Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal...
Saved in:
Published in | International journal of molecular sciences Vol. 23; no. 3; p. 1105 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism. |
---|---|
AbstractList | Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism. Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism. |
Author | Bonfrate, Leonilde De Angelis, Maria Lanza, Elisa Sperandio, Markus Portincasa, Piero Vacca, Mirco Farella, Ilaria Khalil, Mohamad Di Ciaula, Agostino Wang, David Q.-H. |
AuthorAffiliation | 4 Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany; markus.sperandio@lmu.de 2 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; mirco.vacca@uniba.it (M.V.); maria.deangelis@uniba.it (M.D.A.) 1 Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; ilaria.farella@uniba.it (I.F.); elisa.lanza@uniba.it (E.L.); mohamad.khalil@uniba.it (M.K.); agostinodiciaula@tiscali.it (A.D.C.) 3 Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; david.wang@einsteinmed.edu |
AuthorAffiliation_xml | – name: 1 Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; ilaria.farella@uniba.it (I.F.); elisa.lanza@uniba.it (E.L.); mohamad.khalil@uniba.it (M.K.); agostinodiciaula@tiscali.it (A.D.C.) – name: 2 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; mirco.vacca@uniba.it (M.V.); maria.deangelis@uniba.it (M.D.A.) – name: 4 Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany; markus.sperandio@lmu.de – name: 3 Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; david.wang@einsteinmed.edu |
Author_xml | – sequence: 1 givenname: Piero orcidid: 0000-0001-5359-1471 surname: Portincasa fullname: Portincasa, Piero – sequence: 2 givenname: Leonilde surname: Bonfrate fullname: Bonfrate, Leonilde – sequence: 3 givenname: Mirco orcidid: 0000-0003-0813-169X surname: Vacca fullname: Vacca, Mirco – sequence: 4 givenname: Maria orcidid: 0000-0002-2010-884X surname: De Angelis fullname: De Angelis, Maria – sequence: 5 givenname: Ilaria surname: Farella fullname: Farella, Ilaria – sequence: 6 givenname: Elisa surname: Lanza fullname: Lanza, Elisa – sequence: 7 givenname: Mohamad surname: Khalil fullname: Khalil, Mohamad – sequence: 8 givenname: David Q.-H. surname: Wang fullname: Wang, David Q.-H. – sequence: 9 givenname: Markus orcidid: 0000-0002-7689-3613 surname: Sperandio fullname: Sperandio, Markus – sequence: 10 givenname: Agostino orcidid: 0000-0002-5476-7376 surname: Di Ciaula fullname: Di Ciaula, Agostino |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35163038$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1LJDEQhoO4-LV78ywBLx6c3Xx34kEYBmcUFA-7ew6ZdNrJ0J2MnbTgvzejo4xiXaqgnnqpeusQ7IYYHADHGP2mVKE_ftklQhHFGPEdcIAZISOERLW7Ve-Dw5SWCBFKuNoD-5RjUUbkAbifDRneedvHuY_ZQBNq-HcR-wwnC-MDnJqcn-HY-jpdwJtu1Xprso8hwdKctYONycHr2LmYskk-_QQ_GtMm92uTj8D_6dW_yfXo9n52MxnfjiyrZB4xI9yclGgaRZGslZENwkrYyjAuGBNkTiQRVc0lYpI5WRuG68op2iBlakyPwOWb7mqYd662LuTetHrV-870zzoarz93gl_oh_ikpaScK1EEzjYCfXwcXMq688m6tjXBxSFpIohCXNJqjZ5-QZdx6EM5b01VgnFKSaFOtjf6WOXd6wKcvwHF7JR613wgGOn1K_X2KwtOvuDW51fvyz2-_X7oBdc0oMQ |
CitedBy_id | crossref_primary_10_1097_MCO_0000000000000939 crossref_primary_10_1016_j_isci_2024_109784 crossref_primary_10_3389_fmicb_2023_1293160 crossref_primary_10_1016_j_gendis_2025_101592 crossref_primary_10_5312_wjo_v15_i12_1135 crossref_primary_10_1016_j_nutos_2025_01_011 crossref_primary_10_1080_10408398_2023_2192281 crossref_primary_10_3390_ijms25147621 crossref_primary_10_3390_nu15071593 crossref_primary_10_1017_anr_2024_8 crossref_primary_10_1093_jncimonographs_lgad008 crossref_primary_10_1016_j_micpath_2024_106617 crossref_primary_10_1002_cnr2_1877 crossref_primary_10_3390_molecules29071535 crossref_primary_10_1038_s41387_024_00276_4 crossref_primary_10_1111_febs_17102 crossref_primary_10_1016_j_phrs_2023_106799 crossref_primary_10_3390_biomedicines11123144 crossref_primary_10_1007_s12016_024_09018_x crossref_primary_10_1016_j_jhazmat_2024_136034 crossref_primary_10_3389_bjbs_2023_12098 crossref_primary_10_18231_j_ctppc_2024_023 crossref_primary_10_1007_s10308_024_00713_0 crossref_primary_10_3390_nu17050842 crossref_primary_10_1016_j_ajcnut_2024_08_015 crossref_primary_10_1186_s40246_023_00561_w crossref_primary_10_1038_s41598_024_68479_4 crossref_primary_10_3390_molecules27207111 crossref_primary_10_3390_microorganisms12030484 crossref_primary_10_58858_030102 crossref_primary_10_1016_j_bcdf_2024_100442 crossref_primary_10_2147_DMSO_S374843 crossref_primary_10_1016_j_jff_2024_106598 crossref_primary_10_3390_molecules28052148 crossref_primary_10_3390_nu16111649 crossref_primary_10_1016_j_phymed_2024_156201 crossref_primary_10_1039_D3FO00845B crossref_primary_10_3390_ani14131965 crossref_primary_10_1016_j_jhazmat_2024_135096 crossref_primary_10_1016_j_jns_2024_123295 crossref_primary_10_22141_2308_2097_57_2_2023_533 crossref_primary_10_1016_j_trsl_2023_11_002 crossref_primary_10_1128_mbio_01099_23 crossref_primary_10_3390_nu15040946 crossref_primary_10_3389_fmicb_2024_1435454 crossref_primary_10_26599_FSAP_2024_9240061 crossref_primary_10_1080_10408398_2024_2323112 crossref_primary_10_1002_cbf_4063 crossref_primary_10_1016_j_jff_2024_106118 crossref_primary_10_3390_microorganisms11051305 crossref_primary_10_1016_j_diabres_2024_111726 crossref_primary_10_1021_acs_jafc_4c08986 crossref_primary_10_2174_1871527321666220822172039 crossref_primary_10_1080_17425247_2023_2233900 crossref_primary_10_3390_biom12101440 crossref_primary_10_3390_biom14040447 crossref_primary_10_3389_fvets_2024_1470992 crossref_primary_10_1016_j_ijbiomac_2024_137597 crossref_primary_10_3390_nu16213591 crossref_primary_10_3389_fmicb_2024_1401597 crossref_primary_10_1016_j_celrep_2025_115424 crossref_primary_10_1017_S0007114524000904 crossref_primary_10_1007_s40200_023_01342_x crossref_primary_10_1007_s12094_023_03373_5 crossref_primary_10_3390_microorganisms11092268 crossref_primary_10_1016_j_ejim_2023_10_002 crossref_primary_10_1186_s12982_024_00213_x crossref_primary_10_1021_acs_jafc_4c05763 crossref_primary_10_1007_s11357_024_01060_z crossref_primary_10_3390_ijms24086888 crossref_primary_10_1093_ecco_jcc_jjae142 crossref_primary_10_1038_s41538_024_00349_9 crossref_primary_10_1007_s11154_023_09798_1 crossref_primary_10_1007_s12035_024_04370_7 crossref_primary_10_3390_metabo12111115 crossref_primary_10_1264_jsme2_ME22097 crossref_primary_10_3390_foods12061250 crossref_primary_10_1016_j_foodres_2024_115577 crossref_primary_10_1097_MCO_0000000000000971 crossref_primary_10_1016_j_ijbiomac_2024_137208 crossref_primary_10_5536_KJPS_2023_50_3_161 crossref_primary_10_3389_fmicb_2022_957885 crossref_primary_10_3390_cells13090770 crossref_primary_10_1016_j_fbio_2024_104643 crossref_primary_10_1016_j_ijbiomac_2022_12_211 crossref_primary_10_1080_10937404_2024_2406192 crossref_primary_10_3390_life14111391 crossref_primary_10_1016_j_jff_2024_106155 crossref_primary_10_1016_j_scitotenv_2024_177323 crossref_primary_10_3389_fmicb_2024_1502452 crossref_primary_10_21926_obm_neurobiol_2404254 crossref_primary_10_1016_j_psj_2023_102975 crossref_primary_10_3748_wjg_v31_i5_99913 crossref_primary_10_1039_D3FO04645A crossref_primary_10_3390_nu14122488 crossref_primary_10_1186_s10020_022_00579_1 crossref_primary_10_1016_j_ijbiomac_2024_138527 crossref_primary_10_1186_s12986_024_00829_5 crossref_primary_10_3920_BM2022_0054 crossref_primary_10_1021_acs_jafc_4c08816 crossref_primary_10_1016_j_foodchem_2024_141894 crossref_primary_10_1016_j_physbeh_2025_114838 crossref_primary_10_1097_TA_0000000000003803 crossref_primary_10_3390_metabo12080687 crossref_primary_10_1007_s00203_025_04267_6 crossref_primary_10_1016_j_jff_2024_106260 crossref_primary_10_1039_D2FO02722D crossref_primary_10_1007_s00284_024_04035_7 crossref_primary_10_1016_j_ijbiomac_2024_138633 crossref_primary_10_1016_j_foodhyd_2023_109068 crossref_primary_10_3390_foods12173224 crossref_primary_10_5812_amh_147901 crossref_primary_10_1007_s12602_024_10235_1 crossref_primary_10_1016_j_jfca_2025_107370 crossref_primary_10_3390_ijms241210075 crossref_primary_10_1016_j_amjmed_2024_02_001 crossref_primary_10_3390_applmicrobiol3030066 crossref_primary_10_3390_polym16020231 crossref_primary_10_1002_mnfr_202300096 crossref_primary_10_3390_cells13030286 crossref_primary_10_3390_antiox13030303 crossref_primary_10_1007_s13668_023_00491_y crossref_primary_10_4014_jmb_2401_01012 crossref_primary_10_3390_foods12213890 crossref_primary_10_3390_vaccines11081341 crossref_primary_10_1007_s11357_025_01539_3 crossref_primary_10_3390_ani14233451 crossref_primary_10_3390_ijms25041984 crossref_primary_10_3389_fendo_2022_933110 crossref_primary_10_1016_j_phrs_2022_106321 crossref_primary_10_3390_medicina59111965 crossref_primary_10_5312_wjo_v16_i3_102274 crossref_primary_10_1016_j_bcp_2025_116791 crossref_primary_10_3389_frtra_2024_1400067 crossref_primary_10_1016_j_biopha_2024_117546 crossref_primary_10_3389_fphar_2024_1520158 crossref_primary_10_1016_j_bbamcr_2023_119643 crossref_primary_10_3390_microorganisms11112730 crossref_primary_10_3390_ijms25020814 crossref_primary_10_1016_j_jid_2023_11_006 crossref_primary_10_3390_sports12080221 crossref_primary_10_1016_j_foodchem_2024_142708 crossref_primary_10_1017_S2040174424000436 crossref_primary_10_1002_bod2_12006 crossref_primary_10_3390_ijms25031803 crossref_primary_10_1080_19490976_2025_2463570 crossref_primary_10_1016_j_crfs_2024_100874 crossref_primary_10_1021_acs_jafc_4c01387 crossref_primary_10_1111_cas_15991 crossref_primary_10_3390_nu15224764 crossref_primary_10_3390_ijms251910441 crossref_primary_10_1007_s10238_024_01295_2 crossref_primary_10_3390_antiox12020426 crossref_primary_10_3390_nu15214629 crossref_primary_10_3390_foods12234216 crossref_primary_10_1007_s40495_024_00382_y crossref_primary_10_1007_s40487_024_00300_8 crossref_primary_10_4014_jmb_2408_08050 crossref_primary_10_1002_mnfr_202400604 crossref_primary_10_1016_j_autrev_2024_103717 crossref_primary_10_3389_fmicb_2024_1355396 crossref_primary_10_3389_fmicb_2024_1500453 crossref_primary_10_1080_19490976_2022_2108655 crossref_primary_10_1002_jsfa_12808 crossref_primary_10_1111_jpn_13960 crossref_primary_10_33073_pjm_2023_028 crossref_primary_10_1128_msystems_01444_24 crossref_primary_10_3390_nu16091373 crossref_primary_10_1016_j_crfs_2024_100926 crossref_primary_10_1016_j_csbj_2023_02_022 crossref_primary_10_3390_nu16050661 crossref_primary_10_3389_fmicb_2022_984867 crossref_primary_10_3390_antiox13080964 crossref_primary_10_1186_s12263_024_00750_9 crossref_primary_10_3389_fendo_2023_1332406 crossref_primary_10_3390_microorganisms12112333 crossref_primary_10_3390_nu16213663 crossref_primary_10_3390_vetsci10080496 crossref_primary_10_1016_j_aqrep_2024_102583 crossref_primary_10_1039_D4FO02442G crossref_primary_10_3390_ani13162606 crossref_primary_10_3390_ijms24119307 crossref_primary_10_3389_fimmu_2023_1126117 crossref_primary_10_1016_j_tjnut_2023_09_009 crossref_primary_10_1016_j_fbio_2023_102432 crossref_primary_10_31083_j_fbe1602013 crossref_primary_10_3390_ani14162402 crossref_primary_10_1007_s00592_023_02088_x crossref_primary_10_3390_nu15040878 crossref_primary_10_12998_wjcc_v11_i1_65 crossref_primary_10_1016_j_ajp_2024_104068 crossref_primary_10_1186_s40813_023_00316_y crossref_primary_10_1186_s40168_024_01788_y crossref_primary_10_48022_mbl_2210_10013 crossref_primary_10_1016_j_tjnut_2024_01_008 crossref_primary_10_3389_fcimb_2024_1348279 crossref_primary_10_3390_cells13050390 crossref_primary_10_1186_s12920_024_01978_5 crossref_primary_10_1016_j_foodhyd_2023_109576 crossref_primary_10_3390_nu16244262 crossref_primary_10_3390_nu16142300 crossref_primary_10_1155_2023_5236509 crossref_primary_10_1016_j_lfs_2023_122193 crossref_primary_10_3390_nu14153112 crossref_primary_10_1136_egastro_2023_100013 crossref_primary_10_1016_j_fbio_2023_103540 crossref_primary_10_1136_gutjnl_2024_332245 crossref_primary_10_3390_foods13142219 crossref_primary_10_1016_j_phymed_2025_156655 crossref_primary_10_1017_S0007114523002623 crossref_primary_10_3390_nu14122511 crossref_primary_10_1155_vmi_6623764 crossref_primary_10_3389_fphar_2024_1407401 crossref_primary_10_3390_nu15040973 crossref_primary_10_3390_biomedicines13020343 crossref_primary_10_1016_j_bbih_2024_100755 crossref_primary_10_1016_j_jafr_2024_101353 crossref_primary_10_1016_j_phrs_2024_107364 crossref_primary_10_1007_s00592_022_01934_8 crossref_primary_10_3389_fmicb_2025_1527755 crossref_primary_10_1016_j_foodres_2025_116291 crossref_primary_10_3390_nu16233996 crossref_primary_10_3390_medicina60121969 crossref_primary_10_3390_foods12193559 crossref_primary_10_1016_j_phrs_2024_107373 crossref_primary_10_1128_spectrum_00719_24 crossref_primary_10_1038_s41430_024_01512_x crossref_primary_10_1016_j_biopha_2024_116735 crossref_primary_10_3390_ijms25126498 crossref_primary_10_3390_nu15112562 crossref_primary_10_1186_s12951_024_02500_w crossref_primary_10_1038_s41598_024_54312_5 crossref_primary_10_1158_1541_7786_MCR_23_0080 crossref_primary_10_1186_s10020_024_00900_0 crossref_primary_10_1016_j_carbpol_2025_123271 crossref_primary_10_3390_ijms242316870 crossref_primary_10_3390_metabo15040213 crossref_primary_10_1016_j_fbio_2025_105976 crossref_primary_10_3390_biomedicines12010221 crossref_primary_10_3390_neurosci4030019 crossref_primary_10_3390_nu15030590 crossref_primary_10_3390_nu15204437 crossref_primary_10_1016_j_ijbiomac_2024_131261 crossref_primary_10_1016_j_mehy_2023_111217 crossref_primary_10_1016_j_bcp_2023_115830 crossref_primary_10_12873_443widiana crossref_primary_10_1038_s41467_024_53832_y crossref_primary_10_1515_revneuro_2024_0113 crossref_primary_10_3390_ijms26041773 crossref_primary_10_3390_metabo14090494 crossref_primary_10_1016_j_carpta_2024_100567 crossref_primary_10_2147_JIR_S487936 crossref_primary_10_3390_nu16223951 crossref_primary_10_3389_fnut_2023_1215836 crossref_primary_10_3389_fmicb_2024_1452101 crossref_primary_10_1111_srt_70006 crossref_primary_10_1002_bmc_5848 crossref_primary_10_1016_j_ecoenv_2024_116260 crossref_primary_10_1093_nutrit_nuae172 crossref_primary_10_1186_s12967_022_03700_4 crossref_primary_10_3390_nu14193921 crossref_primary_10_1515_biol_2022_0931 crossref_primary_10_1016_j_jdiacomp_2025_108954 crossref_primary_10_3390_biology12010021 crossref_primary_10_1177_1934578X241293024 crossref_primary_10_1016_j_micpath_2024_107228 crossref_primary_10_3390_foods11192980 crossref_primary_10_3390_ijms25052841 crossref_primary_10_1186_s12940_024_01078_y crossref_primary_10_1016_j_trsl_2022_06_003 crossref_primary_10_1038_s41598_024_63893_0 crossref_primary_10_3389_fcimb_2023_1191126 crossref_primary_10_3390_ijms252312740 crossref_primary_10_3390_antiox12101898 crossref_primary_10_3389_fphar_2024_1409654 crossref_primary_10_3390_nu16183113 crossref_primary_10_1016_j_bbrc_2024_150798 crossref_primary_10_3390_biology12091262 crossref_primary_10_1016_j_scitotenv_2024_173417 crossref_primary_10_1016_j_fbio_2025_105828 crossref_primary_10_1016_j_bcp_2023_115659 crossref_primary_10_34922_AE_2024_37_4_006 crossref_primary_10_3390_nu14173480 crossref_primary_10_3390_bioengineering11010045 crossref_primary_10_3390_nano12193375 crossref_primary_10_3390_nu15183931 crossref_primary_10_1016_j_trim_2025_102199 crossref_primary_10_3389_fimmu_2024_1412821 crossref_primary_10_1007_s11739_023_03343_3 crossref_primary_10_1186_s43162_024_00342_4 crossref_primary_10_1038_s41429_023_00595_1 crossref_primary_10_3390_antiox12040903 crossref_primary_10_3390_ph16060904 crossref_primary_10_3390_biom12060767 crossref_primary_10_3390_ijms251810156 crossref_primary_10_1371_journal_pone_0319066 crossref_primary_10_3390_app14209383 crossref_primary_10_3390_foods13071039 crossref_primary_10_3350_cmh_2024_0811 crossref_primary_10_3390_jcm13206082 crossref_primary_10_3390_genes14081521 crossref_primary_10_3389_fimmu_2022_1080456 crossref_primary_10_1016_j_arr_2024_102515 crossref_primary_10_1080_19490976_2024_2418415 crossref_primary_10_1016_j_engmed_2024_100036 crossref_primary_10_1016_j_jnutbio_2023_109473 crossref_primary_10_1136_ard_2024_225829 crossref_primary_10_3389_fnut_2023_1209238 crossref_primary_10_4251_wjgo_v16_i8_3600 crossref_primary_10_2147_IJWH_S494268 crossref_primary_10_3389_fcimb_2024_1416739 crossref_primary_10_1007_s12602_025_10452_2 crossref_primary_10_1021_acsomega_4c03778 crossref_primary_10_3390_molecules29122747 crossref_primary_10_1016_j_scitotenv_2024_175955 crossref_primary_10_3390_nu16193379 crossref_primary_10_1039_D4FO06449F crossref_primary_10_1016_j_biopha_2023_115244 crossref_primary_10_1111_eci_13846 crossref_primary_10_3390_nu15204466 crossref_primary_10_3390_biom14060633 crossref_primary_10_3389_fgstr_2023_1235126 crossref_primary_10_3390_antiox11040695 crossref_primary_10_1016_j_jpain_2024_104588 crossref_primary_10_15430_JCP_2023_28_3_93 crossref_primary_10_1007_s11033_024_10097_4 crossref_primary_10_1016_j_fitote_2024_106178 crossref_primary_10_1038_s41531_024_00724_z crossref_primary_10_1016_j_cbd_2025_101467 crossref_primary_10_1016_j_fbio_2024_105636 crossref_primary_10_3390_biomedicines12122670 crossref_primary_10_3390_ijms252413633 crossref_primary_10_1007_s12275_024_00104_5 crossref_primary_10_1128_spectrum_03524_23 crossref_primary_10_3390_biom13091340 crossref_primary_10_3390_microorganisms13020241 crossref_primary_10_3390_metabo12080693 crossref_primary_10_2478_inmed_2023_0246 crossref_primary_10_1016_j_lwt_2022_113830 crossref_primary_10_3390_nu16020265 crossref_primary_10_3390_nu16071054 crossref_primary_10_1186_s12933_024_02301_3 crossref_primary_10_1016_j_exger_2023_112165 crossref_primary_10_3390_ijms25115640 crossref_primary_10_1001_jamanetworkopen_2023_12530 crossref_primary_10_2147_DMSO_S434499 crossref_primary_10_1080_10408398_2023_2251616 crossref_primary_10_1007_s10753_023_01915_1 crossref_primary_10_1080_10408398_2023_2234025 crossref_primary_10_3389_fmicb_2024_1308866 crossref_primary_10_3390_biomedicines11102712 crossref_primary_10_1039_D2FO03181G crossref_primary_10_1016_j_foodres_2023_112878 crossref_primary_10_1080_02648725_2022_2122287 crossref_primary_10_1038_s41522_024_00610_9 crossref_primary_10_2174_0115701611290537240509061549 crossref_primary_10_1007_s10522_024_10127_5 crossref_primary_10_3390_foods12051023 crossref_primary_10_2174_0126662906301568240427100342 crossref_primary_10_1002_fsn3_4100 crossref_primary_10_3389_fcimb_2024_1413266 crossref_primary_10_3390_nu16071070 crossref_primary_10_1111_jgh_16747 crossref_primary_10_3389_fmicb_2023_1211259 crossref_primary_10_3390_nu15020272 crossref_primary_10_1002_mnfr_202400274 crossref_primary_10_3390_ani15010074 crossref_primary_10_1002_jsfa_13567 crossref_primary_10_1039_D4FO04717F crossref_primary_10_3389_fcimb_2024_1384939 crossref_primary_10_1111_jgh_16737 crossref_primary_10_1016_j_neurot_2024_e00476 crossref_primary_10_1186_s12967_024_05637_2 crossref_primary_10_3390_microorganisms11010001 crossref_primary_10_1007_s12035_024_04156_x crossref_primary_10_1371_journal_pone_0297858 crossref_primary_10_3390_microorganisms12010024 crossref_primary_10_1007_s00253_023_12912_7 crossref_primary_10_1002_mnfr_202300856 crossref_primary_10_1016_j_focha_2025_100919 crossref_primary_10_12677_acm_2024_1451426 crossref_primary_10_3389_fnut_2022_1027641 crossref_primary_10_1016_j_ijbiomac_2024_131872 crossref_primary_10_3390_clinpract14030066 crossref_primary_10_3389_fendo_2023_1265696 crossref_primary_10_3389_fvets_2024_1346922 crossref_primary_10_1016_j_ijbiomac_2025_139514 crossref_primary_10_1039_D4FO03826F crossref_primary_10_3390_ijms25158202 crossref_primary_10_1016_j_heliyon_2023_e19888 crossref_primary_10_3390_ijms26020438 crossref_primary_10_1016_j_scitotenv_2024_172864 crossref_primary_10_33549_physiolres_935109 crossref_primary_10_3390_ijms25031698 crossref_primary_10_3390_life15010003 crossref_primary_10_3390_metabo14060324 crossref_primary_10_1016_j_heliyon_2024_e38339 crossref_primary_10_3390_microorganisms11081882 crossref_primary_10_3390_microorganisms11071725 crossref_primary_10_12968_gasn_2024_22_1_26 crossref_primary_10_3390_nu15102365 crossref_primary_10_1007_s11010_024_05185_9 crossref_primary_10_3390_ijms252212395 crossref_primary_10_1186_s12866_023_03141_z crossref_primary_10_3390_nu14234950 crossref_primary_10_1007_s13205_022_03388_9 crossref_primary_10_3389_fnut_2022_888974 crossref_primary_10_1016_j_psj_2025_104768 crossref_primary_10_1039_D4FO02270J crossref_primary_10_1186_s12920_024_01861_3 crossref_primary_10_1016_j_aqrep_2022_101350 crossref_primary_10_1093_femsml_uqad032 crossref_primary_10_1177_24755303241226626 crossref_primary_10_3389_fcimb_2024_1370999 crossref_primary_10_3390_mps7050074 crossref_primary_10_3389_fpsyt_2024_1295766 crossref_primary_10_4014_jmb_2404_04020 crossref_primary_10_1038_s41598_024_57981_4 crossref_primary_10_20517_mtod_2024_07 crossref_primary_10_1155_2023_8810106 crossref_primary_10_1016_j_mvr_2023_104601 crossref_primary_10_3390_medicina59030594 crossref_primary_10_1017_S2040174424000084 crossref_primary_10_4251_wjgo_v16_i6_2394 crossref_primary_10_3390_microorganisms11071862 crossref_primary_10_1016_j_urolonc_2024_07_003 crossref_primary_10_1080_10408398_2024_2382942 |
Cites_doi | 10.1371/journal.pone.0159223 10.1210/jc.2015-3351 10.1038/s41424-018-0025-4 10.1016/j.neuint.2016.06.011 10.1038/nature09944 10.1080/19490976.2015.1134082 10.1371/journal.pbio.1001397 10.3390/nu12020381 10.1371/journal.pone.0071108 10.1016/j.molimm.2004.12.004 10.3390/ijms21176356 10.3389/fmicb.2018.00890 10.1038/nature12198 10.1097/MCG.0b013e31822fecfe 10.3390/microorganisms8010131 10.3389/fphar.2016.00253 10.1016/j.tifs.2020.12.004 10.1271/bbb.80634 10.1113/JP272613 10.1017/S0007114510003363 10.1016/j.chom.2018.05.012 10.1017/S0007114508888733 10.1371/journal.pone.0067880 10.1007/s40618-019-01022-9 10.1038/s41588-019-0350-x 10.2337/db08-1637 10.1007/s00592-019-01312-x 10.3390/nu13041125 10.3390/genes10070534 10.1152/ajpregu.00442.2002 10.1186/s12944-016-0278-4 10.1016/j.dld.2021.04.026 10.1038/nature25973 10.1038/s41598-020-61192-y 10.1038/nrgastro.2017.75 10.3390/microorganisms8040573 10.5604/01.3001.0010.5493 10.4110/in.2014.14.6.277 10.1016/j.cmet.2018.01.005 10.1038/nbt.2845 10.1016/j.cell.2015.10.072 10.1091/mbc.E14-07-1194 10.1007/s00253-019-10156-y 10.1038/nature12820 10.1016/j.cmet.2020.06.011 10.1080/10408398.2015.1045966 10.1038/ni.3400 10.1194/jlr.M016246 10.1016/j.chom.2015.03.005 10.3389/fmicb.2011.00166 10.1038/nrgastro.2012.156 10.1111/j.1478-3231.2011.02462.x 10.1038/ncomms7734 10.1136/gut.28.10.1221 10.1007/s00394-018-1703-4 10.3945/jn.109.104638 10.3389/fimmu.2019.00277 10.3390/biology10030205 10.1016/j.cell.2016.05.041 10.3390/jcm9123941 10.1056/NEJMra1600266 10.1038/mi.2014.44 10.1016/j.cell.2013.12.016 10.1016/j.clnu.2020.05.025 10.1017/S0007114517001593 10.1053/j.gastro.2013.04.056 10.1371/journal.pmed.1003053 10.3389/fimmu.2016.00290 10.2337/dc10-0556 10.3390/nu7115440 10.1194/jlr.R067629 10.3390/nu12103209 10.1079/PNS2002207 10.1016/j.neuropharm.2011.10.008 10.1038/s41575-019-0157-3 10.1073/pnas.0504978102 10.3389/fimmu.2020.594150 10.1152/ajpgi.00219.2004 10.1016/j.cell.2016.10.020 10.1093/femsle/fnv176 10.3390/nu10070943 10.2337/db16-0924 10.1016/j.beem.2021.101504 10.1186/s12934-017-0691-z 10.1111/j.1753-4887.2011.00388.x 10.1016/j.jcmgh.2018.01.024 10.1016/j.celrep.2017.01.062 10.1136/gutjnl-2015-309957 10.1016/j.tifs.2020.02.026 10.1039/C6FO00105J 10.1007/s13668-018-0248-8 10.1038/nature16504 10.1079/PNS2002211 10.1007/s11154-019-09533-9 10.1080/10408398.2018.1542587 10.3390/nu12092808 10.1016/j.cmet.2015.10.001 10.1016/j.nut.2015.08.006 10.1159/000492853 10.1093/nutrit/nuz072 10.1128/MCB.00858-12 10.3390/biomedicines10010083 10.1136/gutjnl-2017-314050 10.1073/pnas.0901529106 10.3390/nu11051155 10.1038/nn.4476 10.1017/S0007114515002524 10.1038/nrendo.2015.128 10.1126/science.1208344 10.1093/ajcn/53.6.1418 10.1038/nature18846 10.1038/nature11450 10.1136/gutjnl-2014-307913 10.1371/journal.pone.0028742 10.1038/ismej.2014.63 10.1086/523341 10.3390/jcm9082648 10.1177/014860710803200151 10.3390/jcm10040840 10.1016/j.tim.2015.03.002 10.1038/nrgastro.2016.85 10.3390/ijms22147613 10.1128/AEM.71.7.3692-3700.2005 10.1126/science.aao5774 10.1016/j.jmb.2014.07.028 10.1017/S0007114509991863 10.3389/fnins.2017.00155 10.1016/j.chom.2018.03.011 10.3390/nu11040861 10.1073/pnas.1005963107 10.2337/db11-0846 10.1007/s00592-021-01727-5 10.1016/j.cell.2020.04.027 10.1017/S0007114509991462 10.1017/S0954422415000037 10.1111/1462-2920.13589 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms23031105 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8835596 35163038 10_3390_ijms23031105 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK020541 – fundername: NIDDK NIH HHS grantid: R01 DK126369 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-4a6eb2222ff9308d9a8f0196c7a4564462b28267d580484e8da41d7e93f09ad13 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:11:51 EDT 2025 Thu Jul 10 18:44:15 EDT 2025 Fri Jul 25 09:18:49 EDT 2025 Mon Jul 21 06:03:25 EDT 2025 Tue Jul 01 02:47:57 EDT 2025 Thu Apr 24 22:57:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | glucose homeostasis fiber intestine diet bacteria metabolome |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-4a6eb2222ff9308d9a8f0196c7a4564462b28267d580484e8da41d7e93f09ad13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5359-1471 0000-0002-7689-3613 0000-0003-0813-169X 0000-0002-2010-884X 0000-0002-5476-7376 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms23031105 |
PMID | 35163038 |
PQID | 2627645332 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8835596 proquest_miscellaneous_2629058376 proquest_journals_2627645332 pubmed_primary_35163038 crossref_primary_10_3390_ijms23031105 crossref_citationtrail_10_3390_ijms23031105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220120 |
PublicationDateYYYYMMDD | 2022-01-20 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220120 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bouter (ref_130) 2018; 9 ref_136 Hamaker (ref_22) 2014; 426 ref_139 Canfora (ref_33) 2015; 11 Flint (ref_94) 2012; 9 Qin (ref_100) 2012; 490 ref_13 Lynch (ref_103) 2016; 375 Freeland (ref_61) 2010; 103 ref_135 Ang (ref_137) 2020; 181 Leung (ref_77) 2016; 13 Kim (ref_42) 2014; 14 ref_19 ref_17 ref_16 Sakata (ref_90) 2003; 62 Koh (ref_31) 2016; 165 Kreznar (ref_97) 2017; 18 Marchix (ref_65) 2018; 6 ref_128 Wu (ref_14) 2011; 334 Swanson (ref_59) 2020; 221 Pellegrini (ref_92) 2016; 65 Sanna (ref_107) 2019; 51 Derrien (ref_67) 2011; 2 ref_25 ref_24 Louis (ref_38) 2017; 19 ref_23 ref_122 Dalile (ref_37) 2019; 16 ref_121 Garruti (ref_11) 2017; 16 ref_124 Verbeke (ref_87) 2015; 28 ref_29 Sanchez (ref_91) 2016; 7 Salamone (ref_120) 2021; 58 Sonnenburg (ref_26) 2016; 535 Park (ref_70) 2015; 8 Gibson (ref_85) 2017; 14 Macfarlane (ref_89) 2011; 45 Wu (ref_105) 2020; 32 Arumugam (ref_110) 2011; 473 Boets (ref_76) 2017; 595 Stilling (ref_69) 2016; 99 Cavalieri (ref_108) 2010; 107 Suzuki (ref_57) 2008; 100 Mitsou (ref_109) 2017; 117 Landskron (ref_43) 2019; 10 Goncalves (ref_73) 2014; 156 Vetrani (ref_118) 2016; 32 Gaudier (ref_49) 2004; 287 Mollica (ref_74) 2017; 66 Bui (ref_131) 2021; 35 Basson (ref_36) 2016; 7 Freeland (ref_113) 2010; 103 Li (ref_123) 2012; 61 Alex (ref_45) 2013; 33 ref_141 Walker (ref_41) 2005; 71 Salonen (ref_39) 2014; 8 Fung (ref_54) 2017; 20 Nilsson (ref_111) 2015; 22 Mathewson (ref_48) 2016; 17 Derrien (ref_66) 2015; 23 Peng (ref_50) 2009; 139 Schoenfeld (ref_75) 2016; 57 Rondanelli (ref_140) 2021; 12 Salgaco (ref_95) 2019; 103 Joseph (ref_35) 2017; 11 Feng (ref_44) 2018; 49 ref_58 ref_55 Dommett (ref_1) 2005; 42 ref_51 Federici (ref_99) 2019; 42 Carroccio (ref_132) 2021; 53 Morrison (ref_3) 2016; 7 Sanders (ref_83) 2008; 46 Fu (ref_133) 2019; 59 LeBlanc (ref_84) 2017; 16 Makki (ref_10) 2018; 23 Rothschild (ref_102) 2018; 555 Alcantara (ref_86) 2018; 9 Titgemeyer (ref_20) 1991; 53 Haro (ref_116) 2016; 101 Ley (ref_98) 2005; 102 Sonnenburg (ref_21) 2016; 529 Baothman (ref_40) 2016; 15 Mahowald (ref_30) 2009; 106 Kelly (ref_53) 2015; 17 Sam (ref_60) 2012; 63 Hosseini (ref_134) 2011; 69 Chambers (ref_129) 2015; 64 Mardinoglu (ref_138) 2018; 27 Mohajeri (ref_7) 2018; 57 Li (ref_72) 2018; 67 Nowarski (ref_47) 2015; 163 Brussow (ref_78) 2014; 32 ref_114 ref_117 ref_119 Musso (ref_62) 2010; 33 Boets (ref_80) 2015; 7 Subramanian (ref_79) 2011; 52 Kien (ref_68) 2008; 32 Chilloux (ref_2) 2019; 56 Peluzio (ref_32) 2021; 108 Ferrocino (ref_15) 2020; 10 Tong (ref_56) 2016; 7 Kim (ref_71) 2013; 145 Fukumoto (ref_64) 2003; 284 Mohammad (ref_9) 2020; 11 Xu (ref_82) 2020; 100 Karlsson (ref_106) 2013; 498 Macia (ref_46) 2015; 6 David (ref_93) 2014; 505 Zhao (ref_101) 2018; 359 Nilsson (ref_112) 2015; 114 ref_104 Yamashita (ref_126) 2016; 56 Roberfroid (ref_88) 2010; 104 Saccomanno (ref_63) 2011; 31 Chambers (ref_4) 2018; 7 Hubert (ref_12) 2018; 23 Gao (ref_127) 2009; 58 Margolles (ref_28) 2016; 7 Vitale (ref_115) 2021; 40 Schirmer (ref_27) 2016; 167 Yamashita (ref_125) 2009; 73 ref_8 Cummings (ref_81) 1987; 28 ref_5 Macfarlane (ref_34) 2003; 62 Saeedi (ref_52) 2015; 26 Kappel (ref_96) 2019; 20 ref_6 Swann (ref_18) 2020; 78 |
References_xml | – ident: ref_117 doi: 10.1371/journal.pone.0159223 – volume: 101 start-page: 233 year: 2016 ident: ref_116 article-title: Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-3351 – volume: 9 start-page: 155 year: 2018 ident: ref_130 article-title: Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects publication-title: Clin. Transl. Gastroenterol. doi: 10.1038/s41424-018-0025-4 – volume: 99 start-page: 110 year: 2016 ident: ref_69 article-title: The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2016.06.011 – volume: 473 start-page: 174 year: 2011 ident: ref_110 article-title: Enterotypes of the human gut microbiome publication-title: Nature doi: 10.1038/nature09944 – volume: 7 start-page: 189 year: 2016 ident: ref_3 article-title: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism publication-title: Gut Microbes doi: 10.1080/19490976.2015.1134082 – ident: ref_8 doi: 10.1371/journal.pbio.1001397 – ident: ref_16 doi: 10.3390/nu12020381 – ident: ref_104 doi: 10.1371/journal.pone.0071108 – volume: 42 start-page: 903 year: 2005 ident: ref_1 article-title: Innate immune defence in the human gastrointestinal tract publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2004.12.004 – ident: ref_121 doi: 10.3390/ijms21176356 – volume: 9 start-page: 890 year: 2018 ident: ref_86 article-title: Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00890 – volume: 498 start-page: 99 year: 2013 ident: ref_106 article-title: Gut metagenome in European women with normal, impaired and diabetic glucose control publication-title: Nature doi: 10.1038/nature12198 – volume: 45 start-page: S120 year: 2011 ident: ref_89 article-title: Fermentation in the human large intestine: Its physiologic consequences and the potential contribution of prebiotics publication-title: J. Clin. Gastroenterol. doi: 10.1097/MCG.0b013e31822fecfe – ident: ref_141 doi: 10.3390/microorganisms8010131 – volume: 7 start-page: 253 year: 2016 ident: ref_56 article-title: Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress publication-title: Front. Pharmacol. doi: 10.3389/fphar.2016.00253 – volume: 108 start-page: 11 year: 2021 ident: ref_32 article-title: Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2020.12.004 – volume: 73 start-page: 570 year: 2009 ident: ref_125 article-title: Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats publication-title: Biosci Biotechnol. Biochem. doi: 10.1271/bbb.80634 – volume: 595 start-page: 541 year: 2017 ident: ref_76 article-title: Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: A stable isotope study publication-title: J. Physiol. doi: 10.1113/JP272613 – volume: 104 start-page: S1 year: 2010 ident: ref_88 article-title: Prebiotic effects: Metabolic and health benefits publication-title: Br. J. Nutr. doi: 10.1017/S0007114510003363 – volume: 23 start-page: 705 year: 2018 ident: ref_10 article-title: The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.05.012 – volume: 100 start-page: 297 year: 2008 ident: ref_57 article-title: Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability publication-title: Br. J. Nutr. doi: 10.1017/S0007114508888733 – ident: ref_122 doi: 10.1371/journal.pone.0067880 – volume: 42 start-page: 1011 year: 2019 ident: ref_99 article-title: Gut microbiome and microbial metabolites: A new system affecting metabolic disorders publication-title: J. Endocrinol. Investig. doi: 10.1007/s40618-019-01022-9 – volume: 12 start-page: 518 year: 2021 ident: ref_140 article-title: The Potential Roles of Very Low Calorie, Very Low Calorie Ketogenic Diets and Very Low Carbohydrate Diets on the Gut Microbiota Composition publication-title: Front. Endocrinol. – volume: 51 start-page: 600 year: 2019 ident: ref_107 article-title: Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases publication-title: Nat. Genet. doi: 10.1038/s41588-019-0350-x – volume: 58 start-page: 1509 year: 2009 ident: ref_127 article-title: Butyrate improves insulin sensitivity and increases energy expenditure in mice publication-title: Diabetes doi: 10.2337/db08-1637 – volume: 56 start-page: 493 year: 2019 ident: ref_2 article-title: Diet-induced metabolic changes of the human gut microbiome: Importance of short-chain fatty acids, methylamines and indoles publication-title: Acta Diabetol. doi: 10.1007/s00592-019-01312-x – ident: ref_25 doi: 10.3390/nu13041125 – ident: ref_139 doi: 10.3390/genes10070534 – volume: 284 start-page: R1269 year: 2003 ident: ref_64 article-title: Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00442.2002 – volume: 15 start-page: 108 year: 2016 ident: ref_40 article-title: The role of Gut Microbiota in the development of obesity and Diabetes publication-title: Lipids Health Dis. doi: 10.1186/s12944-016-0278-4 – volume: 53 start-page: 1412 year: 2021 ident: ref_132 article-title: WHOLE-meal ancient wheat-based diet: Effect on metabolic parameters and microbiota publication-title: Dig. Liver Dis. doi: 10.1016/j.dld.2021.04.026 – volume: 555 start-page: 210 year: 2018 ident: ref_102 article-title: Environment dominates over host genetics in shaping human gut microbiota publication-title: Nature doi: 10.1038/nature25973 – volume: 10 start-page: 4247 year: 2020 ident: ref_15 article-title: Diet influences the functions of the human intestinal microbiome publication-title: Sci. Rep. doi: 10.1038/s41598-020-61192-y – volume: 7 start-page: 185 year: 2016 ident: ref_28 article-title: Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health publication-title: Front. Microbiol. – volume: 14 start-page: 491 year: 2017 ident: ref_85 article-title: Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.75 – ident: ref_114 doi: 10.3390/microorganisms8040573 – volume: 16 start-page: S4 year: 2017 ident: ref_11 article-title: Bile Acid Physiology publication-title: Ann. Hepatol. doi: 10.5604/01.3001.0010.5493 – volume: 14 start-page: 277 year: 2014 ident: ref_42 article-title: Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation publication-title: Immune Netw. doi: 10.4110/in.2014.14.6.277 – volume: 27 start-page: 559 year: 2018 ident: ref_138 article-title: An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.01.005 – volume: 32 start-page: 243 year: 2014 ident: ref_78 article-title: You are what you eat publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2845 – volume: 163 start-page: 1444 year: 2015 ident: ref_47 article-title: Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis publication-title: Cell doi: 10.1016/j.cell.2015.10.072 – volume: 26 start-page: 2252 year: 2015 ident: ref_52 article-title: HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E14-07-1194 – volume: 103 start-page: 9229 year: 2019 ident: ref_95 article-title: Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-10156-y – volume: 505 start-page: 559 year: 2014 ident: ref_93 article-title: Diet rapidly and reproducibly alters the human gut microbiome publication-title: Nature doi: 10.1038/nature12820 – volume: 32 start-page: 379 year: 2020 ident: ref_105 article-title: The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.06.011 – volume: 56 start-page: S171 year: 2016 ident: ref_126 article-title: Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2015.1045966 – volume: 17 start-page: 505 year: 2016 ident: ref_48 article-title: Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease publication-title: Nat. Immunol. doi: 10.1038/ni.3400 – volume: 52 start-page: 1626 year: 2011 ident: ref_79 article-title: Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice publication-title: J. Lipid Res. doi: 10.1194/jlr.M016246 – volume: 17 start-page: 662 year: 2015 ident: ref_53 article-title: Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.03.005 – volume: 2 start-page: 166 year: 2011 ident: ref_67 article-title: Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila publication-title: Front. Microbiol. doi: 10.3389/fmicb.2011.00166 – volume: 9 start-page: 577 year: 2012 ident: ref_94 article-title: The role of the gut microbiota in nutrition and health publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2012.156 – volume: 31 start-page: 1285 year: 2011 ident: ref_63 article-title: Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis publication-title: Liver Int. doi: 10.1111/j.1478-3231.2011.02462.x – volume: 6 start-page: 6734 year: 2015 ident: ref_46 article-title: Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome publication-title: Nat. Commun. doi: 10.1038/ncomms7734 – volume: 28 start-page: 1221 year: 1987 ident: ref_81 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut doi: 10.1136/gut.28.10.1221 – volume: 57 start-page: 1 year: 2018 ident: ref_7 article-title: The role of the microbiome for human health: From basic science to clinical applications publication-title: Eur. J. Nutr. doi: 10.1007/s00394-018-1703-4 – volume: 139 start-page: 1619 year: 2009 ident: ref_50 article-title: Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers publication-title: J. Nutr. doi: 10.3945/jn.109.104638 – volume: 10 start-page: 277 year: 2019 ident: ref_43 article-title: Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00277 – ident: ref_51 doi: 10.3390/biology10030205 – volume: 165 start-page: 1332 year: 2016 ident: ref_31 article-title: From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites publication-title: Cell doi: 10.1016/j.cell.2016.05.041 – ident: ref_55 doi: 10.3390/jcm9123941 – volume: 375 start-page: 2369 year: 2016 ident: ref_103 article-title: The Human Intestinal Microbiome in Health and Disease publication-title: New Engl. J. Med. doi: 10.1056/NEJMra1600266 – volume: 8 start-page: 80 year: 2015 ident: ref_70 article-title: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway publication-title: Mucosal Immunol. doi: 10.1038/mi.2014.44 – volume: 156 start-page: 84 year: 2014 ident: ref_73 article-title: Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits publication-title: Cell doi: 10.1016/j.cell.2013.12.016 – volume: 40 start-page: 428 year: 2021 ident: ref_115 article-title: Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: Can SCFAs play a role? publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2020.05.025 – volume: 117 start-page: 1645 year: 2017 ident: ref_109 article-title: Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population publication-title: Br. J. Nutr. doi: 10.1017/S0007114517001593 – volume: 145 start-page: 396 year: 2013 ident: ref_71 article-title: Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.04.056 – ident: ref_135 doi: 10.1371/journal.pmed.1003053 – volume: 7 start-page: 290 year: 2016 ident: ref_36 article-title: Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00290 – volume: 33 start-page: 2277 year: 2010 ident: ref_62 article-title: Obesity, diabetes, and gut microbiota: The hygiene hypothesis expanded? publication-title: Diabetes Care doi: 10.2337/dc10-0556 – volume: 7 start-page: 8916 year: 2015 ident: ref_80 article-title: Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin publication-title: Nutrients doi: 10.3390/nu7115440 – volume: 57 start-page: 943 year: 2016 ident: ref_75 article-title: Short- and medium-chain fatty acids in energy metabolism: The cellular perspective publication-title: J. Lipid Res. doi: 10.1194/jlr.R067629 – ident: ref_136 doi: 10.3390/nu12103209 – volume: 62 start-page: 67 year: 2003 ident: ref_34 article-title: Regulation of short-chain fatty acid production publication-title: Proc. Nutr. Soc. doi: 10.1079/PNS2002207 – volume: 63 start-page: 46 year: 2012 ident: ref_60 article-title: The role of the gut/brain axis in modulating food intake publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.10.008 – volume: 16 start-page: 461 year: 2019 ident: ref_37 article-title: The role of short-chain fatty acids in microbiota-gut-brain communication publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0157-3 – volume: 102 start-page: 11070 year: 2005 ident: ref_98 article-title: Obesity alters gut microbial ecology publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504978102 – volume: 11 start-page: 594150 year: 2020 ident: ref_9 article-title: Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.594150 – volume: 287 start-page: G1168 year: 2004 ident: ref_49 article-title: Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00219.2004 – volume: 167 start-page: 1125 year: 2016 ident: ref_27 article-title: Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity publication-title: Cell doi: 10.1016/j.cell.2016.10.020 – ident: ref_29 doi: 10.1093/femsle/fnv176 – ident: ref_119 doi: 10.3390/nu10070943 – volume: 66 start-page: 1405 year: 2017 ident: ref_74 article-title: Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice publication-title: Diabetes doi: 10.2337/db16-0924 – volume: 35 start-page: 101504 year: 2021 ident: ref_131 article-title: Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases publication-title: Best Pract. Research. Clin. Endocrinol. Metab. doi: 10.1016/j.beem.2021.101504 – volume: 16 start-page: 79 year: 2017 ident: ref_84 article-title: Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria publication-title: Microb. Cell Fact. doi: 10.1186/s12934-017-0691-z – volume: 69 start-page: 245 year: 2011 ident: ref_134 article-title: Propionate as a health-promoting microbial metabolite in the human gut publication-title: Nutr. Rev. doi: 10.1111/j.1753-4887.2011.00388.x – volume: 6 start-page: 149 year: 2018 ident: ref_65 article-title: Host-Gut Microbiota Crosstalk in Intestinal Adaptation publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2018.01.024 – volume: 18 start-page: 1739 year: 2017 ident: ref_97 article-title: Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.01.062 – volume: 65 start-page: 1812 year: 2016 ident: ref_92 article-title: High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome publication-title: Gut doi: 10.1136/gutjnl-2015-309957 – volume: 100 start-page: 118 year: 2020 ident: ref_82 article-title: Dynamic balancing of intestinal short-chain fatty acids: The crucial role of bacterial metabolism publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2020.02.026 – volume: 7 start-page: 2347 year: 2016 ident: ref_91 article-title: Mediterranean diet and faecal microbiota: A transversal study publication-title: Food Funct. doi: 10.1039/C6FO00105J – volume: 7 start-page: 198 year: 2018 ident: ref_4 article-title: Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health publication-title: Curr. Nutr. Rep. doi: 10.1007/s13668-018-0248-8 – volume: 529 start-page: 212 year: 2016 ident: ref_21 article-title: Diet-induced extinctions in the gut microbiota compound over generations publication-title: Nature doi: 10.1038/nature16504 – volume: 62 start-page: 73 year: 2003 ident: ref_90 article-title: Influences of probiotic bacteria on organic acid production by pig caecal bacteria in vitro publication-title: Proc. Nutr. Soc. doi: 10.1079/PNS2002211 – volume: 20 start-page: 399 year: 2019 ident: ref_96 article-title: Gut microbiome and cardiometabolic risk publication-title: Rev. Endocr. Metab. Disord. doi: 10.1007/s11154-019-09533-9 – volume: 59 start-page: S130 year: 2019 ident: ref_133 article-title: Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2018.1542587 – ident: ref_58 doi: 10.3390/nu12092808 – volume: 22 start-page: 971 year: 2015 ident: ref_111 article-title: Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.10.001 – volume: 32 start-page: 217 year: 2016 ident: ref_118 article-title: Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome publication-title: Nutrition doi: 10.1016/j.nut.2015.08.006 – volume: 49 start-page: 190 year: 2018 ident: ref_44 article-title: Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy publication-title: Cell. Physiol. Biochem. doi: 10.1159/000492853 – volume: 78 start-page: 394 year: 2020 ident: ref_18 article-title: Dietary fiber and its associations with depression and inflammation publication-title: Nutr. Rev. doi: 10.1093/nutrit/nuz072 – volume: 33 start-page: 1303 year: 2013 ident: ref_45 article-title: Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor gamma publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00858-12 – ident: ref_5 doi: 10.3390/biomedicines10010083 – volume: 67 start-page: 1269 year: 2018 ident: ref_72 article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit publication-title: Gut doi: 10.1136/gutjnl-2017-314050 – ident: ref_17 – volume: 106 start-page: 5859 year: 2009 ident: ref_30 article-title: Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0901529106 – ident: ref_19 doi: 10.3390/nu11051155 – volume: 221 start-page: 97 year: 2020 ident: ref_59 article-title: Disrupted diurnal oscillation of gut-derived Short chain fatty acids in shift workers drinking alcohol: Possible mechanism for loss of resiliency of intestinal barrier in disrupted circadian host publication-title: J. Lab. Clin. Med. – ident: ref_124 – volume: 20 start-page: 145 year: 2017 ident: ref_54 article-title: Interactions between the microbiota, immune and nervous systems in health and disease publication-title: Nat. Neurosci. doi: 10.1038/nn.4476 – volume: 114 start-page: 899 year: 2015 ident: ref_112 article-title: Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: A randomised cross-over study in healthy middle-aged subjects publication-title: Br. J. Nutr. doi: 10.1017/S0007114515002524 – volume: 11 start-page: 577 year: 2015 ident: ref_33 article-title: Short-chain fatty acids in control of body weight and insulin sensitivity publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2015.128 – volume: 334 start-page: 105 year: 2011 ident: ref_14 article-title: Linking long-term dietary patterns with gut microbial enterotypes publication-title: Science doi: 10.1126/science.1208344 – volume: 53 start-page: 1418 year: 1991 ident: ref_20 article-title: Fermentability of various fiber sources by human fecal bacteria in vitro publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/53.6.1418 – volume: 535 start-page: 56 year: 2016 ident: ref_26 article-title: Diet-microbiota interactions as moderators of human metabolism publication-title: Nature doi: 10.1038/nature18846 – volume: 490 start-page: 55 year: 2012 ident: ref_100 article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes publication-title: Nature doi: 10.1038/nature11450 – volume: 64 start-page: 1744 year: 2015 ident: ref_129 article-title: Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults publication-title: Gut doi: 10.1136/gutjnl-2014-307913 – ident: ref_24 doi: 10.1371/journal.pone.0028742 – volume: 8 start-page: 2218 year: 2014 ident: ref_39 article-title: Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men publication-title: ISME J. doi: 10.1038/ismej.2014.63 – volume: 46 start-page: S58 year: 2008 ident: ref_83 article-title: Probiotics: Definition, sources, selection, and uses publication-title: Clin. Infect. Dis. doi: 10.1086/523341 – ident: ref_6 doi: 10.3390/jcm9082648 – volume: 32 start-page: 51 year: 2008 ident: ref_68 article-title: Effects of the in vivo supply of butyrate on histone acetylation of cecum in piglets publication-title: JPEN J. Parenter. Enter. Nutr. doi: 10.1177/014860710803200151 – ident: ref_13 doi: 10.3390/jcm10040840 – volume: 23 start-page: 354 year: 2015 ident: ref_66 article-title: Fate, activity, and impact of ingested bacteria within the human gut microbiota publication-title: Trends Microbiol. doi: 10.1016/j.tim.2015.03.002 – volume: 13 start-page: 412 year: 2016 ident: ref_77 article-title: The role of the gut microbiota in NAFLD publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2016.85 – ident: ref_23 doi: 10.3390/ijms22147613 – volume: 71 start-page: 3692 year: 2005 ident: ref_41 article-title: pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.7.3692-3700.2005 – volume: 359 start-page: 1151 year: 2018 ident: ref_101 article-title: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes publication-title: Science doi: 10.1126/science.aao5774 – volume: 426 start-page: 3838 year: 2014 ident: ref_22 article-title: A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2014.07.028 – volume: 103 start-page: 460 year: 2010 ident: ref_61 article-title: Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha publication-title: Br. J. Nutr. doi: 10.1017/S0007114509991863 – volume: 11 start-page: 155 year: 2017 ident: ref_35 article-title: Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia? publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00155 – volume: 23 start-page: 458 year: 2018 ident: ref_12 article-title: Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.03.011 – ident: ref_128 doi: 10.3390/nu11040861 – volume: 107 start-page: 14691 year: 2010 ident: ref_108 article-title: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1005963107 – volume: 61 start-page: 797 year: 2012 ident: ref_123 article-title: Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3 publication-title: Diabetes doi: 10.2337/db11-0846 – volume: 58 start-page: 1131 year: 2021 ident: ref_120 article-title: The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: The possible role of dietary fibre publication-title: Acta Diabetol. doi: 10.1007/s00592-021-01727-5 – volume: 181 start-page: 1263 year: 2020 ident: ref_137 article-title: Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells publication-title: Cell doi: 10.1016/j.cell.2020.04.027 – volume: 103 start-page: 82 year: 2010 ident: ref_113 article-title: Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects publication-title: Br. J. Nutr. doi: 10.1017/S0007114509991462 – volume: 28 start-page: 42 year: 2015 ident: ref_87 article-title: Towards microbial fermentation metabolites as markers for health benefits of prebiotics publication-title: Nutr. Res. Rev. doi: 10.1017/S0954422415000037 – volume: 19 start-page: 29 year: 2017 ident: ref_38 article-title: Formation of propionate and butyrate by the human colonic microbiota publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13589 |
SSID | ssj0023259 |
Score | 2.7133806 |
SecondaryResourceType | review_article |
Snippet | Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1105 |
SubjectTerms | Animals Bacteria Bacteria - metabolism Carbohydrates Colon Diabetes Dietary fiber Fatty acids Fatty Acids, Volatile - metabolism Feces Fermentation Gastrointestinal Microbiome Glucose Glucose - metabolism Gut microbiota Homeostasis Humans Metabolism Metabolites Microbiota Peptides Proteins Review |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB38QPAifltdJYKepNg2bZp6kUXcVUE9qOCtpEnKVrS72u7Bf--k7dZdRXvNQMtMknkvncwDOOKpy1TApC0TGSBB0UbI3U9tKVNFEzcSyjF3h2_v2NWTf_McPDcHbkVTVjnZE6uNWg2lOSM_9ZgXMh_BiXc-ereNapT5u9pIaMzDoouZxpR08V6_JVzUq8TSXMxBNgsiVhe-U6T5p9nLW4Hom2L2C2ZT0i-c-bNccir_9FZhpQGOpFtHeg3mdL4OS7WU5OcG3PfHJbnN6rZKpSAiV-RhgNiaXAyQ_JOeKMtP0pWZKs7I9VQZOcHBfl23Toxm-hDhYpEVm_DUu3y8uLIbsQRb-iEvbV8wJMn4pGlEHa4iwVPT-0aGwnSM8ZmXILtioQo4LlpfcyV8V4U6oqmDEXHpFizkw1zvAKFUYaBCJMdKI3tWiVaYxULJzHWS1BUWnEz8Fcumk7gRtHiNkVEY78bT3rXguLUe1R00_rDrTFwfN-uoiL-jbsFhO4wrwPzWELkejiubyAmQaDMLtutItS-iAeJNh3ILwpkYtgamu_bsSJ4Nqi7bHLEpzpnd_z9rD5Y9cyHCcXG_6cBC-THW-whTyuSgmotfLr3nDw priority: 102 providerName: ProQuest |
Title | Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35163038 https://www.proquest.com/docview/2627645332 https://www.proquest.com/docview/2629058376 https://pubmed.ncbi.nlm.nih.gov/PMC8835596 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aRUi8TIzbAqMyEjyhQBJfgzShbVo7kDoQUKlvkWM7aqaRwpJK9N_vuGmjljFpeciLT5TkHDvn-2L7fABvVBELy4UJTW44EhTnhdxZERpTWJrHqbaR3zs8vBDnI_ZlzMdbsFIbXTqw_i-183pSo-ur93__zD_hgD_yjBMp-4fy8leNSJpiJuPbsIs5SXotgyHr5hMQNixk0_wPj9B_oNsl8Leu3kxOtxDnvwsn1zJR_xHsLSEkOW5jvg9brnoMD1pRyfkT-DqYNWRYtgWWGk10ZcmPCb4gOZ3osiJ93TRzcmxKW38kn9cWlBNsHLQr2IlXT58icKzL-imM-mc_T8_DpWxCaJhUTci0QLqMR1GkNFI21arwVXCM1L52DBNJjjxLSMsVDl_mlNUsttKltIgwNjF9BjvVtHIHQCi1GDKJNNk65NE2dxbzmTTCbywpYh3Au5W_MrOsKe6lLa4y5Bbeu9m6dwN421n_bmtp3GF3uHJ9tuoQWSISKRiC0ySA110zjgU_waErN50tbNKII-UWATxvI9XdiHJEnhFVAciNGHYGvs72ZktVThb1thWiVJ6KF_d8_JfwMPF7JKIYP0GHsNNcz9wrRC5N3oNtOZZ4Vv1BD3ZPzi6-fe_5XMJ7i-56AzuJ8JY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RqqpcUGmhhFddqZxQRBI7ToJUIUS7j8LSAyBxSx3b0QZBFkhWaP8Uv5Fxskl3W7U3cvUoscZjz_fF8wD4EqYuVz6XtkykjwRFm0buLLWlTBVN3Egox-QOD85475L9uPKvFuCpyYUxYZXNmVgd1GokzT_yfY97AWcITrzDu3vbdI0yt6tNC43aLE705BEpW_G1_w3Xd9fzOt8vjnv2tKuALVkQljYTHNkkPmkaUSdUkQhTUyRGBsKUVmHcS5CG8ED5IVo306ESzFWBjmjq4NRdiu99Ba8ZRU9uMtM73ZbgUa9qzuaiz7O5H_E60B4Fnf3s-rZAtE_R2_rzLvAvXPtneOaMv-u8g-UpUCVHtWWtwILO38ObunXl5AP87I5LMsjqMk6lICJX5HyIWJ4cD0WWk44oywk5kpkqDkh_Jmyd4GC3jpMnpkf7COFpkRWrcPkialyDxXyU63UglCo0jADJuNLI1lWiFXrNQHKTvpK6woK9Rl-xnFYuNw00bmJkMEa78ax2Ldhtpe_qih3_kNtqVB9P920R_7YyCz63w7jjzDWKyPVoXMlEjo_EnlvwsV6p9kPUR3zr0NCCYG4NWwFTzXt-JM-GVVXvELEw2szG_6f1Cd72Lgan8Wn_7GQTljyTjOG4eNZtwWL5MNbbCJHKZKeySwK_XnojPAOSUSJ2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUB9QVyFQAEj0ScUbRIndoKEUGm77VK6VD2kvqWOD22qNltIVmj_Gr-O8eZgFwRvzautHOMZz_fFcwC8jY3PVMSkKzMZIUHRtpF7aFwpjaKZnwjl2dzhwxHbPws_n0fnK_CzzYWxYZXtnjjfqNVE2n_k_YAFnIUIToK-acIijnYGH2--ubaDlD1pbdtp1CpyoGc_kL6VH4Y7uNabQTDYPd3ed5sOA64MeVy5oWDILPEyJqFerBIRG1swRnJhy6yELMiQkjCuohg1PdSxEqGvuE6o8fAzfIr3vQOr3LKiHqx-2h0dHXd0jwbzVm0-ekCXRQmrw-4pTbx-fnldIvan6HujZYf4F8r9M1hzwfsNHsD9BraSrVrPHsKKLh7B3bqR5ewxfN2bVuQwr4s6VYKIQpGTMSJ7sj0WeUEGoqpmZEvmqnxPhgtB7AQH9-qoeWI7tk8QrJZ5-QTObkWQ69ArJoV-BoRShWrCkZorjdxdZVqhD-WS2WQW4wsH3rXySmVTx9y207hKkc9Y6aaL0nVgs5t9U9fv-Me8jVb0aWPFZfpb5xx40w2j_dlDFVHoyXQ-J_EipPnMgaf1SnUPohGiXY_GDvClNewm2NreyyNFPp7X-I4RGaPOPP__a72Ge2gE6Zfh6OAFrAU2M8PzcePbgF71fapfIl6qsleNYhK4uG1b-AXxACgI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+Microbiota+and+Short+Chain+Fatty+Acids%3A+Implications+in+Glucose+Homeostasis&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Portincasa%2C+Piero&rft.au=Bonfrate%2C+Leonilde&rft.au=Vacca%2C+Mirco&rft.au=De+Angelis%2C+Maria&rft.date=2022-01-20&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=3&rft.spage=1105&rft_id=info:doi/10.3390%2Fijms23031105&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms23031105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |