An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors
Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and th...
Saved in:
Published in | International journal of molecular sciences Vol. 23; no. 7; p. 3651 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection. |
---|---|
AbstractList | Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection. Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection. |
Author | Salvatore, Teresa Di Martino, Anna Sasso, Ferdinando Carlo Di Salvo, Jessica Epifani, Raffaella Marfella, Raffaele Lettieri, Miriam Rinaldi, Luca Galiero, Raffaele Docimo, Giovanni Caturano, Alfredo Sardu, Celestino Albanese, Gaetana |
AuthorAffiliation | 4 Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3.31 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK; miriam.lettieri@manchester.ac.uk 1 Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy; teresa.salvatore@unicampania.it 2 Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; raffaele.galiero@unicampania.it (R.G.); alfredo.caturano@unicampania.it (A.C.); luca.rinaldi@unicampania.it (L.R.); annadimarti@alice.it (A.D.M.); gaetanaalbanese@hotmail.it (G.A.); jessydisalvo@hotmail.it (J.D.S.); ellaphane@gmail.com (R.E.); raffaele.marfella@unicampania.it (R.M.); giovanni.docimo@unicampania.it (G.D.); celestino.sardu@unicampania.it (C.S.) 3 Mediterrannea Cardiocentro, 80122 Napoli, Italy |
AuthorAffiliation_xml | – name: 1 Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy; teresa.salvatore@unicampania.it – name: 3 Mediterrannea Cardiocentro, 80122 Napoli, Italy – name: 2 Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; raffaele.galiero@unicampania.it (R.G.); alfredo.caturano@unicampania.it (A.C.); luca.rinaldi@unicampania.it (L.R.); annadimarti@alice.it (A.D.M.); gaetanaalbanese@hotmail.it (G.A.); jessydisalvo@hotmail.it (J.D.S.); ellaphane@gmail.com (R.E.); raffaele.marfella@unicampania.it (R.M.); giovanni.docimo@unicampania.it (G.D.); celestino.sardu@unicampania.it (C.S.) – name: 4 Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3.31 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK; miriam.lettieri@manchester.ac.uk |
Author_xml | – sequence: 1 givenname: Teresa surname: Salvatore fullname: Salvatore, Teresa – sequence: 2 givenname: Raffaele orcidid: 0000-0002-7766-3430 surname: Galiero fullname: Galiero, Raffaele – sequence: 3 givenname: Alfredo orcidid: 0000-0001-7761-7533 surname: Caturano fullname: Caturano, Alfredo – sequence: 4 givenname: Luca orcidid: 0000-0002-6541-3821 surname: Rinaldi fullname: Rinaldi, Luca – sequence: 5 givenname: Anna surname: Di Martino fullname: Di Martino, Anna – sequence: 6 givenname: Gaetana surname: Albanese fullname: Albanese, Gaetana – sequence: 7 givenname: Jessica surname: Di Salvo fullname: Di Salvo, Jessica – sequence: 8 givenname: Raffaella surname: Epifani fullname: Epifani, Raffaella – sequence: 9 givenname: Raffaele orcidid: 0000-0003-3960-9270 surname: Marfella fullname: Marfella, Raffaele – sequence: 10 givenname: Giovanni surname: Docimo fullname: Docimo, Giovanni – sequence: 11 givenname: Miriam surname: Lettieri fullname: Lettieri, Miriam – sequence: 12 givenname: Celestino surname: Sardu fullname: Sardu, Celestino – sequence: 13 givenname: Ferdinando Carlo orcidid: 0000-0002-9142-7848 surname: Sasso fullname: Sasso, Ferdinando Carlo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35409011$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLAzEQxoMovm-eZcGLB6t57jYXoRRfUFFQzyFJZ23KbqJJWvG_d2tVqniagfnNxzff7KB1HzwgdEDwKWMSn7lpmyjDFSsFWUPbhFPaw7is1lf6LbST0hRjyqiQm2iLCY4lJmQbXQ98cTeHOHfwVoS6yBMohjqOXYjgdVPcx5DBZjeH4hbsRHuX2rQAH65Gj7S48RNnXA4x7aGNWjcJ9r_qLnq6vHgcXvdGd1c3w8GoZ3nVzz3ObSVLwkxtxkJrWpoxFZYbzmsg2gpuaA0MOqcaYw0AFDgRrDbEEipMzXbR-VL3ZWZaGFvwOepGvUTX6viugnbq98S7iXoOc9WXsi9K2QkcfwnE8DqDlFXrkoWm0R7CLClacin6UuCyQ4_-oNMwi10sSwqLin8KHq46-rHyHXIHnCwBG0NKEeofhGC1-KFa_WGH0z-4dVlnFxb3uOb_pQ-rrZ_T |
CitedBy_id | crossref_primary_10_1007_s40256_024_00673_1 crossref_primary_10_4103_jicc_jicc_77_24 crossref_primary_10_3390_jcdd10120478 crossref_primary_10_22399_ijcesen_615 crossref_primary_10_3390_biomedicines11102611 crossref_primary_10_3389_fcvm_2022_1086672 crossref_primary_10_3390_ijms241612866 crossref_primary_10_1007_s13300_024_01550_5 crossref_primary_10_2147_DMSO_S390752 crossref_primary_10_3892_mmr_2025_13479 crossref_primary_10_3390_medicina60050837 crossref_primary_10_1016_j_heliyon_2024_e29486 crossref_primary_10_1186_s13098_024_01325_9 crossref_primary_10_3390_jcm13237093 crossref_primary_10_3390_antiox12111933 crossref_primary_10_1002_jcph_2437 crossref_primary_10_2459_JCM_0000000000001523 crossref_primary_10_1177_20420986231178126 crossref_primary_10_3390_biomedicines11030869 crossref_primary_10_3390_biomedicines11113084 crossref_primary_10_1093_eurheartjsupp_suac101 crossref_primary_10_4103_cdrp_cdrp_11_24 crossref_primary_10_3390_ijms24010351 crossref_primary_10_1186_s13062_025_00618_x crossref_primary_10_1007_s00210_024_03708_1 crossref_primary_10_3389_fendo_2022_1071465 crossref_primary_10_36660_abchf_20240060 crossref_primary_10_1080_17446651_2023_2210673 crossref_primary_10_3803_EnM_2023_1764 crossref_primary_10_7759_cureus_65707 crossref_primary_10_3390_biomedicines11030819 crossref_primary_10_3390_nu15092031 crossref_primary_10_3390_antiox13121540 crossref_primary_10_1016_j_ejmcr_2024_100167 crossref_primary_10_1097_FJC_0000000000001423 crossref_primary_10_1111_dom_15505 crossref_primary_10_1016_j_diabres_2023_110686 crossref_primary_10_4081_itjm_2024_1716 crossref_primary_10_1016_j_mehy_2024_111417 crossref_primary_10_3390_medicina61020209 crossref_primary_10_1186_s12933_024_02200_7 crossref_primary_10_1136_thorax_2024_221906 crossref_primary_10_3390_medicina60101643 crossref_primary_10_1007_s40618_023_02135_y crossref_primary_10_1038_s41598_023_47896_x crossref_primary_10_3389_fcvm_2022_1008922 crossref_primary_10_3390_medicina61020202 crossref_primary_10_3390_medicina60020274 crossref_primary_10_4037_aacnacc2023830 crossref_primary_10_1080_13543784_2022_2160315 crossref_primary_10_3390_ijms251810173 crossref_primary_10_52727_2078_256X_2023_19_4_457_468 crossref_primary_10_5500_wjt_v13_i5_239 crossref_primary_10_1016_j_dsx_2023_102934 crossref_primary_10_3390_ijms24065089 crossref_primary_10_3390_ijms25094959 crossref_primary_10_1007_s00592_024_02359_1 crossref_primary_10_1016_j_ejmcr_2022_100074 crossref_primary_10_1038_s44161_023_00347_2 crossref_primary_10_3390_biomedicines11020322 crossref_primary_10_12968_jokc_2022_7_5_216 crossref_primary_10_1021_acsptsci_4c00076 crossref_primary_10_1007_s40265_024_02090_9 crossref_primary_10_1186_s12933_024_02325_9 crossref_primary_10_1080_14656566_2024_2364054 crossref_primary_10_1007_s11255_023_03680_4 crossref_primary_10_20996_1819_6446_2024_3018 crossref_primary_10_3390_diabetology4030022 crossref_primary_10_3390_biomedicines10092274 crossref_primary_10_3390_jcm12113815 crossref_primary_10_3389_fphar_2024_1393946 crossref_primary_10_1007_s00210_024_03406_y crossref_primary_10_2147_DMSO_S400285 crossref_primary_10_3390_pharmaceutics15071995 crossref_primary_10_1155_2022_4282953 crossref_primary_10_3390_biomedicines12051102 crossref_primary_10_1016_j_ejphar_2024_176619 crossref_primary_10_1080_10408363_2024_2361012 crossref_primary_10_1016_j_diabres_2025_112050 crossref_primary_10_1080_14728222_2023_2240021 crossref_primary_10_1042_CS20220212 crossref_primary_10_1097_CRD_0000000000000637 crossref_primary_10_3389_fphar_2024_1349022 crossref_primary_10_3389_fpubh_2023_1150122 crossref_primary_10_12677_acm_2024_144980 crossref_primary_10_31083_j_rcm2508293 crossref_primary_10_3390_biom14111393 crossref_primary_10_1007_s11606_024_09073_2 crossref_primary_10_1016_j_ijcard_2024_132326 crossref_primary_10_3897_pharmacia_70_e96975 crossref_primary_10_1080_13543776_2024_2379929 crossref_primary_10_1155_2022_9613062 crossref_primary_10_1186_s12933_023_02023_y crossref_primary_10_1016_j_urology_2023_01_032 crossref_primary_10_3389_fcvm_2023_1159953 crossref_primary_10_5114_aoms_174228 crossref_primary_10_3390_ijms25137057 crossref_primary_10_1016_j_anrea_2023_04_001 crossref_primary_10_1155_2023_5919468 crossref_primary_10_3390_biomedicines12092039 crossref_primary_10_4239_wjd_v15_i5_853 crossref_primary_10_18087_cardio_2023_7_n2471 crossref_primary_10_3390_cells12232691 crossref_primary_10_31083_j_fbl2804083 crossref_primary_10_36660_abchf_20240060i crossref_primary_10_2174_0113816128304097240529053538 crossref_primary_10_26442_20751753_2024_4_202763 crossref_primary_10_51789_cmsj_2022_2_e14 crossref_primary_10_1055_a_1971_3381 crossref_primary_10_1186_s11658_024_00599_1 crossref_primary_10_3389_fcvm_2024_1289663 crossref_primary_10_3390_pharmaceutics16111363 crossref_primary_10_1161_HYPERTENSIONAHA_122_19586 crossref_primary_10_1016_j_trsl_2024_12_006 crossref_primary_10_3390_biomedicines10102379 crossref_primary_10_3390_biomedicines12071456 crossref_primary_10_1134_S0022093024070159 crossref_primary_10_1007_s00125_024_06228_y crossref_primary_10_1186_s12874_024_02292_5 crossref_primary_10_3390_jcdd10060236 crossref_primary_10_1007_s40264_023_01373_6 crossref_primary_10_4330_wjc_v15_i3_76 crossref_primary_10_3390_ijms25147711 crossref_primary_10_1016_j_lpm_2022_104158 crossref_primary_10_1080_07391102_2022_2130983 crossref_primary_10_3238_arztebl_m2024_0072 crossref_primary_10_3389_fendo_2024_1395630 crossref_primary_10_2147_IJNRD_S448986 crossref_primary_10_3389_fendo_2023_1111984 crossref_primary_10_3389_fphar_2024_1422740 crossref_primary_10_15829_1728_8800_2025_4161 crossref_primary_10_1016_j_jdiacomp_2025_108998 |
Cites_doi | 10.1136/jech-2015-206948 10.1161/CIRCULATIONAHA.117.029529 10.2337/diab.38.1.75 10.1016/j.lfs.2021.119018 10.1056/NEJMoa2024816 10.1016/S2213-8587(20)30382-X 10.1161/CIRCULATIONAHA.115.020226 10.1111/dom.13126 10.1172/JCI63967 10.7150/thno.54498 10.1002/ehf2.13615 10.1001/jamacardio.2017.1891 10.1007/s13300-018-0385-5 10.1152/ajprenal.00689.2014 10.1186/s12933-016-0473-7 10.1152/ajprenal.00120.2019 10.1152/ajprenal.00425.2014 10.3390/metabo11020087 10.3390/ijms20143406 10.1186/s12933-019-0839-8 10.1007/s00125-017-4509-7 10.1055/s-0035-1555791 10.1007/s10557-018-6778-x 10.1016/S0140-6736(18)32590-X 10.1016/j.diabres.2021.108856 10.1053/j.ajkd.2008.03.003 10.1136/bmj.k4365 10.1097/MD.0000000000024593 10.1111/dom.12572 10.1186/s12933-017-0564-0 10.1186/s12933-017-0511-0 10.1161/CIRCULATIONAHA.115.017355 10.1007/s12012-011-9124-0 10.1161/STROKEAHA.120.031623 10.1124/jpet.116.235069 10.1002/ejhf.1328 10.1161/CIRCULATIONAHA.109.906610 10.1210/jc.2014-3472 10.1038/ki.2012.441 10.1016/j.jiac.2021.05.012 10.1681/ASN.2013060588 10.1007/s11897-021-00529-8 10.1155/2020/9036847 10.1210/jc.2011-2037 10.1016/S0026-0495(99)90141-5 10.1016/j.jacc.2021.01.033 10.1186/s12933-018-0790-0 10.2337/db15-1356 10.1113/jphysiol.1995.sp020559 10.1186/s12933-019-0820-6 10.1007/s00125-018-4669-0 10.1046/j.1523-1755.2001.00725.x 10.2337/dc16-0542 10.2337/dc19-1410 10.1007/s10557-020-06978-y 10.1016/j.cjca.2019.08.033 10.1002/dmrr.2818 10.1161/CIRCULATIONAHA.119.042929 10.1172/JCI100559 10.1111/j.1365-2796.2006.01746.x 10.1161/CIRCULATIONAHA.117.029166 10.1186/s12933-018-0750-8 10.1152/ajprenal.2000.278.1.F91 10.1161/CIRCULATIONAHA.121.053350 10.1113/jphysiol.2014.281428 10.1016/j.pharmthera.2016.10.006 10.1152/ajprenal.00071.2006 10.1038/s41581-020-00391-2 10.1016/j.clinthera.2019.01.001 10.4070/kcj.2019.0180 10.2147/TCRM.S186347 10.1002/dmrr.3113 10.1007/s00277-005-1102-9 10.2337/dc17-1096 10.1016/j.kint.2019.09.013 10.1093/eurheartj/ehaa943 10.1038/ki.1983.72 10.14814/phy2.14890 10.1681/ASN.2015111282 10.1016/S1262-3636(14)72693-X 10.1002/ejhf.1732 10.1016/j.diabres.2020.108368 10.1016/j.bcp.2018.03.013 10.1016/S2213-8587(19)30086-5 10.3389/fendo.2019.00441 10.1038/s41581-021-00393-8 10.2337/dc22-S011 10.1016/j.ejphar.2013.05.014 10.3390/jcm9072243 10.1111/obr.12841 10.2337/db19-0991 10.1093/cvr/cvs353 10.1681/ASN.2020010010 10.1056/NEJMoa2107038 10.2337/dc15-0355 10.1007/s10741-020-10065-7 10.1016/j.phrs.2020.104870 10.1172/JCI119163 10.1161/CIRCRESAHA.120.318170 10.2337/dc16-2724 10.1177/1479164114563304 10.3389/fendo.2021.814074 10.3390/biology9110369 10.1681/ASN.V351078 10.1186/s12933-018-0797-6 10.1152/ajprenal.00497.2018 10.1002/ehf2.12336 10.1093/cvr/cvaa123 10.2337/dc18-2207 10.3390/cells10061457 10.1111/dom.12127 10.1152/ajprenal.00473.2013 10.1016/j.jacbts.2019.04.003 10.1152/ajprenal.00520.2013 10.1186/s12933-020-01206-1 10.1016/j.ejphar.2021.174169 10.1007/s13300-010-0006-4 10.1007/s00125-019-4859-4 10.1016/j.bcp.2019.113677 10.1186/s12933-018-0708-x 10.1042/CS20190585 10.1161/CIRCULATIONAHA.118.038881 10.1111/imj.14260 10.1152/ajpregu.00357.2011 10.1080/19382014.2018.1503027 10.1002/ejhf.933 10.1056/NEJMoa2030183 10.1007/s00424-017-2079-7 10.1038/s41598-020-71599-2 10.2174/1573399812666160613111959 10.1016/j.lfs.2018.01.032 10.2337/dc14-1596 10.1093/eurjhf/hfn043 10.1007/s12325-015-0255-8 10.1177/1479164119883540 10.1002/dmrr.2407 10.1097/MOL.0000000000000751 10.1038/srep39884 10.1111/jdi.12802 10.1056/NEJMoa1811744 10.1016/j.amjcard.2019.10.027 10.3390/medicina55060268 10.1038/hr.2016.193 10.2169/internalmedicine.0701-17 10.1007/s10741-020-10041-1 10.1038/s41598-020-71449-1 10.2337/dc16-0041 10.1093/ndt/gfr644 10.1161/HYPERTENSIONAHA.112.194571 10.7326/0003-4819-144-1-200601030-00006 10.1186/s12933-017-0654-z 10.1038/clpt.2012.58 10.1161/CIRCULATIONAHA.109.914911 10.1159/000208211 10.1016/j.jacc.2017.11.025 10.1016/j.metabol.2018.01.002 10.14814/phy2.13741 10.1161/01.RES.75.3.443 10.3389/fcvm.2016.00043 10.1007/s10741-017-9644-1 10.1161/CIRCHEARTFAILURE.119.006277 10.1056/NEJMoa1611925 10.1210/clinem/dgaa057 10.1016/S2213-8587(16)30267-4 10.1111/dom.14217 10.1056/NEJMoa1504720 10.1210/jc.2019-00706 10.1111/dom.13229 10.1530/JOE-17-0263 10.1161/CIRCULATIONAHA.120.045691 10.1111/dom.13295 10.1371/journal.pone.0215362 10.1111/dom.13841 10.1016/j.kint.2017.12.027 10.1056/NEJMoa1515920 10.1038/nm.3804 10.1111/dom.14018 10.1016/j.clinthera.2016.11.002 10.1146/annurev-physiol-021317-121427 10.1038/nrneph.2016.170 10.1093/cvr/cvx149 10.1038/s41467-020-15983-6 10.1155/2021/5593589 10.1097/MD.0000000000006944 10.1016/j.cellsig.2019.109506 10.1161/CIRCULATIONAHA.121.056824 10.1002/ejhf.2064 10.1007/s00125-016-4134-x 10.1161/CIRCULATIONAHA.118.036459 10.3390/ijms22157976 10.1161/CIRCULATIONAHA.116.021887 10.1172/JCI72227 10.1210/jc.2015-2597 10.1038/s41598-018-25054-y 10.1016/j.dsx.2019.01.016 10.1016/j.freeradbiomed.2017.01.035 10.3389/fphys.2019.00419 10.1111/dom.13413 10.3389/fendo.2021.738848 10.1186/s12933-016-0491-5 10.1155/2019/3971060 10.1186/s12933-017-0621-8 10.1016/j.amjms.2016.08.015 10.1001/jamainternmed.2018.3034 10.1152/ajprenal.00294.2016 10.1002/ehf2.13024 10.1016/j.redox.2017.12.019 10.1007/s00125-018-4670-7 10.1186/s12933-019-0849-6 10.1111/dom.14535 10.1186/s12933-021-01343-1 10.1007/s00125-014-3396-4 10.1172/jci.insight.123130 10.1038/s41598-019-52310-6 10.1186/s12944-021-01430-y 10.1056/NEJMoa1812389 10.1152/ajplegacy.1971.221.3.679 10.1111/jphp.12223 10.1007/s10741-020-10038-w 10.1002/jcp.26760 10.1161/CIRCULATIONAHA.117.030418 10.1016/S2213-8587(20)30300-4 10.1093/eurheartj/ehab368 10.2337/dc19-1177 10.1155/2014/837421 10.1016/S2213-8587(13)70050-0 10.1016/S0008-6363(02)00809-X 10.1159/000519491 10.1016/S2213-8587(20)30162-5 10.1161/HYPERTENSIONAHA.119.11684 10.3390/jcm8111814 10.2337/dc13-0387 10.1056/NEJMoa2004967 10.1152/physrev.00055.2009 10.1097/01.hjh.0000239303.93872.31 10.1111/dom.12322 10.14740/jocmr2857w 10.1152/ajpregu.1998.274.2.R263 10.3389/fendo.2020.00190 10.1038/nature05485 10.3390/biom12020176 10.1016/j.jchf.2015.10.007 10.1038/s41581-020-0309-2 10.1177/2042098621989134 10.1152/ajpregu.00127.2011 10.1111/dom.13101 10.1210/jc.2011-2260 10.1210/en.2015-1588 10.3390/ijms22168786 10.1016/j.kint.2020.02.041 10.1161/CIRCULATIONAHA.119.044235 10.1152/ajpregu.00809.2010 10.1172/jci.insight.98720 10.1186/s12933-020-01141-1 10.1016/j.taap.2017.08.005 10.1002/edm2.50 10.3390/cells10102699 10.1016/j.jdiacomp.2018.10.016 10.1016/j.jacc.2019.01.056 10.1002/dmrr.3169 10.1681/ASN.2016060666 10.1172/JCI70704 10.1111/dom.13294 10.1371/journal.pone.0112394 10.1089/dia.2019.0212 10.1111/j.1464-5491.2009.02894.x 10.2174/138920011796504509 10.2337/diacare.29.03.06.dc05-1776 10.1161/CIRCRESAHA.111.258723 10.1371/journal.pone.0178473 10.1097/MNH.0000000000000084 10.1136/bmjdrc-2019-000783 10.1111/dom.14517 10.1056/NEJMoa2022190 10.31038/EDMJ.2018232 10.1152/ajprenal.00565.2018 10.1152/ajprenal.00462.2018 10.1016/j.diabet.2016.12.010 10.1002/dmrr.538 10.1152/ajprenal.00409.2012 10.1016/j.jdiacomp.2014.09.002 10.1016/j.diabres.2019.107927 10.1177/1479164115585298 10.1093/ndt/gfu299 10.1053/j.ackd.2017.10.011 10.1152/ajprenal.00050.2001 10.1126/science.1227166 10.14740/jocmr2760w 10.1177/0148607104028005364 10.1111/dom.13488 10.1210/en.2007-1088 10.1038/hr.2016.1 10.1186/s12933-019-0816-2 10.1002/jcp.26851 10.1007/s00125-018-4656-5 10.1681/ASN.2015060647 10.1152/ajprenal.00402.2019 10.3390/biomedicines9101356 10.2337/dc15-2688 10.3390/ijms222212394 10.1016/j.clinthera.2016.09.001 10.1097/MNH.0000000000000341 10.7326/0003-4819-103-1-1 10.1161/CIRCULATIONAHA.113.005081 10.3389/fcvm.2019.00186 10.2215/CJN.06080616 10.2337/db10-1328 10.1016/j.redox.2017.06.009 10.1155/2018/3106056 10.1016/j.metabol.2018.02.002 10.1038/nm.3828 10.1056/NEJMoa2030186 10.1681/ASN.2018010103 10.1186/s12933-020-01010-x 10.2337/dc16-0330 10.1161/CIRCULATIONAHA.119.042375 10.2337/dc22-S010 10.1161/CIRCULATIONAHA.118.037418 10.1203/00006450-199710000-00013 10.1111/dom.13441 10.1007/s00125-015-3547-2 10.1056/NEJMoa1911303 10.1371/journal.pone.0100777 10.15252/embj.2020104705 10.3390/ijms21082987 10.1146/annurev-physiol-020911-153333 10.1007/s10557-017-6725-2 10.1097/MNH.0000000000000152 10.1007/s00125-016-4157-3 10.1016/j.diabres.2021.108959 10.1007/s13238-020-00809-4 10.1111/liv.14274 10.1161/CIRCULATIONAHA.115.017545 10.1093/eurheartj/ehz486 10.1016/S2213-8587(17)30182-1 10.1155/2021/9944880 10.1038/sj.ki.5002383 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms23073651 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8998569 35409011 10_3390_ijms23073651 |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK COVID K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-44c79613bfbd5aa26bd25c4b44fe1ac54b2fe3e023a00aeee2e4153fb1c125bf3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 13:18:47 EDT 2025 Thu Jul 10 22:52:18 EDT 2025 Fri Jul 25 20:08:26 EDT 2025 Mon Jul 21 05:46:14 EDT 2025 Tue Jul 01 02:48:16 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | diabetic kidney disease type 2 diabetes mellitus cardiovascular disease cardiorenal protection gliflozins cardiorenal syndrome |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-44c79613bfbd5aa26bd25c4b44fe1ac54b2fe3e023a00aeee2e4153fb1c125bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9142-7848 0000-0001-7761-7533 0000-0002-7766-3430 0000-0003-3960-9270 0000-0002-6541-3821 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms23073651 |
PMID | 35409011 |
PQID | 2649057469 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8998569 proquest_miscellaneous_2649589506 proquest_journals_2649057469 pubmed_primary_35409011 crossref_primary_10_3390_ijms23073651 crossref_citationtrail_10_3390_ijms23073651 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220326 |
PublicationDateYYYYMMDD | 2022-03-26 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220326 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_257 ref_139 Salvatore (ref_1) 2011; 12 Wanner (ref_125) 2018; 29 Li (ref_35) 2018; 20 Sasso (ref_9) 2018; 2018 ref_133 Kamijo (ref_195) 2019; 12 Lee (ref_290) 2017; 104 ref_256 Takaori (ref_338) 2015; 27 Guja (ref_33) 2016; 4 Sun (ref_212) 2016; 133 Packer (ref_331) 2020; 31 Steven (ref_277) 2017; 13 Zhan (ref_326) 2013; 83 Fasching (ref_337) 2015; 309 Philippaert (ref_152) 2021; 143 Kolijn (ref_299) 2020; 117 Rabizadeh (ref_75) 2019; 17 Chen (ref_137) 2010; 1 Zhou (ref_183) 2021; 52 Karg (ref_234) 2018; 17 Poulsen (ref_55) 2015; 24 Baartscheer (ref_145) 2003; 57 ref_126 Benham (ref_181) 2021; 33 Antonio (ref_219) 2019; 73 Nassif (ref_103) 2019; 140 Ye (ref_283) 2017; 31 Vaduganathan (ref_22) 2021; 23 Elkazzaz (ref_309) 2021; 280 Gerich (ref_51) 2010; 27 Solini (ref_248) 2019; 104 Mustroph (ref_141) 2017; 176 Puglisi (ref_175) 2021; 12 Cohen (ref_243) 2019; 49 Majewski (ref_174) 2015; 38 Packer (ref_146) 2017; 136 Zhang (ref_228) 2011; 300 Verma (ref_96) 2017; 2 Jensen (ref_242) 2020; 9 Bhatt (ref_93) 2021; 384 Koye (ref_160) 2018; 25 Sha (ref_232) 2014; 16 Muskiet (ref_123) 2020; 97 Braga (ref_269) 2017; 7 Kidokoro (ref_122) 2019; 140 Ong (ref_315) 2010; 121 Packer (ref_321) 2020; 22 Song (ref_70) 2019; 317 Sasso (ref_91) 2018; 35 Ferrannini (ref_204) 2017; 40 Cefalu (ref_176) 2015; 58 Nabrdalik (ref_258) 2021; 2021 Zibadi (ref_266) 2011; 11 Sasso (ref_156) 2021; 20 Thomson (ref_60) 2019; 124 Tanajak (ref_163) 2017; 333 Huang (ref_311) 2019; 10 Heerspink (ref_124) 2016; 134 ref_272 Onishi (ref_63) 2019; 317 Irace (ref_246) 2020; 17 Patoulias (ref_34) 2019; 158 Chang (ref_49) 2018; 178 Min (ref_36) 2017; 33 Steffes (ref_131) 2001; 59 Li (ref_253) 2018; 197 ref_280 Hasan (ref_289) 2020; 10 Vallon (ref_77) 2013; 304 Santiago (ref_323) 2019; 170 Merovci (ref_30) 2016; 101 Pagtalunan (ref_132) 1997; 99 Ganz (ref_136) 2000; 278 Bedi (ref_211) 2016; 133 Maeda (ref_161) 2013; 29 Wanner (ref_129) 2016; 375 Goldberg (ref_187) 2021; 52 Koyani (ref_285) 2020; 158 Muskiet (ref_17) 2017; 12 Dimitrakoudis (ref_27) 1992; 3 ref_87 Tsimihodimos (ref_198) 2018; 14 Shimazu (ref_221) 2013; 339 ref_265 Satou (ref_304) 2020; 318 Verma (ref_216) 2018; 3 Patel (ref_264) 2017; 22 Mustroph (ref_142) 2021; 128 Powell (ref_69) 2013; 304 Bolinder (ref_166) 2012; 97 Bhatt (ref_102) 2021; 384 Rizzo (ref_89) 2015; 29 Xue (ref_298) 2019; 133 Uthman (ref_150) 2017; 61 Takagi (ref_327) 2018; 9 Lunder (ref_245) 2018; 17 DeFronzo (ref_53) 2017; 13 Weber (ref_255) 2012; 60 Shigiyama (ref_278) 2017; 16 ref_332 Heerspink (ref_106) 2020; 383 Yanai (ref_345) 2017; 9 Millar (ref_164) 2017; 234 Maruyama (ref_343) 2019; 21 Fathi (ref_12) 2021; 26 Tamura (ref_171) 2016; 39 Hao (ref_268) 2018; ume14 Symeonidis (ref_339) 2005; 85 Jaikumkao (ref_308) 2018; 20 Ferrannini (ref_162) 2015; 38 Trum (ref_151) 2020; 7 Hamdani (ref_296) 2012; 97 Thiele (ref_335) 2021; 23 Heerspink (ref_231) 2013; 15 Kang (ref_292) 2019; 36 Kim (ref_223) 2020; 11 ref_324 ref_205 ref_325 Nosadini (ref_227) 1989; 38 Cherney (ref_120) 2014; 129 Das (ref_303) 2019; 68 ref_201 Li (ref_31) 2021; 23 Vallon (ref_73) 2014; 306 Hayashi (ref_194) 2017; 16 Sugiyama (ref_179) 2018; 57 Tezze (ref_206) 2019; 10 Novikov (ref_189) 2019; 316 Ferrannini (ref_18) 2014; 124 Inagaki (ref_191) 2015; 32 DeFronzo (ref_2) 2013; 36 Wilcox (ref_61) 2020; 75 Inoue (ref_62) 2012; 302 Marfella (ref_8) 2012; 97 Garvey (ref_260) 2018; 85 ref_119 Dutka (ref_209) 2020; 26 Johansson (ref_177) 2015; 12 Aroor (ref_251) 2018; 17 Haase (ref_336) 2006; 291 Cherney (ref_128) 2017; 5 Adingupu (ref_218) 2019; 18 ref_113 Byrne (ref_284) 2020; 13 ref_112 Anker (ref_114) 2021; 385 Sasso (ref_88) 1999; 48 Mirabelli (ref_24) 2019; 2019 Sciarretta (ref_320) 2018; 80 Liu (ref_196) 2021; 20 Vallon (ref_14) 2017; 60 Yu (ref_144) 2017; 470 Wang (ref_165) 2019; 41 ref_224 (ref_85) 2019; 9 Striepe (ref_254) 2017; 136 Hediger (ref_56) 1995; 482 Tanaka (ref_134) 2014; 307 Heymans (ref_282) 2009; 11 Tahara (ref_273) 2013; 715 Meier (ref_32) 2005; 21 Lombardi (ref_7) 2020; 40 Tang (ref_329) 2020; 16 Chasis (ref_5) 1933; 12 Mizuno (ref_319) 2018; 6 Bailey (ref_25) 2019; 21 Wright (ref_65) 2007; 261 Umino (ref_330) 2018; 8 Prattichizzo (ref_270) 2018; 20 Yasui (ref_236) 2018; 9 Benetti (ref_261) 2016; 359 Thomson (ref_118) 2012; 302 Nielsen (ref_217) 2019; 139 Sano (ref_334) 2016; 8 Sasso (ref_98) 2006; 29 Studer (ref_147) 1994; 75 Hesp (ref_135) 2020; 98 Lapuerta (ref_153) 2015; 12 Little (ref_225) 1971; 221 Abraham (ref_104) 2020; 42 Hasan (ref_307) 2020; 10 Dimova (ref_178) 2020; 53 Salim (ref_275) 2016; 3 Fioretto (ref_108) 2018; 20 Juni (ref_295) 2019; 4 Yaribeygi (ref_300) 2018; 234 Verma (ref_229) 2018; 61 Verma (ref_346) 2019; 140 Lee (ref_252) 2018; 17 Wiviott (ref_48) 2019; 380 Galiero (ref_90) 2021; 176 Cosentino (ref_95) 2020; 41 Tonneijck (ref_80) 2017; 28 Yancy (ref_111) 2018; 71 Obata (ref_29) 2016; 157 Jurczak (ref_68) 2018; 10 Yaribeygi (ref_271) 2018; 234 Chen (ref_314) 2011; 109 ref_21 Baartscheer (ref_149) 2016; 60 Scheepers (ref_54) 2004; 28 Ferrannini (ref_203) 2016; 65 Evans (ref_81) 2014; 306 Chen (ref_230) 2016; 352 Brenner (ref_117) 1983; 23 Chilton (ref_180) 2015; 17 Zhou (ref_318) 2017; 15 Ueda (ref_50) 2018; 363 Zinman (ref_47) 2015; 373 Zambrowicz (ref_20) 2012; 92 Pelletier (ref_41) 2021; 12 Wright (ref_57) 2011; 91 Yang (ref_121) 2014; 57 Merovci (ref_3) 2015; 100 Sun (ref_293) 2020; 69 Foster (ref_19) 2012; 122 Maejima (ref_155) 2020; 6 Solini (ref_247) 2017; 16 Liao (ref_40) 2018; 2 Scheen (ref_184) 2017; 43 Birnbaum (ref_305) 2018; 32 Sasso (ref_97) 2011; 27 Chen (ref_197) 2021; 100 Forst (ref_39) 2016; 12 Bertero (ref_140) 2018; 114 Oh (ref_220) 2019; 49 Hsu (ref_170) 2006; 144 Hotamisligil (ref_259) 2006; 444 Calapkulu (ref_190) 2019; 13 ref_302 Durak (ref_317) 2018; 17 Fukao (ref_226) 1997; 42 Butler (ref_158) 2017; 19 Xu (ref_322) 2018; 152 Mudaliar (ref_215) 2016; 39 Packer (ref_235) 2021; 77 Sano (ref_333) 2019; 139 Li (ref_288) 2019; 18 Kamei (ref_45) 2021; 27 Daniele (ref_202) 2016; 39 Lee (ref_291) 2019; 18 Shiraki (ref_310) 2016; 5 Lazarte (ref_199) 2021; 32 Liu (ref_200) 2021; 11 Giugliano (ref_130) 2020; 19 Inzucchi (ref_159) 2017; 41 Layton (ref_83) 2016; 311 Guo (ref_182) 2018; 20 Coady (ref_58) 2017; 28 Heise (ref_237) 2016; 38 Merovci (ref_15) 2014; 124 Lee (ref_328) 2019; 317 Basile (ref_86) 2001; 281 Ghanim (ref_340) 2020; 105 Galiero (ref_6) 2020; 2020 Xu (ref_262) 2019; 7 Hattori (ref_210) 2021; 26 Neal (ref_46) 2017; 377 Anker (ref_116) 2020; 22 Mustroph (ref_154) 2018; 5 Pfeifer (ref_249) 2017; 16 Tahrani (ref_52) 2013; 1 Georgianos (ref_173) 2019; 42 Vallon (ref_71) 2011; 300 Yang (ref_37) 2020; 11 Chilton (ref_157) 2016; 39 Griffin (ref_233) 2020; 142 Schnermann (ref_238) 1998; 274 Packer (ref_101) 2020; 383 Fitchett (ref_347) 2021; 8 Heerspink (ref_312) 2019; 62 Ferrannini (ref_214) 2016; 39 Kohlhaas (ref_287) 2010; 121 Wu (ref_306) 2018; 83 Pabel (ref_297) 2018; 20 Chen (ref_286) 2020; 34 Zhao (ref_188) 2017; 20 Francis (ref_239) 1985; 103 Tahara (ref_274) 2014; 66 Vlotides (ref_76) 2014; 30 Shaw (ref_138) 2015; 593 Franssen (ref_294) 2016; 4 Jurczak (ref_28) 2011; 60 Minutolo (ref_99) 2006; 24 Kappel (ref_213) 2017; 136 Yang (ref_23) 2017; 96 Ghezzi (ref_67) 2018; 61 Ishibashi (ref_301) 2015; 48 Goldenberg (ref_42) 2016; 38 Vallon (ref_78) 2009; 111 Hare (ref_342) 2021; 9 Wysham (ref_26) 2019; 33 Brown (ref_167) 2019; 20 Heerspink (ref_127) 2018; 94 Zheng (ref_168) 2016; 70 Halimi (ref_192) 2014; 40 Szekeres (ref_193) 2021; 11 Pabel (ref_143) 2021; 18 Lee (ref_281) 2021; 2021 Foster (ref_169) 2008; 52 Hu (ref_16) 2022; 12 Bonner (ref_43) 2015; 21 Cherney (ref_109) 2020; 8 Lu (ref_38) 2019; 35 Aubert (ref_208) 2016; 133 Oelze (ref_276) 2014; 9 Kaur (ref_74) 2021; 904 (ref_4) 1836; 1 McDonagh (ref_110) 2021; 42 Kang (ref_11) 2021; 17 Lee (ref_66) 2007; 72 Freitas (ref_72) 2008; 149 Sayour (ref_148) 2020; 19 Bosch (ref_244) 2019; 18 McMurray (ref_100) 2019; 381 Hallow (ref_241) 2017; 20 Cherney (ref_240) 2015; 24 Caturano (ref_10) 2021; 178 ref_186 ref_44 Takiyama (ref_82) 2014; 2014 ref_185 Mulder (ref_313) 2020; 22 Kusaka (ref_263) 2016; 15 DeFronzo (ref_59) 2021; 17 Vallon (ref_79) 2012; 74 Pessoa (ref_64) 2014; 25 Katakami (ref_250) 2021; 20 Mazer (ref_341) 2020; 141 Pollock (ref_107) 2019; 7 Youm (ref_222) 2015; 21 Oshima (ref_344) 2020; 8 Perkovic (ref_105) 2019; 380 Thomas (ref_13) 2018; 61 Avogaro (ref_207) 2020; 43 Persson (ref_84) 2017; 26 Packer (ref_115) 2021; 144 Rahman (ref_172) 2017; 40 Tanaka (ref_279) 2019; 42 Onishi (ref_316) 2021; 40 Cannon (ref_92) 2020; 383 Zelniker (ref_94) 2019; 393 Packer (ref_267) 2018; 20 |
References_xml | – volume: 70 start-page: 1024 year: 2016 ident: ref_168 article-title: The long-term prognosis of cardiovascular disease and all-cause mortality for metabolically healthy obesity: A systematic review and meta-analysis publication-title: J. Epidemiol. Community Health doi: 10.1136/jech-2015-206948 – volume: 136 start-page: 1167 year: 2017 ident: ref_254 article-title: Effects of the Selective Sodium-Glucose Cotransporter 2 Inhibitor Empagliflozin on Vascular Function and Central Hemodynamics in Patients With Type 2 Diabetes Mellitus publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.029529 – volume: 38 start-page: 75 year: 1989 ident: ref_227 article-title: Kidney Hemodynamics After Ketone Body and Amino Acid Infusion in Normal and IDDM Subjects publication-title: Diabetes doi: 10.2337/diab.38.1.75 – volume: 280 start-page: 119018 year: 2021 ident: ref_309 article-title: Role of sodium glucose cotransporter type 2 inhibitors dapagliflozin on diabetic nephropathy in rats; Inflammation, angiogenesis and apoptosis publication-title: Life Sci. doi: 10.1016/j.lfs.2021.119018 – volume: 383 start-page: 1436 year: 2020 ident: ref_106 article-title: Dapagliflozin in Patients with Chronic Kidney Disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2024816 – volume: 9 start-page: 106 year: 2020 ident: ref_242 article-title: Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal): A prespecified substudy of a double-blind, randomised, placebo-controlled trial publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(20)30382-X – volume: 133 start-page: 2038 year: 2016 ident: ref_212 article-title: Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.020226 – volume: 20 start-page: 479 year: 2017 ident: ref_241 article-title: Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13126 – volume: 122 start-page: 1958 year: 2012 ident: ref_19 article-title: Malonyl-CoA: The regulator of fatty acid synthesis and oxidation publication-title: J. Clin. Investig. doi: 10.1172/JCI63967 – volume: 11 start-page: 4502 year: 2021 ident: ref_200 article-title: Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: From pharmacology to pre-clinical and clinical therapeutics publication-title: Theranostics doi: 10.7150/thno.54498 – volume: 8 start-page: 4517 year: 2021 ident: ref_347 article-title: Mediators of the improvement in heart failure outcomes with empagliflozin in the EMPA-REG OUTCOME trial publication-title: ESC Heart Fail. doi: 10.1002/ehf2.13615 – volume: 2 start-page: 939 year: 2017 ident: ref_96 article-title: The Metabolodiuretic Promise of Sodium-Dependent Glucose Cotransporter 2 Inhibition publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2017.1891 – volume: 9 start-page: 863 year: 2018 ident: ref_236 article-title: Empagliflozin Induces Transient Diuresis Without Changing Long-Term Overall Fluid Balance in Japanese Patients With Type 2 Diabetes publication-title: Diabetes Ther. doi: 10.1007/s13300-018-0385-5 – volume: 309 start-page: F227 year: 2015 ident: ref_337 article-title: Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00689.2014 – volume: 15 start-page: 157 year: 2016 ident: ref_263 article-title: Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-016-0473-7 – volume: 317 start-page: F207 year: 2019 ident: ref_70 article-title: Knockout of Na+-glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00120.2019 – volume: 307 start-page: F1187 year: 2014 ident: ref_134 article-title: Hypoxia as a key player in the AKI-to-CKD transition publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00425.2014 – volume: 11 start-page: 87 year: 2021 ident: ref_193 article-title: The Effects of SGLT2 Inhibitors on Lipid Metabolism publication-title: Metabolites doi: 10.3390/metabo11020087 – ident: ref_224 doi: 10.3390/ijms20143406 – volume: 18 start-page: 44 year: 2019 ident: ref_244 article-title: How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-019-0839-8 – volume: 61 start-page: 722 year: 2017 ident: ref_150 article-title: Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation publication-title: Diabetologia doi: 10.1007/s00125-017-4509-7 – volume: 48 start-page: 191 year: 2015 ident: ref_301 article-title: Tofogliflozin, A Highly Selective Inhibitor of SGLT2 Blocks Proinflammatory and Proapoptotic Effects of Glucose Overload on Proximal Tubular Cells Partly by Suppressing Oxidative Stress Generation publication-title: Horm. Metab. Res. doi: 10.1055/s-0035-1555791 – volume: 32 start-page: 135 year: 2018 ident: ref_305 article-title: Combined SGLT2 and DPP4 Inhibition Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Nephropathy in Mice with Type 2 Diabetes publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-018-6778-x – volume: 17 start-page: e84353 year: 2019 ident: ref_75 article-title: Cardiovascular and Renal Benefits of SGLT2 Inhibitors: A Narrative Review publication-title: Int. J. Endocrinol. Metab. – volume: 393 start-page: 31 year: 2019 ident: ref_94 article-title: SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials publication-title: Lancet doi: 10.1016/S0140-6736(18)32590-X – volume: 176 start-page: 108856 year: 2021 ident: ref_90 article-title: Whole plantar nerve conduction study: A new tool for early diagnosis of peripheral diabetic neuropathy publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2021.108856 – volume: 52 start-page: 39 year: 2008 ident: ref_169 article-title: Overweight, Obesity, and the Development of Stage 3 CKD: The Framingham Heart Study publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2008.03.003 – volume: 363 start-page: k4365 year: 2018 ident: ref_50 article-title: Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: Nationwide register based cohort study publication-title: BMJ doi: 10.1136/bmj.k4365 – volume: 100 start-page: e24593 year: 2021 ident: ref_197 article-title: Effect of SGLT inhibitors on weight and lipid metabolism at 24 weeks of treatment in patients with diabetes mellitus publication-title: Medicine doi: 10.1097/MD.0000000000024593 – volume: 17 start-page: 1180 year: 2015 ident: ref_180 article-title: Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12572 – volume: 16 start-page: 84 year: 2017 ident: ref_278 article-title: Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-017-0564-0 – volume: 16 start-page: 29 year: 2017 ident: ref_249 article-title: Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: A post hoc analysis publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-017-0511-0 – volume: 133 start-page: 698 year: 2016 ident: ref_208 article-title: The Failing Heart Relies on Ketone Bodies as a Fuel publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.017355 – volume: 1 start-page: 75 year: 1836 ident: ref_4 article-title: Observations sur les proprietes febrifuges de la phloridzine publication-title: Bull. Soc. Med. Gand – volume: 11 start-page: 325 year: 2011 ident: ref_266 article-title: Leptin’s regulation of obesity-induced cardiac extracellular matrix remodeling publication-title: Cardiovasc. Toxicol. doi: 10.1007/s12012-011-9124-0 – volume: 52 start-page: 1545 year: 2021 ident: ref_183 article-title: Effect of SGLT2 Inhibitors on Stroke and Atrial Fibrillation in Diabetic Kidney Disease publication-title: Stroke doi: 10.1161/STROKEAHA.120.031623 – volume: 359 start-page: 45 year: 2016 ident: ref_261 article-title: Empagliflozin Protects against Diet-Induced NLRP-3 Inflammasome Activation and Lipid Accumulation publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.116.235069 – volume: 20 start-page: 1690 year: 2018 ident: ref_297 article-title: Empagliflozin directly improves diastolic function in human heart failure publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.1328 – volume: 121 start-page: 2012 year: 2010 ident: ref_315 article-title: Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.906610 – volume: 100 start-page: 1927 year: 2015 ident: ref_3 article-title: Dapagliflozin lowers plasma glucose concentration and improves β-cell function publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2014-3472 – volume: 83 start-page: 568 year: 2013 ident: ref_326 article-title: Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology publication-title: Kidney Int. doi: 10.1038/ki.2012.441 – volume: 27 start-page: 1131 year: 2021 ident: ref_45 article-title: Complicated urinary tract infections with diabetes mellitus publication-title: J. Infect. Chemother. doi: 10.1016/j.jiac.2021.05.012 – volume: 25 start-page: 2028 year: 2014 ident: ref_64 article-title: Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2013060588 – volume: 18 start-page: 315 year: 2021 ident: ref_143 article-title: SGLT2 Inhibitors and Their Mode of Action in Heart Failure—Has the Mystery Been Unravelled? publication-title: Curr. Heart Fail. Rep. doi: 10.1007/s11897-021-00529-8 – volume: 2020 start-page: 9036847 year: 2020 ident: ref_6 article-title: The Importance of Telemedicine during COVID-19 Pan-demic: A Focus on Diabetic Retinopathy publication-title: J. Diabetes Res. doi: 10.1155/2020/9036847 – volume: 97 start-page: 933 year: 2012 ident: ref_8 article-title: Tight glycemic control may increase regenerative potential of myocardium during acute infarction publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2011-2037 – volume: 48 start-page: 1346 year: 1999 ident: ref_88 article-title: Cochlear dysfunction in type 2 diabetes: A complication independent of neuropathy and acute hyperglycemia publication-title: Metabolism doi: 10.1016/S0026-0495(99)90141-5 – volume: 77 start-page: 1381 year: 2021 ident: ref_235 article-title: Empagliflozin in Patients With Heart Failure, Reduced Ejection Fraction, and Volume Overload publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2021.01.033 – volume: 17 start-page: 144 year: 2018 ident: ref_317 article-title: A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-018-0790-0 – volume: 65 start-page: 1190 year: 2016 ident: ref_203 article-title: Shift to Fatty Substrate Utilization in Response to Sodium–Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes publication-title: Diabetes doi: 10.2337/db15-1356 – volume: 482 start-page: 7S year: 1995 ident: ref_56 article-title: Mammalian ion-coupled solute transporters publication-title: J. Physiol. doi: 10.1113/jphysiol.1995.sp020559 – volume: 18 start-page: 16 year: 2019 ident: ref_218 article-title: SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-019-0820-6 – volume: 61 start-page: 2098 year: 2018 ident: ref_13 article-title: The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure publication-title: Diabetologia doi: 10.1007/s00125-018-4669-0 – volume: 59 start-page: 2104 year: 2001 ident: ref_131 article-title: Glomerular cell number in normal subjects and in type 1 diabetic patients publication-title: Kidney Int. doi: 10.1046/j.1523-1755.2001.00725.x – volume: 39 start-page: 1115 year: 2016 ident: ref_215 article-title: Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis publication-title: Diabetes Care doi: 10.2337/dc16-0542 – volume: 43 start-page: 501 year: 2020 ident: ref_207 article-title: Reinterpreting Cardiorenal Protection of Renal Sodium–Glucose Cotransporter 2 Inhibitors via Cellular Life History Programming publication-title: Diabetes Care doi: 10.2337/dc19-1410 – volume: 34 start-page: 443 year: 2020 ident: ref_286 article-title: Dapagliflozin and Ticagrelor Have Additive Effects on the Attenuation of the Activation of the NLRP3 Inflammasome and the Progression of Diabetic Cardiomyopathy: An AMPK–mTOR Interplay publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-020-06978-y – volume: 36 start-page: 543 year: 2019 ident: ref_292 article-title: Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2019.08.033 – volume: 33 start-page: e2818 year: 2017 ident: ref_36 article-title: Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: A systematic review with indirect comparison meta-analysis publication-title: Diabetes Metab. Res. Rev. doi: 10.1002/dmrr.2818 – volume: 140 start-page: 1463 year: 2019 ident: ref_103 article-title: Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.042929 – volume: 12 start-page: 1083 year: 1933 ident: ref_5 article-title: The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man publication-title: J. Clin. Investig. doi: 10.1172/JCI100559 – volume: 261 start-page: 32 year: 2007 ident: ref_65 article-title: Active sugar transport in health and disease publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2006.01746.x – volume: 136 start-page: 969 year: 2017 ident: ref_213 article-title: Effect of Empagliflozin on the Metabolic Signature of Patients With Type 2 Diabetes Mellitus and Cardiovascular Disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.029166 – volume: 17 start-page: 108 year: 2018 ident: ref_251 article-title: Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-018-0750-8 – volume: 278 start-page: F91 year: 2000 ident: ref_136 article-title: High glucose induces the activity and expression of Na(+)/H(+) exchange in glomerular mesangial cells publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.2000.278.1.F91 – volume: 143 start-page: 2188 year: 2021 ident: ref_152 article-title: Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.053350 – volume: 593 start-page: 1347 year: 2015 ident: ref_138 article-title: Na+ channel function, regulation, structure, trafficking and sequestration publication-title: J. Physiol. doi: 10.1113/jphysiol.2014.281428 – volume: 176 start-page: 22 year: 2017 ident: ref_141 article-title: CaMKII as a target for arrhythmia suppression publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2016.10.006 – volume: 291 start-page: F271 year: 2006 ident: ref_336 article-title: Hypoxia-inducible factors in the kidney publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00071.2006 – volume: 17 start-page: 83 year: 2021 ident: ref_11 article-title: SGLT2 inhibitors may offer benefit beyond diabetes publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-020-00391-2 – volume: 41 start-page: 322 year: 2019 ident: ref_165 article-title: Effects of Sodium-glucose Cotransporter 2 Inhibitor Monotherapy on Weight Changes in Patients With Type 2 Diabetes Mellitus: A Bayesian Network Meta-analysis publication-title: Clin. Ther. doi: 10.1016/j.clinthera.2019.01.001 – volume: 49 start-page: 1183 year: 2019 ident: ref_220 article-title: Cardioprotective Potential of an SGLT2 Inhibitor Against Doxorubicin-Induced Heart Failure publication-title: Korean Circ. J. doi: 10.4070/kcj.2019.0180 – volume: ume14 start-page: 2407 year: 2018 ident: ref_268 article-title: Effects of dapagliflozin on serum uric acid levels in hospitalized type 2 diabetic patients with inadequate glycemic control: A randomized controlled trial publication-title: Ther. Clin. Risk Manag. doi: 10.2147/TCRM.S186347 – volume: 35 start-page: e3113 year: 2018 ident: ref_91 article-title: Applicability of telemedicine in the screening of diabetic retinopathy (DR): The first multicentre study in Italy. The No Blind Study publication-title: Diabetes/Metab. Res. Rev. doi: 10.1002/dmrr.3113 – volume: 85 start-page: 79 year: 2005 ident: ref_339 article-title: Inappropriately low erythropoietin response for the degree of anemia in patients with noninsulin-dependent diabetes mellitus publication-title: Ann. Hematol. doi: 10.1007/s00277-005-1102-9 – volume: 41 start-page: 356 year: 2017 ident: ref_159 article-title: How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial publication-title: Diabetes Care doi: 10.2337/dc17-1096 – volume: 97 start-page: 202 year: 2020 ident: ref_123 article-title: The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial publication-title: Kidney Int. doi: 10.1016/j.kint.2019.09.013 – volume: 42 start-page: 700 year: 2020 ident: ref_104 article-title: Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa943 – volume: 23 start-page: 647 year: 1983 ident: ref_117 article-title: Hemodynamically mediated glomerular injury and the progressive nature of kidney disease publication-title: Kidney Int. doi: 10.1038/ki.1983.72 – volume: 9 start-page: e14890 year: 2021 ident: ref_342 article-title: Impact of sodium glucose linked cotransporter-2 inhibition on renal microvascular oxygen tension in a rodent model of diabetes mellitus publication-title: Physiol. Rep. doi: 10.14814/phy2.14890 – volume: 28 start-page: 85 year: 2017 ident: ref_58 article-title: MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2 publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2015111282 – volume: 40 start-page: S28 year: 2014 ident: ref_192 article-title: Adverse effects and safety of SGLT-2 inhibitors publication-title: Diabetes Metab. doi: 10.1016/S1262-3636(14)72693-X – volume: 22 start-page: 618 year: 2020 ident: ref_321 article-title: Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium–glucose cotransporter 2 inhibitors publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.1732 – ident: ref_257 doi: 10.1016/j.diabres.2020.108368 – volume: 152 start-page: 45 year: 2018 ident: ref_322 article-title: Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.03.013 – volume: 7 start-page: 429 year: 2019 ident: ref_107 article-title: Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): A randomised, double-blind, placebo-controlled trial publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(19)30086-5 – volume: 10 start-page: 441 year: 2019 ident: ref_311 article-title: Dapagliflozin Attenuates Renal Tubulointerstitial Fibrosis Associated With Type 1 Diabetes by Regulating STAT1/TGFβ1 Signaling publication-title: Front. Endocrinol. doi: 10.3389/fendo.2019.00441 – volume: 17 start-page: 319 year: 2021 ident: ref_59 article-title: Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-021-00393-8 – ident: ref_113 doi: 10.2337/dc22-S011 – volume: 715 start-page: 246 year: 2013 ident: ref_273 article-title: Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2013.05.014 – ident: ref_126 doi: 10.3390/jcm9072243 – volume: 20 start-page: 816 year: 2019 ident: ref_167 article-title: Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities publication-title: Obes. Rev. doi: 10.1111/obr.12841 – volume: 69 start-page: 1292 year: 2020 ident: ref_293 article-title: Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Diet–Induced Obese Mice publication-title: Diabetes doi: 10.2337/db19-0991 – volume: 97 start-page: 464 year: 2012 ident: ref_296 article-title: Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvs353 – volume: 31 start-page: 907 year: 2020 ident: ref_331 article-title: Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2020010010 – volume: 385 start-page: 1451 year: 2021 ident: ref_114 article-title: Empagliflozin in Heart Failure with a Preserved Ejection Fraction publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2107038 – volume: 38 start-page: 1730 year: 2015 ident: ref_162 article-title: Energy Balance After Sodium–Glucose Cotransporter 2 Inhibition publication-title: Diabetes Care doi: 10.2337/dc15-0355 – volume: 26 start-page: 947 year: 2021 ident: ref_210 article-title: Beneficial effects on kidney during treatment with sodium-glucose cotransporter 2 inhibitors: Proposed role of ketone utilization publication-title: Heart Fail. Rev. doi: 10.1007/s10741-020-10065-7 – volume: 158 start-page: 104870 year: 2020 ident: ref_285 article-title: Empagliflozin protects heart from inflammation and energy depletion via AMPK activation publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.104870 – volume: 99 start-page: 342 year: 1997 ident: ref_132 article-title: Podocyte loss and progressive glomerular injury in type II diabetes publication-title: J. Clin. Investig. doi: 10.1172/JCI119163 – volume: 128 start-page: 1139 year: 2021 ident: ref_142 article-title: Loss of CASK Accelerates Heart Failure Development publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.120.318170 – volume: 40 start-page: 771 year: 2017 ident: ref_204 article-title: Renal Handling of Ketones in Response to Sodium–Glucose Cotransporter 2 Inhibition in Patients With Type 2 Diabetes publication-title: Diabetes Care doi: 10.2337/dc16-2724 – volume: 12 start-page: 101 year: 2015 ident: ref_153 article-title: Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor publication-title: Diabetes Vasc. Dis. Res. doi: 10.1177/1479164114563304 – volume: 12 start-page: 814074 year: 2022 ident: ref_16 article-title: The Urinary Glucose Excretion by Sodium-Glucose Cotransporter 2 Inhibitor in Patients With Different Levels of Renal Function: A Systematic Review and Meta-Analysis publication-title: Front. Endocrinol. doi: 10.3389/fendo.2021.814074 – ident: ref_325 doi: 10.3390/biology9110369 – volume: 3 start-page: 1078 year: 1992 ident: ref_27 article-title: Effects of hyperglycemia on glucose transporters of the muscle: Use of the renal glucose reabsorption inhibitor phlorizin to control glycemia publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.V351078 – volume: 17 start-page: 153 year: 2018 ident: ref_245 article-title: Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-018-0797-6 – volume: 317 start-page: F419 year: 2019 ident: ref_63 article-title: Effect of renal tubule-specific knockdown of the Na+/H+ exchanger NHE3 in Akita diabetic mice publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00497.2018 – volume: 5 start-page: 642 year: 2018 ident: ref_154 article-title: Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes publication-title: ESC Heart Fail. doi: 10.1002/ehf2.12336 – volume: 117 start-page: 495 year: 2020 ident: ref_299 article-title: Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvaa123 – volume: 42 start-page: 693 year: 2019 ident: ref_173 article-title: Ambulatory Blood Pressure Reduction With SGLT-2 Inhibitors: Dose-Response Meta-analysis and Comparative Evaluation With Low-Dose Hydrochlorothiazide publication-title: Diabetes Care doi: 10.2337/dc18-2207 – ident: ref_302 doi: 10.3390/cells10061457 – volume: 15 start-page: 853 year: 2013 ident: ref_231 article-title: Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12127 – volume: 306 start-page: F551 year: 2014 ident: ref_81 article-title: Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00473.2013 – volume: 4 start-page: 575 year: 2019 ident: ref_295 article-title: Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2019.04.003 – volume: 306 start-page: F194 year: 2014 ident: ref_73 article-title: SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00520.2013 – volume: 20 start-page: 4 year: 2021 ident: ref_250 article-title: Effect of tofogliflozin on arterial stiffness in patients with type 2 diabetes: Prespecified sub-analysis of the prospective, randomized, open-label, parallel-group comparative UTOPIA trial publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-020-01206-1 – volume: 904 start-page: 174169 year: 2021 ident: ref_74 article-title: The pharmacological profile of SGLT2 inhibitors: Focus on mechanistic aspects and pharmacogenomics publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2021.174169 – volume: 1 start-page: 57 year: 2010 ident: ref_137 article-title: Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members publication-title: Diabetes Ther. doi: 10.1007/s13300-010-0006-4 – volume: 62 start-page: 1154 year: 2019 ident: ref_312 article-title: Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease publication-title: Diabetologia doi: 10.1007/s00125-019-4859-4 – volume: 170 start-page: 113677 year: 2019 ident: ref_323 article-title: Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2019.113677 – volume: 17 start-page: 62 year: 2018 ident: ref_252 article-title: SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-018-0708-x – volume: 133 start-page: 1705 year: 2019 ident: ref_298 article-title: Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice publication-title: Clin. Sci. doi: 10.1042/CS20190585 – volume: 139 start-page: 1985 year: 2019 ident: ref_333 article-title: Possible Mechanism of Hematocrit Elevation by Sodium Glucose Cotransporter 2 Inhibitors and Associated Beneficial Renal and Cardiovascular Effects publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.038881 – volume: 49 start-page: 1006 year: 2019 ident: ref_243 article-title: Effects of empagliflozin treatment on cardiac function and structure in patients with type 2 diabetes: A cardiac magnetic resonance study publication-title: Intern. Med. J. doi: 10.1111/imj.14260 – volume: 302 start-page: R75 year: 2012 ident: ref_118 article-title: Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat publication-title: Am. J. Physiol. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00357.2011 – volume: 10 start-page: 181 year: 2018 ident: ref_68 article-title: SGLT2 knockout prevents hyperglycemia and is associated with reduced pancreatic β-cell death in genetically obese mice publication-title: Islets doi: 10.1080/19382014.2018.1503027 – volume: 19 start-page: 1390 year: 2017 ident: ref_158 article-title: The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.933 – volume: 384 start-page: 117 year: 2021 ident: ref_102 article-title: Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2030183 – volume: 470 start-page: 461 year: 2017 ident: ref_144 article-title: Late sodium current associated cardiac electrophysiological and mechanical dysfunction publication-title: Pflügers Arch.-Eur. J. Physiol. doi: 10.1007/s00424-017-2079-7 – volume: 10 start-page: 14659 year: 2020 ident: ref_307 article-title: Canagliflozin ameliorates renal oxidative stress and inflammation by stimulating AMPK–Akt–eNOS pathway in the isoprenaline-induced oxidative stress model publication-title: Sci. Rep. doi: 10.1038/s41598-020-71599-2 – volume: 12 start-page: 429 year: 2016 ident: ref_39 article-title: Pharmacological Intervention in Type 2 Diabetes Mellitus—A Pathophysiologically Reasoned Approach? publication-title: Curr. Diabetes Rev. doi: 10.2174/1573399812666160613111959 – volume: 197 start-page: 46 year: 2018 ident: ref_253 article-title: The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels publication-title: Life Sci. doi: 10.1016/j.lfs.2018.01.032 – volume: 38 start-page: 429 year: 2015 ident: ref_174 article-title: Blood Pressure Reduction: An Added Benefit of Sodium–Glucose Cotransporter 2 Inhibitors in Patients With Type 2 Diabetes publication-title: Diabetes Care doi: 10.2337/dc14-1596 – volume: 11 start-page: 119 year: 2009 ident: ref_282 article-title: Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology publication-title: Eur. J. Heart Fail. doi: 10.1093/eurjhf/hfn043 – volume: 32 start-page: 1085 year: 2015 ident: ref_191 article-title: Effects of Baseline Blood Pressure and Low-Density Lipoprotein Cholesterol on Safety and Efficacy of Canagliflozin in Japanese Patients with Type 2 Diabetes Mellitus publication-title: Adv. Ther. doi: 10.1007/s12325-015-0255-8 – volume: 17 start-page: 1479164119883540 year: 2020 ident: ref_246 article-title: Effect of empagliflozin on brachial artery shear stress and endothelial function in subjects with type 2 diabetes: Results from an exploratory study publication-title: Diabetes Vasc. Dis. Res. doi: 10.1177/1479164119883540 – volume: 29 start-page: 406 year: 2013 ident: ref_161 article-title: Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis publication-title: Diabetes Metab. Res. Rev. doi: 10.1002/dmrr.2407 – volume: 32 start-page: 183 year: 2021 ident: ref_199 article-title: Lipid effects of sodium-glucose cotransporter 2 inhibitors publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000751 – volume: 7 start-page: 39884 year: 2017 ident: ref_269 article-title: Soluble Uric Acid Activates the NLRP3 Inflammasome publication-title: Sci. Rep. doi: 10.1038/srep39884 – volume: 9 start-page: 1025 year: 2018 ident: ref_327 article-title: Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet publication-title: J. Diabetes Investig. doi: 10.1111/jdi.12802 – volume: 380 start-page: 2295 year: 2019 ident: ref_105 article-title: Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1811744 – volume: 124 start-page: S28 year: 2019 ident: ref_60 article-title: Renal Effects of Sodium-Glucose Co-Transporter Inhibitors publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2019.10.027 – ident: ref_44 doi: 10.3390/medicina55060268 – volume: 40 start-page: 535 year: 2017 ident: ref_172 article-title: Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure publication-title: Hypertens. Res. doi: 10.1038/hr.2016.193 – volume: 57 start-page: 2147 year: 2018 ident: ref_179 article-title: The SGLT2 Inhibitor Dapagliflozin Significantly Improves the Peripheral Microvascular Endothelial Function in Patients with Uncontrolled Type 2 Diabetes Mellitus publication-title: Intern. Med. doi: 10.2169/internalmedicine.0701-17 – volume: 3 start-page: 575 year: 2018 ident: ref_216 article-title: Empagliflozin Increases Cardiac Energy Production in Diabetes publication-title: JACC: Basic Transl. Sci. – volume: 26 start-page: 603 year: 2020 ident: ref_209 article-title: Sodium glucose cotransporter 2 inhibitors: Mechanisms of action in heart failure publication-title: Heart Fail. Rev. doi: 10.1007/s10741-020-10041-1 – volume: 10 start-page: 14459 year: 2020 ident: ref_289 article-title: Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways publication-title: Sci. Rep. doi: 10.1038/s41598-020-71449-1 – volume: 39 start-page: 717 year: 2016 ident: ref_157 article-title: SGLT2 Inhibitors and Cardiovascular Risk: Lessons Learned From the EMPA-REG OUTCOME Study publication-title: Diabetes Care doi: 10.2337/dc16-0041 – volume: 27 start-page: 2269 year: 2011 ident: ref_97 article-title: High cardiovascular risk in patients with Type 2 diabetic nephropathy: The predictive role of albuminuria and glomerular filtration rate. The NID-2 Prospective Cohort Study publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfr644 – volume: 60 start-page: 534 year: 2012 ident: ref_255 article-title: Wave Reflections, Assessed With a Novel Method for Pulse Wave Separation, Are Associated With End-Organ Damage and Clinical Outcomes publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.112.194571 – volume: 144 start-page: 21 year: 2006 ident: ref_170 article-title: Body Mass Index and Risk for End-Stage Renal Disease publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-144-1-200601030-00006 – volume: 17 start-page: 5 year: 2018 ident: ref_234 article-title: SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: A randomised controlled trial publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-017-0654-z – volume: 92 start-page: 158 year: 2012 ident: ref_20 article-title: LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial publication-title: Clin. Pharmacol. Ther. doi: 10.1038/clpt.2012.58 – volume: 14 start-page: 1113 year: 2018 ident: ref_198 article-title: SGLT-2 inhibitors: Pharmacokinetics characteristics and effects on lipids publication-title: Expert Opin. Drug Metab. Toxicol. – volume: 121 start-page: 1606 year: 2010 ident: ref_287 article-title: Elevated Cytosolic Na+ Increases Mitochondrial Formation of Reactive Oxygen Species in Failing Cardiac Myocytes publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.914911 – volume: 111 start-page: p30 year: 2009 ident: ref_78 article-title: Adenosine A1 Receptors Determine Glomerular Hyperfiltration and the Salt Paradox in Early Streptozotocin Diabetes Mellitus publication-title: Nephron Physiol. doi: 10.1159/000208211 – volume: 71 start-page: 201 year: 2018 ident: ref_111 article-title: 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.11.025 – volume: 83 start-page: 18 year: 2018 ident: ref_306 article-title: IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice publication-title: Metabolism doi: 10.1016/j.metabol.2018.01.002 – volume: 6 start-page: e13741 year: 2018 ident: ref_319 article-title: Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts publication-title: Physiol. Rep. doi: 10.14814/phy2.13741 – volume: 75 start-page: 443 year: 1994 ident: ref_147 article-title: Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure publication-title: Circ. Res. doi: 10.1161/01.RES.75.3.443 – volume: 3 start-page: 43 year: 2016 ident: ref_275 article-title: Glycemic Control with Ipragliflozin, a Novel Selective SGLT2 Inhibitor, Ameliorated Endothelial Dysfunction in Streptozotocin-Induced Diabetic Mouse publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2016.00043 – volume: 22 start-page: 889 year: 2017 ident: ref_264 article-title: Epicardial adipose tissue as a metabolic transducer: Role in heart failure and coronary artery disease publication-title: Heart Fail Rev. doi: 10.1007/s10741-017-9644-1 – volume: 304 start-page: E117 year: 2013 ident: ref_69 article-title: Improved glycemic control in mice lacking Sglt1 and Sglt2 publication-title: Am. J. Physiol. Metab. – volume: 13 start-page: e006277 year: 2020 ident: ref_284 article-title: Empagliflozin Blunts Worsening Cardiac Dysfunction Associated With Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure publication-title: Circ. Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.119.006277 – volume: 377 start-page: 644 year: 2017 ident: ref_46 article-title: Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1611925 – volume: 105 start-page: e1056 year: 2020 ident: ref_340 article-title: Dapagliflozin Suppresses Hepcidin And Increases Erythropoiesis publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgaa057 – volume: 4 start-page: 1004 year: 2016 ident: ref_33 article-title: Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): A 28 week, multicentre, double-blind, phase 3, randomised controlled trial publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(16)30267-4 – volume: 23 start-page: 208 year: 2021 ident: ref_31 article-title: Durability of glycaemic control in type 2 diabetes: A systematic review and meta-analysis for its association with body weight changes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.14217 – volume: 373 start-page: 2117 year: 2015 ident: ref_47 article-title: Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1504720 – volume: 104 start-page: 4253 year: 2019 ident: ref_248 article-title: The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2019-00706 – volume: 20 start-page: 1361 year: 2018 ident: ref_267 article-title: Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13229 – volume: 234 start-page: 255 year: 2017 ident: ref_164 article-title: Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice publication-title: J. Endocrinol. doi: 10.1530/JOE-17-0263 – volume: 142 start-page: 1028 year: 2020 ident: ref_233 article-title: Empagliflozin in Heart Failure publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.045691 – volume: 20 start-page: 1977 year: 2018 ident: ref_182 article-title: SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: A systematic review and meta-analysis publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13295 – ident: ref_185 doi: 10.1371/journal.pone.0215362 – volume: 21 start-page: 2564 year: 2019 ident: ref_25 article-title: Durability of glycaemic control with dapagliflozin, an SGLT2 inhibitor, compared with saxagliptin, a DPP4 inhibitor, in patients with inadequately controlled type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13841 – volume: 94 start-page: 26 year: 2018 ident: ref_127 article-title: Renoprotective effects of sodium-glucose cotransporter-2 inhibitors publication-title: Kidney Int. doi: 10.1016/j.kint.2017.12.027 – volume: 375 start-page: 323 year: 2016 ident: ref_129 article-title: Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1515920 – volume: 21 start-page: 263 year: 2015 ident: ref_222 article-title: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease publication-title: Nat. Med. doi: 10.1038/nm.3804 – volume: 22 start-page: 1157 year: 2020 ident: ref_313 article-title: A metabolomics-based molecular pathway analysis of how the sodium-glucose co-transporter-2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.14018 – volume: 38 start-page: 2654 year: 2016 ident: ref_42 article-title: SGLT2 Inhibitor-associated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis publication-title: Clin. Ther. doi: 10.1016/j.clinthera.2016.11.002 – volume: 80 start-page: 1 year: 2018 ident: ref_320 article-title: The Role of Autophagy in the Heart publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021317-121427 – volume: 12 start-page: 1179551419866811 year: 2019 ident: ref_195 article-title: Potential Impact on Lipoprotein Subfractions in Type 2 Diabetes publication-title: Clin. Med. Insights: Endocrinol. Diabetes – volume: 13 start-page: 11 year: 2017 ident: ref_53 article-title: Renal, metabolic and cardiovascular considerations of SGLT2 inhibition publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2016.170 – volume: 114 start-page: 12 year: 2018 ident: ref_140 article-title: Cardiac effects of SGLT2 inhibitors: The sodium hypothesis publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvx149 – volume: 11 start-page: 2127 year: 2020 ident: ref_223 article-title: SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease publication-title: Nat. Commun. doi: 10.1038/s41467-020-15983-6 – volume: 2021 start-page: 5593589 year: 2021 ident: ref_258 article-title: Influence of SGLT2 Inhibitor Treatment on Urine Antioxidant Status in Type 2 Diabetic Patients: A Pilot Study publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2021/5593589 – volume: 96 start-page: e6944 year: 2017 ident: ref_23 article-title: Safety and efficiency of SGLT2 inhibitor combining with insulin in subjects with diabetes: Systematic review and meta-analysis of randomized controlled trials publication-title: Medicine doi: 10.1097/MD.0000000000006944 – volume: 68 start-page: 109506 year: 2019 ident: ref_303 article-title: Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition publication-title: Cell Signal. doi: 10.1016/j.cellsig.2019.109506 – volume: 144 start-page: 1284 year: 2021 ident: ref_115 article-title: Effect of Empagliflozin on Worsening Heart Failure Events in Patients With Heart Failure and Preserved Ejection Fraction: EMPEROR-Preserved Trial publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.056824 – volume: 22 start-page: 2383 year: 2020 ident: ref_116 article-title: Baseline characteristics of patients with heart failure with preserved ejection fraction in the EMPEROR-Preserved trial publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.2064 – volume: 60 start-page: 568 year: 2016 ident: ref_149 article-title: Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits publication-title: Diabetologia doi: 10.1007/s00125-016-4134-x – volume: 139 start-page: 2129 year: 2019 ident: ref_217 article-title: Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.036459 – ident: ref_139 doi: 10.3390/ijms22157976 – volume: 134 start-page: 752 year: 2016 ident: ref_124 article-title: Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.021887 – volume: 124 start-page: 499 year: 2014 ident: ref_18 article-title: Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients publication-title: J. Clin. Investig. doi: 10.1172/JCI72227 – volume: 101 start-page: 1249 year: 2016 ident: ref_30 article-title: Effect of Dapagliflozin With and Without Acipimox on Insulin Sensitivity and Insulin Secretion in T2DM Males publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-2597 – volume: 8 start-page: 6791 year: 2018 ident: ref_330 article-title: High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection publication-title: Sci. Rep. doi: 10.1038/s41598-018-25054-y – volume: 13 start-page: 1031 year: 2019 ident: ref_190 article-title: Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center publication-title: Diabetes Metab. Syndr. Clin. Res. Rev. doi: 10.1016/j.dsx.2019.01.016 – volume: 104 start-page: 298 year: 2017 ident: ref_290 article-title: Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.01.035 – volume: 10 start-page: 419 year: 2019 ident: ref_206 article-title: FGF21 as Modulator of Metabolism in Health and Disease publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00419 – volume: 20 start-page: 2532 year: 2018 ident: ref_108 article-title: On Behalf of the DERIVE Study Investigators Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study publication-title: Diabetes, Obes. Metab. doi: 10.1111/dom.13413 – volume: 12 start-page: 738848 year: 2021 ident: ref_175 article-title: Effects of SGLT2 Inhibitors and GLP-1 Receptor Agonists on Renin-Angiotensin-Aldosterone System publication-title: Front. Endocrinol. doi: 10.3389/fendo.2021.738848 – volume: 16 start-page: 8 year: 2017 ident: ref_194 article-title: Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: Comparison with sitagliptin publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-016-0491-5 – volume: 2019 start-page: 3971060 year: 2019 ident: ref_24 article-title: Long-Term Effectiveness and Safety of SGLT-2 Inhibitors in an Italian Cohort of Patients with Type 2 Diabetes Mellitus publication-title: J. Diabetes Res. doi: 10.1155/2019/3971060 – volume: 16 start-page: 138 year: 2017 ident: ref_247 article-title: Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-017-0621-8 – volume: 352 start-page: 517 year: 2016 ident: ref_230 article-title: Effect of Dapagliflozin Treatment on Fluid and Electrolyte Balance in Diabetic Rats publication-title: Am. J. Med. Sci. doi: 10.1016/j.amjms.2016.08.015 – volume: 178 start-page: 1190 year: 2018 ident: ref_49 article-title: Association Between Sodium-Glucose Cotransporter 2 Inhibitors and Lower Extremity Amputation Among Patients With Type 2 Diabetes publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2018.3034 – volume: 311 start-page: F1217 year: 2016 ident: ref_83 article-title: Solute transport and oxygen consumption along the nephrons: Effects of Na+ transport inhibitors publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00294.2016 – volume: 7 start-page: 4429 year: 2020 ident: ref_151 article-title: Empagliflozin inhibits Na+ /H+ exchanger activity in human atrial cardiomyocytes publication-title: ESC Heart Fail. doi: 10.1002/ehf2.13024 – volume: 15 start-page: 335 year: 2017 ident: ref_318 article-title: Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission publication-title: Redox Biol. doi: 10.1016/j.redox.2017.12.019 – volume: 61 start-page: 2108 year: 2018 ident: ref_229 article-title: SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review publication-title: Diabetologia doi: 10.1007/s00125-018-4670-7 – volume: 18 start-page: 45 year: 2019 ident: ref_291 article-title: The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-019-0849-6 – volume: 23 start-page: 2775 year: 2021 ident: ref_22 article-title: Effects of empagliflozin on insulin initiation or intensification in patients with type 2 diabetes and cardiovascular disease: Findings from the EMPA-REG OUTCOME trial publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.14535 – volume: 20 start-page: 145 year: 2021 ident: ref_156 article-title: Efficacy and durability of multifactorial intervention on mortality and MACEs: A randomized clinical trial in type-2 diabetic kidney disease publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-021-01343-1 – volume: 57 start-page: 2599 year: 2014 ident: ref_121 article-title: Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration publication-title: Diabetologia doi: 10.1007/s00125-014-3396-4 – ident: ref_205 doi: 10.1172/jci.insight.123130 – volume: 5 start-page: 290 year: 2016 ident: ref_310 article-title: Pentraxin-3 regulates the inflammatory activity of macrophages publication-title: Biochem. Biophys. Rep. – volume: 9 start-page: 15868 year: 2019 ident: ref_85 article-title: Mechanism and Consequences of The Impaired Hif-1α Response to Hypoxia in Human Proximal Tubular HK-2 Cells Exposed to High Glucose publication-title: Sci. Rep. doi: 10.1038/s41598-019-52310-6 – volume: 20 start-page: 5 year: 2021 ident: ref_196 article-title: Empagliflozin protects against atherosclerosis progression by modulating lipid profiles and sympathetic activity publication-title: Lipids Health Dis. doi: 10.1186/s12944-021-01430-y – volume: 380 start-page: 347 year: 2019 ident: ref_48 article-title: Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1812389 – volume: 221 start-page: 679 year: 1971 ident: ref_225 article-title: Uptake of ketone bodies by dog kidney in vivo publication-title: Am. J. Physiol. Content doi: 10.1152/ajplegacy.1971.221.3.679 – volume: 66 start-page: 975 year: 2014 ident: ref_274 article-title: Effects of sodium-glucose cotransporter 2 selective inhibitor ipragliflozin on hyperglycaemia, oxidative stress, inflammation and liver injury in streptozotocin-induced type 1 diabetic rats publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.12223 – volume: 26 start-page: 623 year: 2021 ident: ref_12 article-title: SGLT2-inhibitors; more than just glycosuria and diuresis publication-title: Heart Fail Rev. doi: 10.1007/s10741-020-10038-w – volume: 234 start-page: 3231 year: 2018 ident: ref_271 article-title: Sodium–glucose cotransporter inhibitors and oxidative stress: An update publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26760 – volume: 136 start-page: 1548 year: 2017 ident: ref_146 article-title: Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.030418 – volume: 8 start-page: 903 year: 2020 ident: ref_344 article-title: Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: A post-hoc analysis from the CREDENCE trial publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(20)30300-4 – volume: 42 start-page: 3599 year: 2021 ident: ref_110 article-title: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) With the Special Contribution of the Heart Failure Association (HFA) of the ESC publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehab368 – volume: 42 start-page: e159 year: 2019 ident: ref_279 article-title: Effect of Empagliflozin on Endothelial Function in Patients With Type 2 Diabetes and Cardiovascular Disease: Results from the Multicenter, Randomized, Placebo-Controlled, Double-Blind EMBLEM Trial publication-title: Diabetes Care doi: 10.2337/dc19-1177 – volume: 2014 start-page: 83421 year: 2014 ident: ref_82 article-title: Hypoxia in Diabetic Kidneys publication-title: BioMed Res. Int. doi: 10.1155/2014/837421 – volume: 1 start-page: 140 year: 2013 ident: ref_52 article-title: SGLT inhibitors in management of diabetes publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(13)70050-0 – volume: 57 start-page: 1015 year: 2003 ident: ref_145 article-title: Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(02)00809-X – volume: 52 start-page: 837 year: 2021 ident: ref_187 article-title: Mini Review: Reappraisal of Uric Acid in Chronic Kidney Disease publication-title: Am. J. Nephrol. doi: 10.1159/000519491 – volume: 8 start-page: 582 year: 2020 ident: ref_109 article-title: Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(20)30162-5 – volume: 75 start-page: 894 year: 2020 ident: ref_61 article-title: Antihypertensive and Renal Mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) Inhibitors publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.119.11684 – ident: ref_280 doi: 10.3390/jcm8111814 – volume: 36 start-page: 3169 year: 2013 ident: ref_2 article-title: Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc13-0387 – volume: 383 start-page: 1425 year: 2020 ident: ref_92 article-title: Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2004967 – volume: 91 start-page: 733 year: 2011 ident: ref_57 article-title: Biology of human sodium glucose transporters publication-title: Physiol. Rev. doi: 10.1152/physrev.00055.2009 – volume: 24 start-page: 1655 year: 2006 ident: ref_99 article-title: Management of cardiovascular risk factors in advanced type 2 diabetic nephropathy: A comparative analysis in nephrology, diabetology and primary care settings publication-title: J. Hypertens. doi: 10.1097/01.hjh.0000239303.93872.31 – volume: 16 start-page: 1087 year: 2014 ident: ref_232 article-title: Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12322 – volume: 9 start-page: 178 year: 2017 ident: ref_345 article-title: A Possible Mechanism for Renoprotective Effect of Sodium-Glucose Cotransporter 2 Inhibitor: Elevation of Erythropoietin Production publication-title: J. Clin. Med. Res. doi: 10.14740/jocmr2857w – volume: 274 start-page: R263 year: 1998 ident: ref_238 article-title: Juxtaglomerular cell complex in the regulation of renal salt excretion publication-title: Am. J. Physiol. Integr. Comp. Physiol. doi: 10.1152/ajpregu.1998.274.2.R263 – volume: 11 start-page: 190 year: 2020 ident: ref_37 article-title: Prospect of Sodium-Glucose Co-transporter 2 Inhibitors Combined With Insulin for the Treatment of Type 2 Diabetes publication-title: Front. Endocrinol. doi: 10.3389/fendo.2020.00190 – volume: 444 start-page: 860 year: 2006 ident: ref_259 article-title: Inflammation and metabolic disorders publication-title: Nature doi: 10.1038/nature05485 – ident: ref_265 doi: 10.3390/biom12020176 – volume: 4 start-page: 312 year: 2016 ident: ref_294 article-title: Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction publication-title: JACC Heart Fail. doi: 10.1016/j.jchf.2015.10.007 – volume: 16 start-page: 489 year: 2020 ident: ref_329 article-title: Autophagy in kidney homeostasis and disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-020-0309-2 – volume: 300 start-page: E287 year: 2011 ident: ref_228 article-title: Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes publication-title: Am. J. Physiol. Metab. – volume: 12 start-page: 2042098621989134 year: 2021 ident: ref_41 article-title: Adverse events associated with sodium glucose co-transporter 2 inhibitors: An overview of quantitative systematic reviews publication-title: Ther. Adv. Drug Saf. doi: 10.1177/2042098621989134 – volume: 302 start-page: R166 year: 2012 ident: ref_62 article-title: Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure publication-title: Am. J. Physiol. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00127.2011 – volume: 53 start-page: 75 year: 2020 ident: ref_178 article-title: Does SGLT2 Inhibition Affect Sympathetic Nerve Activity in Type 2 Diabetes? publication-title: Horm. Metab. Res. – volume: 20 start-page: 458 year: 2017 ident: ref_188 article-title: Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13101 – volume: 97 start-page: 1020 year: 2012 ident: ref_166 article-title: Effects of Dapagliflozin on Body Weight, Total Fat Mass, and Regional Adipose Tissue Distribution in Patients with Type 2 Diabetes Mellitus with Inadequate Glycemic Control on Metformin publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2011-2260 – volume: 157 start-page: 1029 year: 2016 ident: ref_29 article-title: Tofogliflozin Improves Insulin Resistance in Skeletal Muscle and Accelerates Lipolysis in Adipose Tissue in Male Mice publication-title: Endocrinology doi: 10.1210/en.2015-1588 – ident: ref_256 doi: 10.3390/ijms22168786 – volume: 98 start-page: 579 year: 2020 ident: ref_135 article-title: The role of renal hypoxia in the pathogenesis of diabetic kidney disease: A promising target for newer renoprotective agents including SGLT2 inhibitors? publication-title: Kidney Int. doi: 10.1016/j.kint.2020.02.041 – volume: 141 start-page: 704 year: 2020 ident: ref_341 article-title: Effect of Empagliflozin on Erythropoietin Levels, Iron Stores, and Red Blood Cell Morphology in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.044235 – volume: 300 start-page: R1009 year: 2011 ident: ref_71 article-title: The proximal tubule in the pathophysiology of the diabetic kidney publication-title: Am. J. Physiol. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00809.2010 – ident: ref_133 doi: 10.1172/jci.insight.98720 – volume: 19 start-page: 159 year: 2020 ident: ref_148 article-title: Characterization of left ventricular myocardial sodium-glucose cotransporter 1 expression in patients with end-stage heart failure publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-020-01141-1 – volume: 333 start-page: 43 year: 2017 ident: ref_163 article-title: SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2017.08.005 – volume: 2 start-page: e00050 year: 2018 ident: ref_40 article-title: Sodium-glucose cotransporter 2 inhibitor plus pioglitazone vs. pioglitazone alone in patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials publication-title: Endocrinol. Diabetes Metab. doi: 10.1002/edm2.50 – ident: ref_201 doi: 10.3390/cells10102699 – volume: 33 start-page: 140 year: 2019 ident: ref_26 article-title: An investigation into the durability of glycemic control in patients with type II diabetes initiated on canagliflozin or sitagliptin: A real-world analysis of electronic medical records publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2018.10.016 – volume: 73 start-page: 1931 year: 2019 ident: ref_219 article-title: Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2019.01.056 – volume: 35 start-page: e3169 year: 2019 ident: ref_38 article-title: Effects of sodium-glucose cotransporter (SGLT) inhibitors in addition to insulin therapy on glucose control and safety outcomes in adults with type 1 diabetes: A meta-analysis of randomized controlled trials publication-title: Diabetes. Metab. Res. Rev. doi: 10.1002/dmrr.3169 – volume: 28 start-page: 1023 year: 2017 ident: ref_80 article-title: Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2016060666 – volume: 124 start-page: 509 year: 2014 ident: ref_15 article-title: Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production publication-title: J. Clin. Investig. doi: 10.1172/JCI70704 – volume: 33 start-page: 100725 year: 2021 ident: ref_181 article-title: Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes publication-title: Int. J. Cardiol. Heart Vasc. – volume: 20 start-page: 1972 year: 2018 ident: ref_35 article-title: SGLT2 inhibitor plus DPP-4 inhibitor as combination therapy for type 2 diabetes: A systematic review and meta-analysis publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13294 – volume: 9 start-page: e112394 year: 2014 ident: ref_276 article-title: The Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Improves Diabetes-Induced Vascular Dysfunction in the Streptozotocin Diabetes Rat Model by Interfering with Oxidative Stress and Glucotoxicity publication-title: PLoS ONE doi: 10.1371/journal.pone.0112394 – volume: 21 start-page: 713 year: 2019 ident: ref_343 article-title: Canagliflozin Improves Erythropoiesis in Diabetes Patients with Anemia of Chronic Kidney Disease publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2019.0212 – volume: 27 start-page: 136 year: 2010 ident: ref_51 article-title: Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications publication-title: Diabet Med. doi: 10.1111/j.1464-5491.2009.02894.x – volume: 12 start-page: 658 year: 2011 ident: ref_1 article-title: Kidney in diabetes: From organ damage target to therapeutic target publication-title: Curr. Drug Metab. doi: 10.2174/138920011796504509 – volume: 29 start-page: 498 year: 2006 ident: ref_98 article-title: Cardiovascular Risk Factors and Disease Management in Type 2 Diabetic Patients With Diabetic Nephropathy publication-title: Diabetes Care doi: 10.2337/diacare.29.03.06.dc05-1776 – volume: 109 start-page: 1327 year: 2011 ident: ref_314 article-title: Mitochondrial Fusion is Essential for Organelle Function and Cardiac Homeostasis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.258723 – ident: ref_87 doi: 10.1371/journal.pone.0178473 – volume: 24 start-page: 96 year: 2015 ident: ref_240 article-title: Sodium–glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0000000000000084 – volume: 7 start-page: e000783 year: 2019 ident: ref_262 article-title: Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet publication-title: BMJ Open Diabetes Res. Care doi: 10.1136/bmjdrc-2019-000783 – volume: 23 start-page: 2814 year: 2021 ident: ref_335 article-title: Effects of empagliflozin on erythropoiesis in patients with type 2 diabetes: Data from a randomized, placebo-controlled study publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.14517 – volume: 383 start-page: 1413 year: 2020 ident: ref_101 article-title: Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2022190 – ident: ref_21 doi: 10.31038/EDMJ.2018232 – volume: 317 start-page: F767 year: 2019 ident: ref_328 article-title: Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00565.2018 – volume: 316 start-page: F173 year: 2019 ident: ref_189 article-title: SGLT2 inhibition and renal urate excretion: Role of luminal glucose, GLUT9, and URAT1 publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00462.2018 – volume: 43 start-page: 99 year: 2017 ident: ref_184 article-title: Effects of reducing blood pressure on renal outcomes in patients with type 2 diabetes: Focus on SGLT2 inhibitors and EMPA-REG OUTCOME publication-title: Diabetes Metab. doi: 10.1016/j.diabet.2016.12.010 – volume: 21 start-page: 91 year: 2005 ident: ref_32 article-title: Glucagon-like peptide 1(GLP-1) in biology and pathology publication-title: Diabetes Metab. Res. Rev. doi: 10.1002/dmrr.538 – volume: 304 start-page: F156 year: 2013 ident: ref_77 article-title: Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00409.2012 – volume: 29 start-page: 88 year: 2015 ident: ref_89 article-title: Autonomic dysfunction is associated with brief episodes of atrial fibrillation in type 2 diabetes publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2014.09.002 – volume: 158 start-page: 107927 year: 2019 ident: ref_34 article-title: Glycemic efficacy and safety of glucagon-like peptide-1 receptor agonist on top of sodium-glucose co-transporter-2 inhibitor treatment compared to sodium-glucose co-transporter-2 inhibitor alone: A systematic review and meta-analysis of randomized controlled trials publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2019.107927 – volume: 12 start-page: 352 year: 2015 ident: ref_177 article-title: Dapagliflozin lowers blood pressure in hypertensive and non-hypertensive patients with type 2 diabetes publication-title: Diabetes Vasc. Dis. Res. doi: 10.1177/1479164115585298 – volume: 30 start-page: 1272 year: 2014 ident: ref_76 article-title: Sodium-glucose cotransport inhibitors: Mechanisms, metabolic effects and implications for the treatment of diabetic patients with chronic kidney disease: FIGURE 1 publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfu299 – volume: 25 start-page: 121 year: 2018 ident: ref_160 article-title: The Global Epidemiology of Diabetes and Kidney Disease publication-title: Adv. Chronic Kidney Dis. doi: 10.1053/j.ackd.2017.10.011 – volume: 281 start-page: F887 year: 2001 ident: ref_86 article-title: Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00050.2001 – volume: 339 start-page: 211 year: 2013 ident: ref_221 article-title: Suppression of Oxidative Stress by β-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor publication-title: Science doi: 10.1126/science.1227166 – volume: 8 start-page: 844 year: 2016 ident: ref_334 article-title: Increased Hematocrit During Sodium-Glucose Cotransporter 2 Inhibitor Therapy Indicates Recovery of Tubulointerstitial Function in Diabetic Kidneys publication-title: J. Clin. Med. Res. doi: 10.14740/jocmr2760w – volume: 28 start-page: 364 year: 2004 ident: ref_54 article-title: The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function publication-title: JPEN J. Parenter Enter. Nutr. doi: 10.1177/0148607104028005364 – volume: 20 start-page: 2515 year: 2018 ident: ref_270 article-title: Increases in circulating levels of ketone bodies and cardiovascular protection with SGLT2 inhibitors: Is low-grade inflammation the neglected component? publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13488 – volume: 149 start-page: 717 year: 2008 ident: ref_72 article-title: Na+-Glucose Transporter-2 Messenger Ribonucleic Acid Expression in Kidney of Diabetic Rats Correlates with Glycemic Levels: Involvement of Hepatocyte Nuclear Factor-1α Expression and Activity publication-title: Endocrinology doi: 10.1210/en.2007-1088 – volume: 39 start-page: 396 year: 2016 ident: ref_171 article-title: Circadian blood pressure rhythm as a possible key target of SGLT2 inhibitors used for the treatment of Type 2 diabetes publication-title: Hypertens. Res. doi: 10.1038/hr.2016.1 – volume: 18 start-page: 15 year: 2019 ident: ref_288 article-title: SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-019-0816-2 – volume: 234 start-page: 223 year: 2018 ident: ref_300 article-title: Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26851 – volume: 61 start-page: 2087 year: 2018 ident: ref_67 article-title: Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2 publication-title: Diabetologia doi: 10.1007/s00125-018-4656-5 – volume: 27 start-page: 2393 year: 2015 ident: ref_338 article-title: Severity and Frequency of Proximal Tubule Injury Determines Renal Prognosis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2015060647 – volume: 318 start-page: F67 year: 2020 ident: ref_304 article-title: Blockade of sodium-glucose cotransporter 2 suppresses high glucose-induced angiotensinogen augmentation in renal proximal tubular cells publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00402.2019 – ident: ref_272 doi: 10.3390/biomedicines9101356 – volume: 39 start-page: 2036 year: 2016 ident: ref_202 article-title: Dapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes publication-title: Diabetes Care doi: 10.2337/dc15-2688 – ident: ref_186 doi: 10.3390/ijms222212394 – volume: 38 start-page: 2265 year: 2016 ident: ref_237 article-title: Pharmacodynamic Effects of Single and Multiple Doses of Empagliflozin in Patients With Type 2 Diabetes publication-title: Clin. Ther. doi: 10.1016/j.clinthera.2016.09.001 – volume: 26 start-page: 345 year: 2017 ident: ref_84 article-title: Hypoxia-inducible factor activation in diabetic kidney disease publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0000000000000341 – volume: 103 start-page: 1 year: 1985 ident: ref_239 article-title: Acute Vasoconstrictor Response to Intravenous Furosemide in Patients with Chronic Congestive Heart Failure publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-103-1-1 – volume: 129 start-page: 587 year: 2014 ident: ref_120 article-title: Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 1 Diabetes Mellitus publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.005081 – volume: 6 start-page: 186 year: 2020 ident: ref_155 article-title: SGLT2 Inhibitors Play a Salutary Role in Heart Failure via Modulation of the Mitochondrial Function publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2019.00186 – volume: 12 start-page: 700 year: 2017 ident: ref_17 article-title: SGLT2 Inhibition in the Diabetic Kidney-From Mechanisms to Clinical Outcome publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.06080616 – volume: 60 start-page: 890 year: 2011 ident: ref_28 article-title: SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function publication-title: Diabetes doi: 10.2337/db10-1328 – volume: 13 start-page: 370 year: 2017 ident: ref_277 article-title: The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats publication-title: Redox Biol. doi: 10.1016/j.redox.2017.06.009 – volume: 2018 start-page: 3106056 year: 2018 ident: ref_9 article-title: Role of Tight Glycemic Control during Acute Coronary Syndrome on CV Outcome in Type 2 Diabetes publication-title: J. Diabetes Res. doi: 10.1155/2018/3106056 – volume: 85 start-page: 32 year: 2018 ident: ref_260 article-title: Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes publication-title: Metabolism doi: 10.1016/j.metabol.2018.02.002 – volume: 21 start-page: 512 year: 2015 ident: ref_43 article-title: Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion publication-title: Nat. Med. doi: 10.1038/nm.3828 – volume: 384 start-page: 129 year: 2021 ident: ref_93 article-title: Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2030186 – volume: 29 start-page: 2755 year: 2018 ident: ref_125 article-title: Empagliflozin and Kidney Function Decline in Patients with Type 2 Diabetes: A Slope Analysis from the EMPA-REG OUTCOME Trial publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2018010103 – volume: 19 start-page: 35 year: 2020 ident: ref_130 article-title: Preventing major adverse cardiovascular events by SGLT-2 inhibition in patients with type 2 diabetes: The role of kidney publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-020-01010-x – volume: 39 start-page: 1108 year: 2016 ident: ref_214 article-title: CV Protection in the EMPA-REG OUTCOME Trial: A “Thrifty Substrate” Hypothesis publication-title: Diabetes Care doi: 10.2337/dc16-0330 – volume: 140 start-page: 1693 year: 2019 ident: ref_346 article-title: Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.042375 – ident: ref_112 doi: 10.2337/dc22-S010 – volume: 140 start-page: 303 year: 2019 ident: ref_122 article-title: Evaluation of Glomerular Hemodynamic Function by Empagliflozin in Diabetic Mice Using In Vivo Imaging publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.037418 – volume: 42 start-page: 498 year: 1997 ident: ref_226 article-title: Enzymes of Ketone Body Utilization in Human Tissues: Protein and Messenger RNA Levels of Succinyl-Coenzyme A (CoA):3-Ketoacid CoA Transferase and Mitochondrial and Cytosolic Acetoacetyl-CoA Thiolases publication-title: Pediatric Res. doi: 10.1203/00006450-199710000-00013 – volume: 20 start-page: 2617 year: 2018 ident: ref_308 article-title: Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13441 – volume: 58 start-page: 1183 year: 2015 ident: ref_176 article-title: Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-015-3547-2 – volume: 381 start-page: 1995 year: 2019 ident: ref_100 article-title: Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1911303 – ident: ref_119 doi: 10.1371/journal.pone.0100777 – volume: 40 start-page: e104705 year: 2021 ident: ref_316 article-title: Molecular mechanisms and physiological functions of mitophagy publication-title: EMBO J. doi: 10.15252/embj.2020104705 – ident: ref_332 doi: 10.3390/ijms21082987 – volume: 74 start-page: 351 year: 2012 ident: ref_79 article-title: Renal Function in Diabetic Disease Models: The Tubular System in the Pathophysiology of the Diabetic Kidney publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-020911-153333 – volume: 31 start-page: 119 year: 2017 ident: ref_283 article-title: SGLT-2 Inhibition with Dapagliflozin Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Cardiomyopathy in Mice with Type 2 Diabetes. Further Augmentation of the Effects with Saxagliptin, a DPP4 Inhibitor publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-017-6725-2 – volume: 24 start-page: 463 year: 2015 ident: ref_55 article-title: Sodium-glucose cotransport publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0000000000000152 – volume: 60 start-page: 215 year: 2017 ident: ref_14 article-title: Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition publication-title: Diabetologia doi: 10.1007/s00125-016-4157-3 – volume: 178 start-page: 108959 year: 2021 ident: ref_10 article-title: Does a strict glycemic control during acute coronary syndrome play a cardioprotective effect? Pathophysiology and clinical evidence publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2021.108959 – ident: ref_324 doi: 10.1007/s13238-020-00809-4 – volume: 40 start-page: 347 year: 2020 ident: ref_7 article-title: Liver fibrosis by FibroScan® independently of established cardiovascular risk parameters associates with macrovascular and microvascular complications in patients with type 2 diabetes publication-title: Liver Int. doi: 10.1111/liv.14274 – volume: 133 start-page: 706 year: 2016 ident: ref_211 article-title: Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.017545 – volume: 41 start-page: 255 year: 2020 ident: ref_95 article-title: 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehz486 – volume: 5 start-page: 610 year: 2017 ident: ref_128 article-title: Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: An exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(17)30182-1 – volume: 2021 start-page: 9944880 year: 2021 ident: ref_281 article-title: Anti-inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways publication-title: J. Immunol. Res. doi: 10.1155/2021/9944880 – volume: 72 start-page: S27 year: 2007 ident: ref_66 article-title: Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells publication-title: Kidney Int. doi: 10.1038/sj.ki.5002383 |
SSID | ssj0023259 |
Score | 2.637099 |
SecondaryResourceType | review_article |
Snippet | Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3651 |
SubjectTerms | Blood Glucose Diabetes Diabetes Mellitus, Type 2 - complications Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Drug dosages Gene expression Glucagon Glucose Humans Hypoglycemia Insulin resistance Plasma Review Sodium-Glucose Transporter 2 - metabolism Sodium-Glucose Transporter 2 Inhibitors - pharmacology Sodium-Glucose Transporter 2 Inhibitors - therapeutic use Stroke Volume |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-qUvBF1H4YtSWF9qksJpvdTfIkIj3PUttCFXwLu5tZjGhOzan437uT5KLXUp8zIWFmd-djfzM_gM8-Y-C5zQQrRWaZsEqwzCrNuEvTqCxtqR11Ix_9VOMT8f1UnvYFt6aHVc7OxPagLieWauQ73nHnPrbw2dzu1TUj1ii6Xe0pNBZgKfaehiBd2ehgSLgS3pKlxd4HMSVz1QHfE5_m71Tnlw1hoBMl43mX9E-c-Tdc8pn_Ga3CSh84hnudpdfgFdbr8Lqjknx4A-O9Ovx1Rxsf78OJC31cF-63WNMbpPd-d_MY_NkWHiF1-1bNZUOCfw5-HPPwsD6rTEXMO2_hZPTteH_MepYEZkWaTZkQNs29UzbOlFJrrkzJpRVGCIextlIY7jBBrw0dRRoROXqnnTgTWx_cGJe8g8V6UuMGhCkKGxOXlYgJ_pnkCkttIkOVY2MdBvB1pqjC9iPEicniovCpBKm1eK7WAL4M0lfd6Iz_yG3PdF70G6gpnswdwKfhsV_6dJ-ha5zcdjIyy2WkAnjfmWj4EJWzqKs2gHTOeIMAjdWef1JXZ-14bcpApco3X_6tLVjm1AkRJYyrbVic3tziBx-fTM3HdhE-AiKn5Zs priority: 102 providerName: ProQuest |
Title | An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35409011 https://www.proquest.com/docview/2649057469 https://www.proquest.com/docview/2649589506 https://pubmed.ncbi.nlm.nih.gov/PMC8998569 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8x0KS9IGAfBFiVSdvT5C11HDt5QBMgSjetDG1U6ltkO7YIghTaAuO_313TRhQ2aS958VmOzh_3O_vufgDv0WPgmU0FK0RqmbBSsNRKzbhXKioKW2hP2ci9Y9nti2-DZLAEc7bRmQLHf3XtiE-qP7r49Pv6_gtu-F3yONFl_1yeX44pnjmWlEu9gjZJEZdBTzTvCQgbprRpdOHB6ICuQ-Cf9F40Tk8Q5-PAyQeWqLMGqzMIGe7Vc74OS67agOc1qeT9S-juVeGPWzoC3F049CEivPBgGnU6ctTvpK7MgKdc2HOU91uOL8ck-Ovo-ykPv1ZnpSmJg-cV9DuHpwddNuNLYFaodMKEsCpD82y8KRKtuTQFT6wwQnjX1jYRhnsXO9SGjiLtnOMOzXfsTdsizDE-fg3L1bBymxAqJ2ybWK1EmwJB40y6QpvI0B2ysd4F8HGuqNzOiokTp8VFjk4FqTV_qNYAPjTSV3URjX_I7cx1ns9XQo6ILUNQiW58AO-aZtwE9LKhKze8qWWSNEsiGcCbeoqagehii_JrA1ALk9cIUIHtxZaqPJsW2iZfNJHZ1n_-_ja84JQcEcWMyx1Ynoxu3FuELBPTgmdqoPCbdo5asLJ_eHzys0VGJGlN1-kf5dHvIg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQvqDwbKGAkekJWE8dxkgNCVWG7S3cLEluptxA7thpEs6XZUvVP8Rs7k2xCFwS3nj15aDz2N2PPzAfwGiMGkZpE8kImhkujJE-MyrlwcewXhSlyR9XIkwM1PJQfj6KjFfjV1cJQWmW3JzYbdTEzdEa-jcCdom-B0dy70x-cWKPodrWj0GjNYt9eXmDIVr8dvcf53RJi8GG6O-QLVgFuZJzMuZQmThHEtNNFlOdC6UJERmopnQ1yE0ktnA0tYlnu-7m1VlgEudDpwKAzoF2I770Ft2WISE6V6YO9PsALRUPOFiDmcRWlqk20R0F_u_x2UlPOdaiiYBkC__Jr_0zPvIZ3g3W4t3BU2U5rWfdhxVYP4E5LXXn5EIY7Ffv0kzYae8FmjqEfyXab3NYzS899bvs_4F7KJpaqi8v6pCbBL3vjqWCj6rjUJTH9PILDG9HfY1itZpXdABZbaQLizpIBpZuGqbJFrn1NJ9XaOOvBm05RmVm0LCfmjO8Zhi6k1uy6Wj3Y6qVP21Yd_5Db7HSeLRZsnf02Lw9e9cO41Oj-JK_s7LyViZI08pUHT9op6j9Ex2dUxetBvDR5vQC18V4eqcrjpp03RbyRSp_-_7dewt3hdDLOxqOD_WewJqgKww-5UJuwOj87t8_RN5rrF41BMvh60yvgCkmcJEY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKt4ECgSJnpC1ie04yQFVpe2yS9tlBa3UW2o7thpEs22zbdW_xq_Ds3nQBcGtZ08emhnPw56ZD-CdyxhoqhNOcp5owrXgJNFCEmrjOMhznUuL3ch7YzE84J8Po8Ml-Nn2wmBZZWsT54Y6n2o8I-87x5262MJlc33blEVMtgbrp2cEEaTwprWF06hVZMdcX7n0rfow2nKyXqN0sL2_OSQNwgDRPE5mhHMdp86hKavySEoqVE4jzRXn1oRSR1xRa5hxfk0GgTTGUOMcHrMq1C4wUJa5996B5Rizoh4sf9weT7526R6jc6i20HlAIqJU1GX3jKVBv_h-UmEFNhNRuOgQ_4py_yzWvOH9Bg9gpQlb_Y1azx7Ckikfwd0ayPL6MQw3Sv_LJZodc-VPre-iSn9zXul6bvC5ST0NwllWf89gr3FRnVRI-O3T7j71R-VxoQrE_XkCB7fCwafQK6eleQ5-bLgOEUmLh1h8ylJhcqkChefWSlvjwfuWUZluBpgjjsaPzCUyyNbsJls9WOuoT-vBHf-gW215njXbt8p-K5sHb7tlt_HwNkWWZnpR00RJGgXCg2e1iLoP4WEa9vR6EC8IryPAod6LK2VxPB_ujflvJNIX__-tN3DPaX-2OxrvvIT7FFsyAkaoWIXe7PzCvHKB0ky9bjTSh6Pb3gS_AIOFKdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Overview+of+the+Cardiorenal+Protective+Mechanisms+of+SGLT2+Inhibitors&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Salvatore%2C+Teresa&rft.au=Galiero%2C+Raffaele&rft.au=Caturano%2C+Alfredo&rft.au=Rinaldi%2C+Luca&rft.date=2022-03-26&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=7&rft.spage=3651&rft_id=info:doi/10.3390%2Fijms23073651&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms23073651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |