Development of an Efficient Driving Strategy for Connected and Automated Vehicles at Signalized Intersections: A Reinforcement Learning Approach

The concept of Connected and Automated Vehicles (CAVs) enables instant traffic information to be shared among vehicle networks. With this newly proposed concept, a vehicle's driving behaviour will no longer be solely based on the driver's limited and incomplete observation. By taking advan...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 21; no. 1; pp. 433 - 443
Main Authors Zhou, Mofan, Yu, Yang, Qu, Xiaobo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The concept of Connected and Automated Vehicles (CAVs) enables instant traffic information to be shared among vehicle networks. With this newly proposed concept, a vehicle's driving behaviour will no longer be solely based on the driver's limited and incomplete observation. By taking advantages of the shared information, driving behaviours of CAVs can be improved greatly to a more responsible, accurate and efficient level. This study proposed a reinforcement-learning-based car following model for CAVs in order to obtain an appropriate driving behaviour to improve travel efficiency, fuel consumption and safety at signalized intersections in real-time. The result shows that by specifying an effective reward function, a controller can be learned and works well under different traffic demands as well as traffic light cycles with different durations. This study reveals a great potential of emerging reinforcement learning technologies in transport research and applications.
AbstractList The concept of Connected and Automated Vehicles (CAVs) enables instant traffic information to be shared among vehicle networks. With this newly proposed concept, a vehicle's driving behaviour will no longer be solely based on the driver's limited and incomplete observation. By taking advantages of the shared information, driving behaviours of CAVs can be improved greatly to a more responsible, accurate and efficient level. This study proposed a reinforcement-learning-based car following model for CAVs in order to obtain an appropriate driving behaviour to improve travel efficiency, fuel consumption and safety at signalized intersections in real-time. The result shows that by specifying an effective reward function, a controller can be learned and works well under different traffic demands as well as traffic light cycles with different durations. This study reveals a great potential of emerging reinforcement learning technologies in transport research and applications.
Author Zhou, Mofan
Yu, Yang
Qu, Xiaobo
Author_xml – sequence: 1
  givenname: Mofan
  surname: Zhou
  fullname: Zhou, Mofan
  organization: Tencent Holdings Limited, Shenzhen, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0001-6751-5293
  surname: Yu
  fullname: Yu, Yang
  organization: School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
– sequence: 3
  givenname: Xiaobo
  orcidid: 0000-0003-0973-3756
  surname: Qu
  fullname: Qu, Xiaobo
  email: drxiaoboqu@gmail.com
  organization: Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
BackLink https://research.chalmers.se/publication/515046$$DView record from Swedish Publication Index
BookMark eNp9Uc1uEzEQXqEi0RYeAHGxxDnBv1kvtygtECkSEglcrVnvOHG1sRd706o8BY-MlxQOHDiNZ_T9jOe7qi5CDFhVrxmdM0abd7v1bjvnlDVz3shS5bPqkimlZ5SyxcX05nLWUEVfVFc535WpVIxdVj9v8B77OBwxjCQ6AoHcOuetn_qb5O992JPtmGDE_SNxMZFVDAHtiF3BdmR5GuMRpu4bHrztMRMYydbvA_T-Rxmvw4gpF4KPIb8nS_IFfSg6Fn9bbhBSmDyWw5Ai2MPL6rmDPuOrp3pdff1wu1t9mm0-f1yvlpuZlbUeZ4Jiw5BKKallC9fVTceQoWoEpVw0DoSW2CF2VGjR1q3ogC9AKaqgReVacV1tz7r5AYdTa4bkj5AeTQRvEuaylj0Ye4D-WNY3GQ10DSoO1CipWiMXlBoA4KZ1slho22kliurbs2r5zPcT5tHcxVMqt8iGCyGUqDVnBVWfUTbFnBM6Y_0I04XKoX1vGDVTqGYK1UyhmqdQC5P9w_yz9_84b84cj4h_8VpLrRUXvwC1j7Gw
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_trc_2021_102967
crossref_primary_10_1111_mice_12593
crossref_primary_10_1080_23249935_2020_1745927
crossref_primary_10_1109_MITS_2022_3203236
crossref_primary_10_3390_electronics11081203
crossref_primary_10_7467_KSAE_2023_31_1_019
crossref_primary_10_1016_j_vehcom_2023_100681
crossref_primary_10_1109_OJITS_2021_3083201
crossref_primary_10_1016_j_trf_2022_04_008
crossref_primary_10_32604_iasc_2021_014661
crossref_primary_10_1049_itr2_12181
crossref_primary_10_1109_TITS_2023_3241970
crossref_primary_10_1109_JIOT_2024_3487854
crossref_primary_10_3390_app121910145
crossref_primary_10_3390_s24196356
crossref_primary_10_26599_JICV_2023_9210021
crossref_primary_10_3390_ijerph191912115
crossref_primary_10_1016_j_physa_2024_129501
crossref_primary_10_1108_JICV_06_2022_0023
crossref_primary_10_3390_app13085018
crossref_primary_10_1109_TNNLS_2021_3071959
crossref_primary_10_1186_s10033_021_00639_3
crossref_primary_10_1109_JIOT_2024_3425669
crossref_primary_10_1109_TITS_2024_3387530
crossref_primary_10_1109_TITS_2022_3152550
crossref_primary_10_1109_JIOT_2021_3054649
crossref_primary_10_1109_TITS_2023_3315052
crossref_primary_10_1080_15472450_2022_2046472
crossref_primary_10_1109_TITS_2023_3285440
crossref_primary_10_1007_s00521_023_08733_4
crossref_primary_10_1016_j_ifacol_2021_06_024
crossref_primary_10_1016_j_trc_2024_104996
crossref_primary_10_1016_j_energy_2025_134672
crossref_primary_10_1109_TVT_2023_3314404
crossref_primary_10_1109_TITS_2023_3242678
crossref_primary_10_1177_00368504241263406
crossref_primary_10_1016_j_ijtst_2021_04_004
crossref_primary_10_1016_j_multra_2022_100005
crossref_primary_10_1108_JICV_01_2020_0002
crossref_primary_10_3390_s24165187
crossref_primary_10_3390_electronics13234794
crossref_primary_10_1016_j_trf_2023_01_013
crossref_primary_10_1080_19427867_2024_2426795
crossref_primary_10_1016_j_trd_2022_103439
crossref_primary_10_1111_mice_12575
crossref_primary_10_1016_j_trc_2023_104441
crossref_primary_10_3390_s20174887
crossref_primary_10_1016_j_trc_2024_104683
crossref_primary_10_1016_j_trc_2021_103390
crossref_primary_10_1016_j_jclepro_2021_129031
crossref_primary_10_1016_j_procs_2023_01_090
crossref_primary_10_1080_19427867_2024_2305018
crossref_primary_10_1177_03611981241265849
crossref_primary_10_3390_s23156931
crossref_primary_10_1016_j_knosys_2023_110485
crossref_primary_10_1061_JTEPBS_TEENG_8885
crossref_primary_10_3390_app11083464
crossref_primary_10_1016_j_trc_2022_103672
crossref_primary_10_1016_j_chb_2022_107614
crossref_primary_10_1016_j_eswa_2024_123196
crossref_primary_10_1016_j_trc_2023_104161
crossref_primary_10_1109_TITS_2024_3486152
crossref_primary_10_1109_TMC_2024_3417441
crossref_primary_10_1109_OJITS_2020_3027518
crossref_primary_10_1109_TVT_2024_3359282
crossref_primary_10_1016_j_physa_2023_129426
crossref_primary_10_3390_app14073124
crossref_primary_10_1049_itr2_12107
crossref_primary_10_3934_mbe_2020190
crossref_primary_10_1016_j_aap_2021_106157
crossref_primary_10_1109_TIV_2023_3268300
crossref_primary_10_1109_ACCESS_2020_2974740
crossref_primary_10_1016_j_tre_2024_103636
crossref_primary_10_1109_TITS_2023_3264665
crossref_primary_10_1109_TITS_2020_3004254
crossref_primary_10_3390_su151813325
crossref_primary_10_1109_TITS_2020_3008612
crossref_primary_10_1016_j_trc_2021_103421
crossref_primary_10_1109_ACCESS_2022_3149161
crossref_primary_10_1109_TIM_2022_3214265
crossref_primary_10_1109_TITS_2021_3090974
crossref_primary_10_3390_su16166848
crossref_primary_10_1016_j_apenergy_2020_116215
crossref_primary_10_3390_make3040043
crossref_primary_10_1080_19427867_2024_2335084
crossref_primary_10_1109_TTE_2024_3377809
crossref_primary_10_1177_1687814020912968
crossref_primary_10_1080_23249935_2020_1726525
crossref_primary_10_1177_03611981231171899
crossref_primary_10_1109_JIOT_2024_3495693
crossref_primary_10_1109_ACCESS_2020_2998363
crossref_primary_10_1109_TITS_2023_3286441
crossref_primary_10_1109_TAC_2021_3056398
crossref_primary_10_1109_TIV_2023_3303408
crossref_primary_10_1111_mice_12825
crossref_primary_10_1109_JIOT_2024_3395322
crossref_primary_10_1109_TCYB_2021_3123842
crossref_primary_10_1155_2020_1820527
crossref_primary_10_3233_KES_230036
crossref_primary_10_1016_j_energy_2022_123956
crossref_primary_10_1109_TVT_2024_3443106
crossref_primary_10_1016_j_physa_2024_130137
crossref_primary_10_1016_j_trc_2022_103626
crossref_primary_10_1061_JTEPBS_TEENG_7836
crossref_primary_10_1016_j_trc_2020_102652
crossref_primary_10_1109_TVT_2021_3066210
crossref_primary_10_1016_j_physa_2023_128912
crossref_primary_10_1016_j_jocs_2020_101257
crossref_primary_10_1109_MITS_2023_3317081
crossref_primary_10_1016_j_conengprac_2023_105523
crossref_primary_10_1016_j_ifacol_2024_07_327
crossref_primary_10_1016_j_trd_2025_104658
crossref_primary_10_1016_j_procs_2023_01_360
crossref_primary_10_1080_15472450_2022_2109416
crossref_primary_10_1007_s13369_023_08625_8
crossref_primary_10_1109_TVT_2021_3134372
crossref_primary_10_2493_jjspe_90_298
crossref_primary_10_1007_s13177_024_00407_2
crossref_primary_10_1109_TITS_2021_3107258
crossref_primary_10_1016_j_trd_2024_104270
crossref_primary_10_1109_ACCESS_2019_2961930
crossref_primary_10_1016_j_aap_2020_105655
crossref_primary_10_1016_j_xcrp_2022_101002
crossref_primary_10_1109_ACCESS_2020_2989758
crossref_primary_10_1016_j_procs_2024_09_209
crossref_primary_10_1109_TITS_2022_3221450
crossref_primary_10_1177_03611981221098392
crossref_primary_10_1080_01441647_2024_2377637
crossref_primary_10_1109_TITS_2024_3384113
crossref_primary_10_1016_j_trc_2024_104807
crossref_primary_10_1109_JIOT_2023_3306572
crossref_primary_10_3390_su13031404
crossref_primary_10_3390_electronics10182271
crossref_primary_10_1049_itr2_12276
crossref_primary_10_1109_TITS_2024_3368474
crossref_primary_10_1016_j_rser_2021_111833
crossref_primary_10_1016_j_physa_2022_127708
crossref_primary_10_1007_s42154_020_00113_1
crossref_primary_10_1016_j_trc_2024_104486
crossref_primary_10_1080_15568318_2020_1798571
crossref_primary_10_1016_j_trc_2021_103476
crossref_primary_10_1016_j_energy_2021_122888
crossref_primary_10_1109_TVT_2023_3270356
crossref_primary_10_1155_2021_8199361
crossref_primary_10_1109_TVT_2021_3075480
crossref_primary_10_1016_j_physa_2023_129189
crossref_primary_10_3390_su16051956
crossref_primary_10_1109_TVT_2020_3029864
crossref_primary_10_3390_s24237746
crossref_primary_10_1109_TCDS_2021_3092715
crossref_primary_10_1109_TMC_2023_3319697
crossref_primary_10_1155_2020_8899478
crossref_primary_10_1049_itr2_12544
crossref_primary_10_1016_j_trpro_2024_02_024
crossref_primary_10_1109_ACCESS_2021_3064310
crossref_primary_10_1177_03611981221144283
crossref_primary_10_55708_js0105003
crossref_primary_10_1109_TITS_2020_3014097
crossref_primary_10_3390_futuretransp2040057
crossref_primary_10_1016_j_trc_2021_103182
crossref_primary_10_1109_COMST_2023_3305312
crossref_primary_10_1080_15472450_2024_2369988
crossref_primary_10_1016_j_trc_2024_104655
crossref_primary_10_1016_j_commtr_2023_100104
crossref_primary_10_1109_TITS_2023_3336670
crossref_primary_10_1016_j_eswa_2023_120251
crossref_primary_10_1109_TII_2020_3040180
Cites_doi 10.1109/TITS.2013.2278494
10.1080/15472450.2017.1387546
10.1016/j.physa.2006.01.057
10.1109/ICRA.2018.8460567
10.1109/TITS.2016.2613997
10.1109/WAC.2006.376059
10.3141/2423-03
10.1016/j.trc.2005.11.001
10.1016/j.trc.2014.09.001
10.1016/0001-4575(94)90042-6
10.1038/nature14236
10.1007/s40534-016-0117-3
10.3141/1999-01
10.1016/j.trb.2017.07.003
10.1109/CVPR.2014.81
10.1109/TITS.2006.884615
10.1109/TNN.1998.712192
10.1016/j.trb.2006.11.002
10.1016/j.trb.2014.09.014
10.1016/j.trc.2013.11.024
10.1109/ITST.2006.288906
10.1016/j.trb.2011.11.003
10.1016/j.trb.2016.06.010
10.1016/j.trc.2012.09.011
10.1007/BF00992698
10.1016/j.engappai.2016.01.001
10.1088/1367-2630/10/3/033001
10.1016/j.physleta.2015.05.019
10.1109/TVT.2014.2307551
10.1109/TVT.2010.2076320
10.1007/BF00992696
10.3141/2324-08
10.1103/PhysRevE.62.1805
10.1016/j.trb.2016.05.007
10.1061/(ASCE)0733-947X(2002)128:2(182)
10.1080/15472450.2015.1016023
10.1038/nature24270
10.1016/j.trb.2012.01.009
10.1038/nature16961
10.1109/TITS.2011.2157145
10.1016/j.trc.2017.04.015
10.1109/TITS.2017.2725912
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
F1S
DOI 10.1109/TITS.2019.2942014
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 443
ExternalDocumentID oai_research_chalmers_se_ad9e52a0_545b_4600_aaa2_bf43838cd853
10_1109_TITS_2019_2942014
8848852
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c478t-30e91e04440c16fd79d1e1e59300239fa384edeed0383b7b3da26a5505abe5fb3
IEDL.DBID RIE
ISSN 1524-9050
1558-0016
IngestDate Thu Aug 21 07:33:42 EDT 2025
Mon Jun 30 06:53:39 EDT 2025
Thu Apr 24 22:52:07 EDT 2025
Tue Jul 01 04:29:03 EDT 2025
Wed Aug 27 02:38:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-30e91e04440c16fd79d1e1e59300239fa384edeed0383b7b3da26a5505abe5fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0973-3756
0000-0001-6751-5293
OpenAccessLink http://hdl.handle.net/10072/394235
PQID 2333537821
PQPubID 75735
PageCount 11
ParticipantIDs swepub_primary_oai_research_chalmers_se_ad9e52a0_545b_4600_aaa2_bf43838cd853
crossref_citationtrail_10_1109_TITS_2019_2942014
crossref_primary_10_1109_TITS_2019_2942014
ieee_primary_8848852
proquest_journals_2333537821
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
20200101
2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref59
ref11
sutton (ref51) 1999
heess (ref58) 2017
ref17
ref19
ref18
peng (ref53) 2017
williams (ref49) 1988
schulman (ref16) 2017
ref46
lillicrap (ref14) 2015
ref48
zhou (ref4) 2017; 18
ref47
ref41
ref44
lowe (ref54) 2017
silver (ref52) 0
lin (ref43) 0; 2018
ref7
ref3
ref6
ref5
ref34
konda (ref50) 1999
ref37
ref36
ref31
ref30
tieleman (ref55) 2012
ref33
ref32
ref2
ref1
zhou (ref13) 0
ref38
he (ref56) 2015
lin (ref40) 2018
silver (ref9) 2017; 550
ref24
ref23
ref26
mnih (ref8) 2015; 518
fuhs (ref25) 2010
ref20
cao (ref39) 2017
ref63
wu (ref45) 2017
ref22
ref21
silver (ref10) 2016; 529
ref28
ref27
li (ref42) 2018
ref29
cao (ref35) 2016
ref60
ref62
ref61
mnih (ref15) 0
References_xml – year: 2017
  ident: ref16
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv 1707 06347
– ident: ref5
  doi: 10.1109/TITS.2013.2278494
– ident: ref41
  doi: 10.1080/15472450.2017.1387546
– year: 1988
  ident: ref49
  publication-title: Toward a theory of reinforcement-learning connectionist systems
– year: 2017
  ident: ref53
  article-title: Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play StarCraft combat games
  publication-title: arXiv 1703 10069
– ident: ref30
  doi: 10.1016/j.physa.2006.01.057
– ident: ref38
  doi: 10.1109/ICRA.2018.8460567
– ident: ref37
  doi: 10.1109/TITS.2016.2613997
– ident: ref60
  doi: 10.1109/WAC.2006.376059
– ident: ref23
  doi: 10.3141/2423-03
– ident: ref31
  doi: 10.1016/j.trc.2005.11.001
– ident: ref6
  doi: 10.1016/j.trc.2014.09.001
– ident: ref62
  doi: 10.1016/0001-4575(94)90042-6
– volume: 518
  start-page: 529
  year: 2015
  ident: ref8
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref28
  doi: 10.1007/s40534-016-0117-3
– ident: ref29
  doi: 10.3141/1999-01
– ident: ref59
  doi: 10.1016/j.trb.2017.07.003
– ident: ref57
  doi: 10.1109/CVPR.2014.81
– start-page: 3814
  year: 2016
  ident: ref35
  article-title: Multiagent-based route guidance for increasing the chance of arrival on time
  publication-title: Proc AAAI
– ident: ref34
  doi: 10.1109/TITS.2006.884615
– year: 2018
  ident: ref40
  article-title: An efficient deep reinforcement learning model for urban traffic control
  publication-title: arXiv 1808 01876
– ident: ref46
  doi: 10.1109/TNN.1998.712192
– ident: ref1
  doi: 10.1016/j.trb.2006.11.002
– ident: ref20
  doi: 10.1016/j.trb.2014.09.014
– ident: ref32
  doi: 10.1016/j.trc.2013.11.024
– ident: ref24
  doi: 10.1109/ITST.2006.288906
– ident: ref21
  doi: 10.1016/j.trb.2011.11.003
– start-page: 1008
  year: 1999
  ident: ref50
  article-title: Actor-critic algorithms
  publication-title: Proc NIPS
– ident: ref7
  doi: 10.1016/j.trb.2016.06.010
– ident: ref11
  doi: 10.1016/j.trc.2012.09.011
– start-page: 398
  year: 2017
  ident: ref45
  article-title: Emergent behaviors in mixed-autonomy traffic
  publication-title: Proc Conf Robot Learn
– start-page: 1057
  year: 1999
  ident: ref51
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Proc NIPS
– ident: ref47
  doi: 10.1007/BF00992698
– ident: ref36
  doi: 10.1016/j.engappai.2016.01.001
– volume: 18
  start-page: 1422
  year: 2017
  ident: ref4
  article-title: On the impact of cooperative autonomous vehicles in improving freeway merging: A modified intelligent driver model-based approach
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref18
  doi: 10.1088/1367-2630/10/3/033001
– ident: ref19
  doi: 10.1016/j.physleta.2015.05.019
– year: 2017
  ident: ref54
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: arXiv 1706 02275
– year: 0
  ident: ref13
  article-title: Microscopic car-following model for autonomous vehicles using reinforcement learning
– start-page: 4481
  year: 2017
  ident: ref39
  article-title: Maximizing the probability of arriving on time: A practical Q-learning method
  publication-title: Proc AAAI
– ident: ref33
  doi: 10.1109/TVT.2014.2307551
– ident: ref3
  doi: 10.1109/TVT.2010.2076320
– ident: ref48
  doi: 10.1007/BF00992696
– year: 2017
  ident: ref58
  article-title: Emergence of locomotion behaviours in rich environments
  publication-title: arXiv 1707 02286
– ident: ref2
  doi: 10.3141/2324-08
– year: 2010
  ident: ref25
  article-title: Synthesis of active traffic management experiences in Europe and the United States
– year: 0
  ident: ref15
  article-title: Asynchronous methods for deep reinforcement learning
– year: 0
  ident: ref52
  article-title: Deterministic policy gradient algorithms
– ident: ref63
  doi: 10.1103/PhysRevE.62.1805
– year: 2012
  ident: ref55
  publication-title: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent
– ident: ref22
  doi: 10.1016/j.trb.2016.05.007
– ident: ref61
  doi: 10.1061/(ASCE)0733-947X(2002)128:2(182)
– ident: ref27
  doi: 10.1080/15472450.2015.1016023
– year: 2015
  ident: ref56
  article-title: Deep residual learning for image recognition
  publication-title: arXiv 1512 03385
– volume: 550
  start-page: 354
  year: 2017
  ident: ref9
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– ident: ref17
  doi: 10.1016/j.trb.2012.01.009
– year: 2018
  ident: ref42
  article-title: Modeling uncertainty in vehicle trajectory prediction in a mixed connected and autonomous vehicle environment using deep learning and kernel density estimation
  publication-title: Proc 4th Annu Symp Transp Inform
– volume: 529
  start-page: 484
  year: 2016
  ident: ref10
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– year: 2015
  ident: ref14
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv 1509 02971
– ident: ref12
  doi: 10.1109/TITS.2011.2157145
– volume: 2018
  year: 0
  ident: ref43
  article-title: Deep learning-based human-driven vehicle trajectory prediction and its application for platoon control of connected and autonomous vehicles
– ident: ref26
  doi: 10.1016/j.trc.2017.04.015
– ident: ref44
  doi: 10.1109/TITS.2017.2725912
SSID ssj0014511
Score 2.6342354
Snippet The concept of Connected and Automated Vehicles (CAVs) enables instant traffic information to be shared among vehicle networks. With this newly proposed...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 433
SubjectTerms Automation
Car following
deep deterministic policy gradient
Driver behavior
Driving
intersection
Intersections
Learning
machine learning
Neural network
Optimization
Oscillators
Real-time systems
Reinforcement learning
Traffic information
traffic light
traffic oscillation
Traffic signals
Training
Trajectory
Vehicles
Title Development of an Efficient Driving Strategy for Connected and Automated Vehicles at Signalized Intersections: A Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/8848852
https://www.proquest.com/docview/2333537821
https://research.chalmers.se/publication/515046
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Nb9QwEIat0hMcoKUgFgrygRMiWzu2k7i3FbQqiHKgW9SbZTuTblWURU32QH8FP5mx4422FUKc8uVIiWYSvzMePybkrZbMFboEjE0anclS8Ew3dZU1TSWdUpVWLqQGTr8WJ-fy84W62CLvx7kwABCLz2AaduNYfr30q5AqO6gqdDeFP9wHGLgNc7XGEYPA2Yps1Fxmmqn1CCZn-mD-aX4Wirj0NNcSt_JOHxQXVbmrLzeZobGfOX5CTtdPOJSXXE9XvZv623vwxv99hR3yOAlOOhs8ZJdsQfuUPNrAEO6R3xuVQ3TZUNvSo0iWCMcfb65CzoEmjO0viiqXxvIYj2IV29Z0tuqXKHzx6DssYpkdtT09u7oMIv8WT8e0YxeLvtrukM7oN4jAVh9zkzQxXi_pLAHOn5Hz46P5h5MsrdSQeVlWfSYYaA4BPcc8L5q61DUHDkqLOHm2saKSUGN3zDAgdqUTtc0LG4Ij60A1Tjwn2-2yhReEitwVynq8Dlxybi26jA7UQK9LXbJ8QtjadsYnjHlYTeOHieEM0yaY2wRzm2TuCXk33vJzYHj8q_FesNrYMBlsQvbXDmLSV96ZXAihBGosPiFfBqcZ7wvY7sRrWhi_iIvhdKYDY2sNKrfMoHZ1RqLgNNba3LgmUGMrX6OAevn3h3hFHuYh3I8ZoH2y3d-s4DVqot69iR_DH1t9CYQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzZ3LbhMxFIatUhbAgltBBAp4ARukST2-zIyRWES0VULTLmiKujO2x9NUVJOqMxFqn4IH4FV4N449TpQixK4Sq2QSTxQ5v-P_HB9_RuiN5MRkMncQm1Qy4TlLE1mVRVJVBTdCFFIYnxrYP8iGR_zTsTheQz-Xe2Gcc6H4zPX907CWX87s3KfKtooC5CZoLKHcc5ffIUBrPoy24dd8S-nuzuTjMIlnCCSW50WbMOJk6jwUjdg0q8pclqlLnZAsbOusNCu4K2GiIBCqmdywUtNMe9uujROVYfC5t9Bt8BmCdrvDlmsUnuwVaKyUJ5KIxZppSuTWZDQ59GVjsk8lh0d-bdYLx7hcd7SrlNIws-0-QL8WfdIVtHzrz1vTt1d_4CL_1057iO5HS40H3Rh4hNZc_RjdWwEtbqAfK7VReFZhXeOdwM7w19sXpz6rgiOo9xKDj8ehAMiCHYe2JR7M2xlYe7j64qahkBDrFh-envgw5gpeDonVJpS11c17PMCfXUDS2pB9xZFie4IHEeH-BB3dSJc8Rev1rHbPEGbUZEJbeN-lPE21hkEhPRfRylzmhPYQWWhF2Qhq9-eFnKkQsBGpvLyUl5eK8uqhd8tbzjtKyb8ab3iVLBtGgfTQ5kKQKv6PNYoyxgQDF5n20LgT6fI-DyaPRKqpstNw3E-jGqd0KZ2gmigYNUZxsNRKa02VqTwXt7AlWMTnf_8Sr9Gd4WR_rMajg70X6C71yY2Q79pE6-3F3L0EB9iaV2EgYvT1pkX8G3ezZxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+Efficient+Driving+Strategy+for+Connected+and+Automated+Vehicles+at+Signalized+Intersections%3A+A+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhou%2C+M.+F.&rft.au=Yu%2C+Yang&rft.au=Qu%2C+Xiaobo&rft.date=2020&rft.issn=1524-9050&rft.volume=21&rft.issue=1&rft.spage=433&rft_id=info:doi/10.1109%2FTITS.2019.2942014&rft.externalDocID=oai_research_chalmers_se_ad9e52a0_545b_4600_aaa2_bf43838cd853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon