Unraveling the effects of uric acid on endothelial cells: A global proteomic study

This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with c...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 82; p. 103625
Main Authors Dempsey, Bianca, Pereira da Silva, Beatriz, Cruz, Litiele Cezar, Vileigas, Danielle, Silva, Amanda R.M., Pereira da Silva, Railmara, Meotti, Flavia Carla
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid. [Display omitted] •First proteomics study revealing the modulation of protein abundance in HUVEC upon physiological concentrations of uric acid.•Chaperones, redox signaling proteins, proteins related to protein degradation and to the inflammatory processes were changed.•Uric acid induced an increase in oxidation levels in cells.•PXDN inhibition or silencing decreased urate-dependent oxidation.•Uric acid increased protein misfolding and monocyte adhesion.
AbstractList This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid.
This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid.This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid.
This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid. [Display omitted] •First proteomics study revealing the modulation of protein abundance in HUVEC upon physiological concentrations of uric acid.•Chaperones, redox signaling proteins, proteins related to protein degradation and to the inflammatory processes were changed.•Uric acid induced an increase in oxidation levels in cells.•PXDN inhibition or silencing decreased urate-dependent oxidation.•Uric acid increased protein misfolding and monocyte adhesion.
This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid. Image 1 • First proteomics study revealing the modulation of protein abundance in HUVEC upon physiological concentrations of uric acid. • Chaperones, redox signaling proteins, proteins related to protein degradation and to the inflammatory processes were changed. • Uric acid induced an increase in oxidation levels in cells. • PXDN inhibition or silencing decreased urate-dependent oxidation. • Uric acid increased protein misfolding and monocyte adhesion.
ArticleNumber 103625
Author Dempsey, Bianca
Vileigas, Danielle
Meotti, Flavia Carla
Pereira da Silva, Railmara
Cruz, Litiele Cezar
Pereira da Silva, Beatriz
Silva, Amanda R.M.
Author_xml – sequence: 1
  givenname: Bianca
  surname: Dempsey
  fullname: Dempsey, Bianca
– sequence: 2
  givenname: Beatriz
  surname: Pereira da Silva
  fullname: Pereira da Silva, Beatriz
– sequence: 3
  givenname: Litiele Cezar
  surname: Cruz
  fullname: Cruz, Litiele Cezar
– sequence: 4
  givenname: Danielle
  surname: Vileigas
  fullname: Vileigas, Danielle
– sequence: 5
  givenname: Amanda R.M.
  surname: Silva
  fullname: Silva, Amanda R.M.
– sequence: 6
  givenname: Railmara
  surname: Pereira da Silva
  fullname: Pereira da Silva, Railmara
– sequence: 7
  givenname: Flavia Carla
  orcidid: 0000-0002-7217-3352
  surname: Meotti
  fullname: Meotti, Flavia Carla
  email: flaviam@iq.usp.br
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40203480$$D View this record in MEDLINE/PubMed
BookMark eNp9UV1rFDEUDVKxtfYXCJJHX3Z78zFfgkgpagsFQexzyCQ32yyzyZrMLPbfm-nU0r6YlyT3nnPu5Zy35CjEgIS8Z7BmwOrz7TqhjX_WHHhVKqLm1StywjkTKy5Yc_TsfUzOct5COW0rOYM35FgCByFbOCE_b0PSBxx82NDxDik6h2bMNDo6JW-oNt7SGCgGG0t_8HqgBochf6IXdDPEvvz3KY4YdwWdx8nevyOvnR4ynj3ep-T229dfl1ermx_fry8vblZGNu24kpYZ3vQc6rYzaKzQndNN1xphe9fqCiphKylNrbFj_bx83_TMADAHTe06cUquF10b9Vbtk9_pdK-i9uqhENNG6TR6M6CqOtkB2BYZA2kb6A3UFmphmDWdRFe0vixa-6nfoTUYxqSHF6IvO8HfqU08KMahLFrxovDxUSHF3xPmUe18np3SAeOUlWCz-50AKNAPz4c9TfmXSgGIBWBSzDmhe4IwUHP8aqse4ldz_GqJv7A-Lywsph88JpWNx2DQ-lQyLa74__L_Ar-_uGs
Cites_doi 10.1186/s12883-016-0692-2
10.1042/bj3400143
10.1046/j.1365-201X.2001.00882.x
10.1253/circrep.CR-19-0088
10.1038/nbt.1511
10.3390/cells13181563
10.1016/j.ejim.2020.07.006
10.3892/ijmm.2016.2491
10.1158/0008-5472.CAN-07-1166
10.1016/j.cpcardiol.2022.101525
10.1056/NEJMra0800885
10.3109/10715762.2012.747677
10.1681/ASN.2007101075
10.1007/s11302-018-9604-9
10.5603/CJ.a2021.0156
10.18632/aging.103175
10.1080/15257770802138558
10.1016/j.jacc.2017.12.052
10.1097/HJH.0b013e3282f240bf
10.1021/acs.chemrestox.5b00132
10.1038/s41392-023-01570-w
10.1152/physiol.00039.2004
10.1016/j.freeradbiomed.2015.06.014
10.1146/annurev-physiol-021113-170343
10.1016/0891-5849(93)90143-I
10.1590/1414-431x20187543
10.1016/j.niox.2013.04.003
10.3389/fphar.2015.00276
10.1161/HYPERTENSIONAHA.107.100214
10.1172/JCI40124
10.1152/physrev.00044.2023
10.1093/carcin/bgs210
10.1016/j.amjmed.2015.11.003
10.1097/HJH.0b013e328337da1d
10.1007/s00109-022-02281-5
10.1038/nprot.2007.261
10.1016/0009-2797(90)90006-9
10.1074/jbc.M113.544957
10.1016/j.bbagen.2019.129481
10.1161/hy1101.092839
10.1016/j.abb.2020.108267
10.1016/j.febslet.2014.07.030
10.3389/fcell.2021.635527
10.1016/0895-4356(88)90127-8
10.1097/HJH.0000000000000701
10.1016/j.numecd.2014.08.006
10.1074/jbc.M112.444182
10.1016/j.lfs.2015.05.011
10.2337/db10-0916
10.4238/gmr.15028644
10.1046/j.1432-1033.2002.03245.x
10.1111/j.0105-2896.2009.00860.x
10.1016/j.molcel.2017.12.021
10.1016/j.mce.2017.09.020
10.1016/j.ejim.2022.04.022
10.1111/jcmm.13176
10.1038/nm1320
10.1021/ja00197a042
10.1007/s12013-010-9138-4
10.1074/jbc.M112.393561
10.1074/jbc.M110.172460
10.1016/j.abb.2018.03.038
10.1074/jbc.M116.767657
10.7717/peerj.14554
10.1021/acs.jproteome.8b00016
10.1016/j.freeradbiomed.2018.08.011
10.1161/01.CIR.0000066420.36123.35
10.1186/s11658-016-0031-z
10.1053/j.ajkd.2017.12.009
10.1016/j.ijcard.2014.07.102
10.1016/j.ejim.2015.11.026
10.3390/molecules18032821
10.1007/s13105-021-00869-y
10.1016/j.jare.2017.06.001
10.1152/ajpcell.00600.2006
10.1016/j.cca.2018.05.046
10.1016/j.atherosclerosis.2008.05.022
10.1155/2016/8239258
10.1007/s11926-011-0162-1
10.1155/2014/408514
10.1038/nmeth.3901
10.1038/s41420-022-00815-x
10.1038/srep39884
10.1074/jbc.RA118.005237
10.1074/jbc.M112.399899
10.1371/journal.pone.0115210
10.1016/j.semnephrol.2011.08.002
10.1038/nmeth.1212
10.1161/CIRCRESAHA.115.306301
10.1038/nature04516
10.1016/j.redox.2020.101466
10.1159/000355621
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
2025 The Authors 2025
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2025 The Authors 2025
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.redox.2025.103625
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-2317
ExternalDocumentID oai_doaj_org_article_594900d8e1104d70bc06d063c1dc94ef
PMC12005352
40203480
10_1016_j_redox_2025_103625
S2213231725001387
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABGSF
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADUVX
ADVLN
AENEX
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
M48
MO0
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c478t-4d1c27b20689cecd3a9fa798c3dbf8a5053d544c6ae91b0088b7b1c001f076f93
IEDL.DBID IXB
ISSN 2213-2317
IngestDate Wed Aug 27 01:28:20 EDT 2025
Thu Aug 21 18:30:19 EDT 2025
Wed Jul 02 05:03:34 EDT 2025
Fri Apr 25 03:25:12 EDT 2025
Sun Jul 06 05:05:54 EDT 2025
Sat May 03 15:57:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords HUVEC
Endothelial cell damage
Inflammation
Uric acid
Proteomics
PXDN
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-4d1c27b20689cecd3a9fa798c3dbf8a5053d544c6ae91b0088b7b1c001f076f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7217-3352
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2213231725001387
PMID 40203480
PQID 3188429300
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_594900d8e1104d70bc06d063c1dc94ef
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12005352
proquest_miscellaneous_3188429300
pubmed_primary_40203480
crossref_primary_10_1016_j_redox_2025_103625
elsevier_sciencedirect_doi_10_1016_j_redox_2025_103625
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Redox biology
PublicationTitleAlternate Redox Biol
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kaur, Halliwell (bib5) 1990; 73
Turner, Brennan, Ashby, Dickerhof, Hamzah, Pearson (bib37) 2018; 293
Shen, Coleman, Chan, Nicholson, Dai, Sheppard (bib49) 2011; 60
Mello, Bensenor, Santos, Bittencourt, Lotufo, Fuller (bib25) 2023; 48
Bathish, Turner, Paumann-Page, Kettle, Winterbourn (bib33) 2018; 646
Martinon (bib13) 2010; 233
Seidel, Parker, Turner, Dickerhof, Khalilova, Wilbanks (bib30) 2014; 289
Liang, Zhu, Zhang, Feng, Wang, Liu (bib69) 2015; 25
Paumann-Page, Obinger, Winterbourn, Furtmüller (bib46) 2024; 13
Singh, Yu (bib63) 2016; 16
Lanaspa, Sanchez-Lozada, Choi, Cicerchi, Kanbay, Roncal-Jimenez (bib95) 2012; 287
Reichmann, Voth, Jakob (bib77) 2018; 69
Bernardo, Torres, da Silva (bib82) 2023; 101
Park, Jin, Hwang, Cho, Kang, Jo (bib10) 2013; 32
Santana, Nascimento, Lotufo, Benseñor, Meotti (bib24) 2018; 51
Meotti, Jameson, Turner, Harwood, Stockwell, Rees (bib28) 2011; 286
Huo, Ley (bib53) 2001; 173
Martinon, Pétrilli, Mayor, Tardivel, Tschopp (bib12) 2006; 440
Hediger, Johnson, Miyazaki, Endou (bib1) 2005; 20
Gaubert, Marlinge, Alessandrini, Laine, Bonello, Fromonot (bib22) 2018; 14
Mazzali, Hughes, Kim, Jefferson, Kang, Gordon (bib67) 2001; 38
Kim, Neogi, Kang, Liu, Desai, Zhang (bib60) 2018; 71
Desideri, Castaldo, Lombardi, Mussap, Testa, Pontremoli (bib26) 2014; 18
Rappsilber, Mann, Ishihama (bib40) 2007; 2
Budanov (bib81) 2014
Dempsey, Cruz, Mineiro, da Silva, Meotti (bib31) 2022; 11
Simic, Jovanovic (bib6) 1989; 111
Ebrahimi, Pasalar, Shokri, Shabani, Emamgholipour (bib99) 2022; 78
Padiglia, Medda, Longu, Pedersen, Floris (bib27) 2002; 8
Dyrbuś, Desperak, Pawełek, Możdżeń, Gąsior, Hawranek (bib58) 2021
Barsoum, El-Khatib (bib3) 2017; 8
Carvalho, Truzzi, Fallani, Alves, Toledo, Augusto (bib36) 2017; 292
Sastre, Pérez, Sabater, Rius-Pérez (bib84) 2025; 105
Marchini, Mitre, Wolf (bib52) 2021; 9
Kellner, Hörmann, Fackler, Hu, Zhou, Lu (bib90) 2024; 13
Timofte, Mandita, Balcangiu-Stroescu, Balan, Raducu, Tanasescu (bib17) 2019; 70
Johnson, Lanaspa, Gaucher (bib68) 2011; 31
Chen, Shi, He, Xiong, Xia (bib100) 2023; 8
Oberbach, Neuhaus, Jehmlich, Schlichting, Heinrich, Kullnick (bib73) 2014; 176
Sablina, Budanov, Ilyinskaya, Agapova, Kravchenko, Chumakov (bib80) 2005; 11
Gagliardi, Miname, Santos (bib54) 2009; 202
Filipe, Haigle, Freitas, Fernandes, Mazière, Mazière (bib8) 2002; 269
Wang, Zhou, Graves (bib83) 2014; 2014
Ndrepepa (bib18) 2018; 484
Iliesiu, Campeanu, Dusceac (bib19) 2010; 5
Cheung, Lee, Shu, Kim, Sacks, Kong (bib79) 2013; 288
Borghi, Rosei, Bardin, Dawson, Dominiczak, Kielstein (bib65) 2015; 33
Pin, Houle, Fournier, Guillonneau, Paquet, Simard (bib103) 2012; 287
Shi, Kouadir, Yang (bib98) 2015; 135
Jiang, Harder, Rojo de la Vega, Wong, Chapman, Zhang (bib101) 2015; 88
Liu, Ye, Huang, Guo, Xu, Wu (bib51) 2016; 21
Copur, Demiray, Kanbay (bib64) 2022; 103
Patrício, Prado, da Silva, Carvalho, Prates, Dadamos (bib34) 2015; 28
Abbott, Brand, Kannel, Castelli (bib55) 1988; 41
Gimbrone, García-Cardeña (bib105) 2016; 118
Mineiro, Patricio, Peixoto, Araujo, da Silva, Moretti (bib35) 2020; 1864
Reis, Massari, Marchese, Ceccon, Aalbers, Corana (bib92) 2020; 32
Weiner, Tighiouart, Elsayed, Griffith, Salem, Levey (bib57) 2008; 19
Choi, Shin, Choi, Park, Jo, Oh (bib21) 2014; vol. 94
Becker (bib4) 1993; 14
Cox, Mann (bib41) 2008; 26
Borghi, Agabiti-Rosei, Johnson, Kielstein, Lurbe, Mancia (bib59) 2020; 80
Corry, Eslami, Yamamoto, Nyby, Makino, Tuck (bib74) 2008; 26
Xi, Gao, Han, Li, Feng, Zhang (bib85) 2014; 588
Sautin, Nakagawa, Zharikov, Johnson (bib47) 2007; 293
Murakawa, Sonoda, Barber, Zeng, Yokomori, Kimura (bib50) 2007; 67
Ghaemi-Oskouie, Shi (bib15) 2011; 13
Sevcnikar, Paumann-Page, Hofbauer, Pfanzagl, Furtmüller, Obinger (bib32) 2020; 681
Larsen, Pottegård, Lindegaard, Hallas (bib62) 2016; 129
Baldwin, McRae, Marek, Wymer, Pannu, Baylis (bib45) 2011; 60
Yu, Sánchez-Lozada, Johnson, Kang (bib75) 2010; 28
Li, Zhang, Zhang, Zhou, Lin (bib72) 2016; 37
Papežíková, Pekarová, Kolářová, Klinke, Lau, Baldus (bib11) 2013; 47
Silva (bib39) 2020
Liu, Yuan, Zhou, Zhao, Chen, Cheng (bib70) 2017; 21
Jakob, Reichmann (bib76) 2013; vol. 9789400757
Wu, You (bib106) 2022; 11
Hou, Huang, Lan, Geng, Xu, Liu (bib91) 2022; 8
Gutscher, Pauleau, Marty, Brach, Wabnitz, Samstag (bib44) 2008; 5
Ding, Li, Zhang, Gai, Kou (bib86) 2018; 461
Verzola, Ratto, Villaggio, Parodi, Pontremoli, Garibotto (bib48) 2014; 9
Taheraghdam, Sharifipour, Pashapour, Namdar, Hatami, Houshmandzad (bib61) 2014; 23
Petrônio, Zeraik, Da Fonseca, Ximenes (bib93) 2013; 18
Taufiq, Li, Miake, Hisatome (bib97) 2019; 1
Feig, Kang, Johnson (bib23) 2008; 359
Cai, Duan, Liu, Yu, Tang, Liu (bib71) 2017; 2017
Hare, Johnson (bib20) 2003; 107
Mandal, Mount (bib2) 2015; 77
Xiao, Jiang, He, Xu, Chen, Liu (bib87) 2020; 12
O'Connell, Paulo, O'Brien, Gygi (bib42) 2018; 17
Tyanova, Temu, Sinitcyn, Carlson, Hein, Geiger (bib43) 2016; 13
Sautin, Johnson (bib7) 2008; 27
Hartmann, Ridley, Lutz (bib89) 2015; 6
Kanbay, Jensen, Solak, Le, Roncal-Jimenez, Rivard (bib66) 2016; 29
Silva, Carvalho, Patricio, Bonifacio, Chaves-Filho, Miyamoto (bib29) 2018; 126
Xiong, Li, Li, Xu, Pan, Ding (bib88) 2012; 33
Cybulsky, Gimbrone (bib104) 1991; 251
Johnson, Bakris, Borghi, Chonchol, Feldman, Lanaspa (bib56) 2018; 71
Kono, Chen, Ontiveros, Rock (bib16) 2010; 120
Braga, Forni, Correa-Costa, Ramos, Barbuto, Branco (bib14) 2017; 7
Lin, Xie, Hao, Bi, Liu, Yang (bib78) 2021; 2021
Heumüller, Wind, Barbosa-Sicard, Schmidt, Busse, Schröder (bib94) 2008; 51
Sugimoto, Vago, Teixeira, Sousa (bib102) 2016; 2016
Yang, Zhou, Cheng, Sun, Yao, Ma (bib96) 2016; 15
Bagnati, Perugini, Cau, Bordone, Albano, Bellomo (bib9) 1999; 340
Yang (10.1016/j.redox.2025.103625_bib96) 2016; 15
Turner (10.1016/j.redox.2025.103625_bib37) 2018; 293
Larsen (10.1016/j.redox.2025.103625_bib62) 2016; 129
Jakob (10.1016/j.redox.2025.103625_bib76) 2013; vol. 9789400757
Santana (10.1016/j.redox.2025.103625_bib24) 2018; 51
Patrício (10.1016/j.redox.2025.103625_bib34) 2015; 28
Iliesiu (10.1016/j.redox.2025.103625_bib19) 2010; 5
Padiglia (10.1016/j.redox.2025.103625_bib27) 2002; 8
Cox (10.1016/j.redox.2025.103625_bib41) 2008; 26
Paumann-Page (10.1016/j.redox.2025.103625_bib46) 2024; 13
Budanov (10.1016/j.redox.2025.103625_bib81) 2014
Shi (10.1016/j.redox.2025.103625_bib98) 2015; 135
Jiang (10.1016/j.redox.2025.103625_bib101) 2015; 88
Reichmann (10.1016/j.redox.2025.103625_bib77) 2018; 69
Sevcnikar (10.1016/j.redox.2025.103625_bib32) 2020; 681
Li (10.1016/j.redox.2025.103625_bib72) 2016; 37
Wang (10.1016/j.redox.2025.103625_bib83) 2014; 2014
Filipe (10.1016/j.redox.2025.103625_bib8) 2002; 269
Ghaemi-Oskouie (10.1016/j.redox.2025.103625_bib15) 2011; 13
Hartmann (10.1016/j.redox.2025.103625_bib89) 2015; 6
Yu (10.1016/j.redox.2025.103625_bib75) 2010; 28
Bernardo (10.1016/j.redox.2025.103625_bib82) 2023; 101
Abbott (10.1016/j.redox.2025.103625_bib55) 1988; 41
Wu (10.1016/j.redox.2025.103625_bib106) 2022; 11
Feig (10.1016/j.redox.2025.103625_bib23) 2008; 359
Johnson (10.1016/j.redox.2025.103625_bib56) 2018; 71
Gutscher (10.1016/j.redox.2025.103625_bib44) 2008; 5
Weiner (10.1016/j.redox.2025.103625_bib57) 2008; 19
Taufiq (10.1016/j.redox.2025.103625_bib97) 2019; 1
Kanbay (10.1016/j.redox.2025.103625_bib66) 2016; 29
Mazzali (10.1016/j.redox.2025.103625_bib67) 2001; 38
Oberbach (10.1016/j.redox.2025.103625_bib73) 2014; 176
Reis (10.1016/j.redox.2025.103625_bib92) 2020; 32
Bathish (10.1016/j.redox.2025.103625_bib33) 2018; 646
Kim (10.1016/j.redox.2025.103625_bib60) 2018; 71
Pin (10.1016/j.redox.2025.103625_bib103) 2012; 287
Baldwin (10.1016/j.redox.2025.103625_bib45) 2011; 60
Rappsilber (10.1016/j.redox.2025.103625_bib40) 2007; 2
Tyanova (10.1016/j.redox.2025.103625_bib43) 2016; 13
Huo (10.1016/j.redox.2025.103625_bib53) 2001; 173
Bagnati (10.1016/j.redox.2025.103625_bib9) 1999; 340
Sablina (10.1016/j.redox.2025.103625_bib80) 2005; 11
Murakawa (10.1016/j.redox.2025.103625_bib50) 2007; 67
Hediger (10.1016/j.redox.2025.103625_bib1) 2005; 20
Mello (10.1016/j.redox.2025.103625_bib25) 2023; 48
Silva (10.1016/j.redox.2025.103625_bib39) 2020
Xi (10.1016/j.redox.2025.103625_bib85) 2014; 588
Dyrbuś (10.1016/j.redox.2025.103625_bib58) 2021
Chen (10.1016/j.redox.2025.103625_bib100) 2023; 8
Meotti (10.1016/j.redox.2025.103625_bib28) 2011; 286
Martinon (10.1016/j.redox.2025.103625_bib12) 2006; 440
Silva (10.1016/j.redox.2025.103625_bib29) 2018; 126
Liu (10.1016/j.redox.2025.103625_bib70) 2017; 21
Carvalho (10.1016/j.redox.2025.103625_bib36) 2017; 292
Xiong (10.1016/j.redox.2025.103625_bib88) 2012; 33
Singh (10.1016/j.redox.2025.103625_bib63) 2016; 16
Dempsey (10.1016/j.redox.2025.103625_bib31) 2022; 11
Sautin (10.1016/j.redox.2025.103625_bib47) 2007; 293
Liu (10.1016/j.redox.2025.103625_bib51) 2016; 21
Ndrepepa (10.1016/j.redox.2025.103625_bib18) 2018; 484
Hou (10.1016/j.redox.2025.103625_bib91) 2022; 8
O'Connell (10.1016/j.redox.2025.103625_bib42) 2018; 17
Gagliardi (10.1016/j.redox.2025.103625_bib54) 2009; 202
Cheung (10.1016/j.redox.2025.103625_bib79) 2013; 288
Barsoum (10.1016/j.redox.2025.103625_bib3) 2017; 8
Liang (10.1016/j.redox.2025.103625_bib69) 2015; 25
Ebrahimi (10.1016/j.redox.2025.103625_bib99) 2022; 78
Borghi (10.1016/j.redox.2025.103625_bib59) 2020; 80
Sugimoto (10.1016/j.redox.2025.103625_bib102) 2016; 2016
Papežíková (10.1016/j.redox.2025.103625_bib11) 2013; 47
Martinon (10.1016/j.redox.2025.103625_bib13) 2010; 233
Marchini (10.1016/j.redox.2025.103625_bib52) 2021; 9
Borghi (10.1016/j.redox.2025.103625_bib65) 2015; 33
Lanaspa (10.1016/j.redox.2025.103625_bib95) 2012; 287
Gimbrone (10.1016/j.redox.2025.103625_bib105) 2016; 118
Kaur (10.1016/j.redox.2025.103625_bib5) 1990; 73
Johnson (10.1016/j.redox.2025.103625_bib68) 2011; 31
Shen (10.1016/j.redox.2025.103625_bib49) 2011; 60
Lin (10.1016/j.redox.2025.103625_bib78) 2021; 2021
Taheraghdam (10.1016/j.redox.2025.103625_bib61) 2014; 23
Verzola (10.1016/j.redox.2025.103625_bib48) 2014; 9
Petrônio (10.1016/j.redox.2025.103625_bib93) 2013; 18
Timofte (10.1016/j.redox.2025.103625_bib17) 2019; 70
Cybulsky (10.1016/j.redox.2025.103625_bib104) 1991; 251
Hare (10.1016/j.redox.2025.103625_bib20) 2003; 107
Becker (10.1016/j.redox.2025.103625_bib4) 1993; 14
Corry (10.1016/j.redox.2025.103625_bib74) 2008; 26
Cai (10.1016/j.redox.2025.103625_bib71) 2017; 2017
Desideri (10.1016/j.redox.2025.103625_bib26) 2014; 18
Xiao (10.1016/j.redox.2025.103625_bib87) 2020; 12
Copur (10.1016/j.redox.2025.103625_bib64) 2022; 103
Heumüller (10.1016/j.redox.2025.103625_bib94) 2008; 51
Kono (10.1016/j.redox.2025.103625_bib16) 2010; 120
Mandal (10.1016/j.redox.2025.103625_bib2) 2015; 77
Seidel (10.1016/j.redox.2025.103625_bib30) 2014; 289
Park (10.1016/j.redox.2025.103625_bib10) 2013; 32
Mineiro (10.1016/j.redox.2025.103625_bib35) 2020; 1864
Sastre (10.1016/j.redox.2025.103625_bib84) 2025; 105
Braga (10.1016/j.redox.2025.103625_bib14) 2017; 7
Choi (10.1016/j.redox.2025.103625_bib21) 2014; vol. 94
Sautin (10.1016/j.redox.2025.103625_bib7) 2008; 27
Ding (10.1016/j.redox.2025.103625_bib86) 2018; 461
Kellner (10.1016/j.redox.2025.103625_bib90) 2024; 13
Gaubert (10.1016/j.redox.2025.103625_bib22) 2018; 14
Simic (10.1016/j.redox.2025.103625_bib6) 1989; 111
References_xml – volume: 21
  start-page: 29
  year: 2016
  ident: bib51
  article-title: p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation
  publication-title: Cell. Mol. Biol. Lett.
– volume: vol. 9789400757
  year: 2013
  ident: bib76
  publication-title: Oxidative Stress and Redox Regulation
– year: 2020
  ident: bib39
  article-title: Investigation of Oxidative Metabolism of Uric Acid and its Role in Redox Processes in Inflammation
– volume: 19
  start-page: 1204
  year: 2008
  end-page: 1211
  ident: bib57
  article-title: Uric acid and incident kidney disease in the community
  publication-title: J. Am. Soc. Nephrol.
– volume: 440
  start-page: 237
  year: 2006
  end-page: 241
  ident: bib12
  article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome
  publication-title: Nature
– volume: 107
  start-page: 1951
  year: 2003
  end-page: 1953
  ident: bib20
  article-title: Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology
  publication-title: Circulation
– volume: 9
  year: 2021
  ident: bib52
  article-title: Inflammatory cell recruitment in cardiovascular disease
  publication-title: Front. Cell Dev. Biol.
– volume: 120
  start-page: 1939
  year: 2010
  end-page: 1949
  ident: bib16
  article-title: Uric acid promotes an acute inflammatory response to sterile cell death in mice
  publication-title: J. Clin. Investig.
– volume: 13
  year: 2024
  ident: bib46
  article-title: Peroxidasin inhibition by phloroglucinol and other peroxidase inhibitors
  publication-title: Antioxidants
– volume: 129
  start-page: 299
  year: 2016
  end-page: 306.e2
  ident: bib62
  article-title: Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study
  publication-title: Am. J. Med.
– volume: 202
  start-page: 11
  year: 2009
  end-page: 17
  ident: bib54
  article-title: Uric acid: a marker of increased cardiovascular risk
  publication-title: Atherosclerosis
– volume: 60
  start-page: 1258
  year: 2011
  end-page: 1269
  ident: bib45
  article-title: Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome
  publication-title: Diabetes
– volume: 173
  start-page: 35
  year: 2001
  end-page: 43
  ident: bib53
  article-title: Adhesion molecules and atherogenesis
  publication-title: Acta Physiol. Scand.
– volume: 67
  start-page: 8536
  year: 2007
  end-page: 8543
  ident: bib50
  article-title: Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells
  publication-title: Cancer Res.
– volume: 118
  start-page: 620
  year: 2016
  end-page: 636
  ident: bib105
  article-title: Endothelial cell dysfunction and the pathobiology of atherosclerosis
  publication-title: Circ. Res.
– volume: 176
  start-page: 746
  year: 2014
  end-page: 752
  ident: bib73
  article-title: A global proteome approach in uric acid stimulated human aortic endothelial cells revealed regulation of multiple major cellular pathways
  publication-title: Int. J. Cardiol.
– year: 2021
  ident: bib58
  article-title: Serum uric acid is an independent risk factor of worse mid- and long-term outcomes in patients with non-ST-segment elevation acute coronary syndromes
  publication-title: Cardiol. J.
– volume: 21
  start-page: 2553
  year: 2017
  end-page: 2562
  ident: bib70
  article-title: Phloretin attenuates hyperuricemia-induced endothelial dysfunction through co-inhibiting inflammation and GLUT9-mediated uric acid uptake
  publication-title: J. Cell Mol. Med.
– volume: 26
  start-page: 269
  year: 2008
  end-page: 275
  ident: bib74
  article-title: Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system
  publication-title: J. Hypertens.
– volume: 8
  start-page: 471
  year: 2017
  end-page: 474
  ident: bib3
  article-title: Uric acid and life on earth
  publication-title: J. Adv. Res.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 19
  ident: bib78
  article-title: Protective effect of uric acid on ox-LDL-induced HUVECs injury via Keap1-Nrf2-ARE pathway
  publication-title: J. Immunol. Res.
– volume: 251
  start-page: 788
  year: 1991
  end-page: 791
  ident: bib104
  article-title: Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis
  publication-title: Science (1979)
– volume: 80
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib59
  article-title: Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease
  publication-title: Eur. J. Intern. Med.
– volume: 287
  start-page: 30541
  year: 2012
  end-page: 30551
  ident: bib103
  article-title: Annexin-1-mediated endothelial cell migration and angiogenesis are regulated by vascular endothelial growth factor (VEGF)-induced inhibition of miR-196a expression
  publication-title: J. Biol. Chem.
– volume: 340
  start-page: 143
  year: 1999
  end-page: 152
  ident: bib9
  article-title: When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid
  publication-title: Biochem. J.
– volume: 233
  start-page: 218
  year: 2010
  end-page: 232
  ident: bib13
  article-title: Mechanisms of uric acid crystal-mediated autoinflammation
  publication-title: Immunol. Rev.
– volume: 70
  start-page: 1045
  year: 2019
  end-page: 1046
  ident: bib17
  article-title: Hyperuricemia and cardiovascular diseases
  publication-title: Rev. Chem.
– volume: vol. 94
  start-page: 1114
  year: 2014
  end-page: 1125
  ident: bib21
  publication-title: Uric Acid Induces Fat Accumulation via Generation of Endoplasmic Reticulum Stress and SREBP-1c Activation in Hepatocytes
– volume: 18
  start-page: 1295
  year: 2014
  end-page: 1306
  ident: bib26
  article-title: Is it time to revise the normal range of serum uric acid levels?
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 2
  start-page: 1896
  year: 2007
  end-page: 1906
  ident: bib40
  article-title: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips
  publication-title: Nat. Protoc.
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  ident: bib41
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol.
– volume: 5
  start-page: 553
  year: 2008
  end-page: 559
  ident: bib44
  article-title: Real-time imaging of the intracellular glutathione redox potential
  publication-title: Nat. Methods
– volume: 7
  year: 2017
  ident: bib14
  article-title: Soluble uric acid activates the NLRP3 inflammasome
  publication-title: Sci. Rep.
– volume: 484
  start-page: 150
  year: 2018
  end-page: 163
  ident: bib18
  article-title: Uric acid and cardiovascular disease
  publication-title: Clin. Chim. Acta
– volume: 51
  year: 2018
  ident: bib24
  article-title: Allantoin as an independent marker associated with carotid intima-media thickness in subclinical atherosclerosis
  publication-title: Braz. J. Med. Biol. Res.
– volume: 13
  start-page: 1563
  year: 2024
  ident: bib90
  article-title: The nuclear speckles protein SRRM2 is exposed on the surface of cancer cells
  publication-title: Cells
– volume: 29
  start-page: 3
  year: 2016
  end-page: 8
  ident: bib66
  article-title: Uric acid in metabolic syndrome: from an innocent bystander to a central player
  publication-title: Eur. J. Intern. Med.
– volume: 13
  start-page: 160
  year: 2011
  end-page: 166
  ident: bib15
  article-title: The role of uric acid as an endogenous danger signal in immunity and inflammation
  publication-title: Curr. Rheumatol. Rep.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib102
  article-title: Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance
  publication-title: J. Immunol. Res.
– volume: 101
  start-page: 83
  year: 2023
  end-page: 99
  ident: bib82
  article-title: FoxO3 and oxidative stress: a multifaceted role in cellular adaptation
  publication-title: J. Mol. Med.
– volume: 111
  start-page: 5778
  year: 1989
  end-page: 5782
  ident: bib6
  article-title: Antioxidation mechanisms of uric acid
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 177
  year: 2018
  end-page: 186
  ident: bib29
  article-title: Identification of urate hydroperoxide in neutrophils: a novel pro-oxidant generated in inflammatory conditions
  publication-title: Free Radic. Biol. Med.
– volume: 11
  year: 2022
  ident: bib31
  article-title: Uric acid reacts with peroxidasin, decreases collagen IV crosslink, impairs human endothelial cell migration and adhesion
  publication-title: Antioxidants (Basel)
– volume: 8
  start-page: 352
  year: 2023
  ident: bib100
  article-title: Endoplasmic reticulum stress: molecular mechanism and therapeutic targets
  publication-title: Signal Transduct. Targeted Ther.
– volume: 1
  start-page: 469
  year: 2019
  end-page: 473
  ident: bib97
  article-title: Hyperuricemia as a risk factor for atrial fibrillation due to soluble and crystalized uric acid
  publication-title: Circ Rep
– volume: 14
  start-page: 191
  year: 2018
  end-page: 199
  ident: bib22
  article-title: Uric acid levels are associated with endothelial dysfunction and severity of coronary atherosclerosis during a first episode of acute coronary syndrome
  publication-title: Purinergic Signal.
– volume: 47
  start-page: 82
  year: 2013
  end-page: 88
  ident: bib11
  article-title: Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production
  publication-title: Free Radic. Res.
– volume: 78
  start-page: 343
  year: 2022
  end-page: 353
  ident: bib99
  article-title: Evidence for the effect of soluble uric acid in augmenting endoplasmic reticulum stress markers in human peripheral blood mononuclear cells
  publication-title: J. Physiol. Biochem.
– volume: 14
  start-page: 615
  year: 1993
  end-page: 631
  ident: bib4
  article-title: Towards the physiological function of uric acid
  publication-title: Free Radic. Biol. Med.
– volume: 73
  start-page: 235
  year: 1990
  end-page: 247
  ident: bib5
  article-title: Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products
  publication-title: Chem. Biol. Interact.
– volume: 5
  start-page: 186
  year: 2010
  end-page: 192
  ident: bib19
  article-title: Serum uric acid and cardiovascular disease
  publication-title: Maedica (Bucur)
– volume: 28
  start-page: 1234
  year: 2010
  end-page: 1242
  ident: bib75
  article-title: Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction
  publication-title: J. Hypertens.
– volume: 18
  start-page: 2821
  year: 2013
  ident: bib93
  article-title: Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor
  publication-title: Molecules
– volume: 105
  start-page: 593
  year: 2025
  end-page: 650
  ident: bib84
  article-title: Redox signaling in the pancreas in health and disease
  publication-title: Physiol. Rev.
– volume: 286
  start-page: 12901
  year: 2011
  end-page: 12911
  ident: bib28
  article-title: Urate as a physiological substrate for myeloperoxidase
  publication-title: J. Biol. Chem.
– volume: 11
  year: 2022
  ident: bib106
  article-title: The biomarkers discovery of hyperuricemia and gout: proteomics and metabolomics
  publication-title: PeerJ
– volume: 8
  start-page: BR454
  year: 2002
  end-page: B459
  ident: bib27
  article-title: Uric acid is a main electron donor to peroxidases in human blood plasma
  publication-title: Med. Sci. Monit.
– volume: 41
  start-page: 237
  year: 1988
  end-page: 242
  ident: bib55
  article-title: Gout and coronary heart disease: the framingham study
  publication-title: J. Clin. Epidemiol.
– volume: 28
  start-page: 1556
  year: 2015
  end-page: 1566
  ident: bib34
  article-title: Chemical characterization of urate hydroperoxide, A pro-oxidant intermediate generated by urate oxidation in inflammatory and photoinduced processes
  publication-title: Chem. Res. Toxicol.
– volume: 289
  start-page: 21937
  year: 2014
  end-page: 21949
  ident: bib30
  article-title: Uric acid and thiocyanate as competing substrates of lactoperoxidase
  publication-title: J. Biol. Chem.
– volume: 15
  year: 2016
  ident: bib96
  article-title: Effect of uric acid on mitochondrial function and oxidative stress in hepatocytes
  publication-title: Genet. Mol. Res.
– volume: 38
  start-page: 1101
  year: 2001
  end-page: 1106
  ident: bib67
  article-title: Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism
  publication-title: Hypertension
– volume: 461
  start-page: 248
  year: 2018
  end-page: 255
  ident: bib86
  article-title: MXRA5 is decreased in preeclampsia and affects trophoblast cell invasion through the MAPK pathway
  publication-title: Mol. Cell. Endocrinol.
– volume: 60
  start-page: 173
  year: 2011
  end-page: 185
  ident: bib49
  article-title: Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies
  publication-title: Cell Biochem. Biophys.
– volume: 8
  start-page: 32
  year: 2022
  ident: bib91
  article-title: ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway
  publication-title: Cell Death Dis.
– volume: 293
  start-page: 19886
  year: 2018
  end-page: 19898
  ident: bib37
  article-title: Conjugation of urate-derived electrophiles to proteins during normal metabolism and inflammation
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 164
  year: 2016
  ident: bib63
  article-title: Allopurinol and the risk of stroke in older adults receiving medicare
  publication-title: BMC Neurol.
– volume: 71
  start-page: 994
  year: 2018
  end-page: 1004
  ident: bib60
  article-title: Cardiovascular risks of probenecid versus allopurinol in older patients with gout
  publication-title: J. Am. Coll. Cardiol.
– volume: 359
  start-page: 1811
  year: 2008
  end-page: 1821
  ident: bib23
  article-title: Uric acid and cardiovascular risk
  publication-title: N. Engl. J. Med.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib83
  article-title: FOXO transcription factors: their clinical significance and regulation
  publication-title: BioMed Res. Int.
– volume: 6
  year: 2015
  ident: bib89
  article-title: The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease
  publication-title: Front. Pharmacol.
– volume: 103
  start-page: 4
  year: 2022
  end-page: 12
  ident: bib64
  article-title: Uric acid in metabolic syndrome: does uric acid have a definitive role?
  publication-title: Eur. J. Intern. Med.
– volume: 69
  start-page: 203
  year: 2018
  end-page: 213
  ident: bib77
  article-title: Maintaining a healthy proteome during oxidative stress
  publication-title: Mol. Cell
– volume: 23
  start-page: 134
  year: 2014
  end-page: 139
  ident: bib61
  article-title: Allopurinol as a preventive contrivance after acute ischemic stroke in patients with a high level of serum uric acid: a randomized, controlled trial
  publication-title: Med. Princ. Pract.
– volume: 27
  start-page: 608
  year: 2008
  end-page: 619
  ident: bib7
  article-title: Uric acid: the oxidant-antioxidant paradox
  publication-title: Nucleosides Nucleotides Nucleic Acids
– volume: 17
  start-page: 1934
  year: 2018
  end-page: 1942
  ident: bib42
  article-title: Proteome-Wide evaluation of two common protein quantification methods
  publication-title: J. Proteome Res.
– volume: 33
  start-page: 1797
  year: 2012
  end-page: 1805
  ident: bib88
  article-title: Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non–small cell lung carcinoma from Chinese patients
  publication-title: Carcinogenesis
– volume: 32
  start-page: 36
  year: 2013
  end-page: 42
  ident: bib10
  article-title: Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development
  publication-title: Nitric Oxide
– volume: 646
  start-page: 120
  year: 2018
  end-page: 127
  ident: bib33
  article-title: Characterisation of peroxidasin activity in isolated extracellular matrix and direct detection of hypobromous acid formation
  publication-title: Arch. Biochem. Biophys.
– volume: 588
  start-page: 3390
  year: 2014
  end-page: 3394
  ident: bib85
  article-title: Hypoxia inducible factor‐1α suppresses Peroxiredoxin 3 expression to promote proliferation of CCRCC cells
  publication-title: FEBS Lett.
– volume: 681
  year: 2020
  ident: bib32
  article-title: Reaction of human peroxidasin 1 compound I and compound II with one-electron donors
  publication-title: Arch. Biochem. Biophys.
– volume: 11
  start-page: 1306
  year: 2005
  end-page: 1313
  ident: bib80
  article-title: The antioxidant function of the p53 tumor suppressor
  publication-title: Nat. Med.
– volume: 135
  start-page: 9
  year: 2015
  end-page: 14
  ident: bib98
  article-title: NALP3 inflammasome activation in protein misfolding diseases
  publication-title: Life Sci.
– volume: 88
  start-page: 199
  year: 2015
  end-page: 204
  ident: bib101
  article-title: p62 links autophagy and Nrf2 signaling
  publication-title: Free Radic. Biol. Med.
– volume: 33
  start-page: 1729
  year: 2015
  end-page: 1741
  ident: bib65
  article-title: Serum uric acid and the risk of cardiovascular and renal disease
  publication-title: J. Hypertens.
– volume: 31
  start-page: 394
  year: 2011
  end-page: 399
  ident: bib68
  article-title: Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations
  publication-title: Semin. Nephrol.
– start-page: 337
  year: 2014
  end-page: 358
  ident: bib81
  article-title: The Role of Tumor Suppressor P53 in the Antioxidant Defense and Metabolism
– volume: 32
  year: 2020
  ident: bib92
  article-title: A closer look into NADPH oxidase inhibitors: validation and insight into their mechanism of action
  publication-title: Redox Biol.
– volume: 1864
  year: 2020
  ident: bib35
  article-title: Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib71
  article-title: Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway
  publication-title: BioMed Res. Int.
– volume: 12
  start-page: 8605
  year: 2020
  end-page: 8621
  ident: bib87
  article-title: Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate
  publication-title: Aging
– volume: 292
  start-page: 8705
  year: 2017
  end-page: 8715
  ident: bib36
  article-title: Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 731
  year: 2016
  end-page: 740
  ident: bib43
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat. Methods
– volume: 71
  start-page: 851
  year: 2018
  end-page: 865
  ident: bib56
  article-title: Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation
  publication-title: Am. J. Kidney Dis.
– volume: 287
  start-page: 40732
  year: 2012
  end-page: 40744
  ident: bib95
  article-title: Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress
  publication-title: J. Biol. Chem.
– volume: 51
  start-page: 211
  year: 2008
  end-page: 217
  ident: bib94
  article-title: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant
  publication-title: Hypertension
– volume: 288
  start-page: 22378
  year: 2013
  end-page: 22386
  ident: bib79
  article-title: The Ras GTPase-activating-like protein IQGAP1 mediates Nrf2 protein activation via the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway
  publication-title: J. Biol. Chem.
– volume: 48
  year: 2023
  ident: bib25
  article-title: Serum uric acid levels and subclinical atherosclerosis: results from the Brazilian longitudinal study of Adult health (ELSA-Brasil)
  publication-title: Curr. Probl. Cardiol.
– volume: 293
  start-page: 584
  year: 2007
  end-page: 596
  ident: bib47
  article-title: Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress
  publication-title: Am. J. Physiol.: Cell Physiol.
– volume: 77
  start-page: 323
  year: 2015
  end-page: 345
  ident: bib2
  article-title: The molecular physiology of uric acid homeostasis
  publication-title: Annu. Rev. Physiol.
– volume: 9
  year: 2014
  ident: bib48
  article-title: Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4
  publication-title: PLoS One
– volume: 37
  start-page: 989
  year: 2016
  end-page: 997
  ident: bib72
  article-title: Uric acid enhances PKC-dependent eNOS phosphorylationand mediates cellular ER stress: a mechanism for uric acid-induced endothelial dysfunction
  publication-title: Int. J. Mol. Med.
– volume: 20
  start-page: 125
  year: 2005
  end-page: 133
  ident: bib1
  article-title: Molecular physiology of urate transport
  publication-title: Physiology
– volume: 269
  start-page: 5474
  year: 2002
  end-page: 5483
  ident: bib8
  article-title: Anti- and pro-oxidant effects of urate in copper-induced low-density lipoprotein oxidation
  publication-title: Eur. J. Biochem.
– volume: 25
  start-page: 187
  year: 2015
  end-page: 194
  ident: bib69
  article-title: Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-kappa B signaling
  publication-title: Nutr. Metabol. Cardiovasc. Dis.
– volume: 70
  start-page: 1045
  year: 2019
  ident: 10.1016/j.redox.2025.103625_bib17
  article-title: Hyperuricemia and cardiovascular diseases
  publication-title: Rev. Chem.
– volume: 16
  start-page: 164
  year: 2016
  ident: 10.1016/j.redox.2025.103625_bib63
  article-title: Allopurinol and the risk of stroke in older adults receiving medicare
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-016-0692-2
– volume: 340
  start-page: 143
  year: 1999
  ident: 10.1016/j.redox.2025.103625_bib9
  article-title: When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid
  publication-title: Biochem. J.
  doi: 10.1042/bj3400143
– volume: 173
  start-page: 35
  year: 2001
  ident: 10.1016/j.redox.2025.103625_bib53
  article-title: Adhesion molecules and atherogenesis
  publication-title: Acta Physiol. Scand.
  doi: 10.1046/j.1365-201X.2001.00882.x
– volume: 1
  start-page: 469
  year: 2019
  ident: 10.1016/j.redox.2025.103625_bib97
  article-title: Hyperuricemia as a risk factor for atrial fibrillation due to soluble and crystalized uric acid
  publication-title: Circ Rep
  doi: 10.1253/circrep.CR-19-0088
– volume: 251
  start-page: 788
  year: 1991
  ident: 10.1016/j.redox.2025.103625_bib104
  article-title: Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis
  publication-title: Science (1979)
– volume: 26
  start-page: 1367
  year: 2008
  ident: 10.1016/j.redox.2025.103625_bib41
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1511
– volume: 13
  start-page: 1563
  year: 2024
  ident: 10.1016/j.redox.2025.103625_bib90
  article-title: The nuclear speckles protein SRRM2 is exposed on the surface of cancer cells
  publication-title: Cells
  doi: 10.3390/cells13181563
– volume: 80
  start-page: 1
  year: 2020
  ident: 10.1016/j.redox.2025.103625_bib59
  article-title: Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease
  publication-title: Eur. J. Intern. Med.
  doi: 10.1016/j.ejim.2020.07.006
– volume: 37
  start-page: 989
  year: 2016
  ident: 10.1016/j.redox.2025.103625_bib72
  article-title: Uric acid enhances PKC-dependent eNOS phosphorylationand mediates cellular ER stress: a mechanism for uric acid-induced endothelial dysfunction
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2016.2491
– volume: 8
  start-page: BR454
  year: 2002
  ident: 10.1016/j.redox.2025.103625_bib27
  article-title: Uric acid is a main electron donor to peroxidases in human blood plasma
  publication-title: Med. Sci. Monit.
– volume: 67
  start-page: 8536
  year: 2007
  ident: 10.1016/j.redox.2025.103625_bib50
  article-title: Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-1166
– volume: 48
  year: 2023
  ident: 10.1016/j.redox.2025.103625_bib25
  article-title: Serum uric acid levels and subclinical atherosclerosis: results from the Brazilian longitudinal study of Adult health (ELSA-Brasil)
  publication-title: Curr. Probl. Cardiol.
  doi: 10.1016/j.cpcardiol.2022.101525
– volume: 359
  start-page: 1811
  year: 2008
  ident: 10.1016/j.redox.2025.103625_bib23
  article-title: Uric acid and cardiovascular risk
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra0800885
– volume: 47
  start-page: 82
  year: 2013
  ident: 10.1016/j.redox.2025.103625_bib11
  article-title: Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2012.747677
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.redox.2025.103625_bib71
  article-title: Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway
  publication-title: BioMed Res. Int.
– year: 2020
  ident: 10.1016/j.redox.2025.103625_bib39
– volume: 19
  start-page: 1204
  year: 2008
  ident: 10.1016/j.redox.2025.103625_bib57
  article-title: Uric acid and incident kidney disease in the community
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2007101075
– volume: 14
  start-page: 191
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib22
  article-title: Uric acid levels are associated with endothelial dysfunction and severity of coronary atherosclerosis during a first episode of acute coronary syndrome
  publication-title: Purinergic Signal.
  doi: 10.1007/s11302-018-9604-9
– year: 2021
  ident: 10.1016/j.redox.2025.103625_bib58
  article-title: Serum uric acid is an independent risk factor of worse mid- and long-term outcomes in patients with non-ST-segment elevation acute coronary syndromes
  publication-title: Cardiol. J.
  doi: 10.5603/CJ.a2021.0156
– volume: 12
  start-page: 8605
  year: 2020
  ident: 10.1016/j.redox.2025.103625_bib87
  article-title: Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate
  publication-title: Aging
  doi: 10.18632/aging.103175
– volume: 27
  start-page: 608
  year: 2008
  ident: 10.1016/j.redox.2025.103625_bib7
  article-title: Uric acid: the oxidant-antioxidant paradox
  publication-title: Nucleosides Nucleotides Nucleic Acids
  doi: 10.1080/15257770802138558
– volume: 71
  start-page: 994
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib60
  article-title: Cardiovascular risks of probenecid versus allopurinol in older patients with gout
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.12.052
– volume: 26
  start-page: 269
  year: 2008
  ident: 10.1016/j.redox.2025.103625_bib74
  article-title: Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0b013e3282f240bf
– volume: 28
  start-page: 1556
  year: 2015
  ident: 10.1016/j.redox.2025.103625_bib34
  article-title: Chemical characterization of urate hydroperoxide, A pro-oxidant intermediate generated by urate oxidation in inflammatory and photoinduced processes
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.5b00132
– volume: 8
  start-page: 352
  year: 2023
  ident: 10.1016/j.redox.2025.103625_bib100
  article-title: Endoplasmic reticulum stress: molecular mechanism and therapeutic targets
  publication-title: Signal Transduct. Targeted Ther.
  doi: 10.1038/s41392-023-01570-w
– volume: 20
  start-page: 125
  year: 2005
  ident: 10.1016/j.redox.2025.103625_bib1
  article-title: Molecular physiology of urate transport
  publication-title: Physiology
  doi: 10.1152/physiol.00039.2004
– volume: 88
  start-page: 199
  year: 2015
  ident: 10.1016/j.redox.2025.103625_bib101
  article-title: p62 links autophagy and Nrf2 signaling
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.06.014
– volume: 77
  start-page: 323
  year: 2015
  ident: 10.1016/j.redox.2025.103625_bib2
  article-title: The molecular physiology of uric acid homeostasis
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-021113-170343
– volume: vol. 94
  start-page: 1114
  year: 2014
  ident: 10.1016/j.redox.2025.103625_bib21
– volume: 14
  start-page: 615
  year: 1993
  ident: 10.1016/j.redox.2025.103625_bib4
  article-title: Towards the physiological function of uric acid
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(93)90143-I
– volume: 51
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib24
  article-title: Allantoin as an independent marker associated with carotid intima-media thickness in subclinical atherosclerosis
  publication-title: Braz. J. Med. Biol. Res.
  doi: 10.1590/1414-431x20187543
– volume: 32
  start-page: 36
  year: 2013
  ident: 10.1016/j.redox.2025.103625_bib10
  article-title: Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2013.04.003
– volume: 6
  year: 2015
  ident: 10.1016/j.redox.2025.103625_bib89
  article-title: The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2015.00276
– volume: 51
  start-page: 211
  year: 2008
  ident: 10.1016/j.redox.2025.103625_bib94
  article-title: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.107.100214
– volume: 120
  start-page: 1939
  year: 2010
  ident: 10.1016/j.redox.2025.103625_bib16
  article-title: Uric acid promotes an acute inflammatory response to sterile cell death in mice
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI40124
– volume: 105
  start-page: 593
  year: 2025
  ident: 10.1016/j.redox.2025.103625_bib84
  article-title: Redox signaling in the pancreas in health and disease
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00044.2023
– volume: 33
  start-page: 1797
  year: 2012
  ident: 10.1016/j.redox.2025.103625_bib88
  article-title: Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non–small cell lung carcinoma from Chinese patients
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs210
– volume: 129
  start-page: 299
  year: 2016
  ident: 10.1016/j.redox.2025.103625_bib62
  article-title: Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2015.11.003
– volume: 28
  start-page: 1234
  year: 2010
  ident: 10.1016/j.redox.2025.103625_bib75
  article-title: Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0b013e328337da1d
– volume: 101
  start-page: 83
  year: 2023
  ident: 10.1016/j.redox.2025.103625_bib82
  article-title: FoxO3 and oxidative stress: a multifaceted role in cellular adaptation
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-022-02281-5
– volume: 2
  start-page: 1896
  year: 2007
  ident: 10.1016/j.redox.2025.103625_bib40
  article-title: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.261
– volume: 73
  start-page: 235
  year: 1990
  ident: 10.1016/j.redox.2025.103625_bib5
  article-title: Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/0009-2797(90)90006-9
– volume: 289
  start-page: 21937
  year: 2014
  ident: 10.1016/j.redox.2025.103625_bib30
  article-title: Uric acid and thiocyanate as competing substrates of lactoperoxidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.544957
– volume: 1864
  year: 2020
  ident: 10.1016/j.redox.2025.103625_bib35
  article-title: Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2019.129481
– volume: 5
  start-page: 186
  year: 2010
  ident: 10.1016/j.redox.2025.103625_bib19
  article-title: Serum uric acid and cardiovascular disease
  publication-title: Maedica (Bucur)
– volume: 38
  start-page: 1101
  year: 2001
  ident: 10.1016/j.redox.2025.103625_bib67
  article-title: Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism
  publication-title: Hypertension
  doi: 10.1161/hy1101.092839
– volume: 681
  year: 2020
  ident: 10.1016/j.redox.2025.103625_bib32
  article-title: Reaction of human peroxidasin 1 compound I and compound II with one-electron donors
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2020.108267
– volume: 588
  start-page: 3390
  year: 2014
  ident: 10.1016/j.redox.2025.103625_bib85
  article-title: Hypoxia inducible factor‐1α suppresses Peroxiredoxin 3 expression to promote proliferation of CCRCC cells
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2014.07.030
– volume: 9
  year: 2021
  ident: 10.1016/j.redox.2025.103625_bib52
  article-title: Inflammatory cell recruitment in cardiovascular disease
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.635527
– volume: 41
  start-page: 237
  year: 1988
  ident: 10.1016/j.redox.2025.103625_bib55
  article-title: Gout and coronary heart disease: the framingham study
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/0895-4356(88)90127-8
– volume: 33
  start-page: 1729
  year: 2015
  ident: 10.1016/j.redox.2025.103625_bib65
  article-title: Serum uric acid and the risk of cardiovascular and renal disease
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000000701
– volume: 25
  start-page: 187
  year: 2015
  ident: 10.1016/j.redox.2025.103625_bib69
  article-title: Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-kappa B signaling
  publication-title: Nutr. Metabol. Cardiovasc. Dis.
  doi: 10.1016/j.numecd.2014.08.006
– volume: 288
  start-page: 22378
  year: 2013
  ident: 10.1016/j.redox.2025.103625_bib79
  article-title: The Ras GTPase-activating-like protein IQGAP1 mediates Nrf2 protein activation via the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.444182
– volume: 135
  start-page: 9
  year: 2015
  ident: 10.1016/j.redox.2025.103625_bib98
  article-title: NALP3 inflammasome activation in protein misfolding diseases
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2015.05.011
– volume: 60
  start-page: 1258
  year: 2011
  ident: 10.1016/j.redox.2025.103625_bib45
  article-title: Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome
  publication-title: Diabetes
  doi: 10.2337/db10-0916
– volume: vol. 9789400757
  year: 2013
  ident: 10.1016/j.redox.2025.103625_bib76
– volume: 15
  year: 2016
  ident: 10.1016/j.redox.2025.103625_bib96
  article-title: Effect of uric acid on mitochondrial function and oxidative stress in hepatocytes
  publication-title: Genet. Mol. Res.
  doi: 10.4238/gmr.15028644
– volume: 269
  start-page: 5474
  year: 2002
  ident: 10.1016/j.redox.2025.103625_bib8
  article-title: Anti- and pro-oxidant effects of urate in copper-induced low-density lipoprotein oxidation
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2002.03245.x
– volume: 233
  start-page: 218
  year: 2010
  ident: 10.1016/j.redox.2025.103625_bib13
  article-title: Mechanisms of uric acid crystal-mediated autoinflammation
  publication-title: Immunol. Rev.
  doi: 10.1111/j.0105-2896.2009.00860.x
– volume: 69
  start-page: 203
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib77
  article-title: Maintaining a healthy proteome during oxidative stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.021
– volume: 461
  start-page: 248
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib86
  article-title: MXRA5 is decreased in preeclampsia and affects trophoblast cell invasion through the MAPK pathway
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2017.09.020
– volume: 103
  start-page: 4
  year: 2022
  ident: 10.1016/j.redox.2025.103625_bib64
  article-title: Uric acid in metabolic syndrome: does uric acid have a definitive role?
  publication-title: Eur. J. Intern. Med.
  doi: 10.1016/j.ejim.2022.04.022
– volume: 21
  start-page: 2553
  year: 2017
  ident: 10.1016/j.redox.2025.103625_bib70
  article-title: Phloretin attenuates hyperuricemia-induced endothelial dysfunction through co-inhibiting inflammation and GLUT9-mediated uric acid uptake
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.13176
– volume: 11
  start-page: 1306
  year: 2005
  ident: 10.1016/j.redox.2025.103625_bib80
  article-title: The antioxidant function of the p53 tumor suppressor
  publication-title: Nat. Med.
  doi: 10.1038/nm1320
– volume: 111
  start-page: 5778
  year: 1989
  ident: 10.1016/j.redox.2025.103625_bib6
  article-title: Antioxidation mechanisms of uric acid
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00197a042
– volume: 11
  year: 2022
  ident: 10.1016/j.redox.2025.103625_bib31
  article-title: Uric acid reacts with peroxidasin, decreases collagen IV crosslink, impairs human endothelial cell migration and adhesion
  publication-title: Antioxidants (Basel)
– volume: 60
  start-page: 173
  year: 2011
  ident: 10.1016/j.redox.2025.103625_bib49
  article-title: Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-010-9138-4
– volume: 287
  start-page: 30541
  year: 2012
  ident: 10.1016/j.redox.2025.103625_bib103
  article-title: Annexin-1-mediated endothelial cell migration and angiogenesis are regulated by vascular endothelial growth factor (VEGF)-induced inhibition of miR-196a expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.393561
– volume: 286
  start-page: 12901
  year: 2011
  ident: 10.1016/j.redox.2025.103625_bib28
  article-title: Urate as a physiological substrate for myeloperoxidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.172460
– volume: 646
  start-page: 120
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib33
  article-title: Characterisation of peroxidasin activity in isolated extracellular matrix and direct detection of hypobromous acid formation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2018.03.038
– volume: 292
  start-page: 8705
  year: 2017
  ident: 10.1016/j.redox.2025.103625_bib36
  article-title: Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.767657
– volume: 11
  year: 2022
  ident: 10.1016/j.redox.2025.103625_bib106
  article-title: The biomarkers discovery of hyperuricemia and gout: proteomics and metabolomics
  publication-title: PeerJ
  doi: 10.7717/peerj.14554
– volume: 17
  start-page: 1934
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib42
  article-title: Proteome-Wide evaluation of two common protein quantification methods
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00016
– volume: 126
  start-page: 177
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib29
  article-title: Identification of urate hydroperoxide in neutrophils: a novel pro-oxidant generated in inflammatory conditions
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.08.011
– volume: 107
  start-page: 1951
  year: 2003
  ident: 10.1016/j.redox.2025.103625_bib20
  article-title: Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000066420.36123.35
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.redox.2025.103625_bib78
  article-title: Protective effect of uric acid on ox-LDL-induced HUVECs injury via Keap1-Nrf2-ARE pathway
  publication-title: J. Immunol. Res.
– volume: 18
  start-page: 1295
  year: 2014
  ident: 10.1016/j.redox.2025.103625_bib26
  article-title: Is it time to revise the normal range of serum uric acid levels?
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 21
  start-page: 29
  year: 2016
  ident: 10.1016/j.redox.2025.103625_bib51
  article-title: p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.1186/s11658-016-0031-z
– volume: 71
  start-page: 851
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib56
  article-title: Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2017.12.009
– volume: 176
  start-page: 746
  year: 2014
  ident: 10.1016/j.redox.2025.103625_bib73
  article-title: A global proteome approach in uric acid stimulated human aortic endothelial cells revealed regulation of multiple major cellular pathways
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2014.07.102
– volume: 29
  start-page: 3
  year: 2016
  ident: 10.1016/j.redox.2025.103625_bib66
  article-title: Uric acid in metabolic syndrome: from an innocent bystander to a central player
  publication-title: Eur. J. Intern. Med.
  doi: 10.1016/j.ejim.2015.11.026
– volume: 18
  start-page: 2821
  year: 2013
  ident: 10.1016/j.redox.2025.103625_bib93
  article-title: Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor
  publication-title: Molecules
  doi: 10.3390/molecules18032821
– volume: 78
  start-page: 343
  year: 2022
  ident: 10.1016/j.redox.2025.103625_bib99
  article-title: Evidence for the effect of soluble uric acid in augmenting endoplasmic reticulum stress markers in human peripheral blood mononuclear cells
  publication-title: J. Physiol. Biochem.
  doi: 10.1007/s13105-021-00869-y
– volume: 8
  start-page: 471
  year: 2017
  ident: 10.1016/j.redox.2025.103625_bib3
  article-title: Uric acid and life on earth
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2017.06.001
– volume: 293
  start-page: 584
  year: 2007
  ident: 10.1016/j.redox.2025.103625_bib47
  article-title: Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress
  publication-title: Am. J. Physiol.: Cell Physiol.
  doi: 10.1152/ajpcell.00600.2006
– volume: 484
  start-page: 150
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib18
  article-title: Uric acid and cardiovascular disease
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2018.05.046
– volume: 202
  start-page: 11
  year: 2009
  ident: 10.1016/j.redox.2025.103625_bib54
  article-title: Uric acid: a marker of increased cardiovascular risk
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2008.05.022
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.redox.2025.103625_bib102
  article-title: Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance
  publication-title: J. Immunol. Res.
  doi: 10.1155/2016/8239258
– start-page: 337
  year: 2014
  ident: 10.1016/j.redox.2025.103625_bib81
– volume: 13
  start-page: 160
  year: 2011
  ident: 10.1016/j.redox.2025.103625_bib15
  article-title: The role of uric acid as an endogenous danger signal in immunity and inflammation
  publication-title: Curr. Rheumatol. Rep.
  doi: 10.1007/s11926-011-0162-1
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.redox.2025.103625_bib83
  article-title: FOXO transcription factors: their clinical significance and regulation
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/408514
– volume: 13
  start-page: 731
  year: 2016
  ident: 10.1016/j.redox.2025.103625_bib43
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3901
– volume: 8
  start-page: 32
  year: 2022
  ident: 10.1016/j.redox.2025.103625_bib91
  article-title: ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway
  publication-title: Cell Death Dis.
  doi: 10.1038/s41420-022-00815-x
– volume: 7
  year: 2017
  ident: 10.1016/j.redox.2025.103625_bib14
  article-title: Soluble uric acid activates the NLRP3 inflammasome
  publication-title: Sci. Rep.
  doi: 10.1038/srep39884
– volume: 293
  start-page: 19886
  year: 2018
  ident: 10.1016/j.redox.2025.103625_bib37
  article-title: Conjugation of urate-derived electrophiles to proteins during normal metabolism and inflammation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.005237
– volume: 13
  year: 2024
  ident: 10.1016/j.redox.2025.103625_bib46
  article-title: Peroxidasin inhibition by phloroglucinol and other peroxidase inhibitors
  publication-title: Antioxidants
– volume: 287
  start-page: 40732
  year: 2012
  ident: 10.1016/j.redox.2025.103625_bib95
  article-title: Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.399899
– volume: 9
  year: 2014
  ident: 10.1016/j.redox.2025.103625_bib48
  article-title: Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0115210
– volume: 31
  start-page: 394
  year: 2011
  ident: 10.1016/j.redox.2025.103625_bib68
  article-title: Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations
  publication-title: Semin. Nephrol.
  doi: 10.1016/j.semnephrol.2011.08.002
– volume: 5
  start-page: 553
  issue: 6
  year: 2008
  ident: 10.1016/j.redox.2025.103625_bib44
  article-title: Real-time imaging of the intracellular glutathione redox potential
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1212
– volume: 118
  start-page: 620
  year: 2016
  ident: 10.1016/j.redox.2025.103625_bib105
  article-title: Endothelial cell dysfunction and the pathobiology of atherosclerosis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.306301
– volume: 440
  start-page: 237
  year: 2006
  ident: 10.1016/j.redox.2025.103625_bib12
  article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome
  publication-title: Nature
  doi: 10.1038/nature04516
– volume: 32
  year: 2020
  ident: 10.1016/j.redox.2025.103625_bib92
  article-title: A closer look into NADPH oxidase inhibitors: validation and insight into their mechanism of action
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101466
– volume: 23
  start-page: 134
  year: 2014
  ident: 10.1016/j.redox.2025.103625_bib61
  article-title: Allopurinol as a preventive contrivance after acute ischemic stroke in patients with a high level of serum uric acid: a randomized, controlled trial
  publication-title: Med. Princ. Pract.
  doi: 10.1159/000355621
SSID ssj0000884210
Score 2.3800626
Snippet This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103625
SubjectTerms Cell Adhesion - drug effects
Cell Movement - drug effects
Endothelial cell damage
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Human Umbilical Vein Endothelial Cells - drug effects
Human Umbilical Vein Endothelial Cells - metabolism
Humans
HUVEC
Inflammation
Oxidation-Reduction
Oxidative Stress - drug effects
Proteome - metabolism
Proteomics
Proteomics - methods
PXDN
Research Paper
Uric acid
Uric Acid - metabolism
Uric Acid - pharmacology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9FEPoiflS9aiWFPnYxu8lmE9-sKIdQH6QHvoXNF57InvROqP99Z5Ld407BvvR1s2STmez8ZsLMbwj5psoAoKRkwZ3lBeBtLGwteFFzEYXX3kqLVwM_b-R4Iq7v6ruVVl-YE5bpgbPgTmstNGNeBcAp4RtmHZMecNWV3mkRIlpfwLyVYCrZYKUEBDMDzVBK6EICzj8QEVY1VppLbI69AkWJsX8Nkd56nK8TJ1eQ6GqbbPUuJD3PS98hH0K3SzZzU8mXPXI76bClEJaZU_DuaJ-xQWeRIoMQbd3U01lHQ-ex-uoRDiDF6_v5GT2nmR-EJvYGrFemiX72E5lcXf66GBd954TCiUYtCuFLVzW2YlJpF5znrY5to5Xj3kbVgtfDfS2Ek23QpUVp2caWDiArskZGzffJRjfrwiGh3HpmwRJVpdQwbdCyqqzQDgJHKaSMI_J9EKJ5ygQZZsgcezBJ5gZlbrLMR-QHCnr5KrJbpwegc9Pr3PxL5yMiBzWZ3lHIDgBMNX3_618HpRr4jVC4bRdmz3MDpg1OjOaMjchBVvJyjRhic6FgRK2pf20T6yPd9D5RdZdVJtD5_D-2fUQ-4l5yuuUx2Vj8fg5fwCVa2JN0-v8C8NMIUw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-1IngptX69tkoEj65kk2w2KYhUsRShHsQHvYXNx-qTsqvvvUL733cm2W1dLR563M2SZCczmd-EyW8Iea3LCE5Jq0J4Jwrwt23hKimKSshWBhOccng0cPJFHc_l59PqdIOMVVEHAa5uDe2wntR8efb24vflezD4dze5WsiteQHBHq_wEjlA-nvkPrimGi31ZMD7aWvWWvLEUMB5KQrANvXIRHR7PxNvlUj9J07rX1D6d27lH87qaJtsDSiTHma1eEQ2YrdDHuS6k5ePydd5h1WH8CY6BQBIh6QO2rcUSYZo4xeB9h2NXcALWmegoxRP-FcH9JBmChGaCB7wSjNNDLVPyPzo07ePx8VQXKHwstbrQobS89pxprTx0QfRmLapjfYiuFY3AIxEqKT0qommdCg5V7vSg1drWa1aI56Sza7v4nNChQvMwWbFS2Wg22gU504aD7Glkkq1M_JmFKL9lTk07Jhc9tMmmVuUuc0yn5EPKOjrT5EAO73ol9_tYE-2MtIwFnQE-CJDzZxnKgDc8mXwRkYYU43LZAcskTECdLX4_-ivxkW1YGko3KaL_fnKwu4H2mMEYzPyLC_y9RwxChdSQ4ueLP_kJ6Yt3eJHYvMueebY2b3rjPfIQ3zKWZj7ZHO9PI8vACmt3cuk_VcPew9k
  priority: 102
  providerName: Scholars Portal
Title Unraveling the effects of uric acid on endothelial cells: A global proteomic study
URI https://dx.doi.org/10.1016/j.redox.2025.103625
https://www.ncbi.nlm.nih.gov/pubmed/40203480
https://www.proquest.com/docview/3188429300
https://pubmed.ncbi.nlm.nih.gov/PMC12005352
https://doaj.org/article/594900d8e1104d70bc06d063c1dc94ef
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBL6bvbtIsKPdasLcmylNsmJISG9JB26d6E9XDrUOyQbKD595mR7CVOoYdeDJZlW_5GmhnJM58I-aSKAEZJyYw7yzOwt01mS8GzkotGeO2ttLg0cPZVnqzEl3W53iGHYy4MhlUOuj_p9Kith5LFgObism0X3xiDmRSYPzDi-LsNM8q5UDGJb32wXWeBUSRYJCXA-hneMJIPxTAvpOX8A_NEVmL-ucQts-8ZqMjjP7FTf_uhD8Mp79mn42fk6eBY0mVq-3OyE7oX5HHaavL2JTlfdbjRECafU_D56BDHQfuGIq8QrV3rad_R0HnMyfoN3ZLiov71Pl3SxBpCI6cDZjHTSEr7iqyOj74fnmTDfgqZE5XaZMIXjlWW5VJpF5zntW7qSivHvW1UDb4Q96UQTtZBFxaRs5UtHKDb5JVsNH9Ndru-C28J5dbnFvQTK6SGxwYtGbNCO5hOSiFlMyOfRxDNZaLNMGM82YWJmBvE3CTMZ-QAgd5WRc7rWNBf_TSD0E2phc5zrwJ4LMJXuXW59OBhucI7LQK8U45iMpMuBI9q__32j6NQDQwuBLfuQn9zbUDhQe_RPM9n5E0S8raNOPGG_gZX1ET8k4-YXunaX5HAu2CJVufd_7Z4jzzBsxR4-Z7sbq5uwgdwjjZ2Th4tT89_nM7j4sI8jgU4ngl1B6xmDp0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4lmW8jASR6JNbMexe2srqi20PUBX2psVPwKpUFK1Wwn-PTN2smpA4sA1jhPnG3tm7Mx8Q8h7VQQwSkpm3Fmegb1tMlsKnpVcNMJrb6XFo4HTM7lYik-rcrVFDsdcGAyrHHR_0ulRWw9X5gOa88u2nX9lDHZSYP7AiOPvtuoOuQveQIX1G45XB5uDFlhGgkVWAuyQYY-RfSjGeSEv50_YKLISE9Al1sy-ZaEikf_EUP3tiP4ZT3nLQB09Ig8Hz5Lup8E_Jluhe0LupVqTv56SL8sOKw1h9jkFp48OgRy0bygSC9HatZ72HQ2dx6SsHzAvKZ7qX-_RfZpoQ2gkdcA0ZhpZaZ-R5dHH88NFNhRUyJyo1DoTvnCssiyXSrvgPK91U1daOe5to2pwhrgvhXCyDrqwiJytbOEA3iavZKP5c7Ld9V14QSi3PregoFghNTw2aMmYFdrBflIKKZsZ-TCCaC4Tb4YZA8ouTMTcIOYmYT4jBwj05lYkvY4X-qtvZpC6KbXQee5VAJdF-Cq3LpceXCxXeKdFgHfKUUxmMofgUe2_3_5uFKqB1YXg1l3ob64NaDyYPZrn-YzsJCFvxog7by4UtKiJ-CcfMW3p2u-RwbtgiVfn5f-O-C25vzg_PTEnx2efd8kDbElRmK_I9vrqJrwGT2lt38SV8BsU9A5K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+effects+of+uric+acid+on+endothelial+cells%3A+A+global+proteomic+study&rft.jtitle=Redox+biology&rft.au=Dempsey%2C+Bianca&rft.au=Pereira+da+Silva%2C+Beatriz&rft.au=Cruz%2C+Litiele+Cezar&rft.au=Vileigas%2C+Danielle&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=82&rft_id=info:doi/10.1016%2Fj.redox.2025.103625&rft.externalDocID=S2213231725001387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon