Unraveling the effects of uric acid on endothelial cells: A global proteomic study
This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with c...
Saved in:
Published in | Redox biology Vol. 82; p. 103625 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid.
[Display omitted]
•First proteomics study revealing the modulation of protein abundance in HUVEC upon physiological concentrations of uric acid.•Chaperones, redox signaling proteins, proteins related to protein degradation and to the inflammatory processes were changed.•Uric acid induced an increase in oxidation levels in cells.•PXDN inhibition or silencing decreased urate-dependent oxidation.•Uric acid increased protein misfolding and monocyte adhesion. |
---|---|
AbstractList | This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid. This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid.This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid. This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid. [Display omitted] •First proteomics study revealing the modulation of protein abundance in HUVEC upon physiological concentrations of uric acid.•Chaperones, redox signaling proteins, proteins related to protein degradation and to the inflammatory processes were changed.•Uric acid induced an increase in oxidation levels in cells.•PXDN inhibition or silencing decreased urate-dependent oxidation.•Uric acid increased protein misfolding and monocyte adhesion. This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid. Image 1 • First proteomics study revealing the modulation of protein abundance in HUVEC upon physiological concentrations of uric acid. • Chaperones, redox signaling proteins, proteins related to protein degradation and to the inflammatory processes were changed. • Uric acid induced an increase in oxidation levels in cells. • PXDN inhibition or silencing decreased urate-dependent oxidation. • Uric acid increased protein misfolding and monocyte adhesion. |
ArticleNumber | 103625 |
Author | Dempsey, Bianca Vileigas, Danielle Meotti, Flavia Carla Pereira da Silva, Railmara Cruz, Litiele Cezar Pereira da Silva, Beatriz Silva, Amanda R.M. |
Author_xml | – sequence: 1 givenname: Bianca surname: Dempsey fullname: Dempsey, Bianca – sequence: 2 givenname: Beatriz surname: Pereira da Silva fullname: Pereira da Silva, Beatriz – sequence: 3 givenname: Litiele Cezar surname: Cruz fullname: Cruz, Litiele Cezar – sequence: 4 givenname: Danielle surname: Vileigas fullname: Vileigas, Danielle – sequence: 5 givenname: Amanda R.M. surname: Silva fullname: Silva, Amanda R.M. – sequence: 6 givenname: Railmara surname: Pereira da Silva fullname: Pereira da Silva, Railmara – sequence: 7 givenname: Flavia Carla orcidid: 0000-0002-7217-3352 surname: Meotti fullname: Meotti, Flavia Carla email: flaviam@iq.usp.br |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40203480$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UV1rFDEUDVKxtfYXCJJHX3Z78zFfgkgpagsFQexzyCQ32yyzyZrMLPbfm-nU0r6YlyT3nnPu5Zy35CjEgIS8Z7BmwOrz7TqhjX_WHHhVKqLm1StywjkTKy5Yc_TsfUzOct5COW0rOYM35FgCByFbOCE_b0PSBxx82NDxDik6h2bMNDo6JW-oNt7SGCgGG0t_8HqgBochf6IXdDPEvvz3KY4YdwWdx8nevyOvnR4ynj3ep-T229dfl1ermx_fry8vblZGNu24kpYZ3vQc6rYzaKzQndNN1xphe9fqCiphKylNrbFj_bx83_TMADAHTe06cUquF10b9Vbtk9_pdK-i9uqhENNG6TR6M6CqOtkB2BYZA2kb6A3UFmphmDWdRFe0vixa-6nfoTUYxqSHF6IvO8HfqU08KMahLFrxovDxUSHF3xPmUe18np3SAeOUlWCz-50AKNAPz4c9TfmXSgGIBWBSzDmhe4IwUHP8aqse4ldz_GqJv7A-Lywsph88JpWNx2DQ-lQyLa74__L_Ar-_uGs |
Cites_doi | 10.1186/s12883-016-0692-2 10.1042/bj3400143 10.1046/j.1365-201X.2001.00882.x 10.1253/circrep.CR-19-0088 10.1038/nbt.1511 10.3390/cells13181563 10.1016/j.ejim.2020.07.006 10.3892/ijmm.2016.2491 10.1158/0008-5472.CAN-07-1166 10.1016/j.cpcardiol.2022.101525 10.1056/NEJMra0800885 10.3109/10715762.2012.747677 10.1681/ASN.2007101075 10.1007/s11302-018-9604-9 10.5603/CJ.a2021.0156 10.18632/aging.103175 10.1080/15257770802138558 10.1016/j.jacc.2017.12.052 10.1097/HJH.0b013e3282f240bf 10.1021/acs.chemrestox.5b00132 10.1038/s41392-023-01570-w 10.1152/physiol.00039.2004 10.1016/j.freeradbiomed.2015.06.014 10.1146/annurev-physiol-021113-170343 10.1016/0891-5849(93)90143-I 10.1590/1414-431x20187543 10.1016/j.niox.2013.04.003 10.3389/fphar.2015.00276 10.1161/HYPERTENSIONAHA.107.100214 10.1172/JCI40124 10.1152/physrev.00044.2023 10.1093/carcin/bgs210 10.1016/j.amjmed.2015.11.003 10.1097/HJH.0b013e328337da1d 10.1007/s00109-022-02281-5 10.1038/nprot.2007.261 10.1016/0009-2797(90)90006-9 10.1074/jbc.M113.544957 10.1016/j.bbagen.2019.129481 10.1161/hy1101.092839 10.1016/j.abb.2020.108267 10.1016/j.febslet.2014.07.030 10.3389/fcell.2021.635527 10.1016/0895-4356(88)90127-8 10.1097/HJH.0000000000000701 10.1016/j.numecd.2014.08.006 10.1074/jbc.M112.444182 10.1016/j.lfs.2015.05.011 10.2337/db10-0916 10.4238/gmr.15028644 10.1046/j.1432-1033.2002.03245.x 10.1111/j.0105-2896.2009.00860.x 10.1016/j.molcel.2017.12.021 10.1016/j.mce.2017.09.020 10.1016/j.ejim.2022.04.022 10.1111/jcmm.13176 10.1038/nm1320 10.1021/ja00197a042 10.1007/s12013-010-9138-4 10.1074/jbc.M112.393561 10.1074/jbc.M110.172460 10.1016/j.abb.2018.03.038 10.1074/jbc.M116.767657 10.7717/peerj.14554 10.1021/acs.jproteome.8b00016 10.1016/j.freeradbiomed.2018.08.011 10.1161/01.CIR.0000066420.36123.35 10.1186/s11658-016-0031-z 10.1053/j.ajkd.2017.12.009 10.1016/j.ijcard.2014.07.102 10.1016/j.ejim.2015.11.026 10.3390/molecules18032821 10.1007/s13105-021-00869-y 10.1016/j.jare.2017.06.001 10.1152/ajpcell.00600.2006 10.1016/j.cca.2018.05.046 10.1016/j.atherosclerosis.2008.05.022 10.1155/2016/8239258 10.1007/s11926-011-0162-1 10.1155/2014/408514 10.1038/nmeth.3901 10.1038/s41420-022-00815-x 10.1038/srep39884 10.1074/jbc.RA118.005237 10.1074/jbc.M112.399899 10.1371/journal.pone.0115210 10.1016/j.semnephrol.2011.08.002 10.1038/nmeth.1212 10.1161/CIRCRESAHA.115.306301 10.1038/nature04516 10.1016/j.redox.2020.101466 10.1159/000355621 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. 2025 The Authors 2025 |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2025 The Authors 2025 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.redox.2025.103625 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
ExternalDocumentID | oai_doaj_org_article_594900d8e1104d70bc06d063c1dc94ef PMC12005352 40203480 10_1016_j_redox_2025_103625 S2213231725001387 |
Genre | Journal Article |
GroupedDBID | 0R~ 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABGSF ABMAC ACGFS ADBBV ADEZE ADRAZ ADUVX ADVLN AENEX AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E O-L O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c478t-4d1c27b20689cecd3a9fa798c3dbf8a5053d544c6ae91b0088b7b1c001f076f93 |
IEDL.DBID | IXB |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 01:28:20 EDT 2025 Thu Aug 21 18:30:19 EDT 2025 Wed Jul 02 05:03:34 EDT 2025 Fri Apr 25 03:25:12 EDT 2025 Sun Jul 06 05:05:54 EDT 2025 Sat May 03 15:57:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HUVEC Endothelial cell damage Inflammation Uric acid Proteomics PXDN |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-4d1c27b20689cecd3a9fa798c3dbf8a5053d544c6ae91b0088b7b1c001f076f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7217-3352 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2213231725001387 |
PMID | 40203480 |
PQID | 3188429300 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_594900d8e1104d70bc06d063c1dc94ef pubmedcentral_primary_oai_pubmedcentral_nih_gov_12005352 proquest_miscellaneous_3188429300 pubmed_primary_40203480 crossref_primary_10_1016_j_redox_2025_103625 elsevier_sciencedirect_doi_10_1016_j_redox_2025_103625 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Redox biology |
PublicationTitleAlternate | Redox Biol |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Kaur, Halliwell (bib5) 1990; 73 Turner, Brennan, Ashby, Dickerhof, Hamzah, Pearson (bib37) 2018; 293 Shen, Coleman, Chan, Nicholson, Dai, Sheppard (bib49) 2011; 60 Mello, Bensenor, Santos, Bittencourt, Lotufo, Fuller (bib25) 2023; 48 Bathish, Turner, Paumann-Page, Kettle, Winterbourn (bib33) 2018; 646 Martinon (bib13) 2010; 233 Seidel, Parker, Turner, Dickerhof, Khalilova, Wilbanks (bib30) 2014; 289 Liang, Zhu, Zhang, Feng, Wang, Liu (bib69) 2015; 25 Paumann-Page, Obinger, Winterbourn, Furtmüller (bib46) 2024; 13 Singh, Yu (bib63) 2016; 16 Lanaspa, Sanchez-Lozada, Choi, Cicerchi, Kanbay, Roncal-Jimenez (bib95) 2012; 287 Reichmann, Voth, Jakob (bib77) 2018; 69 Bernardo, Torres, da Silva (bib82) 2023; 101 Park, Jin, Hwang, Cho, Kang, Jo (bib10) 2013; 32 Santana, Nascimento, Lotufo, Benseñor, Meotti (bib24) 2018; 51 Meotti, Jameson, Turner, Harwood, Stockwell, Rees (bib28) 2011; 286 Huo, Ley (bib53) 2001; 173 Martinon, Pétrilli, Mayor, Tardivel, Tschopp (bib12) 2006; 440 Hediger, Johnson, Miyazaki, Endou (bib1) 2005; 20 Gaubert, Marlinge, Alessandrini, Laine, Bonello, Fromonot (bib22) 2018; 14 Mazzali, Hughes, Kim, Jefferson, Kang, Gordon (bib67) 2001; 38 Kim, Neogi, Kang, Liu, Desai, Zhang (bib60) 2018; 71 Desideri, Castaldo, Lombardi, Mussap, Testa, Pontremoli (bib26) 2014; 18 Rappsilber, Mann, Ishihama (bib40) 2007; 2 Budanov (bib81) 2014 Dempsey, Cruz, Mineiro, da Silva, Meotti (bib31) 2022; 11 Simic, Jovanovic (bib6) 1989; 111 Ebrahimi, Pasalar, Shokri, Shabani, Emamgholipour (bib99) 2022; 78 Padiglia, Medda, Longu, Pedersen, Floris (bib27) 2002; 8 Dyrbuś, Desperak, Pawełek, Możdżeń, Gąsior, Hawranek (bib58) 2021 Barsoum, El-Khatib (bib3) 2017; 8 Carvalho, Truzzi, Fallani, Alves, Toledo, Augusto (bib36) 2017; 292 Sastre, Pérez, Sabater, Rius-Pérez (bib84) 2025; 105 Marchini, Mitre, Wolf (bib52) 2021; 9 Kellner, Hörmann, Fackler, Hu, Zhou, Lu (bib90) 2024; 13 Timofte, Mandita, Balcangiu-Stroescu, Balan, Raducu, Tanasescu (bib17) 2019; 70 Johnson, Lanaspa, Gaucher (bib68) 2011; 31 Chen, Shi, He, Xiong, Xia (bib100) 2023; 8 Oberbach, Neuhaus, Jehmlich, Schlichting, Heinrich, Kullnick (bib73) 2014; 176 Sablina, Budanov, Ilyinskaya, Agapova, Kravchenko, Chumakov (bib80) 2005; 11 Gagliardi, Miname, Santos (bib54) 2009; 202 Filipe, Haigle, Freitas, Fernandes, Mazière, Mazière (bib8) 2002; 269 Wang, Zhou, Graves (bib83) 2014; 2014 Ndrepepa (bib18) 2018; 484 Iliesiu, Campeanu, Dusceac (bib19) 2010; 5 Cheung, Lee, Shu, Kim, Sacks, Kong (bib79) 2013; 288 Borghi, Rosei, Bardin, Dawson, Dominiczak, Kielstein (bib65) 2015; 33 Pin, Houle, Fournier, Guillonneau, Paquet, Simard (bib103) 2012; 287 Shi, Kouadir, Yang (bib98) 2015; 135 Jiang, Harder, Rojo de la Vega, Wong, Chapman, Zhang (bib101) 2015; 88 Liu, Ye, Huang, Guo, Xu, Wu (bib51) 2016; 21 Copur, Demiray, Kanbay (bib64) 2022; 103 Patrício, Prado, da Silva, Carvalho, Prates, Dadamos (bib34) 2015; 28 Abbott, Brand, Kannel, Castelli (bib55) 1988; 41 Gimbrone, García-Cardeña (bib105) 2016; 118 Mineiro, Patricio, Peixoto, Araujo, da Silva, Moretti (bib35) 2020; 1864 Reis, Massari, Marchese, Ceccon, Aalbers, Corana (bib92) 2020; 32 Weiner, Tighiouart, Elsayed, Griffith, Salem, Levey (bib57) 2008; 19 Choi, Shin, Choi, Park, Jo, Oh (bib21) 2014; vol. 94 Becker (bib4) 1993; 14 Cox, Mann (bib41) 2008; 26 Borghi, Agabiti-Rosei, Johnson, Kielstein, Lurbe, Mancia (bib59) 2020; 80 Corry, Eslami, Yamamoto, Nyby, Makino, Tuck (bib74) 2008; 26 Xi, Gao, Han, Li, Feng, Zhang (bib85) 2014; 588 Sautin, Nakagawa, Zharikov, Johnson (bib47) 2007; 293 Murakawa, Sonoda, Barber, Zeng, Yokomori, Kimura (bib50) 2007; 67 Ghaemi-Oskouie, Shi (bib15) 2011; 13 Sevcnikar, Paumann-Page, Hofbauer, Pfanzagl, Furtmüller, Obinger (bib32) 2020; 681 Larsen, Pottegård, Lindegaard, Hallas (bib62) 2016; 129 Baldwin, McRae, Marek, Wymer, Pannu, Baylis (bib45) 2011; 60 Yu, Sánchez-Lozada, Johnson, Kang (bib75) 2010; 28 Li, Zhang, Zhang, Zhou, Lin (bib72) 2016; 37 Papežíková, Pekarová, Kolářová, Klinke, Lau, Baldus (bib11) 2013; 47 Silva (bib39) 2020 Liu, Yuan, Zhou, Zhao, Chen, Cheng (bib70) 2017; 21 Jakob, Reichmann (bib76) 2013; vol. 9789400757 Wu, You (bib106) 2022; 11 Hou, Huang, Lan, Geng, Xu, Liu (bib91) 2022; 8 Gutscher, Pauleau, Marty, Brach, Wabnitz, Samstag (bib44) 2008; 5 Ding, Li, Zhang, Gai, Kou (bib86) 2018; 461 Verzola, Ratto, Villaggio, Parodi, Pontremoli, Garibotto (bib48) 2014; 9 Taheraghdam, Sharifipour, Pashapour, Namdar, Hatami, Houshmandzad (bib61) 2014; 23 Petrônio, Zeraik, Da Fonseca, Ximenes (bib93) 2013; 18 Taufiq, Li, Miake, Hisatome (bib97) 2019; 1 Feig, Kang, Johnson (bib23) 2008; 359 Cai, Duan, Liu, Yu, Tang, Liu (bib71) 2017; 2017 Hare, Johnson (bib20) 2003; 107 Mandal, Mount (bib2) 2015; 77 Xiao, Jiang, He, Xu, Chen, Liu (bib87) 2020; 12 O'Connell, Paulo, O'Brien, Gygi (bib42) 2018; 17 Tyanova, Temu, Sinitcyn, Carlson, Hein, Geiger (bib43) 2016; 13 Sautin, Johnson (bib7) 2008; 27 Hartmann, Ridley, Lutz (bib89) 2015; 6 Kanbay, Jensen, Solak, Le, Roncal-Jimenez, Rivard (bib66) 2016; 29 Silva, Carvalho, Patricio, Bonifacio, Chaves-Filho, Miyamoto (bib29) 2018; 126 Xiong, Li, Li, Xu, Pan, Ding (bib88) 2012; 33 Cybulsky, Gimbrone (bib104) 1991; 251 Johnson, Bakris, Borghi, Chonchol, Feldman, Lanaspa (bib56) 2018; 71 Kono, Chen, Ontiveros, Rock (bib16) 2010; 120 Braga, Forni, Correa-Costa, Ramos, Barbuto, Branco (bib14) 2017; 7 Lin, Xie, Hao, Bi, Liu, Yang (bib78) 2021; 2021 Heumüller, Wind, Barbosa-Sicard, Schmidt, Busse, Schröder (bib94) 2008; 51 Sugimoto, Vago, Teixeira, Sousa (bib102) 2016; 2016 Yang, Zhou, Cheng, Sun, Yao, Ma (bib96) 2016; 15 Bagnati, Perugini, Cau, Bordone, Albano, Bellomo (bib9) 1999; 340 Yang (10.1016/j.redox.2025.103625_bib96) 2016; 15 Turner (10.1016/j.redox.2025.103625_bib37) 2018; 293 Larsen (10.1016/j.redox.2025.103625_bib62) 2016; 129 Jakob (10.1016/j.redox.2025.103625_bib76) 2013; vol. 9789400757 Santana (10.1016/j.redox.2025.103625_bib24) 2018; 51 Patrício (10.1016/j.redox.2025.103625_bib34) 2015; 28 Iliesiu (10.1016/j.redox.2025.103625_bib19) 2010; 5 Padiglia (10.1016/j.redox.2025.103625_bib27) 2002; 8 Cox (10.1016/j.redox.2025.103625_bib41) 2008; 26 Paumann-Page (10.1016/j.redox.2025.103625_bib46) 2024; 13 Budanov (10.1016/j.redox.2025.103625_bib81) 2014 Shi (10.1016/j.redox.2025.103625_bib98) 2015; 135 Jiang (10.1016/j.redox.2025.103625_bib101) 2015; 88 Reichmann (10.1016/j.redox.2025.103625_bib77) 2018; 69 Sevcnikar (10.1016/j.redox.2025.103625_bib32) 2020; 681 Li (10.1016/j.redox.2025.103625_bib72) 2016; 37 Wang (10.1016/j.redox.2025.103625_bib83) 2014; 2014 Filipe (10.1016/j.redox.2025.103625_bib8) 2002; 269 Ghaemi-Oskouie (10.1016/j.redox.2025.103625_bib15) 2011; 13 Hartmann (10.1016/j.redox.2025.103625_bib89) 2015; 6 Yu (10.1016/j.redox.2025.103625_bib75) 2010; 28 Bernardo (10.1016/j.redox.2025.103625_bib82) 2023; 101 Abbott (10.1016/j.redox.2025.103625_bib55) 1988; 41 Wu (10.1016/j.redox.2025.103625_bib106) 2022; 11 Feig (10.1016/j.redox.2025.103625_bib23) 2008; 359 Johnson (10.1016/j.redox.2025.103625_bib56) 2018; 71 Gutscher (10.1016/j.redox.2025.103625_bib44) 2008; 5 Weiner (10.1016/j.redox.2025.103625_bib57) 2008; 19 Taufiq (10.1016/j.redox.2025.103625_bib97) 2019; 1 Kanbay (10.1016/j.redox.2025.103625_bib66) 2016; 29 Mazzali (10.1016/j.redox.2025.103625_bib67) 2001; 38 Oberbach (10.1016/j.redox.2025.103625_bib73) 2014; 176 Reis (10.1016/j.redox.2025.103625_bib92) 2020; 32 Bathish (10.1016/j.redox.2025.103625_bib33) 2018; 646 Kim (10.1016/j.redox.2025.103625_bib60) 2018; 71 Pin (10.1016/j.redox.2025.103625_bib103) 2012; 287 Baldwin (10.1016/j.redox.2025.103625_bib45) 2011; 60 Rappsilber (10.1016/j.redox.2025.103625_bib40) 2007; 2 Tyanova (10.1016/j.redox.2025.103625_bib43) 2016; 13 Huo (10.1016/j.redox.2025.103625_bib53) 2001; 173 Bagnati (10.1016/j.redox.2025.103625_bib9) 1999; 340 Sablina (10.1016/j.redox.2025.103625_bib80) 2005; 11 Murakawa (10.1016/j.redox.2025.103625_bib50) 2007; 67 Hediger (10.1016/j.redox.2025.103625_bib1) 2005; 20 Mello (10.1016/j.redox.2025.103625_bib25) 2023; 48 Silva (10.1016/j.redox.2025.103625_bib39) 2020 Xi (10.1016/j.redox.2025.103625_bib85) 2014; 588 Dyrbuś (10.1016/j.redox.2025.103625_bib58) 2021 Chen (10.1016/j.redox.2025.103625_bib100) 2023; 8 Meotti (10.1016/j.redox.2025.103625_bib28) 2011; 286 Martinon (10.1016/j.redox.2025.103625_bib12) 2006; 440 Silva (10.1016/j.redox.2025.103625_bib29) 2018; 126 Liu (10.1016/j.redox.2025.103625_bib70) 2017; 21 Carvalho (10.1016/j.redox.2025.103625_bib36) 2017; 292 Xiong (10.1016/j.redox.2025.103625_bib88) 2012; 33 Singh (10.1016/j.redox.2025.103625_bib63) 2016; 16 Dempsey (10.1016/j.redox.2025.103625_bib31) 2022; 11 Sautin (10.1016/j.redox.2025.103625_bib47) 2007; 293 Liu (10.1016/j.redox.2025.103625_bib51) 2016; 21 Ndrepepa (10.1016/j.redox.2025.103625_bib18) 2018; 484 Hou (10.1016/j.redox.2025.103625_bib91) 2022; 8 O'Connell (10.1016/j.redox.2025.103625_bib42) 2018; 17 Gagliardi (10.1016/j.redox.2025.103625_bib54) 2009; 202 Cheung (10.1016/j.redox.2025.103625_bib79) 2013; 288 Barsoum (10.1016/j.redox.2025.103625_bib3) 2017; 8 Liang (10.1016/j.redox.2025.103625_bib69) 2015; 25 Ebrahimi (10.1016/j.redox.2025.103625_bib99) 2022; 78 Borghi (10.1016/j.redox.2025.103625_bib59) 2020; 80 Sugimoto (10.1016/j.redox.2025.103625_bib102) 2016; 2016 Papežíková (10.1016/j.redox.2025.103625_bib11) 2013; 47 Martinon (10.1016/j.redox.2025.103625_bib13) 2010; 233 Marchini (10.1016/j.redox.2025.103625_bib52) 2021; 9 Borghi (10.1016/j.redox.2025.103625_bib65) 2015; 33 Lanaspa (10.1016/j.redox.2025.103625_bib95) 2012; 287 Gimbrone (10.1016/j.redox.2025.103625_bib105) 2016; 118 Kaur (10.1016/j.redox.2025.103625_bib5) 1990; 73 Johnson (10.1016/j.redox.2025.103625_bib68) 2011; 31 Shen (10.1016/j.redox.2025.103625_bib49) 2011; 60 Lin (10.1016/j.redox.2025.103625_bib78) 2021; 2021 Taheraghdam (10.1016/j.redox.2025.103625_bib61) 2014; 23 Verzola (10.1016/j.redox.2025.103625_bib48) 2014; 9 Petrônio (10.1016/j.redox.2025.103625_bib93) 2013; 18 Timofte (10.1016/j.redox.2025.103625_bib17) 2019; 70 Cybulsky (10.1016/j.redox.2025.103625_bib104) 1991; 251 Hare (10.1016/j.redox.2025.103625_bib20) 2003; 107 Becker (10.1016/j.redox.2025.103625_bib4) 1993; 14 Corry (10.1016/j.redox.2025.103625_bib74) 2008; 26 Cai (10.1016/j.redox.2025.103625_bib71) 2017; 2017 Desideri (10.1016/j.redox.2025.103625_bib26) 2014; 18 Xiao (10.1016/j.redox.2025.103625_bib87) 2020; 12 Copur (10.1016/j.redox.2025.103625_bib64) 2022; 103 Heumüller (10.1016/j.redox.2025.103625_bib94) 2008; 51 Kono (10.1016/j.redox.2025.103625_bib16) 2010; 120 Mandal (10.1016/j.redox.2025.103625_bib2) 2015; 77 Seidel (10.1016/j.redox.2025.103625_bib30) 2014; 289 Park (10.1016/j.redox.2025.103625_bib10) 2013; 32 Mineiro (10.1016/j.redox.2025.103625_bib35) 2020; 1864 Sastre (10.1016/j.redox.2025.103625_bib84) 2025; 105 Braga (10.1016/j.redox.2025.103625_bib14) 2017; 7 Choi (10.1016/j.redox.2025.103625_bib21) 2014; vol. 94 Sautin (10.1016/j.redox.2025.103625_bib7) 2008; 27 Ding (10.1016/j.redox.2025.103625_bib86) 2018; 461 Kellner (10.1016/j.redox.2025.103625_bib90) 2024; 13 Gaubert (10.1016/j.redox.2025.103625_bib22) 2018; 14 Simic (10.1016/j.redox.2025.103625_bib6) 1989; 111 |
References_xml | – volume: 21 start-page: 29 year: 2016 ident: bib51 article-title: p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation publication-title: Cell. Mol. Biol. Lett. – volume: vol. 9789400757 year: 2013 ident: bib76 publication-title: Oxidative Stress and Redox Regulation – year: 2020 ident: bib39 article-title: Investigation of Oxidative Metabolism of Uric Acid and its Role in Redox Processes in Inflammation – volume: 19 start-page: 1204 year: 2008 end-page: 1211 ident: bib57 article-title: Uric acid and incident kidney disease in the community publication-title: J. Am. Soc. Nephrol. – volume: 440 start-page: 237 year: 2006 end-page: 241 ident: bib12 article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome publication-title: Nature – volume: 107 start-page: 1951 year: 2003 end-page: 1953 ident: bib20 article-title: Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology publication-title: Circulation – volume: 9 year: 2021 ident: bib52 article-title: Inflammatory cell recruitment in cardiovascular disease publication-title: Front. Cell Dev. Biol. – volume: 120 start-page: 1939 year: 2010 end-page: 1949 ident: bib16 article-title: Uric acid promotes an acute inflammatory response to sterile cell death in mice publication-title: J. Clin. Investig. – volume: 13 year: 2024 ident: bib46 article-title: Peroxidasin inhibition by phloroglucinol and other peroxidase inhibitors publication-title: Antioxidants – volume: 129 start-page: 299 year: 2016 end-page: 306.e2 ident: bib62 article-title: Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study publication-title: Am. J. Med. – volume: 202 start-page: 11 year: 2009 end-page: 17 ident: bib54 article-title: Uric acid: a marker of increased cardiovascular risk publication-title: Atherosclerosis – volume: 60 start-page: 1258 year: 2011 end-page: 1269 ident: bib45 article-title: Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome publication-title: Diabetes – volume: 173 start-page: 35 year: 2001 end-page: 43 ident: bib53 article-title: Adhesion molecules and atherogenesis publication-title: Acta Physiol. Scand. – volume: 67 start-page: 8536 year: 2007 end-page: 8543 ident: bib50 article-title: Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells publication-title: Cancer Res. – volume: 118 start-page: 620 year: 2016 end-page: 636 ident: bib105 article-title: Endothelial cell dysfunction and the pathobiology of atherosclerosis publication-title: Circ. Res. – volume: 176 start-page: 746 year: 2014 end-page: 752 ident: bib73 article-title: A global proteome approach in uric acid stimulated human aortic endothelial cells revealed regulation of multiple major cellular pathways publication-title: Int. J. Cardiol. – year: 2021 ident: bib58 article-title: Serum uric acid is an independent risk factor of worse mid- and long-term outcomes in patients with non-ST-segment elevation acute coronary syndromes publication-title: Cardiol. J. – volume: 21 start-page: 2553 year: 2017 end-page: 2562 ident: bib70 article-title: Phloretin attenuates hyperuricemia-induced endothelial dysfunction through co-inhibiting inflammation and GLUT9-mediated uric acid uptake publication-title: J. Cell Mol. Med. – volume: 26 start-page: 269 year: 2008 end-page: 275 ident: bib74 article-title: Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system publication-title: J. Hypertens. – volume: 8 start-page: 471 year: 2017 end-page: 474 ident: bib3 article-title: Uric acid and life on earth publication-title: J. Adv. Res. – volume: 2021 start-page: 1 year: 2021 end-page: 19 ident: bib78 article-title: Protective effect of uric acid on ox-LDL-induced HUVECs injury via Keap1-Nrf2-ARE pathway publication-title: J. Immunol. Res. – volume: 251 start-page: 788 year: 1991 end-page: 791 ident: bib104 article-title: Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis publication-title: Science (1979) – volume: 80 start-page: 1 year: 2020 end-page: 11 ident: bib59 article-title: Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease publication-title: Eur. J. Intern. Med. – volume: 287 start-page: 30541 year: 2012 end-page: 30551 ident: bib103 article-title: Annexin-1-mediated endothelial cell migration and angiogenesis are regulated by vascular endothelial growth factor (VEGF)-induced inhibition of miR-196a expression publication-title: J. Biol. Chem. – volume: 340 start-page: 143 year: 1999 end-page: 152 ident: bib9 article-title: When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid publication-title: Biochem. J. – volume: 233 start-page: 218 year: 2010 end-page: 232 ident: bib13 article-title: Mechanisms of uric acid crystal-mediated autoinflammation publication-title: Immunol. Rev. – volume: 70 start-page: 1045 year: 2019 end-page: 1046 ident: bib17 article-title: Hyperuricemia and cardiovascular diseases publication-title: Rev. Chem. – volume: vol. 94 start-page: 1114 year: 2014 end-page: 1125 ident: bib21 publication-title: Uric Acid Induces Fat Accumulation via Generation of Endoplasmic Reticulum Stress and SREBP-1c Activation in Hepatocytes – volume: 18 start-page: 1295 year: 2014 end-page: 1306 ident: bib26 article-title: Is it time to revise the normal range of serum uric acid levels? publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 2 start-page: 1896 year: 2007 end-page: 1906 ident: bib40 article-title: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips publication-title: Nat. Protoc. – volume: 26 start-page: 1367 year: 2008 end-page: 1372 ident: bib41 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification publication-title: Nat. Biotechnol. – volume: 5 start-page: 553 year: 2008 end-page: 559 ident: bib44 article-title: Real-time imaging of the intracellular glutathione redox potential publication-title: Nat. Methods – volume: 7 year: 2017 ident: bib14 article-title: Soluble uric acid activates the NLRP3 inflammasome publication-title: Sci. Rep. – volume: 484 start-page: 150 year: 2018 end-page: 163 ident: bib18 article-title: Uric acid and cardiovascular disease publication-title: Clin. Chim. Acta – volume: 51 year: 2018 ident: bib24 article-title: Allantoin as an independent marker associated with carotid intima-media thickness in subclinical atherosclerosis publication-title: Braz. J. Med. Biol. Res. – volume: 13 start-page: 1563 year: 2024 ident: bib90 article-title: The nuclear speckles protein SRRM2 is exposed on the surface of cancer cells publication-title: Cells – volume: 29 start-page: 3 year: 2016 end-page: 8 ident: bib66 article-title: Uric acid in metabolic syndrome: from an innocent bystander to a central player publication-title: Eur. J. Intern. Med. – volume: 13 start-page: 160 year: 2011 end-page: 166 ident: bib15 article-title: The role of uric acid as an endogenous danger signal in immunity and inflammation publication-title: Curr. Rheumatol. Rep. – volume: 2016 start-page: 1 year: 2016 end-page: 13 ident: bib102 article-title: Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance publication-title: J. Immunol. Res. – volume: 101 start-page: 83 year: 2023 end-page: 99 ident: bib82 article-title: FoxO3 and oxidative stress: a multifaceted role in cellular adaptation publication-title: J. Mol. Med. – volume: 111 start-page: 5778 year: 1989 end-page: 5782 ident: bib6 article-title: Antioxidation mechanisms of uric acid publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 177 year: 2018 end-page: 186 ident: bib29 article-title: Identification of urate hydroperoxide in neutrophils: a novel pro-oxidant generated in inflammatory conditions publication-title: Free Radic. Biol. Med. – volume: 11 year: 2022 ident: bib31 article-title: Uric acid reacts with peroxidasin, decreases collagen IV crosslink, impairs human endothelial cell migration and adhesion publication-title: Antioxidants (Basel) – volume: 8 start-page: 352 year: 2023 ident: bib100 article-title: Endoplasmic reticulum stress: molecular mechanism and therapeutic targets publication-title: Signal Transduct. Targeted Ther. – volume: 1 start-page: 469 year: 2019 end-page: 473 ident: bib97 article-title: Hyperuricemia as a risk factor for atrial fibrillation due to soluble and crystalized uric acid publication-title: Circ Rep – volume: 14 start-page: 191 year: 2018 end-page: 199 ident: bib22 article-title: Uric acid levels are associated with endothelial dysfunction and severity of coronary atherosclerosis during a first episode of acute coronary syndrome publication-title: Purinergic Signal. – volume: 47 start-page: 82 year: 2013 end-page: 88 ident: bib11 article-title: Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production publication-title: Free Radic. Res. – volume: 78 start-page: 343 year: 2022 end-page: 353 ident: bib99 article-title: Evidence for the effect of soluble uric acid in augmenting endoplasmic reticulum stress markers in human peripheral blood mononuclear cells publication-title: J. Physiol. Biochem. – volume: 14 start-page: 615 year: 1993 end-page: 631 ident: bib4 article-title: Towards the physiological function of uric acid publication-title: Free Radic. Biol. Med. – volume: 73 start-page: 235 year: 1990 end-page: 247 ident: bib5 article-title: Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products publication-title: Chem. Biol. Interact. – volume: 5 start-page: 186 year: 2010 end-page: 192 ident: bib19 article-title: Serum uric acid and cardiovascular disease publication-title: Maedica (Bucur) – volume: 28 start-page: 1234 year: 2010 end-page: 1242 ident: bib75 article-title: Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction publication-title: J. Hypertens. – volume: 18 start-page: 2821 year: 2013 ident: bib93 article-title: Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor publication-title: Molecules – volume: 105 start-page: 593 year: 2025 end-page: 650 ident: bib84 article-title: Redox signaling in the pancreas in health and disease publication-title: Physiol. Rev. – volume: 286 start-page: 12901 year: 2011 end-page: 12911 ident: bib28 article-title: Urate as a physiological substrate for myeloperoxidase publication-title: J. Biol. Chem. – volume: 11 year: 2022 ident: bib106 article-title: The biomarkers discovery of hyperuricemia and gout: proteomics and metabolomics publication-title: PeerJ – volume: 8 start-page: BR454 year: 2002 end-page: B459 ident: bib27 article-title: Uric acid is a main electron donor to peroxidases in human blood plasma publication-title: Med. Sci. Monit. – volume: 41 start-page: 237 year: 1988 end-page: 242 ident: bib55 article-title: Gout and coronary heart disease: the framingham study publication-title: J. Clin. Epidemiol. – volume: 28 start-page: 1556 year: 2015 end-page: 1566 ident: bib34 article-title: Chemical characterization of urate hydroperoxide, A pro-oxidant intermediate generated by urate oxidation in inflammatory and photoinduced processes publication-title: Chem. Res. Toxicol. – volume: 289 start-page: 21937 year: 2014 end-page: 21949 ident: bib30 article-title: Uric acid and thiocyanate as competing substrates of lactoperoxidase publication-title: J. Biol. Chem. – volume: 15 year: 2016 ident: bib96 article-title: Effect of uric acid on mitochondrial function and oxidative stress in hepatocytes publication-title: Genet. Mol. Res. – volume: 38 start-page: 1101 year: 2001 end-page: 1106 ident: bib67 article-title: Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism publication-title: Hypertension – volume: 461 start-page: 248 year: 2018 end-page: 255 ident: bib86 article-title: MXRA5 is decreased in preeclampsia and affects trophoblast cell invasion through the MAPK pathway publication-title: Mol. Cell. Endocrinol. – volume: 60 start-page: 173 year: 2011 end-page: 185 ident: bib49 article-title: Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies publication-title: Cell Biochem. Biophys. – volume: 8 start-page: 32 year: 2022 ident: bib91 article-title: ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway publication-title: Cell Death Dis. – volume: 293 start-page: 19886 year: 2018 end-page: 19898 ident: bib37 article-title: Conjugation of urate-derived electrophiles to proteins during normal metabolism and inflammation publication-title: J. Biol. Chem. – volume: 16 start-page: 164 year: 2016 ident: bib63 article-title: Allopurinol and the risk of stroke in older adults receiving medicare publication-title: BMC Neurol. – volume: 71 start-page: 994 year: 2018 end-page: 1004 ident: bib60 article-title: Cardiovascular risks of probenecid versus allopurinol in older patients with gout publication-title: J. Am. Coll. Cardiol. – volume: 359 start-page: 1811 year: 2008 end-page: 1821 ident: bib23 article-title: Uric acid and cardiovascular risk publication-title: N. Engl. J. Med. – volume: 2014 start-page: 1 year: 2014 end-page: 13 ident: bib83 article-title: FOXO transcription factors: their clinical significance and regulation publication-title: BioMed Res. Int. – volume: 6 year: 2015 ident: bib89 article-title: The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease publication-title: Front. Pharmacol. – volume: 103 start-page: 4 year: 2022 end-page: 12 ident: bib64 article-title: Uric acid in metabolic syndrome: does uric acid have a definitive role? publication-title: Eur. J. Intern. Med. – volume: 69 start-page: 203 year: 2018 end-page: 213 ident: bib77 article-title: Maintaining a healthy proteome during oxidative stress publication-title: Mol. Cell – volume: 23 start-page: 134 year: 2014 end-page: 139 ident: bib61 article-title: Allopurinol as a preventive contrivance after acute ischemic stroke in patients with a high level of serum uric acid: a randomized, controlled trial publication-title: Med. Princ. Pract. – volume: 27 start-page: 608 year: 2008 end-page: 619 ident: bib7 article-title: Uric acid: the oxidant-antioxidant paradox publication-title: Nucleosides Nucleotides Nucleic Acids – volume: 17 start-page: 1934 year: 2018 end-page: 1942 ident: bib42 article-title: Proteome-Wide evaluation of two common protein quantification methods publication-title: J. Proteome Res. – volume: 33 start-page: 1797 year: 2012 end-page: 1805 ident: bib88 article-title: Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non–small cell lung carcinoma from Chinese patients publication-title: Carcinogenesis – volume: 32 start-page: 36 year: 2013 end-page: 42 ident: bib10 article-title: Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development publication-title: Nitric Oxide – volume: 646 start-page: 120 year: 2018 end-page: 127 ident: bib33 article-title: Characterisation of peroxidasin activity in isolated extracellular matrix and direct detection of hypobromous acid formation publication-title: Arch. Biochem. Biophys. – volume: 588 start-page: 3390 year: 2014 end-page: 3394 ident: bib85 article-title: Hypoxia inducible factor‐1α suppresses Peroxiredoxin 3 expression to promote proliferation of CCRCC cells publication-title: FEBS Lett. – volume: 681 year: 2020 ident: bib32 article-title: Reaction of human peroxidasin 1 compound I and compound II with one-electron donors publication-title: Arch. Biochem. Biophys. – volume: 11 start-page: 1306 year: 2005 end-page: 1313 ident: bib80 article-title: The antioxidant function of the p53 tumor suppressor publication-title: Nat. Med. – volume: 135 start-page: 9 year: 2015 end-page: 14 ident: bib98 article-title: NALP3 inflammasome activation in protein misfolding diseases publication-title: Life Sci. – volume: 88 start-page: 199 year: 2015 end-page: 204 ident: bib101 article-title: p62 links autophagy and Nrf2 signaling publication-title: Free Radic. Biol. Med. – volume: 33 start-page: 1729 year: 2015 end-page: 1741 ident: bib65 article-title: Serum uric acid and the risk of cardiovascular and renal disease publication-title: J. Hypertens. – volume: 31 start-page: 394 year: 2011 end-page: 399 ident: bib68 article-title: Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations publication-title: Semin. Nephrol. – start-page: 337 year: 2014 end-page: 358 ident: bib81 article-title: The Role of Tumor Suppressor P53 in the Antioxidant Defense and Metabolism – volume: 32 year: 2020 ident: bib92 article-title: A closer look into NADPH oxidase inhibitors: validation and insight into their mechanism of action publication-title: Redox Biol. – volume: 1864 year: 2020 ident: bib35 article-title: Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 2017 start-page: 1 year: 2017 end-page: 11 ident: bib71 article-title: Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway publication-title: BioMed Res. Int. – volume: 12 start-page: 8605 year: 2020 end-page: 8621 ident: bib87 article-title: Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate publication-title: Aging – volume: 292 start-page: 8705 year: 2017 end-page: 8715 ident: bib36 article-title: Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2 publication-title: J. Biol. Chem. – volume: 13 start-page: 731 year: 2016 end-page: 740 ident: bib43 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat. Methods – volume: 71 start-page: 851 year: 2018 end-page: 865 ident: bib56 article-title: Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation publication-title: Am. J. Kidney Dis. – volume: 287 start-page: 40732 year: 2012 end-page: 40744 ident: bib95 article-title: Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress publication-title: J. Biol. Chem. – volume: 51 start-page: 211 year: 2008 end-page: 217 ident: bib94 article-title: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant publication-title: Hypertension – volume: 288 start-page: 22378 year: 2013 end-page: 22386 ident: bib79 article-title: The Ras GTPase-activating-like protein IQGAP1 mediates Nrf2 protein activation via the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway publication-title: J. Biol. Chem. – volume: 48 year: 2023 ident: bib25 article-title: Serum uric acid levels and subclinical atherosclerosis: results from the Brazilian longitudinal study of Adult health (ELSA-Brasil) publication-title: Curr. Probl. Cardiol. – volume: 293 start-page: 584 year: 2007 end-page: 596 ident: bib47 article-title: Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress publication-title: Am. J. Physiol.: Cell Physiol. – volume: 77 start-page: 323 year: 2015 end-page: 345 ident: bib2 article-title: The molecular physiology of uric acid homeostasis publication-title: Annu. Rev. Physiol. – volume: 9 year: 2014 ident: bib48 article-title: Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4 publication-title: PLoS One – volume: 37 start-page: 989 year: 2016 end-page: 997 ident: bib72 article-title: Uric acid enhances PKC-dependent eNOS phosphorylationand mediates cellular ER stress: a mechanism for uric acid-induced endothelial dysfunction publication-title: Int. J. Mol. Med. – volume: 20 start-page: 125 year: 2005 end-page: 133 ident: bib1 article-title: Molecular physiology of urate transport publication-title: Physiology – volume: 269 start-page: 5474 year: 2002 end-page: 5483 ident: bib8 article-title: Anti- and pro-oxidant effects of urate in copper-induced low-density lipoprotein oxidation publication-title: Eur. J. Biochem. – volume: 25 start-page: 187 year: 2015 end-page: 194 ident: bib69 article-title: Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-kappa B signaling publication-title: Nutr. Metabol. Cardiovasc. Dis. – volume: 70 start-page: 1045 year: 2019 ident: 10.1016/j.redox.2025.103625_bib17 article-title: Hyperuricemia and cardiovascular diseases publication-title: Rev. Chem. – volume: 16 start-page: 164 year: 2016 ident: 10.1016/j.redox.2025.103625_bib63 article-title: Allopurinol and the risk of stroke in older adults receiving medicare publication-title: BMC Neurol. doi: 10.1186/s12883-016-0692-2 – volume: 340 start-page: 143 year: 1999 ident: 10.1016/j.redox.2025.103625_bib9 article-title: When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid publication-title: Biochem. J. doi: 10.1042/bj3400143 – volume: 173 start-page: 35 year: 2001 ident: 10.1016/j.redox.2025.103625_bib53 article-title: Adhesion molecules and atherogenesis publication-title: Acta Physiol. Scand. doi: 10.1046/j.1365-201X.2001.00882.x – volume: 1 start-page: 469 year: 2019 ident: 10.1016/j.redox.2025.103625_bib97 article-title: Hyperuricemia as a risk factor for atrial fibrillation due to soluble and crystalized uric acid publication-title: Circ Rep doi: 10.1253/circrep.CR-19-0088 – volume: 251 start-page: 788 year: 1991 ident: 10.1016/j.redox.2025.103625_bib104 article-title: Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis publication-title: Science (1979) – volume: 26 start-page: 1367 year: 2008 ident: 10.1016/j.redox.2025.103625_bib41 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1511 – volume: 13 start-page: 1563 year: 2024 ident: 10.1016/j.redox.2025.103625_bib90 article-title: The nuclear speckles protein SRRM2 is exposed on the surface of cancer cells publication-title: Cells doi: 10.3390/cells13181563 – volume: 80 start-page: 1 year: 2020 ident: 10.1016/j.redox.2025.103625_bib59 article-title: Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease publication-title: Eur. J. Intern. Med. doi: 10.1016/j.ejim.2020.07.006 – volume: 37 start-page: 989 year: 2016 ident: 10.1016/j.redox.2025.103625_bib72 article-title: Uric acid enhances PKC-dependent eNOS phosphorylationand mediates cellular ER stress: a mechanism for uric acid-induced endothelial dysfunction publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2016.2491 – volume: 8 start-page: BR454 year: 2002 ident: 10.1016/j.redox.2025.103625_bib27 article-title: Uric acid is a main electron donor to peroxidases in human blood plasma publication-title: Med. Sci. Monit. – volume: 67 start-page: 8536 year: 2007 ident: 10.1016/j.redox.2025.103625_bib50 article-title: Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-1166 – volume: 48 year: 2023 ident: 10.1016/j.redox.2025.103625_bib25 article-title: Serum uric acid levels and subclinical atherosclerosis: results from the Brazilian longitudinal study of Adult health (ELSA-Brasil) publication-title: Curr. Probl. Cardiol. doi: 10.1016/j.cpcardiol.2022.101525 – volume: 359 start-page: 1811 year: 2008 ident: 10.1016/j.redox.2025.103625_bib23 article-title: Uric acid and cardiovascular risk publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra0800885 – volume: 47 start-page: 82 year: 2013 ident: 10.1016/j.redox.2025.103625_bib11 article-title: Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production publication-title: Free Radic. Res. doi: 10.3109/10715762.2012.747677 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.redox.2025.103625_bib71 article-title: Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway publication-title: BioMed Res. Int. – year: 2020 ident: 10.1016/j.redox.2025.103625_bib39 – volume: 19 start-page: 1204 year: 2008 ident: 10.1016/j.redox.2025.103625_bib57 article-title: Uric acid and incident kidney disease in the community publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2007101075 – volume: 14 start-page: 191 year: 2018 ident: 10.1016/j.redox.2025.103625_bib22 article-title: Uric acid levels are associated with endothelial dysfunction and severity of coronary atherosclerosis during a first episode of acute coronary syndrome publication-title: Purinergic Signal. doi: 10.1007/s11302-018-9604-9 – year: 2021 ident: 10.1016/j.redox.2025.103625_bib58 article-title: Serum uric acid is an independent risk factor of worse mid- and long-term outcomes in patients with non-ST-segment elevation acute coronary syndromes publication-title: Cardiol. J. doi: 10.5603/CJ.a2021.0156 – volume: 12 start-page: 8605 year: 2020 ident: 10.1016/j.redox.2025.103625_bib87 article-title: Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate publication-title: Aging doi: 10.18632/aging.103175 – volume: 27 start-page: 608 year: 2008 ident: 10.1016/j.redox.2025.103625_bib7 article-title: Uric acid: the oxidant-antioxidant paradox publication-title: Nucleosides Nucleotides Nucleic Acids doi: 10.1080/15257770802138558 – volume: 71 start-page: 994 year: 2018 ident: 10.1016/j.redox.2025.103625_bib60 article-title: Cardiovascular risks of probenecid versus allopurinol in older patients with gout publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.12.052 – volume: 26 start-page: 269 year: 2008 ident: 10.1016/j.redox.2025.103625_bib74 article-title: Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system publication-title: J. Hypertens. doi: 10.1097/HJH.0b013e3282f240bf – volume: 28 start-page: 1556 year: 2015 ident: 10.1016/j.redox.2025.103625_bib34 article-title: Chemical characterization of urate hydroperoxide, A pro-oxidant intermediate generated by urate oxidation in inflammatory and photoinduced processes publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.5b00132 – volume: 8 start-page: 352 year: 2023 ident: 10.1016/j.redox.2025.103625_bib100 article-title: Endoplasmic reticulum stress: molecular mechanism and therapeutic targets publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-023-01570-w – volume: 20 start-page: 125 year: 2005 ident: 10.1016/j.redox.2025.103625_bib1 article-title: Molecular physiology of urate transport publication-title: Physiology doi: 10.1152/physiol.00039.2004 – volume: 88 start-page: 199 year: 2015 ident: 10.1016/j.redox.2025.103625_bib101 article-title: p62 links autophagy and Nrf2 signaling publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.06.014 – volume: 77 start-page: 323 year: 2015 ident: 10.1016/j.redox.2025.103625_bib2 article-title: The molecular physiology of uric acid homeostasis publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021113-170343 – volume: vol. 94 start-page: 1114 year: 2014 ident: 10.1016/j.redox.2025.103625_bib21 – volume: 14 start-page: 615 year: 1993 ident: 10.1016/j.redox.2025.103625_bib4 article-title: Towards the physiological function of uric acid publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(93)90143-I – volume: 51 year: 2018 ident: 10.1016/j.redox.2025.103625_bib24 article-title: Allantoin as an independent marker associated with carotid intima-media thickness in subclinical atherosclerosis publication-title: Braz. J. Med. Biol. Res. doi: 10.1590/1414-431x20187543 – volume: 32 start-page: 36 year: 2013 ident: 10.1016/j.redox.2025.103625_bib10 article-title: Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development publication-title: Nitric Oxide doi: 10.1016/j.niox.2013.04.003 – volume: 6 year: 2015 ident: 10.1016/j.redox.2025.103625_bib89 article-title: The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease publication-title: Front. Pharmacol. doi: 10.3389/fphar.2015.00276 – volume: 51 start-page: 211 year: 2008 ident: 10.1016/j.redox.2025.103625_bib94 article-title: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.107.100214 – volume: 120 start-page: 1939 year: 2010 ident: 10.1016/j.redox.2025.103625_bib16 article-title: Uric acid promotes an acute inflammatory response to sterile cell death in mice publication-title: J. Clin. Investig. doi: 10.1172/JCI40124 – volume: 105 start-page: 593 year: 2025 ident: 10.1016/j.redox.2025.103625_bib84 article-title: Redox signaling in the pancreas in health and disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00044.2023 – volume: 33 start-page: 1797 year: 2012 ident: 10.1016/j.redox.2025.103625_bib88 article-title: Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non–small cell lung carcinoma from Chinese patients publication-title: Carcinogenesis doi: 10.1093/carcin/bgs210 – volume: 129 start-page: 299 year: 2016 ident: 10.1016/j.redox.2025.103625_bib62 article-title: Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2015.11.003 – volume: 28 start-page: 1234 year: 2010 ident: 10.1016/j.redox.2025.103625_bib75 article-title: Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction publication-title: J. Hypertens. doi: 10.1097/HJH.0b013e328337da1d – volume: 101 start-page: 83 year: 2023 ident: 10.1016/j.redox.2025.103625_bib82 article-title: FoxO3 and oxidative stress: a multifaceted role in cellular adaptation publication-title: J. Mol. Med. doi: 10.1007/s00109-022-02281-5 – volume: 2 start-page: 1896 year: 2007 ident: 10.1016/j.redox.2025.103625_bib40 article-title: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.261 – volume: 73 start-page: 235 year: 1990 ident: 10.1016/j.redox.2025.103625_bib5 article-title: Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products publication-title: Chem. Biol. Interact. doi: 10.1016/0009-2797(90)90006-9 – volume: 289 start-page: 21937 year: 2014 ident: 10.1016/j.redox.2025.103625_bib30 article-title: Uric acid and thiocyanate as competing substrates of lactoperoxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.544957 – volume: 1864 year: 2020 ident: 10.1016/j.redox.2025.103625_bib35 article-title: Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2019.129481 – volume: 5 start-page: 186 year: 2010 ident: 10.1016/j.redox.2025.103625_bib19 article-title: Serum uric acid and cardiovascular disease publication-title: Maedica (Bucur) – volume: 38 start-page: 1101 year: 2001 ident: 10.1016/j.redox.2025.103625_bib67 article-title: Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism publication-title: Hypertension doi: 10.1161/hy1101.092839 – volume: 681 year: 2020 ident: 10.1016/j.redox.2025.103625_bib32 article-title: Reaction of human peroxidasin 1 compound I and compound II with one-electron donors publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2020.108267 – volume: 588 start-page: 3390 year: 2014 ident: 10.1016/j.redox.2025.103625_bib85 article-title: Hypoxia inducible factor‐1α suppresses Peroxiredoxin 3 expression to promote proliferation of CCRCC cells publication-title: FEBS Lett. doi: 10.1016/j.febslet.2014.07.030 – volume: 9 year: 2021 ident: 10.1016/j.redox.2025.103625_bib52 article-title: Inflammatory cell recruitment in cardiovascular disease publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.635527 – volume: 41 start-page: 237 year: 1988 ident: 10.1016/j.redox.2025.103625_bib55 article-title: Gout and coronary heart disease: the framingham study publication-title: J. Clin. Epidemiol. doi: 10.1016/0895-4356(88)90127-8 – volume: 33 start-page: 1729 year: 2015 ident: 10.1016/j.redox.2025.103625_bib65 article-title: Serum uric acid and the risk of cardiovascular and renal disease publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000000701 – volume: 25 start-page: 187 year: 2015 ident: 10.1016/j.redox.2025.103625_bib69 article-title: Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-kappa B signaling publication-title: Nutr. Metabol. Cardiovasc. Dis. doi: 10.1016/j.numecd.2014.08.006 – volume: 288 start-page: 22378 year: 2013 ident: 10.1016/j.redox.2025.103625_bib79 article-title: The Ras GTPase-activating-like protein IQGAP1 mediates Nrf2 protein activation via the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.444182 – volume: 135 start-page: 9 year: 2015 ident: 10.1016/j.redox.2025.103625_bib98 article-title: NALP3 inflammasome activation in protein misfolding diseases publication-title: Life Sci. doi: 10.1016/j.lfs.2015.05.011 – volume: 60 start-page: 1258 year: 2011 ident: 10.1016/j.redox.2025.103625_bib45 article-title: Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome publication-title: Diabetes doi: 10.2337/db10-0916 – volume: vol. 9789400757 year: 2013 ident: 10.1016/j.redox.2025.103625_bib76 – volume: 15 year: 2016 ident: 10.1016/j.redox.2025.103625_bib96 article-title: Effect of uric acid on mitochondrial function and oxidative stress in hepatocytes publication-title: Genet. Mol. Res. doi: 10.4238/gmr.15028644 – volume: 269 start-page: 5474 year: 2002 ident: 10.1016/j.redox.2025.103625_bib8 article-title: Anti- and pro-oxidant effects of urate in copper-induced low-density lipoprotein oxidation publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2002.03245.x – volume: 233 start-page: 218 year: 2010 ident: 10.1016/j.redox.2025.103625_bib13 article-title: Mechanisms of uric acid crystal-mediated autoinflammation publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2009.00860.x – volume: 69 start-page: 203 year: 2018 ident: 10.1016/j.redox.2025.103625_bib77 article-title: Maintaining a healthy proteome during oxidative stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.021 – volume: 461 start-page: 248 year: 2018 ident: 10.1016/j.redox.2025.103625_bib86 article-title: MXRA5 is decreased in preeclampsia and affects trophoblast cell invasion through the MAPK pathway publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2017.09.020 – volume: 103 start-page: 4 year: 2022 ident: 10.1016/j.redox.2025.103625_bib64 article-title: Uric acid in metabolic syndrome: does uric acid have a definitive role? publication-title: Eur. J. Intern. Med. doi: 10.1016/j.ejim.2022.04.022 – volume: 21 start-page: 2553 year: 2017 ident: 10.1016/j.redox.2025.103625_bib70 article-title: Phloretin attenuates hyperuricemia-induced endothelial dysfunction through co-inhibiting inflammation and GLUT9-mediated uric acid uptake publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.13176 – volume: 11 start-page: 1306 year: 2005 ident: 10.1016/j.redox.2025.103625_bib80 article-title: The antioxidant function of the p53 tumor suppressor publication-title: Nat. Med. doi: 10.1038/nm1320 – volume: 111 start-page: 5778 year: 1989 ident: 10.1016/j.redox.2025.103625_bib6 article-title: Antioxidation mechanisms of uric acid publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00197a042 – volume: 11 year: 2022 ident: 10.1016/j.redox.2025.103625_bib31 article-title: Uric acid reacts with peroxidasin, decreases collagen IV crosslink, impairs human endothelial cell migration and adhesion publication-title: Antioxidants (Basel) – volume: 60 start-page: 173 year: 2011 ident: 10.1016/j.redox.2025.103625_bib49 article-title: Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-010-9138-4 – volume: 287 start-page: 30541 year: 2012 ident: 10.1016/j.redox.2025.103625_bib103 article-title: Annexin-1-mediated endothelial cell migration and angiogenesis are regulated by vascular endothelial growth factor (VEGF)-induced inhibition of miR-196a expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.393561 – volume: 286 start-page: 12901 year: 2011 ident: 10.1016/j.redox.2025.103625_bib28 article-title: Urate as a physiological substrate for myeloperoxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.172460 – volume: 646 start-page: 120 year: 2018 ident: 10.1016/j.redox.2025.103625_bib33 article-title: Characterisation of peroxidasin activity in isolated extracellular matrix and direct detection of hypobromous acid formation publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2018.03.038 – volume: 292 start-page: 8705 year: 2017 ident: 10.1016/j.redox.2025.103625_bib36 article-title: Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.767657 – volume: 11 year: 2022 ident: 10.1016/j.redox.2025.103625_bib106 article-title: The biomarkers discovery of hyperuricemia and gout: proteomics and metabolomics publication-title: PeerJ doi: 10.7717/peerj.14554 – volume: 17 start-page: 1934 year: 2018 ident: 10.1016/j.redox.2025.103625_bib42 article-title: Proteome-Wide evaluation of two common protein quantification methods publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00016 – volume: 126 start-page: 177 year: 2018 ident: 10.1016/j.redox.2025.103625_bib29 article-title: Identification of urate hydroperoxide in neutrophils: a novel pro-oxidant generated in inflammatory conditions publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.08.011 – volume: 107 start-page: 1951 year: 2003 ident: 10.1016/j.redox.2025.103625_bib20 article-title: Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology publication-title: Circulation doi: 10.1161/01.CIR.0000066420.36123.35 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.redox.2025.103625_bib78 article-title: Protective effect of uric acid on ox-LDL-induced HUVECs injury via Keap1-Nrf2-ARE pathway publication-title: J. Immunol. Res. – volume: 18 start-page: 1295 year: 2014 ident: 10.1016/j.redox.2025.103625_bib26 article-title: Is it time to revise the normal range of serum uric acid levels? publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 21 start-page: 29 year: 2016 ident: 10.1016/j.redox.2025.103625_bib51 article-title: p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation publication-title: Cell. Mol. Biol. Lett. doi: 10.1186/s11658-016-0031-z – volume: 71 start-page: 851 year: 2018 ident: 10.1016/j.redox.2025.103625_bib56 article-title: Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2017.12.009 – volume: 176 start-page: 746 year: 2014 ident: 10.1016/j.redox.2025.103625_bib73 article-title: A global proteome approach in uric acid stimulated human aortic endothelial cells revealed regulation of multiple major cellular pathways publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2014.07.102 – volume: 29 start-page: 3 year: 2016 ident: 10.1016/j.redox.2025.103625_bib66 article-title: Uric acid in metabolic syndrome: from an innocent bystander to a central player publication-title: Eur. J. Intern. Med. doi: 10.1016/j.ejim.2015.11.026 – volume: 18 start-page: 2821 year: 2013 ident: 10.1016/j.redox.2025.103625_bib93 article-title: Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor publication-title: Molecules doi: 10.3390/molecules18032821 – volume: 78 start-page: 343 year: 2022 ident: 10.1016/j.redox.2025.103625_bib99 article-title: Evidence for the effect of soluble uric acid in augmenting endoplasmic reticulum stress markers in human peripheral blood mononuclear cells publication-title: J. Physiol. Biochem. doi: 10.1007/s13105-021-00869-y – volume: 8 start-page: 471 year: 2017 ident: 10.1016/j.redox.2025.103625_bib3 article-title: Uric acid and life on earth publication-title: J. Adv. Res. doi: 10.1016/j.jare.2017.06.001 – volume: 293 start-page: 584 year: 2007 ident: 10.1016/j.redox.2025.103625_bib47 article-title: Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress publication-title: Am. J. Physiol.: Cell Physiol. doi: 10.1152/ajpcell.00600.2006 – volume: 484 start-page: 150 year: 2018 ident: 10.1016/j.redox.2025.103625_bib18 article-title: Uric acid and cardiovascular disease publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2018.05.046 – volume: 202 start-page: 11 year: 2009 ident: 10.1016/j.redox.2025.103625_bib54 article-title: Uric acid: a marker of increased cardiovascular risk publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2008.05.022 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.redox.2025.103625_bib102 article-title: Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance publication-title: J. Immunol. Res. doi: 10.1155/2016/8239258 – start-page: 337 year: 2014 ident: 10.1016/j.redox.2025.103625_bib81 – volume: 13 start-page: 160 year: 2011 ident: 10.1016/j.redox.2025.103625_bib15 article-title: The role of uric acid as an endogenous danger signal in immunity and inflammation publication-title: Curr. Rheumatol. Rep. doi: 10.1007/s11926-011-0162-1 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.redox.2025.103625_bib83 article-title: FOXO transcription factors: their clinical significance and regulation publication-title: BioMed Res. Int. doi: 10.1155/2014/408514 – volume: 13 start-page: 731 year: 2016 ident: 10.1016/j.redox.2025.103625_bib43 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat. Methods doi: 10.1038/nmeth.3901 – volume: 8 start-page: 32 year: 2022 ident: 10.1016/j.redox.2025.103625_bib91 article-title: ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway publication-title: Cell Death Dis. doi: 10.1038/s41420-022-00815-x – volume: 7 year: 2017 ident: 10.1016/j.redox.2025.103625_bib14 article-title: Soluble uric acid activates the NLRP3 inflammasome publication-title: Sci. Rep. doi: 10.1038/srep39884 – volume: 293 start-page: 19886 year: 2018 ident: 10.1016/j.redox.2025.103625_bib37 article-title: Conjugation of urate-derived electrophiles to proteins during normal metabolism and inflammation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.005237 – volume: 13 year: 2024 ident: 10.1016/j.redox.2025.103625_bib46 article-title: Peroxidasin inhibition by phloroglucinol and other peroxidase inhibitors publication-title: Antioxidants – volume: 287 start-page: 40732 year: 2012 ident: 10.1016/j.redox.2025.103625_bib95 article-title: Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.399899 – volume: 9 year: 2014 ident: 10.1016/j.redox.2025.103625_bib48 article-title: Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4 publication-title: PLoS One doi: 10.1371/journal.pone.0115210 – volume: 31 start-page: 394 year: 2011 ident: 10.1016/j.redox.2025.103625_bib68 article-title: Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations publication-title: Semin. Nephrol. doi: 10.1016/j.semnephrol.2011.08.002 – volume: 5 start-page: 553 issue: 6 year: 2008 ident: 10.1016/j.redox.2025.103625_bib44 article-title: Real-time imaging of the intracellular glutathione redox potential publication-title: Nat. Methods doi: 10.1038/nmeth.1212 – volume: 118 start-page: 620 year: 2016 ident: 10.1016/j.redox.2025.103625_bib105 article-title: Endothelial cell dysfunction and the pathobiology of atherosclerosis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.306301 – volume: 440 start-page: 237 year: 2006 ident: 10.1016/j.redox.2025.103625_bib12 article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome publication-title: Nature doi: 10.1038/nature04516 – volume: 32 year: 2020 ident: 10.1016/j.redox.2025.103625_bib92 article-title: A closer look into NADPH oxidase inhibitors: validation and insight into their mechanism of action publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101466 – volume: 23 start-page: 134 year: 2014 ident: 10.1016/j.redox.2025.103625_bib61 article-title: Allopurinol as a preventive contrivance after acute ischemic stroke in patients with a high level of serum uric acid: a randomized, controlled trial publication-title: Med. Princ. Pract. doi: 10.1159/000355621 |
SSID | ssj0000884210 |
Score | 2.3800626 |
Snippet | This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 103625 |
SubjectTerms | Cell Adhesion - drug effects Cell Movement - drug effects Endothelial cell damage Endothelial Cells - drug effects Endothelial Cells - metabolism Human Umbilical Vein Endothelial Cells - drug effects Human Umbilical Vein Endothelial Cells - metabolism Humans HUVEC Inflammation Oxidation-Reduction Oxidative Stress - drug effects Proteome - metabolism Proteomics Proteomics - methods PXDN Research Paper Uric acid Uric Acid - metabolism Uric Acid - pharmacology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9FEPoiflS9aiWFPnYxu8lmE9-sKIdQH6QHvoXNF57InvROqP99Z5Ld407BvvR1s2STmez8ZsLMbwj5psoAoKRkwZ3lBeBtLGwteFFzEYXX3kqLVwM_b-R4Iq7v6ruVVl-YE5bpgbPgTmstNGNeBcAp4RtmHZMecNWV3mkRIlpfwLyVYCrZYKUEBDMDzVBK6EICzj8QEVY1VppLbI69AkWJsX8Nkd56nK8TJ1eQ6GqbbPUuJD3PS98hH0K3SzZzU8mXPXI76bClEJaZU_DuaJ-xQWeRIoMQbd3U01lHQ-ex-uoRDiDF6_v5GT2nmR-EJvYGrFemiX72E5lcXf66GBd954TCiUYtCuFLVzW2YlJpF5znrY5to5Xj3kbVgtfDfS2Ek23QpUVp2caWDiArskZGzffJRjfrwiGh3HpmwRJVpdQwbdCyqqzQDgJHKaSMI_J9EKJ5ygQZZsgcezBJ5gZlbrLMR-QHCnr5KrJbpwegc9Pr3PxL5yMiBzWZ3lHIDgBMNX3_618HpRr4jVC4bRdmz3MDpg1OjOaMjchBVvJyjRhic6FgRK2pf20T6yPd9D5RdZdVJtD5_D-2fUQ-4l5yuuUx2Vj8fg5fwCVa2JN0-v8C8NMIUw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-1IngptX69tkoEj65kk2w2KYhUsRShHsQHvYXNx-qTsqvvvUL733cm2W1dLR563M2SZCczmd-EyW8Iea3LCE5Jq0J4Jwrwt23hKimKSshWBhOccng0cPJFHc_l59PqdIOMVVEHAa5uDe2wntR8efb24vflezD4dze5WsiteQHBHq_wEjlA-nvkPrimGi31ZMD7aWvWWvLEUMB5KQrANvXIRHR7PxNvlUj9J07rX1D6d27lH87qaJtsDSiTHma1eEQ2YrdDHuS6k5ePydd5h1WH8CY6BQBIh6QO2rcUSYZo4xeB9h2NXcALWmegoxRP-FcH9JBmChGaCB7wSjNNDLVPyPzo07ePx8VQXKHwstbrQobS89pxprTx0QfRmLapjfYiuFY3AIxEqKT0qommdCg5V7vSg1drWa1aI56Sza7v4nNChQvMwWbFS2Wg22gU504aD7Glkkq1M_JmFKL9lTk07Jhc9tMmmVuUuc0yn5EPKOjrT5EAO73ol9_tYE-2MtIwFnQE-CJDzZxnKgDc8mXwRkYYU43LZAcskTECdLX4_-ivxkW1YGko3KaL_fnKwu4H2mMEYzPyLC_y9RwxChdSQ4ueLP_kJ6Yt3eJHYvMueebY2b3rjPfIQ3zKWZj7ZHO9PI8vACmt3cuk_VcPew9k priority: 102 providerName: Scholars Portal |
Title | Unraveling the effects of uric acid on endothelial cells: A global proteomic study |
URI | https://dx.doi.org/10.1016/j.redox.2025.103625 https://www.ncbi.nlm.nih.gov/pubmed/40203480 https://www.proquest.com/docview/3188429300 https://pubmed.ncbi.nlm.nih.gov/PMC12005352 https://doaj.org/article/594900d8e1104d70bc06d063c1dc94ef |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBL6bvbtIsKPdasLcmylNsmJISG9JB26d6E9XDrUOyQbKD595mR7CVOoYdeDJZlW_5GmhnJM58I-aSKAEZJyYw7yzOwt01mS8GzkotGeO2ttLg0cPZVnqzEl3W53iGHYy4MhlUOuj_p9Kith5LFgObism0X3xiDmRSYPzDi-LsNM8q5UDGJb32wXWeBUSRYJCXA-hneMJIPxTAvpOX8A_NEVmL-ucQts-8ZqMjjP7FTf_uhD8Mp79mn42fk6eBY0mVq-3OyE7oX5HHaavL2JTlfdbjRECafU_D56BDHQfuGIq8QrV3rad_R0HnMyfoN3ZLiov71Pl3SxBpCI6cDZjHTSEr7iqyOj74fnmTDfgqZE5XaZMIXjlWW5VJpF5zntW7qSivHvW1UDb4Q96UQTtZBFxaRs5UtHKDb5JVsNH9Ndru-C28J5dbnFvQTK6SGxwYtGbNCO5hOSiFlMyOfRxDNZaLNMGM82YWJmBvE3CTMZ-QAgd5WRc7rWNBf_TSD0E2phc5zrwJ4LMJXuXW59OBhucI7LQK8U45iMpMuBI9q__32j6NQDQwuBLfuQn9zbUDhQe_RPM9n5E0S8raNOPGG_gZX1ET8k4-YXunaX5HAu2CJVufd_7Z4jzzBsxR4-Z7sbq5uwgdwjjZ2Th4tT89_nM7j4sI8jgU4ngl1B6xmDp0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4lmW8jASR6JNbMexe2srqi20PUBX2psVPwKpUFK1Wwn-PTN2smpA4sA1jhPnG3tm7Mx8Q8h7VQQwSkpm3Fmegb1tMlsKnpVcNMJrb6XFo4HTM7lYik-rcrVFDsdcGAyrHHR_0ulRWw9X5gOa88u2nX9lDHZSYP7AiOPvtuoOuQveQIX1G45XB5uDFlhGgkVWAuyQYY-RfSjGeSEv50_YKLISE9Al1sy-ZaEikf_EUP3tiP4ZT3nLQB09Ig8Hz5Lup8E_Jluhe0LupVqTv56SL8sOKw1h9jkFp48OgRy0bygSC9HatZ72HQ2dx6SsHzAvKZ7qX-_RfZpoQ2gkdcA0ZhpZaZ-R5dHH88NFNhRUyJyo1DoTvnCssiyXSrvgPK91U1daOe5to2pwhrgvhXCyDrqwiJytbOEA3iavZKP5c7Ld9V14QSi3PregoFghNTw2aMmYFdrBflIKKZsZ-TCCaC4Tb4YZA8ouTMTcIOYmYT4jBwj05lYkvY4X-qtvZpC6KbXQee5VAJdF-Cq3LpceXCxXeKdFgHfKUUxmMofgUe2_3_5uFKqB1YXg1l3ob64NaDyYPZrn-YzsJCFvxog7by4UtKiJ-CcfMW3p2u-RwbtgiVfn5f-O-C25vzg_PTEnx2efd8kDbElRmK_I9vrqJrwGT2lt38SV8BsU9A5K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+effects+of+uric+acid+on+endothelial+cells%3A+A+global+proteomic+study&rft.jtitle=Redox+biology&rft.au=Dempsey%2C+Bianca&rft.au=Pereira+da+Silva%2C+Beatriz&rft.au=Cruz%2C+Litiele+Cezar&rft.au=Vileigas%2C+Danielle&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=82&rft_id=info:doi/10.1016%2Fj.redox.2025.103625&rft.externalDocID=S2213231725001387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |