Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models
Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in the semi-arid regions of Iran. Therefore, our aim is to assess land suitability for two main crops (i.e., rain-fed wheat and barley) based on...
Saved in:
Published in | Agronomy (Basel) Vol. 10; no. 4; p. 573 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
17.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in the semi-arid regions of Iran. Therefore, our aim is to assess land suitability for two main crops (i.e., rain-fed wheat and barley) based on the Food and Agriculture Organization (FAO) “land suitability assessment framework” for 65 km2 of agricultural land in Kurdistan province, Iran. Soil samples were collected from genetic layers of 100 soil profiles and the physical-chemical properties of the soil samples were analyzed. Topography and climate data were also recorded. After calculating the land suitability classes for the two crops, they were mapped using machine learning (ML) and traditional approaches. The maps predicted by the two approaches revealed notable differences. For example, in the case of rain-fed wheat, results showed the higher accuracy of ML-based land suitability maps compared to the maps obtained by traditional approach. Furthermore, the findings indicated that the areas with classes of N2 (≈18%↑) and S3 (≈28%↑) were higher and area with the class N1 (≈24%↓) was less predicted in the traditional approach compared to the ML-based approach. The major limitations of the study area were rainfall at the flowering stage, severe slopes, shallow soil depth, high pH, and large gravel content. Therefore, to increase production and create a sustainable agricultural system, land improvement operations are suggested. |
---|---|
AbstractList | Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in the semi-arid regions of Iran. Therefore, our aim is to assess land suitability for two main crops (i.e., rain-fed wheat and barley) based on the Food and Agriculture Organization (FAO) “land suitability assessment framework” for 65 km2 of agricultural land in Kurdistan province, Iran. Soil samples were collected from genetic layers of 100 soil profiles and the physical-chemical properties of the soil samples were analyzed. Topography and climate data were also recorded. After calculating the land suitability classes for the two crops, they were mapped using machine learning (ML) and traditional approaches. The maps predicted by the two approaches revealed notable differences. For example, in the case of rain-fed wheat, results showed the higher accuracy of ML-based land suitability maps compared to the maps obtained by traditional approach. Furthermore, the findings indicated that the areas with classes of N2 (≈18%↑) and S3 (≈28%↑) were higher and area with the class N1 (≈24%↓) was less predicted in the traditional approach compared to the ML-based approach. The major limitations of the study area were rainfall at the flowering stage, severe slopes, shallow soil depth, high pH, and large gravel content. Therefore, to increase production and create a sustainable agricultural system, land improvement operations are suggested. Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in the semi-arid regions of Iran. Therefore, our aim is to assess land suitability for two main crops (i.e., rain-fed wheat and barley) based on the Food and Agriculture Organization (FAO) “land suitability assessment framework” for 65 km² of agricultural land in Kurdistan province, Iran. Soil samples were collected from genetic layers of 100 soil profiles and the physical-chemical properties of the soil samples were analyzed. Topography and climate data were also recorded. After calculating the land suitability classes for the two crops, they were mapped using machine learning (ML) and traditional approaches. The maps predicted by the two approaches revealed notable differences. For example, in the case of rain-fed wheat, results showed the higher accuracy of ML-based land suitability maps compared to the maps obtained by traditional approach. Furthermore, the findings indicated that the areas with classes of N2 (≍18%↑) and S3 (≍28%↑) were higher and area with the class N1 (≍24%↓) was less predicted in the traditional approach compared to the ML-based approach. The major limitations of the study area were rainfall at the flowering stage, severe slopes, shallow soil depth, high pH, and large gravel content. Therefore, to increase production and create a sustainable agricultural system, land improvement operations are suggested. |
Author | Kerry, Ruth Scholten, Thomas Nabiollahi, Kamal Rasoli, Leila Taghizadeh-Mehrjardi, Ruhollah |
Author_xml | – sequence: 1 givenname: Ruhollah orcidid: 0000-0002-4620-6624 surname: Taghizadeh-Mehrjardi fullname: Taghizadeh-Mehrjardi, Ruhollah – sequence: 2 givenname: Kamal surname: Nabiollahi fullname: Nabiollahi, Kamal – sequence: 3 givenname: Leila surname: Rasoli fullname: Rasoli, Leila – sequence: 4 givenname: Ruth surname: Kerry fullname: Kerry, Ruth – sequence: 5 givenname: Thomas orcidid: 0000-0002-4875-2602 surname: Scholten fullname: Scholten, Thomas |
BookMark | eNp1kc1rXCEUxaWk0DTNPssH3XQzrZ-jLofQpoEpDSRZy33qmzo4mqpvMf99nEwbykDdKPf-ztHreY_OUk4eoSuCPzOm8RfYlJzybk8w5lhI9gadUyzZgjMtzv45v0OXtW5xX5owheU5cmtIbrifQ4MxxND2w6pWX-vOpzYcWqtNCXaObS4Qh7uS3WxbyKlLaoOQ_qoea0ib4QfYXyH5Ye2hpJdCdj7WD-jtBLH6yz_7BXr89vXh-vti_fPm9nq1XlguVVtw7MbROm-Z0EvOncZUeIVHSR2jmoCgQnkyCcowKCUEaNYxBXhacqYYsAt0e_R1GbbmqYQdlL3JEMxLIZeNgdKCjd4oPkmi7YSBCq5dNxSjs14uvSMUtOxen45eTyX_nn1tZheq9TFC8nmuhmrVLydc6Y5-PEG3eS6pT2oo04xSSSnvFD5StuRai59eH0iwOaRoTlPskuWJxPacDt_fCoT4f-EznXulrA |
CitedBy_id | crossref_primary_10_1016_j_jag_2023_103523 crossref_primary_10_3390_s23041811 crossref_primary_10_1007_s10661_021_09663_1 crossref_primary_10_3390_su14010371 crossref_primary_10_1007_s12517_023_11754_x crossref_primary_10_1088_1742_6596_1918_4_042154 crossref_primary_10_1016_j_jclepro_2022_132655 crossref_primary_10_3390_crops4030022 crossref_primary_10_20961_stjssa_v19i2_61973 crossref_primary_10_3390_su142214996 crossref_primary_10_1007_s42106_020_00106_4 crossref_primary_10_1371_journal_pone_0257007 crossref_primary_10_3390_su14095189 crossref_primary_10_3390_agriculture13061208 crossref_primary_10_3390_agronomy11020260 crossref_primary_10_3390_agronomy12051243 crossref_primary_10_36253_jaeid_14182 crossref_primary_10_1007_s12517_022_09592_4 crossref_primary_10_1016_j_aiia_2022_02_001 crossref_primary_10_3390_ijgi13120436 crossref_primary_10_1016_j_cities_2023_104334 crossref_primary_10_3390_rs14133054 crossref_primary_10_20914_2310_1202_2023_4_133_138 crossref_primary_10_3390_agronomy13020445 crossref_primary_10_1016_j_indic_2023_100297 crossref_primary_10_3390_ijgi11080422 crossref_primary_10_1007_s10668_022_02728_2 crossref_primary_10_1007_s10668_023_04440_1 crossref_primary_10_1016_j_compag_2024_108831 crossref_primary_10_1155_2024_2903230 crossref_primary_10_1556_446_2022_00050 crossref_primary_10_1016_j_apsoil_2024_105860 crossref_primary_10_1080_23311932_2023_2257975 crossref_primary_10_3390_land11030346 crossref_primary_10_1016_j_heliyon_2023_e14012 crossref_primary_10_1016_j_ecolind_2024_112475 crossref_primary_10_3390_agriculture12040474 crossref_primary_10_3390_rs16224342 crossref_primary_10_3389_fpls_2023_1309171 crossref_primary_10_1080_03650340_2022_2096878 crossref_primary_10_3390_su14073731 crossref_primary_10_1016_j_jag_2025_104399 crossref_primary_10_3390_app15010372 crossref_primary_10_36783_18069657rbcs20230024 crossref_primary_10_3390_ijgi10090621 crossref_primary_10_3389_fpls_2023_1084886 crossref_primary_10_3390_agronomy11030597 crossref_primary_10_3390_s21144846 crossref_primary_10_3390_agronomy12092210 crossref_primary_10_1007_s10661_024_13188_8 crossref_primary_10_1007_s10661_023_11109_9 crossref_primary_10_1080_00103624_2024_2419994 crossref_primary_10_3390_ijerph191912973 crossref_primary_10_1007_s42979_025_03778_9 crossref_primary_10_3390_agronomy11081620 crossref_primary_10_1007_s10661_023_12099_4 crossref_primary_10_3389_fsufs_2024_1324646 crossref_primary_10_1016_j_scitotenv_2023_162269 crossref_primary_10_1186_s40537_024_00912_x crossref_primary_10_1007_s11356_021_17961_x crossref_primary_10_26898_0370_8799_2024_3_1 crossref_primary_10_1007_s10661_022_10428_7 crossref_primary_10_1016_j_ocsci_2022_08_001 crossref_primary_10_1080_10106049_2022_2138565 crossref_primary_10_3390_land13081288 crossref_primary_10_1080_00103624_2024_2334254 crossref_primary_10_1155_2022_9978167 crossref_primary_10_1007_s11356_021_15289_0 crossref_primary_10_1080_10106049_2021_2007299 crossref_primary_10_3390_rs16234486 crossref_primary_10_1109_ACCESS_2022_3188649 crossref_primary_10_1016_j_seps_2024_101848 crossref_primary_10_14246_irspsd_12_2_138 crossref_primary_10_1088_1748_9326_ad7276 crossref_primary_10_3390_agriculture13112083 crossref_primary_10_1016_j_nexus_2023_100259 crossref_primary_10_3390_su152015110 crossref_primary_10_3390_su132112236 crossref_primary_10_3390_agronomy13030726 crossref_primary_10_3390_app11125404 crossref_primary_10_3390_plants13172486 crossref_primary_10_1016_j_catena_2021_105835 crossref_primary_10_3390_s21113758 crossref_primary_10_1016_j_aiig_2022_03_001 crossref_primary_10_1016_j_jenvman_2024_123501 crossref_primary_10_3390_agronomy11050814 crossref_primary_10_1108_JSIT_11_2022_0266 crossref_primary_10_1080_10106049_2022_2076925 crossref_primary_10_3390_agronomy14020319 crossref_primary_10_1038_s41598_023_33840_6 crossref_primary_10_1016_j_compag_2022_107305 crossref_primary_10_1007_s41651_023_00156_y crossref_primary_10_3389_fenvs_2023_1130269 crossref_primary_10_3390_electronics10050552 crossref_primary_10_3390_app122010508 crossref_primary_10_3390_ijgi10040259 crossref_primary_10_3390_rs16142566 crossref_primary_10_3390_agriculture14071077 crossref_primary_10_1007_s11053_024_10373_x crossref_primary_10_3390_su15065325 crossref_primary_10_1016_j_geodrs_2024_e00754 crossref_primary_10_1051_e3sconf_202234004001 crossref_primary_10_1007_s12517_023_11318_z crossref_primary_10_3390_agronomy12092010 crossref_primary_10_1007_s40003_023_00686_3 crossref_primary_10_1016_j_ecolind_2020_106736 crossref_primary_10_3390_agronomy14092113 crossref_primary_10_1109_JSTARS_2024_3437689 crossref_primary_10_1088_1755_1315_1192_1_012015 crossref_primary_10_3390_su14063685 crossref_primary_10_1002_fsn3_4655 |
Cites_doi | 10.1016/S0034-4257(02)00096-2 10.1016/j.jterra.2004.12.002 10.1111/j.1365-2389.2009.01205.x 10.1023/A:1010933404324 10.1016/j.geoderma.2017.12.024 10.1016/j.geoderma.2007.03.004 10.2134/agronmonogr9.2.2ed 10.1016/j.geoderma.2018.09.006 10.1016/j.geodrs.2015.08.005 10.18637/jss.v036.i11 10.5539/mas.v4n7p72 10.1016/j.geoderma.2019.01.048 10.1080/17583004.2018.1553434 10.1016/j.cageo.2005.12.009 10.1016/j.scienta.2018.10.069 10.1016/j.catena.2017.10.002 10.1016/j.gfs.2015.04.001 10.1016/j.catena.2018.01.015 10.1016/j.cropro.2016.11.015 10.1016/j.geoderma.2017.05.015 10.1016/j.catena.2015.12.010 10.1007/BF00994018 10.1016/j.asej.2017.02.006 10.1016/j.compag.2014.11.020 10.1016/j.ecolind.2019.04.051 10.1016/S0016-7061(03)00223-4 10.1016/j.geoderma.2015.07.017 10.1016/j.compag.2019.03.015 10.1007/s11104-010-0425-z 10.1016/j.ecolind.2019.105887 10.1007/s40003-014-0101-2 10.1016/j.envsoft.2019.01.015 10.1016/j.geomorph.2017.02.015 10.1016/0034-4257(88)90106-X 10.1002/jpln.200521962 10.1016/j.geomorph.2006.04.016 10.1371/journal.pone.0220881 10.5194/egusphere-egu2020-138 10.1007/s10021-005-0054-1 10.2136/sssabookser5.3 10.1016/j.geoderma.2019.02.019 10.1016/S0034-4257(02)00188-8 10.1111/nph.13266 10.1016/j.geoderma.2019.03.016 10.1080/03650340.2017.1373188 10.1016/j.envsoft.2003.10.006 10.1016/j.landusepol.2018.08.007 10.1080/09640568.2011.646964 10.1016/j.geoderma.2016.09.019 10.1016/j.geoderma.2015.12.003 10.1016/S1002-0160(13)60068-5 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy10040573 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_84f719cf0a2549d0a85bdce76ed12a97 10_3390_agronomy10040573 |
GeographicLocations | Iran Kurdistan |
GeographicLocations_xml | – name: Kurdistan – name: Iran |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c478t-40dbbcdec359644d9025e80b72d3291a5258e1f5230a8855a936448a0f64383a3 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:04:07 EDT 2025 Fri Jul 11 03:19:58 EDT 2025 Mon Jun 30 11:21:03 EDT 2025 Thu Apr 24 22:51:06 EDT 2025 Tue Jul 01 02:34:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-40dbbcdec359644d9025e80b72d3291a5258e1f5230a8855a936448a0f64383a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4620-6624 0000-0002-4875-2602 |
OpenAccessLink | https://www.proquest.com/docview/2393227224?pq-origsite=%requestingapplication% |
PQID | 2393227224 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_84f719cf0a2549d0a85bdce76ed12a97 proquest_miscellaneous_2986441489 proquest_journals_2393227224 crossref_primary_10_3390_agronomy10040573 crossref_citationtrail_10_3390_agronomy10040573 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200417 |
PublicationDateYYYYMMDD | 2020-04-17 |
PublicationDate_xml | – month: 04 year: 2020 text: 20200417 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Mansourian (ref_40) 2017; 93 ref_50 Gagkas (ref_76) 2019; 341 Behrens (ref_23) 2006; 169 Daigle (ref_21) 2005; 42 ref_14 ref_13 Metternicht (ref_57) 2003; 85 ref_56 Safari (ref_19) 2013; 23 Huete (ref_59) 1988; 25 ref_53 Nabiollahi (ref_32) 2019; 10 ref_52 ref_51 Pouladi (ref_71) 2019; 342 Toomanian (ref_35) 2014; 232–234 Mayol (ref_9) 2004; 19 Huete (ref_60) 2002; 83 ref_15 Jamshidi (ref_4) 2018; 9 Nabiollahi (ref_34) 2016; 266 Chen (ref_75) 2019; 344 Myles (ref_72) 2004; 18 Zeraatpisheh (ref_77) 2019; 338 Vasu (ref_37) 2018; 79 Bodaghabadi (ref_8) 2019; 246 Behrens (ref_29) 2010; 61 ref_25 ref_69 Pilevar (ref_81) 2020; 110 Prasad (ref_73) 2006; 9 ref_67 ref_22 Zhang (ref_78) 2019; 160 ref_65 Akbarimoghaddam (ref_79) 2018; 160 Barbosa (ref_68) 2015; 111 Qader (ref_5) 2018; 613–614 Toomanian (ref_41) 2006; 81 Ostovari (ref_83) 2019; 103 ref_26 Minasny (ref_27) 2016; 264 Minasny (ref_45) 2006; 32 Camera (ref_80) 2017; 285 Cortes (ref_63) 1995; 20 Dawson (ref_1) 2015; 206 Nabiollahi (ref_31) 2018; 64 ref_70 Nabiollahi (ref_33) 2015; 253–254 Zeraatpisheh (ref_55) 2017; 285 (ref_12) 2016; 140 Feizizadeh (ref_17) 2012; 56 Mosleh (ref_11) 2017; 303 Nabiollahi (ref_30) 2018; 318 ref_38 Harms (ref_39) 2015; 5 Bagherzadeh (ref_16) 2014; 3 Teng (ref_28) 2018; 164 Liaw (ref_62) 2002; 2 Kursa (ref_61) 2010; 36 Sarmadian (ref_54) 2014; 213 Ziadat (ref_20) 2007; 140 ref_47 ref_46 Houshyar (ref_3) 2018; 93 Freden (ref_58) 1973; Volume 1 ref_44 ref_43 McBratney (ref_24) 2003; 117 ref_42 Drucker (ref_64) 1997; 28 Kidd (ref_36) 2015; 6 Breiman (ref_66) 2001; 45 ref_2 Halder (ref_10) 2013; 5 Keshavarzi (ref_18) 2010; 4 ref_49 ref_48 Wiesmeier (ref_74) 2011; 340 Kazemi (ref_82) 2018; 116 ref_7 ref_6 |
References_xml | – volume: 83 start-page: 195 year: 2002 ident: ref_60 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 42 start-page: 305 year: 2005 ident: ref_21 article-title: The National Soil Information System (NASIS): Designing soil interpretation classes for military land-use predictions publication-title: J. Terramech. doi: 10.1016/j.jterra.2004.12.002 – volume: 61 start-page: 133 year: 2010 ident: ref_29 article-title: The ConMap approach for terrain-based digital soil mapping publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01205.x – volume: 45 start-page: 5 year: 2001 ident: ref_66 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 318 start-page: 482 year: 2018 ident: ref_30 article-title: Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate publication-title: Geoderma doi: 10.1016/j.geoderma.2017.12.024 – volume: 140 start-page: 73 year: 2007 ident: ref_20 article-title: Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan publication-title: Geoderma doi: 10.1016/j.geoderma.2007.03.004 – ident: ref_48 doi: 10.2134/agronmonogr9.2.2ed – volume: 338 start-page: 445 year: 2019 ident: ref_77 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.006 – volume: 6 start-page: 7 year: 2015 ident: ref_36 article-title: Digital soil assessment of agricultural suitability, versatility and capital in Tasmania, Australia publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2015.08.005 – volume: 36 start-page: 9 year: 2010 ident: ref_61 article-title: Feature Selection with the Boruta Package publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i11 – ident: ref_65 – volume: 253–254 start-page: 67 year: 2015 ident: ref_33 article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran publication-title: Geoderma – volume: 4 start-page: 72 year: 2010 ident: ref_18 article-title: Land suitability evaluation using fuzzy continuous classification (a case study: Ziaran region) publication-title: Mod. Appl. Sci. doi: 10.5539/mas.v4n7p72 – volume: 93 start-page: 43 year: 2018 ident: ref_3 article-title: The impacts of tillage, fertilizer and residue managements on the soil properties and wheat production in a semi-arid region of Iran publication-title: J. Saudi Soc. Agric. Sci. – ident: ref_42 – volume: 341 start-page: 216 year: 2019 ident: ref_76 article-title: Downscaling soil hydrological mapping used to predict catchment hydrological response with random forests publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.048 – volume: 10 start-page: 63 year: 2019 ident: ref_32 article-title: Assessing soil organic carbon stocks under land use change scenarios using random forest models publication-title: Carbon Manag. doi: 10.1080/17583004.2018.1553434 – volume: 32 start-page: 1378 year: 2006 ident: ref_45 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 213 start-page: 15 year: 2014 ident: ref_54 article-title: Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region, Iran publication-title: Arid Land Res. Manag. – volume: 246 start-page: 528 year: 2019 ident: ref_8 article-title: Soil suitability analysis and evaluation of pistachio orchard farming, using canonical multivariate analysis publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.10.069 – volume: 160 start-page: 275 year: 2018 ident: ref_79 article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran) publication-title: Catena doi: 10.1016/j.catena.2017.10.002 – volume: 116 start-page: 1 year: 2018 ident: ref_82 article-title: A land use suitability model for rainfed farming by Multi-criteria Decisionmaking Analysis (MCDA) and Geographic Information System (GIS) publication-title: Ecol. Indic. – volume: 5 start-page: 25 year: 2015 ident: ref_39 article-title: A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level publication-title: Glob. Food Sec. doi: 10.1016/j.gfs.2015.04.001 – volume: 164 start-page: 125 year: 2018 ident: ref_28 article-title: Updating a national soil classification with spectroscopic predictions and digital soil mapping publication-title: Catena doi: 10.1016/j.catena.2018.01.015 – ident: ref_49 doi: 10.2134/agronmonogr9.2.2ed – ident: ref_56 – volume: 232–234 start-page: 97 year: 2014 ident: ref_35 article-title: Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran publication-title: Geoderma – volume: 93 start-page: 43 year: 2017 ident: ref_40 article-title: Comparison of artificial neural networks and logistic regression as potential methods for predicting weed populations on dryland chickpea and winter wheat fields of Kurdistan province, Iran publication-title: Crop Prot. doi: 10.1016/j.cropro.2016.11.015 – ident: ref_52 – volume: 303 start-page: 52 year: 2017 ident: ref_11 article-title: Sustainable allocation of agricultural lands and water resources using suitability analysis and mathematical multi-objective programming publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.015 – ident: ref_69 – volume: 18 start-page: 275 year: 2004 ident: ref_72 article-title: An introduction to decision tree modeling publication-title: Chem. Aust. – volume: 2 start-page: 18 year: 2002 ident: ref_62 article-title: Classification and Regression by RandomForest publication-title: R News. – volume: 140 start-page: 96 year: 2016 ident: ref_12 article-title: Mapping and evaluating land suitability using a GIS-based model publication-title: Catena doi: 10.1016/j.catena.2015.12.010 – ident: ref_13 – volume: 28 start-page: 779 year: 1997 ident: ref_64 article-title: Support vector regression machines publication-title: Adv. Neural Inf. Process Syst. – volume: 20 start-page: 273 year: 1995 ident: ref_63 article-title: Support vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 9 start-page: 2093 year: 2018 ident: ref_4 article-title: Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2017.02.006 – volume: 111 start-page: 1 year: 2015 ident: ref_68 article-title: Estimation of croplands using indicator kriging and fuzzy classification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.11.020 – volume: Volume 1 start-page: 309 year: 1973 ident: ref_58 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: Technical Presentations Section A Proceedigs of the NASA SP-351: Third Earth Resources Technology Satellite-Symposium, Washington, DC, USA, 10–14 December 1973 – volume: 613–614 start-page: 250 year: 2018 ident: ref_5 article-title: Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq publication-title: J. Saudi Soc. Agric. Sci. – volume: 103 start-page: 479 year: 2019 ident: ref_83 article-title: GIS and multi-criteria decision-making analysis assessment of land suitability for rapeseed farming in calcareous soils of semi-arid regions publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2019.04.051 – ident: ref_7 – ident: ref_53 – volume: 117 start-page: 3 year: 2003 ident: ref_24 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 264 start-page: 301 year: 2016 ident: ref_27 article-title: Digital soil mapping: A brief history and some lessons publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.017 – volume: 160 start-page: 23 year: 2019 ident: ref_78 article-title: Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors publication-title: Comput. Electron. Agr. doi: 10.1016/j.compag.2019.03.015 – volume: 340 start-page: 7 year: 2011 ident: ref_74 article-title: Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem publication-title: Plant Soil doi: 10.1007/s11104-010-0425-z – volume: 110 start-page: 105887 year: 2020 ident: ref_81 article-title: Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2019.105887 – volume: 3 start-page: 155 year: 2014 ident: ref_16 article-title: Qualitative land suitability evaluation for wheat and barley crops in Khorasan-Razavi province, northeast of Iran publication-title: J. Agric. Res. doi: 10.1007/s40003-014-0101-2 – ident: ref_38 doi: 10.1016/j.envsoft.2019.01.015 – ident: ref_47 – volume: 285 start-page: 186 year: 2017 ident: ref_55 article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.02.015 – volume: 25 start-page: 295 year: 1988 ident: ref_59 article-title: soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 169 start-page: 434 year: 2006 ident: ref_23 article-title: Digital soil mapping in Germany—A review publication-title: J. Soil Sci. Plant Nutr. doi: 10.1002/jpln.200521962 – volume: 81 start-page: 376 year: 2006 ident: ref_41 article-title: Pedodiversity and pedogenesis in Zayandeh-rud Valley, Central Iran publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.04.016 – ident: ref_26 doi: 10.1371/journal.pone.0220881 – ident: ref_67 – ident: ref_14 – ident: ref_25 doi: 10.5194/egusphere-egu2020-138 – volume: 9 start-page: 181 year: 2006 ident: ref_73 article-title: Newer classification and regression tree techniques: Bagging and random forests for ecological prediction publication-title: Ecosystems doi: 10.1007/s10021-005-0054-1 – ident: ref_51 doi: 10.2136/sssabookser5.3 – ident: ref_44 – volume: 342 start-page: 85 year: 2019 ident: ref_71 article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.019 – volume: 85 start-page: 1 year: 2003 ident: ref_57 article-title: Remote sensing of soil salinity: Potentials and constraints publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00188-8 – ident: ref_6 – volume: 206 start-page: 913 year: 2015 ident: ref_1 article-title: A translational model for adaptation to climate change publication-title: New Phytol. doi: 10.1111/nph.13266 – ident: ref_50 – volume: 344 start-page: 184 year: 2019 ident: ref_75 article-title: Probability mapping of soil thickness by random survival forest at a national scale publication-title: Geoderma doi: 10.1016/j.geoderma.2019.03.016 – ident: ref_2 – ident: ref_46 – volume: 64 start-page: 482 year: 2018 ident: ref_31 article-title: Assessing and monitoring the soil quality of forested and agricultural areas using soil-quality indices and digital soil-mapping in a semi-arid environment publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2017.1373188 – volume: 19 start-page: 929 year: 2004 ident: ref_9 article-title: A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2003.10.006 – ident: ref_15 – volume: 5 start-page: 65 year: 2013 ident: ref_10 article-title: Land suitability assessment for crop cultivation by using remote sensing and GIS publication-title: J. Geogr. Geol. – volume: 79 start-page: 146 year: 2018 ident: ref_37 article-title: A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level publication-title: Land Use Policy doi: 10.1016/j.landusepol.2018.08.007 – ident: ref_70 – ident: ref_43 – volume: 56 start-page: 1 year: 2012 ident: ref_17 article-title: Land suitability analysis for Tabriz County, Iran: A multi-criteria evaluation approach using GIS publication-title: J. Environ. Plann. Man. doi: 10.1080/09640568.2011.646964 – volume: 285 start-page: 35 year: 2017 ident: ref_80 article-title: A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization publication-title: Geoderma doi: 10.1016/j.geoderma.2016.09.019 – ident: ref_22 – volume: 266 start-page: 98 year: 2016 ident: ref_34 article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.003 – volume: 23 start-page: 767 year: 2013 ident: ref_19 article-title: Qualitative Land Suitability Evaluation for Main Irrigated Crops in the Shahrekord Plain, Iran: A Geostatistical Approach Compared with Conventional Method publication-title: Pedosphere doi: 10.1016/S1002-0160(13)60068-5 |
SSID | ssj0000913807 |
Score | 2.4875998 |
Snippet | Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 573 |
SubjectTerms | Agricultural land Agricultural management Agricultural production Arid regions Arid zones artificial intelligence Barley Chemical properties Climatic data Crops Farming systems Flowering Food and Agriculture Organization Gene mapping Gravel Information systems Iran Land improvement land suitability Land use Learning algorithms Machine learning meteorological data Methods parametric method planning Precipitation Rain rain-fed wheat Rainfall random forests Semi arid areas Semiarid zones Soil analysis Soil depth Soil layers Soil profiles Soil properties soil sampling Soils support vector machine Support vector machines Sustainability Sustainable agriculture Topography Wheat |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KQH8SdWp1Tw4qGsSZomPU5xDHEi6GC3kjbJLtLJfhz8730v7epU0IvX_Cjh5df7NnmfEHIVZ-ALcZFEzggVJY7JSMcGFkOhtKNxwUuKgcKjx3Q4Tu4nYrLx1BfeCavxwLXheipxkmalizVKGRNrJQpTWplaQ5nOfBw57HkbYsqvwRlFknp9LslB1_f0dO6jBJCQhhDAL_uQx_X_WI39FjPYI7uNbxj26zbtky1bHZCd_nTe8DHsITEPoPzD5xUoen-r9T3st2jNELM-S8OXnmqcK5geqjSBUnUtf1MgHPmblDZsIKuQgO_iLI7IeHD3cjuMmocSojKRagka0BRFaWzJRQb-jcGjQ6viQjLDWUa1YEJZ6vAHsFZKCJ1xlGU6dimSSjU_Jp1qVtkTEnJNpWNFWlgE15ROUcoF7F_GIOOR2YD01mbLy4Yijo9ZvOagJtDQ-XdDB-S6rfFWEzR-KXuDPdGWQ_a1T4ARkTcjIv9rRASku-7HvJmQixxJb4xJcFgCctlmw1TC8xFd2dkKyiCqPgF9mJ3-RzvOyDZDcY5gSNklneV8Zc_Bg1kWF36wfgAhJfBu priority: 102 providerName: Directory of Open Access Journals |
Title | Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models |
URI | https://www.proquest.com/docview/2393227224 https://www.proquest.com/docview/2986441489 https://doaj.org/article/84f719cf0a2549d0a85bdce76ed12a97 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1JS8QwFMcfOl70IK44blTw4qFMkzST9CSjKCIq4gLeStqkc5HOOMvBb-97aaaigtdstFle8s_yewCnSYZrISHTuLJSx2nFVWwSi8ZQalOxpBAlo4fC9w_9m9f09k2-hQ23abhWubCJ3lDbUUl75D1CdXGucMY5H3_E5DWKTleDC41lWEETrHUHVi6uHh6f2l0Wol7qRDXnkwL1fc8MJ_61AJHSCAb4Yz7y2P4_VtlPNdcbsB7WiNGgadRNWHL1FqwNhpPAyXDbYO9MbaPnOSp7f7v1Mxq0iM2Ior5TY0mPDdYVmwCzhAdTTS5_YyC69zcqXRRgqxhA_nGmO_B6ffVyeRMHhwlxmSo9Qy1oi6K0rhQyw3WOpSNEp5NCcSt4xozkUjtW0Uaw0VpKkwmSZyap-kQsNWIXOvWodnsQCcNUxYt-4QhgU1aaMSFxHrOWWI_cdaG3qLa8DDRxcmrxnqOqoIrOf1d0F87aHOOGpPFP2gtqiTYdMbB9wGgyzMOQynVaKYaflhgSuRZ_SRa2dKrvLOMmU104XLRjHgbmNP_uRl04aaNxSNE5iandaI5pCFmfok7M9v8v4gBWOclvQj-qQ-jMJnN3hGuUWXEcOuKx1_hfxCLpsw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Jb9QwFICfyvQAHBCrGCgQJDhwiMZLHDsHhKbQakpnRhW0Um_BiZ0REsqUWYT6p_iNvJc4qQCpt169KfHyFi_fA3jDMrSFpEriyikTJ5XQsWUOhaEytuKskCWnh8KzeTo5Sz6fq_Md-N29haFrlZ1MbAS1W5a0Rz4iVJcQGjXOh4ufMUWNotPVLoRGOy2O_eUvdNnW748-4fi-FeLw4PTjJA5RBeIy0WaDDpMritL5UqoMjQFH52zesEILJ0XGrRLKeF7Rbqk1RimbSfJhLKtSwnpaie3egt1EpkwMYHf_YH7ypd_VIcqmYbo9D5UyYyO7WDWvE4jMRvDBv_RfEybgPy3QqLbD-3Av2KTRuJ1ED2DH1w_h7nixClwO_wjc1NYu-rr9vmm53pfRuEd6RpR1VRpbOmkxsjjkWCU80GprNTcUollzg9NHAe6KCRSPZ_0Yzm6kK5_AoF7W_ilE0nJdiSItPAFzyspwLhXqTeeILSn8EEZdt-VloJdTEI0fOXox1NH5vx09hHd9jYuW3HFN2X0aib4cMbebhOVqkYclnJuk0hw_jVlyqh3-kipc6XXqHRc200PY68YxD4JgnV9N2yG87rNxCdO5jK39cotlCJGfoF-aPbu-iVdwe3I6m-bTo_nxc7gjyPUn7KTeg8FmtfUv0D7aFC_DpIzg202vgz8WRyOY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEIBHZSsheqh4im0LBAkOHKKN7XjtHBDa0q5a2q5WQKXeghPbK6Qq2-5DqH-NX8dM4qQCpN569UvJeOzx-PENwLskw7WQkGnsrdRx6rmKTWJxMpTaeJYUomT0UPhsMjw6T79cyIsN-N2-haFrle2cWE_Udl7SHvmAUF2cK7Q4Ax-uRUwPxp-urmOKIEUnrW04jUZFTtzNL3Tflh-PD7Cv33M-Pvz--SgOEQbiMlV6hc6TLYrSulLIDBcGls7cnE4Kxa3gGTOSS-2Yp51To7WUJhPkz5jEDwnxaQS2-wA2FXlFPdjcP5xMv3Y7PETc1IlqzkaFyJKBmS3qlwpEaSMQ4V-2sA4Z8J9FqM3c-DFsh_VpNGoU6glsuOopbI1mi8DocM_AnprKRt_WP1cN4_smGnV4z4iybktjS9MGKYvdj1XCY62mVn1bITqrb3O6KIBeMYFi8yyfw_m9iPIF9Kp55V5CJAxTnhfDwhE8p_SaMSHRhlpLnEnu-jBoxZaXgWROATUuc_RoSND5v4Luw4euxlVD8bij7D71RFeO-Nt1wnwxy8NwznXqFcNPSww52BZ_SRa2dGroLOMmU33Ya_sxD5PCMr9V4T687bJxONMZjancfI1lCJefoo-a7dzdxBt4iPqfnx5PTnbhEaddACJQqj3orRZr9wqXSqviddDJCH7c9zD4A3XrJ80 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+Suitability+Assessment+and+Agricultural+Production+Sustainability+Using+Machine+Learning+Models&rft.jtitle=Agronomy+%28Basel%29&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Nabiollahi%2C+Kamal&rft.au=Rasoli%2C+Leila&rft.au=Ruth%2C+Kerry&rft.date=2020-04-17&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=10&rft.issue=4&rft.spage=573&rft_id=info:doi/10.3390%2Fagronomy10040573&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |