A Dual Role of Heme Oxygenase-1 in Cancer Cells
Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in c...
Saved in:
Published in | International journal of molecular sciences Vol. 20; no. 1; p. 39 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.12.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors. |
---|---|
AbstractList | Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors. Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors. Excessive ROS can induce oxidative damage of DNA, and, to a higher degree, gene mutation and carcinogenesis [2,3,4]. [...]lipid peroxidation by excessive ROS may damage cellular structures and eventually induce cell death [1]. [...]the augmentation of ROS is a useful approach for clinical cancer treatment. Various chemotherapeutic agents, such as cisplatin, doxorubicin, and 5-fluorouracil, have been shown to exert their antitumor activity via ROS-dependent activation of apoptosis [4,5]. [...]oxidation therapy becomes a possible strategy by provoking ROS production and diminishing antioxidant enzymes in cancer cells. Certain cancer cells, such as pancreatic cancer cell lines (MIA PaCa-2, PANC-1, and BxPC-3) and a subset of triple-negative cancer cells also greatly depend on system Xc− to mediate cysteine uptake for growth, as well as survival under oxidative stress conditions [24,25], suggesting that system Xc− might serve as a good chemotherapeutic target. |
Author | Chiang, Shih-Kai Chang, Ling-Chu Chen, Shuen-Ei |
AuthorAffiliation | 1 Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; shihkaichiang@gmail.com (S.K.C.); chenshuenei@hotmail.com (S.E.C.) 2 Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 40277, Taiwan 3 The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40277, Taiwan 5 Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan 4 Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 40277, Taiwan |
AuthorAffiliation_xml | – name: 4 Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 40277, Taiwan – name: 2 Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 40277, Taiwan – name: 3 The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40277, Taiwan – name: 5 Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan – name: 1 Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; shihkaichiang@gmail.com (S.K.C.); chenshuenei@hotmail.com (S.E.C.) |
Author_xml | – sequence: 1 givenname: Shih-Kai surname: Chiang fullname: Chiang, Shih-Kai – sequence: 2 givenname: Shuen-Ei orcidid: 0000-0003-1737-2591 surname: Chen fullname: Chen, Shuen-Ei – sequence: 3 givenname: Ling-Chu orcidid: 0000-0002-7905-580X surname: Chang fullname: Chang, Ling-Chu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30583467$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLxDAQxoMovm-epeDFg9Uk0-ZxEWR9wsKC6Dmk7XTN0ibatKL_vRUfrIunGZjffHzfzA5Z98EjIQeMngJoeuYWbeSUMkpBr5FtlnGeUirk-lK_RXZiXFDKged6k2wBzRVkQm6Ts4vkcrBNch8aTEKd3GKLyeztfY7eRkxZ4nwysb7ELplg08Q9slHbJuL-d90lj9dXD5PbdDq7uZtcTNMyk6pPgVa80CrL6yovKgWAokLLQVZKF5ksUEhZK1UAZrkVoqi0lopbxqTM8rLSsEvOv3Sfh6LFqkTfd7Yxz51rbfdugnXm78S7JzMPr0YAyJzCKHD8LdCFlwFjb1oXyzGC9RiGaDgTFATXUozo0Qq6CEPnx3iGAzClMirVSB0uO_q18nPLEeBfQNmFGDusTel627vwadA1hlHz-TCz_LBx6WRl6Uf3X_wDJomUNQ |
CitedBy_id | crossref_primary_10_3390_livers2040030 crossref_primary_10_1089_ars_2019_7957 crossref_primary_10_3390_antiox12030735 crossref_primary_10_3389_fcell_2021_791585 crossref_primary_10_1093_jb_mvae067 crossref_primary_10_3390_ijms22115995 crossref_primary_10_1016_j_jchemneu_2020_101807 crossref_primary_10_12677_ACM_2023_134783 crossref_primary_10_4103_1673_5374_387979 crossref_primary_10_3389_fphar_2025_1540217 crossref_primary_10_1002_cnr2_1879 crossref_primary_10_1038_s41417_020_0170_2 crossref_primary_10_1155_2021_6654887 crossref_primary_10_3389_fmolb_2023_1156062 crossref_primary_10_1016_j_freeradbiomed_2021_02_026 crossref_primary_10_1111_1440_1681_13673 crossref_primary_10_3389_fcvm_2021_733229 crossref_primary_10_3389_fimmu_2024_1398468 crossref_primary_10_3390_cancers15215159 crossref_primary_10_3390_ijms23010551 crossref_primary_10_3390_ijms21062257 crossref_primary_10_1007_s10549_022_06565_9 crossref_primary_10_3390_antiox11081548 crossref_primary_10_1016_j_genrep_2021_101312 crossref_primary_10_3390_antiox11112135 crossref_primary_10_1016_j_freeradbiomed_2021_09_002 crossref_primary_10_3390_jpm11060509 crossref_primary_10_3390_antiox11020295 crossref_primary_10_1007_s00432_022_04447_7 crossref_primary_10_1007_s12032_022_01773_1 crossref_primary_10_1016_j_mce_2021_111462 crossref_primary_10_3389_fonc_2021_697697 crossref_primary_10_3389_fphar_2022_839464 crossref_primary_10_1016_j_lfs_2021_119457 crossref_primary_10_3390_antiox11040675 crossref_primary_10_1007_s13659_024_00454_y crossref_primary_10_1038_s41389_022_00437_z crossref_primary_10_3389_fcell_2021_705786 crossref_primary_10_3390_metabo12010058 crossref_primary_10_1016_j_apsb_2024_05_025 crossref_primary_10_46497_ArchRheumatol_2023_9898 crossref_primary_10_3390_antiox11030501 crossref_primary_10_15430_JCP_2022_27_1_7 crossref_primary_10_1016_j_intimp_2024_113830 crossref_primary_10_3389_fimmu_2020_00066 crossref_primary_10_3390_ijms20102593 crossref_primary_10_1158_1535_7163_MCT_22_0275 crossref_primary_10_1016_j_freeradbiomed_2024_11_007 crossref_primary_10_1111_jcmm_14482 crossref_primary_10_1016_j_abb_2021_108775 crossref_primary_10_3390_ijms21061923 crossref_primary_10_3389_fimmu_2021_658315 crossref_primary_10_3390_cells14030192 crossref_primary_10_3390_ijms21207780 crossref_primary_10_1016_j_heliyon_2022_e09909 crossref_primary_10_1186_s13048_024_01570_6 crossref_primary_10_3390_antiox13121499 crossref_primary_10_1016_j_addr_2022_114241 crossref_primary_10_1038_s41598_020_71138_z crossref_primary_10_1007_s10554_022_02784_9 crossref_primary_10_3390_jpm11121340 crossref_primary_10_1016_j_freeradbiomed_2021_09_028 crossref_primary_10_3390_nu14224817 crossref_primary_10_3390_cancers12103023 crossref_primary_10_1016_j_jphotobiol_2024_113003 crossref_primary_10_1038_s41598_024_51945_4 crossref_primary_10_1021_acsami_4c17763 crossref_primary_10_3390_antiox10101624 crossref_primary_10_3389_fphar_2020_00907 crossref_primary_10_3390_cells11213349 crossref_primary_10_1002_adfm_201910335 crossref_primary_10_3390_cancers13153670 crossref_primary_10_4062_biomolther_2023_057 crossref_primary_10_3390_cells9112510 crossref_primary_10_1016_j_jnutbio_2025_109888 crossref_primary_10_3390_cells11040754 crossref_primary_10_3390_cells9061505 crossref_primary_10_1016_j_bcp_2023_115725 crossref_primary_10_1016_j_lfs_2021_119391 crossref_primary_10_3390_antiox10060966 crossref_primary_10_3390_pathophysiology30010007 crossref_primary_10_3389_fcell_2020_00127 crossref_primary_10_3389_fendo_2021_626390 crossref_primary_10_3390_medicina56060268 crossref_primary_10_1002_chem_202002139 crossref_primary_10_1038_s41598_024_83921_3 crossref_primary_10_1248_bpb_b20_00340 crossref_primary_10_1002_ctm2_1013 crossref_primary_10_1016_j_yexmp_2021_104642 crossref_primary_10_1002_jcp_30901 crossref_primary_10_3390_antiox12071369 crossref_primary_10_3390_cancers14225519 crossref_primary_10_3390_ijms232315213 crossref_primary_10_3390_cancers11040505 crossref_primary_10_1002_adtp_202400400 crossref_primary_10_1016_j_cell_2019_06_020 crossref_primary_10_1016_j_theriogenology_2024_03_003 crossref_primary_10_2174_1568009623666230227162532 crossref_primary_10_3390_md19020086 crossref_primary_10_1016_j_jgr_2023_04_001 crossref_primary_10_3390_ijms20194744 crossref_primary_10_3389_fendo_2023_1319969 crossref_primary_10_1016_j_apsb_2020_10_010 crossref_primary_10_1016_j_tiv_2022_105487 crossref_primary_10_1042_BSR20193314 crossref_primary_10_3390_antiox11030555 crossref_primary_10_3390_ijms21082980 crossref_primary_10_1002_tox_23770 crossref_primary_10_1080_21655979_2021_1988840 crossref_primary_10_1002_anie_202307838 crossref_primary_10_1002_bab_2641 crossref_primary_10_1155_2022_9523491 crossref_primary_10_3390_ijms23137041 crossref_primary_10_1016_j_heliyon_2021_e05985 crossref_primary_10_1073_pnas_2318420121 crossref_primary_10_1016_j_intimp_2024_112794 crossref_primary_10_1111_jcmm_14511 crossref_primary_10_1371_journal_ppat_1007922 crossref_primary_10_3390_ijms24044221 crossref_primary_10_3390_medicina60101581 crossref_primary_10_3892_ijo_2025_5732 crossref_primary_10_3389_fncel_2023_1239101 crossref_primary_10_1021_acsmedchemlett_4c00099 crossref_primary_10_1016_j_lfs_2021_119935 crossref_primary_10_3389_fonc_2020_590861 crossref_primary_10_1186_s12957_022_02555_9 crossref_primary_10_3390_molecules27185841 crossref_primary_10_3390_molecules27072129 crossref_primary_10_3390_molecules27103220 crossref_primary_10_1016_j_bioorg_2024_107510 crossref_primary_10_3389_fphar_2022_933732 crossref_primary_10_1038_s41598_023_42760_4 crossref_primary_10_1186_s12920_022_01419_1 crossref_primary_10_1186_s12953_024_00228_x crossref_primary_10_1016_j_jconrel_2023_07_046 crossref_primary_10_3390_ijms24076189 crossref_primary_10_1016_j_apsb_2021_12_007 crossref_primary_10_1155_2021_8447456 crossref_primary_10_1667_RADE_23_00035_1 crossref_primary_10_1016_j_phymed_2023_154701 crossref_primary_10_2147_CMAR_S292461 crossref_primary_10_1021_acs_jafc_2c03856 crossref_primary_10_3892_ijo_2020_5116 crossref_primary_10_1016_j_xcrm_2025_101928 crossref_primary_10_1007_s10853_024_09410_0 crossref_primary_10_7554_eLife_64806 crossref_primary_10_1016_j_biopha_2020_111202 crossref_primary_10_3390_ijms23084117 crossref_primary_10_1007_s00059_021_05039_w crossref_primary_10_1097_CM9_0000000000002675 crossref_primary_10_3390_md22070323 crossref_primary_10_1186_s12864_022_08754_8 crossref_primary_10_3390_cancers15102694 crossref_primary_10_3390_biomedicines12030541 crossref_primary_10_1016_j_envpol_2023_122723 crossref_primary_10_3389_fphar_2023_1196287 crossref_primary_10_3390_toxics12020161 crossref_primary_10_2152_jmi_69_1 crossref_primary_10_3748_wjg_v29_i16_2433 crossref_primary_10_4251_wjgo_v16_i9_3932 crossref_primary_10_1080_02713683_2022_2138450 crossref_primary_10_3389_fimmu_2024_1455607 crossref_primary_10_1016_j_humimm_2022_03_007 crossref_primary_10_1177_09731296241251957 crossref_primary_10_3390_cancers14061531 crossref_primary_10_1142_S0192415X23500271 crossref_primary_10_4103_tcmj_tcmj_58_21 crossref_primary_10_14336_AD_2022_01302 crossref_primary_10_1155_2021_2915019 crossref_primary_10_3390_biomedicines9121942 crossref_primary_10_3389_fphar_2022_977062 crossref_primary_10_3390_ijms23116103 crossref_primary_10_3389_fphar_2024_1374722 crossref_primary_10_1007_s11010_024_04960_y crossref_primary_10_1007_s13402_023_00784_y crossref_primary_10_3390_cells10092401 crossref_primary_10_1007_s12035_022_02935_y crossref_primary_10_1016_j_jconrel_2025_01_050 crossref_primary_10_1080_14728222_2022_2061349 crossref_primary_10_1038_s41598_023_35978_9 crossref_primary_10_3389_fphar_2024_1466896 crossref_primary_10_3390_molecules27144533 crossref_primary_10_1016_j_freeradbiomed_2020_02_027 crossref_primary_10_3390_ijms25105389 crossref_primary_10_3390_cancers13164142 crossref_primary_10_1111_nep_14237 crossref_primary_10_1007_s43188_021_00089_y crossref_primary_10_1016_j_intimp_2023_110461 crossref_primary_10_1111_cas_15607 crossref_primary_10_3390_antiox12071445 crossref_primary_10_3390_ani12233394 crossref_primary_10_3390_ijms24087661 crossref_primary_10_1155_2022_5361241 crossref_primary_10_3390_molecules27217318 crossref_primary_10_3390_cells12040553 crossref_primary_10_3390_ijms21218387 crossref_primary_10_1186_s42779_023_00176_5 crossref_primary_10_1016_j_molstruc_2021_132097 crossref_primary_10_3389_fmolb_2023_1216733 crossref_primary_10_3390_antiox12071332 crossref_primary_10_3390_md23030123 crossref_primary_10_1039_D1FO01036K crossref_primary_10_3390_ijms21249698 crossref_primary_10_1016_j_biopha_2022_114154 crossref_primary_10_3390_antiox13070791 crossref_primary_10_3390_ijms25084465 crossref_primary_10_1002_adbi_202300451 crossref_primary_10_1186_s10020_023_00733_3 crossref_primary_10_1016_j_abb_2023_109699 crossref_primary_10_1016_j_intimp_2021_107626 crossref_primary_10_1016_j_biochi_2022_12_008 crossref_primary_10_3390_biom11111667 crossref_primary_10_1155_2020_1269624 crossref_primary_10_3390_biom11040589 crossref_primary_10_3390_molecules28237929 crossref_primary_10_1186_s13020_024_00901_5 crossref_primary_10_1016_j_critrevonc_2023_103964 crossref_primary_10_3389_fonc_2022_1072739 crossref_primary_10_1016_j_lfs_2024_122629 crossref_primary_10_3390_ph14101051 crossref_primary_10_1007_s15010_021_01722_6 crossref_primary_10_3390_molecules27133970 crossref_primary_10_1155_2021_9314342 crossref_primary_10_3389_fphar_2021_710978 crossref_primary_10_1038_s41422_019_0150_y crossref_primary_10_3390_ijms21197227 crossref_primary_10_1016_j_isci_2024_111477 crossref_primary_10_3389_fphys_2024_1450656 crossref_primary_10_1007_s11060_024_04918_6 crossref_primary_10_1016_j_freeradbiomed_2022_06_010 crossref_primary_10_1002_jobm_202000622 crossref_primary_10_3390_cells12071050 crossref_primary_10_3390_ijms241713336 crossref_primary_10_1042_BSR20231992 crossref_primary_10_3390_antiox14020187 crossref_primary_10_1016_j_phymed_2023_155288 crossref_primary_10_1002_jgm_70011 crossref_primary_10_3390_ijms24010449 crossref_primary_10_3390_foods12061192 crossref_primary_10_1016_j_canlet_2024_217392 crossref_primary_10_3389_fphar_2022_943272 crossref_primary_10_1186_s13765_023_00786_2 crossref_primary_10_1002_ange_202307838 crossref_primary_10_3390_biom10030467 crossref_primary_10_1155_2022_9428660 crossref_primary_10_3390_molecules29122832 crossref_primary_10_1007_s00277_023_05193_7 crossref_primary_10_1016_j_phymed_2021_153551 crossref_primary_10_1016_j_freeradbiomed_2025_03_031 crossref_primary_10_1016_j_jep_2025_119516 crossref_primary_10_1080_10715762_2019_1666983 crossref_primary_10_1002_1878_0261_13574 crossref_primary_10_1186_s40170_023_00313_3 crossref_primary_10_1016_j_phymed_2019_153138 crossref_primary_10_3390_ijms22042009 crossref_primary_10_7554_eLife_84679 crossref_primary_10_1038_s41598_021_82990_y crossref_primary_10_3390_cells12192409 crossref_primary_10_1021_acs_analchem_4c03065 crossref_primary_10_1016_j_freeradbiomed_2022_03_033 crossref_primary_10_2139_ssrn_3984071 crossref_primary_10_3390_cancers14133129 crossref_primary_10_1016_j_apsb_2024_04_020 crossref_primary_10_1007_s10126_021_10055_2 crossref_primary_10_1016_j_cej_2024_156923 crossref_primary_10_22175_mmb_15762 crossref_primary_10_3389_fimmu_2023_1184105 crossref_primary_10_3390_ijms24010562 crossref_primary_10_1016_j_mehy_2022_110944 crossref_primary_10_3390_antiox11040767 crossref_primary_10_1038_s41598_025_92674_6 crossref_primary_10_1038_s41413_022_00198_w crossref_primary_10_1016_j_prp_2024_155324 crossref_primary_10_3390_antiox11050861 crossref_primary_10_1186_s10020_024_00783_1 crossref_primary_10_1016_j_jep_2024_117963 crossref_primary_10_1016_j_jep_2024_118139 crossref_primary_10_1038_s41419_022_05272_z crossref_primary_10_1080_09553002_2020_1708993 crossref_primary_10_3390_cancers13010147 crossref_primary_10_1177_03946320231219348 crossref_primary_10_3389_fnut_2024_1399888 crossref_primary_10_4049_jimmunol_2000500 crossref_primary_10_3389_fncel_2020_591874 crossref_primary_10_3390_antiox12051074 crossref_primary_10_1016_j_scitotenv_2024_172618 crossref_primary_10_3389_fcell_2024_1344060 crossref_primary_10_1007_s00432_022_04152_5 crossref_primary_10_1155_2020_3469840 crossref_primary_10_1155_2023_6896790 crossref_primary_10_1016_j_nantod_2024_102300 crossref_primary_10_1016_j_bbadis_2023_166788 crossref_primary_10_3390_antiox11081496 crossref_primary_10_3390_antiox9111153 crossref_primary_10_3390_ijms241512008 crossref_primary_10_1016_j_cellsig_2024_111583 crossref_primary_10_3390_ijms20112723 crossref_primary_10_1016_j_bcp_2021_114584 crossref_primary_10_3390_antiox11071323 crossref_primary_10_1007_s43440_021_00322_3 crossref_primary_10_2139_ssrn_4573587 crossref_primary_10_2147_JIR_S430885 crossref_primary_10_3390_antiox9030251 crossref_primary_10_3389_fphys_2023_1060175 crossref_primary_10_3390_cells9122591 crossref_primary_10_3390_cells12050735 crossref_primary_10_1016_j_scitotenv_2024_176885 crossref_primary_10_1016_j_meatsci_2023_109202 crossref_primary_10_1016_j_bcp_2020_114186 crossref_primary_10_1016_j_psj_2025_104894 crossref_primary_10_3390_ijms25073718 crossref_primary_10_1016_j_biopha_2024_116235 crossref_primary_10_1016_j_freeradbiomed_2023_09_027 crossref_primary_10_3390_biomedicines11092393 crossref_primary_10_1038_s41413_024_00384_y crossref_primary_10_1186_s12920_024_01872_0 crossref_primary_10_4062_biomolther_2023_010 crossref_primary_10_3390_antiox10050789 crossref_primary_10_3390_antiox9121191 crossref_primary_10_2147_OTT_S254995 crossref_primary_10_1002_med_21933 crossref_primary_10_1016_j_scitotenv_2020_141161 crossref_primary_10_1186_s12964_024_01759_8 crossref_primary_10_3389_fcell_2021_760800 crossref_primary_10_3389_fonc_2024_1431362 |
Cites_doi | 10.1016/S0140-6736(16)00647-4 10.3892/ol.2015.3735 10.1016/j.ccr.2013.08.020 10.1007/s00018-016-2194-1 10.1016/j.redox.2016.12.010 10.1159/000065686 10.1016/j.taap.2004.06.021 10.1002/ijc.11644 10.1016/j.lungcan.2007.09.021 10.1093/nar/gkm638 10.1158/1078-0432.CCR-04-2159 10.1016/0891-5849(95)02182-5 10.1016/j.ejmech.2017.07.031 10.1053/j.ajkd.2016.10.037 10.1002/ijc.23695 10.1038/sj.bjp.0706555 10.1038/ncb3053 10.1074/jbc.M112.393140 10.1007/s11010-010-0563-x 10.1016/j.biocel.2006.03.013 10.1128/MCB.23.22.8137-8151.2003 10.1007/s00018-016-2223-0 10.2174/1568009614666140320111306 10.3892/ijo.2014.2661 10.1053/j.semperi.2014.08.006 10.1007/s10495-016-1216-7 10.1042/BJ20120936 10.1021/cr400415k 10.1074/jbc.M110.210047 10.1038/nchem.2778 10.1006/abbi.1997.9892 10.1016/j.biopha.2018.02.039 10.1038/ncb2021 10.1016/S0065-2423(06)43001-8 10.3390/ijms19082260 10.1124/pr.107.07104 10.1016/j.canlet.2017.12.025 10.1002/glia.23160 10.1155/2017/3526903 10.1128/AAC.03663-14 10.1038/oncsis.2017.65 10.1038/cr.2016.95 10.1016/j.bcp.2016.03.026 10.1096/fj.05-4204fje 10.1074/jbc.M607954200 10.1006/bbrc.1997.6943 10.3390/antiox7110151 10.18388/abp.2017_2542 10.1016/j.biocel.2006.07.001 10.1038/nature15726 10.1016/j.biopha.2015.03.005 10.1172/JCI99032 10.1074/jbc.272.34.21096 10.1080/14740338.2016.1194824 10.3390/ijms17030290 10.3390/molecules23051209 10.1021/jm0511435 10.1016/j.chembiol.2008.02.010 10.1096/fasebj.13.13.1800 10.1038/cddis.2014.149 10.1038/nrd4002 10.4161/cc.6.24.5022 10.1093/ejcts/ezs298 10.1042/bj3480615 10.3748/wjg.v20.i26.8572 10.1182/blood-2012-11-451229 10.1016/j.ejmech.2018.09.048 10.1038/cdd.2015.158 10.4161/cbt.7.12.7067 10.1208/s12248-013-9531-1 10.1016/j.cell.2013.12.010 10.1186/1476-4598-8-37 10.1016/j.cell.2017.09.021 10.1016/j.redox.2013.07.004 10.1002/hep.28251 10.1042/bj3440153 10.1172/jci.insight.85817 10.1016/j.vph.2015.09.004 10.1002/ijc.22287 10.1021/acschembio.8b00458 10.1385/BTER:112:3:221 10.1186/1756-9966-27-13 10.1182/blood-2006-11-055723 10.1016/j.bbamcr.2008.05.008 10.1074/jbc.M107749200 10.1016/j.biopha.2018.06.060 10.1016/j.tox.2013.09.015 10.1038/bjc.2014.98 10.1016/j.jinorgbio.2009.10.011 10.1016/j.cell.2012.03.042 10.18632/oncotarget.7563 10.3389/fphar.2017.00992 10.1089/ars.2010.3129 10.1016/j.niox.2010.08.002 10.1017/S1462399407000531 10.4161/auto.2.2.2405 10.3390/antiox6020029 10.1146/annurev.pharmtox.010909.105600 10.1152/physrev.00011.2005 10.1016/j.freeradbiomed.2013.10.819 10.1016/j.ejmech.2015.04.003 10.1038/sj.bjc.6604485 10.3389/fphar.2012.00068 10.18632/oncotarget.5162 10.1016/j.neuroscience.2006.09.064 10.3892/or.2016.4556 10.1089/ars.2007.1893 10.1152/ajprenal.00044.2017 10.3324/haematol.2012.063651 10.1038/nrd2803 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms20010039 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC6337503 30583467 10_3390_ijms20010039 |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR IPNFZ ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-30d2b9845fd5bd833e6dea237d89b47be677f88b3e45a66bd99782a117745cd93 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:07:03 EDT 2025 Fri Jul 11 09:34:51 EDT 2025 Fri Jul 25 20:33:37 EDT 2025 Thu Apr 03 06:57:25 EDT 2025 Tue Jul 01 01:45:28 EDT 2025 Thu Apr 24 23:04:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | iron ferroptosis heme oxygenase-1 chemotherapy glutathione reactive oxygen species |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-30d2b9845fd5bd833e6dea237d89b47be677f88b3e45a66bd99782a117745cd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7905-580X 0000-0003-1737-2591 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20010039 |
PMID | 30583467 |
PQID | 2331884078 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6337503 proquest_miscellaneous_2160362976 proquest_journals_2331884078 pubmed_primary_30583467 crossref_citationtrail_10_3390_ijms20010039 crossref_primary_10_3390_ijms20010039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181221 |
PublicationDateYYYYMMDD | 2018-12-21 |
PublicationDate_xml | – month: 12 year: 2018 text: 20181221 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hull (ref_80) 2016; 1 ref_94 Lin (ref_41) 2008; 1783 ref_90 Luscher (ref_65) 1996; 20 Han (ref_114) 2018; 52 ref_14 ref_11 Zheng (ref_46) 2014; 110 Wei (ref_110) 2014; 45 Bjorkoy (ref_71) 2006; 2 Paffetti (ref_52) 2006; 112 Na (ref_91) 2014; 67 Sun (ref_31) 2016; 63 Nuhn (ref_85) 2009; 8 Ren (ref_111) 2016; 35 Xie (ref_19) 2016; 23 Pae (ref_44) 2010; 23 Hirai (ref_101) 2007; 120 Rahman (ref_106) 2010; 104 Mayerhofer (ref_95) 2008; 111 Tibullo (ref_88) 2016; 7 Gladwin (ref_69) 2016; 387 Mai (ref_59) 2017; 9 Papanikolaou (ref_49) 2005; 202 Bansal (ref_79) 2013; 2 Stein (ref_76) 2011; 286 Ryter (ref_8) 2006; 86 Lo (ref_24) 2008; 99 Piloni (ref_64) 2013; 314 Jomova (ref_32) 2010; 345 Valko (ref_1) 2007; 39 Bolisetty (ref_13) 2017; 69 Kaplan (ref_48) 2014; 38 Weiskirchen (ref_74) 2014; 3 Roh (ref_22) 2017; 11 Cairo (ref_56) 2007; 9 Mucha (ref_117) 2018; 65 Kinobe (ref_104) 2006; 147 Vincenzi (ref_73) 2016; 15 Fang (ref_70) 1997; 340 Zhu (ref_112) 2015; 10 Zhang (ref_54) 2010; 13 Wang (ref_75) 2017; 2017 Chi (ref_40) 2007; 144 Liu (ref_98) 2014; 20 Komatsu (ref_72) 2010; 12 Gorrini (ref_4) 2013; 12 Frank (ref_100) 2007; 31 Dixon (ref_6) 2012; 149 Chang (ref_16) 2018; 416 Vitek (ref_26) 2007; 43 ref_82 Gozzelino (ref_12) 2010; 50 Gottlieb (ref_34) 2012; 97 Sorrenti (ref_108) 2018; 158 Busserolles (ref_45) 2006; 38 Kang (ref_116) 2014; 5 Yang (ref_7) 2014; 156 Reichard (ref_39) 2007; 35 Lanceta (ref_57) 2013; 449 Abraham (ref_27) 2008; 60 Clark (ref_62) 2000; 348 NaveenKumar (ref_66) 2018; 13 Berberat (ref_113) 2005; 11 Podkalicka (ref_105) 2018; 22 Shi (ref_84) 2008; 27 Lu (ref_23) 2018; 8 Yang (ref_58) 2008; 15 Lamb (ref_61) 1999; 344 Sui (ref_29) 2018; 106 Liou (ref_3) 2014; 44 Vlahakis (ref_92) 2006; 49 Piskounova (ref_21) 2015; 52 Pierce (ref_78) 1997; 272 Lin (ref_35) 2007; 282 Schulz (ref_93) 2012; 3 Schaer (ref_68) 2013; 121 Shang (ref_102) 2015; 71 Vyas (ref_81) 2014; 16 Kwon (ref_15) 2015; 6 Dowdle (ref_55) 2014; 16 Heyninck (ref_83) 2016; 109 Loboda (ref_9) 2015; 74 Suttner (ref_63) 1999; 13 Banerjee (ref_86) 2012; 287 Hori (ref_50) 2002; 277 Poulos (ref_67) 2014; 114 Lv (ref_99) 2016; 21 Timmerman (ref_25) 2013; 24 Adedoyin (ref_28) 2018; 314 Trachootham (ref_2) 2009; 8 Gonzales (ref_33) 2002; 24 Hassannia (ref_17) 2018; 128 Fan (ref_30) 2017; 6 Gao (ref_60) 2016; 26 Loboda (ref_10) 2016; 73 Ollinger (ref_47) 2007; 6 Appleton (ref_103) 1999; 27 Cao (ref_18) 2016; 73 Salerno (ref_107) 2015; 96 Cheng (ref_96) 2018; 100 Salerno (ref_89) 2017; 142 Kim (ref_109) 2008; 60 Zhang (ref_37) 2003; 23 Itoh (ref_38) 1997; 236 Stockwell (ref_20) 2017; 171 Sass (ref_115) 2008; 123 MacKenzie (ref_53) 2008; 10 Fang (ref_97) 2004; 109 Sugimoto (ref_43) 2012; 42 Wang (ref_5) 2008; 12 Gopalakrishnan (ref_77) 2015; 59 Converso (ref_36) 2006; 20 Kovacsics (ref_42) 2017; 65 Stephenson (ref_51) 2014; 10 Hjortso (ref_87) 2014; 14 |
References_xml | – volume: 387 start-page: 2565 year: 2016 ident: ref_69 article-title: Cardiovascular complications and risk of death in sickle-cell disease publication-title: Lancet doi: 10.1016/S0140-6736(16)00647-4 – volume: 10 start-page: 2974 year: 2015 ident: ref_112 article-title: Knockdown of heme oxygenase-1 promotes apoptosis and autophagy and enhances the cytotoxicity of doxorubicin in breast cancer cells publication-title: Oncol. Lett. doi: 10.3892/ol.2015.3735 – volume: 24 start-page: 450 year: 2013 ident: ref_25 article-title: Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.08.020 – volume: 22 start-page: 23 year: 2018 ident: ref_105 article-title: Heme oxygenase inhibition in cancer, possible tools and targets publication-title: Contemp. Oncol. – volume: 73 start-page: 2195 year: 2016 ident: ref_18 article-title: Mechanisms of ferroptosis publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2194-1 – volume: 11 start-page: 254 year: 2017 ident: ref_22 article-title: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis publication-title: Redox Biol. doi: 10.1016/j.redox.2016.12.010 – volume: 24 start-page: 161 year: 2002 ident: ref_33 article-title: Heme oxygenase-1 induction and dependent increase in ferritin. A protective antioxidant stratagem in hemin-treated rat brain publication-title: Dev. Neurosci. doi: 10.1159/000065686 – volume: 202 start-page: 199 year: 2005 ident: ref_49 article-title: Iron metabolism and toxicity publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2004.06.021 – volume: 109 start-page: 1 year: 2004 ident: ref_97 article-title: Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin publication-title: Int. J. Cancer. doi: 10.1002/ijc.11644 – volume: 60 start-page: 47 year: 2008 ident: ref_109 article-title: Suppression of Nrf2-driven heme oxygenase-1 enhances the chemosensitivity of lung cancer A549 cells toward cisplatin publication-title: Lung Cancer doi: 10.1016/j.lungcan.2007.09.021 – volume: 35 start-page: 7074 year: 2007 ident: ref_39 article-title: Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1 publication-title: Nuclei Acids Res. doi: 10.1093/nar/gkm638 – volume: 11 start-page: 3790 year: 2005 ident: ref_113 article-title: Inhibition of Heme Oxygenase-1 Increases Responsiveness of Pancreatic Cancer Cells to Anticancer Treatment publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-04-2159 – volume: 20 start-page: 887 year: 1996 ident: ref_65 article-title: Lipid metabolite involvement in the activation of the human heme oxygenase-1 gene publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(95)02182-5 – volume: 142 start-page: 163 year: 2017 ident: ref_89 article-title: Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.07.031 – volume: 69 start-page: 531 year: 2017 ident: ref_13 article-title: Heme oxygenase 1 as a therapeutic target in acute kidney injury publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2016.10.037 – volume: 52 start-page: 2101 year: 2018 ident: ref_114 article-title: The inhibition of heme oxygenase-1 enhances the chemosensitivity and suppresses the proliferation of pancreatic cancer cells through the SHH signaling pathway publication-title: Int. J. Oncol. – volume: 123 start-page: 1269 year: 2008 ident: ref_115 article-title: Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice publication-title: Int. J. Cancer doi: 10.1002/ijc.23695 – volume: 147 start-page: 307 year: 2006 ident: ref_104 article-title: Selectivity of imidazole-dioxolane compounds for in vitro inhibition of microsomal haem oxygenase isoforms publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0706555 – volume: 16 start-page: 1069 year: 2014 ident: ref_55 article-title: Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo publication-title: Nat. Cell Biol. doi: 10.1038/ncb3053 – volume: 287 start-page: 32113 year: 2012 ident: ref_86 article-title: Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis and autophagy-regulating molecules publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.393140 – volume: 345 start-page: 91 year: 2010 ident: ref_32 article-title: Metals, oxidative stress and neurodegenerative disorders publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-010-0563-x – volume: 38 start-page: 1510 year: 2006 ident: ref_45 article-title: Heme oxygenase-1 inhibits apoptosis in Caco-2 cells via activation of Akt pathway publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2006.03.013 – volume: 23 start-page: 8137 year: 2003 ident: ref_37 article-title: Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.22.8137-8151.2003 – volume: 73 start-page: 3221 year: 2016 ident: ref_10 article-title: Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2223-0 – volume: 44 start-page: 1 year: 2014 ident: ref_3 article-title: Reactive oxygen species in cancer publication-title: Free Radic. Res. – volume: 14 start-page: 337 year: 2014 ident: ref_87 article-title: The expression, function and targeting of HAEM oxygenase-1 in cancer publication-title: Curr. Cancer Drug Targets doi: 10.2174/1568009614666140320111306 – volume: 45 start-page: 2373 year: 2014 ident: ref_110 article-title: Potential crosstalk of Ca2+-ROS-dependent mechanism involved in apoptosis of Kasumi-1 cells mediated by heme oxygenase-1 small interfering RNA publication-title: Int. J. Oncol. doi: 10.3892/ijo.2014.2661 – volume: 38 start-page: 429 year: 2014 ident: ref_48 article-title: Hyperbilirubinemia, hemolysis, and increased bilirubin neurotoxicity publication-title: Semin. Perinatol. doi: 10.1053/j.semperi.2014.08.006 – volume: 21 start-page: 489 year: 2016 ident: ref_99 article-title: Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin publication-title: Apoptosis doi: 10.1007/s10495-016-1216-7 – volume: 449 start-page: 189 year: 2013 ident: ref_57 article-title: Haem oxygenase-1 overexpression alters intracellular iron distribution publication-title: Biochem. J. doi: 10.1042/BJ20120936 – volume: 114 start-page: 3919 year: 2014 ident: ref_67 article-title: Heme enzyme structure and function publication-title: Chem. Rev. doi: 10.1021/cr400415k – volume: 286 start-page: 6587 year: 2011 ident: ref_76 article-title: Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.210047 – volume: 9 start-page: 1025 year: 2017 ident: ref_59 article-title: Salinomycin kills cancer stem cells by sequestering iron in lysosomes publication-title: Nat. Chem. doi: 10.1038/nchem.2778 – volume: 340 start-page: 369 year: 1997 ident: ref_70 article-title: Induction of ferritin synthesis in human lung epithelial cells treated with crocidolite asbestos publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1997.9892 – volume: 100 start-page: 509 year: 2018 ident: ref_96 article-title: Low expression of GFI-1 Gene is associated with Panobinostat-resistance in acute myeloid leukemia through influencing the level of HO-1 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.02.039 – volume: 12 start-page: 213 year: 2010 ident: ref_72 article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2021 – volume: 43 start-page: 1 year: 2007 ident: ref_26 article-title: The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases publication-title: Adv. Clin. Chem. doi: 10.1016/S0065-2423(06)43001-8 – ident: ref_14 doi: 10.3390/ijms19082260 – volume: 60 start-page: 79 year: 2008 ident: ref_27 article-title: Pharmacological and clinical aspects of heme oxygenase publication-title: Pharmacol. Rev. doi: 10.1124/pr.107.07104 – volume: 416 start-page: 124 year: 2018 ident: ref_16 article-title: Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.12.025 – volume: 65 start-page: 1264 year: 2017 ident: ref_42 article-title: Degradation of heme oxygenase-1 by the immunoproteasome in astrocytes: A potential interferon-γ-dependent mechanism contributing to HIV neuropathogenesis publication-title: Glia doi: 10.1002/glia.23160 – volume: 2017 start-page: 3526903 year: 2017 ident: ref_75 article-title: Amelioration of ethanol-induced hepatitis by magnesium isoglycyrrhizinate through inhibition of neutrophil cell infiltration and oxidative damage publication-title: Mediators Inflamm. doi: 10.1155/2017/3526903 – volume: 59 start-page: 317 year: 2015 ident: ref_77 article-title: Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.03663-14 – volume: 6 start-page: e371 year: 2017 ident: ref_30 article-title: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis publication-title: Oncogenesis doi: 10.1038/oncsis.2017.65 – volume: 26 start-page: 1021 year: 2016 ident: ref_60 article-title: Ferroptosis is an autophagic cell death process publication-title: Cell Res. doi: 10.1038/cr.2016.95 – volume: 109 start-page: 48 year: 2016 ident: ref_83 article-title: Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the Keap1/Nrf2 pathway publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2016.03.026 – volume: 20 start-page: 1236 year: 2006 ident: ref_36 article-title: HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism publication-title: FASEB J. doi: 10.1096/fj.05-4204fje – volume: 282 start-page: 20621 year: 2007 ident: ref_35 article-title: Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M607954200 – volume: 236 start-page: 313 year: 1997 ident: ref_38 article-title: AnNrf2/ small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.6943 – ident: ref_90 doi: 10.3390/antiox7110151 – volume: 65 start-page: 277 year: 2018 ident: ref_117 article-title: Pharmacological versus genetic inhibition of heme oxygenase-1—The comparison of metalloporphyrins, shRNA and CRISPR/Cas9 system publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2017_2542 – volume: 39 start-page: 44 year: 2007 ident: ref_1 article-title: Free radicals and antioxidants in normal physiological functions and human disease publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2006.07.001 – volume: 52 start-page: 186 year: 2015 ident: ref_21 article-title: Oxidative stress inhibits distant metastasis by human melanoma cells publication-title: Nature doi: 10.1038/nature15726 – volume: 71 start-page: 240 year: 2015 ident: ref_102 article-title: ZnPPIX inhibits peritoneal metastasis of gastric cancer via its antiangiogenic activity publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2015.03.005 – volume: 128 start-page: 3341 year: 2018 ident: ref_17 article-title: Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma publication-title: J. Clin. Investig. doi: 10.1172/JCI99032 – volume: 272 start-page: 21096 year: 1997 ident: ref_78 article-title: Novel inhibitors of cytokine-induced I kappa B alpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.34.21096 – volume: 15 start-page: 1219 year: 2016 ident: ref_73 article-title: Drug-induced hepatotoxicity in cancer patients—Implication for treatment publication-title: Expert Opin. Drug Saf. doi: 10.1080/14740338.2016.1194824 – ident: ref_82 doi: 10.3390/ijms17030290 – ident: ref_94 doi: 10.3390/molecules23051209 – volume: 49 start-page: 4437 year: 2006 ident: ref_92 article-title: Imidazole-dioxolane compounds as isozyme-selective heme oxygenase inhibitors publication-title: J. Med. Chem. doi: 10.1021/jm0511435 – volume: 15 start-page: 234 year: 2008 ident: ref_58 article-title: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2008.02.010 – volume: 13 start-page: 1800 year: 1999 ident: ref_63 article-title: Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron publication-title: FASEB J. doi: 10.1096/fasebj.13.13.1800 – volume: 31 start-page: 1539 year: 2007 ident: ref_100 article-title: Inhibition of heme oxygenase-1 increases responsiveness of melanoma cells to ALA-based photodynamic therapy publication-title: Int. J. Oncol. – volume: 5 start-page: e1183 year: 2014 ident: ref_116 article-title: Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: Involvement of TET-dependent DNA demethylation publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.149 – volume: 12 start-page: 931 year: 2013 ident: ref_4 article-title: Modulation of oxidative stress as an anticancer strategy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4002 – volume: 6 start-page: 3078 year: 2007 ident: ref_47 article-title: Bilirubin inhibits tumor cell growth via activation of ERK publication-title: Cell Cycle doi: 10.4161/cc.6.24.5022 – volume: 42 start-page: 1035 year: 2012 ident: ref_43 article-title: Preservation solution supplemented with biliverdin prevents lung cold ischaemia/reperfusion injury publication-title: Eur. J. Cardiothorac. Surg. doi: 10.1093/ejcts/ezs298 – volume: 348 start-page: 615 year: 2000 ident: ref_62 article-title: Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress publication-title: Biochem. J. doi: 10.1042/bj3480615 – volume: 20 start-page: 8572 year: 2014 ident: ref_98 article-title: Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v20.i26.8572 – volume: 121 start-page: 1276 year: 2013 ident: ref_68 article-title: Hemolysis and free hemoglobin revisited: Exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins publication-title: Blood doi: 10.1182/blood-2012-11-451229 – volume: 158 start-page: 937 year: 2018 ident: ref_108 article-title: Targeting heme oxygenase-1 with hybrid compounds to overcome imatinib resistance in chronic myeloid leukemia cell lines publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.09.048 – volume: 23 start-page: 369 year: 2016 ident: ref_19 article-title: Ferroptosis: Process and function publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.158 – volume: 12 start-page: 1875 year: 2008 ident: ref_5 article-title: Cancer cell killing via ROS: To increase or decrease, that is the question publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.7.12.7067 – volume: 16 start-page: 1 year: 2014 ident: ref_81 article-title: Molecular targets and mechanisms of cancer prevention and treatment by withaferin-A, a naturally occurring steroidal lactone publication-title: AAPS J. doi: 10.1208/s12248-013-9531-1 – volume: 156 start-page: 317 year: 2014 ident: ref_7 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 8 start-page: 37 year: 2009 ident: ref_85 article-title: Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo publication-title: Mol. Cancer doi: 10.1186/1476-4598-8-37 – volume: 171 start-page: 273 year: 2017 ident: ref_20 article-title: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 2 start-page: 273 year: 2013 ident: ref_79 article-title: Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity publication-title: Redox Biol. doi: 10.1016/j.redox.2013.07.004 – volume: 63 start-page: 173 year: 2016 ident: ref_31 article-title: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells publication-title: Hepatology doi: 10.1002/hep.28251 – volume: 344 start-page: 153 year: 1999 ident: ref_61 article-title: Haem oxygenase shows pro-oxidant activity in microsomal and cellular systems: Implications for the release of low-molecular-mass iron publication-title: Biochem. J. doi: 10.1042/bj3440153 – volume: 1 start-page: e85817 year: 2016 ident: ref_80 article-title: Heme oxygenase-1 regulates mitochondrial quality control in the heart publication-title: JCI Insight doi: 10.1172/jci.insight.85817 – volume: 74 start-page: 11 year: 2015 ident: ref_9 article-title: HO-1/CO system in tumor growth, angiogenesis and metabolism—Targeting HO-1 as an anti-tumor therapy publication-title: Vascul. Pharmacol. doi: 10.1016/j.vph.2015.09.004 – volume: 120 start-page: 500 year: 2007 ident: ref_101 article-title: Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice publication-title: Int. J. Cancer doi: 10.1002/ijc.22287 – volume: 13 start-page: 1996 year: 2018 ident: ref_66 article-title: The role of reactive oxygen species and ferroptosis in heme-mediated activation of human platelets publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.8b00458 – volume: 112 start-page: 221 year: 2006 ident: ref_52 article-title: Non-protein-bound iron detection in small samples of biological fluids and tissues publication-title: Biol. Trace Elem. Res. doi: 10.1385/BTER:112:3:221 – volume: 27 start-page: 13 year: 2008 ident: ref_84 article-title: Implication of heme oxygenase-1 in the sensitivity of nasopharyngeal carcinomas to radiotherapy publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/1756-9966-27-13 – volume: 111 start-page: 2200 year: 2008 ident: ref_95 article-title: Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: A novel approach to overcome resistance against imatinib publication-title: Blood doi: 10.1182/blood-2006-11-055723 – volume: 1783 start-page: 1826 year: 2008 ident: ref_41 article-title: Ubiquitin–proteasome system mediates heme oxygenase-1 degradation through endoplasmic reticulum-associated degradation pathway publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.05.008 – volume: 277 start-page: 10712 year: 2002 ident: ref_50 article-title: Gene transfection of H25A mutant heme oxygenase-1 protects cells against hydroperoxide-induced cytotoxicity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M107749200 – volume: 3 start-page: 344 year: 2014 ident: ref_74 article-title: Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology publication-title: Hepatobiliary Surg. Nutr. – volume: 106 start-page: 125 year: 2018 ident: ref_29 article-title: Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.06.060 – volume: 314 start-page: 174 year: 2013 ident: ref_64 article-title: Acute iron overload and oxidative stress in brain publication-title: Toxicology doi: 10.1016/j.tox.2013.09.015 – volume: 110 start-page: 2116 year: 2014 ident: ref_46 article-title: Biliverdin’s regulation of reactive oxygen species signalling leads to potent inhibition of proliferative and angiogenic pathways in head and neck cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2014.98 – volume: 104 start-page: 324 year: 2010 ident: ref_106 article-title: Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2009.10.011 – volume: 149 start-page: 1060 year: 2012 ident: ref_6 article-title: Ferroptosis: An iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 7 start-page: 28868 year: 2016 ident: ref_88 article-title: Heme oxygenase-1 nuclear translocation regulates bortezomib-induced cytotoxicity and mediates genomic instability in myeloma cells publication-title: Oncotarget doi: 10.18632/oncotarget.7563 – volume: 8 start-page: 992 year: 2018 ident: ref_23 article-title: The role of ferroptosis in cancer development and treatment publication-title: Front. Pharmacol. doi: 10.3389/fphar.2017.00992 – volume: 13 start-page: 999 year: 2010 ident: ref_54 article-title: Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3129 – volume: 23 start-page: 251 year: 2010 ident: ref_44 article-title: Role of heme oxygenase in preserving vascular bioactive NO publication-title: Nitric Oxide doi: 10.1016/j.niox.2010.08.002 – volume: 9 start-page: 1 year: 2007 ident: ref_56 article-title: Iron-regulatory proteins: Molecular biology and pathophysiological implications publication-title: Expert Rev. Mol. Med. doi: 10.1017/S1462399407000531 – volume: 2 start-page: 138 year: 2006 ident: ref_71 article-title: p62/SQSTM1: A missing link between protein aggregates and the autophagy machinery publication-title: Autophagy doi: 10.4161/auto.2.2.2405 – ident: ref_11 doi: 10.3390/antiox6020029 – volume: 50 start-page: 323 year: 2010 ident: ref_12 article-title: Mechanisms of cell protection by heme oxygenase-1 publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.010909.105600 – volume: 86 start-page: 583 year: 2006 ident: ref_8 article-title: Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications publication-title: Physiol. Rev. doi: 10.1152/physrev.00011.2005 – volume: 10 start-page: 459 year: 2014 ident: ref_51 article-title: Iron in multiple sclerosis: Roles in neurodegeneration and repair publication-title: Nat. Rev. Neurosci. – volume: 67 start-page: 353 year: 2014 ident: ref_91 article-title: Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.10.819 – volume: 96 start-page: 162 year: 2015 ident: ref_107 article-title: Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in uman-derived cancer cell lines publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2015.04.003 – volume: 99 start-page: 464 year: 2008 ident: ref_24 article-title: The Xc− cystine/glutamate antiporter: A mediator of pancreatic cancer growth with a role in drug resistance publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6604485 – volume: 3 start-page: 68 year: 2012 ident: ref_93 article-title: Metalloporphyrins—An update publication-title: Front. Pharmacol. doi: 10.3389/fphar.2012.00068 – volume: 27 start-page: 1214 year: 1999 ident: ref_103 article-title: Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations publication-title: Drug Metab. Dispos. – volume: 6 start-page: 24393 year: 2015 ident: ref_15 article-title: Heme oxygenase-1 accelerates Erastin induced Ferroptotic cell death publication-title: Oncotarget doi: 10.18632/oncotarget.5162 – volume: 144 start-page: 991 year: 2007 ident: ref_40 article-title: Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo publication-title: Neuroscience doi: 10.1016/j.neuroscience.2006.09.064 – volume: 35 start-page: 2270 year: 2016 ident: ref_111 article-title: Evaluation of HO-1 expression, cellular ROS production, cellular proliferation and cellular apoptosis in human esophageal squamous cell carcinoma tumors and cell lines publication-title: Oncol. Rep. doi: 10.3892/or.2016.4556 – volume: 10 start-page: 997 year: 2008 ident: ref_53 article-title: Intracellular iron transport and storage: From molecular mechanisms to health implications publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2007.1893 – volume: 314 start-page: F702 year: 2018 ident: ref_28 article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00044.2017 – volume: 97 start-page: 1489 year: 2012 ident: ref_34 article-title: Endoplasmic reticulum anchored heme-oxygenase 1 faces the cytosol publication-title: Haematologica doi: 10.3324/haematol.2012.063651 – volume: 8 start-page: 579 year: 2009 ident: ref_2 article-title: Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2803 |
SSID | ssj0023259 |
Score | 2.6470237 |
SecondaryResourceType | review_article |
Snippet | Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate... Excessive ROS can induce oxidative damage of DNA, and, to a higher degree, gene mutation and carcinogenesis [2,3,4]. [...]lipid peroxidation by excessive ROS... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 39 |
SubjectTerms | Animals Apoptosis Cancer therapies Cell Death Cell growth Cell Line, Tumor Disease Models, Animal Drug Therapy Ferroptosis Glutathione Heme - metabolism Heme Oxygenase-1 - metabolism Humans Iron - metabolism Lipid Peroxidation Neoplasms - metabolism Oxidation Reactive Oxygen Species - metabolism Review Xenograft Model Antitumor Assays |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR39YXEfQkYW3SpulJZFUWQQVR2FtpmhRX1lbdXdB_70zbXV1FzxnaMpPOI99kPoBDjAG-SfOIp3k1VNspjmmE5NZkMSUYyhhCdK9vVOchuOqG3ebAbdC0VY59YuWobZnRGXkLH-BrTajT6csrJ9YoQlcbCo1ZmKfRZdTSFXW_Ci4pKrI0H2MQV2Gs6sZ3iWV-q_f0PKB2IrqbOh2SfuWZP9slv8Wfy2VYahJHdlZbegVmXLEKCzWV5McatM7Y-QjX78q-Y2XOOu7Zsdv3D9wfGKe4z3oFa5OF31jb9fuDdXi4vLhvd3hDhsCzINJDLk-sMLEOwtyGxmopnbIuFTKyOjZBZJyKolxrI10QpkoZG2N9KFLCZIMws7HcgLmiLNwWsFSLTFAccoS55S6NfYeaynxljS-ywIPjsT6SrJkUToQV_QQrBtJe8l17HhxNpF_qCRl_yO2OVZs0_8kg-bKqBweTZdzhBFukhStHKENM2Epg3uTBZm2JyYvQW2mJvt6DaMpGEwGanj29UvQeqynaSkrCcLf__6wdWMQUSVMDi_B3YW74NnJ7mIYMzX611z4BG7jZZw priority: 102 providerName: ProQuest |
Title | A Dual Role of Heme Oxygenase-1 in Cancer Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30583467 https://www.proquest.com/docview/2331884078 https://www.proquest.com/docview/2160362976 https://pubmed.ncbi.nlm.nih.gov/PMC6337503 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT9tAEB0BUatcKigtmNJokeCEXLDX3l0fKkQDIaoEVIhIuVle71oEGQfyIZF_35k4tkJpLr7s2JZmxnpv9MYzAIeIAZ5OMukm2XyothUu0gjuGp1GRDCE1qToXt-Ibi_43Q_7a1BtG104cPzf0o72SfVG-Y_Xl9kZfvA_qeLEkv1k8Pg0ptYg-s90HRqISZI-0eug1hOQNoRR2fb-7o4mfMScV7xcNb-ETe8I5799k0tA1NmETwsGyc7LkG_Bmi0-w4dyp-RsG07O2cUUz--GuWXDjHXtk2W3rzNMFAQs12ODgrUp1CPWtnk-_gK9zuV9u-sutiK4aSDVxOWnxteRCsLMhNoozq0wNvG5NCrSgdRWSJkppbkNwkQIbSIsFP2ExNkgTE3Ev8JGMSzsLrBE-alPgGRJfMtsEnkWHZV6wmjPTwMHjit_xOliZDhtrshjLB3IkfGyIx04qq2fy1EZK-z2K9fGVbxjzA9PKRIVHTiojzHVSb9ICjucog2txBY-EigHdspI1C-qQuiAfBOj2oDGaL89KQYP83HagnMSc_dWPvMbNJEmKWpi8b192JiMpvY7UpGJbsG67Eu8qs5VCxq_Lm_-3LUIHMLWPP_-Aq0T3kI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLemIQQviO8FBhwSe0KnNnfJ5fKA0NQxdewDCW1S30Iu54iiLhlrK-g_xd-InTTdCoK3PZ-VRL7f-WfHPhvgDXFA6PIykXnZNNVGI8mN0NK7ImUHwzjHGd3jEzM8iz6O4tEG_OruwnBZZWcTG0Pt64L_kffoAaG1nHV6f_Fd8tQozq52IzRaWBzi4geFbNN3B3u0vztK7X84HQzlcqqALKLEzqTue-VSG8Wlj523WqPxmCudeJu6KHFokqS01mmM4twY51MKtFTOyc0oLjw3XyKTf4uIt88nKhldBXhaNcPZQuI8aeLUtIX2Wqf93vjb-ZTLl_gu7DoF_uXX_lmeeY3v9u_DvaWjKnZbZD2ADawewu12dOXiEfR2xd6c1j_XExR1KYZ4juLTzwXhkXhRhmJciQEj6lIMcDKZPoazG1HTE9is6gq3QORWFYp5DznHV2KehkiaKkLjXaiKKIC3nT6yYtmZnAdkTDKKUFh72XXtBbCzkr5oO3L8Q267U222PJfT7ApFAbxeLdOJ4jRJXmE9JxmevG0U-WkBPG13YvUiso5WE7cEkKzt0UqAu3Wvr1Tjr03XbqM154yf_f-zXsGd4enxUXZ0cHL4HO6Se2a5eEaF27A5u5zjC3KBZu5lgzsBX24a6L8BWpQWFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQyBeEN8LDDASe0JWZztxnAc0TS1Vx2AgxKS-hTh2RFGXjLXV1n-Nv253-ehWELzt2ackOv98v7vc-Q7gDXKAsFkR86yom2p7zdGNUNzZPCEHQ1tLGd1PR3p0HH4YR-MN-N3dhaGyys4m1obaVTn9I-_hA4QxlHXqFW1ZxJfBcO_0F6cJUpRp7cZpNBA59MtzDN9m7w4GuNc7Ug7ff-uPeDthgOdhbOZc7TppExNGhYusM0p57XwmVexMYsPYeh3HhTFW-TDKtLYuwaBLZpToDKPcUSMmNP-3YhUJOmPx-CrYU7Ie1CaQ_7iOEt0U3SuV7PYmP09mVMpE92LX6fAvH_fPUs1r3De8D_dap5XtNyh7ABu-fAi3mzGWy0fQ22eDBa5_raaeVQUb-RPPPl8sEZvIkVywScn6hK4z1vfT6ewxHN-Imp7AZlmVfgtYZmQuiQM95fsKnyXCo6ZyoZ0VMg8DeNvpI83bLuU0LGOaYrRC2kuvay-AnZX0adOd4x9y251q0_aMztIrRAXwerWMp4tSJlnpqwXK0BRuLdFnC-BpsxOrF6GlNAp5JoB4bY9WAtS5e32lnPyoO3hrpSh__Oz_n_UK7iDE048HR4fP4S56aobqaKTYhs352cK_QG9obl_WsGPw_aZxfgk-7RpN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual+Role+of+Heme+Oxygenase-1+in+Cancer+Cells&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Chiang%2C+Shih-Kai&rft.au=Chen%2C+Shuen-Ei&rft.au=Chang%2C+Ling-Chu&rft.date=2018-12-21&rft.eissn=1422-0067&rft.volume=20&rft.issue=1&rft_id=info:doi/10.3390%2Fijms20010039&rft_id=info%3Apmid%2F30583467&rft.externalDocID=30583467 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |