Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis

Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 3; p. 1105
Main Authors Portincasa, Piero, Bonfrate, Leonilde, Vacca, Mirco, De Angelis, Maria, Farella, Ilaria, Lanza, Elisa, Khalil, Mohamad, Wang, David Q.-H., Sperandio, Markus, Di Ciaula, Agostino
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.
AbstractList Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.
Author Bonfrate, Leonilde
De Angelis, Maria
Lanza, Elisa
Sperandio, Markus
Portincasa, Piero
Vacca, Mirco
Farella, Ilaria
Khalil, Mohamad
Di Ciaula, Agostino
Wang, David Q.-H.
AuthorAffiliation 4 Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany; markus.sperandio@lmu.de
2 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; mirco.vacca@uniba.it (M.V.); maria.deangelis@uniba.it (M.D.A.)
1 Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; ilaria.farella@uniba.it (I.F.); elisa.lanza@uniba.it (E.L.); mohamad.khalil@uniba.it (M.K.); agostinodiciaula@tiscali.it (A.D.C.)
3 Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; david.wang@einsteinmed.edu
AuthorAffiliation_xml – name: 1 Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; ilaria.farella@uniba.it (I.F.); elisa.lanza@uniba.it (E.L.); mohamad.khalil@uniba.it (M.K.); agostinodiciaula@tiscali.it (A.D.C.)
– name: 2 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; mirco.vacca@uniba.it (M.V.); maria.deangelis@uniba.it (M.D.A.)
– name: 4 Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany; markus.sperandio@lmu.de
– name: 3 Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; david.wang@einsteinmed.edu
Author_xml – sequence: 1
  givenname: Piero
  orcidid: 0000-0001-5359-1471
  surname: Portincasa
  fullname: Portincasa, Piero
– sequence: 2
  givenname: Leonilde
  surname: Bonfrate
  fullname: Bonfrate, Leonilde
– sequence: 3
  givenname: Mirco
  orcidid: 0000-0003-0813-169X
  surname: Vacca
  fullname: Vacca, Mirco
– sequence: 4
  givenname: Maria
  orcidid: 0000-0002-2010-884X
  surname: De Angelis
  fullname: De Angelis, Maria
– sequence: 5
  givenname: Ilaria
  surname: Farella
  fullname: Farella, Ilaria
– sequence: 6
  givenname: Elisa
  surname: Lanza
  fullname: Lanza, Elisa
– sequence: 7
  givenname: Mohamad
  surname: Khalil
  fullname: Khalil, Mohamad
– sequence: 8
  givenname: David Q.-H.
  surname: Wang
  fullname: Wang, David Q.-H.
– sequence: 9
  givenname: Markus
  orcidid: 0000-0002-7689-3613
  surname: Sperandio
  fullname: Sperandio, Markus
– sequence: 10
  givenname: Agostino
  orcidid: 0000-0002-5476-7376
  surname: Di Ciaula
  fullname: Di Ciaula, Agostino
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35163038$$D View this record in MEDLINE/PubMed
BookMark eNptkU1LJDEQhoO4-LV78ywBLx6c3Xx34kEYBmcUFA-7ew6ZdNrJ0J2MnbTgvzejo4xiXaqgnnqpeusQ7IYYHADHGP2mVKE_ftklQhHFGPEdcIAZISOERLW7Ve-Dw5SWCBFKuNoD-5RjUUbkAbifDRneedvHuY_ZQBNq-HcR-wwnC-MDnJqcn-HY-jpdwJtu1Xprso8hwdKctYONycHr2LmYskk-_QQ_GtMm92uTj8D_6dW_yfXo9n52MxnfjiyrZB4xI9yclGgaRZGslZENwkrYyjAuGBNkTiQRVc0lYpI5WRuG68op2iBlakyPwOWb7mqYd662LuTetHrV-870zzoarz93gl_oh_ikpaScK1EEzjYCfXwcXMq688m6tjXBxSFpIohCXNJqjZ5-QZdx6EM5b01VgnFKSaFOtjf6WOXd6wKcvwHF7JR613wgGOn1K_X2KwtOvuDW51fvyz2-_X7oBdc0oMQ
CitedBy_id crossref_primary_10_1097_MCO_0000000000000939
crossref_primary_10_1016_j_isci_2024_109784
crossref_primary_10_3389_fmicb_2023_1293160
crossref_primary_10_1016_j_gendis_2025_101592
crossref_primary_10_5312_wjo_v15_i12_1135
crossref_primary_10_1016_j_nutos_2025_01_011
crossref_primary_10_1080_10408398_2023_2192281
crossref_primary_10_3390_ijms25147621
crossref_primary_10_3390_nu15071593
crossref_primary_10_1017_anr_2024_8
crossref_primary_10_1093_jncimonographs_lgad008
crossref_primary_10_1016_j_micpath_2024_106617
crossref_primary_10_1002_cnr2_1877
crossref_primary_10_3390_molecules29071535
crossref_primary_10_1038_s41387_024_00276_4
crossref_primary_10_1111_febs_17102
crossref_primary_10_1016_j_phrs_2023_106799
crossref_primary_10_3390_biomedicines11123144
crossref_primary_10_1007_s12016_024_09018_x
crossref_primary_10_1016_j_jhazmat_2024_136034
crossref_primary_10_3389_bjbs_2023_12098
crossref_primary_10_18231_j_ctppc_2024_023
crossref_primary_10_1007_s10308_024_00713_0
crossref_primary_10_3390_nu17050842
crossref_primary_10_1016_j_ajcnut_2024_08_015
crossref_primary_10_1186_s40246_023_00561_w
crossref_primary_10_1038_s41598_024_68479_4
crossref_primary_10_3390_molecules27207111
crossref_primary_10_3390_microorganisms12030484
crossref_primary_10_58858_030102
crossref_primary_10_1016_j_bcdf_2024_100442
crossref_primary_10_2147_DMSO_S374843
crossref_primary_10_1016_j_jff_2024_106598
crossref_primary_10_3390_molecules28052148
crossref_primary_10_3390_nu16111649
crossref_primary_10_1016_j_phymed_2024_156201
crossref_primary_10_1039_D3FO00845B
crossref_primary_10_3390_ani14131965
crossref_primary_10_1016_j_jhazmat_2024_135096
crossref_primary_10_1016_j_jns_2024_123295
crossref_primary_10_22141_2308_2097_57_2_2023_533
crossref_primary_10_1016_j_trsl_2023_11_002
crossref_primary_10_1128_mbio_01099_23
crossref_primary_10_3390_nu15040946
crossref_primary_10_3389_fmicb_2024_1435454
crossref_primary_10_26599_FSAP_2024_9240061
crossref_primary_10_1080_10408398_2024_2323112
crossref_primary_10_1002_cbf_4063
crossref_primary_10_1016_j_jff_2024_106118
crossref_primary_10_3390_microorganisms11051305
crossref_primary_10_1016_j_diabres_2024_111726
crossref_primary_10_1021_acs_jafc_4c08986
crossref_primary_10_2174_1871527321666220822172039
crossref_primary_10_1080_17425247_2023_2233900
crossref_primary_10_3390_biom12101440
crossref_primary_10_3390_biom14040447
crossref_primary_10_3389_fvets_2024_1470992
crossref_primary_10_1016_j_ijbiomac_2024_137597
crossref_primary_10_3390_nu16213591
crossref_primary_10_3389_fmicb_2024_1401597
crossref_primary_10_1016_j_celrep_2025_115424
crossref_primary_10_1017_S0007114524000904
crossref_primary_10_1007_s40200_023_01342_x
crossref_primary_10_1007_s12094_023_03373_5
crossref_primary_10_3390_microorganisms11092268
crossref_primary_10_1016_j_ejim_2023_10_002
crossref_primary_10_1186_s12982_024_00213_x
crossref_primary_10_1021_acs_jafc_4c05763
crossref_primary_10_1007_s11357_024_01060_z
crossref_primary_10_3390_ijms24086888
crossref_primary_10_1093_ecco_jcc_jjae142
crossref_primary_10_1038_s41538_024_00349_9
crossref_primary_10_1007_s11154_023_09798_1
crossref_primary_10_1007_s12035_024_04370_7
crossref_primary_10_3390_metabo12111115
crossref_primary_10_1264_jsme2_ME22097
crossref_primary_10_3390_foods12061250
crossref_primary_10_1016_j_foodres_2024_115577
crossref_primary_10_1097_MCO_0000000000000971
crossref_primary_10_1016_j_ijbiomac_2024_137208
crossref_primary_10_5536_KJPS_2023_50_3_161
crossref_primary_10_3389_fmicb_2022_957885
crossref_primary_10_3390_cells13090770
crossref_primary_10_1016_j_fbio_2024_104643
crossref_primary_10_1016_j_ijbiomac_2022_12_211
crossref_primary_10_1080_10937404_2024_2406192
crossref_primary_10_3390_life14111391
crossref_primary_10_1016_j_jff_2024_106155
crossref_primary_10_1016_j_scitotenv_2024_177323
crossref_primary_10_3389_fmicb_2024_1502452
crossref_primary_10_21926_obm_neurobiol_2404254
crossref_primary_10_1016_j_psj_2023_102975
crossref_primary_10_3748_wjg_v31_i5_99913
crossref_primary_10_1039_D3FO04645A
crossref_primary_10_3390_nu14122488
crossref_primary_10_1186_s10020_022_00579_1
crossref_primary_10_1016_j_ijbiomac_2024_138527
crossref_primary_10_1186_s12986_024_00829_5
crossref_primary_10_3920_BM2022_0054
crossref_primary_10_1021_acs_jafc_4c08816
crossref_primary_10_1016_j_foodchem_2024_141894
crossref_primary_10_1016_j_physbeh_2025_114838
crossref_primary_10_1097_TA_0000000000003803
crossref_primary_10_3390_metabo12080687
crossref_primary_10_1007_s00203_025_04267_6
crossref_primary_10_1016_j_jff_2024_106260
crossref_primary_10_1039_D2FO02722D
crossref_primary_10_1007_s00284_024_04035_7
crossref_primary_10_1016_j_ijbiomac_2024_138633
crossref_primary_10_1016_j_foodhyd_2023_109068
crossref_primary_10_3390_foods12173224
crossref_primary_10_5812_amh_147901
crossref_primary_10_1007_s12602_024_10235_1
crossref_primary_10_1016_j_jfca_2025_107370
crossref_primary_10_3390_ijms241210075
crossref_primary_10_1016_j_amjmed_2024_02_001
crossref_primary_10_3390_applmicrobiol3030066
crossref_primary_10_3390_polym16020231
crossref_primary_10_1002_mnfr_202300096
crossref_primary_10_3390_cells13030286
crossref_primary_10_3390_antiox13030303
crossref_primary_10_1007_s13668_023_00491_y
crossref_primary_10_4014_jmb_2401_01012
crossref_primary_10_3390_foods12213890
crossref_primary_10_3390_vaccines11081341
crossref_primary_10_1007_s11357_025_01539_3
crossref_primary_10_3390_ani14233451
crossref_primary_10_3390_ijms25041984
crossref_primary_10_3389_fendo_2022_933110
crossref_primary_10_1016_j_phrs_2022_106321
crossref_primary_10_3390_medicina59111965
crossref_primary_10_5312_wjo_v16_i3_102274
crossref_primary_10_1016_j_bcp_2025_116791
crossref_primary_10_3389_frtra_2024_1400067
crossref_primary_10_1016_j_biopha_2024_117546
crossref_primary_10_3389_fphar_2024_1520158
crossref_primary_10_1016_j_bbamcr_2023_119643
crossref_primary_10_3390_microorganisms11112730
crossref_primary_10_3390_ijms25020814
crossref_primary_10_1016_j_jid_2023_11_006
crossref_primary_10_3390_sports12080221
crossref_primary_10_1016_j_foodchem_2024_142708
crossref_primary_10_1017_S2040174424000436
crossref_primary_10_1002_bod2_12006
crossref_primary_10_3390_ijms25031803
crossref_primary_10_1080_19490976_2025_2463570
crossref_primary_10_1016_j_crfs_2024_100874
crossref_primary_10_1021_acs_jafc_4c01387
crossref_primary_10_1111_cas_15991
crossref_primary_10_3390_nu15224764
crossref_primary_10_3390_ijms251910441
crossref_primary_10_1007_s10238_024_01295_2
crossref_primary_10_3390_antiox12020426
crossref_primary_10_3390_nu15214629
crossref_primary_10_3390_foods12234216
crossref_primary_10_1007_s40495_024_00382_y
crossref_primary_10_1007_s40487_024_00300_8
crossref_primary_10_4014_jmb_2408_08050
crossref_primary_10_1002_mnfr_202400604
crossref_primary_10_1016_j_autrev_2024_103717
crossref_primary_10_3389_fmicb_2024_1355396
crossref_primary_10_3389_fmicb_2024_1500453
crossref_primary_10_1080_19490976_2022_2108655
crossref_primary_10_1002_jsfa_12808
crossref_primary_10_1111_jpn_13960
crossref_primary_10_33073_pjm_2023_028
crossref_primary_10_1128_msystems_01444_24
crossref_primary_10_3390_nu16091373
crossref_primary_10_1016_j_crfs_2024_100926
crossref_primary_10_1016_j_csbj_2023_02_022
crossref_primary_10_3390_nu16050661
crossref_primary_10_3389_fmicb_2022_984867
crossref_primary_10_3390_antiox13080964
crossref_primary_10_1186_s12263_024_00750_9
crossref_primary_10_3389_fendo_2023_1332406
crossref_primary_10_3390_microorganisms12112333
crossref_primary_10_3390_nu16213663
crossref_primary_10_3390_vetsci10080496
crossref_primary_10_1016_j_aqrep_2024_102583
crossref_primary_10_1039_D4FO02442G
crossref_primary_10_3390_ani13162606
crossref_primary_10_3390_ijms24119307
crossref_primary_10_3389_fimmu_2023_1126117
crossref_primary_10_1016_j_tjnut_2023_09_009
crossref_primary_10_1016_j_fbio_2023_102432
crossref_primary_10_31083_j_fbe1602013
crossref_primary_10_3390_ani14162402
crossref_primary_10_1007_s00592_023_02088_x
crossref_primary_10_3390_nu15040878
crossref_primary_10_12998_wjcc_v11_i1_65
crossref_primary_10_1016_j_ajp_2024_104068
crossref_primary_10_1186_s40813_023_00316_y
crossref_primary_10_1186_s40168_024_01788_y
crossref_primary_10_48022_mbl_2210_10013
crossref_primary_10_1016_j_tjnut_2024_01_008
crossref_primary_10_3389_fcimb_2024_1348279
crossref_primary_10_3390_cells13050390
crossref_primary_10_1186_s12920_024_01978_5
crossref_primary_10_1016_j_foodhyd_2023_109576
crossref_primary_10_3390_nu16244262
crossref_primary_10_3390_nu16142300
crossref_primary_10_1155_2023_5236509
crossref_primary_10_1016_j_lfs_2023_122193
crossref_primary_10_3390_nu14153112
crossref_primary_10_1136_egastro_2023_100013
crossref_primary_10_1016_j_fbio_2023_103540
crossref_primary_10_1136_gutjnl_2024_332245
crossref_primary_10_3390_foods13142219
crossref_primary_10_1016_j_phymed_2025_156655
crossref_primary_10_1017_S0007114523002623
crossref_primary_10_3390_nu14122511
crossref_primary_10_1155_vmi_6623764
crossref_primary_10_3389_fphar_2024_1407401
crossref_primary_10_3390_nu15040973
crossref_primary_10_3390_biomedicines13020343
crossref_primary_10_1016_j_bbih_2024_100755
crossref_primary_10_1016_j_jafr_2024_101353
crossref_primary_10_1016_j_phrs_2024_107364
crossref_primary_10_1007_s00592_022_01934_8
crossref_primary_10_3389_fmicb_2025_1527755
crossref_primary_10_1016_j_foodres_2025_116291
crossref_primary_10_3390_nu16233996
crossref_primary_10_3390_medicina60121969
crossref_primary_10_3390_foods12193559
crossref_primary_10_1016_j_phrs_2024_107373
crossref_primary_10_1128_spectrum_00719_24
crossref_primary_10_1038_s41430_024_01512_x
crossref_primary_10_1016_j_biopha_2024_116735
crossref_primary_10_3390_ijms25126498
crossref_primary_10_3390_nu15112562
crossref_primary_10_1186_s12951_024_02500_w
crossref_primary_10_1038_s41598_024_54312_5
crossref_primary_10_1158_1541_7786_MCR_23_0080
crossref_primary_10_1186_s10020_024_00900_0
crossref_primary_10_1016_j_carbpol_2025_123271
crossref_primary_10_3390_ijms242316870
crossref_primary_10_3390_metabo15040213
crossref_primary_10_1016_j_fbio_2025_105976
crossref_primary_10_3390_biomedicines12010221
crossref_primary_10_3390_neurosci4030019
crossref_primary_10_3390_nu15030590
crossref_primary_10_3390_nu15204437
crossref_primary_10_1016_j_ijbiomac_2024_131261
crossref_primary_10_1016_j_mehy_2023_111217
crossref_primary_10_1016_j_bcp_2023_115830
crossref_primary_10_12873_443widiana
crossref_primary_10_1038_s41467_024_53832_y
crossref_primary_10_1515_revneuro_2024_0113
crossref_primary_10_3390_ijms26041773
crossref_primary_10_3390_metabo14090494
crossref_primary_10_1016_j_carpta_2024_100567
crossref_primary_10_2147_JIR_S487936
crossref_primary_10_3390_nu16223951
crossref_primary_10_3389_fnut_2023_1215836
crossref_primary_10_3389_fmicb_2024_1452101
crossref_primary_10_1111_srt_70006
crossref_primary_10_1002_bmc_5848
crossref_primary_10_1016_j_ecoenv_2024_116260
crossref_primary_10_1093_nutrit_nuae172
crossref_primary_10_1186_s12967_022_03700_4
crossref_primary_10_3390_nu14193921
crossref_primary_10_1515_biol_2022_0931
crossref_primary_10_1016_j_jdiacomp_2025_108954
crossref_primary_10_3390_biology12010021
crossref_primary_10_1177_1934578X241293024
crossref_primary_10_1016_j_micpath_2024_107228
crossref_primary_10_3390_foods11192980
crossref_primary_10_3390_ijms25052841
crossref_primary_10_1186_s12940_024_01078_y
crossref_primary_10_1016_j_trsl_2022_06_003
crossref_primary_10_1038_s41598_024_63893_0
crossref_primary_10_3389_fcimb_2023_1191126
crossref_primary_10_3390_ijms252312740
crossref_primary_10_3390_antiox12101898
crossref_primary_10_3389_fphar_2024_1409654
crossref_primary_10_3390_nu16183113
crossref_primary_10_1016_j_bbrc_2024_150798
crossref_primary_10_3390_biology12091262
crossref_primary_10_1016_j_scitotenv_2024_173417
crossref_primary_10_1016_j_fbio_2025_105828
crossref_primary_10_1016_j_bcp_2023_115659
crossref_primary_10_34922_AE_2024_37_4_006
crossref_primary_10_3390_nu14173480
crossref_primary_10_3390_bioengineering11010045
crossref_primary_10_3390_nano12193375
crossref_primary_10_3390_nu15183931
crossref_primary_10_1016_j_trim_2025_102199
crossref_primary_10_3389_fimmu_2024_1412821
crossref_primary_10_1007_s11739_023_03343_3
crossref_primary_10_1186_s43162_024_00342_4
crossref_primary_10_1038_s41429_023_00595_1
crossref_primary_10_3390_antiox12040903
crossref_primary_10_3390_ph16060904
crossref_primary_10_3390_biom12060767
crossref_primary_10_3390_ijms251810156
crossref_primary_10_1371_journal_pone_0319066
crossref_primary_10_3390_app14209383
crossref_primary_10_3390_foods13071039
crossref_primary_10_3350_cmh_2024_0811
crossref_primary_10_3390_jcm13206082
crossref_primary_10_3390_genes14081521
crossref_primary_10_3389_fimmu_2022_1080456
crossref_primary_10_1016_j_arr_2024_102515
crossref_primary_10_1080_19490976_2024_2418415
crossref_primary_10_1016_j_engmed_2024_100036
crossref_primary_10_1016_j_jnutbio_2023_109473
crossref_primary_10_1136_ard_2024_225829
crossref_primary_10_3389_fnut_2023_1209238
crossref_primary_10_4251_wjgo_v16_i8_3600
crossref_primary_10_2147_IJWH_S494268
crossref_primary_10_3389_fcimb_2024_1416739
crossref_primary_10_1007_s12602_025_10452_2
crossref_primary_10_1021_acsomega_4c03778
crossref_primary_10_3390_molecules29122747
crossref_primary_10_1016_j_scitotenv_2024_175955
crossref_primary_10_3390_nu16193379
crossref_primary_10_1039_D4FO06449F
crossref_primary_10_1016_j_biopha_2023_115244
crossref_primary_10_1111_eci_13846
crossref_primary_10_3390_nu15204466
crossref_primary_10_3390_biom14060633
crossref_primary_10_3389_fgstr_2023_1235126
crossref_primary_10_3390_antiox11040695
crossref_primary_10_1016_j_jpain_2024_104588
crossref_primary_10_15430_JCP_2023_28_3_93
crossref_primary_10_1007_s11033_024_10097_4
crossref_primary_10_1016_j_fitote_2024_106178
crossref_primary_10_1038_s41531_024_00724_z
crossref_primary_10_1016_j_cbd_2025_101467
crossref_primary_10_1016_j_fbio_2024_105636
crossref_primary_10_3390_biomedicines12122670
crossref_primary_10_3390_ijms252413633
crossref_primary_10_1007_s12275_024_00104_5
crossref_primary_10_1128_spectrum_03524_23
crossref_primary_10_3390_biom13091340
crossref_primary_10_3390_microorganisms13020241
crossref_primary_10_3390_metabo12080693
crossref_primary_10_2478_inmed_2023_0246
crossref_primary_10_1016_j_lwt_2022_113830
crossref_primary_10_3390_nu16020265
crossref_primary_10_3390_nu16071054
crossref_primary_10_1186_s12933_024_02301_3
crossref_primary_10_1016_j_exger_2023_112165
crossref_primary_10_3390_ijms25115640
crossref_primary_10_1001_jamanetworkopen_2023_12530
crossref_primary_10_2147_DMSO_S434499
crossref_primary_10_1080_10408398_2023_2251616
crossref_primary_10_1007_s10753_023_01915_1
crossref_primary_10_1080_10408398_2023_2234025
crossref_primary_10_3389_fmicb_2024_1308866
crossref_primary_10_3390_biomedicines11102712
crossref_primary_10_1039_D2FO03181G
crossref_primary_10_1016_j_foodres_2023_112878
crossref_primary_10_1080_02648725_2022_2122287
crossref_primary_10_1038_s41522_024_00610_9
crossref_primary_10_2174_0115701611290537240509061549
crossref_primary_10_1007_s10522_024_10127_5
crossref_primary_10_3390_foods12051023
crossref_primary_10_2174_0126662906301568240427100342
crossref_primary_10_1002_fsn3_4100
crossref_primary_10_3389_fcimb_2024_1413266
crossref_primary_10_3390_nu16071070
crossref_primary_10_1111_jgh_16747
crossref_primary_10_3389_fmicb_2023_1211259
crossref_primary_10_3390_nu15020272
crossref_primary_10_1002_mnfr_202400274
crossref_primary_10_3390_ani15010074
crossref_primary_10_1002_jsfa_13567
crossref_primary_10_1039_D4FO04717F
crossref_primary_10_3389_fcimb_2024_1384939
crossref_primary_10_1111_jgh_16737
crossref_primary_10_1016_j_neurot_2024_e00476
crossref_primary_10_1186_s12967_024_05637_2
crossref_primary_10_3390_microorganisms11010001
crossref_primary_10_1007_s12035_024_04156_x
crossref_primary_10_1371_journal_pone_0297858
crossref_primary_10_3390_microorganisms12010024
crossref_primary_10_1007_s00253_023_12912_7
crossref_primary_10_1002_mnfr_202300856
crossref_primary_10_1016_j_focha_2025_100919
crossref_primary_10_12677_acm_2024_1451426
crossref_primary_10_3389_fnut_2022_1027641
crossref_primary_10_1016_j_ijbiomac_2024_131872
crossref_primary_10_3390_clinpract14030066
crossref_primary_10_3389_fendo_2023_1265696
crossref_primary_10_3389_fvets_2024_1346922
crossref_primary_10_1016_j_ijbiomac_2025_139514
crossref_primary_10_1039_D4FO03826F
crossref_primary_10_3390_ijms25158202
crossref_primary_10_1016_j_heliyon_2023_e19888
crossref_primary_10_3390_ijms26020438
crossref_primary_10_1016_j_scitotenv_2024_172864
crossref_primary_10_33549_physiolres_935109
crossref_primary_10_3390_ijms25031698
crossref_primary_10_3390_life15010003
crossref_primary_10_3390_metabo14060324
crossref_primary_10_1016_j_heliyon_2024_e38339
crossref_primary_10_3390_microorganisms11081882
crossref_primary_10_3390_microorganisms11071725
crossref_primary_10_12968_gasn_2024_22_1_26
crossref_primary_10_3390_nu15102365
crossref_primary_10_1007_s11010_024_05185_9
crossref_primary_10_3390_ijms252212395
crossref_primary_10_1186_s12866_023_03141_z
crossref_primary_10_3390_nu14234950
crossref_primary_10_1007_s13205_022_03388_9
crossref_primary_10_3389_fnut_2022_888974
crossref_primary_10_1016_j_psj_2025_104768
crossref_primary_10_1039_D4FO02270J
crossref_primary_10_1186_s12920_024_01861_3
crossref_primary_10_1016_j_aqrep_2022_101350
crossref_primary_10_1093_femsml_uqad032
crossref_primary_10_1177_24755303241226626
crossref_primary_10_3389_fcimb_2024_1370999
crossref_primary_10_3390_mps7050074
crossref_primary_10_3389_fpsyt_2024_1295766
crossref_primary_10_4014_jmb_2404_04020
crossref_primary_10_1038_s41598_024_57981_4
crossref_primary_10_20517_mtod_2024_07
crossref_primary_10_1155_2023_8810106
crossref_primary_10_1016_j_mvr_2023_104601
crossref_primary_10_3390_medicina59030594
crossref_primary_10_1017_S2040174424000084
crossref_primary_10_4251_wjgo_v16_i6_2394
crossref_primary_10_3390_microorganisms11071862
crossref_primary_10_1016_j_urolonc_2024_07_003
crossref_primary_10_1080_10408398_2024_2382942
Cites_doi 10.1371/journal.pone.0159223
10.1210/jc.2015-3351
10.1038/s41424-018-0025-4
10.1016/j.neuint.2016.06.011
10.1038/nature09944
10.1080/19490976.2015.1134082
10.1371/journal.pbio.1001397
10.3390/nu12020381
10.1371/journal.pone.0071108
10.1016/j.molimm.2004.12.004
10.3390/ijms21176356
10.3389/fmicb.2018.00890
10.1038/nature12198
10.1097/MCG.0b013e31822fecfe
10.3390/microorganisms8010131
10.3389/fphar.2016.00253
10.1016/j.tifs.2020.12.004
10.1271/bbb.80634
10.1113/JP272613
10.1017/S0007114510003363
10.1016/j.chom.2018.05.012
10.1017/S0007114508888733
10.1371/journal.pone.0067880
10.1007/s40618-019-01022-9
10.1038/s41588-019-0350-x
10.2337/db08-1637
10.1007/s00592-019-01312-x
10.3390/nu13041125
10.3390/genes10070534
10.1152/ajpregu.00442.2002
10.1186/s12944-016-0278-4
10.1016/j.dld.2021.04.026
10.1038/nature25973
10.1038/s41598-020-61192-y
10.1038/nrgastro.2017.75
10.3390/microorganisms8040573
10.5604/01.3001.0010.5493
10.4110/in.2014.14.6.277
10.1016/j.cmet.2018.01.005
10.1038/nbt.2845
10.1016/j.cell.2015.10.072
10.1091/mbc.E14-07-1194
10.1007/s00253-019-10156-y
10.1038/nature12820
10.1016/j.cmet.2020.06.011
10.1080/10408398.2015.1045966
10.1038/ni.3400
10.1194/jlr.M016246
10.1016/j.chom.2015.03.005
10.3389/fmicb.2011.00166
10.1038/nrgastro.2012.156
10.1111/j.1478-3231.2011.02462.x
10.1038/ncomms7734
10.1136/gut.28.10.1221
10.1007/s00394-018-1703-4
10.3945/jn.109.104638
10.3389/fimmu.2019.00277
10.3390/biology10030205
10.1016/j.cell.2016.05.041
10.3390/jcm9123941
10.1056/NEJMra1600266
10.1038/mi.2014.44
10.1016/j.cell.2013.12.016
10.1016/j.clnu.2020.05.025
10.1017/S0007114517001593
10.1053/j.gastro.2013.04.056
10.1371/journal.pmed.1003053
10.3389/fimmu.2016.00290
10.2337/dc10-0556
10.3390/nu7115440
10.1194/jlr.R067629
10.3390/nu12103209
10.1079/PNS2002207
10.1016/j.neuropharm.2011.10.008
10.1038/s41575-019-0157-3
10.1073/pnas.0504978102
10.3389/fimmu.2020.594150
10.1152/ajpgi.00219.2004
10.1016/j.cell.2016.10.020
10.1093/femsle/fnv176
10.3390/nu10070943
10.2337/db16-0924
10.1016/j.beem.2021.101504
10.1186/s12934-017-0691-z
10.1111/j.1753-4887.2011.00388.x
10.1016/j.jcmgh.2018.01.024
10.1016/j.celrep.2017.01.062
10.1136/gutjnl-2015-309957
10.1016/j.tifs.2020.02.026
10.1039/C6FO00105J
10.1007/s13668-018-0248-8
10.1038/nature16504
10.1079/PNS2002211
10.1007/s11154-019-09533-9
10.1080/10408398.2018.1542587
10.3390/nu12092808
10.1016/j.cmet.2015.10.001
10.1016/j.nut.2015.08.006
10.1159/000492853
10.1093/nutrit/nuz072
10.1128/MCB.00858-12
10.3390/biomedicines10010083
10.1136/gutjnl-2017-314050
10.1073/pnas.0901529106
10.3390/nu11051155
10.1038/nn.4476
10.1017/S0007114515002524
10.1038/nrendo.2015.128
10.1126/science.1208344
10.1093/ajcn/53.6.1418
10.1038/nature18846
10.1038/nature11450
10.1136/gutjnl-2014-307913
10.1371/journal.pone.0028742
10.1038/ismej.2014.63
10.1086/523341
10.3390/jcm9082648
10.1177/014860710803200151
10.3390/jcm10040840
10.1016/j.tim.2015.03.002
10.1038/nrgastro.2016.85
10.3390/ijms22147613
10.1128/AEM.71.7.3692-3700.2005
10.1126/science.aao5774
10.1016/j.jmb.2014.07.028
10.1017/S0007114509991863
10.3389/fnins.2017.00155
10.1016/j.chom.2018.03.011
10.3390/nu11040861
10.1073/pnas.1005963107
10.2337/db11-0846
10.1007/s00592-021-01727-5
10.1016/j.cell.2020.04.027
10.1017/S0007114509991462
10.1017/S0954422415000037
10.1111/1462-2920.13589
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms23031105
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8835596
35163038
10_3390_ijms23031105
Genre Journal Article
Review
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK020541
– fundername: NIDDK NIH HHS
  grantid: R01 DK126369
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-4a6eb2222ff9308d9a8f0196c7a4564462b28267d580484e8da41d7e93f09ad13
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:11:51 EDT 2025
Thu Jul 10 18:44:15 EDT 2025
Fri Jul 25 09:18:49 EDT 2025
Mon Jul 21 06:03:25 EDT 2025
Tue Jul 01 02:47:57 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords glucose homeostasis
fiber
intestine
diet
bacteria
metabolome
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-4a6eb2222ff9308d9a8f0196c7a4564462b28267d580484e8da41d7e93f09ad13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5359-1471
0000-0002-7689-3613
0000-0003-0813-169X
0000-0002-2010-884X
0000-0002-5476-7376
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms23031105
PMID 35163038
PQID 2627645332
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8835596
proquest_miscellaneous_2629058376
proquest_journals_2627645332
pubmed_primary_35163038
crossref_primary_10_3390_ijms23031105
crossref_citationtrail_10_3390_ijms23031105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220120
PublicationDateYYYYMMDD 2022-01-20
PublicationDate_xml – month: 1
  year: 2022
  text: 20220120
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bouter (ref_130) 2018; 9
ref_136
Hamaker (ref_22) 2014; 426
ref_139
Canfora (ref_33) 2015; 11
Flint (ref_94) 2012; 9
Qin (ref_100) 2012; 490
ref_13
Lynch (ref_103) 2016; 375
Freeland (ref_61) 2010; 103
ref_135
Ang (ref_137) 2020; 181
Leung (ref_77) 2016; 13
Kim (ref_42) 2014; 14
ref_19
ref_17
ref_16
Sakata (ref_90) 2003; 62
Koh (ref_31) 2016; 165
Kreznar (ref_97) 2017; 18
Marchix (ref_65) 2018; 6
ref_128
Wu (ref_14) 2011; 334
Swanson (ref_59) 2020; 221
Pellegrini (ref_92) 2016; 65
Sanna (ref_107) 2019; 51
Derrien (ref_67) 2011; 2
ref_25
ref_24
Louis (ref_38) 2017; 19
ref_23
ref_122
Dalile (ref_37) 2019; 16
ref_121
Garruti (ref_11) 2017; 16
ref_124
Verbeke (ref_87) 2015; 28
ref_29
Sanchez (ref_91) 2016; 7
Salamone (ref_120) 2021; 58
Sonnenburg (ref_26) 2016; 535
Park (ref_70) 2015; 8
Gibson (ref_85) 2017; 14
Macfarlane (ref_89) 2011; 45
Wu (ref_105) 2020; 32
Arumugam (ref_110) 2011; 473
Boets (ref_76) 2017; 595
Stilling (ref_69) 2016; 99
Cavalieri (ref_108) 2010; 107
Suzuki (ref_57) 2008; 100
Mitsou (ref_109) 2017; 117
Landskron (ref_43) 2019; 10
Goncalves (ref_73) 2014; 156
Vetrani (ref_118) 2016; 32
Gaudier (ref_49) 2004; 287
Mollica (ref_74) 2017; 66
Bui (ref_131) 2021; 35
Basson (ref_36) 2016; 7
Freeland (ref_113) 2010; 103
Li (ref_123) 2012; 61
Alex (ref_45) 2013; 33
ref_141
Walker (ref_41) 2005; 71
Salonen (ref_39) 2014; 8
Fung (ref_54) 2017; 20
Nilsson (ref_111) 2015; 22
Mathewson (ref_48) 2016; 17
Derrien (ref_66) 2015; 23
Peng (ref_50) 2009; 139
Schoenfeld (ref_75) 2016; 57
Rondanelli (ref_140) 2021; 12
Salgaco (ref_95) 2019; 103
Joseph (ref_35) 2017; 11
Feng (ref_44) 2018; 49
ref_58
ref_55
Dommett (ref_1) 2005; 42
ref_51
Federici (ref_99) 2019; 42
Carroccio (ref_132) 2021; 53
Morrison (ref_3) 2016; 7
Sanders (ref_83) 2008; 46
Fu (ref_133) 2019; 59
LeBlanc (ref_84) 2017; 16
Makki (ref_10) 2018; 23
Rothschild (ref_102) 2018; 555
Alcantara (ref_86) 2018; 9
Titgemeyer (ref_20) 1991; 53
Haro (ref_116) 2016; 101
Ley (ref_98) 2005; 102
Sonnenburg (ref_21) 2016; 529
Baothman (ref_40) 2016; 15
Mahowald (ref_30) 2009; 106
Kelly (ref_53) 2015; 17
Sam (ref_60) 2012; 63
Hosseini (ref_134) 2011; 69
Chambers (ref_129) 2015; 64
Mardinoglu (ref_138) 2018; 27
Mohajeri (ref_7) 2018; 57
Li (ref_72) 2018; 67
Nowarski (ref_47) 2015; 163
Brussow (ref_78) 2014; 32
ref_114
ref_117
ref_119
Musso (ref_62) 2010; 33
Boets (ref_80) 2015; 7
Subramanian (ref_79) 2011; 52
Kien (ref_68) 2008; 32
Chilloux (ref_2) 2019; 56
Peluzio (ref_32) 2021; 108
Ferrocino (ref_15) 2020; 10
Tong (ref_56) 2016; 7
Kim (ref_71) 2013; 145
Fukumoto (ref_64) 2003; 284
Mohammad (ref_9) 2020; 11
Xu (ref_82) 2020; 100
Karlsson (ref_106) 2013; 498
Macia (ref_46) 2015; 6
David (ref_93) 2014; 505
Zhao (ref_101) 2018; 359
Nilsson (ref_112) 2015; 114
ref_104
Yamashita (ref_126) 2016; 56
Roberfroid (ref_88) 2010; 104
Saccomanno (ref_63) 2011; 31
Chambers (ref_4) 2018; 7
Hubert (ref_12) 2018; 23
Gao (ref_127) 2009; 58
Margolles (ref_28) 2016; 7
Vitale (ref_115) 2021; 40
Schirmer (ref_27) 2016; 167
Yamashita (ref_125) 2009; 73
ref_8
Cummings (ref_81) 1987; 28
ref_5
Macfarlane (ref_34) 2003; 62
Saeedi (ref_52) 2015; 26
Kappel (ref_96) 2019; 20
ref_6
Swann (ref_18) 2020; 78
References_xml – ident: ref_117
  doi: 10.1371/journal.pone.0159223
– volume: 101
  start-page: 233
  year: 2016
  ident: ref_116
  article-title: Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2015-3351
– volume: 9
  start-page: 155
  year: 2018
  ident: ref_130
  article-title: Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects
  publication-title: Clin. Transl. Gastroenterol.
  doi: 10.1038/s41424-018-0025-4
– volume: 99
  start-page: 110
  year: 2016
  ident: ref_69
  article-title: The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2016.06.011
– volume: 473
  start-page: 174
  year: 2011
  ident: ref_110
  article-title: Enterotypes of the human gut microbiome
  publication-title: Nature
  doi: 10.1038/nature09944
– volume: 7
  start-page: 189
  year: 2016
  ident: ref_3
  article-title: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2015.1134082
– ident: ref_8
  doi: 10.1371/journal.pbio.1001397
– ident: ref_16
  doi: 10.3390/nu12020381
– ident: ref_104
  doi: 10.1371/journal.pone.0071108
– volume: 42
  start-page: 903
  year: 2005
  ident: ref_1
  article-title: Innate immune defence in the human gastrointestinal tract
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2004.12.004
– ident: ref_121
  doi: 10.3390/ijms21176356
– volume: 9
  start-page: 890
  year: 2018
  ident: ref_86
  article-title: Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00890
– volume: 498
  start-page: 99
  year: 2013
  ident: ref_106
  article-title: Gut metagenome in European women with normal, impaired and diabetic glucose control
  publication-title: Nature
  doi: 10.1038/nature12198
– volume: 45
  start-page: S120
  year: 2011
  ident: ref_89
  article-title: Fermentation in the human large intestine: Its physiologic consequences and the potential contribution of prebiotics
  publication-title: J. Clin. Gastroenterol.
  doi: 10.1097/MCG.0b013e31822fecfe
– ident: ref_141
  doi: 10.3390/microorganisms8010131
– volume: 7
  start-page: 253
  year: 2016
  ident: ref_56
  article-title: Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2016.00253
– volume: 108
  start-page: 11
  year: 2021
  ident: ref_32
  article-title: Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2020.12.004
– volume: 73
  start-page: 570
  year: 2009
  ident: ref_125
  article-title: Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats
  publication-title: Biosci Biotechnol. Biochem.
  doi: 10.1271/bbb.80634
– volume: 595
  start-page: 541
  year: 2017
  ident: ref_76
  article-title: Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: A stable isotope study
  publication-title: J. Physiol.
  doi: 10.1113/JP272613
– volume: 104
  start-page: S1
  year: 2010
  ident: ref_88
  article-title: Prebiotic effects: Metabolic and health benefits
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114510003363
– volume: 23
  start-page: 705
  year: 2018
  ident: ref_10
  article-title: The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.05.012
– volume: 100
  start-page: 297
  year: 2008
  ident: ref_57
  article-title: Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114508888733
– ident: ref_122
  doi: 10.1371/journal.pone.0067880
– volume: 42
  start-page: 1011
  year: 2019
  ident: ref_99
  article-title: Gut microbiome and microbial metabolites: A new system affecting metabolic disorders
  publication-title: J. Endocrinol. Investig.
  doi: 10.1007/s40618-019-01022-9
– volume: 12
  start-page: 518
  year: 2021
  ident: ref_140
  article-title: The Potential Roles of Very Low Calorie, Very Low Calorie Ketogenic Diets and Very Low Carbohydrate Diets on the Gut Microbiota Composition
  publication-title: Front. Endocrinol.
– volume: 51
  start-page: 600
  year: 2019
  ident: ref_107
  article-title: Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0350-x
– volume: 58
  start-page: 1509
  year: 2009
  ident: ref_127
  article-title: Butyrate improves insulin sensitivity and increases energy expenditure in mice
  publication-title: Diabetes
  doi: 10.2337/db08-1637
– volume: 56
  start-page: 493
  year: 2019
  ident: ref_2
  article-title: Diet-induced metabolic changes of the human gut microbiome: Importance of short-chain fatty acids, methylamines and indoles
  publication-title: Acta Diabetol.
  doi: 10.1007/s00592-019-01312-x
– ident: ref_25
  doi: 10.3390/nu13041125
– ident: ref_139
  doi: 10.3390/genes10070534
– volume: 284
  start-page: R1269
  year: 2003
  ident: ref_64
  article-title: Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00442.2002
– volume: 15
  start-page: 108
  year: 2016
  ident: ref_40
  article-title: The role of Gut Microbiota in the development of obesity and Diabetes
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-016-0278-4
– volume: 53
  start-page: 1412
  year: 2021
  ident: ref_132
  article-title: WHOLE-meal ancient wheat-based diet: Effect on metabolic parameters and microbiota
  publication-title: Dig. Liver Dis.
  doi: 10.1016/j.dld.2021.04.026
– volume: 555
  start-page: 210
  year: 2018
  ident: ref_102
  article-title: Environment dominates over host genetics in shaping human gut microbiota
  publication-title: Nature
  doi: 10.1038/nature25973
– volume: 10
  start-page: 4247
  year: 2020
  ident: ref_15
  article-title: Diet influences the functions of the human intestinal microbiome
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61192-y
– volume: 7
  start-page: 185
  year: 2016
  ident: ref_28
  article-title: Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health
  publication-title: Front. Microbiol.
– volume: 14
  start-page: 491
  year: 2017
  ident: ref_85
  article-title: Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.75
– ident: ref_114
  doi: 10.3390/microorganisms8040573
– volume: 16
  start-page: S4
  year: 2017
  ident: ref_11
  article-title: Bile Acid Physiology
  publication-title: Ann. Hepatol.
  doi: 10.5604/01.3001.0010.5493
– volume: 14
  start-page: 277
  year: 2014
  ident: ref_42
  article-title: Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation
  publication-title: Immune Netw.
  doi: 10.4110/in.2014.14.6.277
– volume: 27
  start-page: 559
  year: 2018
  ident: ref_138
  article-title: An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.01.005
– volume: 32
  start-page: 243
  year: 2014
  ident: ref_78
  article-title: You are what you eat
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2845
– volume: 163
  start-page: 1444
  year: 2015
  ident: ref_47
  article-title: Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.072
– volume: 26
  start-page: 2252
  year: 2015
  ident: ref_52
  article-title: HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E14-07-1194
– volume: 103
  start-page: 9229
  year: 2019
  ident: ref_95
  article-title: Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-10156-y
– volume: 505
  start-page: 559
  year: 2014
  ident: ref_93
  article-title: Diet rapidly and reproducibly alters the human gut microbiome
  publication-title: Nature
  doi: 10.1038/nature12820
– volume: 32
  start-page: 379
  year: 2020
  ident: ref_105
  article-title: The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.06.011
– volume: 56
  start-page: S171
  year: 2016
  ident: ref_126
  article-title: Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2015.1045966
– volume: 17
  start-page: 505
  year: 2016
  ident: ref_48
  article-title: Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3400
– volume: 52
  start-page: 1626
  year: 2011
  ident: ref_79
  article-title: Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M016246
– volume: 17
  start-page: 662
  year: 2015
  ident: ref_53
  article-title: Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.03.005
– volume: 2
  start-page: 166
  year: 2011
  ident: ref_67
  article-title: Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2011.00166
– volume: 9
  start-page: 577
  year: 2012
  ident: ref_94
  article-title: The role of the gut microbiota in nutrition and health
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2012.156
– volume: 31
  start-page: 1285
  year: 2011
  ident: ref_63
  article-title: Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis
  publication-title: Liver Int.
  doi: 10.1111/j.1478-3231.2011.02462.x
– volume: 6
  start-page: 6734
  year: 2015
  ident: ref_46
  article-title: Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7734
– volume: 28
  start-page: 1221
  year: 1987
  ident: ref_81
  article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood
  publication-title: Gut
  doi: 10.1136/gut.28.10.1221
– volume: 57
  start-page: 1
  year: 2018
  ident: ref_7
  article-title: The role of the microbiome for human health: From basic science to clinical applications
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-018-1703-4
– volume: 139
  start-page: 1619
  year: 2009
  ident: ref_50
  article-title: Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers
  publication-title: J. Nutr.
  doi: 10.3945/jn.109.104638
– volume: 10
  start-page: 277
  year: 2019
  ident: ref_43
  article-title: Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00277
– ident: ref_51
  doi: 10.3390/biology10030205
– volume: 165
  start-page: 1332
  year: 2016
  ident: ref_31
  article-title: From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.041
– ident: ref_55
  doi: 10.3390/jcm9123941
– volume: 375
  start-page: 2369
  year: 2016
  ident: ref_103
  article-title: The Human Intestinal Microbiome in Health and Disease
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMra1600266
– volume: 8
  start-page: 80
  year: 2015
  ident: ref_70
  article-title: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2014.44
– volume: 156
  start-page: 84
  year: 2014
  ident: ref_73
  article-title: Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.016
– volume: 40
  start-page: 428
  year: 2021
  ident: ref_115
  article-title: Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: Can SCFAs play a role?
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2020.05.025
– volume: 117
  start-page: 1645
  year: 2017
  ident: ref_109
  article-title: Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114517001593
– volume: 145
  start-page: 396
  year: 2013
  ident: ref_71
  article-title: Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.04.056
– ident: ref_135
  doi: 10.1371/journal.pmed.1003053
– volume: 7
  start-page: 290
  year: 2016
  ident: ref_36
  article-title: Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00290
– volume: 33
  start-page: 2277
  year: 2010
  ident: ref_62
  article-title: Obesity, diabetes, and gut microbiota: The hygiene hypothesis expanded?
  publication-title: Diabetes Care
  doi: 10.2337/dc10-0556
– volume: 7
  start-page: 8916
  year: 2015
  ident: ref_80
  article-title: Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin
  publication-title: Nutrients
  doi: 10.3390/nu7115440
– volume: 57
  start-page: 943
  year: 2016
  ident: ref_75
  article-title: Short- and medium-chain fatty acids in energy metabolism: The cellular perspective
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R067629
– ident: ref_136
  doi: 10.3390/nu12103209
– volume: 62
  start-page: 67
  year: 2003
  ident: ref_34
  article-title: Regulation of short-chain fatty acid production
  publication-title: Proc. Nutr. Soc.
  doi: 10.1079/PNS2002207
– volume: 63
  start-page: 46
  year: 2012
  ident: ref_60
  article-title: The role of the gut/brain axis in modulating food intake
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.10.008
– volume: 16
  start-page: 461
  year: 2019
  ident: ref_37
  article-title: The role of short-chain fatty acids in microbiota-gut-brain communication
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0157-3
– volume: 102
  start-page: 11070
  year: 2005
  ident: ref_98
  article-title: Obesity alters gut microbial ecology
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504978102
– volume: 11
  start-page: 594150
  year: 2020
  ident: ref_9
  article-title: Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.594150
– volume: 287
  start-page: G1168
  year: 2004
  ident: ref_49
  article-title: Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00219.2004
– volume: 167
  start-page: 1125
  year: 2016
  ident: ref_27
  article-title: Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.020
– ident: ref_29
  doi: 10.1093/femsle/fnv176
– ident: ref_119
  doi: 10.3390/nu10070943
– volume: 66
  start-page: 1405
  year: 2017
  ident: ref_74
  article-title: Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice
  publication-title: Diabetes
  doi: 10.2337/db16-0924
– volume: 35
  start-page: 101504
  year: 2021
  ident: ref_131
  article-title: Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases
  publication-title: Best Pract. Research. Clin. Endocrinol. Metab.
  doi: 10.1016/j.beem.2021.101504
– volume: 16
  start-page: 79
  year: 2017
  ident: ref_84
  article-title: Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria
  publication-title: Microb. Cell Fact.
  doi: 10.1186/s12934-017-0691-z
– volume: 69
  start-page: 245
  year: 2011
  ident: ref_134
  article-title: Propionate as a health-promoting microbial metabolite in the human gut
  publication-title: Nutr. Rev.
  doi: 10.1111/j.1753-4887.2011.00388.x
– volume: 6
  start-page: 149
  year: 2018
  ident: ref_65
  article-title: Host-Gut Microbiota Crosstalk in Intestinal Adaptation
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2018.01.024
– volume: 18
  start-page: 1739
  year: 2017
  ident: ref_97
  article-title: Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.01.062
– volume: 65
  start-page: 1812
  year: 2016
  ident: ref_92
  article-title: High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309957
– volume: 100
  start-page: 118
  year: 2020
  ident: ref_82
  article-title: Dynamic balancing of intestinal short-chain fatty acids: The crucial role of bacterial metabolism
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2020.02.026
– volume: 7
  start-page: 2347
  year: 2016
  ident: ref_91
  article-title: Mediterranean diet and faecal microbiota: A transversal study
  publication-title: Food Funct.
  doi: 10.1039/C6FO00105J
– volume: 7
  start-page: 198
  year: 2018
  ident: ref_4
  article-title: Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health
  publication-title: Curr. Nutr. Rep.
  doi: 10.1007/s13668-018-0248-8
– volume: 529
  start-page: 212
  year: 2016
  ident: ref_21
  article-title: Diet-induced extinctions in the gut microbiota compound over generations
  publication-title: Nature
  doi: 10.1038/nature16504
– volume: 62
  start-page: 73
  year: 2003
  ident: ref_90
  article-title: Influences of probiotic bacteria on organic acid production by pig caecal bacteria in vitro
  publication-title: Proc. Nutr. Soc.
  doi: 10.1079/PNS2002211
– volume: 20
  start-page: 399
  year: 2019
  ident: ref_96
  article-title: Gut microbiome and cardiometabolic risk
  publication-title: Rev. Endocr. Metab. Disord.
  doi: 10.1007/s11154-019-09533-9
– volume: 59
  start-page: S130
  year: 2019
  ident: ref_133
  article-title: Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2018.1542587
– ident: ref_58
  doi: 10.3390/nu12092808
– volume: 22
  start-page: 971
  year: 2015
  ident: ref_111
  article-title: Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.10.001
– volume: 32
  start-page: 217
  year: 2016
  ident: ref_118
  article-title: Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome
  publication-title: Nutrition
  doi: 10.1016/j.nut.2015.08.006
– volume: 49
  start-page: 190
  year: 2018
  ident: ref_44
  article-title: Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000492853
– volume: 78
  start-page: 394
  year: 2020
  ident: ref_18
  article-title: Dietary fiber and its associations with depression and inflammation
  publication-title: Nutr. Rev.
  doi: 10.1093/nutrit/nuz072
– volume: 33
  start-page: 1303
  year: 2013
  ident: ref_45
  article-title: Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor gamma
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00858-12
– ident: ref_5
  doi: 10.3390/biomedicines10010083
– volume: 67
  start-page: 1269
  year: 2018
  ident: ref_72
  article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314050
– ident: ref_17
– volume: 106
  start-page: 5859
  year: 2009
  ident: ref_30
  article-title: Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0901529106
– ident: ref_19
  doi: 10.3390/nu11051155
– volume: 221
  start-page: 97
  year: 2020
  ident: ref_59
  article-title: Disrupted diurnal oscillation of gut-derived Short chain fatty acids in shift workers drinking alcohol: Possible mechanism for loss of resiliency of intestinal barrier in disrupted circadian host
  publication-title: J. Lab. Clin. Med.
– ident: ref_124
– volume: 20
  start-page: 145
  year: 2017
  ident: ref_54
  article-title: Interactions between the microbiota, immune and nervous systems in health and disease
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4476
– volume: 114
  start-page: 899
  year: 2015
  ident: ref_112
  article-title: Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: A randomised cross-over study in healthy middle-aged subjects
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114515002524
– volume: 11
  start-page: 577
  year: 2015
  ident: ref_33
  article-title: Short-chain fatty acids in control of body weight and insulin sensitivity
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2015.128
– volume: 334
  start-page: 105
  year: 2011
  ident: ref_14
  article-title: Linking long-term dietary patterns with gut microbial enterotypes
  publication-title: Science
  doi: 10.1126/science.1208344
– volume: 53
  start-page: 1418
  year: 1991
  ident: ref_20
  article-title: Fermentability of various fiber sources by human fecal bacteria in vitro
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/53.6.1418
– volume: 535
  start-page: 56
  year: 2016
  ident: ref_26
  article-title: Diet-microbiota interactions as moderators of human metabolism
  publication-title: Nature
  doi: 10.1038/nature18846
– volume: 490
  start-page: 55
  year: 2012
  ident: ref_100
  article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature11450
– volume: 64
  start-page: 1744
  year: 2015
  ident: ref_129
  article-title: Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-307913
– ident: ref_24
  doi: 10.1371/journal.pone.0028742
– volume: 8
  start-page: 2218
  year: 2014
  ident: ref_39
  article-title: Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.63
– volume: 46
  start-page: S58
  year: 2008
  ident: ref_83
  article-title: Probiotics: Definition, sources, selection, and uses
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/523341
– ident: ref_6
  doi: 10.3390/jcm9082648
– volume: 32
  start-page: 51
  year: 2008
  ident: ref_68
  article-title: Effects of the in vivo supply of butyrate on histone acetylation of cecum in piglets
  publication-title: JPEN J. Parenter. Enter. Nutr.
  doi: 10.1177/014860710803200151
– ident: ref_13
  doi: 10.3390/jcm10040840
– volume: 23
  start-page: 354
  year: 2015
  ident: ref_66
  article-title: Fate, activity, and impact of ingested bacteria within the human gut microbiota
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2015.03.002
– volume: 13
  start-page: 412
  year: 2016
  ident: ref_77
  article-title: The role of the gut microbiota in NAFLD
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2016.85
– ident: ref_23
  doi: 10.3390/ijms22147613
– volume: 71
  start-page: 3692
  year: 2005
  ident: ref_41
  article-title: pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.7.3692-3700.2005
– volume: 359
  start-page: 1151
  year: 2018
  ident: ref_101
  article-title: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes
  publication-title: Science
  doi: 10.1126/science.aao5774
– volume: 426
  start-page: 3838
  year: 2014
  ident: ref_22
  article-title: A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2014.07.028
– volume: 103
  start-page: 460
  year: 2010
  ident: ref_61
  article-title: Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114509991863
– volume: 11
  start-page: 155
  year: 2017
  ident: ref_35
  article-title: Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia?
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00155
– volume: 23
  start-page: 458
  year: 2018
  ident: ref_12
  article-title: Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.03.011
– ident: ref_128
  doi: 10.3390/nu11040861
– volume: 107
  start-page: 14691
  year: 2010
  ident: ref_108
  article-title: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1005963107
– volume: 61
  start-page: 797
  year: 2012
  ident: ref_123
  article-title: Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3
  publication-title: Diabetes
  doi: 10.2337/db11-0846
– volume: 58
  start-page: 1131
  year: 2021
  ident: ref_120
  article-title: The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: The possible role of dietary fibre
  publication-title: Acta Diabetol.
  doi: 10.1007/s00592-021-01727-5
– volume: 181
  start-page: 1263
  year: 2020
  ident: ref_137
  article-title: Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.027
– volume: 103
  start-page: 82
  year: 2010
  ident: ref_113
  article-title: Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114509991462
– volume: 28
  start-page: 42
  year: 2015
  ident: ref_87
  article-title: Towards microbial fermentation metabolites as markers for health benefits of prebiotics
  publication-title: Nutr. Res. Rev.
  doi: 10.1017/S0954422415000037
– volume: 19
  start-page: 29
  year: 2017
  ident: ref_38
  article-title: Formation of propionate and butyrate by the human colonic microbiota
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13589
SSID ssj0023259
Score 2.7133806
SecondaryResourceType review_article
Snippet Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1105
SubjectTerms Animals
Bacteria
Bacteria - metabolism
Carbohydrates
Colon
Diabetes
Dietary fiber
Fatty acids
Fatty Acids, Volatile - metabolism
Feces
Fermentation
Gastrointestinal Microbiome
Glucose
Glucose - metabolism
Gut microbiota
Homeostasis
Humans
Metabolism
Metabolites
Microbiota
Peptides
Proteins
Review
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB38QPAifltdJYKepNg2bZp6kUXcVUE9qOCtpEnKVrS72u7Bf--k7dZdRXvNQMtMknkvncwDOOKpy1TApC0TGSBB0UbI3U9tKVNFEzcSyjF3h2_v2NWTf_McPDcHbkVTVjnZE6uNWg2lOSM_9ZgXMh_BiXc-ereNapT5u9pIaMzDoouZxpR08V6_JVzUq8TSXMxBNgsiVhe-U6T5p9nLW4Hom2L2C2ZT0i-c-bNccir_9FZhpQGOpFtHeg3mdL4OS7WU5OcG3PfHJbnN6rZKpSAiV-RhgNiaXAyQ_JOeKMtP0pWZKs7I9VQZOcHBfl23Toxm-hDhYpEVm_DUu3y8uLIbsQRb-iEvbV8wJMn4pGlEHa4iwVPT-0aGwnSM8ZmXILtioQo4LlpfcyV8V4U6oqmDEXHpFizkw1zvAKFUYaBCJMdKI3tWiVaYxULJzHWS1BUWnEz8Fcumk7gRtHiNkVEY78bT3rXguLUe1R00_rDrTFwfN-uoiL-jbsFhO4wrwPzWELkejiubyAmQaDMLtutItS-iAeJNh3ILwpkYtgamu_bsSJ4Nqi7bHLEpzpnd_z9rD5Y9cyHCcXG_6cBC-THW-whTyuSgmotfLr3nDw
  priority: 102
  providerName: ProQuest
Title Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis
URI https://www.ncbi.nlm.nih.gov/pubmed/35163038
https://www.proquest.com/docview/2627645332
https://www.proquest.com/docview/2629058376
https://pubmed.ncbi.nlm.nih.gov/PMC8835596
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aRUi8TIzbAqMyEjyhQBJfgzShbVo7kDoQUKlvkWM7aqaRwpJK9N_vuGmjljFpeciLT5TkHDvn-2L7fABvVBELy4UJTW44EhTnhdxZERpTWJrHqbaR3zs8vBDnI_ZlzMdbsFIbXTqw_i-183pSo-ur93__zD_hgD_yjBMp-4fy8leNSJpiJuPbsIs5SXotgyHr5hMQNixk0_wPj9B_oNsl8Leu3kxOtxDnvwsn1zJR_xHsLSEkOW5jvg9brnoMD1pRyfkT-DqYNWRYtgWWGk10ZcmPCb4gOZ3osiJ93TRzcmxKW38kn9cWlBNsHLQr2IlXT58icKzL-imM-mc_T8_DpWxCaJhUTci0QLqMR1GkNFI21arwVXCM1L52DBNJjjxLSMsVDl_mlNUsttKltIgwNjF9BjvVtHIHQCi1GDKJNNk65NE2dxbzmTTCbywpYh3Au5W_MrOsKe6lLa4y5Bbeu9m6dwN421n_bmtp3GF3uHJ9tuoQWSISKRiC0ySA110zjgU_waErN50tbNKII-UWATxvI9XdiHJEnhFVAciNGHYGvs72ZktVThb1thWiVJ6KF_d8_JfwMPF7JKIYP0GHsNNcz9wrRC5N3oNtOZZ4Vv1BD3ZPzi6-fe_5XMJ7i-56AzuJ8JY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RqqpcUGmhhFddqZxQRBI7ToJUIUS7j8LSAyBxSx3b0QZBFkhWaP8Uv5Fxskl3W7U3cvUoscZjz_fF8wD4EqYuVz6XtkykjwRFm0buLLWlTBVN3Egox-QOD85475L9uPKvFuCpyYUxYZXNmVgd1GokzT_yfY97AWcITrzDu3vbdI0yt6tNC43aLE705BEpW_G1_w3Xd9fzOt8vjnv2tKuALVkQljYTHNkkPmkaUSdUkQhTUyRGBsKUVmHcS5CG8ED5IVo306ESzFWBjmjq4NRdiu99Ba8ZRU9uMtM73ZbgUa9qzuaiz7O5H_E60B4Fnf3s-rZAtE_R2_rzLvAvXPtneOaMv-u8g-UpUCVHtWWtwILO38ObunXl5AP87I5LMsjqMk6lICJX5HyIWJ4cD0WWk44oywk5kpkqDkh_Jmyd4GC3jpMnpkf7COFpkRWrcPkialyDxXyU63UglCo0jADJuNLI1lWiFXrNQHKTvpK6woK9Rl-xnFYuNw00bmJkMEa78ax2Ldhtpe_qih3_kNtqVB9P920R_7YyCz63w7jjzDWKyPVoXMlEjo_EnlvwsV6p9kPUR3zr0NCCYG4NWwFTzXt-JM-GVVXvELEw2szG_6f1Cd72Lgan8Wn_7GQTljyTjOG4eNZtwWL5MNbbCJHKZKeySwK_XnojPAOSUSJ2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUB9QVyFQAEj0ScUbRIndoKEUGm77VK6VD2kvqWOD22qNltIVmj_Gr-O8eZgFwRvzautHOMZz_fFcwC8jY3PVMSkKzMZIUHRtpF7aFwpjaKZnwjl2dzhwxHbPws_n0fnK_CzzYWxYZXtnjjfqNVE2n_k_YAFnIUIToK-acIijnYGH2--ubaDlD1pbdtp1CpyoGc_kL6VH4Y7uNabQTDYPd3ed5sOA64MeVy5oWDILPEyJqFerBIRG1swRnJhy6yELMiQkjCuohg1PdSxEqGvuE6o8fAzfIr3vQOr3LKiHqx-2h0dHXd0jwbzVm0-ekCXRQmrw-4pTbx-fnldIvan6HujZYf4F8r9M1hzwfsNHsD9BraSrVrPHsKKLh7B3bqR5ewxfN2bVuQwr4s6VYKIQpGTMSJ7sj0WeUEGoqpmZEvmqnxPhgtB7AQH9-qoeWI7tk8QrJZ5-QTObkWQ69ArJoV-BoRShWrCkZorjdxdZVqhD-WS2WQW4wsH3rXySmVTx9y207hKkc9Y6aaL0nVgs5t9U9fv-Me8jVb0aWPFZfpb5xx40w2j_dlDFVHoyXQ-J_EipPnMgaf1SnUPohGiXY_GDvClNewm2NreyyNFPp7X-I4RGaPOPP__a72Ge2gE6Zfh6OAFrAU2M8PzcePbgF71fapfIl6qsleNYhK4uG1b-AXxACgI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+Microbiota+and+Short+Chain+Fatty+Acids%3A+Implications+in+Glucose+Homeostasis&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Portincasa%2C+Piero&rft.au=Bonfrate%2C+Leonilde&rft.au=Vacca%2C+Mirco&rft.au=De+Angelis%2C+Maria&rft.date=2022-01-20&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=3&rft.spage=1105&rft_id=info:doi/10.3390%2Fijms23031105&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms23031105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon