A Dual Role of Heme Oxygenase-1 in Cancer Cells

Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in c...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 20; no. 1; p. 39
Main Authors Chiang, Shih-Kai, Chen, Shuen-Ei, Chang, Ling-Chu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.12.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.
AbstractList Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.
Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.
Excessive ROS can induce oxidative damage of DNA, and, to a higher degree, gene mutation and carcinogenesis [2,3,4]. [...]lipid peroxidation by excessive ROS may damage cellular structures and eventually induce cell death [1]. [...]the augmentation of ROS is a useful approach for clinical cancer treatment. Various chemotherapeutic agents, such as cisplatin, doxorubicin, and 5-fluorouracil, have been shown to exert their antitumor activity via ROS-dependent activation of apoptosis [4,5]. [...]oxidation therapy becomes a possible strategy by provoking ROS production and diminishing antioxidant enzymes in cancer cells. Certain cancer cells, such as pancreatic cancer cell lines (MIA PaCa-2, PANC-1, and BxPC-3) and a subset of triple-negative cancer cells also greatly depend on system Xc− to mediate cysteine uptake for growth, as well as survival under oxidative stress conditions [24,25], suggesting that system Xc− might serve as a good chemotherapeutic target.
Author Chiang, Shih-Kai
Chang, Ling-Chu
Chen, Shuen-Ei
AuthorAffiliation 1 Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; shihkaichiang@gmail.com (S.K.C.); chenshuenei@hotmail.com (S.E.C.)
2 Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 40277, Taiwan
3 The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40277, Taiwan
5 Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
4 Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 40277, Taiwan
AuthorAffiliation_xml – name: 4 Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 40277, Taiwan
– name: 2 Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 40277, Taiwan
– name: 3 The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40277, Taiwan
– name: 5 Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
– name: 1 Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; shihkaichiang@gmail.com (S.K.C.); chenshuenei@hotmail.com (S.E.C.)
Author_xml – sequence: 1
  givenname: Shih-Kai
  surname: Chiang
  fullname: Chiang, Shih-Kai
– sequence: 2
  givenname: Shuen-Ei
  orcidid: 0000-0003-1737-2591
  surname: Chen
  fullname: Chen, Shuen-Ei
– sequence: 3
  givenname: Ling-Chu
  orcidid: 0000-0002-7905-580X
  surname: Chang
  fullname: Chang, Ling-Chu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30583467$$D View this record in MEDLINE/PubMed
BookMark eNptkctLxDAQxoMovm-epeDFg9Uk0-ZxEWR9wsKC6Dmk7XTN0ibatKL_vRUfrIunGZjffHzfzA5Z98EjIQeMngJoeuYWbeSUMkpBr5FtlnGeUirk-lK_RXZiXFDKged6k2wBzRVkQm6Ts4vkcrBNch8aTEKd3GKLyeztfY7eRkxZ4nwysb7ELplg08Q9slHbJuL-d90lj9dXD5PbdDq7uZtcTNMyk6pPgVa80CrL6yovKgWAokLLQVZKF5ksUEhZK1UAZrkVoqi0lopbxqTM8rLSsEvOv3Sfh6LFqkTfd7Yxz51rbfdugnXm78S7JzMPr0YAyJzCKHD8LdCFlwFjb1oXyzGC9RiGaDgTFATXUozo0Qq6CEPnx3iGAzClMirVSB0uO_q18nPLEeBfQNmFGDusTel627vwadA1hlHz-TCz_LBx6WRl6Uf3X_wDJomUNQ
CitedBy_id crossref_primary_10_3390_livers2040030
crossref_primary_10_1089_ars_2019_7957
crossref_primary_10_3390_antiox12030735
crossref_primary_10_3389_fcell_2021_791585
crossref_primary_10_1093_jb_mvae067
crossref_primary_10_3390_ijms22115995
crossref_primary_10_1016_j_jchemneu_2020_101807
crossref_primary_10_12677_ACM_2023_134783
crossref_primary_10_4103_1673_5374_387979
crossref_primary_10_3389_fphar_2025_1540217
crossref_primary_10_1002_cnr2_1879
crossref_primary_10_1038_s41417_020_0170_2
crossref_primary_10_1155_2021_6654887
crossref_primary_10_3389_fmolb_2023_1156062
crossref_primary_10_1016_j_freeradbiomed_2021_02_026
crossref_primary_10_1111_1440_1681_13673
crossref_primary_10_3389_fcvm_2021_733229
crossref_primary_10_3389_fimmu_2024_1398468
crossref_primary_10_3390_cancers15215159
crossref_primary_10_3390_ijms23010551
crossref_primary_10_3390_ijms21062257
crossref_primary_10_1007_s10549_022_06565_9
crossref_primary_10_3390_antiox11081548
crossref_primary_10_1016_j_genrep_2021_101312
crossref_primary_10_3390_antiox11112135
crossref_primary_10_1016_j_freeradbiomed_2021_09_002
crossref_primary_10_3390_jpm11060509
crossref_primary_10_3390_antiox11020295
crossref_primary_10_1007_s00432_022_04447_7
crossref_primary_10_1007_s12032_022_01773_1
crossref_primary_10_1016_j_mce_2021_111462
crossref_primary_10_3389_fonc_2021_697697
crossref_primary_10_3389_fphar_2022_839464
crossref_primary_10_1016_j_lfs_2021_119457
crossref_primary_10_3390_antiox11040675
crossref_primary_10_1007_s13659_024_00454_y
crossref_primary_10_1038_s41389_022_00437_z
crossref_primary_10_3389_fcell_2021_705786
crossref_primary_10_3390_metabo12010058
crossref_primary_10_1016_j_apsb_2024_05_025
crossref_primary_10_46497_ArchRheumatol_2023_9898
crossref_primary_10_3390_antiox11030501
crossref_primary_10_15430_JCP_2022_27_1_7
crossref_primary_10_1016_j_intimp_2024_113830
crossref_primary_10_3389_fimmu_2020_00066
crossref_primary_10_3390_ijms20102593
crossref_primary_10_1158_1535_7163_MCT_22_0275
crossref_primary_10_1016_j_freeradbiomed_2024_11_007
crossref_primary_10_1111_jcmm_14482
crossref_primary_10_1016_j_abb_2021_108775
crossref_primary_10_3390_ijms21061923
crossref_primary_10_3389_fimmu_2021_658315
crossref_primary_10_3390_cells14030192
crossref_primary_10_3390_ijms21207780
crossref_primary_10_1016_j_heliyon_2022_e09909
crossref_primary_10_1186_s13048_024_01570_6
crossref_primary_10_3390_antiox13121499
crossref_primary_10_1016_j_addr_2022_114241
crossref_primary_10_1038_s41598_020_71138_z
crossref_primary_10_1007_s10554_022_02784_9
crossref_primary_10_3390_jpm11121340
crossref_primary_10_1016_j_freeradbiomed_2021_09_028
crossref_primary_10_3390_nu14224817
crossref_primary_10_3390_cancers12103023
crossref_primary_10_1016_j_jphotobiol_2024_113003
crossref_primary_10_1038_s41598_024_51945_4
crossref_primary_10_1021_acsami_4c17763
crossref_primary_10_3390_antiox10101624
crossref_primary_10_3389_fphar_2020_00907
crossref_primary_10_3390_cells11213349
crossref_primary_10_1002_adfm_201910335
crossref_primary_10_3390_cancers13153670
crossref_primary_10_4062_biomolther_2023_057
crossref_primary_10_3390_cells9112510
crossref_primary_10_1016_j_jnutbio_2025_109888
crossref_primary_10_3390_cells11040754
crossref_primary_10_3390_cells9061505
crossref_primary_10_1016_j_bcp_2023_115725
crossref_primary_10_1016_j_lfs_2021_119391
crossref_primary_10_3390_antiox10060966
crossref_primary_10_3390_pathophysiology30010007
crossref_primary_10_3389_fcell_2020_00127
crossref_primary_10_3389_fendo_2021_626390
crossref_primary_10_3390_medicina56060268
crossref_primary_10_1002_chem_202002139
crossref_primary_10_1038_s41598_024_83921_3
crossref_primary_10_1248_bpb_b20_00340
crossref_primary_10_1002_ctm2_1013
crossref_primary_10_1016_j_yexmp_2021_104642
crossref_primary_10_1002_jcp_30901
crossref_primary_10_3390_antiox12071369
crossref_primary_10_3390_cancers14225519
crossref_primary_10_3390_ijms232315213
crossref_primary_10_3390_cancers11040505
crossref_primary_10_1002_adtp_202400400
crossref_primary_10_1016_j_cell_2019_06_020
crossref_primary_10_1016_j_theriogenology_2024_03_003
crossref_primary_10_2174_1568009623666230227162532
crossref_primary_10_3390_md19020086
crossref_primary_10_1016_j_jgr_2023_04_001
crossref_primary_10_3390_ijms20194744
crossref_primary_10_3389_fendo_2023_1319969
crossref_primary_10_1016_j_apsb_2020_10_010
crossref_primary_10_1016_j_tiv_2022_105487
crossref_primary_10_1042_BSR20193314
crossref_primary_10_3390_antiox11030555
crossref_primary_10_3390_ijms21082980
crossref_primary_10_1002_tox_23770
crossref_primary_10_1080_21655979_2021_1988840
crossref_primary_10_1002_anie_202307838
crossref_primary_10_1002_bab_2641
crossref_primary_10_1155_2022_9523491
crossref_primary_10_3390_ijms23137041
crossref_primary_10_1016_j_heliyon_2021_e05985
crossref_primary_10_1073_pnas_2318420121
crossref_primary_10_1016_j_intimp_2024_112794
crossref_primary_10_1111_jcmm_14511
crossref_primary_10_1371_journal_ppat_1007922
crossref_primary_10_3390_ijms24044221
crossref_primary_10_3390_medicina60101581
crossref_primary_10_3892_ijo_2025_5732
crossref_primary_10_3389_fncel_2023_1239101
crossref_primary_10_1021_acsmedchemlett_4c00099
crossref_primary_10_1016_j_lfs_2021_119935
crossref_primary_10_3389_fonc_2020_590861
crossref_primary_10_1186_s12957_022_02555_9
crossref_primary_10_3390_molecules27185841
crossref_primary_10_3390_molecules27072129
crossref_primary_10_3390_molecules27103220
crossref_primary_10_1016_j_bioorg_2024_107510
crossref_primary_10_3389_fphar_2022_933732
crossref_primary_10_1038_s41598_023_42760_4
crossref_primary_10_1186_s12920_022_01419_1
crossref_primary_10_1186_s12953_024_00228_x
crossref_primary_10_1016_j_jconrel_2023_07_046
crossref_primary_10_3390_ijms24076189
crossref_primary_10_1016_j_apsb_2021_12_007
crossref_primary_10_1155_2021_8447456
crossref_primary_10_1667_RADE_23_00035_1
crossref_primary_10_1016_j_phymed_2023_154701
crossref_primary_10_2147_CMAR_S292461
crossref_primary_10_1021_acs_jafc_2c03856
crossref_primary_10_3892_ijo_2020_5116
crossref_primary_10_1016_j_xcrm_2025_101928
crossref_primary_10_1007_s10853_024_09410_0
crossref_primary_10_7554_eLife_64806
crossref_primary_10_1016_j_biopha_2020_111202
crossref_primary_10_3390_ijms23084117
crossref_primary_10_1007_s00059_021_05039_w
crossref_primary_10_1097_CM9_0000000000002675
crossref_primary_10_3390_md22070323
crossref_primary_10_1186_s12864_022_08754_8
crossref_primary_10_3390_cancers15102694
crossref_primary_10_3390_biomedicines12030541
crossref_primary_10_1016_j_envpol_2023_122723
crossref_primary_10_3389_fphar_2023_1196287
crossref_primary_10_3390_toxics12020161
crossref_primary_10_2152_jmi_69_1
crossref_primary_10_3748_wjg_v29_i16_2433
crossref_primary_10_4251_wjgo_v16_i9_3932
crossref_primary_10_1080_02713683_2022_2138450
crossref_primary_10_3389_fimmu_2024_1455607
crossref_primary_10_1016_j_humimm_2022_03_007
crossref_primary_10_1177_09731296241251957
crossref_primary_10_3390_cancers14061531
crossref_primary_10_1142_S0192415X23500271
crossref_primary_10_4103_tcmj_tcmj_58_21
crossref_primary_10_14336_AD_2022_01302
crossref_primary_10_1155_2021_2915019
crossref_primary_10_3390_biomedicines9121942
crossref_primary_10_3389_fphar_2022_977062
crossref_primary_10_3390_ijms23116103
crossref_primary_10_3389_fphar_2024_1374722
crossref_primary_10_1007_s11010_024_04960_y
crossref_primary_10_1007_s13402_023_00784_y
crossref_primary_10_3390_cells10092401
crossref_primary_10_1007_s12035_022_02935_y
crossref_primary_10_1016_j_jconrel_2025_01_050
crossref_primary_10_1080_14728222_2022_2061349
crossref_primary_10_1038_s41598_023_35978_9
crossref_primary_10_3389_fphar_2024_1466896
crossref_primary_10_3390_molecules27144533
crossref_primary_10_1016_j_freeradbiomed_2020_02_027
crossref_primary_10_3390_ijms25105389
crossref_primary_10_3390_cancers13164142
crossref_primary_10_1111_nep_14237
crossref_primary_10_1007_s43188_021_00089_y
crossref_primary_10_1016_j_intimp_2023_110461
crossref_primary_10_1111_cas_15607
crossref_primary_10_3390_antiox12071445
crossref_primary_10_3390_ani12233394
crossref_primary_10_3390_ijms24087661
crossref_primary_10_1155_2022_5361241
crossref_primary_10_3390_molecules27217318
crossref_primary_10_3390_cells12040553
crossref_primary_10_3390_ijms21218387
crossref_primary_10_1186_s42779_023_00176_5
crossref_primary_10_1016_j_molstruc_2021_132097
crossref_primary_10_3389_fmolb_2023_1216733
crossref_primary_10_3390_antiox12071332
crossref_primary_10_3390_md23030123
crossref_primary_10_1039_D1FO01036K
crossref_primary_10_3390_ijms21249698
crossref_primary_10_1016_j_biopha_2022_114154
crossref_primary_10_3390_antiox13070791
crossref_primary_10_3390_ijms25084465
crossref_primary_10_1002_adbi_202300451
crossref_primary_10_1186_s10020_023_00733_3
crossref_primary_10_1016_j_abb_2023_109699
crossref_primary_10_1016_j_intimp_2021_107626
crossref_primary_10_1016_j_biochi_2022_12_008
crossref_primary_10_3390_biom11111667
crossref_primary_10_1155_2020_1269624
crossref_primary_10_3390_biom11040589
crossref_primary_10_3390_molecules28237929
crossref_primary_10_1186_s13020_024_00901_5
crossref_primary_10_1016_j_critrevonc_2023_103964
crossref_primary_10_3389_fonc_2022_1072739
crossref_primary_10_1016_j_lfs_2024_122629
crossref_primary_10_3390_ph14101051
crossref_primary_10_1007_s15010_021_01722_6
crossref_primary_10_3390_molecules27133970
crossref_primary_10_1155_2021_9314342
crossref_primary_10_3389_fphar_2021_710978
crossref_primary_10_1038_s41422_019_0150_y
crossref_primary_10_3390_ijms21197227
crossref_primary_10_1016_j_isci_2024_111477
crossref_primary_10_3389_fphys_2024_1450656
crossref_primary_10_1007_s11060_024_04918_6
crossref_primary_10_1016_j_freeradbiomed_2022_06_010
crossref_primary_10_1002_jobm_202000622
crossref_primary_10_3390_cells12071050
crossref_primary_10_3390_ijms241713336
crossref_primary_10_1042_BSR20231992
crossref_primary_10_3390_antiox14020187
crossref_primary_10_1016_j_phymed_2023_155288
crossref_primary_10_1002_jgm_70011
crossref_primary_10_3390_ijms24010449
crossref_primary_10_3390_foods12061192
crossref_primary_10_1016_j_canlet_2024_217392
crossref_primary_10_3389_fphar_2022_943272
crossref_primary_10_1186_s13765_023_00786_2
crossref_primary_10_1002_ange_202307838
crossref_primary_10_3390_biom10030467
crossref_primary_10_1155_2022_9428660
crossref_primary_10_3390_molecules29122832
crossref_primary_10_1007_s00277_023_05193_7
crossref_primary_10_1016_j_phymed_2021_153551
crossref_primary_10_1016_j_freeradbiomed_2025_03_031
crossref_primary_10_1016_j_jep_2025_119516
crossref_primary_10_1080_10715762_2019_1666983
crossref_primary_10_1002_1878_0261_13574
crossref_primary_10_1186_s40170_023_00313_3
crossref_primary_10_1016_j_phymed_2019_153138
crossref_primary_10_3390_ijms22042009
crossref_primary_10_7554_eLife_84679
crossref_primary_10_1038_s41598_021_82990_y
crossref_primary_10_3390_cells12192409
crossref_primary_10_1021_acs_analchem_4c03065
crossref_primary_10_1016_j_freeradbiomed_2022_03_033
crossref_primary_10_2139_ssrn_3984071
crossref_primary_10_3390_cancers14133129
crossref_primary_10_1016_j_apsb_2024_04_020
crossref_primary_10_1007_s10126_021_10055_2
crossref_primary_10_1016_j_cej_2024_156923
crossref_primary_10_22175_mmb_15762
crossref_primary_10_3389_fimmu_2023_1184105
crossref_primary_10_3390_ijms24010562
crossref_primary_10_1016_j_mehy_2022_110944
crossref_primary_10_3390_antiox11040767
crossref_primary_10_1038_s41598_025_92674_6
crossref_primary_10_1038_s41413_022_00198_w
crossref_primary_10_1016_j_prp_2024_155324
crossref_primary_10_3390_antiox11050861
crossref_primary_10_1186_s10020_024_00783_1
crossref_primary_10_1016_j_jep_2024_117963
crossref_primary_10_1016_j_jep_2024_118139
crossref_primary_10_1038_s41419_022_05272_z
crossref_primary_10_1080_09553002_2020_1708993
crossref_primary_10_3390_cancers13010147
crossref_primary_10_1177_03946320231219348
crossref_primary_10_3389_fnut_2024_1399888
crossref_primary_10_4049_jimmunol_2000500
crossref_primary_10_3389_fncel_2020_591874
crossref_primary_10_3390_antiox12051074
crossref_primary_10_1016_j_scitotenv_2024_172618
crossref_primary_10_3389_fcell_2024_1344060
crossref_primary_10_1007_s00432_022_04152_5
crossref_primary_10_1155_2020_3469840
crossref_primary_10_1155_2023_6896790
crossref_primary_10_1016_j_nantod_2024_102300
crossref_primary_10_1016_j_bbadis_2023_166788
crossref_primary_10_3390_antiox11081496
crossref_primary_10_3390_antiox9111153
crossref_primary_10_3390_ijms241512008
crossref_primary_10_1016_j_cellsig_2024_111583
crossref_primary_10_3390_ijms20112723
crossref_primary_10_1016_j_bcp_2021_114584
crossref_primary_10_3390_antiox11071323
crossref_primary_10_1007_s43440_021_00322_3
crossref_primary_10_2139_ssrn_4573587
crossref_primary_10_2147_JIR_S430885
crossref_primary_10_3390_antiox9030251
crossref_primary_10_3389_fphys_2023_1060175
crossref_primary_10_3390_cells9122591
crossref_primary_10_3390_cells12050735
crossref_primary_10_1016_j_scitotenv_2024_176885
crossref_primary_10_1016_j_meatsci_2023_109202
crossref_primary_10_1016_j_bcp_2020_114186
crossref_primary_10_1016_j_psj_2025_104894
crossref_primary_10_3390_ijms25073718
crossref_primary_10_1016_j_biopha_2024_116235
crossref_primary_10_1016_j_freeradbiomed_2023_09_027
crossref_primary_10_3390_biomedicines11092393
crossref_primary_10_1038_s41413_024_00384_y
crossref_primary_10_1186_s12920_024_01872_0
crossref_primary_10_4062_biomolther_2023_010
crossref_primary_10_3390_antiox10050789
crossref_primary_10_3390_antiox9121191
crossref_primary_10_2147_OTT_S254995
crossref_primary_10_1002_med_21933
crossref_primary_10_1016_j_scitotenv_2020_141161
crossref_primary_10_1186_s12964_024_01759_8
crossref_primary_10_3389_fcell_2021_760800
crossref_primary_10_3389_fonc_2024_1431362
Cites_doi 10.1016/S0140-6736(16)00647-4
10.3892/ol.2015.3735
10.1016/j.ccr.2013.08.020
10.1007/s00018-016-2194-1
10.1016/j.redox.2016.12.010
10.1159/000065686
10.1016/j.taap.2004.06.021
10.1002/ijc.11644
10.1016/j.lungcan.2007.09.021
10.1093/nar/gkm638
10.1158/1078-0432.CCR-04-2159
10.1016/0891-5849(95)02182-5
10.1016/j.ejmech.2017.07.031
10.1053/j.ajkd.2016.10.037
10.1002/ijc.23695
10.1038/sj.bjp.0706555
10.1038/ncb3053
10.1074/jbc.M112.393140
10.1007/s11010-010-0563-x
10.1016/j.biocel.2006.03.013
10.1128/MCB.23.22.8137-8151.2003
10.1007/s00018-016-2223-0
10.2174/1568009614666140320111306
10.3892/ijo.2014.2661
10.1053/j.semperi.2014.08.006
10.1007/s10495-016-1216-7
10.1042/BJ20120936
10.1021/cr400415k
10.1074/jbc.M110.210047
10.1038/nchem.2778
10.1006/abbi.1997.9892
10.1016/j.biopha.2018.02.039
10.1038/ncb2021
10.1016/S0065-2423(06)43001-8
10.3390/ijms19082260
10.1124/pr.107.07104
10.1016/j.canlet.2017.12.025
10.1002/glia.23160
10.1155/2017/3526903
10.1128/AAC.03663-14
10.1038/oncsis.2017.65
10.1038/cr.2016.95
10.1016/j.bcp.2016.03.026
10.1096/fj.05-4204fje
10.1074/jbc.M607954200
10.1006/bbrc.1997.6943
10.3390/antiox7110151
10.18388/abp.2017_2542
10.1016/j.biocel.2006.07.001
10.1038/nature15726
10.1016/j.biopha.2015.03.005
10.1172/JCI99032
10.1074/jbc.272.34.21096
10.1080/14740338.2016.1194824
10.3390/ijms17030290
10.3390/molecules23051209
10.1021/jm0511435
10.1016/j.chembiol.2008.02.010
10.1096/fasebj.13.13.1800
10.1038/cddis.2014.149
10.1038/nrd4002
10.4161/cc.6.24.5022
10.1093/ejcts/ezs298
10.1042/bj3480615
10.3748/wjg.v20.i26.8572
10.1182/blood-2012-11-451229
10.1016/j.ejmech.2018.09.048
10.1038/cdd.2015.158
10.4161/cbt.7.12.7067
10.1208/s12248-013-9531-1
10.1016/j.cell.2013.12.010
10.1186/1476-4598-8-37
10.1016/j.cell.2017.09.021
10.1016/j.redox.2013.07.004
10.1002/hep.28251
10.1042/bj3440153
10.1172/jci.insight.85817
10.1016/j.vph.2015.09.004
10.1002/ijc.22287
10.1021/acschembio.8b00458
10.1385/BTER:112:3:221
10.1186/1756-9966-27-13
10.1182/blood-2006-11-055723
10.1016/j.bbamcr.2008.05.008
10.1074/jbc.M107749200
10.1016/j.biopha.2018.06.060
10.1016/j.tox.2013.09.015
10.1038/bjc.2014.98
10.1016/j.jinorgbio.2009.10.011
10.1016/j.cell.2012.03.042
10.18632/oncotarget.7563
10.3389/fphar.2017.00992
10.1089/ars.2010.3129
10.1016/j.niox.2010.08.002
10.1017/S1462399407000531
10.4161/auto.2.2.2405
10.3390/antiox6020029
10.1146/annurev.pharmtox.010909.105600
10.1152/physrev.00011.2005
10.1016/j.freeradbiomed.2013.10.819
10.1016/j.ejmech.2015.04.003
10.1038/sj.bjc.6604485
10.3389/fphar.2012.00068
10.18632/oncotarget.5162
10.1016/j.neuroscience.2006.09.064
10.3892/or.2016.4556
10.1089/ars.2007.1893
10.1152/ajprenal.00044.2017
10.3324/haematol.2012.063651
10.1038/nrd2803
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/ijms20010039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC6337503
30583467
10_3390_ijms20010039
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-30d2b9845fd5bd833e6dea237d89b47be677f88b3e45a66bd99782a117745cd93
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:07:03 EDT 2025
Fri Jul 11 09:34:51 EDT 2025
Fri Jul 25 20:33:37 EDT 2025
Thu Apr 03 06:57:25 EDT 2025
Tue Jul 01 01:45:28 EDT 2025
Thu Apr 24 23:04:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords iron
ferroptosis
heme oxygenase-1
chemotherapy
glutathione
reactive oxygen species
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-30d2b9845fd5bd833e6dea237d89b47be677f88b3e45a66bd99782a117745cd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7905-580X
0000-0003-1737-2591
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20010039
PMID 30583467
PQID 2331884078
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6337503
proquest_miscellaneous_2160362976
proquest_journals_2331884078
pubmed_primary_30583467
crossref_citationtrail_10_3390_ijms20010039
crossref_primary_10_3390_ijms20010039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181221
PublicationDateYYYYMMDD 2018-12-21
PublicationDate_xml – month: 12
  year: 2018
  text: 20181221
  day: 21
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hull (ref_80) 2016; 1
ref_94
Lin (ref_41) 2008; 1783
ref_90
Luscher (ref_65) 1996; 20
Han (ref_114) 2018; 52
ref_14
ref_11
Zheng (ref_46) 2014; 110
Wei (ref_110) 2014; 45
Bjorkoy (ref_71) 2006; 2
Paffetti (ref_52) 2006; 112
Na (ref_91) 2014; 67
Sun (ref_31) 2016; 63
Nuhn (ref_85) 2009; 8
Ren (ref_111) 2016; 35
Xie (ref_19) 2016; 23
Pae (ref_44) 2010; 23
Hirai (ref_101) 2007; 120
Rahman (ref_106) 2010; 104
Mayerhofer (ref_95) 2008; 111
Tibullo (ref_88) 2016; 7
Gladwin (ref_69) 2016; 387
Mai (ref_59) 2017; 9
Papanikolaou (ref_49) 2005; 202
Bansal (ref_79) 2013; 2
Stein (ref_76) 2011; 286
Ryter (ref_8) 2006; 86
Lo (ref_24) 2008; 99
Piloni (ref_64) 2013; 314
Jomova (ref_32) 2010; 345
Valko (ref_1) 2007; 39
Bolisetty (ref_13) 2017; 69
Kaplan (ref_48) 2014; 38
Weiskirchen (ref_74) 2014; 3
Roh (ref_22) 2017; 11
Cairo (ref_56) 2007; 9
Mucha (ref_117) 2018; 65
Kinobe (ref_104) 2006; 147
Vincenzi (ref_73) 2016; 15
Fang (ref_70) 1997; 340
Zhu (ref_112) 2015; 10
Zhang (ref_54) 2010; 13
Wang (ref_75) 2017; 2017
Chi (ref_40) 2007; 144
Liu (ref_98) 2014; 20
Komatsu (ref_72) 2010; 12
Gorrini (ref_4) 2013; 12
Frank (ref_100) 2007; 31
Dixon (ref_6) 2012; 149
Chang (ref_16) 2018; 416
Vitek (ref_26) 2007; 43
ref_82
Gozzelino (ref_12) 2010; 50
Gottlieb (ref_34) 2012; 97
Sorrenti (ref_108) 2018; 158
Busserolles (ref_45) 2006; 38
Kang (ref_116) 2014; 5
Yang (ref_7) 2014; 156
Reichard (ref_39) 2007; 35
Lanceta (ref_57) 2013; 449
Abraham (ref_27) 2008; 60
Clark (ref_62) 2000; 348
NaveenKumar (ref_66) 2018; 13
Berberat (ref_113) 2005; 11
Podkalicka (ref_105) 2018; 22
Shi (ref_84) 2008; 27
Lu (ref_23) 2018; 8
Yang (ref_58) 2008; 15
Lamb (ref_61) 1999; 344
Sui (ref_29) 2018; 106
Liou (ref_3) 2014; 44
Vlahakis (ref_92) 2006; 49
Piskounova (ref_21) 2015; 52
Pierce (ref_78) 1997; 272
Lin (ref_35) 2007; 282
Schulz (ref_93) 2012; 3
Schaer (ref_68) 2013; 121
Shang (ref_102) 2015; 71
Vyas (ref_81) 2014; 16
Kwon (ref_15) 2015; 6
Dowdle (ref_55) 2014; 16
Heyninck (ref_83) 2016; 109
Loboda (ref_9) 2015; 74
Suttner (ref_63) 1999; 13
Banerjee (ref_86) 2012; 287
Hori (ref_50) 2002; 277
Poulos (ref_67) 2014; 114
Lv (ref_99) 2016; 21
Timmerman (ref_25) 2013; 24
Adedoyin (ref_28) 2018; 314
Trachootham (ref_2) 2009; 8
Gonzales (ref_33) 2002; 24
Hassannia (ref_17) 2018; 128
Fan (ref_30) 2017; 6
Gao (ref_60) 2016; 26
Loboda (ref_10) 2016; 73
Ollinger (ref_47) 2007; 6
Appleton (ref_103) 1999; 27
Cao (ref_18) 2016; 73
Salerno (ref_107) 2015; 96
Cheng (ref_96) 2018; 100
Salerno (ref_89) 2017; 142
Kim (ref_109) 2008; 60
Zhang (ref_37) 2003; 23
Itoh (ref_38) 1997; 236
Stockwell (ref_20) 2017; 171
Sass (ref_115) 2008; 123
MacKenzie (ref_53) 2008; 10
Fang (ref_97) 2004; 109
Sugimoto (ref_43) 2012; 42
Wang (ref_5) 2008; 12
Gopalakrishnan (ref_77) 2015; 59
Converso (ref_36) 2006; 20
Kovacsics (ref_42) 2017; 65
Stephenson (ref_51) 2014; 10
Hjortso (ref_87) 2014; 14
References_xml – volume: 387
  start-page: 2565
  year: 2016
  ident: ref_69
  article-title: Cardiovascular complications and risk of death in sickle-cell disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00647-4
– volume: 10
  start-page: 2974
  year: 2015
  ident: ref_112
  article-title: Knockdown of heme oxygenase-1 promotes apoptosis and autophagy and enhances the cytotoxicity of doxorubicin in breast cancer cells
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2015.3735
– volume: 24
  start-page: 450
  year: 2013
  ident: ref_25
  article-title: Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.08.020
– volume: 22
  start-page: 23
  year: 2018
  ident: ref_105
  article-title: Heme oxygenase inhibition in cancer, possible tools and targets
  publication-title: Contemp. Oncol.
– volume: 73
  start-page: 2195
  year: 2016
  ident: ref_18
  article-title: Mechanisms of ferroptosis
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2194-1
– volume: 11
  start-page: 254
  year: 2017
  ident: ref_22
  article-title: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2016.12.010
– volume: 24
  start-page: 161
  year: 2002
  ident: ref_33
  article-title: Heme oxygenase-1 induction and dependent increase in ferritin. A protective antioxidant stratagem in hemin-treated rat brain
  publication-title: Dev. Neurosci.
  doi: 10.1159/000065686
– volume: 202
  start-page: 199
  year: 2005
  ident: ref_49
  article-title: Iron metabolism and toxicity
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2004.06.021
– volume: 109
  start-page: 1
  year: 2004
  ident: ref_97
  article-title: Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin
  publication-title: Int. J. Cancer.
  doi: 10.1002/ijc.11644
– volume: 60
  start-page: 47
  year: 2008
  ident: ref_109
  article-title: Suppression of Nrf2-driven heme oxygenase-1 enhances the chemosensitivity of lung cancer A549 cells toward cisplatin
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2007.09.021
– volume: 35
  start-page: 7074
  year: 2007
  ident: ref_39
  article-title: Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1
  publication-title: Nuclei Acids Res.
  doi: 10.1093/nar/gkm638
– volume: 11
  start-page: 3790
  year: 2005
  ident: ref_113
  article-title: Inhibition of Heme Oxygenase-1 Increases Responsiveness of Pancreatic Cancer Cells to Anticancer Treatment
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-04-2159
– volume: 20
  start-page: 887
  year: 1996
  ident: ref_65
  article-title: Lipid metabolite involvement in the activation of the human heme oxygenase-1 gene
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(95)02182-5
– volume: 142
  start-page: 163
  year: 2017
  ident: ref_89
  article-title: Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2017.07.031
– volume: 69
  start-page: 531
  year: 2017
  ident: ref_13
  article-title: Heme oxygenase 1 as a therapeutic target in acute kidney injury
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2016.10.037
– volume: 52
  start-page: 2101
  year: 2018
  ident: ref_114
  article-title: The inhibition of heme oxygenase-1 enhances the chemosensitivity and suppresses the proliferation of pancreatic cancer cells through the SHH signaling pathway
  publication-title: Int. J. Oncol.
– volume: 123
  start-page: 1269
  year: 2008
  ident: ref_115
  article-title: Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.23695
– volume: 147
  start-page: 307
  year: 2006
  ident: ref_104
  article-title: Selectivity of imidazole-dioxolane compounds for in vitro inhibition of microsomal haem oxygenase isoforms
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0706555
– volume: 16
  start-page: 1069
  year: 2014
  ident: ref_55
  article-title: Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3053
– volume: 287
  start-page: 32113
  year: 2012
  ident: ref_86
  article-title: Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis and autophagy-regulating molecules
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.393140
– volume: 345
  start-page: 91
  year: 2010
  ident: ref_32
  article-title: Metals, oxidative stress and neurodegenerative disorders
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-010-0563-x
– volume: 38
  start-page: 1510
  year: 2006
  ident: ref_45
  article-title: Heme oxygenase-1 inhibits apoptosis in Caco-2 cells via activation of Akt pathway
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2006.03.013
– volume: 23
  start-page: 8137
  year: 2003
  ident: ref_37
  article-title: Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.22.8137-8151.2003
– volume: 73
  start-page: 3221
  year: 2016
  ident: ref_10
  article-title: Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2223-0
– volume: 44
  start-page: 1
  year: 2014
  ident: ref_3
  article-title: Reactive oxygen species in cancer
  publication-title: Free Radic. Res.
– volume: 14
  start-page: 337
  year: 2014
  ident: ref_87
  article-title: The expression, function and targeting of HAEM oxygenase-1 in cancer
  publication-title: Curr. Cancer Drug Targets
  doi: 10.2174/1568009614666140320111306
– volume: 45
  start-page: 2373
  year: 2014
  ident: ref_110
  article-title: Potential crosstalk of Ca2+-ROS-dependent mechanism involved in apoptosis of Kasumi-1 cells mediated by heme oxygenase-1 small interfering RNA
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2014.2661
– volume: 38
  start-page: 429
  year: 2014
  ident: ref_48
  article-title: Hyperbilirubinemia, hemolysis, and increased bilirubin neurotoxicity
  publication-title: Semin. Perinatol.
  doi: 10.1053/j.semperi.2014.08.006
– volume: 21
  start-page: 489
  year: 2016
  ident: ref_99
  article-title: Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin
  publication-title: Apoptosis
  doi: 10.1007/s10495-016-1216-7
– volume: 449
  start-page: 189
  year: 2013
  ident: ref_57
  article-title: Haem oxygenase-1 overexpression alters intracellular iron distribution
  publication-title: Biochem. J.
  doi: 10.1042/BJ20120936
– volume: 114
  start-page: 3919
  year: 2014
  ident: ref_67
  article-title: Heme enzyme structure and function
  publication-title: Chem. Rev.
  doi: 10.1021/cr400415k
– volume: 286
  start-page: 6587
  year: 2011
  ident: ref_76
  article-title: Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.210047
– volume: 9
  start-page: 1025
  year: 2017
  ident: ref_59
  article-title: Salinomycin kills cancer stem cells by sequestering iron in lysosomes
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2778
– volume: 340
  start-page: 369
  year: 1997
  ident: ref_70
  article-title: Induction of ferritin synthesis in human lung epithelial cells treated with crocidolite asbestos
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1997.9892
– volume: 100
  start-page: 509
  year: 2018
  ident: ref_96
  article-title: Low expression of GFI-1 Gene is associated with Panobinostat-resistance in acute myeloid leukemia through influencing the level of HO-1
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.02.039
– volume: 12
  start-page: 213
  year: 2010
  ident: ref_72
  article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2021
– volume: 43
  start-page: 1
  year: 2007
  ident: ref_26
  article-title: The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases
  publication-title: Adv. Clin. Chem.
  doi: 10.1016/S0065-2423(06)43001-8
– ident: ref_14
  doi: 10.3390/ijms19082260
– volume: 60
  start-page: 79
  year: 2008
  ident: ref_27
  article-title: Pharmacological and clinical aspects of heme oxygenase
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.107.07104
– volume: 416
  start-page: 124
  year: 2018
  ident: ref_16
  article-title: Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.12.025
– volume: 65
  start-page: 1264
  year: 2017
  ident: ref_42
  article-title: Degradation of heme oxygenase-1 by the immunoproteasome in astrocytes: A potential interferon-γ-dependent mechanism contributing to HIV neuropathogenesis
  publication-title: Glia
  doi: 10.1002/glia.23160
– volume: 2017
  start-page: 3526903
  year: 2017
  ident: ref_75
  article-title: Amelioration of ethanol-induced hepatitis by magnesium isoglycyrrhizinate through inhibition of neutrophil cell infiltration and oxidative damage
  publication-title: Mediators Inflamm.
  doi: 10.1155/2017/3526903
– volume: 59
  start-page: 317
  year: 2015
  ident: ref_77
  article-title: Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.03663-14
– volume: 6
  start-page: e371
  year: 2017
  ident: ref_30
  article-title: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis
  publication-title: Oncogenesis
  doi: 10.1038/oncsis.2017.65
– volume: 26
  start-page: 1021
  year: 2016
  ident: ref_60
  article-title: Ferroptosis is an autophagic cell death process
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.95
– volume: 109
  start-page: 48
  year: 2016
  ident: ref_83
  article-title: Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the Keap1/Nrf2 pathway
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2016.03.026
– volume: 20
  start-page: 1236
  year: 2006
  ident: ref_36
  article-title: HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism
  publication-title: FASEB J.
  doi: 10.1096/fj.05-4204fje
– volume: 282
  start-page: 20621
  year: 2007
  ident: ref_35
  article-title: Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M607954200
– volume: 236
  start-page: 313
  year: 1997
  ident: ref_38
  article-title: AnNrf2/ small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.6943
– ident: ref_90
  doi: 10.3390/antiox7110151
– volume: 65
  start-page: 277
  year: 2018
  ident: ref_117
  article-title: Pharmacological versus genetic inhibition of heme oxygenase-1—The comparison of metalloporphyrins, shRNA and CRISPR/Cas9 system
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.2017_2542
– volume: 39
  start-page: 44
  year: 2007
  ident: ref_1
  article-title: Free radicals and antioxidants in normal physiological functions and human disease
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2006.07.001
– volume: 52
  start-page: 186
  year: 2015
  ident: ref_21
  article-title: Oxidative stress inhibits distant metastasis by human melanoma cells
  publication-title: Nature
  doi: 10.1038/nature15726
– volume: 71
  start-page: 240
  year: 2015
  ident: ref_102
  article-title: ZnPPIX inhibits peritoneal metastasis of gastric cancer via its antiangiogenic activity
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2015.03.005
– volume: 128
  start-page: 3341
  year: 2018
  ident: ref_17
  article-title: Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI99032
– volume: 272
  start-page: 21096
  year: 1997
  ident: ref_78
  article-title: Novel inhibitors of cytokine-induced I kappa B alpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.34.21096
– volume: 15
  start-page: 1219
  year: 2016
  ident: ref_73
  article-title: Drug-induced hepatotoxicity in cancer patients—Implication for treatment
  publication-title: Expert Opin. Drug Saf.
  doi: 10.1080/14740338.2016.1194824
– ident: ref_82
  doi: 10.3390/ijms17030290
– ident: ref_94
  doi: 10.3390/molecules23051209
– volume: 49
  start-page: 4437
  year: 2006
  ident: ref_92
  article-title: Imidazole-dioxolane compounds as isozyme-selective heme oxygenase inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0511435
– volume: 15
  start-page: 234
  year: 2008
  ident: ref_58
  article-title: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2008.02.010
– volume: 13
  start-page: 1800
  year: 1999
  ident: ref_63
  article-title: Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron
  publication-title: FASEB J.
  doi: 10.1096/fasebj.13.13.1800
– volume: 31
  start-page: 1539
  year: 2007
  ident: ref_100
  article-title: Inhibition of heme oxygenase-1 increases responsiveness of melanoma cells to ALA-based photodynamic therapy
  publication-title: Int. J. Oncol.
– volume: 5
  start-page: e1183
  year: 2014
  ident: ref_116
  article-title: Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: Involvement of TET-dependent DNA demethylation
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2014.149
– volume: 12
  start-page: 931
  year: 2013
  ident: ref_4
  article-title: Modulation of oxidative stress as an anticancer strategy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4002
– volume: 6
  start-page: 3078
  year: 2007
  ident: ref_47
  article-title: Bilirubin inhibits tumor cell growth via activation of ERK
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.24.5022
– volume: 42
  start-page: 1035
  year: 2012
  ident: ref_43
  article-title: Preservation solution supplemented with biliverdin prevents lung cold ischaemia/reperfusion injury
  publication-title: Eur. J. Cardiothorac. Surg.
  doi: 10.1093/ejcts/ezs298
– volume: 348
  start-page: 615
  year: 2000
  ident: ref_62
  article-title: Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress
  publication-title: Biochem. J.
  doi: 10.1042/bj3480615
– volume: 20
  start-page: 8572
  year: 2014
  ident: ref_98
  article-title: Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v20.i26.8572
– volume: 121
  start-page: 1276
  year: 2013
  ident: ref_68
  article-title: Hemolysis and free hemoglobin revisited: Exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins
  publication-title: Blood
  doi: 10.1182/blood-2012-11-451229
– volume: 158
  start-page: 937
  year: 2018
  ident: ref_108
  article-title: Targeting heme oxygenase-1 with hybrid compounds to overcome imatinib resistance in chronic myeloid leukemia cell lines
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2018.09.048
– volume: 23
  start-page: 369
  year: 2016
  ident: ref_19
  article-title: Ferroptosis: Process and function
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2015.158
– volume: 12
  start-page: 1875
  year: 2008
  ident: ref_5
  article-title: Cancer cell killing via ROS: To increase or decrease, that is the question
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.7.12.7067
– volume: 16
  start-page: 1
  year: 2014
  ident: ref_81
  article-title: Molecular targets and mechanisms of cancer prevention and treatment by withaferin-A, a naturally occurring steroidal lactone
  publication-title: AAPS J.
  doi: 10.1208/s12248-013-9531-1
– volume: 156
  start-page: 317
  year: 2014
  ident: ref_7
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.010
– volume: 8
  start-page: 37
  year: 2009
  ident: ref_85
  article-title: Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-8-37
– volume: 171
  start-page: 273
  year: 2017
  ident: ref_20
  article-title: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 2
  start-page: 273
  year: 2013
  ident: ref_79
  article-title: Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2013.07.004
– volume: 63
  start-page: 173
  year: 2016
  ident: ref_31
  article-title: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells
  publication-title: Hepatology
  doi: 10.1002/hep.28251
– volume: 344
  start-page: 153
  year: 1999
  ident: ref_61
  article-title: Haem oxygenase shows pro-oxidant activity in microsomal and cellular systems: Implications for the release of low-molecular-mass iron
  publication-title: Biochem. J.
  doi: 10.1042/bj3440153
– volume: 1
  start-page: e85817
  year: 2016
  ident: ref_80
  article-title: Heme oxygenase-1 regulates mitochondrial quality control in the heart
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.85817
– volume: 74
  start-page: 11
  year: 2015
  ident: ref_9
  article-title: HO-1/CO system in tumor growth, angiogenesis and metabolism—Targeting HO-1 as an anti-tumor therapy
  publication-title: Vascul. Pharmacol.
  doi: 10.1016/j.vph.2015.09.004
– volume: 120
  start-page: 500
  year: 2007
  ident: ref_101
  article-title: Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.22287
– volume: 13
  start-page: 1996
  year: 2018
  ident: ref_66
  article-title: The role of reactive oxygen species and ferroptosis in heme-mediated activation of human platelets
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.8b00458
– volume: 112
  start-page: 221
  year: 2006
  ident: ref_52
  article-title: Non-protein-bound iron detection in small samples of biological fluids and tissues
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1385/BTER:112:3:221
– volume: 27
  start-page: 13
  year: 2008
  ident: ref_84
  article-title: Implication of heme oxygenase-1 in the sensitivity of nasopharyngeal carcinomas to radiotherapy
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/1756-9966-27-13
– volume: 111
  start-page: 2200
  year: 2008
  ident: ref_95
  article-title: Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: A novel approach to overcome resistance against imatinib
  publication-title: Blood
  doi: 10.1182/blood-2006-11-055723
– volume: 1783
  start-page: 1826
  year: 2008
  ident: ref_41
  article-title: Ubiquitin–proteasome system mediates heme oxygenase-1 degradation through endoplasmic reticulum-associated degradation pathway
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.05.008
– volume: 277
  start-page: 10712
  year: 2002
  ident: ref_50
  article-title: Gene transfection of H25A mutant heme oxygenase-1 protects cells against hydroperoxide-induced cytotoxicity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M107749200
– volume: 3
  start-page: 344
  year: 2014
  ident: ref_74
  article-title: Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology
  publication-title: Hepatobiliary Surg. Nutr.
– volume: 106
  start-page: 125
  year: 2018
  ident: ref_29
  article-title: Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.06.060
– volume: 314
  start-page: 174
  year: 2013
  ident: ref_64
  article-title: Acute iron overload and oxidative stress in brain
  publication-title: Toxicology
  doi: 10.1016/j.tox.2013.09.015
– volume: 110
  start-page: 2116
  year: 2014
  ident: ref_46
  article-title: Biliverdin’s regulation of reactive oxygen species signalling leads to potent inhibition of proliferative and angiogenic pathways in head and neck cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2014.98
– volume: 104
  start-page: 324
  year: 2010
  ident: ref_106
  article-title: Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2009.10.011
– volume: 149
  start-page: 1060
  year: 2012
  ident: ref_6
  article-title: Ferroptosis: An iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 7
  start-page: 28868
  year: 2016
  ident: ref_88
  article-title: Heme oxygenase-1 nuclear translocation regulates bortezomib-induced cytotoxicity and mediates genomic instability in myeloma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7563
– volume: 8
  start-page: 992
  year: 2018
  ident: ref_23
  article-title: The role of ferroptosis in cancer development and treatment
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2017.00992
– volume: 13
  start-page: 999
  year: 2010
  ident: ref_54
  article-title: Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3129
– volume: 23
  start-page: 251
  year: 2010
  ident: ref_44
  article-title: Role of heme oxygenase in preserving vascular bioactive NO
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2010.08.002
– volume: 9
  start-page: 1
  year: 2007
  ident: ref_56
  article-title: Iron-regulatory proteins: Molecular biology and pathophysiological implications
  publication-title: Expert Rev. Mol. Med.
  doi: 10.1017/S1462399407000531
– volume: 2
  start-page: 138
  year: 2006
  ident: ref_71
  article-title: p62/SQSTM1: A missing link between protein aggregates and the autophagy machinery
  publication-title: Autophagy
  doi: 10.4161/auto.2.2.2405
– ident: ref_11
  doi: 10.3390/antiox6020029
– volume: 50
  start-page: 323
  year: 2010
  ident: ref_12
  article-title: Mechanisms of cell protection by heme oxygenase-1
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pharmtox.010909.105600
– volume: 86
  start-page: 583
  year: 2006
  ident: ref_8
  article-title: Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00011.2005
– volume: 10
  start-page: 459
  year: 2014
  ident: ref_51
  article-title: Iron in multiple sclerosis: Roles in neurodegeneration and repair
  publication-title: Nat. Rev. Neurosci.
– volume: 67
  start-page: 353
  year: 2014
  ident: ref_91
  article-title: Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.10.819
– volume: 96
  start-page: 162
  year: 2015
  ident: ref_107
  article-title: Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in uman-derived cancer cell lines
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2015.04.003
– volume: 99
  start-page: 464
  year: 2008
  ident: ref_24
  article-title: The Xc− cystine/glutamate antiporter: A mediator of pancreatic cancer growth with a role in drug resistance
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6604485
– volume: 3
  start-page: 68
  year: 2012
  ident: ref_93
  article-title: Metalloporphyrins—An update
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2012.00068
– volume: 27
  start-page: 1214
  year: 1999
  ident: ref_103
  article-title: Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations
  publication-title: Drug Metab. Dispos.
– volume: 6
  start-page: 24393
  year: 2015
  ident: ref_15
  article-title: Heme oxygenase-1 accelerates Erastin induced Ferroptotic cell death
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5162
– volume: 144
  start-page: 991
  year: 2007
  ident: ref_40
  article-title: Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2006.09.064
– volume: 35
  start-page: 2270
  year: 2016
  ident: ref_111
  article-title: Evaluation of HO-1 expression, cellular ROS production, cellular proliferation and cellular apoptosis in human esophageal squamous cell carcinoma tumors and cell lines
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.4556
– volume: 10
  start-page: 997
  year: 2008
  ident: ref_53
  article-title: Intracellular iron transport and storage: From molecular mechanisms to health implications
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2007.1893
– volume: 314
  start-page: F702
  year: 2018
  ident: ref_28
  article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00044.2017
– volume: 97
  start-page: 1489
  year: 2012
  ident: ref_34
  article-title: Endoplasmic reticulum anchored heme-oxygenase 1 faces the cytosol
  publication-title: Haematologica
  doi: 10.3324/haematol.2012.063651
– volume: 8
  start-page: 579
  year: 2009
  ident: ref_2
  article-title: Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2803
SSID ssj0023259
Score 2.6470237
SecondaryResourceType review_article
Snippet Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate...
Excessive ROS can induce oxidative damage of DNA, and, to a higher degree, gene mutation and carcinogenesis [2,3,4]. [...]lipid peroxidation by excessive ROS...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 39
SubjectTerms Animals
Apoptosis
Cancer therapies
Cell Death
Cell growth
Cell Line, Tumor
Disease Models, Animal
Drug Therapy
Ferroptosis
Glutathione
Heme - metabolism
Heme Oxygenase-1 - metabolism
Humans
Iron - metabolism
Lipid Peroxidation
Neoplasms - metabolism
Oxidation
Reactive Oxygen Species - metabolism
Review
Xenograft Model Antitumor Assays
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR39YXEfQkYW3SpulJZFUWQQVR2FtpmhRX1lbdXdB_70zbXV1FzxnaMpPOI99kPoBDjAG-SfOIp3k1VNspjmmE5NZkMSUYyhhCdK9vVOchuOqG3ebAbdC0VY59YuWobZnRGXkLH-BrTajT6csrJ9YoQlcbCo1ZmKfRZdTSFXW_Ci4pKrI0H2MQV2Gs6sZ3iWV-q_f0PKB2IrqbOh2SfuWZP9slv8Wfy2VYahJHdlZbegVmXLEKCzWV5McatM7Y-QjX78q-Y2XOOu7Zsdv3D9wfGKe4z3oFa5OF31jb9fuDdXi4vLhvd3hDhsCzINJDLk-sMLEOwtyGxmopnbIuFTKyOjZBZJyKolxrI10QpkoZG2N9KFLCZIMws7HcgLmiLNwWsFSLTFAccoS55S6NfYeaynxljS-ywIPjsT6SrJkUToQV_QQrBtJe8l17HhxNpF_qCRl_yO2OVZs0_8kg-bKqBweTZdzhBFukhStHKENM2Epg3uTBZm2JyYvQW2mJvt6DaMpGEwGanj29UvQeqynaSkrCcLf__6wdWMQUSVMDi_B3YW74NnJ7mIYMzX611z4BG7jZZw
  priority: 102
  providerName: ProQuest
Title A Dual Role of Heme Oxygenase-1 in Cancer Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/30583467
https://www.proquest.com/docview/2331884078
https://www.proquest.com/docview/2160362976
https://pubmed.ncbi.nlm.nih.gov/PMC6337503
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT9tAEB0BUatcKigtmNJokeCEXLDX3l0fKkQDIaoEVIhIuVle71oEGQfyIZF_35k4tkJpLr7s2JZmxnpv9MYzAIeIAZ5OMukm2XyothUu0gjuGp1GRDCE1qToXt-Ibi_43Q_7a1BtG104cPzf0o72SfVG-Y_Xl9kZfvA_qeLEkv1k8Pg0ptYg-s90HRqISZI-0eug1hOQNoRR2fb-7o4mfMScV7xcNb-ETe8I5799k0tA1NmETwsGyc7LkG_Bmi0-w4dyp-RsG07O2cUUz--GuWXDjHXtk2W3rzNMFAQs12ODgrUp1CPWtnk-_gK9zuV9u-sutiK4aSDVxOWnxteRCsLMhNoozq0wNvG5NCrSgdRWSJkppbkNwkQIbSIsFP2ExNkgTE3Ev8JGMSzsLrBE-alPgGRJfMtsEnkWHZV6wmjPTwMHjit_xOliZDhtrshjLB3IkfGyIx04qq2fy1EZK-z2K9fGVbxjzA9PKRIVHTiojzHVSb9ICjucog2txBY-EigHdspI1C-qQuiAfBOj2oDGaL89KQYP83HagnMSc_dWPvMbNJEmKWpi8b192JiMpvY7UpGJbsG67Eu8qs5VCxq_Lm_-3LUIHMLWPP_-Aq0T3kI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLemIQQviO8FBhwSe0KnNnfJ5fKA0NQxdewDCW1S30Iu54iiLhlrK-g_xd-InTTdCoK3PZ-VRL7f-WfHPhvgDXFA6PIykXnZNNVGI8mN0NK7ImUHwzjHGd3jEzM8iz6O4tEG_OruwnBZZWcTG0Pt64L_kffoAaG1nHV6f_Fd8tQozq52IzRaWBzi4geFbNN3B3u0vztK7X84HQzlcqqALKLEzqTue-VSG8Wlj523WqPxmCudeJu6KHFokqS01mmM4twY51MKtFTOyc0oLjw3XyKTf4uIt88nKhldBXhaNcPZQuI8aeLUtIX2Wqf93vjb-ZTLl_gu7DoF_uXX_lmeeY3v9u_DvaWjKnZbZD2ADawewu12dOXiEfR2xd6c1j_XExR1KYZ4juLTzwXhkXhRhmJciQEj6lIMcDKZPoazG1HTE9is6gq3QORWFYp5DznHV2KehkiaKkLjXaiKKIC3nT6yYtmZnAdkTDKKUFh72XXtBbCzkr5oO3L8Q267U222PJfT7ApFAbxeLdOJ4jRJXmE9JxmevG0U-WkBPG13YvUiso5WE7cEkKzt0UqAu3Wvr1Tjr03XbqM154yf_f-zXsGd4enxUXZ0cHL4HO6Se2a5eEaF27A5u5zjC3KBZu5lgzsBX24a6L8BWpQWFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQyBeEN8LDDASe0JWZztxnAc0TS1Vx2AgxKS-hTh2RFGXjLXV1n-Nv253-ehWELzt2ackOv98v7vc-Q7gDXKAsFkR86yom2p7zdGNUNzZPCEHQ1tLGd1PR3p0HH4YR-MN-N3dhaGyys4m1obaVTn9I-_hA4QxlHXqFW1ZxJfBcO_0F6cJUpRp7cZpNBA59MtzDN9m7w4GuNc7Ug7ff-uPeDthgOdhbOZc7TppExNGhYusM0p57XwmVexMYsPYeh3HhTFW-TDKtLYuwaBLZpToDKPcUSMmNP-3YhUJOmPx-CrYU7Ie1CaQ_7iOEt0U3SuV7PYmP09mVMpE92LX6fAvH_fPUs1r3De8D_dap5XtNyh7ABu-fAi3mzGWy0fQ22eDBa5_raaeVQUb-RPPPl8sEZvIkVywScn6hK4z1vfT6ewxHN-Imp7AZlmVfgtYZmQuiQM95fsKnyXCo6ZyoZ0VMg8DeNvpI83bLuU0LGOaYrRC2kuvay-AnZX0adOd4x9y251q0_aMztIrRAXwerWMp4tSJlnpqwXK0BRuLdFnC-BpsxOrF6GlNAp5JoB4bY9WAtS5e32lnPyoO3hrpSh__Oz_n_UK7iDE048HR4fP4S56aobqaKTYhs352cK_QG9obl_WsGPw_aZxfgk-7RpN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual+Role+of+Heme+Oxygenase-1+in+Cancer+Cells&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Chiang%2C+Shih-Kai&rft.au=Chen%2C+Shuen-Ei&rft.au=Chang%2C+Ling-Chu&rft.date=2018-12-21&rft.eissn=1422-0067&rft.volume=20&rft.issue=1&rft_id=info:doi/10.3390%2Fijms20010039&rft_id=info%3Apmid%2F30583467&rft.externalDocID=30583467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon