Development of an Efficient Driving Strategy for Connected and Automated Vehicles at Signalized Intersections: A Reinforcement Learning Approach
The concept of Connected and Automated Vehicles (CAVs) enables instant traffic information to be shared among vehicle networks. With this newly proposed concept, a vehicle's driving behaviour will no longer be solely based on the driver's limited and incomplete observation. By taking advan...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 21; no. 1; pp. 433 - 443 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The concept of Connected and Automated Vehicles (CAVs) enables instant traffic information to be shared among vehicle networks. With this newly proposed concept, a vehicle's driving behaviour will no longer be solely based on the driver's limited and incomplete observation. By taking advantages of the shared information, driving behaviours of CAVs can be improved greatly to a more responsible, accurate and efficient level. This study proposed a reinforcement-learning-based car following model for CAVs in order to obtain an appropriate driving behaviour to improve travel efficiency, fuel consumption and safety at signalized intersections in real-time. The result shows that by specifying an effective reward function, a controller can be learned and works well under different traffic demands as well as traffic light cycles with different durations. This study reveals a great potential of emerging reinforcement learning technologies in transport research and applications. |
---|---|
AbstractList | The concept of Connected and Automated Vehicles (CAVs) enables instant traffic information to be shared among vehicle networks. With this newly proposed concept, a vehicle's driving behaviour will no longer be solely based on the driver's limited and incomplete observation. By taking advantages of the shared information, driving behaviours of CAVs can be improved greatly to a more responsible, accurate and efficient level. This study proposed a reinforcement-learning-based car following model for CAVs in order to obtain an appropriate driving behaviour to improve travel efficiency, fuel consumption and safety at signalized intersections in real-time. The result shows that by specifying an effective reward function, a controller can be learned and works well under different traffic demands as well as traffic light cycles with different durations. This study reveals a great potential of emerging reinforcement learning technologies in transport research and applications. |
Author | Zhou, Mofan Yu, Yang Qu, Xiaobo |
Author_xml | – sequence: 1 givenname: Mofan surname: Zhou fullname: Zhou, Mofan organization: Tencent Holdings Limited, Shenzhen, China – sequence: 2 givenname: Yang orcidid: 0000-0001-6751-5293 surname: Yu fullname: Yu, Yang organization: School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia – sequence: 3 givenname: Xiaobo orcidid: 0000-0003-0973-3756 surname: Qu fullname: Qu, Xiaobo email: drxiaoboqu@gmail.com organization: Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden |
BackLink | https://research.chalmers.se/publication/515046$$DView record from Swedish Publication Index |
BookMark | eNp9Uc1uEzEQXqEi0RYeAHGxxDnBv1kvtygtECkSEglcrVnvOHG1sRd706o8BY-MlxQOHDiNZ_T9jOe7qi5CDFhVrxmdM0abd7v1bjvnlDVz3shS5bPqkimlZ5SyxcX05nLWUEVfVFc535WpVIxdVj9v8B77OBwxjCQ6AoHcOuetn_qb5O992JPtmGDE_SNxMZFVDAHtiF3BdmR5GuMRpu4bHrztMRMYydbvA_T-Rxmvw4gpF4KPIb8nS_IFfSg6Fn9bbhBSmDyWw5Ai2MPL6rmDPuOrp3pdff1wu1t9mm0-f1yvlpuZlbUeZ4Jiw5BKKallC9fVTceQoWoEpVw0DoSW2CF2VGjR1q3ogC9AKaqgReVacV1tz7r5AYdTa4bkj5AeTQRvEuaylj0Ye4D-WNY3GQ10DSoO1CipWiMXlBoA4KZ1slho22kliurbs2r5zPcT5tHcxVMqt8iGCyGUqDVnBVWfUTbFnBM6Y_0I04XKoX1vGDVTqGYK1UyhmqdQC5P9w_yz9_84b84cj4h_8VpLrRUXvwC1j7Gw |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1016_j_trc_2021_102967 crossref_primary_10_1111_mice_12593 crossref_primary_10_1080_23249935_2020_1745927 crossref_primary_10_1109_MITS_2022_3203236 crossref_primary_10_3390_electronics11081203 crossref_primary_10_7467_KSAE_2023_31_1_019 crossref_primary_10_1016_j_vehcom_2023_100681 crossref_primary_10_1109_OJITS_2021_3083201 crossref_primary_10_1016_j_trf_2022_04_008 crossref_primary_10_32604_iasc_2021_014661 crossref_primary_10_1049_itr2_12181 crossref_primary_10_1109_TITS_2023_3241970 crossref_primary_10_1109_JIOT_2024_3487854 crossref_primary_10_3390_app121910145 crossref_primary_10_3390_s24196356 crossref_primary_10_26599_JICV_2023_9210021 crossref_primary_10_3390_ijerph191912115 crossref_primary_10_1016_j_physa_2024_129501 crossref_primary_10_1108_JICV_06_2022_0023 crossref_primary_10_3390_app13085018 crossref_primary_10_1109_TNNLS_2021_3071959 crossref_primary_10_1186_s10033_021_00639_3 crossref_primary_10_1109_JIOT_2024_3425669 crossref_primary_10_1109_TITS_2024_3387530 crossref_primary_10_1109_TITS_2022_3152550 crossref_primary_10_1109_JIOT_2021_3054649 crossref_primary_10_1109_TITS_2023_3315052 crossref_primary_10_1080_15472450_2022_2046472 crossref_primary_10_1109_TITS_2023_3285440 crossref_primary_10_1007_s00521_023_08733_4 crossref_primary_10_1016_j_ifacol_2021_06_024 crossref_primary_10_1016_j_trc_2024_104996 crossref_primary_10_1016_j_energy_2025_134672 crossref_primary_10_1109_TVT_2023_3314404 crossref_primary_10_1109_TITS_2023_3242678 crossref_primary_10_1177_00368504241263406 crossref_primary_10_1016_j_ijtst_2021_04_004 crossref_primary_10_1016_j_multra_2022_100005 crossref_primary_10_1108_JICV_01_2020_0002 crossref_primary_10_3390_s24165187 crossref_primary_10_3390_electronics13234794 crossref_primary_10_1016_j_trf_2023_01_013 crossref_primary_10_1080_19427867_2024_2426795 crossref_primary_10_1016_j_trd_2022_103439 crossref_primary_10_1111_mice_12575 crossref_primary_10_1016_j_trc_2023_104441 crossref_primary_10_3390_s20174887 crossref_primary_10_1016_j_trc_2024_104683 crossref_primary_10_1016_j_trc_2021_103390 crossref_primary_10_1016_j_jclepro_2021_129031 crossref_primary_10_1016_j_procs_2023_01_090 crossref_primary_10_1080_19427867_2024_2305018 crossref_primary_10_1177_03611981241265849 crossref_primary_10_3390_s23156931 crossref_primary_10_1016_j_knosys_2023_110485 crossref_primary_10_1061_JTEPBS_TEENG_8885 crossref_primary_10_3390_app11083464 crossref_primary_10_1016_j_trc_2022_103672 crossref_primary_10_1016_j_chb_2022_107614 crossref_primary_10_1016_j_eswa_2024_123196 crossref_primary_10_1016_j_trc_2023_104161 crossref_primary_10_1109_TITS_2024_3486152 crossref_primary_10_1109_TMC_2024_3417441 crossref_primary_10_1109_OJITS_2020_3027518 crossref_primary_10_1109_TVT_2024_3359282 crossref_primary_10_1016_j_physa_2023_129426 crossref_primary_10_3390_app14073124 crossref_primary_10_1049_itr2_12107 crossref_primary_10_3934_mbe_2020190 crossref_primary_10_1016_j_aap_2021_106157 crossref_primary_10_1109_TIV_2023_3268300 crossref_primary_10_1109_ACCESS_2020_2974740 crossref_primary_10_1016_j_tre_2024_103636 crossref_primary_10_1109_TITS_2023_3264665 crossref_primary_10_1109_TITS_2020_3004254 crossref_primary_10_3390_su151813325 crossref_primary_10_1109_TITS_2020_3008612 crossref_primary_10_1016_j_trc_2021_103421 crossref_primary_10_1109_ACCESS_2022_3149161 crossref_primary_10_1109_TIM_2022_3214265 crossref_primary_10_1109_TITS_2021_3090974 crossref_primary_10_3390_su16166848 crossref_primary_10_1016_j_apenergy_2020_116215 crossref_primary_10_3390_make3040043 crossref_primary_10_1080_19427867_2024_2335084 crossref_primary_10_1109_TTE_2024_3377809 crossref_primary_10_1177_1687814020912968 crossref_primary_10_1080_23249935_2020_1726525 crossref_primary_10_1177_03611981231171899 crossref_primary_10_1109_JIOT_2024_3495693 crossref_primary_10_1109_ACCESS_2020_2998363 crossref_primary_10_1109_TITS_2023_3286441 crossref_primary_10_1109_TAC_2021_3056398 crossref_primary_10_1109_TIV_2023_3303408 crossref_primary_10_1111_mice_12825 crossref_primary_10_1109_JIOT_2024_3395322 crossref_primary_10_1109_TCYB_2021_3123842 crossref_primary_10_1155_2020_1820527 crossref_primary_10_3233_KES_230036 crossref_primary_10_1016_j_energy_2022_123956 crossref_primary_10_1109_TVT_2024_3443106 crossref_primary_10_1016_j_physa_2024_130137 crossref_primary_10_1016_j_trc_2022_103626 crossref_primary_10_1061_JTEPBS_TEENG_7836 crossref_primary_10_1016_j_trc_2020_102652 crossref_primary_10_1109_TVT_2021_3066210 crossref_primary_10_1016_j_physa_2023_128912 crossref_primary_10_1016_j_jocs_2020_101257 crossref_primary_10_1109_MITS_2023_3317081 crossref_primary_10_1016_j_conengprac_2023_105523 crossref_primary_10_1016_j_ifacol_2024_07_327 crossref_primary_10_1016_j_trd_2025_104658 crossref_primary_10_1016_j_procs_2023_01_360 crossref_primary_10_1080_15472450_2022_2109416 crossref_primary_10_1007_s13369_023_08625_8 crossref_primary_10_1109_TVT_2021_3134372 crossref_primary_10_2493_jjspe_90_298 crossref_primary_10_1007_s13177_024_00407_2 crossref_primary_10_1109_TITS_2021_3107258 crossref_primary_10_1016_j_trd_2024_104270 crossref_primary_10_1109_ACCESS_2019_2961930 crossref_primary_10_1016_j_aap_2020_105655 crossref_primary_10_1016_j_xcrp_2022_101002 crossref_primary_10_1109_ACCESS_2020_2989758 crossref_primary_10_1016_j_procs_2024_09_209 crossref_primary_10_1109_TITS_2022_3221450 crossref_primary_10_1177_03611981221098392 crossref_primary_10_1080_01441647_2024_2377637 crossref_primary_10_1109_TITS_2024_3384113 crossref_primary_10_1016_j_trc_2024_104807 crossref_primary_10_1109_JIOT_2023_3306572 crossref_primary_10_3390_su13031404 crossref_primary_10_3390_electronics10182271 crossref_primary_10_1049_itr2_12276 crossref_primary_10_1109_TITS_2024_3368474 crossref_primary_10_1016_j_rser_2021_111833 crossref_primary_10_1016_j_physa_2022_127708 crossref_primary_10_1007_s42154_020_00113_1 crossref_primary_10_1016_j_trc_2024_104486 crossref_primary_10_1080_15568318_2020_1798571 crossref_primary_10_1016_j_trc_2021_103476 crossref_primary_10_1016_j_energy_2021_122888 crossref_primary_10_1109_TVT_2023_3270356 crossref_primary_10_1155_2021_8199361 crossref_primary_10_1109_TVT_2021_3075480 crossref_primary_10_1016_j_physa_2023_129189 crossref_primary_10_3390_su16051956 crossref_primary_10_1109_TVT_2020_3029864 crossref_primary_10_3390_s24237746 crossref_primary_10_1109_TCDS_2021_3092715 crossref_primary_10_1109_TMC_2023_3319697 crossref_primary_10_1155_2020_8899478 crossref_primary_10_1049_itr2_12544 crossref_primary_10_1016_j_trpro_2024_02_024 crossref_primary_10_1109_ACCESS_2021_3064310 crossref_primary_10_1177_03611981221144283 crossref_primary_10_55708_js0105003 crossref_primary_10_1109_TITS_2020_3014097 crossref_primary_10_3390_futuretransp2040057 crossref_primary_10_1016_j_trc_2021_103182 crossref_primary_10_1109_COMST_2023_3305312 crossref_primary_10_1080_15472450_2024_2369988 crossref_primary_10_1016_j_trc_2024_104655 crossref_primary_10_1016_j_commtr_2023_100104 crossref_primary_10_1109_TITS_2023_3336670 crossref_primary_10_1016_j_eswa_2023_120251 crossref_primary_10_1109_TII_2020_3040180 |
Cites_doi | 10.1109/TITS.2013.2278494 10.1080/15472450.2017.1387546 10.1016/j.physa.2006.01.057 10.1109/ICRA.2018.8460567 10.1109/TITS.2016.2613997 10.1109/WAC.2006.376059 10.3141/2423-03 10.1016/j.trc.2005.11.001 10.1016/j.trc.2014.09.001 10.1016/0001-4575(94)90042-6 10.1038/nature14236 10.1007/s40534-016-0117-3 10.3141/1999-01 10.1016/j.trb.2017.07.003 10.1109/CVPR.2014.81 10.1109/TITS.2006.884615 10.1109/TNN.1998.712192 10.1016/j.trb.2006.11.002 10.1016/j.trb.2014.09.014 10.1016/j.trc.2013.11.024 10.1109/ITST.2006.288906 10.1016/j.trb.2011.11.003 10.1016/j.trb.2016.06.010 10.1016/j.trc.2012.09.011 10.1007/BF00992698 10.1016/j.engappai.2016.01.001 10.1088/1367-2630/10/3/033001 10.1016/j.physleta.2015.05.019 10.1109/TVT.2014.2307551 10.1109/TVT.2010.2076320 10.1007/BF00992696 10.3141/2324-08 10.1103/PhysRevE.62.1805 10.1016/j.trb.2016.05.007 10.1061/(ASCE)0733-947X(2002)128:2(182) 10.1080/15472450.2015.1016023 10.1038/nature24270 10.1016/j.trb.2012.01.009 10.1038/nature16961 10.1109/TITS.2011.2157145 10.1016/j.trc.2017.04.015 10.1109/TITS.2017.2725912 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D ADTPV AOWAS F1S |
DOI | 10.1109/TITS.2019.2942014 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 443 |
ExternalDocumentID | oai_research_chalmers_se_ad9e52a0_545b_4600_aaa2_bf43838cd853 10_1109_TITS_2019_2942014 8848852 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D ADTPV AOWAS F1S |
ID | FETCH-LOGICAL-c478t-30e91e04440c16fd79d1e1e59300239fa384edeed0383b7b3da26a5505abe5fb3 |
IEDL.DBID | RIE |
ISSN | 1524-9050 1558-0016 |
IngestDate | Thu Aug 21 07:33:42 EDT 2025 Mon Jun 30 06:53:39 EDT 2025 Thu Apr 24 22:52:07 EDT 2025 Tue Jul 01 04:29:03 EDT 2025 Wed Aug 27 02:38:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-30e91e04440c16fd79d1e1e59300239fa384edeed0383b7b3da26a5505abe5fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0973-3756 0000-0001-6751-5293 |
OpenAccessLink | http://hdl.handle.net/10072/394235 |
PQID | 2333537821 |
PQPubID | 75735 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_ad9e52a0_545b_4600_aaa2_bf43838cd853 crossref_citationtrail_10_1109_TITS_2019_2942014 crossref_primary_10_1109_TITS_2019_2942014 ieee_primary_8848852 proquest_journals_2333537821 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan. 2020-1-00 20200101 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref12 ref59 ref11 sutton (ref51) 1999 heess (ref58) 2017 ref17 ref19 ref18 peng (ref53) 2017 williams (ref49) 1988 schulman (ref16) 2017 ref46 lillicrap (ref14) 2015 ref48 zhou (ref4) 2017; 18 ref47 ref41 ref44 lowe (ref54) 2017 silver (ref52) 0 lin (ref43) 0; 2018 ref7 ref3 ref6 ref5 ref34 konda (ref50) 1999 ref37 ref36 ref31 ref30 tieleman (ref55) 2012 ref33 ref32 ref2 ref1 zhou (ref13) 0 ref38 he (ref56) 2015 lin (ref40) 2018 silver (ref9) 2017; 550 ref24 ref23 ref26 mnih (ref8) 2015; 518 fuhs (ref25) 2010 ref20 cao (ref39) 2017 ref63 wu (ref45) 2017 ref22 ref21 silver (ref10) 2016; 529 ref28 ref27 li (ref42) 2018 ref29 cao (ref35) 2016 ref60 ref62 ref61 mnih (ref15) 0 |
References_xml | – year: 2017 ident: ref16 article-title: Proximal policy optimization algorithms publication-title: arXiv 1707 06347 – ident: ref5 doi: 10.1109/TITS.2013.2278494 – ident: ref41 doi: 10.1080/15472450.2017.1387546 – year: 1988 ident: ref49 publication-title: Toward a theory of reinforcement-learning connectionist systems – year: 2017 ident: ref53 article-title: Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play StarCraft combat games publication-title: arXiv 1703 10069 – ident: ref30 doi: 10.1016/j.physa.2006.01.057 – ident: ref38 doi: 10.1109/ICRA.2018.8460567 – ident: ref37 doi: 10.1109/TITS.2016.2613997 – ident: ref60 doi: 10.1109/WAC.2006.376059 – ident: ref23 doi: 10.3141/2423-03 – ident: ref31 doi: 10.1016/j.trc.2005.11.001 – ident: ref6 doi: 10.1016/j.trc.2014.09.001 – ident: ref62 doi: 10.1016/0001-4575(94)90042-6 – volume: 518 start-page: 529 year: 2015 ident: ref8 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref28 doi: 10.1007/s40534-016-0117-3 – ident: ref29 doi: 10.3141/1999-01 – ident: ref59 doi: 10.1016/j.trb.2017.07.003 – ident: ref57 doi: 10.1109/CVPR.2014.81 – start-page: 3814 year: 2016 ident: ref35 article-title: Multiagent-based route guidance for increasing the chance of arrival on time publication-title: Proc AAAI – ident: ref34 doi: 10.1109/TITS.2006.884615 – year: 2018 ident: ref40 article-title: An efficient deep reinforcement learning model for urban traffic control publication-title: arXiv 1808 01876 – ident: ref46 doi: 10.1109/TNN.1998.712192 – ident: ref1 doi: 10.1016/j.trb.2006.11.002 – ident: ref20 doi: 10.1016/j.trb.2014.09.014 – ident: ref32 doi: 10.1016/j.trc.2013.11.024 – ident: ref24 doi: 10.1109/ITST.2006.288906 – ident: ref21 doi: 10.1016/j.trb.2011.11.003 – start-page: 1008 year: 1999 ident: ref50 article-title: Actor-critic algorithms publication-title: Proc NIPS – ident: ref7 doi: 10.1016/j.trb.2016.06.010 – ident: ref11 doi: 10.1016/j.trc.2012.09.011 – start-page: 398 year: 2017 ident: ref45 article-title: Emergent behaviors in mixed-autonomy traffic publication-title: Proc Conf Robot Learn – start-page: 1057 year: 1999 ident: ref51 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Proc NIPS – ident: ref47 doi: 10.1007/BF00992698 – ident: ref36 doi: 10.1016/j.engappai.2016.01.001 – volume: 18 start-page: 1422 year: 2017 ident: ref4 article-title: On the impact of cooperative autonomous vehicles in improving freeway merging: A modified intelligent driver model-based approach publication-title: IEEE Trans Intell Transp Syst – ident: ref18 doi: 10.1088/1367-2630/10/3/033001 – ident: ref19 doi: 10.1016/j.physleta.2015.05.019 – year: 2017 ident: ref54 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: arXiv 1706 02275 – year: 0 ident: ref13 article-title: Microscopic car-following model for autonomous vehicles using reinforcement learning – start-page: 4481 year: 2017 ident: ref39 article-title: Maximizing the probability of arriving on time: A practical Q-learning method publication-title: Proc AAAI – ident: ref33 doi: 10.1109/TVT.2014.2307551 – ident: ref3 doi: 10.1109/TVT.2010.2076320 – ident: ref48 doi: 10.1007/BF00992696 – year: 2017 ident: ref58 article-title: Emergence of locomotion behaviours in rich environments publication-title: arXiv 1707 02286 – ident: ref2 doi: 10.3141/2324-08 – year: 2010 ident: ref25 article-title: Synthesis of active traffic management experiences in Europe and the United States – year: 0 ident: ref15 article-title: Asynchronous methods for deep reinforcement learning – year: 0 ident: ref52 article-title: Deterministic policy gradient algorithms – ident: ref63 doi: 10.1103/PhysRevE.62.1805 – year: 2012 ident: ref55 publication-title: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent – ident: ref22 doi: 10.1016/j.trb.2016.05.007 – ident: ref61 doi: 10.1061/(ASCE)0733-947X(2002)128:2(182) – ident: ref27 doi: 10.1080/15472450.2015.1016023 – year: 2015 ident: ref56 article-title: Deep residual learning for image recognition publication-title: arXiv 1512 03385 – volume: 550 start-page: 354 year: 2017 ident: ref9 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – ident: ref17 doi: 10.1016/j.trb.2012.01.009 – year: 2018 ident: ref42 article-title: Modeling uncertainty in vehicle trajectory prediction in a mixed connected and autonomous vehicle environment using deep learning and kernel density estimation publication-title: Proc 4th Annu Symp Transp Inform – volume: 529 start-page: 484 year: 2016 ident: ref10 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – year: 2015 ident: ref14 article-title: Continuous control with deep reinforcement learning publication-title: arXiv 1509 02971 – ident: ref12 doi: 10.1109/TITS.2011.2157145 – volume: 2018 year: 0 ident: ref43 article-title: Deep learning-based human-driven vehicle trajectory prediction and its application for platoon control of connected and autonomous vehicles – ident: ref26 doi: 10.1016/j.trc.2017.04.015 – ident: ref44 doi: 10.1109/TITS.2017.2725912 |
SSID | ssj0014511 |
Score | 2.6342354 |
Snippet | The concept of Connected and Automated Vehicles (CAVs) enables instant traffic information to be shared among vehicle networks. With this newly proposed... |
SourceID | swepub proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 433 |
SubjectTerms | Automation Car following deep deterministic policy gradient Driver behavior Driving intersection Intersections Learning machine learning Neural network Optimization Oscillators Real-time systems Reinforcement learning Traffic information traffic light traffic oscillation Traffic signals Training Trajectory Vehicles |
Title | Development of an Efficient Driving Strategy for Connected and Automated Vehicles at Signalized Intersections: A Reinforcement Learning Approach |
URI | https://ieeexplore.ieee.org/document/8848852 https://www.proquest.com/docview/2333537821 https://research.chalmers.se/publication/515046 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Nb9QwEIat0hMcoKUgFgrygRMiWzu2k7i3FbQqiHKgW9SbZTuTblWURU32QH8FP5mx4422FUKc8uVIiWYSvzMePybkrZbMFboEjE0anclS8Ew3dZU1TSWdUpVWLqQGTr8WJ-fy84W62CLvx7kwABCLz2AaduNYfr30q5AqO6gqdDeFP9wHGLgNc7XGEYPA2Yps1Fxmmqn1CCZn-mD-aX4Wirj0NNcSt_JOHxQXVbmrLzeZobGfOX5CTtdPOJSXXE9XvZv623vwxv99hR3yOAlOOhs8ZJdsQfuUPNrAEO6R3xuVQ3TZUNvSo0iWCMcfb65CzoEmjO0viiqXxvIYj2IV29Z0tuqXKHzx6DssYpkdtT09u7oMIv8WT8e0YxeLvtrukM7oN4jAVh9zkzQxXi_pLAHOn5Hz46P5h5MsrdSQeVlWfSYYaA4BPcc8L5q61DUHDkqLOHm2saKSUGN3zDAgdqUTtc0LG4Ij60A1Tjwn2-2yhReEitwVynq8Dlxybi26jA7UQK9LXbJ8QtjadsYnjHlYTeOHieEM0yaY2wRzm2TuCXk33vJzYHj8q_FesNrYMBlsQvbXDmLSV96ZXAihBGosPiFfBqcZ7wvY7sRrWhi_iIvhdKYDY2sNKrfMoHZ1RqLgNNba3LgmUGMrX6OAevn3h3hFHuYh3I8ZoH2y3d-s4DVqot69iR_DH1t9CYQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzZ3LbhMxFIatUhbAgltBBAp4ARukST2-zIyRWES0VULTLmiKujO2x9NUVJOqMxFqn4IH4FV4N449TpQixK4Sq2QSTxQ5v-P_HB9_RuiN5MRkMncQm1Qy4TlLE1mVRVJVBTdCFFIYnxrYP8iGR_zTsTheQz-Xe2Gcc6H4zPX907CWX87s3KfKtooC5CZoLKHcc5ffIUBrPoy24dd8S-nuzuTjMIlnCCSW50WbMOJk6jwUjdg0q8pclqlLnZAsbOusNCu4K2GiIBCqmdywUtNMe9uujROVYfC5t9Bt8BmCdrvDlmsUnuwVaKyUJ5KIxZppSuTWZDQ59GVjsk8lh0d-bdYLx7hcd7SrlNIws-0-QL8WfdIVtHzrz1vTt1d_4CL_1057iO5HS40H3Rh4hNZc_RjdWwEtbqAfK7VReFZhXeOdwM7w19sXpz6rgiOo9xKDj8ehAMiCHYe2JR7M2xlYe7j64qahkBDrFh-envgw5gpeDonVJpS11c17PMCfXUDS2pB9xZFie4IHEeH-BB3dSJc8Rev1rHbPEGbUZEJbeN-lPE21hkEhPRfRylzmhPYQWWhF2Qhq9-eFnKkQsBGpvLyUl5eK8uqhd8tbzjtKyb8ab3iVLBtGgfTQ5kKQKv6PNYoyxgQDF5n20LgT6fI-DyaPRKqpstNw3E-jGqd0KZ2gmigYNUZxsNRKa02VqTwXt7AlWMTnf_8Sr9Gd4WR_rMajg70X6C71yY2Q79pE6-3F3L0EB9iaV2EgYvT1pkX8G3ezZxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+Efficient+Driving+Strategy+for+Connected+and+Automated+Vehicles+at+Signalized+Intersections%3A+A+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhou%2C+M.+F.&rft.au=Yu%2C+Yang&rft.au=Qu%2C+Xiaobo&rft.date=2020&rft.issn=1524-9050&rft.volume=21&rft.issue=1&rft.spage=433&rft_id=info:doi/10.1109%2FTITS.2019.2942014&rft.externalDocID=oai_research_chalmers_se_ad9e52a0_545b_4600_aaa2_bf43838cd853 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |