Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models

Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in the semi-arid regions of Iran. Therefore, our aim is to assess land suitability for two main crops (i.e., rain-fed wheat and barley) based on...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 10; no. 4; p. 573
Main Authors Taghizadeh-Mehrjardi, Ruhollah, Nabiollahi, Kamal, Rasoli, Leila, Kerry, Ruth, Scholten, Thomas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 17.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in the semi-arid regions of Iran. Therefore, our aim is to assess land suitability for two main crops (i.e., rain-fed wheat and barley) based on the Food and Agriculture Organization (FAO) “land suitability assessment framework” for 65 km2 of agricultural land in Kurdistan province, Iran. Soil samples were collected from genetic layers of 100 soil profiles and the physical-chemical properties of the soil samples were analyzed. Topography and climate data were also recorded. After calculating the land suitability classes for the two crops, they were mapped using machine learning (ML) and traditional approaches. The maps predicted by the two approaches revealed notable differences. For example, in the case of rain-fed wheat, results showed the higher accuracy of ML-based land suitability maps compared to the maps obtained by traditional approach. Furthermore, the findings indicated that the areas with classes of N2 (≈18%↑) and S3 (≈28%↑) were higher and area with the class N1 (≈24%↓) was less predicted in the traditional approach compared to the ML-based approach. The major limitations of the study area were rainfall at the flowering stage, severe slopes, shallow soil depth, high pH, and large gravel content. Therefore, to increase production and create a sustainable agricultural system, land improvement operations are suggested.
AbstractList Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in the semi-arid regions of Iran. Therefore, our aim is to assess land suitability for two main crops (i.e., rain-fed wheat and barley) based on the Food and Agriculture Organization (FAO) “land suitability assessment framework” for 65 km2 of agricultural land in Kurdistan province, Iran. Soil samples were collected from genetic layers of 100 soil profiles and the physical-chemical properties of the soil samples were analyzed. Topography and climate data were also recorded. After calculating the land suitability classes for the two crops, they were mapped using machine learning (ML) and traditional approaches. The maps predicted by the two approaches revealed notable differences. For example, in the case of rain-fed wheat, results showed the higher accuracy of ML-based land suitability maps compared to the maps obtained by traditional approach. Furthermore, the findings indicated that the areas with classes of N2 (≈18%↑) and S3 (≈28%↑) were higher and area with the class N1 (≈24%↓) was less predicted in the traditional approach compared to the ML-based approach. The major limitations of the study area were rainfall at the flowering stage, severe slopes, shallow soil depth, high pH, and large gravel content. Therefore, to increase production and create a sustainable agricultural system, land improvement operations are suggested.
Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in the semi-arid regions of Iran. Therefore, our aim is to assess land suitability for two main crops (i.e., rain-fed wheat and barley) based on the Food and Agriculture Organization (FAO) “land suitability assessment framework” for 65 km² of agricultural land in Kurdistan province, Iran. Soil samples were collected from genetic layers of 100 soil profiles and the physical-chemical properties of the soil samples were analyzed. Topography and climate data were also recorded. After calculating the land suitability classes for the two crops, they were mapped using machine learning (ML) and traditional approaches. The maps predicted by the two approaches revealed notable differences. For example, in the case of rain-fed wheat, results showed the higher accuracy of ML-based land suitability maps compared to the maps obtained by traditional approach. Furthermore, the findings indicated that the areas with classes of N2 (≍18%↑) and S3 (≍28%↑) were higher and area with the class N1 (≍24%↓) was less predicted in the traditional approach compared to the ML-based approach. The major limitations of the study area were rainfall at the flowering stage, severe slopes, shallow soil depth, high pH, and large gravel content. Therefore, to increase production and create a sustainable agricultural system, land improvement operations are suggested.
Author Kerry, Ruth
Scholten, Thomas
Nabiollahi, Kamal
Rasoli, Leila
Taghizadeh-Mehrjardi, Ruhollah
Author_xml – sequence: 1
  givenname: Ruhollah
  orcidid: 0000-0002-4620-6624
  surname: Taghizadeh-Mehrjardi
  fullname: Taghizadeh-Mehrjardi, Ruhollah
– sequence: 2
  givenname: Kamal
  surname: Nabiollahi
  fullname: Nabiollahi, Kamal
– sequence: 3
  givenname: Leila
  surname: Rasoli
  fullname: Rasoli, Leila
– sequence: 4
  givenname: Ruth
  surname: Kerry
  fullname: Kerry, Ruth
– sequence: 5
  givenname: Thomas
  orcidid: 0000-0002-4875-2602
  surname: Scholten
  fullname: Scholten, Thomas
BookMark eNp1kc1rXCEUxaWk0DTNPssH3XQzrZ-jLofQpoEpDSRZy33qmzo4mqpvMf99nEwbykDdKPf-ztHreY_OUk4eoSuCPzOm8RfYlJzybk8w5lhI9gadUyzZgjMtzv45v0OXtW5xX5owheU5cmtIbrifQ4MxxND2w6pWX-vOpzYcWqtNCXaObS4Qh7uS3WxbyKlLaoOQ_qoea0ib4QfYXyH5Ye2hpJdCdj7WD-jtBLH6yz_7BXr89vXh-vti_fPm9nq1XlguVVtw7MbROm-Z0EvOncZUeIVHSR2jmoCgQnkyCcowKCUEaNYxBXhacqYYsAt0e_R1GbbmqYQdlL3JEMxLIZeNgdKCjd4oPkmi7YSBCq5dNxSjs14uvSMUtOxen45eTyX_nn1tZheq9TFC8nmuhmrVLydc6Y5-PEG3eS6pT2oo04xSSSnvFD5StuRai59eH0iwOaRoTlPskuWJxPacDt_fCoT4f-EznXulrA
CitedBy_id crossref_primary_10_1016_j_jag_2023_103523
crossref_primary_10_3390_s23041811
crossref_primary_10_1007_s10661_021_09663_1
crossref_primary_10_3390_su14010371
crossref_primary_10_1007_s12517_023_11754_x
crossref_primary_10_1088_1742_6596_1918_4_042154
crossref_primary_10_1016_j_jclepro_2022_132655
crossref_primary_10_3390_crops4030022
crossref_primary_10_20961_stjssa_v19i2_61973
crossref_primary_10_3390_su142214996
crossref_primary_10_1007_s42106_020_00106_4
crossref_primary_10_1371_journal_pone_0257007
crossref_primary_10_3390_su14095189
crossref_primary_10_3390_agriculture13061208
crossref_primary_10_3390_agronomy11020260
crossref_primary_10_3390_agronomy12051243
crossref_primary_10_36253_jaeid_14182
crossref_primary_10_1007_s12517_022_09592_4
crossref_primary_10_1016_j_aiia_2022_02_001
crossref_primary_10_3390_ijgi13120436
crossref_primary_10_1016_j_cities_2023_104334
crossref_primary_10_3390_rs14133054
crossref_primary_10_20914_2310_1202_2023_4_133_138
crossref_primary_10_3390_agronomy13020445
crossref_primary_10_1016_j_indic_2023_100297
crossref_primary_10_3390_ijgi11080422
crossref_primary_10_1007_s10668_022_02728_2
crossref_primary_10_1007_s10668_023_04440_1
crossref_primary_10_1016_j_compag_2024_108831
crossref_primary_10_1155_2024_2903230
crossref_primary_10_1556_446_2022_00050
crossref_primary_10_1016_j_apsoil_2024_105860
crossref_primary_10_1080_23311932_2023_2257975
crossref_primary_10_3390_land11030346
crossref_primary_10_1016_j_heliyon_2023_e14012
crossref_primary_10_1016_j_ecolind_2024_112475
crossref_primary_10_3390_agriculture12040474
crossref_primary_10_3390_rs16224342
crossref_primary_10_3389_fpls_2023_1309171
crossref_primary_10_1080_03650340_2022_2096878
crossref_primary_10_3390_su14073731
crossref_primary_10_1016_j_jag_2025_104399
crossref_primary_10_3390_app15010372
crossref_primary_10_36783_18069657rbcs20230024
crossref_primary_10_3390_ijgi10090621
crossref_primary_10_3389_fpls_2023_1084886
crossref_primary_10_3390_agronomy11030597
crossref_primary_10_3390_s21144846
crossref_primary_10_3390_agronomy12092210
crossref_primary_10_1007_s10661_024_13188_8
crossref_primary_10_1007_s10661_023_11109_9
crossref_primary_10_1080_00103624_2024_2419994
crossref_primary_10_3390_ijerph191912973
crossref_primary_10_1007_s42979_025_03778_9
crossref_primary_10_3390_agronomy11081620
crossref_primary_10_1007_s10661_023_12099_4
crossref_primary_10_3389_fsufs_2024_1324646
crossref_primary_10_1016_j_scitotenv_2023_162269
crossref_primary_10_1186_s40537_024_00912_x
crossref_primary_10_1007_s11356_021_17961_x
crossref_primary_10_26898_0370_8799_2024_3_1
crossref_primary_10_1007_s10661_022_10428_7
crossref_primary_10_1016_j_ocsci_2022_08_001
crossref_primary_10_1080_10106049_2022_2138565
crossref_primary_10_3390_land13081288
crossref_primary_10_1080_00103624_2024_2334254
crossref_primary_10_1155_2022_9978167
crossref_primary_10_1007_s11356_021_15289_0
crossref_primary_10_1080_10106049_2021_2007299
crossref_primary_10_3390_rs16234486
crossref_primary_10_1109_ACCESS_2022_3188649
crossref_primary_10_1016_j_seps_2024_101848
crossref_primary_10_14246_irspsd_12_2_138
crossref_primary_10_1088_1748_9326_ad7276
crossref_primary_10_3390_agriculture13112083
crossref_primary_10_1016_j_nexus_2023_100259
crossref_primary_10_3390_su152015110
crossref_primary_10_3390_su132112236
crossref_primary_10_3390_agronomy13030726
crossref_primary_10_3390_app11125404
crossref_primary_10_3390_plants13172486
crossref_primary_10_1016_j_catena_2021_105835
crossref_primary_10_3390_s21113758
crossref_primary_10_1016_j_aiig_2022_03_001
crossref_primary_10_1016_j_jenvman_2024_123501
crossref_primary_10_3390_agronomy11050814
crossref_primary_10_1108_JSIT_11_2022_0266
crossref_primary_10_1080_10106049_2022_2076925
crossref_primary_10_3390_agronomy14020319
crossref_primary_10_1038_s41598_023_33840_6
crossref_primary_10_1016_j_compag_2022_107305
crossref_primary_10_1007_s41651_023_00156_y
crossref_primary_10_3389_fenvs_2023_1130269
crossref_primary_10_3390_electronics10050552
crossref_primary_10_3390_app122010508
crossref_primary_10_3390_ijgi10040259
crossref_primary_10_3390_rs16142566
crossref_primary_10_3390_agriculture14071077
crossref_primary_10_1007_s11053_024_10373_x
crossref_primary_10_3390_su15065325
crossref_primary_10_1016_j_geodrs_2024_e00754
crossref_primary_10_1051_e3sconf_202234004001
crossref_primary_10_1007_s12517_023_11318_z
crossref_primary_10_3390_agronomy12092010
crossref_primary_10_1007_s40003_023_00686_3
crossref_primary_10_1016_j_ecolind_2020_106736
crossref_primary_10_3390_agronomy14092113
crossref_primary_10_1109_JSTARS_2024_3437689
crossref_primary_10_1088_1755_1315_1192_1_012015
crossref_primary_10_3390_su14063685
crossref_primary_10_1002_fsn3_4655
Cites_doi 10.1016/S0034-4257(02)00096-2
10.1016/j.jterra.2004.12.002
10.1111/j.1365-2389.2009.01205.x
10.1023/A:1010933404324
10.1016/j.geoderma.2017.12.024
10.1016/j.geoderma.2007.03.004
10.2134/agronmonogr9.2.2ed
10.1016/j.geoderma.2018.09.006
10.1016/j.geodrs.2015.08.005
10.18637/jss.v036.i11
10.5539/mas.v4n7p72
10.1016/j.geoderma.2019.01.048
10.1080/17583004.2018.1553434
10.1016/j.cageo.2005.12.009
10.1016/j.scienta.2018.10.069
10.1016/j.catena.2017.10.002
10.1016/j.gfs.2015.04.001
10.1016/j.catena.2018.01.015
10.1016/j.cropro.2016.11.015
10.1016/j.geoderma.2017.05.015
10.1016/j.catena.2015.12.010
10.1007/BF00994018
10.1016/j.asej.2017.02.006
10.1016/j.compag.2014.11.020
10.1016/j.ecolind.2019.04.051
10.1016/S0016-7061(03)00223-4
10.1016/j.geoderma.2015.07.017
10.1016/j.compag.2019.03.015
10.1007/s11104-010-0425-z
10.1016/j.ecolind.2019.105887
10.1007/s40003-014-0101-2
10.1016/j.envsoft.2019.01.015
10.1016/j.geomorph.2017.02.015
10.1016/0034-4257(88)90106-X
10.1002/jpln.200521962
10.1016/j.geomorph.2006.04.016
10.1371/journal.pone.0220881
10.5194/egusphere-egu2020-138
10.1007/s10021-005-0054-1
10.2136/sssabookser5.3
10.1016/j.geoderma.2019.02.019
10.1016/S0034-4257(02)00188-8
10.1111/nph.13266
10.1016/j.geoderma.2019.03.016
10.1080/03650340.2017.1373188
10.1016/j.envsoft.2003.10.006
10.1016/j.landusepol.2018.08.007
10.1080/09640568.2011.646964
10.1016/j.geoderma.2016.09.019
10.1016/j.geoderma.2015.12.003
10.1016/S1002-0160(13)60068-5
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy10040573
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_84f719cf0a2549d0a85bdce76ed12a97
10_3390_agronomy10040573
GeographicLocations Iran
Kurdistan
GeographicLocations_xml – name: Kurdistan
– name: Iran
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
KQ8
M0K
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c478t-40dbbcdec359644d9025e80b72d3291a5258e1f5230a8855a936448a0f64383a3
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Wed Aug 27 01:04:07 EDT 2025
Fri Jul 11 03:19:58 EDT 2025
Mon Jun 30 11:21:03 EDT 2025
Thu Apr 24 22:51:06 EDT 2025
Tue Jul 01 02:34:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-40dbbcdec359644d9025e80b72d3291a5258e1f5230a8855a936448a0f64383a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4620-6624
0000-0002-4875-2602
OpenAccessLink https://www.proquest.com/docview/2393227224?pq-origsite=%requestingapplication%
PQID 2393227224
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_84f719cf0a2549d0a85bdce76ed12a97
proquest_miscellaneous_2986441489
proquest_journals_2393227224
crossref_primary_10_3390_agronomy10040573
crossref_citationtrail_10_3390_agronomy10040573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200417
PublicationDateYYYYMMDD 2020-04-17
PublicationDate_xml – month: 04
  year: 2020
  text: 20200417
  day: 17
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mansourian (ref_40) 2017; 93
ref_50
Gagkas (ref_76) 2019; 341
Behrens (ref_23) 2006; 169
Daigle (ref_21) 2005; 42
ref_14
ref_13
Metternicht (ref_57) 2003; 85
ref_56
Safari (ref_19) 2013; 23
Huete (ref_59) 1988; 25
ref_53
Nabiollahi (ref_32) 2019; 10
ref_52
ref_51
Pouladi (ref_71) 2019; 342
Toomanian (ref_35) 2014; 232–234
Mayol (ref_9) 2004; 19
Huete (ref_60) 2002; 83
ref_15
Jamshidi (ref_4) 2018; 9
Nabiollahi (ref_34) 2016; 266
Chen (ref_75) 2019; 344
Myles (ref_72) 2004; 18
Zeraatpisheh (ref_77) 2019; 338
Vasu (ref_37) 2018; 79
Bodaghabadi (ref_8) 2019; 246
Behrens (ref_29) 2010; 61
ref_25
ref_69
Pilevar (ref_81) 2020; 110
Prasad (ref_73) 2006; 9
ref_67
ref_22
Zhang (ref_78) 2019; 160
ref_65
Akbarimoghaddam (ref_79) 2018; 160
Barbosa (ref_68) 2015; 111
Qader (ref_5) 2018; 613–614
Toomanian (ref_41) 2006; 81
Ostovari (ref_83) 2019; 103
ref_26
Minasny (ref_27) 2016; 264
Minasny (ref_45) 2006; 32
Camera (ref_80) 2017; 285
Cortes (ref_63) 1995; 20
Dawson (ref_1) 2015; 206
Nabiollahi (ref_31) 2018; 64
ref_70
Nabiollahi (ref_33) 2015; 253–254
Zeraatpisheh (ref_55) 2017; 285
(ref_12) 2016; 140
Feizizadeh (ref_17) 2012; 56
Mosleh (ref_11) 2017; 303
Nabiollahi (ref_30) 2018; 318
ref_38
Harms (ref_39) 2015; 5
Bagherzadeh (ref_16) 2014; 3
Teng (ref_28) 2018; 164
Liaw (ref_62) 2002; 2
Kursa (ref_61) 2010; 36
Sarmadian (ref_54) 2014; 213
Ziadat (ref_20) 2007; 140
ref_47
ref_46
Houshyar (ref_3) 2018; 93
Freden (ref_58) 1973; Volume 1
ref_44
ref_43
McBratney (ref_24) 2003; 117
ref_42
Drucker (ref_64) 1997; 28
Kidd (ref_36) 2015; 6
Breiman (ref_66) 2001; 45
ref_2
Halder (ref_10) 2013; 5
Keshavarzi (ref_18) 2010; 4
ref_49
ref_48
Wiesmeier (ref_74) 2011; 340
Kazemi (ref_82) 2018; 116
ref_7
ref_6
References_xml – volume: 83
  start-page: 195
  year: 2002
  ident: ref_60
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 42
  start-page: 305
  year: 2005
  ident: ref_21
  article-title: The National Soil Information System (NASIS): Designing soil interpretation classes for military land-use predictions
  publication-title: J. Terramech.
  doi: 10.1016/j.jterra.2004.12.002
– volume: 61
  start-page: 133
  year: 2010
  ident: ref_29
  article-title: The ConMap approach for terrain-based digital soil mapping
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2009.01205.x
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_66
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 318
  start-page: 482
  year: 2018
  ident: ref_30
  article-title: Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.12.024
– volume: 140
  start-page: 73
  year: 2007
  ident: ref_20
  article-title: Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.03.004
– ident: ref_48
  doi: 10.2134/agronmonogr9.2.2ed
– volume: 338
  start-page: 445
  year: 2019
  ident: ref_77
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.006
– volume: 6
  start-page: 7
  year: 2015
  ident: ref_36
  article-title: Digital soil assessment of agricultural suitability, versatility and capital in Tasmania, Australia
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2015.08.005
– volume: 36
  start-page: 9
  year: 2010
  ident: ref_61
  article-title: Feature Selection with the Boruta Package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i11
– ident: ref_65
– volume: 253–254
  start-page: 67
  year: 2015
  ident: ref_33
  article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran
  publication-title: Geoderma
– volume: 4
  start-page: 72
  year: 2010
  ident: ref_18
  article-title: Land suitability evaluation using fuzzy continuous classification (a case study: Ziaran region)
  publication-title: Mod. Appl. Sci.
  doi: 10.5539/mas.v4n7p72
– volume: 93
  start-page: 43
  year: 2018
  ident: ref_3
  article-title: The impacts of tillage, fertilizer and residue managements on the soil properties and wheat production in a semi-arid region of Iran
  publication-title: J. Saudi Soc. Agric. Sci.
– ident: ref_42
– volume: 341
  start-page: 216
  year: 2019
  ident: ref_76
  article-title: Downscaling soil hydrological mapping used to predict catchment hydrological response with random forests
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.048
– volume: 10
  start-page: 63
  year: 2019
  ident: ref_32
  article-title: Assessing soil organic carbon stocks under land use change scenarios using random forest models
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2018.1553434
– volume: 32
  start-page: 1378
  year: 2006
  ident: ref_45
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 213
  start-page: 15
  year: 2014
  ident: ref_54
  article-title: Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region, Iran
  publication-title: Arid Land Res. Manag.
– volume: 246
  start-page: 528
  year: 2019
  ident: ref_8
  article-title: Soil suitability analysis and evaluation of pistachio orchard farming, using canonical multivariate analysis
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.10.069
– volume: 160
  start-page: 275
  year: 2018
  ident: ref_79
  article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran)
  publication-title: Catena
  doi: 10.1016/j.catena.2017.10.002
– volume: 116
  start-page: 1
  year: 2018
  ident: ref_82
  article-title: A land use suitability model for rainfed farming by Multi-criteria Decisionmaking Analysis (MCDA) and Geographic Information System (GIS)
  publication-title: Ecol. Indic.
– volume: 5
  start-page: 25
  year: 2015
  ident: ref_39
  article-title: A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level
  publication-title: Glob. Food Sec.
  doi: 10.1016/j.gfs.2015.04.001
– volume: 164
  start-page: 125
  year: 2018
  ident: ref_28
  article-title: Updating a national soil classification with spectroscopic predictions and digital soil mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2018.01.015
– ident: ref_49
  doi: 10.2134/agronmonogr9.2.2ed
– ident: ref_56
– volume: 232–234
  start-page: 97
  year: 2014
  ident: ref_35
  article-title: Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran
  publication-title: Geoderma
– volume: 93
  start-page: 43
  year: 2017
  ident: ref_40
  article-title: Comparison of artificial neural networks and logistic regression as potential methods for predicting weed populations on dryland chickpea and winter wheat fields of Kurdistan province, Iran
  publication-title: Crop Prot.
  doi: 10.1016/j.cropro.2016.11.015
– ident: ref_52
– volume: 303
  start-page: 52
  year: 2017
  ident: ref_11
  article-title: Sustainable allocation of agricultural lands and water resources using suitability analysis and mathematical multi-objective programming
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.05.015
– ident: ref_69
– volume: 18
  start-page: 275
  year: 2004
  ident: ref_72
  article-title: An introduction to decision tree modeling
  publication-title: Chem. Aust.
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_62
  article-title: Classification and Regression by RandomForest
  publication-title: R News.
– volume: 140
  start-page: 96
  year: 2016
  ident: ref_12
  article-title: Mapping and evaluating land suitability using a GIS-based model
  publication-title: Catena
  doi: 10.1016/j.catena.2015.12.010
– ident: ref_13
– volume: 28
  start-page: 779
  year: 1997
  ident: ref_64
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_63
  article-title: Support vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 9
  start-page: 2093
  year: 2018
  ident: ref_4
  article-title: Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2017.02.006
– volume: 111
  start-page: 1
  year: 2015
  ident: ref_68
  article-title: Estimation of croplands using indicator kriging and fuzzy classification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.11.020
– volume: Volume 1
  start-page: 309
  year: 1973
  ident: ref_58
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: Technical Presentations Section A Proceedigs of the NASA SP-351: Third Earth Resources Technology Satellite-Symposium, Washington, DC, USA, 10–14 December 1973
– volume: 613–614
  start-page: 250
  year: 2018
  ident: ref_5
  article-title: Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq
  publication-title: J. Saudi Soc. Agric. Sci.
– volume: 103
  start-page: 479
  year: 2019
  ident: ref_83
  article-title: GIS and multi-criteria decision-making analysis assessment of land suitability for rapeseed farming in calcareous soils of semi-arid regions
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.04.051
– ident: ref_7
– ident: ref_53
– volume: 117
  start-page: 3
  year: 2003
  ident: ref_24
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 264
  start-page: 301
  year: 2016
  ident: ref_27
  article-title: Digital soil mapping: A brief history and some lessons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.017
– volume: 160
  start-page: 23
  year: 2019
  ident: ref_78
  article-title: Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2019.03.015
– volume: 340
  start-page: 7
  year: 2011
  ident: ref_74
  article-title: Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0425-z
– volume: 110
  start-page: 105887
  year: 2020
  ident: ref_81
  article-title: Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.105887
– volume: 3
  start-page: 155
  year: 2014
  ident: ref_16
  article-title: Qualitative land suitability evaluation for wheat and barley crops in Khorasan-Razavi province, northeast of Iran
  publication-title: J. Agric. Res.
  doi: 10.1007/s40003-014-0101-2
– ident: ref_38
  doi: 10.1016/j.envsoft.2019.01.015
– ident: ref_47
– volume: 285
  start-page: 186
  year: 2017
  ident: ref_55
  article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.02.015
– volume: 25
  start-page: 295
  year: 1988
  ident: ref_59
  article-title: soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 169
  start-page: 434
  year: 2006
  ident: ref_23
  article-title: Digital soil mapping in Germany—A review
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1002/jpln.200521962
– volume: 81
  start-page: 376
  year: 2006
  ident: ref_41
  article-title: Pedodiversity and pedogenesis in Zayandeh-rud Valley, Central Iran
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.04.016
– ident: ref_26
  doi: 10.1371/journal.pone.0220881
– ident: ref_67
– ident: ref_14
– ident: ref_25
  doi: 10.5194/egusphere-egu2020-138
– volume: 9
  start-page: 181
  year: 2006
  ident: ref_73
  article-title: Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0054-1
– ident: ref_51
  doi: 10.2136/sssabookser5.3
– ident: ref_44
– volume: 342
  start-page: 85
  year: 2019
  ident: ref_71
  article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.019
– volume: 85
  start-page: 1
  year: 2003
  ident: ref_57
  article-title: Remote sensing of soil salinity: Potentials and constraints
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00188-8
– ident: ref_6
– volume: 206
  start-page: 913
  year: 2015
  ident: ref_1
  article-title: A translational model for adaptation to climate change
  publication-title: New Phytol.
  doi: 10.1111/nph.13266
– ident: ref_50
– volume: 344
  start-page: 184
  year: 2019
  ident: ref_75
  article-title: Probability mapping of soil thickness by random survival forest at a national scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.03.016
– ident: ref_2
– ident: ref_46
– volume: 64
  start-page: 482
  year: 2018
  ident: ref_31
  article-title: Assessing and monitoring the soil quality of forested and agricultural areas using soil-quality indices and digital soil-mapping in a semi-arid environment
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2017.1373188
– volume: 19
  start-page: 929
  year: 2004
  ident: ref_9
  article-title: A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2003.10.006
– ident: ref_15
– volume: 5
  start-page: 65
  year: 2013
  ident: ref_10
  article-title: Land suitability assessment for crop cultivation by using remote sensing and GIS
  publication-title: J. Geogr. Geol.
– volume: 79
  start-page: 146
  year: 2018
  ident: ref_37
  article-title: A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2018.08.007
– ident: ref_70
– ident: ref_43
– volume: 56
  start-page: 1
  year: 2012
  ident: ref_17
  article-title: Land suitability analysis for Tabriz County, Iran: A multi-criteria evaluation approach using GIS
  publication-title: J. Environ. Plann. Man.
  doi: 10.1080/09640568.2011.646964
– volume: 285
  start-page: 35
  year: 2017
  ident: ref_80
  article-title: A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.09.019
– ident: ref_22
– volume: 266
  start-page: 98
  year: 2016
  ident: ref_34
  article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.003
– volume: 23
  start-page: 767
  year: 2013
  ident: ref_19
  article-title: Qualitative Land Suitability Evaluation for Main Irrigated Crops in the Shahrekord Plain, Iran: A Geostatistical Approach Compared with Conventional Method
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(13)60068-5
SSID ssj0000913807
Score 2.4875998
Snippet Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 573
SubjectTerms Agricultural land
Agricultural management
Agricultural production
Arid regions
Arid zones
artificial intelligence
Barley
Chemical properties
Climatic data
Crops
Farming systems
Flowering
Food and Agriculture Organization
Gene mapping
Gravel
Information systems
Iran
Land improvement
land suitability
Land use
Learning algorithms
Machine learning
meteorological data
Methods
parametric method
planning
Precipitation
Rain
rain-fed wheat
Rainfall
random forests
Semi arid areas
Semiarid zones
Soil analysis
Soil depth
Soil layers
Soil profiles
Soil properties
soil sampling
Soils
support vector machine
Support vector machines
Sustainability
Sustainable agriculture
Topography
Wheat
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KQH8SdWp1Tw4qGsSZomPU5xDHEi6GC3kjbJLtLJfhz8730v7epU0IvX_Cjh5df7NnmfEHIVZ-ALcZFEzggVJY7JSMcGFkOhtKNxwUuKgcKjx3Q4Tu4nYrLx1BfeCavxwLXheipxkmalizVKGRNrJQpTWplaQ5nOfBw57HkbYsqvwRlFknp9LslB1_f0dO6jBJCQhhDAL_uQx_X_WI39FjPYI7uNbxj26zbtky1bHZCd_nTe8DHsITEPoPzD5xUoen-r9T3st2jNELM-S8OXnmqcK5geqjSBUnUtf1MgHPmblDZsIKuQgO_iLI7IeHD3cjuMmocSojKRagka0BRFaWzJRQb-jcGjQ6viQjLDWUa1YEJZ6vAHsFZKCJ1xlGU6dimSSjU_Jp1qVtkTEnJNpWNFWlgE15ROUcoF7F_GIOOR2YD01mbLy4Yijo9ZvOagJtDQ-XdDB-S6rfFWEzR-KXuDPdGWQ_a1T4ARkTcjIv9rRASku-7HvJmQixxJb4xJcFgCctlmw1TC8xFd2dkKyiCqPgF9mJ3-RzvOyDZDcY5gSNklneV8Zc_Bg1kWF36wfgAhJfBu
  priority: 102
  providerName: Directory of Open Access Journals
Title Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models
URI https://www.proquest.com/docview/2393227224
https://www.proquest.com/docview/2986441489
https://doaj.org/article/84f719cf0a2549d0a85bdce76ed12a97
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1JS8QwFMcfOl70IK44blTw4qFMkzST9CSjKCIq4gLeStqkc5HOOMvBb-97aaaigtdstFle8s_yewCnSYZrISHTuLJSx2nFVWwSi8ZQalOxpBAlo4fC9w_9m9f09k2-hQ23abhWubCJ3lDbUUl75D1CdXGucMY5H3_E5DWKTleDC41lWEETrHUHVi6uHh6f2l0Wol7qRDXnkwL1fc8MJ_61AJHSCAb4Yz7y2P4_VtlPNdcbsB7WiNGgadRNWHL1FqwNhpPAyXDbYO9MbaPnOSp7f7v1Mxq0iM2Ior5TY0mPDdYVmwCzhAdTTS5_YyC69zcqXRRgqxhA_nGmO_B6ffVyeRMHhwlxmSo9Qy1oi6K0rhQyw3WOpSNEp5NCcSt4xozkUjtW0Uaw0VpKkwmSZyap-kQsNWIXOvWodnsQCcNUxYt-4QhgU1aaMSFxHrOWWI_cdaG3qLa8DDRxcmrxnqOqoIrOf1d0F87aHOOGpPFP2gtqiTYdMbB9wGgyzMOQynVaKYaflhgSuRZ_SRa2dKrvLOMmU104XLRjHgbmNP_uRl04aaNxSNE5iandaI5pCFmfok7M9v8v4gBWOclvQj-qQ-jMJnN3hGuUWXEcOuKx1_hfxCLpsw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Jb9QwFICfyvQAHBCrGCgQJDhwiMZLHDsHhKbQakpnRhW0Um_BiZ0REsqUWYT6p_iNvJc4qQCpt169KfHyFi_fA3jDMrSFpEriyikTJ5XQsWUOhaEytuKskCWnh8KzeTo5Sz6fq_Md-N29haFrlZ1MbAS1W5a0Rz4iVJcQGjXOh4ufMUWNotPVLoRGOy2O_eUvdNnW748-4fi-FeLw4PTjJA5RBeIy0WaDDpMritL5UqoMjQFH52zesEILJ0XGrRLKeF7Rbqk1RimbSfJhLKtSwnpaie3egt1EpkwMYHf_YH7ypd_VIcqmYbo9D5UyYyO7WDWvE4jMRvDBv_RfEybgPy3QqLbD-3Av2KTRuJ1ED2DH1w_h7nixClwO_wjc1NYu-rr9vmm53pfRuEd6RpR1VRpbOmkxsjjkWCU80GprNTcUollzg9NHAe6KCRSPZ_0Yzm6kK5_AoF7W_ilE0nJdiSItPAFzyspwLhXqTeeILSn8EEZdt-VloJdTEI0fOXox1NH5vx09hHd9jYuW3HFN2X0aib4cMbebhOVqkYclnJuk0hw_jVlyqh3-kipc6XXqHRc200PY68YxD4JgnV9N2yG87rNxCdO5jK39cotlCJGfoF-aPbu-iVdwe3I6m-bTo_nxc7gjyPUn7KTeg8FmtfUv0D7aFC_DpIzg202vgz8WRyOY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEIBHZSsheqh4im0LBAkOHKKN7XjtHBDa0q5a2q5WQKXeghPbK6Qq2-5DqH-NX8dM4qQCpN569UvJeOzx-PENwLskw7WQkGnsrdRx6rmKTWJxMpTaeJYUomT0UPhsMjw6T79cyIsN-N2-haFrle2cWE_Udl7SHvmAUF2cK7Q4Ax-uRUwPxp-urmOKIEUnrW04jUZFTtzNL3Tflh-PD7Cv33M-Pvz--SgOEQbiMlV6hc6TLYrSulLIDBcGls7cnE4Kxa3gGTOSS-2Yp51To7WUJhPkz5jEDwnxaQS2-wA2FXlFPdjcP5xMv3Y7PETc1IlqzkaFyJKBmS3qlwpEaSMQ4V-2sA4Z8J9FqM3c-DFsh_VpNGoU6glsuOopbI1mi8DocM_AnprKRt_WP1cN4_smGnV4z4iybktjS9MGKYvdj1XCY62mVn1bITqrb3O6KIBeMYFi8yyfw_m9iPIF9Kp55V5CJAxTnhfDwhE8p_SaMSHRhlpLnEnu-jBoxZaXgWROATUuc_RoSND5v4Luw4euxlVD8bij7D71RFeO-Nt1wnwxy8NwznXqFcNPSww52BZ_SRa2dGroLOMmU33Ya_sxD5PCMr9V4T687bJxONMZjancfI1lCJefoo-a7dzdxBt4iPqfnx5PTnbhEaddACJQqj3orRZr9wqXSqviddDJCH7c9zD4A3XrJ80
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+Suitability+Assessment+and+Agricultural+Production+Sustainability+Using+Machine+Learning+Models&rft.jtitle=Agronomy+%28Basel%29&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Nabiollahi%2C+Kamal&rft.au=Rasoli%2C+Leila&rft.au=Ruth%2C+Kerry&rft.date=2020-04-17&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=10&rft.issue=4&rft.spage=573&rft_id=info:doi/10.3390%2Fagronomy10040573&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon