doi: 10.7554/eLife.57555 – volume: 22 start-page: 1971 year: 2004 ident: ref_42 article-title: Evidence against a major role for angiotensin converting enzyme-related carboxypeptidase (ACE2) in angiotensin peptide metabolism in the human coronary circulation publication-title: J. Hypertens. doi: 10.1097/00004872-200410000-00020 – volume: 97 start-page: 176 year: 2014 ident: ref_113 article-title: Ac-SDKP suppresses epithelial-mesenchymal transition in A549 cells via HSP27 signaling publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2014.07.003 – volume: 6 start-page: 271 year: 2006 ident: ref_28 article-title: Angiotensin-converting enzyme 2 in lung diseases publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2006.03.001 – ident: ref_52 doi: 10.1371/journal.pone.0085958 – volume: 68 start-page: 365 year: 2016 ident: ref_41 article-title: Angiotensin-converting enzyme 2 metabolizes and partially inactivates Pyr-Apelin-13 and Apelin-17: Physiological effects in the cardiovascular system publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.115.06892 – volume: 43 start-page: 2113 year: 2020 ident: ref_79 article-title: Influence of renin-angiotensin system inhibitors on lower-respiratory tract infections in type 2 diabetes: The frmantle diabetes study phase II publication-title: Diabetes Care doi: 10.2337/dc20-0895 – volume: 32 start-page: 154 year: 2017 ident: ref_78 article-title: Effect of renin-angiotensin system blockage in patients with acute respiratory distress syndrome: A retrospective case control study publication-title: Korean J. Crit. Care Med. doi: 10.4266/kjccm.2016.00976 – volume: 22 start-page: 90 year: 2020 ident: ref_85 article-title: Renin-angiotensin system inhibitors and COVID-19: A systematic review and meta-analysis. Evidence for significant geographical disparities publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-020-01101-w – volume: 295 start-page: H1253 year: 2008 ident: ref_109 article-title: Prevention of aortic fibrosis by N-acetyl-seryl-aspartyl-lysyl-proline in angiotensin II-induced hypertension publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00481.2008 – volume: 26 start-page: 1270 year: 2005 ident: ref_45 article-title: Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents publication-title: Peptides doi: 10.1016/j.peptides.2005.01.009 – volume: 113 start-page: 104350 year: 2020 ident: ref_35 article-title: ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2019.104350 – volume: 76 start-page: 1 year: 2016 ident: ref_21 article-title: Combined Angiotensin Receptor Modulation in the Management of Cardio-Metabolic Disorders publication-title: Drugs doi: 10.1007/s40265-015-0509-4 – volume: 94 start-page: 317 year: 2017 ident: ref_16 article-title: Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.07.091 – volume: 292 start-page: R373 year: 2007 ident: ref_44 article-title: Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin–angiotensin system publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00292.2006 – volume: 90 start-page: 637 year: 2012 ident: ref_34 article-title: Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury publication-title: J. Mol. Med. doi: 10.1007/s00109-012-0859-2 – volume: 8 start-page: e21 year: 2020 ident: ref_80 article-title: Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30116-8 – volume: 76 start-page: e13 year: 2020 ident: ref_83 article-title: Decreased mortality of COVID-19 with renin-angiotensin-aldosterone system inhibitors therapy in patients with hypertension: A meta-analysis publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.120.15572 – volume: 41 start-page: 1810 year: 2020 ident: ref_60 article-title: Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa373 – volume: 225 start-page: 618 year: 2011 ident: ref_115 article-title: Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist publication-title: J. Pathol. doi: 10.1002/path.2987 – volume: 48 start-page: 1 year: 1999 ident: ref_12 article-title: Heart failure and angiotensin converting enzyme inhibition: Problems and perspectives publication-title: Physiol. Res. – volume: 126 start-page: 85 year: 2014 ident: ref_108 article-title: N-acetyl-seryl-aspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats publication-title: Clin. Sci. doi: 10.1042/CS20120619 |
SSID | ssj0023259 |
Score | 2.513337 |
SecondaryResourceType | review_article |
Snippet | Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8038 |
SubjectTerms | ADAM17 Protein - metabolism Angiotensin-Converting Enzyme 2 Animals Avian flu Bacterial infections Betacoronavirus Capillary Permeability - physiology Chemokines Coronavirus Infections - pathology COVID-19 Cytokines Enzymes Gene expression Humans Hypertension Inflammation Inflammation - pathology Lavage Lung - immunology Lung - pathology Lungs Mice Mortality Neutrophils Pandemics Pathogenesis Peptides Peptidyl-Dipeptidase A - metabolism Permeability Physiology Pneumonia Pneumonia, Viral - pathology Pulmonary Edema - pathology Rats Renin-Angiotensin System - physiology Respiratory distress syndrome Respiratory system Review SARS-CoV-2 Severe Acute Respiratory Syndrome - pathology Severe acute respiratory syndrome coronavirus 2 Tumor Necrosis Factor-alpha - metabolism Tumor necrosis factor-TNF Ventilators |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB7BVkhcEG35WaCVkcoJBTaOnTiVEFq1RYAEQoiVuEW240DQ4gCbldgb79A37JN0nOymbPk5e-w4M7bnG439DcA3gU5Jc6o9R7XpMcYyT6mMeVJIE5ugI1n1bu3kNDzsseNLfjkDk2qjYwUOXg3tXD2p3kN_5_F-tI8bfs9FnBiy7-Y3twM8gX3RCcQsfECfFLktesKafALChqpsmo_eyAt5HNZX4F_0nnZOLxDn_xcnn3mig0VYGENI0q1t_hFmjP0Ec3VRydFnuDk3Nrd_nn537VVeVBfULamJyb-TriVHt9Xf2pKc9SUCboLNiALJGWLB4sodffmAFBnp6mFpyPm_VDz5mdcvS3C0muZgCXoHvy5-HHrjigqeZpEoPZYGTNIspVRm3HSk5CJFhy6V0plhGaLtQCFekdJEYRjFcYpoAvvEocYwzJhOsAwtW1izCoRyjC2FivwUQ0weaxVzFbmhmI61oH4btieqTPSYbtxVvegnGHY4xSfPFd-GrUb6rqbZeENuY2KVZLJWEpyA4AjzOG3DZtOM28TlPqQ1xRBlHG0Ogl-GQ6zURmw-FAQ-dQmoNkRT5m0EHAX3dIvNrysqblSTo8NZe39a6zBPXZiOLo-KDWiVD0PzBbFMqb5Wy_Qv2tL1Kw priority: 102 providerName: Scholars Portal |
Title | Renin–Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33126657 https://www.proquest.com/docview/2548592952 https://www.proquest.com/docview/2456415048 https://pubmed.ncbi.nlm.nih.gov/PMC7663767 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BKyQuiH8WyspIcEJWN46dOFzQAl0KUqvVikp7i2zHaVO1TmGzB268A2_IkzCTZH8KgksunjiRx575xh5_A_BSo1NySjhOVJtcSllya0vJjTY-8_HIyPbe2tFxcngiP8_VvN9wW_RplSub2Brqona0R76PgYxW6MuVeHv1lVPVKDpd7Uto3IRdoi6jlK50vgm4YtEWS4vQB_FEZUmX-B5jmL9fnV8u0GpHekQ3U7Zd0l848890yS3_M7kLd3rgyMadpu_BDR_uw62ulOT3B3A-86EKv378HIfTqm7T0gPr6MjfsHFgny5boB0aNr0wCLMZNiP2Y1NEgPUpGbxqweqSjd2y8Wy2OYBnH6ruPgn21pEbPISTycGX94e8r6PAnUx1w2URSyPKQghTKj8yRukC3bix1pVeloixY4soxRifJkmaZQViCHwnSxwGX96P4kewE-rgnwATCiNKbdOoQH2ozNlM2ZS6ki5zWkQDeL0aytz1JONU6-Iix2CDBj7fHvgBvFpLX3XkGv-Q21tpJe-X2CLfTIgBvFg34-KgEw8TfL1EGSLLQcgrsYvHnRLXH4rjSNCx0wDSa-pdCxDx9vWWUJ21BNw4TESC8_T_v_UMbgsKztHRCb0HO823pX-OCKaxw3aa4lNPPg5h993B8XQ2JJ-i8Hkk9W_nVvbP |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRQg2iDcDBYxEVyhq4tiJU6lCI0o1Qx-qqlaaXbAdp6RqncJkhLrrP_Q_-Ci-hOt4MjMFwa5rO05yr-1zrh_nArwTCEqaUx04qc2AMVYGSpUskEKazMShZO29td29ZHDEPo_4aAl-dndh3LHKbk5sJ-qi1m6NfA0DGcERyzn9cP4tcFmj3O5ql0LDd4ttc_EDQ7bxxnAT_btK6danw4-DYJpVINAsFU3AiphJWhaUypKbUEouCgQ1qZQuDSuRccYKMVtKkyZJmmUFIio-kyUaQxFjwhjbvQW38R9DN6LS0TzAi2mbnC1CzAsSniX-oH0cZ-FadXI2RpSIROhuwixC4F-89s_jmQt4t_UA7k-JKun7nvUQlox9BHd86sqLx3ByYGxlf11e9e1xVbfH4C3x8ufrpG_J8Kwl9rYh-6cSaT3BYuSaZB8ZZ33sJthqTOqS9PWkMeRgvuFPNit_fwVb82IKT-DoRiz8FJZtbc1zIJRjBCtUGhXof55plXGVuqaYzrSgUQ_ed6bM9VTU3OXWOM0xuHGGzxcN34PVWe1zL-bxj3ornVfy6ZAe5_MO2IO3s2IcjG6HRVpTT7COE-dBis2wiWfeibMXxXFE3TZXD9Jr7p1VcELf10ts9bUV_EYzOdGdF___rDdwd3C4u5PvDPe2X8I96hYGEGSpWIHl5vvEvEL21KjXbZcl8OWmx8hv4QUv_w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VIhAviGtZKGAk-oSiTXzJBQmhFcuqS6FaVVTat2A7TknVOoXNCvWt_9C_6ef0SxjnsrsFwVuf7TjRXHzOxOMZgNcxgpIWVHuu1KbHOc89pXLuyViaxDBf8vre2pfdcHuff5qK6RpcdHdhXFpltyfWG3VWavePvI-BTCwQywXt521axGQ4en_yw3MdpNxJa9dOozGRHXP6C8O32bvxEHW9Reno49cP217bYcDTPIorj2eMS5pnlMpcGF9KEWcIcFIpnRueI_tkCvFbShOFYZQkGaIrPpOEGsMSY3yG696AmxETgfOxaLoM9hitG7UFiH9eKJKwSbpnLPH7xeHxDBEjiH13K2YVDv_iuH-maq5g3-ge3G1JKxk0VnYf1ox9ALeaNpanD-Fwz9jCXp6dD-xBUdYp8ZY0pdDfkoEl4-Oa5NuKTI4kUnyCw8g7yQTZZ3ngNttiRsqcDPS8MmRvefhPhkVzlwVXaworPIL9a5HwY1i3pTVPgFCB0WysoiBDWxCJVolQkVuK60THNOjBm06UqW4LnLs-G0cpBjpO8Omq4HuwtZh90hT2-Me8zU4raeves3RpjD14tRhGx3SnLdKaco5zXKEepNscl9holLh4EWMBdUdePYiuqHcxwRX9vjpii-918W8UkyvA8_T_n_USbqN3pJ_HuzvP4A51_wgQb2m8CevVz7l5jkSqUi9qiyXw7bpd5De4pTQ1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renin%E2%80%93Angiotensin+System%3A+An+Important+Player+in+the+Pathogenesis+of+Acute+Respiratory+Distress+Syndrome&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Hrenak%2C+Jaroslav&rft.au=Simko%2C+Fedor&rft.date=2020-10-28&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=21&rft.issue=21&rft.spage=8038&rft_id=info:doi/10.3390%2Fijms21218038&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |