An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors

Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 7; p. 3651
Main Authors Salvatore, Teresa, Galiero, Raffaele, Caturano, Alfredo, Rinaldi, Luca, Di Martino, Anna, Albanese, Gaetana, Di Salvo, Jessica, Epifani, Raffaella, Marfella, Raffaele, Docimo, Giovanni, Lettieri, Miriam, Sardu, Celestino, Sasso, Ferdinando Carlo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.03.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.
AbstractList Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.
Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.
Author Salvatore, Teresa
Di Martino, Anna
Sasso, Ferdinando Carlo
Di Salvo, Jessica
Epifani, Raffaella
Marfella, Raffaele
Lettieri, Miriam
Rinaldi, Luca
Galiero, Raffaele
Docimo, Giovanni
Caturano, Alfredo
Sardu, Celestino
Albanese, Gaetana
AuthorAffiliation 4 Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3.31 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK; miriam.lettieri@manchester.ac.uk
1 Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy; teresa.salvatore@unicampania.it
2 Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; raffaele.galiero@unicampania.it (R.G.); alfredo.caturano@unicampania.it (A.C.); luca.rinaldi@unicampania.it (L.R.); annadimarti@alice.it (A.D.M.); gaetanaalbanese@hotmail.it (G.A.); jessydisalvo@hotmail.it (J.D.S.); ellaphane@gmail.com (R.E.); raffaele.marfella@unicampania.it (R.M.); giovanni.docimo@unicampania.it (G.D.); celestino.sardu@unicampania.it (C.S.)
3 Mediterrannea Cardiocentro, 80122 Napoli, Italy
AuthorAffiliation_xml – name: 1 Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy; teresa.salvatore@unicampania.it
– name: 3 Mediterrannea Cardiocentro, 80122 Napoli, Italy
– name: 2 Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; raffaele.galiero@unicampania.it (R.G.); alfredo.caturano@unicampania.it (A.C.); luca.rinaldi@unicampania.it (L.R.); annadimarti@alice.it (A.D.M.); gaetanaalbanese@hotmail.it (G.A.); jessydisalvo@hotmail.it (J.D.S.); ellaphane@gmail.com (R.E.); raffaele.marfella@unicampania.it (R.M.); giovanni.docimo@unicampania.it (G.D.); celestino.sardu@unicampania.it (C.S.)
– name: 4 Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3.31 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK; miriam.lettieri@manchester.ac.uk
Author_xml – sequence: 1
  givenname: Teresa
  surname: Salvatore
  fullname: Salvatore, Teresa
– sequence: 2
  givenname: Raffaele
  orcidid: 0000-0002-7766-3430
  surname: Galiero
  fullname: Galiero, Raffaele
– sequence: 3
  givenname: Alfredo
  orcidid: 0000-0001-7761-7533
  surname: Caturano
  fullname: Caturano, Alfredo
– sequence: 4
  givenname: Luca
  orcidid: 0000-0002-6541-3821
  surname: Rinaldi
  fullname: Rinaldi, Luca
– sequence: 5
  givenname: Anna
  surname: Di Martino
  fullname: Di Martino, Anna
– sequence: 6
  givenname: Gaetana
  surname: Albanese
  fullname: Albanese, Gaetana
– sequence: 7
  givenname: Jessica
  surname: Di Salvo
  fullname: Di Salvo, Jessica
– sequence: 8
  givenname: Raffaella
  surname: Epifani
  fullname: Epifani, Raffaella
– sequence: 9
  givenname: Raffaele
  orcidid: 0000-0003-3960-9270
  surname: Marfella
  fullname: Marfella, Raffaele
– sequence: 10
  givenname: Giovanni
  surname: Docimo
  fullname: Docimo, Giovanni
– sequence: 11
  givenname: Miriam
  surname: Lettieri
  fullname: Lettieri, Miriam
– sequence: 12
  givenname: Celestino
  surname: Sardu
  fullname: Sardu, Celestino
– sequence: 13
  givenname: Ferdinando Carlo
  orcidid: 0000-0002-9142-7848
  surname: Sasso
  fullname: Sasso, Ferdinando Carlo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35409011$$D View this record in MEDLINE/PubMed
BookMark eNptkctLAzEQxoMovm-eZcGLB6t57jYXoRRfUFFQzyFJZ23KbqJJWvG_d2tVqniagfnNxzff7KB1HzwgdEDwKWMSn7lpmyjDFSsFWUPbhFPaw7is1lf6LbST0hRjyqiQm2iLCY4lJmQbXQ98cTeHOHfwVoS6yBMohjqOXYjgdVPcx5DBZjeH4hbsRHuX2rQAH65Gj7S48RNnXA4x7aGNWjcJ9r_qLnq6vHgcXvdGd1c3w8GoZ3nVzz3ObSVLwkxtxkJrWpoxFZYbzmsg2gpuaA0MOqcaYw0AFDgRrDbEEipMzXbR-VL3ZWZaGFvwOepGvUTX6viugnbq98S7iXoOc9WXsi9K2QkcfwnE8DqDlFXrkoWm0R7CLClacin6UuCyQ4_-oNMwi10sSwqLin8KHq46-rHyHXIHnCwBG0NKEeofhGC1-KFa_WGH0z-4dVlnFxb3uOb_pQ-rrZ_T
CitedBy_id crossref_primary_10_1007_s40256_024_00673_1
crossref_primary_10_4103_jicc_jicc_77_24
crossref_primary_10_3390_jcdd10120478
crossref_primary_10_22399_ijcesen_615
crossref_primary_10_3390_biomedicines11102611
crossref_primary_10_3389_fcvm_2022_1086672
crossref_primary_10_3390_ijms241612866
crossref_primary_10_1007_s13300_024_01550_5
crossref_primary_10_2147_DMSO_S390752
crossref_primary_10_3892_mmr_2025_13479
crossref_primary_10_3390_medicina60050837
crossref_primary_10_1016_j_heliyon_2024_e29486
crossref_primary_10_1186_s13098_024_01325_9
crossref_primary_10_3390_jcm13237093
crossref_primary_10_3390_antiox12111933
crossref_primary_10_1002_jcph_2437
crossref_primary_10_2459_JCM_0000000000001523
crossref_primary_10_1177_20420986231178126
crossref_primary_10_3390_biomedicines11030869
crossref_primary_10_3390_biomedicines11113084
crossref_primary_10_1093_eurheartjsupp_suac101
crossref_primary_10_4103_cdrp_cdrp_11_24
crossref_primary_10_3390_ijms24010351
crossref_primary_10_1186_s13062_025_00618_x
crossref_primary_10_1007_s00210_024_03708_1
crossref_primary_10_3389_fendo_2022_1071465
crossref_primary_10_36660_abchf_20240060
crossref_primary_10_1080_17446651_2023_2210673
crossref_primary_10_3803_EnM_2023_1764
crossref_primary_10_7759_cureus_65707
crossref_primary_10_3390_biomedicines11030819
crossref_primary_10_3390_nu15092031
crossref_primary_10_3390_antiox13121540
crossref_primary_10_1016_j_ejmcr_2024_100167
crossref_primary_10_1097_FJC_0000000000001423
crossref_primary_10_1111_dom_15505
crossref_primary_10_1016_j_diabres_2023_110686
crossref_primary_10_4081_itjm_2024_1716
crossref_primary_10_1016_j_mehy_2024_111417
crossref_primary_10_3390_medicina61020209
crossref_primary_10_1186_s12933_024_02200_7
crossref_primary_10_1136_thorax_2024_221906
crossref_primary_10_3390_medicina60101643
crossref_primary_10_1007_s40618_023_02135_y
crossref_primary_10_1038_s41598_023_47896_x
crossref_primary_10_3389_fcvm_2022_1008922
crossref_primary_10_3390_medicina61020202
crossref_primary_10_3390_medicina60020274
crossref_primary_10_4037_aacnacc2023830
crossref_primary_10_1080_13543784_2022_2160315
crossref_primary_10_3390_ijms251810173
crossref_primary_10_52727_2078_256X_2023_19_4_457_468
crossref_primary_10_5500_wjt_v13_i5_239
crossref_primary_10_1016_j_dsx_2023_102934
crossref_primary_10_3390_ijms24065089
crossref_primary_10_3390_ijms25094959
crossref_primary_10_1007_s00592_024_02359_1
crossref_primary_10_1016_j_ejmcr_2022_100074
crossref_primary_10_1038_s44161_023_00347_2
crossref_primary_10_3390_biomedicines11020322
crossref_primary_10_12968_jokc_2022_7_5_216
crossref_primary_10_1021_acsptsci_4c00076
crossref_primary_10_1007_s40265_024_02090_9
crossref_primary_10_1186_s12933_024_02325_9
crossref_primary_10_1080_14656566_2024_2364054
crossref_primary_10_1007_s11255_023_03680_4
crossref_primary_10_20996_1819_6446_2024_3018
crossref_primary_10_3390_diabetology4030022
crossref_primary_10_3390_biomedicines10092274
crossref_primary_10_3390_jcm12113815
crossref_primary_10_3389_fphar_2024_1393946
crossref_primary_10_1007_s00210_024_03406_y
crossref_primary_10_2147_DMSO_S400285
crossref_primary_10_3390_pharmaceutics15071995
crossref_primary_10_1155_2022_4282953
crossref_primary_10_3390_biomedicines12051102
crossref_primary_10_1016_j_ejphar_2024_176619
crossref_primary_10_1080_10408363_2024_2361012
crossref_primary_10_1016_j_diabres_2025_112050
crossref_primary_10_1080_14728222_2023_2240021
crossref_primary_10_1042_CS20220212
crossref_primary_10_1097_CRD_0000000000000637
crossref_primary_10_3389_fphar_2024_1349022
crossref_primary_10_3389_fpubh_2023_1150122
crossref_primary_10_12677_acm_2024_144980
crossref_primary_10_31083_j_rcm2508293
crossref_primary_10_3390_biom14111393
crossref_primary_10_1007_s11606_024_09073_2
crossref_primary_10_1016_j_ijcard_2024_132326
crossref_primary_10_3897_pharmacia_70_e96975
crossref_primary_10_1080_13543776_2024_2379929
crossref_primary_10_1155_2022_9613062
crossref_primary_10_1186_s12933_023_02023_y
crossref_primary_10_1016_j_urology_2023_01_032
crossref_primary_10_3389_fcvm_2023_1159953
crossref_primary_10_5114_aoms_174228
crossref_primary_10_3390_ijms25137057
crossref_primary_10_1016_j_anrea_2023_04_001
crossref_primary_10_1155_2023_5919468
crossref_primary_10_3390_biomedicines12092039
crossref_primary_10_4239_wjd_v15_i5_853
crossref_primary_10_18087_cardio_2023_7_n2471
crossref_primary_10_3390_cells12232691
crossref_primary_10_31083_j_fbl2804083
crossref_primary_10_36660_abchf_20240060i
crossref_primary_10_2174_0113816128304097240529053538
crossref_primary_10_26442_20751753_2024_4_202763
crossref_primary_10_51789_cmsj_2022_2_e14
crossref_primary_10_1055_a_1971_3381
crossref_primary_10_1186_s11658_024_00599_1
crossref_primary_10_3389_fcvm_2024_1289663
crossref_primary_10_3390_pharmaceutics16111363
crossref_primary_10_1161_HYPERTENSIONAHA_122_19586
crossref_primary_10_1016_j_trsl_2024_12_006
crossref_primary_10_3390_biomedicines10102379
crossref_primary_10_3390_biomedicines12071456
crossref_primary_10_1134_S0022093024070159
crossref_primary_10_1007_s00125_024_06228_y
crossref_primary_10_1186_s12874_024_02292_5
crossref_primary_10_3390_jcdd10060236
crossref_primary_10_1007_s40264_023_01373_6
crossref_primary_10_4330_wjc_v15_i3_76
crossref_primary_10_3390_ijms25147711
crossref_primary_10_1016_j_lpm_2022_104158
crossref_primary_10_1080_07391102_2022_2130983
crossref_primary_10_3238_arztebl_m2024_0072
crossref_primary_10_3389_fendo_2024_1395630
crossref_primary_10_2147_IJNRD_S448986
crossref_primary_10_3389_fendo_2023_1111984
crossref_primary_10_3389_fphar_2024_1422740
crossref_primary_10_15829_1728_8800_2025_4161
crossref_primary_10_1016_j_jdiacomp_2025_108998
Cites_doi 10.1136/jech-2015-206948
10.1161/CIRCULATIONAHA.117.029529
10.2337/diab.38.1.75
10.1016/j.lfs.2021.119018
10.1056/NEJMoa2024816
10.1016/S2213-8587(20)30382-X
10.1161/CIRCULATIONAHA.115.020226
10.1111/dom.13126
10.1172/JCI63967
10.7150/thno.54498
10.1002/ehf2.13615
10.1001/jamacardio.2017.1891
10.1007/s13300-018-0385-5
10.1152/ajprenal.00689.2014
10.1186/s12933-016-0473-7
10.1152/ajprenal.00120.2019
10.1152/ajprenal.00425.2014
10.3390/metabo11020087
10.3390/ijms20143406
10.1186/s12933-019-0839-8
10.1007/s00125-017-4509-7
10.1055/s-0035-1555791
10.1007/s10557-018-6778-x
10.1016/S0140-6736(18)32590-X
10.1016/j.diabres.2021.108856
10.1053/j.ajkd.2008.03.003
10.1136/bmj.k4365
10.1097/MD.0000000000024593
10.1111/dom.12572
10.1186/s12933-017-0564-0
10.1186/s12933-017-0511-0
10.1161/CIRCULATIONAHA.115.017355
10.1007/s12012-011-9124-0
10.1161/STROKEAHA.120.031623
10.1124/jpet.116.235069
10.1002/ejhf.1328
10.1161/CIRCULATIONAHA.109.906610
10.1210/jc.2014-3472
10.1038/ki.2012.441
10.1016/j.jiac.2021.05.012
10.1681/ASN.2013060588
10.1007/s11897-021-00529-8
10.1155/2020/9036847
10.1210/jc.2011-2037
10.1016/S0026-0495(99)90141-5
10.1016/j.jacc.2021.01.033
10.1186/s12933-018-0790-0
10.2337/db15-1356
10.1113/jphysiol.1995.sp020559
10.1186/s12933-019-0820-6
10.1007/s00125-018-4669-0
10.1046/j.1523-1755.2001.00725.x
10.2337/dc16-0542
10.2337/dc19-1410
10.1007/s10557-020-06978-y
10.1016/j.cjca.2019.08.033
10.1002/dmrr.2818
10.1161/CIRCULATIONAHA.119.042929
10.1172/JCI100559
10.1111/j.1365-2796.2006.01746.x
10.1161/CIRCULATIONAHA.117.029166
10.1186/s12933-018-0750-8
10.1152/ajprenal.2000.278.1.F91
10.1161/CIRCULATIONAHA.121.053350
10.1113/jphysiol.2014.281428
10.1016/j.pharmthera.2016.10.006
10.1152/ajprenal.00071.2006
10.1038/s41581-020-00391-2
10.1016/j.clinthera.2019.01.001
10.4070/kcj.2019.0180
10.2147/TCRM.S186347
10.1002/dmrr.3113
10.1007/s00277-005-1102-9
10.2337/dc17-1096
10.1016/j.kint.2019.09.013
10.1093/eurheartj/ehaa943
10.1038/ki.1983.72
10.14814/phy2.14890
10.1681/ASN.2015111282
10.1016/S1262-3636(14)72693-X
10.1002/ejhf.1732
10.1016/j.diabres.2020.108368
10.1016/j.bcp.2018.03.013
10.1016/S2213-8587(19)30086-5
10.3389/fendo.2019.00441
10.1038/s41581-021-00393-8
10.2337/dc22-S011
10.1016/j.ejphar.2013.05.014
10.3390/jcm9072243
10.1111/obr.12841
10.2337/db19-0991
10.1093/cvr/cvs353
10.1681/ASN.2020010010
10.1056/NEJMoa2107038
10.2337/dc15-0355
10.1007/s10741-020-10065-7
10.1016/j.phrs.2020.104870
10.1172/JCI119163
10.1161/CIRCRESAHA.120.318170
10.2337/dc16-2724
10.1177/1479164114563304
10.3389/fendo.2021.814074
10.3390/biology9110369
10.1681/ASN.V351078
10.1186/s12933-018-0797-6
10.1152/ajprenal.00497.2018
10.1002/ehf2.12336
10.1093/cvr/cvaa123
10.2337/dc18-2207
10.3390/cells10061457
10.1111/dom.12127
10.1152/ajprenal.00473.2013
10.1016/j.jacbts.2019.04.003
10.1152/ajprenal.00520.2013
10.1186/s12933-020-01206-1
10.1016/j.ejphar.2021.174169
10.1007/s13300-010-0006-4
10.1007/s00125-019-4859-4
10.1016/j.bcp.2019.113677
10.1186/s12933-018-0708-x
10.1042/CS20190585
10.1161/CIRCULATIONAHA.118.038881
10.1111/imj.14260
10.1152/ajpregu.00357.2011
10.1080/19382014.2018.1503027
10.1002/ejhf.933
10.1056/NEJMoa2030183
10.1007/s00424-017-2079-7
10.1038/s41598-020-71599-2
10.2174/1573399812666160613111959
10.1016/j.lfs.2018.01.032
10.2337/dc14-1596
10.1093/eurjhf/hfn043
10.1007/s12325-015-0255-8
10.1177/1479164119883540
10.1002/dmrr.2407
10.1097/MOL.0000000000000751
10.1038/srep39884
10.1111/jdi.12802
10.1056/NEJMoa1811744
10.1016/j.amjcard.2019.10.027
10.3390/medicina55060268
10.1038/hr.2016.193
10.2169/internalmedicine.0701-17
10.1007/s10741-020-10041-1
10.1038/s41598-020-71449-1
10.2337/dc16-0041
10.1093/ndt/gfr644
10.1161/HYPERTENSIONAHA.112.194571
10.7326/0003-4819-144-1-200601030-00006
10.1186/s12933-017-0654-z
10.1038/clpt.2012.58
10.1161/CIRCULATIONAHA.109.914911
10.1159/000208211
10.1016/j.jacc.2017.11.025
10.1016/j.metabol.2018.01.002
10.14814/phy2.13741
10.1161/01.RES.75.3.443
10.3389/fcvm.2016.00043
10.1007/s10741-017-9644-1
10.1161/CIRCHEARTFAILURE.119.006277
10.1056/NEJMoa1611925
10.1210/clinem/dgaa057
10.1016/S2213-8587(16)30267-4
10.1111/dom.14217
10.1056/NEJMoa1504720
10.1210/jc.2019-00706
10.1111/dom.13229
10.1530/JOE-17-0263
10.1161/CIRCULATIONAHA.120.045691
10.1111/dom.13295
10.1371/journal.pone.0215362
10.1111/dom.13841
10.1016/j.kint.2017.12.027
10.1056/NEJMoa1515920
10.1038/nm.3804
10.1111/dom.14018
10.1016/j.clinthera.2016.11.002
10.1146/annurev-physiol-021317-121427
10.1038/nrneph.2016.170
10.1093/cvr/cvx149
10.1038/s41467-020-15983-6
10.1155/2021/5593589
10.1097/MD.0000000000006944
10.1016/j.cellsig.2019.109506
10.1161/CIRCULATIONAHA.121.056824
10.1002/ejhf.2064
10.1007/s00125-016-4134-x
10.1161/CIRCULATIONAHA.118.036459
10.3390/ijms22157976
10.1161/CIRCULATIONAHA.116.021887
10.1172/JCI72227
10.1210/jc.2015-2597
10.1038/s41598-018-25054-y
10.1016/j.dsx.2019.01.016
10.1016/j.freeradbiomed.2017.01.035
10.3389/fphys.2019.00419
10.1111/dom.13413
10.3389/fendo.2021.738848
10.1186/s12933-016-0491-5
10.1155/2019/3971060
10.1186/s12933-017-0621-8
10.1016/j.amjms.2016.08.015
10.1001/jamainternmed.2018.3034
10.1152/ajprenal.00294.2016
10.1002/ehf2.13024
10.1016/j.redox.2017.12.019
10.1007/s00125-018-4670-7
10.1186/s12933-019-0849-6
10.1111/dom.14535
10.1186/s12933-021-01343-1
10.1007/s00125-014-3396-4
10.1172/jci.insight.123130
10.1038/s41598-019-52310-6
10.1186/s12944-021-01430-y
10.1056/NEJMoa1812389
10.1152/ajplegacy.1971.221.3.679
10.1111/jphp.12223
10.1007/s10741-020-10038-w
10.1002/jcp.26760
10.1161/CIRCULATIONAHA.117.030418
10.1016/S2213-8587(20)30300-4
10.1093/eurheartj/ehab368
10.2337/dc19-1177
10.1155/2014/837421
10.1016/S2213-8587(13)70050-0
10.1016/S0008-6363(02)00809-X
10.1159/000519491
10.1016/S2213-8587(20)30162-5
10.1161/HYPERTENSIONAHA.119.11684
10.3390/jcm8111814
10.2337/dc13-0387
10.1056/NEJMoa2004967
10.1152/physrev.00055.2009
10.1097/01.hjh.0000239303.93872.31
10.1111/dom.12322
10.14740/jocmr2857w
10.1152/ajpregu.1998.274.2.R263
10.3389/fendo.2020.00190
10.1038/nature05485
10.3390/biom12020176
10.1016/j.jchf.2015.10.007
10.1038/s41581-020-0309-2
10.1177/2042098621989134
10.1152/ajpregu.00127.2011
10.1111/dom.13101
10.1210/jc.2011-2260
10.1210/en.2015-1588
10.3390/ijms22168786
10.1016/j.kint.2020.02.041
10.1161/CIRCULATIONAHA.119.044235
10.1152/ajpregu.00809.2010
10.1172/jci.insight.98720
10.1186/s12933-020-01141-1
10.1016/j.taap.2017.08.005
10.1002/edm2.50
10.3390/cells10102699
10.1016/j.jdiacomp.2018.10.016
10.1016/j.jacc.2019.01.056
10.1002/dmrr.3169
10.1681/ASN.2016060666
10.1172/JCI70704
10.1111/dom.13294
10.1371/journal.pone.0112394
10.1089/dia.2019.0212
10.1111/j.1464-5491.2009.02894.x
10.2174/138920011796504509
10.2337/diacare.29.03.06.dc05-1776
10.1161/CIRCRESAHA.111.258723
10.1371/journal.pone.0178473
10.1097/MNH.0000000000000084
10.1136/bmjdrc-2019-000783
10.1111/dom.14517
10.1056/NEJMoa2022190
10.31038/EDMJ.2018232
10.1152/ajprenal.00565.2018
10.1152/ajprenal.00462.2018
10.1016/j.diabet.2016.12.010
10.1002/dmrr.538
10.1152/ajprenal.00409.2012
10.1016/j.jdiacomp.2014.09.002
10.1016/j.diabres.2019.107927
10.1177/1479164115585298
10.1093/ndt/gfu299
10.1053/j.ackd.2017.10.011
10.1152/ajprenal.00050.2001
10.1126/science.1227166
10.14740/jocmr2760w
10.1177/0148607104028005364
10.1111/dom.13488
10.1210/en.2007-1088
10.1038/hr.2016.1
10.1186/s12933-019-0816-2
10.1002/jcp.26851
10.1007/s00125-018-4656-5
10.1681/ASN.2015060647
10.1152/ajprenal.00402.2019
10.3390/biomedicines9101356
10.2337/dc15-2688
10.3390/ijms222212394
10.1016/j.clinthera.2016.09.001
10.1097/MNH.0000000000000341
10.7326/0003-4819-103-1-1
10.1161/CIRCULATIONAHA.113.005081
10.3389/fcvm.2019.00186
10.2215/CJN.06080616
10.2337/db10-1328
10.1016/j.redox.2017.06.009
10.1155/2018/3106056
10.1016/j.metabol.2018.02.002
10.1038/nm.3828
10.1056/NEJMoa2030186
10.1681/ASN.2018010103
10.1186/s12933-020-01010-x
10.2337/dc16-0330
10.1161/CIRCULATIONAHA.119.042375
10.2337/dc22-S010
10.1161/CIRCULATIONAHA.118.037418
10.1203/00006450-199710000-00013
10.1111/dom.13441
10.1007/s00125-015-3547-2
10.1056/NEJMoa1911303
10.1371/journal.pone.0100777
10.15252/embj.2020104705
10.3390/ijms21082987
10.1146/annurev-physiol-020911-153333
10.1007/s10557-017-6725-2
10.1097/MNH.0000000000000152
10.1007/s00125-016-4157-3
10.1016/j.diabres.2021.108959
10.1007/s13238-020-00809-4
10.1111/liv.14274
10.1161/CIRCULATIONAHA.115.017545
10.1093/eurheartj/ehz486
10.1016/S2213-8587(17)30182-1
10.1155/2021/9944880
10.1038/sj.ki.5002383
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms23073651
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8998569
35409011
10_3390_ijms23073651
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
COVID
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-44c79613bfbd5aa26bd25c4b44fe1ac54b2fe3e023a00aeee2e4153fb1c125bf3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 13:18:47 EDT 2025
Thu Jul 10 22:52:18 EDT 2025
Fri Jul 25 20:08:26 EDT 2025
Mon Jul 21 05:46:14 EDT 2025
Tue Jul 01 02:48:16 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords diabetic kidney disease
type 2 diabetes mellitus
cardiovascular disease
cardiorenal protection
gliflozins
cardiorenal syndrome
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-44c79613bfbd5aa26bd25c4b44fe1ac54b2fe3e023a00aeee2e4153fb1c125bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9142-7848
0000-0001-7761-7533
0000-0002-7766-3430
0000-0003-3960-9270
0000-0002-6541-3821
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms23073651
PMID 35409011
PQID 2649057469
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8998569
proquest_miscellaneous_2649589506
proquest_journals_2649057469
pubmed_primary_35409011
crossref_primary_10_3390_ijms23073651
crossref_citationtrail_10_3390_ijms23073651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220326
PublicationDateYYYYMMDD 2022-03-26
PublicationDate_xml – month: 3
  year: 2022
  text: 20220326
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_257
ref_139
Salvatore (ref_1) 2011; 12
Wanner (ref_125) 2018; 29
Li (ref_35) 2018; 20
Sasso (ref_9) 2018; 2018
ref_133
Kamijo (ref_195) 2019; 12
Lee (ref_290) 2017; 104
ref_256
Takaori (ref_338) 2015; 27
Guja (ref_33) 2016; 4
Sun (ref_212) 2016; 133
Packer (ref_331) 2020; 31
Steven (ref_277) 2017; 13
Zhan (ref_326) 2013; 83
Fasching (ref_337) 2015; 309
Philippaert (ref_152) 2021; 143
Kolijn (ref_299) 2020; 117
Rabizadeh (ref_75) 2019; 17
Chen (ref_137) 2010; 1
Zhou (ref_183) 2021; 52
Karg (ref_234) 2018; 17
Poulsen (ref_55) 2015; 24
Baartscheer (ref_145) 2003; 57
ref_126
Benham (ref_181) 2021; 33
Antonio (ref_219) 2019; 73
Nassif (ref_103) 2019; 140
Ye (ref_283) 2017; 31
Vaduganathan (ref_22) 2021; 23
Elkazzaz (ref_309) 2021; 280
Gerich (ref_51) 2010; 27
Solini (ref_248) 2019; 104
Mustroph (ref_141) 2017; 176
Puglisi (ref_175) 2021; 12
Cohen (ref_243) 2019; 49
Majewski (ref_174) 2015; 38
Packer (ref_146) 2017; 136
Zhang (ref_228) 2011; 300
Verma (ref_96) 2017; 2
Jensen (ref_242) 2020; 9
Bhatt (ref_93) 2021; 384
Koye (ref_160) 2018; 25
Sha (ref_232) 2014; 16
Muskiet (ref_123) 2020; 97
Braga (ref_269) 2017; 7
Kidokoro (ref_122) 2019; 140
Ong (ref_315) 2010; 121
Packer (ref_321) 2020; 22
Song (ref_70) 2019; 317
Sasso (ref_91) 2018; 35
Ferrannini (ref_204) 2017; 40
Cefalu (ref_176) 2015; 58
Nabrdalik (ref_258) 2021; 2021
Zibadi (ref_266) 2011; 11
Sasso (ref_156) 2021; 20
Thomson (ref_60) 2019; 124
Tanajak (ref_163) 2017; 333
Huang (ref_311) 2019; 10
Heerspink (ref_124) 2016; 134
ref_272
Onishi (ref_63) 2019; 317
Irace (ref_246) 2020; 17
Patoulias (ref_34) 2019; 158
Chang (ref_49) 2018; 178
Min (ref_36) 2017; 33
Steffes (ref_131) 2001; 59
Li (ref_253) 2018; 197
ref_280
Hasan (ref_289) 2020; 10
Vallon (ref_77) 2013; 304
Santiago (ref_323) 2019; 170
Merovci (ref_30) 2016; 101
Pagtalunan (ref_132) 1997; 99
Ganz (ref_136) 2000; 278
Bedi (ref_211) 2016; 133
Maeda (ref_161) 2013; 29
Wanner (ref_129) 2016; 375
Goldberg (ref_187) 2021; 52
Koyani (ref_285) 2020; 158
Muskiet (ref_17) 2017; 12
Dimitrakoudis (ref_27) 1992; 3
ref_87
Tsimihodimos (ref_198) 2018; 14
Shimazu (ref_221) 2013; 339
ref_265
Satou (ref_304) 2020; 318
Verma (ref_216) 2018; 3
Patel (ref_264) 2017; 22
Mustroph (ref_142) 2021; 128
Powell (ref_69) 2013; 304
Bolinder (ref_166) 2012; 97
Bhatt (ref_102) 2021; 384
Rizzo (ref_89) 2015; 29
Xue (ref_298) 2019; 133
Uthman (ref_150) 2017; 61
Takagi (ref_327) 2018; 9
Lunder (ref_245) 2018; 17
DeFronzo (ref_53) 2017; 13
Weber (ref_255) 2012; 60
Shigiyama (ref_278) 2017; 16
ref_332
Heerspink (ref_106) 2020; 383
Yanai (ref_345) 2017; 9
Millar (ref_164) 2017; 234
Maruyama (ref_343) 2019; 21
Fathi (ref_12) 2021; 26
Tamura (ref_171) 2016; 39
Hao (ref_268) 2018; ume14
Symeonidis (ref_339) 2005; 85
Jaikumkao (ref_308) 2018; 20
Ferrannini (ref_162) 2015; 38
Trum (ref_151) 2020; 7
Hamdani (ref_296) 2012; 97
Thiele (ref_335) 2021; 23
Heerspink (ref_231) 2013; 15
Kang (ref_292) 2019; 36
Kim (ref_223) 2020; 11
ref_324
ref_205
ref_325
Nosadini (ref_227) 1989; 38
Cherney (ref_120) 2014; 129
Das (ref_303) 2019; 68
ref_201
Li (ref_31) 2021; 23
Vallon (ref_73) 2014; 306
Hayashi (ref_194) 2017; 16
Sugiyama (ref_179) 2018; 57
Tezze (ref_206) 2019; 10
Novikov (ref_189) 2019; 316
Ferrannini (ref_18) 2014; 124
Inagaki (ref_191) 2015; 32
DeFronzo (ref_2) 2013; 36
Wilcox (ref_61) 2020; 75
Inoue (ref_62) 2012; 302
Marfella (ref_8) 2012; 97
Garvey (ref_260) 2018; 85
ref_119
Dutka (ref_209) 2020; 26
Johansson (ref_177) 2015; 12
Aroor (ref_251) 2018; 17
Haase (ref_336) 2006; 291
Cherney (ref_128) 2017; 5
Adingupu (ref_218) 2019; 18
ref_113
Byrne (ref_284) 2020; 13
ref_112
Anker (ref_114) 2021; 385
Sasso (ref_88) 1999; 48
Mirabelli (ref_24) 2019; 2019
Sciarretta (ref_320) 2018; 80
Liu (ref_196) 2021; 20
Vallon (ref_14) 2017; 60
Yu (ref_144) 2017; 470
Wang (ref_165) 2019; 41
ref_224
(ref_85) 2019; 9
Striepe (ref_254) 2017; 136
Hediger (ref_56) 1995; 482
Tanaka (ref_134) 2014; 307
Heymans (ref_282) 2009; 11
Tahara (ref_273) 2013; 715
Meier (ref_32) 2005; 21
Lombardi (ref_7) 2020; 40
Tang (ref_329) 2020; 16
Chasis (ref_5) 1933; 12
Mizuno (ref_319) 2018; 6
Bailey (ref_25) 2019; 21
Wright (ref_65) 2007; 261
Umino (ref_330) 2018; 8
Prattichizzo (ref_270) 2018; 20
Yasui (ref_236) 2018; 9
Benetti (ref_261) 2016; 359
Thomson (ref_118) 2012; 302
Nielsen (ref_217) 2019; 139
Sano (ref_334) 2016; 8
Sasso (ref_98) 2006; 29
Studer (ref_147) 1994; 75
Hesp (ref_135) 2020; 98
Lapuerta (ref_153) 2015; 12
Little (ref_225) 1971; 221
Abraham (ref_104) 2020; 42
Hasan (ref_307) 2020; 10
Dimova (ref_178) 2020; 53
Salim (ref_275) 2016; 3
Fioretto (ref_108) 2018; 20
Juni (ref_295) 2019; 4
Yaribeygi (ref_300) 2018; 234
Verma (ref_229) 2018; 61
Verma (ref_346) 2019; 140
Lee (ref_252) 2018; 17
Wiviott (ref_48) 2019; 380
Galiero (ref_90) 2021; 176
Cosentino (ref_95) 2020; 41
Tonneijck (ref_80) 2017; 28
Yancy (ref_111) 2018; 71
Obata (ref_29) 2016; 157
Jurczak (ref_68) 2018; 10
Yaribeygi (ref_271) 2018; 234
Chen (ref_314) 2011; 109
ref_21
Baartscheer (ref_149) 2016; 60
Scheepers (ref_54) 2004; 28
Ferrannini (ref_203) 2016; 65
Evans (ref_81) 2014; 306
Chen (ref_230) 2016; 352
Brenner (ref_117) 1983; 23
Chilton (ref_180) 2015; 17
Zhou (ref_318) 2017; 15
Ueda (ref_50) 2018; 363
Zinman (ref_47) 2015; 373
Zambrowicz (ref_20) 2012; 92
Pelletier (ref_41) 2021; 12
Wright (ref_57) 2011; 91
Yang (ref_121) 2014; 57
Merovci (ref_3) 2015; 100
Sun (ref_293) 2020; 69
Foster (ref_19) 2012; 122
Maejima (ref_155) 2020; 6
Solini (ref_247) 2017; 16
Liao (ref_40) 2018; 2
Scheen (ref_184) 2017; 43
Birnbaum (ref_305) 2018; 32
Sasso (ref_97) 2011; 27
Chen (ref_197) 2021; 100
Forst (ref_39) 2016; 12
Bertero (ref_140) 2018; 114
Oh (ref_220) 2019; 49
Hsu (ref_170) 2006; 144
Hotamisligil (ref_259) 2006; 444
Calapkulu (ref_190) 2019; 13
ref_302
Durak (ref_317) 2018; 17
Fukao (ref_226) 1997; 42
Butler (ref_158) 2017; 19
Xu (ref_322) 2018; 152
Mudaliar (ref_215) 2016; 39
Packer (ref_235) 2021; 77
Sano (ref_333) 2019; 139
Li (ref_288) 2019; 18
Kamei (ref_45) 2021; 27
Daniele (ref_202) 2016; 39
Lee (ref_291) 2019; 18
Shiraki (ref_310) 2016; 5
Lazarte (ref_199) 2021; 32
Liu (ref_200) 2021; 11
Giugliano (ref_130) 2020; 19
Inzucchi (ref_159) 2017; 41
Layton (ref_83) 2016; 311
Guo (ref_182) 2018; 20
Coady (ref_58) 2017; 28
Heise (ref_237) 2016; 38
Merovci (ref_15) 2014; 124
Lee (ref_328) 2019; 317
Basile (ref_86) 2001; 281
Ghanim (ref_340) 2020; 105
Galiero (ref_6) 2020; 2020
Xu (ref_262) 2019; 7
Hattori (ref_210) 2021; 26
Neal (ref_46) 2017; 377
Anker (ref_116) 2020; 22
Mustroph (ref_154) 2018; 5
Pfeifer (ref_249) 2017; 16
Tahrani (ref_52) 2013; 1
Georgianos (ref_173) 2019; 42
Vallon (ref_71) 2011; 300
Yang (ref_37) 2020; 11
Chilton (ref_157) 2016; 39
Griffin (ref_233) 2020; 142
Schnermann (ref_238) 1998; 274
Packer (ref_101) 2020; 383
Fitchett (ref_347) 2021; 8
Heerspink (ref_312) 2019; 62
Ferrannini (ref_214) 2016; 39
Kohlhaas (ref_287) 2010; 121
Wu (ref_306) 2018; 83
Pabel (ref_297) 2018; 20
Chen (ref_286) 2020; 34
Zhao (ref_188) 2017; 20
Francis (ref_239) 1985; 103
Tahara (ref_274) 2014; 66
Vlotides (ref_76) 2014; 30
Shaw (ref_138) 2015; 593
Franssen (ref_294) 2016; 4
Jurczak (ref_28) 2011; 60
Minutolo (ref_99) 2006; 24
Kappel (ref_213) 2017; 136
Yang (ref_23) 2017; 96
Ghezzi (ref_67) 2018; 61
Ishibashi (ref_301) 2015; 48
Goldenberg (ref_42) 2016; 38
Vallon (ref_78) 2009; 111
Hare (ref_342) 2021; 9
Wysham (ref_26) 2019; 33
Brown (ref_167) 2019; 20
Heerspink (ref_127) 2018; 94
Zheng (ref_168) 2016; 70
Halimi (ref_192) 2014; 40
Szekeres (ref_193) 2021; 11
Pabel (ref_143) 2021; 18
Lee (ref_281) 2021; 2021
Foster (ref_169) 2008; 52
Hu (ref_16) 2022; 12
Bonner (ref_43) 2015; 21
Cherney (ref_109) 2020; 8
Lu (ref_38) 2019; 35
Aubert (ref_208) 2016; 133
Oelze (ref_276) 2014; 9
Kaur (ref_74) 2021; 904
(ref_4) 1836; 1
McDonagh (ref_110) 2021; 42
Kang (ref_11) 2021; 17
Lee (ref_66) 2007; 72
Freitas (ref_72) 2008; 149
Sayour (ref_148) 2020; 19
Bosch (ref_244) 2019; 18
McMurray (ref_100) 2019; 381
Hallow (ref_241) 2017; 20
Cherney (ref_240) 2015; 24
Caturano (ref_10) 2021; 178
ref_186
ref_44
Takiyama (ref_82) 2014; 2014
ref_185
Mulder (ref_313) 2020; 22
Kusaka (ref_263) 2016; 15
DeFronzo (ref_59) 2021; 17
Vallon (ref_79) 2012; 74
Pessoa (ref_64) 2014; 25
Katakami (ref_250) 2021; 20
Mazer (ref_341) 2020; 141
Pollock (ref_107) 2019; 7
Youm (ref_222) 2015; 21
Oshima (ref_344) 2020; 8
Perkovic (ref_105) 2019; 380
Thomas (ref_13) 2018; 61
Avogaro (ref_207) 2020; 43
Persson (ref_84) 2017; 26
Packer (ref_115) 2021; 144
Rahman (ref_172) 2017; 40
Tanaka (ref_279) 2019; 42
Onishi (ref_316) 2021; 40
Cannon (ref_92) 2020; 383
Zelniker (ref_94) 2019; 393
Packer (ref_267) 2018; 20
References_xml – volume: 70
  start-page: 1024
  year: 2016
  ident: ref_168
  article-title: The long-term prognosis of cardiovascular disease and all-cause mortality for metabolically healthy obesity: A systematic review and meta-analysis
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech-2015-206948
– volume: 136
  start-page: 1167
  year: 2017
  ident: ref_254
  article-title: Effects of the Selective Sodium-Glucose Cotransporter 2 Inhibitor Empagliflozin on Vascular Function and Central Hemodynamics in Patients With Type 2 Diabetes Mellitus
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.029529
– volume: 38
  start-page: 75
  year: 1989
  ident: ref_227
  article-title: Kidney Hemodynamics After Ketone Body and Amino Acid Infusion in Normal and IDDM Subjects
  publication-title: Diabetes
  doi: 10.2337/diab.38.1.75
– volume: 280
  start-page: 119018
  year: 2021
  ident: ref_309
  article-title: Role of sodium glucose cotransporter type 2 inhibitors dapagliflozin on diabetic nephropathy in rats; Inflammation, angiogenesis and apoptosis
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2021.119018
– volume: 383
  start-page: 1436
  year: 2020
  ident: ref_106
  article-title: Dapagliflozin in Patients with Chronic Kidney Disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2024816
– volume: 9
  start-page: 106
  year: 2020
  ident: ref_242
  article-title: Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal): A prespecified substudy of a double-blind, randomised, placebo-controlled trial
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(20)30382-X
– volume: 133
  start-page: 2038
  year: 2016
  ident: ref_212
  article-title: Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.020226
– volume: 20
  start-page: 479
  year: 2017
  ident: ref_241
  article-title: Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13126
– volume: 122
  start-page: 1958
  year: 2012
  ident: ref_19
  article-title: Malonyl-CoA: The regulator of fatty acid synthesis and oxidation
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI63967
– volume: 11
  start-page: 4502
  year: 2021
  ident: ref_200
  article-title: Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: From pharmacology to pre-clinical and clinical therapeutics
  publication-title: Theranostics
  doi: 10.7150/thno.54498
– volume: 8
  start-page: 4517
  year: 2021
  ident: ref_347
  article-title: Mediators of the improvement in heart failure outcomes with empagliflozin in the EMPA-REG OUTCOME trial
  publication-title: ESC Heart Fail.
  doi: 10.1002/ehf2.13615
– volume: 2
  start-page: 939
  year: 2017
  ident: ref_96
  article-title: The Metabolodiuretic Promise of Sodium-Dependent Glucose Cotransporter 2 Inhibition
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2017.1891
– volume: 9
  start-page: 863
  year: 2018
  ident: ref_236
  article-title: Empagliflozin Induces Transient Diuresis Without Changing Long-Term Overall Fluid Balance in Japanese Patients With Type 2 Diabetes
  publication-title: Diabetes Ther.
  doi: 10.1007/s13300-018-0385-5
– volume: 309
  start-page: F227
  year: 2015
  ident: ref_337
  article-title: Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00689.2014
– volume: 15
  start-page: 157
  year: 2016
  ident: ref_263
  article-title: Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-016-0473-7
– volume: 317
  start-page: F207
  year: 2019
  ident: ref_70
  article-title: Knockout of Na+-glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00120.2019
– volume: 307
  start-page: F1187
  year: 2014
  ident: ref_134
  article-title: Hypoxia as a key player in the AKI-to-CKD transition
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00425.2014
– volume: 11
  start-page: 87
  year: 2021
  ident: ref_193
  article-title: The Effects of SGLT2 Inhibitors on Lipid Metabolism
  publication-title: Metabolites
  doi: 10.3390/metabo11020087
– ident: ref_224
  doi: 10.3390/ijms20143406
– volume: 18
  start-page: 44
  year: 2019
  ident: ref_244
  article-title: How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-019-0839-8
– volume: 61
  start-page: 722
  year: 2017
  ident: ref_150
  article-title: Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4509-7
– volume: 48
  start-page: 191
  year: 2015
  ident: ref_301
  article-title: Tofogliflozin, A Highly Selective Inhibitor of SGLT2 Blocks Proinflammatory and Proapoptotic Effects of Glucose Overload on Proximal Tubular Cells Partly by Suppressing Oxidative Stress Generation
  publication-title: Horm. Metab. Res.
  doi: 10.1055/s-0035-1555791
– volume: 32
  start-page: 135
  year: 2018
  ident: ref_305
  article-title: Combined SGLT2 and DPP4 Inhibition Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Nephropathy in Mice with Type 2 Diabetes
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1007/s10557-018-6778-x
– volume: 17
  start-page: e84353
  year: 2019
  ident: ref_75
  article-title: Cardiovascular and Renal Benefits of SGLT2 Inhibitors: A Narrative Review
  publication-title: Int. J. Endocrinol. Metab.
– volume: 393
  start-page: 31
  year: 2019
  ident: ref_94
  article-title: SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32590-X
– volume: 176
  start-page: 108856
  year: 2021
  ident: ref_90
  article-title: Whole plantar nerve conduction study: A new tool for early diagnosis of peripheral diabetic neuropathy
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2021.108856
– volume: 52
  start-page: 39
  year: 2008
  ident: ref_169
  article-title: Overweight, Obesity, and the Development of Stage 3 CKD: The Framingham Heart Study
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2008.03.003
– volume: 363
  start-page: k4365
  year: 2018
  ident: ref_50
  article-title: Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: Nationwide register based cohort study
  publication-title: BMJ
  doi: 10.1136/bmj.k4365
– volume: 100
  start-page: e24593
  year: 2021
  ident: ref_197
  article-title: Effect of SGLT inhibitors on weight and lipid metabolism at 24 weeks of treatment in patients with diabetes mellitus
  publication-title: Medicine
  doi: 10.1097/MD.0000000000024593
– volume: 17
  start-page: 1180
  year: 2015
  ident: ref_180
  article-title: Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12572
– volume: 16
  start-page: 84
  year: 2017
  ident: ref_278
  article-title: Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-017-0564-0
– volume: 16
  start-page: 29
  year: 2017
  ident: ref_249
  article-title: Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: A post hoc analysis
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-017-0511-0
– volume: 133
  start-page: 698
  year: 2016
  ident: ref_208
  article-title: The Failing Heart Relies on Ketone Bodies as a Fuel
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.017355
– volume: 1
  start-page: 75
  year: 1836
  ident: ref_4
  article-title: Observations sur les proprietes febrifuges de la phloridzine
  publication-title: Bull. Soc. Med. Gand
– volume: 11
  start-page: 325
  year: 2011
  ident: ref_266
  article-title: Leptin’s regulation of obesity-induced cardiac extracellular matrix remodeling
  publication-title: Cardiovasc. Toxicol.
  doi: 10.1007/s12012-011-9124-0
– volume: 52
  start-page: 1545
  year: 2021
  ident: ref_183
  article-title: Effect of SGLT2 Inhibitors on Stroke and Atrial Fibrillation in Diabetic Kidney Disease
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.120.031623
– volume: 359
  start-page: 45
  year: 2016
  ident: ref_261
  article-title: Empagliflozin Protects against Diet-Induced NLRP-3 Inflammasome Activation and Lipid Accumulation
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.116.235069
– volume: 20
  start-page: 1690
  year: 2018
  ident: ref_297
  article-title: Empagliflozin directly improves diastolic function in human heart failure
  publication-title: Eur. J. Heart Fail.
  doi: 10.1002/ejhf.1328
– volume: 121
  start-page: 2012
  year: 2010
  ident: ref_315
  article-title: Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.906610
– volume: 100
  start-page: 1927
  year: 2015
  ident: ref_3
  article-title: Dapagliflozin lowers plasma glucose concentration and improves β-cell function
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2014-3472
– volume: 83
  start-page: 568
  year: 2013
  ident: ref_326
  article-title: Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology
  publication-title: Kidney Int.
  doi: 10.1038/ki.2012.441
– volume: 27
  start-page: 1131
  year: 2021
  ident: ref_45
  article-title: Complicated urinary tract infections with diabetes mellitus
  publication-title: J. Infect. Chemother.
  doi: 10.1016/j.jiac.2021.05.012
– volume: 25
  start-page: 2028
  year: 2014
  ident: ref_64
  article-title: Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2013060588
– volume: 18
  start-page: 315
  year: 2021
  ident: ref_143
  article-title: SGLT2 Inhibitors and Their Mode of Action in Heart Failure—Has the Mystery Been Unravelled?
  publication-title: Curr. Heart Fail. Rep.
  doi: 10.1007/s11897-021-00529-8
– volume: 2020
  start-page: 9036847
  year: 2020
  ident: ref_6
  article-title: The Importance of Telemedicine during COVID-19 Pan-demic: A Focus on Diabetic Retinopathy
  publication-title: J. Diabetes Res.
  doi: 10.1155/2020/9036847
– volume: 97
  start-page: 933
  year: 2012
  ident: ref_8
  article-title: Tight glycemic control may increase regenerative potential of myocardium during acute infarction
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2011-2037
– volume: 48
  start-page: 1346
  year: 1999
  ident: ref_88
  article-title: Cochlear dysfunction in type 2 diabetes: A complication independent of neuropathy and acute hyperglycemia
  publication-title: Metabolism
  doi: 10.1016/S0026-0495(99)90141-5
– volume: 77
  start-page: 1381
  year: 2021
  ident: ref_235
  article-title: Empagliflozin in Patients With Heart Failure, Reduced Ejection Fraction, and Volume Overload
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2021.01.033
– volume: 17
  start-page: 144
  year: 2018
  ident: ref_317
  article-title: A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-018-0790-0
– volume: 65
  start-page: 1190
  year: 2016
  ident: ref_203
  article-title: Shift to Fatty Substrate Utilization in Response to Sodium–Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes
  publication-title: Diabetes
  doi: 10.2337/db15-1356
– volume: 482
  start-page: 7S
  year: 1995
  ident: ref_56
  article-title: Mammalian ion-coupled solute transporters
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1995.sp020559
– volume: 18
  start-page: 16
  year: 2019
  ident: ref_218
  article-title: SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-019-0820-6
– volume: 61
  start-page: 2098
  year: 2018
  ident: ref_13
  article-title: The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure
  publication-title: Diabetologia
  doi: 10.1007/s00125-018-4669-0
– volume: 59
  start-page: 2104
  year: 2001
  ident: ref_131
  article-title: Glomerular cell number in normal subjects and in type 1 diabetic patients
  publication-title: Kidney Int.
  doi: 10.1046/j.1523-1755.2001.00725.x
– volume: 39
  start-page: 1115
  year: 2016
  ident: ref_215
  article-title: Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0542
– volume: 43
  start-page: 501
  year: 2020
  ident: ref_207
  article-title: Reinterpreting Cardiorenal Protection of Renal Sodium–Glucose Cotransporter 2 Inhibitors via Cellular Life History Programming
  publication-title: Diabetes Care
  doi: 10.2337/dc19-1410
– volume: 34
  start-page: 443
  year: 2020
  ident: ref_286
  article-title: Dapagliflozin and Ticagrelor Have Additive Effects on the Attenuation of the Activation of the NLRP3 Inflammasome and the Progression of Diabetic Cardiomyopathy: An AMPK–mTOR Interplay
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1007/s10557-020-06978-y
– volume: 36
  start-page: 543
  year: 2019
  ident: ref_292
  article-title: Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results
  publication-title: Can. J. Cardiol.
  doi: 10.1016/j.cjca.2019.08.033
– volume: 33
  start-page: e2818
  year: 2017
  ident: ref_36
  article-title: Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: A systematic review with indirect comparison meta-analysis
  publication-title: Diabetes Metab. Res. Rev.
  doi: 10.1002/dmrr.2818
– volume: 140
  start-page: 1463
  year: 2019
  ident: ref_103
  article-title: Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.042929
– volume: 12
  start-page: 1083
  year: 1933
  ident: ref_5
  article-title: The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI100559
– volume: 261
  start-page: 32
  year: 2007
  ident: ref_65
  article-title: Active sugar transport in health and disease
  publication-title: J. Intern. Med.
  doi: 10.1111/j.1365-2796.2006.01746.x
– volume: 136
  start-page: 969
  year: 2017
  ident: ref_213
  article-title: Effect of Empagliflozin on the Metabolic Signature of Patients With Type 2 Diabetes Mellitus and Cardiovascular Disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.029166
– volume: 17
  start-page: 108
  year: 2018
  ident: ref_251
  article-title: Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-018-0750-8
– volume: 278
  start-page: F91
  year: 2000
  ident: ref_136
  article-title: High glucose induces the activity and expression of Na(+)/H(+) exchange in glomerular mesangial cells
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.2000.278.1.F91
– volume: 143
  start-page: 2188
  year: 2021
  ident: ref_152
  article-title: Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.053350
– volume: 593
  start-page: 1347
  year: 2015
  ident: ref_138
  article-title: Na+ channel function, regulation, structure, trafficking and sequestration
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2014.281428
– volume: 176
  start-page: 22
  year: 2017
  ident: ref_141
  article-title: CaMKII as a target for arrhythmia suppression
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2016.10.006
– volume: 291
  start-page: F271
  year: 2006
  ident: ref_336
  article-title: Hypoxia-inducible factors in the kidney
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00071.2006
– volume: 17
  start-page: 83
  year: 2021
  ident: ref_11
  article-title: SGLT2 inhibitors may offer benefit beyond diabetes
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-020-00391-2
– volume: 41
  start-page: 322
  year: 2019
  ident: ref_165
  article-title: Effects of Sodium-glucose Cotransporter 2 Inhibitor Monotherapy on Weight Changes in Patients With Type 2 Diabetes Mellitus: A Bayesian Network Meta-analysis
  publication-title: Clin. Ther.
  doi: 10.1016/j.clinthera.2019.01.001
– volume: 49
  start-page: 1183
  year: 2019
  ident: ref_220
  article-title: Cardioprotective Potential of an SGLT2 Inhibitor Against Doxorubicin-Induced Heart Failure
  publication-title: Korean Circ. J.
  doi: 10.4070/kcj.2019.0180
– volume: ume14
  start-page: 2407
  year: 2018
  ident: ref_268
  article-title: Effects of dapagliflozin on serum uric acid levels in hospitalized type 2 diabetic patients with inadequate glycemic control: A randomized controlled trial
  publication-title: Ther. Clin. Risk Manag.
  doi: 10.2147/TCRM.S186347
– volume: 35
  start-page: e3113
  year: 2018
  ident: ref_91
  article-title: Applicability of telemedicine in the screening of diabetic retinopathy (DR): The first multicentre study in Italy. The No Blind Study
  publication-title: Diabetes/Metab. Res. Rev.
  doi: 10.1002/dmrr.3113
– volume: 85
  start-page: 79
  year: 2005
  ident: ref_339
  article-title: Inappropriately low erythropoietin response for the degree of anemia in patients with noninsulin-dependent diabetes mellitus
  publication-title: Ann. Hematol.
  doi: 10.1007/s00277-005-1102-9
– volume: 41
  start-page: 356
  year: 2017
  ident: ref_159
  article-title: How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial
  publication-title: Diabetes Care
  doi: 10.2337/dc17-1096
– volume: 97
  start-page: 202
  year: 2020
  ident: ref_123
  article-title: The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2019.09.013
– volume: 42
  start-page: 700
  year: 2020
  ident: ref_104
  article-title: Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa943
– volume: 23
  start-page: 647
  year: 1983
  ident: ref_117
  article-title: Hemodynamically mediated glomerular injury and the progressive nature of kidney disease
  publication-title: Kidney Int.
  doi: 10.1038/ki.1983.72
– volume: 9
  start-page: e14890
  year: 2021
  ident: ref_342
  article-title: Impact of sodium glucose linked cotransporter-2 inhibition on renal microvascular oxygen tension in a rodent model of diabetes mellitus
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.14890
– volume: 28
  start-page: 85
  year: 2017
  ident: ref_58
  article-title: MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2015111282
– volume: 40
  start-page: S28
  year: 2014
  ident: ref_192
  article-title: Adverse effects and safety of SGLT-2 inhibitors
  publication-title: Diabetes Metab.
  doi: 10.1016/S1262-3636(14)72693-X
– volume: 22
  start-page: 618
  year: 2020
  ident: ref_321
  article-title: Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium–glucose cotransporter 2 inhibitors
  publication-title: Eur. J. Heart Fail.
  doi: 10.1002/ejhf.1732
– ident: ref_257
  doi: 10.1016/j.diabres.2020.108368
– volume: 152
  start-page: 45
  year: 2018
  ident: ref_322
  article-title: Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2018.03.013
– volume: 7
  start-page: 429
  year: 2019
  ident: ref_107
  article-title: Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): A randomised, double-blind, placebo-controlled trial
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(19)30086-5
– volume: 10
  start-page: 441
  year: 2019
  ident: ref_311
  article-title: Dapagliflozin Attenuates Renal Tubulointerstitial Fibrosis Associated With Type 1 Diabetes by Regulating STAT1/TGFβ1 Signaling
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2019.00441
– volume: 17
  start-page: 319
  year: 2021
  ident: ref_59
  article-title: Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-021-00393-8
– ident: ref_113
  doi: 10.2337/dc22-S011
– volume: 715
  start-page: 246
  year: 2013
  ident: ref_273
  article-title: Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2013.05.014
– ident: ref_126
  doi: 10.3390/jcm9072243
– volume: 20
  start-page: 816
  year: 2019
  ident: ref_167
  article-title: Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities
  publication-title: Obes. Rev.
  doi: 10.1111/obr.12841
– volume: 69
  start-page: 1292
  year: 2020
  ident: ref_293
  article-title: Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Diet–Induced Obese Mice
  publication-title: Diabetes
  doi: 10.2337/db19-0991
– volume: 97
  start-page: 464
  year: 2012
  ident: ref_296
  article-title: Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvs353
– volume: 31
  start-page: 907
  year: 2020
  ident: ref_331
  article-title: Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2020010010
– volume: 385
  start-page: 1451
  year: 2021
  ident: ref_114
  article-title: Empagliflozin in Heart Failure with a Preserved Ejection Fraction
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2107038
– volume: 38
  start-page: 1730
  year: 2015
  ident: ref_162
  article-title: Energy Balance After Sodium–Glucose Cotransporter 2 Inhibition
  publication-title: Diabetes Care
  doi: 10.2337/dc15-0355
– volume: 26
  start-page: 947
  year: 2021
  ident: ref_210
  article-title: Beneficial effects on kidney during treatment with sodium-glucose cotransporter 2 inhibitors: Proposed role of ketone utilization
  publication-title: Heart Fail. Rev.
  doi: 10.1007/s10741-020-10065-7
– volume: 158
  start-page: 104870
  year: 2020
  ident: ref_285
  article-title: Empagliflozin protects heart from inflammation and energy depletion via AMPK activation
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.104870
– volume: 99
  start-page: 342
  year: 1997
  ident: ref_132
  article-title: Podocyte loss and progressive glomerular injury in type II diabetes
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI119163
– volume: 128
  start-page: 1139
  year: 2021
  ident: ref_142
  article-title: Loss of CASK Accelerates Heart Failure Development
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.120.318170
– volume: 40
  start-page: 771
  year: 2017
  ident: ref_204
  article-title: Renal Handling of Ketones in Response to Sodium–Glucose Cotransporter 2 Inhibition in Patients With Type 2 Diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc16-2724
– volume: 12
  start-page: 101
  year: 2015
  ident: ref_153
  article-title: Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor
  publication-title: Diabetes Vasc. Dis. Res.
  doi: 10.1177/1479164114563304
– volume: 12
  start-page: 814074
  year: 2022
  ident: ref_16
  article-title: The Urinary Glucose Excretion by Sodium-Glucose Cotransporter 2 Inhibitor in Patients With Different Levels of Renal Function: A Systematic Review and Meta-Analysis
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2021.814074
– ident: ref_325
  doi: 10.3390/biology9110369
– volume: 3
  start-page: 1078
  year: 1992
  ident: ref_27
  article-title: Effects of hyperglycemia on glucose transporters of the muscle: Use of the renal glucose reabsorption inhibitor phlorizin to control glycemia
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.V351078
– volume: 17
  start-page: 153
  year: 2018
  ident: ref_245
  article-title: Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-018-0797-6
– volume: 317
  start-page: F419
  year: 2019
  ident: ref_63
  article-title: Effect of renal tubule-specific knockdown of the Na+/H+ exchanger NHE3 in Akita diabetic mice
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00497.2018
– volume: 5
  start-page: 642
  year: 2018
  ident: ref_154
  article-title: Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes
  publication-title: ESC Heart Fail.
  doi: 10.1002/ehf2.12336
– volume: 117
  start-page: 495
  year: 2020
  ident: ref_299
  article-title: Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvaa123
– volume: 42
  start-page: 693
  year: 2019
  ident: ref_173
  article-title: Ambulatory Blood Pressure Reduction With SGLT-2 Inhibitors: Dose-Response Meta-analysis and Comparative Evaluation With Low-Dose Hydrochlorothiazide
  publication-title: Diabetes Care
  doi: 10.2337/dc18-2207
– ident: ref_302
  doi: 10.3390/cells10061457
– volume: 15
  start-page: 853
  year: 2013
  ident: ref_231
  article-title: Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12127
– volume: 306
  start-page: F551
  year: 2014
  ident: ref_81
  article-title: Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00473.2013
– volume: 4
  start-page: 575
  year: 2019
  ident: ref_295
  article-title: Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin
  publication-title: JACC Basic Transl. Sci.
  doi: 10.1016/j.jacbts.2019.04.003
– volume: 306
  start-page: F194
  year: 2014
  ident: ref_73
  article-title: SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00520.2013
– volume: 20
  start-page: 4
  year: 2021
  ident: ref_250
  article-title: Effect of tofogliflozin on arterial stiffness in patients with type 2 diabetes: Prespecified sub-analysis of the prospective, randomized, open-label, parallel-group comparative UTOPIA trial
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-020-01206-1
– volume: 904
  start-page: 174169
  year: 2021
  ident: ref_74
  article-title: The pharmacological profile of SGLT2 inhibitors: Focus on mechanistic aspects and pharmacogenomics
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2021.174169
– volume: 1
  start-page: 57
  year: 2010
  ident: ref_137
  article-title: Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members
  publication-title: Diabetes Ther.
  doi: 10.1007/s13300-010-0006-4
– volume: 62
  start-page: 1154
  year: 2019
  ident: ref_312
  article-title: Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-4859-4
– volume: 170
  start-page: 113677
  year: 2019
  ident: ref_323
  article-title: Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2019.113677
– volume: 17
  start-page: 62
  year: 2018
  ident: ref_252
  article-title: SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-018-0708-x
– volume: 133
  start-page: 1705
  year: 2019
  ident: ref_298
  article-title: Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice
  publication-title: Clin. Sci.
  doi: 10.1042/CS20190585
– volume: 139
  start-page: 1985
  year: 2019
  ident: ref_333
  article-title: Possible Mechanism of Hematocrit Elevation by Sodium Glucose Cotransporter 2 Inhibitors and Associated Beneficial Renal and Cardiovascular Effects
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.038881
– volume: 49
  start-page: 1006
  year: 2019
  ident: ref_243
  article-title: Effects of empagliflozin treatment on cardiac function and structure in patients with type 2 diabetes: A cardiac magnetic resonance study
  publication-title: Intern. Med. J.
  doi: 10.1111/imj.14260
– volume: 302
  start-page: R75
  year: 2012
  ident: ref_118
  article-title: Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat
  publication-title: Am. J. Physiol. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00357.2011
– volume: 10
  start-page: 181
  year: 2018
  ident: ref_68
  article-title: SGLT2 knockout prevents hyperglycemia and is associated with reduced pancreatic β-cell death in genetically obese mice
  publication-title: Islets
  doi: 10.1080/19382014.2018.1503027
– volume: 19
  start-page: 1390
  year: 2017
  ident: ref_158
  article-title: The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors
  publication-title: Eur. J. Heart Fail.
  doi: 10.1002/ejhf.933
– volume: 384
  start-page: 117
  year: 2021
  ident: ref_102
  article-title: Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2030183
– volume: 470
  start-page: 461
  year: 2017
  ident: ref_144
  article-title: Late sodium current associated cardiac electrophysiological and mechanical dysfunction
  publication-title: Pflügers Arch.-Eur. J. Physiol.
  doi: 10.1007/s00424-017-2079-7
– volume: 10
  start-page: 14659
  year: 2020
  ident: ref_307
  article-title: Canagliflozin ameliorates renal oxidative stress and inflammation by stimulating AMPK–Akt–eNOS pathway in the isoprenaline-induced oxidative stress model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71599-2
– volume: 12
  start-page: 429
  year: 2016
  ident: ref_39
  article-title: Pharmacological Intervention in Type 2 Diabetes Mellitus—A Pathophysiologically Reasoned Approach?
  publication-title: Curr. Diabetes Rev.
  doi: 10.2174/1573399812666160613111959
– volume: 197
  start-page: 46
  year: 2018
  ident: ref_253
  article-title: The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2018.01.032
– volume: 38
  start-page: 429
  year: 2015
  ident: ref_174
  article-title: Blood Pressure Reduction: An Added Benefit of Sodium–Glucose Cotransporter 2 Inhibitors in Patients With Type 2 Diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc14-1596
– volume: 11
  start-page: 119
  year: 2009
  ident: ref_282
  article-title: Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology
  publication-title: Eur. J. Heart Fail.
  doi: 10.1093/eurjhf/hfn043
– volume: 32
  start-page: 1085
  year: 2015
  ident: ref_191
  article-title: Effects of Baseline Blood Pressure and Low-Density Lipoprotein Cholesterol on Safety and Efficacy of Canagliflozin in Japanese Patients with Type 2 Diabetes Mellitus
  publication-title: Adv. Ther.
  doi: 10.1007/s12325-015-0255-8
– volume: 17
  start-page: 1479164119883540
  year: 2020
  ident: ref_246
  article-title: Effect of empagliflozin on brachial artery shear stress and endothelial function in subjects with type 2 diabetes: Results from an exploratory study
  publication-title: Diabetes Vasc. Dis. Res.
  doi: 10.1177/1479164119883540
– volume: 29
  start-page: 406
  year: 2013
  ident: ref_161
  article-title: Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis
  publication-title: Diabetes Metab. Res. Rev.
  doi: 10.1002/dmrr.2407
– volume: 32
  start-page: 183
  year: 2021
  ident: ref_199
  article-title: Lipid effects of sodium-glucose cotransporter 2 inhibitors
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000751
– volume: 7
  start-page: 39884
  year: 2017
  ident: ref_269
  article-title: Soluble Uric Acid Activates the NLRP3 Inflammasome
  publication-title: Sci. Rep.
  doi: 10.1038/srep39884
– volume: 9
  start-page: 1025
  year: 2018
  ident: ref_327
  article-title: Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet
  publication-title: J. Diabetes Investig.
  doi: 10.1111/jdi.12802
– volume: 380
  start-page: 2295
  year: 2019
  ident: ref_105
  article-title: Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1811744
– volume: 124
  start-page: S28
  year: 2019
  ident: ref_60
  article-title: Renal Effects of Sodium-Glucose Co-Transporter Inhibitors
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2019.10.027
– ident: ref_44
  doi: 10.3390/medicina55060268
– volume: 40
  start-page: 535
  year: 2017
  ident: ref_172
  article-title: Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure
  publication-title: Hypertens. Res.
  doi: 10.1038/hr.2016.193
– volume: 57
  start-page: 2147
  year: 2018
  ident: ref_179
  article-title: The SGLT2 Inhibitor Dapagliflozin Significantly Improves the Peripheral Microvascular Endothelial Function in Patients with Uncontrolled Type 2 Diabetes Mellitus
  publication-title: Intern. Med.
  doi: 10.2169/internalmedicine.0701-17
– volume: 3
  start-page: 575
  year: 2018
  ident: ref_216
  article-title: Empagliflozin Increases Cardiac Energy Production in Diabetes
  publication-title: JACC: Basic Transl. Sci.
– volume: 26
  start-page: 603
  year: 2020
  ident: ref_209
  article-title: Sodium glucose cotransporter 2 inhibitors: Mechanisms of action in heart failure
  publication-title: Heart Fail. Rev.
  doi: 10.1007/s10741-020-10041-1
– volume: 10
  start-page: 14459
  year: 2020
  ident: ref_289
  article-title: Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71449-1
– volume: 39
  start-page: 717
  year: 2016
  ident: ref_157
  article-title: SGLT2 Inhibitors and Cardiovascular Risk: Lessons Learned From the EMPA-REG OUTCOME Study
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0041
– volume: 27
  start-page: 2269
  year: 2011
  ident: ref_97
  article-title: High cardiovascular risk in patients with Type 2 diabetic nephropathy: The predictive role of albuminuria and glomerular filtration rate. The NID-2 Prospective Cohort Study
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfr644
– volume: 60
  start-page: 534
  year: 2012
  ident: ref_255
  article-title: Wave Reflections, Assessed With a Novel Method for Pulse Wave Separation, Are Associated With End-Organ Damage and Clinical Outcomes
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.112.194571
– volume: 144
  start-page: 21
  year: 2006
  ident: ref_170
  article-title: Body Mass Index and Risk for End-Stage Renal Disease
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-144-1-200601030-00006
– volume: 17
  start-page: 5
  year: 2018
  ident: ref_234
  article-title: SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: A randomised controlled trial
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-017-0654-z
– volume: 92
  start-page: 158
  year: 2012
  ident: ref_20
  article-title: LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1038/clpt.2012.58
– volume: 14
  start-page: 1113
  year: 2018
  ident: ref_198
  article-title: SGLT-2 inhibitors: Pharmacokinetics characteristics and effects on lipids
  publication-title: Expert Opin. Drug Metab. Toxicol.
– volume: 121
  start-page: 1606
  year: 2010
  ident: ref_287
  article-title: Elevated Cytosolic Na+ Increases Mitochondrial Formation of Reactive Oxygen Species in Failing Cardiac Myocytes
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.914911
– volume: 111
  start-page: p30
  year: 2009
  ident: ref_78
  article-title: Adenosine A1 Receptors Determine Glomerular Hyperfiltration and the Salt Paradox in Early Streptozotocin Diabetes Mellitus
  publication-title: Nephron Physiol.
  doi: 10.1159/000208211
– volume: 71
  start-page: 201
  year: 2018
  ident: ref_111
  article-title: 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.11.025
– volume: 83
  start-page: 18
  year: 2018
  ident: ref_306
  article-title: IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2018.01.002
– volume: 6
  start-page: e13741
  year: 2018
  ident: ref_319
  article-title: Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.13741
– volume: 75
  start-page: 443
  year: 1994
  ident: ref_147
  article-title: Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.75.3.443
– volume: 3
  start-page: 43
  year: 2016
  ident: ref_275
  article-title: Glycemic Control with Ipragliflozin, a Novel Selective SGLT2 Inhibitor, Ameliorated Endothelial Dysfunction in Streptozotocin-Induced Diabetic Mouse
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2016.00043
– volume: 22
  start-page: 889
  year: 2017
  ident: ref_264
  article-title: Epicardial adipose tissue as a metabolic transducer: Role in heart failure and coronary artery disease
  publication-title: Heart Fail Rev.
  doi: 10.1007/s10741-017-9644-1
– volume: 304
  start-page: E117
  year: 2013
  ident: ref_69
  article-title: Improved glycemic control in mice lacking Sglt1 and Sglt2
  publication-title: Am. J. Physiol. Metab.
– volume: 13
  start-page: e006277
  year: 2020
  ident: ref_284
  article-title: Empagliflozin Blunts Worsening Cardiac Dysfunction Associated With Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure
  publication-title: Circ. Heart Fail.
  doi: 10.1161/CIRCHEARTFAILURE.119.006277
– volume: 377
  start-page: 644
  year: 2017
  ident: ref_46
  article-title: Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1611925
– volume: 105
  start-page: e1056
  year: 2020
  ident: ref_340
  article-title: Dapagliflozin Suppresses Hepcidin And Increases Erythropoiesis
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/clinem/dgaa057
– volume: 4
  start-page: 1004
  year: 2016
  ident: ref_33
  article-title: Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): A 28 week, multicentre, double-blind, phase 3, randomised controlled trial
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(16)30267-4
– volume: 23
  start-page: 208
  year: 2021
  ident: ref_31
  article-title: Durability of glycaemic control in type 2 diabetes: A systematic review and meta-analysis for its association with body weight changes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.14217
– volume: 373
  start-page: 2117
  year: 2015
  ident: ref_47
  article-title: Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504720
– volume: 104
  start-page: 4253
  year: 2019
  ident: ref_248
  article-title: The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2019-00706
– volume: 20
  start-page: 1361
  year: 2018
  ident: ref_267
  article-title: Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13229
– volume: 234
  start-page: 255
  year: 2017
  ident: ref_164
  article-title: Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-17-0263
– volume: 142
  start-page: 1028
  year: 2020
  ident: ref_233
  article-title: Empagliflozin in Heart Failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.045691
– volume: 20
  start-page: 1977
  year: 2018
  ident: ref_182
  article-title: SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: A systematic review and meta-analysis
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13295
– ident: ref_185
  doi: 10.1371/journal.pone.0215362
– volume: 21
  start-page: 2564
  year: 2019
  ident: ref_25
  article-title: Durability of glycaemic control with dapagliflozin, an SGLT2 inhibitor, compared with saxagliptin, a DPP4 inhibitor, in patients with inadequately controlled type 2 diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13841
– volume: 94
  start-page: 26
  year: 2018
  ident: ref_127
  article-title: Renoprotective effects of sodium-glucose cotransporter-2 inhibitors
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2017.12.027
– volume: 375
  start-page: 323
  year: 2016
  ident: ref_129
  article-title: Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1515920
– volume: 21
  start-page: 263
  year: 2015
  ident: ref_222
  article-title: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.3804
– volume: 22
  start-page: 1157
  year: 2020
  ident: ref_313
  article-title: A metabolomics-based molecular pathway analysis of how the sodium-glucose co-transporter-2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.14018
– volume: 38
  start-page: 2654
  year: 2016
  ident: ref_42
  article-title: SGLT2 Inhibitor-associated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis
  publication-title: Clin. Ther.
  doi: 10.1016/j.clinthera.2016.11.002
– volume: 80
  start-page: 1
  year: 2018
  ident: ref_320
  article-title: The Role of Autophagy in the Heart
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-021317-121427
– volume: 12
  start-page: 1179551419866811
  year: 2019
  ident: ref_195
  article-title: Potential Impact on Lipoprotein Subfractions in Type 2 Diabetes
  publication-title: Clin. Med. Insights: Endocrinol. Diabetes
– volume: 13
  start-page: 11
  year: 2017
  ident: ref_53
  article-title: Renal, metabolic and cardiovascular considerations of SGLT2 inhibition
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2016.170
– volume: 114
  start-page: 12
  year: 2018
  ident: ref_140
  article-title: Cardiac effects of SGLT2 inhibitors: The sodium hypothesis
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvx149
– volume: 11
  start-page: 2127
  year: 2020
  ident: ref_223
  article-title: SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15983-6
– volume: 2021
  start-page: 5593589
  year: 2021
  ident: ref_258
  article-title: Influence of SGLT2 Inhibitor Treatment on Urine Antioxidant Status in Type 2 Diabetic Patients: A Pilot Study
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2021/5593589
– volume: 96
  start-page: e6944
  year: 2017
  ident: ref_23
  article-title: Safety and efficiency of SGLT2 inhibitor combining with insulin in subjects with diabetes: Systematic review and meta-analysis of randomized controlled trials
  publication-title: Medicine
  doi: 10.1097/MD.0000000000006944
– volume: 68
  start-page: 109506
  year: 2019
  ident: ref_303
  article-title: Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2019.109506
– volume: 144
  start-page: 1284
  year: 2021
  ident: ref_115
  article-title: Effect of Empagliflozin on Worsening Heart Failure Events in Patients With Heart Failure and Preserved Ejection Fraction: EMPEROR-Preserved Trial
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.056824
– volume: 22
  start-page: 2383
  year: 2020
  ident: ref_116
  article-title: Baseline characteristics of patients with heart failure with preserved ejection fraction in the EMPEROR-Preserved trial
  publication-title: Eur. J. Heart Fail.
  doi: 10.1002/ejhf.2064
– volume: 60
  start-page: 568
  year: 2016
  ident: ref_149
  article-title: Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-4134-x
– volume: 139
  start-page: 2129
  year: 2019
  ident: ref_217
  article-title: Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.036459
– ident: ref_139
  doi: 10.3390/ijms22157976
– volume: 134
  start-page: 752
  year: 2016
  ident: ref_124
  article-title: Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.021887
– volume: 124
  start-page: 499
  year: 2014
  ident: ref_18
  article-title: Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI72227
– volume: 101
  start-page: 1249
  year: 2016
  ident: ref_30
  article-title: Effect of Dapagliflozin With and Without Acipimox on Insulin Sensitivity and Insulin Secretion in T2DM Males
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2015-2597
– volume: 8
  start-page: 6791
  year: 2018
  ident: ref_330
  article-title: High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25054-y
– volume: 13
  start-page: 1031
  year: 2019
  ident: ref_190
  article-title: Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center
  publication-title: Diabetes Metab. Syndr. Clin. Res. Rev.
  doi: 10.1016/j.dsx.2019.01.016
– volume: 104
  start-page: 298
  year: 2017
  ident: ref_290
  article-title: Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.01.035
– volume: 10
  start-page: 419
  year: 2019
  ident: ref_206
  article-title: FGF21 as Modulator of Metabolism in Health and Disease
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00419
– volume: 20
  start-page: 2532
  year: 2018
  ident: ref_108
  article-title: On Behalf of the DERIVE Study Investigators Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study
  publication-title: Diabetes, Obes. Metab.
  doi: 10.1111/dom.13413
– volume: 12
  start-page: 738848
  year: 2021
  ident: ref_175
  article-title: Effects of SGLT2 Inhibitors and GLP-1 Receptor Agonists on Renin-Angiotensin-Aldosterone System
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2021.738848
– volume: 16
  start-page: 8
  year: 2017
  ident: ref_194
  article-title: Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: Comparison with sitagliptin
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-016-0491-5
– volume: 2019
  start-page: 3971060
  year: 2019
  ident: ref_24
  article-title: Long-Term Effectiveness and Safety of SGLT-2 Inhibitors in an Italian Cohort of Patients with Type 2 Diabetes Mellitus
  publication-title: J. Diabetes Res.
  doi: 10.1155/2019/3971060
– volume: 16
  start-page: 138
  year: 2017
  ident: ref_247
  article-title: Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-017-0621-8
– volume: 352
  start-page: 517
  year: 2016
  ident: ref_230
  article-title: Effect of Dapagliflozin Treatment on Fluid and Electrolyte Balance in Diabetic Rats
  publication-title: Am. J. Med. Sci.
  doi: 10.1016/j.amjms.2016.08.015
– volume: 178
  start-page: 1190
  year: 2018
  ident: ref_49
  article-title: Association Between Sodium-Glucose Cotransporter 2 Inhibitors and Lower Extremity Amputation Among Patients With Type 2 Diabetes
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2018.3034
– volume: 311
  start-page: F1217
  year: 2016
  ident: ref_83
  article-title: Solute transport and oxygen consumption along the nephrons: Effects of Na+ transport inhibitors
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00294.2016
– volume: 7
  start-page: 4429
  year: 2020
  ident: ref_151
  article-title: Empagliflozin inhibits Na+ /H+ exchanger activity in human atrial cardiomyocytes
  publication-title: ESC Heart Fail.
  doi: 10.1002/ehf2.13024
– volume: 15
  start-page: 335
  year: 2017
  ident: ref_318
  article-title: Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.12.019
– volume: 61
  start-page: 2108
  year: 2018
  ident: ref_229
  article-title: SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review
  publication-title: Diabetologia
  doi: 10.1007/s00125-018-4670-7
– volume: 18
  start-page: 45
  year: 2019
  ident: ref_291
  article-title: The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-019-0849-6
– volume: 23
  start-page: 2775
  year: 2021
  ident: ref_22
  article-title: Effects of empagliflozin on insulin initiation or intensification in patients with type 2 diabetes and cardiovascular disease: Findings from the EMPA-REG OUTCOME trial
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.14535
– volume: 20
  start-page: 145
  year: 2021
  ident: ref_156
  article-title: Efficacy and durability of multifactorial intervention on mortality and MACEs: A randomized clinical trial in type-2 diabetic kidney disease
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-021-01343-1
– volume: 57
  start-page: 2599
  year: 2014
  ident: ref_121
  article-title: Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3396-4
– ident: ref_205
  doi: 10.1172/jci.insight.123130
– volume: 5
  start-page: 290
  year: 2016
  ident: ref_310
  article-title: Pentraxin-3 regulates the inflammatory activity of macrophages
  publication-title: Biochem. Biophys. Rep.
– volume: 9
  start-page: 15868
  year: 2019
  ident: ref_85
  article-title: Mechanism and Consequences of The Impaired Hif-1α Response to Hypoxia in Human Proximal Tubular HK-2 Cells Exposed to High Glucose
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52310-6
– volume: 20
  start-page: 5
  year: 2021
  ident: ref_196
  article-title: Empagliflozin protects against atherosclerosis progression by modulating lipid profiles and sympathetic activity
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-021-01430-y
– volume: 380
  start-page: 347
  year: 2019
  ident: ref_48
  article-title: Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1812389
– volume: 221
  start-page: 679
  year: 1971
  ident: ref_225
  article-title: Uptake of ketone bodies by dog kidney in vivo
  publication-title: Am. J. Physiol. Content
  doi: 10.1152/ajplegacy.1971.221.3.679
– volume: 66
  start-page: 975
  year: 2014
  ident: ref_274
  article-title: Effects of sodium-glucose cotransporter 2 selective inhibitor ipragliflozin on hyperglycaemia, oxidative stress, inflammation and liver injury in streptozotocin-induced type 1 diabetic rats
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.12223
– volume: 26
  start-page: 623
  year: 2021
  ident: ref_12
  article-title: SGLT2-inhibitors; more than just glycosuria and diuresis
  publication-title: Heart Fail Rev.
  doi: 10.1007/s10741-020-10038-w
– volume: 234
  start-page: 3231
  year: 2018
  ident: ref_271
  article-title: Sodium–glucose cotransporter inhibitors and oxidative stress: An update
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26760
– volume: 136
  start-page: 1548
  year: 2017
  ident: ref_146
  article-title: Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.030418
– volume: 8
  start-page: 903
  year: 2020
  ident: ref_344
  article-title: Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: A post-hoc analysis from the CREDENCE trial
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(20)30300-4
– volume: 42
  start-page: 3599
  year: 2021
  ident: ref_110
  article-title: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) With the Special Contribution of the Heart Failure Association (HFA) of the ESC
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehab368
– volume: 42
  start-page: e159
  year: 2019
  ident: ref_279
  article-title: Effect of Empagliflozin on Endothelial Function in Patients With Type 2 Diabetes and Cardiovascular Disease: Results from the Multicenter, Randomized, Placebo-Controlled, Double-Blind EMBLEM Trial
  publication-title: Diabetes Care
  doi: 10.2337/dc19-1177
– volume: 2014
  start-page: 83421
  year: 2014
  ident: ref_82
  article-title: Hypoxia in Diabetic Kidneys
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/837421
– volume: 1
  start-page: 140
  year: 2013
  ident: ref_52
  article-title: SGLT inhibitors in management of diabetes
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(13)70050-0
– volume: 57
  start-page: 1015
  year: 2003
  ident: ref_145
  article-title: Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model
  publication-title: Cardiovasc. Res.
  doi: 10.1016/S0008-6363(02)00809-X
– volume: 52
  start-page: 837
  year: 2021
  ident: ref_187
  article-title: Mini Review: Reappraisal of Uric Acid in Chronic Kidney Disease
  publication-title: Am. J. Nephrol.
  doi: 10.1159/000519491
– volume: 8
  start-page: 582
  year: 2020
  ident: ref_109
  article-title: Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(20)30162-5
– volume: 75
  start-page: 894
  year: 2020
  ident: ref_61
  article-title: Antihypertensive and Renal Mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) Inhibitors
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.119.11684
– ident: ref_280
  doi: 10.3390/jcm8111814
– volume: 36
  start-page: 3169
  year: 2013
  ident: ref_2
  article-title: Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc13-0387
– volume: 383
  start-page: 1425
  year: 2020
  ident: ref_92
  article-title: Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2004967
– volume: 91
  start-page: 733
  year: 2011
  ident: ref_57
  article-title: Biology of human sodium glucose transporters
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00055.2009
– volume: 24
  start-page: 1655
  year: 2006
  ident: ref_99
  article-title: Management of cardiovascular risk factors in advanced type 2 diabetic nephropathy: A comparative analysis in nephrology, diabetology and primary care settings
  publication-title: J. Hypertens.
  doi: 10.1097/01.hjh.0000239303.93872.31
– volume: 16
  start-page: 1087
  year: 2014
  ident: ref_232
  article-title: Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12322
– volume: 9
  start-page: 178
  year: 2017
  ident: ref_345
  article-title: A Possible Mechanism for Renoprotective Effect of Sodium-Glucose Cotransporter 2 Inhibitor: Elevation of Erythropoietin Production
  publication-title: J. Clin. Med. Res.
  doi: 10.14740/jocmr2857w
– volume: 274
  start-page: R263
  year: 1998
  ident: ref_238
  article-title: Juxtaglomerular cell complex in the regulation of renal salt excretion
  publication-title: Am. J. Physiol. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.1998.274.2.R263
– volume: 11
  start-page: 190
  year: 2020
  ident: ref_37
  article-title: Prospect of Sodium-Glucose Co-transporter 2 Inhibitors Combined With Insulin for the Treatment of Type 2 Diabetes
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2020.00190
– volume: 444
  start-page: 860
  year: 2006
  ident: ref_259
  article-title: Inflammation and metabolic disorders
  publication-title: Nature
  doi: 10.1038/nature05485
– ident: ref_265
  doi: 10.3390/biom12020176
– volume: 4
  start-page: 312
  year: 2016
  ident: ref_294
  article-title: Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction
  publication-title: JACC Heart Fail.
  doi: 10.1016/j.jchf.2015.10.007
– volume: 16
  start-page: 489
  year: 2020
  ident: ref_329
  article-title: Autophagy in kidney homeostasis and disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-020-0309-2
– volume: 300
  start-page: E287
  year: 2011
  ident: ref_228
  article-title: Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes
  publication-title: Am. J. Physiol. Metab.
– volume: 12
  start-page: 2042098621989134
  year: 2021
  ident: ref_41
  article-title: Adverse events associated with sodium glucose co-transporter 2 inhibitors: An overview of quantitative systematic reviews
  publication-title: Ther. Adv. Drug Saf.
  doi: 10.1177/2042098621989134
– volume: 302
  start-page: R166
  year: 2012
  ident: ref_62
  article-title: Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure
  publication-title: Am. J. Physiol. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00127.2011
– volume: 53
  start-page: 75
  year: 2020
  ident: ref_178
  article-title: Does SGLT2 Inhibition Affect Sympathetic Nerve Activity in Type 2 Diabetes?
  publication-title: Horm. Metab. Res.
– volume: 20
  start-page: 458
  year: 2017
  ident: ref_188
  article-title: Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13101
– volume: 97
  start-page: 1020
  year: 2012
  ident: ref_166
  article-title: Effects of Dapagliflozin on Body Weight, Total Fat Mass, and Regional Adipose Tissue Distribution in Patients with Type 2 Diabetes Mellitus with Inadequate Glycemic Control on Metformin
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2011-2260
– volume: 157
  start-page: 1029
  year: 2016
  ident: ref_29
  article-title: Tofogliflozin Improves Insulin Resistance in Skeletal Muscle and Accelerates Lipolysis in Adipose Tissue in Male Mice
  publication-title: Endocrinology
  doi: 10.1210/en.2015-1588
– ident: ref_256
  doi: 10.3390/ijms22168786
– volume: 98
  start-page: 579
  year: 2020
  ident: ref_135
  article-title: The role of renal hypoxia in the pathogenesis of diabetic kidney disease: A promising target for newer renoprotective agents including SGLT2 inhibitors?
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2020.02.041
– volume: 141
  start-page: 704
  year: 2020
  ident: ref_341
  article-title: Effect of Empagliflozin on Erythropoietin Levels, Iron Stores, and Red Blood Cell Morphology in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.044235
– volume: 300
  start-page: R1009
  year: 2011
  ident: ref_71
  article-title: The proximal tubule in the pathophysiology of the diabetic kidney
  publication-title: Am. J. Physiol. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00809.2010
– ident: ref_133
  doi: 10.1172/jci.insight.98720
– volume: 19
  start-page: 159
  year: 2020
  ident: ref_148
  article-title: Characterization of left ventricular myocardial sodium-glucose cotransporter 1 expression in patients with end-stage heart failure
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-020-01141-1
– volume: 333
  start-page: 43
  year: 2017
  ident: ref_163
  article-title: SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2017.08.005
– volume: 2
  start-page: e00050
  year: 2018
  ident: ref_40
  article-title: Sodium-glucose cotransporter 2 inhibitor plus pioglitazone vs. pioglitazone alone in patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials
  publication-title: Endocrinol. Diabetes Metab.
  doi: 10.1002/edm2.50
– ident: ref_201
  doi: 10.3390/cells10102699
– volume: 33
  start-page: 140
  year: 2019
  ident: ref_26
  article-title: An investigation into the durability of glycemic control in patients with type II diabetes initiated on canagliflozin or sitagliptin: A real-world analysis of electronic medical records
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2018.10.016
– volume: 73
  start-page: 1931
  year: 2019
  ident: ref_219
  article-title: Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2019.01.056
– volume: 35
  start-page: e3169
  year: 2019
  ident: ref_38
  article-title: Effects of sodium-glucose cotransporter (SGLT) inhibitors in addition to insulin therapy on glucose control and safety outcomes in adults with type 1 diabetes: A meta-analysis of randomized controlled trials
  publication-title: Diabetes. Metab. Res. Rev.
  doi: 10.1002/dmrr.3169
– volume: 28
  start-page: 1023
  year: 2017
  ident: ref_80
  article-title: Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2016060666
– volume: 124
  start-page: 509
  year: 2014
  ident: ref_15
  article-title: Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI70704
– volume: 33
  start-page: 100725
  year: 2021
  ident: ref_181
  article-title: Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes
  publication-title: Int. J. Cardiol. Heart Vasc.
– volume: 20
  start-page: 1972
  year: 2018
  ident: ref_35
  article-title: SGLT2 inhibitor plus DPP-4 inhibitor as combination therapy for type 2 diabetes: A systematic review and meta-analysis
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13294
– volume: 9
  start-page: e112394
  year: 2014
  ident: ref_276
  article-title: The Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Improves Diabetes-Induced Vascular Dysfunction in the Streptozotocin Diabetes Rat Model by Interfering with Oxidative Stress and Glucotoxicity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0112394
– volume: 21
  start-page: 713
  year: 2019
  ident: ref_343
  article-title: Canagliflozin Improves Erythropoiesis in Diabetes Patients with Anemia of Chronic Kidney Disease
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2019.0212
– volume: 27
  start-page: 136
  year: 2010
  ident: ref_51
  article-title: Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications
  publication-title: Diabet Med.
  doi: 10.1111/j.1464-5491.2009.02894.x
– volume: 12
  start-page: 658
  year: 2011
  ident: ref_1
  article-title: Kidney in diabetes: From organ damage target to therapeutic target
  publication-title: Curr. Drug Metab.
  doi: 10.2174/138920011796504509
– volume: 29
  start-page: 498
  year: 2006
  ident: ref_98
  article-title: Cardiovascular Risk Factors and Disease Management in Type 2 Diabetic Patients With Diabetic Nephropathy
  publication-title: Diabetes Care
  doi: 10.2337/diacare.29.03.06.dc05-1776
– volume: 109
  start-page: 1327
  year: 2011
  ident: ref_314
  article-title: Mitochondrial Fusion is Essential for Organelle Function and Cardiac Homeostasis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.111.258723
– ident: ref_87
  doi: 10.1371/journal.pone.0178473
– volume: 24
  start-page: 96
  year: 2015
  ident: ref_240
  article-title: Sodium–glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0000000000000084
– volume: 7
  start-page: e000783
  year: 2019
  ident: ref_262
  article-title: Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet
  publication-title: BMJ Open Diabetes Res. Care
  doi: 10.1136/bmjdrc-2019-000783
– volume: 23
  start-page: 2814
  year: 2021
  ident: ref_335
  article-title: Effects of empagliflozin on erythropoiesis in patients with type 2 diabetes: Data from a randomized, placebo-controlled study
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.14517
– volume: 383
  start-page: 1413
  year: 2020
  ident: ref_101
  article-title: Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2022190
– ident: ref_21
  doi: 10.31038/EDMJ.2018232
– volume: 317
  start-page: F767
  year: 2019
  ident: ref_328
  article-title: Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00565.2018
– volume: 316
  start-page: F173
  year: 2019
  ident: ref_189
  article-title: SGLT2 inhibition and renal urate excretion: Role of luminal glucose, GLUT9, and URAT1
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00462.2018
– volume: 43
  start-page: 99
  year: 2017
  ident: ref_184
  article-title: Effects of reducing blood pressure on renal outcomes in patients with type 2 diabetes: Focus on SGLT2 inhibitors and EMPA-REG OUTCOME
  publication-title: Diabetes Metab.
  doi: 10.1016/j.diabet.2016.12.010
– volume: 21
  start-page: 91
  year: 2005
  ident: ref_32
  article-title: Glucagon-like peptide 1(GLP-1) in biology and pathology
  publication-title: Diabetes Metab. Res. Rev.
  doi: 10.1002/dmrr.538
– volume: 304
  start-page: F156
  year: 2013
  ident: ref_77
  article-title: Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00409.2012
– volume: 29
  start-page: 88
  year: 2015
  ident: ref_89
  article-title: Autonomic dysfunction is associated with brief episodes of atrial fibrillation in type 2 diabetes
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2014.09.002
– volume: 158
  start-page: 107927
  year: 2019
  ident: ref_34
  article-title: Glycemic efficacy and safety of glucagon-like peptide-1 receptor agonist on top of sodium-glucose co-transporter-2 inhibitor treatment compared to sodium-glucose co-transporter-2 inhibitor alone: A systematic review and meta-analysis of randomized controlled trials
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2019.107927
– volume: 12
  start-page: 352
  year: 2015
  ident: ref_177
  article-title: Dapagliflozin lowers blood pressure in hypertensive and non-hypertensive patients with type 2 diabetes
  publication-title: Diabetes Vasc. Dis. Res.
  doi: 10.1177/1479164115585298
– volume: 30
  start-page: 1272
  year: 2014
  ident: ref_76
  article-title: Sodium-glucose cotransport inhibitors: Mechanisms, metabolic effects and implications for the treatment of diabetic patients with chronic kidney disease: FIGURE 1
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfu299
– volume: 25
  start-page: 121
  year: 2018
  ident: ref_160
  article-title: The Global Epidemiology of Diabetes and Kidney Disease
  publication-title: Adv. Chronic Kidney Dis.
  doi: 10.1053/j.ackd.2017.10.011
– volume: 281
  start-page: F887
  year: 2001
  ident: ref_86
  article-title: Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00050.2001
– volume: 339
  start-page: 211
  year: 2013
  ident: ref_221
  article-title: Suppression of Oxidative Stress by β-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor
  publication-title: Science
  doi: 10.1126/science.1227166
– volume: 8
  start-page: 844
  year: 2016
  ident: ref_334
  article-title: Increased Hematocrit During Sodium-Glucose Cotransporter 2 Inhibitor Therapy Indicates Recovery of Tubulointerstitial Function in Diabetic Kidneys
  publication-title: J. Clin. Med. Res.
  doi: 10.14740/jocmr2760w
– volume: 28
  start-page: 364
  year: 2004
  ident: ref_54
  article-title: The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function
  publication-title: JPEN J. Parenter Enter. Nutr.
  doi: 10.1177/0148607104028005364
– volume: 20
  start-page: 2515
  year: 2018
  ident: ref_270
  article-title: Increases in circulating levels of ketone bodies and cardiovascular protection with SGLT2 inhibitors: Is low-grade inflammation the neglected component?
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13488
– volume: 149
  start-page: 717
  year: 2008
  ident: ref_72
  article-title: Na+-Glucose Transporter-2 Messenger Ribonucleic Acid Expression in Kidney of Diabetic Rats Correlates with Glycemic Levels: Involvement of Hepatocyte Nuclear Factor-1α Expression and Activity
  publication-title: Endocrinology
  doi: 10.1210/en.2007-1088
– volume: 39
  start-page: 396
  year: 2016
  ident: ref_171
  article-title: Circadian blood pressure rhythm as a possible key target of SGLT2 inhibitors used for the treatment of Type 2 diabetes
  publication-title: Hypertens. Res.
  doi: 10.1038/hr.2016.1
– volume: 18
  start-page: 15
  year: 2019
  ident: ref_288
  article-title: SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-019-0816-2
– volume: 234
  start-page: 223
  year: 2018
  ident: ref_300
  article-title: Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26851
– volume: 61
  start-page: 2087
  year: 2018
  ident: ref_67
  article-title: Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2
  publication-title: Diabetologia
  doi: 10.1007/s00125-018-4656-5
– volume: 27
  start-page: 2393
  year: 2015
  ident: ref_338
  article-title: Severity and Frequency of Proximal Tubule Injury Determines Renal Prognosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2015060647
– volume: 318
  start-page: F67
  year: 2020
  ident: ref_304
  article-title: Blockade of sodium-glucose cotransporter 2 suppresses high glucose-induced angiotensinogen augmentation in renal proximal tubular cells
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00402.2019
– ident: ref_272
  doi: 10.3390/biomedicines9101356
– volume: 39
  start-page: 2036
  year: 2016
  ident: ref_202
  article-title: Dapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc15-2688
– ident: ref_186
  doi: 10.3390/ijms222212394
– volume: 38
  start-page: 2265
  year: 2016
  ident: ref_237
  article-title: Pharmacodynamic Effects of Single and Multiple Doses of Empagliflozin in Patients With Type 2 Diabetes
  publication-title: Clin. Ther.
  doi: 10.1016/j.clinthera.2016.09.001
– volume: 26
  start-page: 345
  year: 2017
  ident: ref_84
  article-title: Hypoxia-inducible factor activation in diabetic kidney disease
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0000000000000341
– volume: 103
  start-page: 1
  year: 1985
  ident: ref_239
  article-title: Acute Vasoconstrictor Response to Intravenous Furosemide in Patients with Chronic Congestive Heart Failure
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-103-1-1
– volume: 129
  start-page: 587
  year: 2014
  ident: ref_120
  article-title: Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 1 Diabetes Mellitus
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.005081
– volume: 6
  start-page: 186
  year: 2020
  ident: ref_155
  article-title: SGLT2 Inhibitors Play a Salutary Role in Heart Failure via Modulation of the Mitochondrial Function
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2019.00186
– volume: 12
  start-page: 700
  year: 2017
  ident: ref_17
  article-title: SGLT2 Inhibition in the Diabetic Kidney-From Mechanisms to Clinical Outcome
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.06080616
– volume: 60
  start-page: 890
  year: 2011
  ident: ref_28
  article-title: SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function
  publication-title: Diabetes
  doi: 10.2337/db10-1328
– volume: 13
  start-page: 370
  year: 2017
  ident: ref_277
  article-title: The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.06.009
– volume: 2018
  start-page: 3106056
  year: 2018
  ident: ref_9
  article-title: Role of Tight Glycemic Control during Acute Coronary Syndrome on CV Outcome in Type 2 Diabetes
  publication-title: J. Diabetes Res.
  doi: 10.1155/2018/3106056
– volume: 85
  start-page: 32
  year: 2018
  ident: ref_260
  article-title: Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2018.02.002
– volume: 21
  start-page: 512
  year: 2015
  ident: ref_43
  article-title: Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion
  publication-title: Nat. Med.
  doi: 10.1038/nm.3828
– volume: 384
  start-page: 129
  year: 2021
  ident: ref_93
  article-title: Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2030186
– volume: 29
  start-page: 2755
  year: 2018
  ident: ref_125
  article-title: Empagliflozin and Kidney Function Decline in Patients with Type 2 Diabetes: A Slope Analysis from the EMPA-REG OUTCOME Trial
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2018010103
– volume: 19
  start-page: 35
  year: 2020
  ident: ref_130
  article-title: Preventing major adverse cardiovascular events by SGLT-2 inhibition in patients with type 2 diabetes: The role of kidney
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-020-01010-x
– volume: 39
  start-page: 1108
  year: 2016
  ident: ref_214
  article-title: CV Protection in the EMPA-REG OUTCOME Trial: A “Thrifty Substrate” Hypothesis
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0330
– volume: 140
  start-page: 1693
  year: 2019
  ident: ref_346
  article-title: Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.042375
– ident: ref_112
  doi: 10.2337/dc22-S010
– volume: 140
  start-page: 303
  year: 2019
  ident: ref_122
  article-title: Evaluation of Glomerular Hemodynamic Function by Empagliflozin in Diabetic Mice Using In Vivo Imaging
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.037418
– volume: 42
  start-page: 498
  year: 1997
  ident: ref_226
  article-title: Enzymes of Ketone Body Utilization in Human Tissues: Protein and Messenger RNA Levels of Succinyl-Coenzyme A (CoA):3-Ketoacid CoA Transferase and Mitochondrial and Cytosolic Acetoacetyl-CoA Thiolases
  publication-title: Pediatric Res.
  doi: 10.1203/00006450-199710000-00013
– volume: 20
  start-page: 2617
  year: 2018
  ident: ref_308
  article-title: Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13441
– volume: 58
  start-page: 1183
  year: 2015
  ident: ref_176
  article-title: Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3547-2
– volume: 381
  start-page: 1995
  year: 2019
  ident: ref_100
  article-title: Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1911303
– ident: ref_119
  doi: 10.1371/journal.pone.0100777
– volume: 40
  start-page: e104705
  year: 2021
  ident: ref_316
  article-title: Molecular mechanisms and physiological functions of mitophagy
  publication-title: EMBO J.
  doi: 10.15252/embj.2020104705
– ident: ref_332
  doi: 10.3390/ijms21082987
– volume: 74
  start-page: 351
  year: 2012
  ident: ref_79
  article-title: Renal Function in Diabetic Disease Models: The Tubular System in the Pathophysiology of the Diabetic Kidney
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-020911-153333
– volume: 31
  start-page: 119
  year: 2017
  ident: ref_283
  article-title: SGLT-2 Inhibition with Dapagliflozin Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Cardiomyopathy in Mice with Type 2 Diabetes. Further Augmentation of the Effects with Saxagliptin, a DPP4 Inhibitor
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1007/s10557-017-6725-2
– volume: 24
  start-page: 463
  year: 2015
  ident: ref_55
  article-title: Sodium-glucose cotransport
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0000000000000152
– volume: 60
  start-page: 215
  year: 2017
  ident: ref_14
  article-title: Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-4157-3
– volume: 178
  start-page: 108959
  year: 2021
  ident: ref_10
  article-title: Does a strict glycemic control during acute coronary syndrome play a cardioprotective effect? Pathophysiology and clinical evidence
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2021.108959
– ident: ref_324
  doi: 10.1007/s13238-020-00809-4
– volume: 40
  start-page: 347
  year: 2020
  ident: ref_7
  article-title: Liver fibrosis by FibroScan® independently of established cardiovascular risk parameters associates with macrovascular and microvascular complications in patients with type 2 diabetes
  publication-title: Liver Int.
  doi: 10.1111/liv.14274
– volume: 133
  start-page: 706
  year: 2016
  ident: ref_211
  article-title: Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.017545
– volume: 41
  start-page: 255
  year: 2020
  ident: ref_95
  article-title: 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehz486
– volume: 5
  start-page: 610
  year: 2017
  ident: ref_128
  article-title: Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: An exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(17)30182-1
– volume: 2021
  start-page: 9944880
  year: 2021
  ident: ref_281
  article-title: Anti-inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways
  publication-title: J. Immunol. Res.
  doi: 10.1155/2021/9944880
– volume: 72
  start-page: S27
  year: 2007
  ident: ref_66
  article-title: Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells
  publication-title: Kidney Int.
  doi: 10.1038/sj.ki.5002383
SSID ssj0023259
Score 2.637099
SecondaryResourceType review_article
Snippet Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3651
SubjectTerms Blood Glucose
Diabetes
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Drug dosages
Gene expression
Glucagon
Glucose
Humans
Hypoglycemia
Insulin resistance
Plasma
Review
Sodium-Glucose Transporter 2 - metabolism
Sodium-Glucose Transporter 2 Inhibitors - pharmacology
Sodium-Glucose Transporter 2 Inhibitors - therapeutic use
Stroke Volume
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-qUvBF1H4YtSWF9qksJpvdTfIkIj3PUttCFXwLu5tZjGhOzan437uT5KLXUp8zIWFmd-djfzM_gM8-Y-C5zQQrRWaZsEqwzCrNuEvTqCxtqR11Ix_9VOMT8f1UnvYFt6aHVc7OxPagLieWauQ73nHnPrbw2dzu1TUj1ii6Xe0pNBZgKfaehiBd2ehgSLgS3pKlxd4HMSVz1QHfE5_m71Tnlw1hoBMl43mX9E-c-Tdc8pn_Ga3CSh84hnudpdfgFdbr8Lqjknx4A-O9Ovx1Rxsf78OJC31cF-63WNMbpPd-d_MY_NkWHiF1-1bNZUOCfw5-HPPwsD6rTEXMO2_hZPTteH_MepYEZkWaTZkQNs29UzbOlFJrrkzJpRVGCIextlIY7jBBrw0dRRoROXqnnTgTWx_cGJe8g8V6UuMGhCkKGxOXlYgJ_pnkCkttIkOVY2MdBvB1pqjC9iPEicniovCpBKm1eK7WAL4M0lfd6Iz_yG3PdF70G6gpnswdwKfhsV_6dJ-ha5zcdjIyy2WkAnjfmWj4EJWzqKs2gHTOeIMAjdWef1JXZ-14bcpApco3X_6tLVjm1AkRJYyrbVic3tziBx-fTM3HdhE-AiKn5Zs
  priority: 102
  providerName: ProQuest
Title An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors
URI https://www.ncbi.nlm.nih.gov/pubmed/35409011
https://www.proquest.com/docview/2649057469
https://www.proquest.com/docview/2649589506
https://pubmed.ncbi.nlm.nih.gov/PMC8998569
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8x0KS9IGAfBFiVSdvT5C11HDt5QBMgSjetDG1U6ltkO7YIghTaAuO_313TRhQ2aS958VmOzh_3O_vufgDv0WPgmU0FK0RqmbBSsNRKzbhXKioKW2hP2ci9Y9nti2-DZLAEc7bRmQLHf3XtiE-qP7r49Pv6_gtu-F3yONFl_1yeX44pnjmWlEu9gjZJEZdBTzTvCQgbprRpdOHB6ICuQ-Cf9F40Tk8Q5-PAyQeWqLMGqzMIGe7Vc74OS67agOc1qeT9S-juVeGPWzoC3F049CEivPBgGnU6ctTvpK7MgKdc2HOU91uOL8ck-Ovo-ykPv1ZnpSmJg-cV9DuHpwddNuNLYFaodMKEsCpD82y8KRKtuTQFT6wwQnjX1jYRhnsXO9SGjiLtnOMOzXfsTdsizDE-fg3L1bBymxAqJ2ybWK1EmwJB40y6QpvI0B2ysd4F8HGuqNzOiokTp8VFjk4FqTV_qNYAPjTSV3URjX_I7cx1ns9XQo6ILUNQiW58AO-aZtwE9LKhKze8qWWSNEsiGcCbeoqagehii_JrA1ALk9cIUIHtxZaqPJsW2iZfNJHZ1n_-_ja84JQcEcWMyx1Ynoxu3FuELBPTgmdqoPCbdo5asLJ_eHzys0VGJGlN1-kf5dHvIg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQvqDwbKGAkekJWE8dxkgNCVWG7S3cLEluptxA7thpEs6XZUvVP8Rs7k2xCFwS3nj15aDz2N2PPzAfwGiMGkZpE8kImhkujJE-MyrlwcewXhSlyR9XIkwM1PJQfj6KjFfjV1cJQWmW3JzYbdTEzdEa-jcCdom-B0dy70x-cWKPodrWj0GjNYt9eXmDIVr8dvcf53RJi8GG6O-QLVgFuZJzMuZQmThHEtNNFlOdC6UJERmopnQ1yE0ktnA0tYlnu-7m1VlgEudDpwKAzoF2I770Ft2WISE6V6YO9PsALRUPOFiDmcRWlqk20R0F_u_x2UlPOdaiiYBkC__Jr_0zPvIZ3g3W4t3BU2U5rWfdhxVYP4E5LXXn5EIY7Ffv0kzYae8FmjqEfyXab3NYzS899bvs_4F7KJpaqi8v6pCbBL3vjqWCj6rjUJTH9PILDG9HfY1itZpXdABZbaQLizpIBpZuGqbJFrn1NJ9XaOOvBm05RmVm0LCfmjO8Zhi6k1uy6Wj3Y6qVP21Yd_5Db7HSeLRZsnf02Lw9e9cO41Oj-JK_s7LyViZI08pUHT9op6j9Ex2dUxetBvDR5vQC18V4eqcrjpp03RbyRSp_-_7dewt3hdDLOxqOD_WewJqgKww-5UJuwOj87t8_RN5rrF41BMvh60yvgCkmcJEY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKt4ECgSJnpC1ie04yQFVpe2yS9tlBa3UW2o7thpEs22zbdW_xq_Ds3nQBcGtZ08emhnPw56ZD-CdyxhoqhNOcp5owrXgJNFCEmrjOMhznUuL3ch7YzE84J8Po8Ml-Nn2wmBZZWsT54Y6n2o8I-87x5262MJlc33blEVMtgbrp2cEEaTwprWF06hVZMdcX7n0rfow2nKyXqN0sL2_OSQNwgDRPE5mhHMdp86hKavySEoqVE4jzRXn1oRSR1xRa5hxfk0GgTTGUOMcHrMq1C4wUJa5996B5Rizoh4sf9weT7526R6jc6i20HlAIqJU1GX3jKVBv_h-UmEFNhNRuOgQ_4py_yzWvOH9Bg9gpQlb_Y1azx7Ckikfwd0ayPL6MQw3Sv_LJZodc-VPre-iSn9zXul6bvC5ST0NwllWf89gr3FRnVRI-O3T7j71R-VxoQrE_XkCB7fCwafQK6eleQ5-bLgOEUmLh1h8ylJhcqkChefWSlvjwfuWUZluBpgjjsaPzCUyyNbsJls9WOuoT-vBHf-gW215njXbt8p-K5sHb7tlt_HwNkWWZnpR00RJGgXCg2e1iLoP4WEa9vR6EC8IryPAod6LK2VxPB_ujflvJNIX__-tN3DPaX-2OxrvvIT7FFsyAkaoWIXe7PzCvHKB0ky9bjTSh6Pb3gS_AIOFKdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Overview+of+the+Cardiorenal+Protective+Mechanisms+of+SGLT2+Inhibitors&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Salvatore%2C+Teresa&rft.au=Galiero%2C+Raffaele&rft.au=Caturano%2C+Alfredo&rft.au=Rinaldi%2C+Luca&rft.date=2022-03-26&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=7&rft.spage=3651&rft_id=info:doi/10.3390%2Fijms23073651&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms23073651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon