Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/Bi4V2O11 photocatalyst: Mineralization activity, degradation pathways and promoted charge separation mechanism
[Display omitted] •Novel direct Z-scheme AgI/Bi4V2O11 photocatalysts were prepared.•A superior photocatalytic activity for the degradation of SMZ refractory pollutants.•A plausible degradation pathway for SMZ was proposed.•The fabrication Z-scheme heterostructure play a central role in promoting cha...
Saved in:
Published in | Journal of hazardous materials Vol. 385; p. 121508 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3894 1873-3336 1873-3336 |
DOI | 10.1016/j.jhazmat.2019.121508 |
Cover
Loading…
Abstract | [Display omitted]
•Novel direct Z-scheme AgI/Bi4V2O11 photocatalysts were prepared.•A superior photocatalytic activity for the degradation of SMZ refractory pollutants.•A plausible degradation pathway for SMZ was proposed.•The fabrication Z-scheme heterostructure play a central role in promoting charge separation and active radical generation.
Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi4V2O11 composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO3− and SO42−, the presence of Cl− and HCO3− presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O2−, h+ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi4V2O11-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts. |
---|---|
AbstractList | Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi4V2O11 composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO3- and SO42-, the presence of Cl- and HCO3- presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O2-, h+ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi4V2O11-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts.Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi4V2O11 composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO3- and SO42-, the presence of Cl- and HCO3- presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O2-, h+ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi4V2O11-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts. Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi₄V₂O₁₁ heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi₄V₂O₁₁ heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi₄V₂O₁₁ composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO₃⁻ and SO₄²⁻, the presence of Cl⁻ and HCO₃⁻ presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O₂⁻, h⁺ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi₄V₂O₁₁-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts. [Display omitted] •Novel direct Z-scheme AgI/Bi4V2O11 photocatalysts were prepared.•A superior photocatalytic activity for the degradation of SMZ refractory pollutants.•A plausible degradation pathway for SMZ was proposed.•The fabrication Z-scheme heterostructure play a central role in promoting charge separation and active radical generation. Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi4V2O11 composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO3− and SO42−, the presence of Cl− and HCO3− presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O2−, h+ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi4V2O11-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts. |
ArticleNumber | 121508 |
Author | Guo, Jie Wen, Xiao-Ju Sun, Jie Qian-Lu Fei, Zheng-Hao Niu, Cheng-Gang Lv, Xiao-Xiao |
Author_xml | – sequence: 1 givenname: Xiao-Ju orcidid: 0000-0002-6450-7244 surname: Wen fullname: Wen, Xiao-Ju email: wenxiaoju1990@126.com organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China – sequence: 2 surname: Qian-Lu fullname: Qian-Lu organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China – sequence: 3 givenname: Xiao-Xiao surname: Lv fullname: Lv, Xiao-Xiao email: lvxiaoxiao0120@163.com organization: Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong Province, 518172, China – sequence: 4 givenname: Jie surname: Sun fullname: Sun, Jie organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China – sequence: 5 givenname: Jie surname: Guo fullname: Guo, Jie organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China – sequence: 6 givenname: Zheng-Hao surname: Fei fullname: Fei, Zheng-Hao organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China – sequence: 7 givenname: Cheng-Gang orcidid: 0000-0002-5904-9111 surname: Niu fullname: Niu, Cheng-Gang organization: College of Environmental Science Engineering, Hunan University, Changsha, Hunan province, 410082, China |
BookMark | eNqFkU1v1DAQhi1UJLaFn4DkIweyHcf5MhxQqaBUKioSHwcu1qw92XiVxFvbW7T9Y_17pKQSgsueLI3e5x1rnmN2NPqRGHspYClAVKeb5abDuwHTMgehliIXJTRP2EI0tcyklNURW4CEIpONKp6x4xg3ACDqsliw-y-dT95gwn6fnOGW1gEtJudH7lsed32LA6Wp343Ed9GNa47cukAm8Z_ZV9PRQPxsfXn63hU_8msh-PZvY0xv-OcJDNi7u7kUTXK3Lu1f_7Nqi6n7hfvIcbR8G_zgE1luOgxr4pG2GObcQNNsdHF4zp622Ed68fiesO8fP3w7_5RdXV9cnp9dZaaom5RJQGsqqUpEKlYlNbUxbWmgbeTKQqFEK-QK0FQlkDUWsDbKgsxVraQqGilP2Ku5d_rUzY5i0oOLhvoeR_K7qPMCoIS6UvnhqJy8qLqq6ilazlETfIyBWr0NbsCw1wL0g1O90Y9O9YNTPTuduLf_ccalP5dJAV1_kH430zQd7NZR0NE4Gg3NOrX17kDDb_PJx2w |
CitedBy_id | crossref_primary_10_1016_j_seppur_2021_119152 crossref_primary_10_3762_bjnano_14_26 crossref_primary_10_1016_j_ijhydene_2024_07_441 crossref_primary_10_1007_s13738_021_02345_2 crossref_primary_10_1007_s10876_024_02692_z crossref_primary_10_1039_D1RA00055A crossref_primary_10_1039_D4RA03431G crossref_primary_10_1016_j_jallcom_2021_161292 crossref_primary_10_1016_j_seppur_2025_132499 crossref_primary_10_1016_j_seppur_2020_118109 crossref_primary_10_1016_j_seppur_2020_117935 crossref_primary_10_1016_j_jhazmat_2022_129061 crossref_primary_10_1016_j_jclepro_2025_145060 crossref_primary_10_1016_j_molliq_2020_113300 crossref_primary_10_1016_j_jallcom_2021_163469 crossref_primary_10_1007_s10854_023_09861_2 crossref_primary_10_1016_j_jcis_2024_05_159 crossref_primary_10_1016_j_surfin_2024_104226 crossref_primary_10_1016_j_colsurfa_2021_127523 crossref_primary_10_1016_j_fuel_2020_118618 crossref_primary_10_1016_j_jcis_2020_06_075 crossref_primary_10_1038_s41598_020_76997_0 crossref_primary_10_1016_j_cej_2021_134000 crossref_primary_10_1016_j_mssp_2021_106239 crossref_primary_10_1016_j_seppur_2022_122838 crossref_primary_10_1016_j_seppur_2022_120533 crossref_primary_10_1039_D0NJ02549F crossref_primary_10_1016_j_jhazmat_2020_123780 crossref_primary_10_1016_j_cej_2020_127456 crossref_primary_10_1016_j_optmat_2023_113635 crossref_primary_10_1080_01411594_2021_2012175 crossref_primary_10_1080_03601234_2024_2363580 crossref_primary_10_1016_j_heliyon_2024_e36288 crossref_primary_10_1016_j_mtener_2021_100829 crossref_primary_10_1021_acs_est_3c03711 crossref_primary_10_1016_j_seppur_2022_121094 crossref_primary_10_1016_j_jcis_2021_10_123 crossref_primary_10_1016_j_psep_2024_12_082 crossref_primary_10_1016_j_ccr_2024_216377 crossref_primary_10_1016_j_jwpe_2022_102671 crossref_primary_10_1016_j_optmat_2021_111819 crossref_primary_10_1039_D3EN00488K crossref_primary_10_3390_antibiotics11010051 crossref_primary_10_1016_j_apsusc_2021_151671 crossref_primary_10_1016_j_apsusc_2023_156528 crossref_primary_10_1016_j_jcis_2021_11_135 crossref_primary_10_1016_j_jallcom_2024_174794 crossref_primary_10_1016_j_apt_2020_08_017 crossref_primary_10_3390_ijms25136871 crossref_primary_10_1039_D2CY01815B crossref_primary_10_1016_j_jcis_2021_11_141 crossref_primary_10_1016_j_jhazmat_2020_122345 crossref_primary_10_1016_j_jcis_2023_03_007 crossref_primary_10_1016_j_materresbull_2023_112567 crossref_primary_10_1016_j_cej_2024_153261 crossref_primary_10_1021_acs_langmuir_3c02408 crossref_primary_10_1016_j_colsurfa_2025_136136 crossref_primary_10_1007_s12613_021_2332_0 crossref_primary_10_1016_j_inoche_2020_108399 crossref_primary_10_2109_jcersj2_21151 crossref_primary_10_1016_j_apsusc_2023_156415 crossref_primary_10_1016_j_cej_2024_149571 crossref_primary_10_1016_j_jclepro_2022_131992 crossref_primary_10_1016_j_apsusc_2023_156416 crossref_primary_10_1016_j_surfin_2024_104361 crossref_primary_10_1016_j_jwpe_2024_105909 crossref_primary_10_1016_j_cej_2020_124402 crossref_primary_10_1016_j_jpcs_2023_111781 crossref_primary_10_1016_j_apsusc_2024_160057 crossref_primary_10_1016_j_jallcom_2022_166147 crossref_primary_10_1007_s11164_022_04832_4 crossref_primary_10_1016_j_seppur_2021_118787 crossref_primary_10_1021_acs_inorgchem_3c03582 crossref_primary_10_2166_wst_2022_318 crossref_primary_10_1016_j_jece_2023_109641 crossref_primary_10_1007_s10876_025_02771_9 crossref_primary_10_1007_s11814_022_1332_8 crossref_primary_10_1039_D1EW00731A crossref_primary_10_1016_j_eti_2021_102032 crossref_primary_10_1016_j_cej_2021_131585 crossref_primary_10_1016_j_jece_2023_110521 crossref_primary_10_1016_j_jhazmat_2020_122128 crossref_primary_10_1016_j_apcata_2024_119614 crossref_primary_10_1039_D3EN00172E crossref_primary_10_1016_j_seppur_2025_131911 crossref_primary_10_1016_j_seppur_2024_127482 crossref_primary_10_1007_s11581_020_03749_5 crossref_primary_10_1016_j_colsurfa_2025_136315 crossref_primary_10_1016_j_inoche_2021_108675 crossref_primary_10_1007_s10971_025_06711_x crossref_primary_10_1016_j_jeurceramsoc_2023_11_003 crossref_primary_10_1016_j_jphotochem_2023_115276 crossref_primary_10_1016_j_seppur_2024_126832 crossref_primary_10_1016_j_cej_2023_144240 crossref_primary_10_1016_j_jece_2020_104505 crossref_primary_10_1007_s10854_021_06193_x crossref_primary_10_1016_j_colsurfa_2021_126262 crossref_primary_10_1016_j_jenvman_2024_121875 crossref_primary_10_1016_j_optmat_2021_111573 crossref_primary_10_1016_j_scitotenv_2022_156828 crossref_primary_10_1016_j_surfin_2024_104552 crossref_primary_10_1016_j_seppur_2022_122664 crossref_primary_10_1016_j_optmat_2021_111576 crossref_primary_10_1016_j_seppur_2021_120164 crossref_primary_10_1016_j_jclepro_2024_142364 crossref_primary_10_1016_j_cej_2022_137620 crossref_primary_10_1016_j_seppur_2024_126266 crossref_primary_10_1002_jctb_6756 crossref_primary_10_1155_2020_1950645 crossref_primary_10_1016_j_jallcom_2024_175687 crossref_primary_10_1016_j_colsurfa_2022_128297 crossref_primary_10_1016_j_cclet_2021_04_003 crossref_primary_10_1016_j_surfin_2024_104685 crossref_primary_10_1016_j_jhazmat_2021_126928 crossref_primary_10_1016_j_jallcom_2021_160092 crossref_primary_10_1007_s10854_022_07762_4 crossref_primary_10_1016_j_seppur_2024_130754 crossref_primary_10_1016_j_compositesb_2024_111594 crossref_primary_10_1016_j_jcis_2020_11_044 crossref_primary_10_1016_j_cej_2021_128991 crossref_primary_10_1016_j_mtchem_2023_101603 crossref_primary_10_1016_j_jcis_2021_11_100 crossref_primary_10_1016_j_jclepro_2023_138921 crossref_primary_10_1016_j_jallcom_2021_159542 crossref_primary_10_1021_acs_jpcc_1c04229 crossref_primary_10_3390_ijerph19041949 crossref_primary_10_1016_j_seppur_2023_124458 crossref_primary_10_1016_j_chemosphere_2022_136386 crossref_primary_10_1016_j_gee_2024_12_008 crossref_primary_10_1016_j_seppur_2021_119430 crossref_primary_10_1016_j_chemosphere_2021_131579 crossref_primary_10_1016_j_jcis_2020_06_126 crossref_primary_10_1016_j_mssp_2023_108031 crossref_primary_10_1016_j_cej_2024_157491 crossref_primary_10_1016_j_envpol_2024_123325 crossref_primary_10_1016_j_diamond_2021_108788 crossref_primary_10_1016_j_jallcom_2022_168483 crossref_primary_10_1016_j_heliyon_2024_e29123 crossref_primary_10_1016_j_cej_2022_141105 crossref_primary_10_1016_j_mtnano_2023_100385 crossref_primary_10_1080_03067319_2023_2282714 crossref_primary_10_1016_j_jhazmat_2023_132009 crossref_primary_10_3390_cryst14010055 crossref_primary_10_1016_j_jmst_2023_07_012 crossref_primary_10_1007_s10854_021_07291_6 crossref_primary_10_1007_s11356_020_10820_1 crossref_primary_10_1016_j_jclepro_2024_140951 crossref_primary_10_1016_j_surfin_2025_105899 crossref_primary_10_1016_j_cej_2023_146867 crossref_primary_10_1016_j_jhazmat_2021_125815 crossref_primary_10_1039_D1CS00684C crossref_primary_10_1016_j_ceramint_2023_10_138 crossref_primary_10_1016_j_jmrt_2022_09_130 crossref_primary_10_1016_j_inoche_2021_108750 crossref_primary_10_1007_s11356_022_18628_x crossref_primary_10_1016_j_seppur_2024_127443 crossref_primary_10_1016_j_seppur_2021_120318 crossref_primary_10_1007_s11581_023_05363_7 crossref_primary_10_1016_j_jpcs_2024_112289 crossref_primary_10_1016_j_ijhydene_2023_12_125 crossref_primary_10_1142_S1793292021500181 crossref_primary_10_1016_j_seppur_2021_120089 crossref_primary_10_1016_j_jhazmat_2021_126217 crossref_primary_10_1039_D2NJ01187E crossref_primary_10_1016_j_mssp_2023_107966 crossref_primary_10_1016_j_colsurfa_2021_127710 crossref_primary_10_1016_j_chphi_2024_100505 crossref_primary_10_1016_j_apmt_2022_101574 crossref_primary_10_1016_j_jcis_2022_05_101 crossref_primary_10_1016_j_molstruc_2023_135385 crossref_primary_10_1021_acsomega_3c08939 crossref_primary_10_1016_j_seppur_2021_120406 crossref_primary_10_1016_j_jhazmat_2022_130326 crossref_primary_10_1007_s13399_023_04583_1 crossref_primary_10_1016_j_cej_2024_150844 crossref_primary_10_1016_j_jcis_2020_12_043 crossref_primary_10_1016_j_seppur_2022_121480 crossref_primary_10_1016_j_jpcs_2021_110381 crossref_primary_10_1016_j_jhazmat_2021_126209 crossref_primary_10_1016_j_jallcom_2022_164671 crossref_primary_10_1039_D1NJ00161B crossref_primary_10_1016_j_colsurfa_2024_134054 crossref_primary_10_1016_j_jcis_2022_10_131 crossref_primary_10_1016_j_jece_2023_109832 crossref_primary_10_1016_j_seppur_2024_128875 crossref_primary_10_1002_crat_202000219 crossref_primary_10_1002_slct_202403270 crossref_primary_10_1016_j_cej_2023_146281 crossref_primary_10_1016_j_jphotochem_2022_114223 crossref_primary_10_1016_j_jcis_2022_03_075 crossref_primary_10_1016_j_seppur_2020_117691 crossref_primary_10_1016_j_ceramint_2024_11_090 crossref_primary_10_1016_j_jcis_2021_03_117 crossref_primary_10_1016_j_jcis_2021_10_027 crossref_primary_10_1016_j_cej_2022_138894 crossref_primary_10_1016_j_jcis_2024_04_163 crossref_primary_10_1016_j_envres_2021_111360 crossref_primary_10_1016_j_jssc_2024_124940 crossref_primary_10_1016_j_cej_2022_138098 crossref_primary_10_1016_j_jece_2021_106498 crossref_primary_10_1016_j_seppur_2024_128187 crossref_primary_10_1016_j_cej_2022_139745 crossref_primary_10_1016_j_chemosphere_2024_141218 crossref_primary_10_1007_s11356_021_15180_y crossref_primary_10_1007_s11144_022_02341_4 crossref_primary_10_1016_j_compositesb_2021_109200 crossref_primary_10_1016_j_optmat_2023_113842 crossref_primary_10_1016_j_colsurfa_2021_126633 crossref_primary_10_1016_j_ceramint_2021_08_249 crossref_primary_10_1016_j_jhazmat_2020_124948 crossref_primary_10_1016_j_jcis_2024_06_063 crossref_primary_10_1016_j_jece_2020_104341 crossref_primary_10_1016_j_jallcom_2021_163539 crossref_primary_10_1016_j_seppur_2022_120858 crossref_primary_10_1016_j_envres_2023_117639 crossref_primary_10_1016_j_seppur_2022_120977 crossref_primary_10_3390_catal14020147 crossref_primary_10_1016_j_optmat_2021_111947 crossref_primary_10_1002_smll_202309972 crossref_primary_10_1021_acsomega_2c04496 crossref_primary_10_1016_j_jece_2024_112277 crossref_primary_10_1016_j_jmst_2024_01_002 crossref_primary_10_1016_j_solidstatesciences_2021_106610 crossref_primary_10_1080_10643389_2020_1859289 crossref_primary_10_1016_j_enmm_2022_100765 crossref_primary_10_1016_j_apsusc_2024_161403 crossref_primary_10_1016_j_ceramint_2024_04_283 crossref_primary_10_1002_adfm_202411155 crossref_primary_10_1016_j_jwpe_2020_101335 crossref_primary_10_1016_j_mssp_2020_105611 crossref_primary_10_1016_j_jallcom_2024_178313 crossref_primary_10_1016_j_envpol_2021_117864 crossref_primary_10_1039_D3RA07534F crossref_primary_10_1016_j_mssp_2022_107058 crossref_primary_10_1016_j_cej_2020_126313 crossref_primary_10_1016_j_jenvman_2023_119302 crossref_primary_10_1007_s11164_022_04699_5 crossref_primary_10_1016_j_scitotenv_2021_152237 crossref_primary_10_1016_j_ceramint_2020_12_121 crossref_primary_10_1016_j_colsurfa_2022_129667 crossref_primary_10_1016_j_jallcom_2022_166653 crossref_primary_10_1007_s44169_023_00030_4 crossref_primary_10_1016_j_apsusc_2024_160205 crossref_primary_10_1002_slct_202203601 crossref_primary_10_1016_j_jclepro_2023_139617 crossref_primary_10_1016_j_mssp_2021_106338 crossref_primary_10_1016_j_jhazmat_2022_129895 crossref_primary_10_1016_j_molstruc_2022_134183 crossref_primary_10_1016_j_apcatb_2024_124099 crossref_primary_10_1016_j_mssp_2023_107909 crossref_primary_10_1016_j_jiec_2024_01_033 crossref_primary_10_1016_j_molliq_2021_115476 crossref_primary_10_1016_j_ceramint_2020_07_055 |
Cites_doi | 10.1016/j.jhazmat.2014.08.055 10.1021/es403605f 10.1016/j.molcata.2016.07.030 10.1016/j.apcatb.2017.09.060 10.1021/jp406508y 10.1039/C7DT00106A 10.1016/j.cej.2016.04.128 10.1021/es400101f 10.1039/C2TA00312K 10.1016/j.jcat.2017.11.029 10.1016/j.jcat.2019.01.009 10.1039/C4RA04815F 10.1016/j.solmat.2018.01.026 10.1016/j.solmat.2018.03.046 10.1016/j.jcat.2017.12.005 10.1039/C8CE00101D 10.1039/C7DT02151H 10.1021/acssuschemeng.8b01448 10.1016/j.jclepro.2019.04.012 10.1016/j.molliq.2019.111063 10.1016/j.colsurfa.2019.04.026 10.1016/j.jhazmat.2018.08.099 10.1039/C7CE02151H 10.1039/c3cy20811g 10.1016/j.mattod.2018.04.008 10.1021/acsami.9b05074 10.1039/C5TA03465E 10.1039/C7NJ03413J 10.1016/j.apcatb.2018.08.063 10.1002/adma.201400288 10.1016/j.jcis.2018.03.056 10.1021/acs.inorgchem.6b00130 10.1016/j.apcatb.2003.11.010 10.1016/j.apcatb.2019.01.052 10.1016/j.chemosphere.2008.11.086 10.1016/j.chemosphere.2019.05.229 10.1016/j.apsusc.2015.07.139 10.1002/smtd.201700080 10.1016/j.jcis.2017.03.029 10.1016/j.solmat.2018.03.023 10.1016/j.watres.2018.07.025 10.1021/acs.iecr.9b01737 10.1016/j.cej.2018.12.118 10.1016/j.cej.2019.05.069 10.1021/acssuschemeng.7b00501 10.1016/j.jhazmat.2014.08.050 10.1016/j.cej.2018.08.084 10.1039/C8NH00062J 10.1016/j.ceramint.2018.12.119 10.1016/j.apcatb.2015.05.022 10.1016/S1872-2067(14)60075-9 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2019.121508 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 10_1016_j_jhazmat_2019_121508 S0304389419314621 |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c478t-30adc6395aae4b5e87ccf5c0f83bd0491f13b0ac650edcd0a7c9d032979394833 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Fri Sep 05 14:21:20 EDT 2025 Fri Sep 05 13:31:54 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 Tue Jul 01 00:49:23 EDT 2025 Fri Feb 23 02:50:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photocatalytic Visible light Z-scheme Sulfamethazine AgI/Bi4V2O11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-30adc6395aae4b5e87ccf5c0f83bd0491f13b0ac650edcd0a7c9d032979394833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5904-9111 0000-0002-6450-7244 |
PQID | 2315097667 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2400507692 proquest_miscellaneous_2315097667 crossref_primary_10_1016_j_jhazmat_2019_121508 crossref_citationtrail_10_1016_j_jhazmat_2019_121508 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2019_121508 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-05 |
PublicationDateYYYYMMDD | 2020-03-05 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Mao, Peng (bib0090) 2018; 20 Xue, Peng, Huang, Zeng, Wen, Deng, Yang, Yan (bib0235) 2019; 45 Guo, Jiang, Wang, Shang, Lu, Li, Wu (bib0050) 2019; 248 Wan, Zhang (bib0160) 2015; 3 Wang, Wu, Feng, Tu, Xiao, Xiong, Ang, Yuan, Chew (bib0170) 2018; 144 Wang, Li, Zhang, Li, Wu (bib0180) 2019; 240 Xu, Zhang, Yu, Wageh, Al-Ghamdi, Jaroniec (bib0230) 2018; 21 Lv, Li, Hong, Lu, Xu, Chen, Shi (bib0120) 2017; 46 Wen, Niu, Zhang, Liang, Zeng (bib0190) 2018; 221 Payan, Isari, Gholizade (bib0135) 2019; 361 Zhou, Song, Chen, Yin (bib0270) 2013; 47 Li, Fang, Yu, Zhou, Zhu, Xie (bib0075) 2015; 358 Pan, Zhang, Zhou, Cai, Li, Tian (bib0130) 2018; 354 Wen, Shen, Fei, Niu, Lu, Guo, Lu (bib0200) 2019; 573 Li, Lai, Xu, Zeng, Huang, Qin, Yi, Cheng, Wang, Huang, Liu, Zhang (bib0080) 2019; 225 Zhao, Duan, Chen (bib0260) 2019; 58 Chen, Liu, Wang, Ding, Sun, Yan (bib0020) 2013; 1 He, Xu, Cheng, Yu, Ho (bib0055) 2018; 3 Wang, Li, Li, Zhang (bib0175) 2019 Zhou, Yu, Jaroniec (bib0265) 2014; 26 Guo, Niu, Zhang, Wen, Liang, Zhang, Guan, Tang, Zeng (bib0035) 2018; 6 Liu, Niu, Feng, Sui, Zhu (bib0095) 2014; 4 Zhang, Hu, Jiang, Chen, Meng, Fu (bib0255) 2014; 280 Qiao, Zhu, Liu, Chu, Pan (bib0140) 2018; 20 Barhoumi, Oturan, Olvera-Vargas, Brillas, Gadri, Ammar, Oturan (bib0010) 2016; 94 Wen, Niu, Zhang, Zeng (bib0220) 2017; 5 He, Cao, Zhou, Yu (bib0060) 2014; 35 Xue, Huang, Li, Zeng, Deng, Yang, Chen, Li, Gong, Li (bib0240) 2019; 373 Yu, Huang, Wang, Yuan, Jiang, Wu, Zhang, Zeng (bib0245) 2018; 522 Guo, Xu, Wang, Zhang, He, Li (bib0040) 2013; 3 Lv, Chen, Sun, Zhou (bib0110) 2016; 55 Wen, Niu, Zhang, Zeng (bib0195) 2017; 46 dos Santos, Rodriguez, Afonso, Mesquita, Nascimento, Patrocinio, Silva, Oliveira, Fabris, Pereira (bib0025) 2016; 6 Guo, Niu, Liang, Niu, Huang, Zhang, Tang, Yang, Feng, Zeng (bib0045) 2019; 370 Wang, Li, Zhang (bib0185) 2019; 11 Wen, Shen, Niu, Lai, Zhu, Sun, Hu, Fei (bib0215) 2019; 288 Abroshan, Farhadi, Zabardasti (bib0005) 2018; 178 Kummerer (bib0070) 2009; 75 Liang, Niu, Zhang, Wen, Yang, Guo, Zeng (bib0085) 2019; 361 Lv, Chen, Sun, Zhou, Fan, Zhang (bib0115) 2015; 179 Zhang, Gao, Jia, Wang, Chen, Xu (bib0250) 2018; 182 Wen, Niu, Zhang, Liang, Guo, Zeng (bib0210) 2018; 358 Konstantinou, Albanis (bib0065) 2004; 49 Rochman, Manzano, Hentschel, Simonich, Hoh (bib0150) 2013; 47 Wen, Niu, Guo, Zhang, Liang, Zeng (bib0225) 2018; 358 Sadeghzadeh-Attar (bib0155) 2018; 183 Meng, Zhang (bib0125) 2016; 423 Chen, Wang, Zhang, Fang (bib0015) 2013; 117 Liu, Ji, Li, Liu (bib0100) 2019; 233 Ri, Song-Gol, Ju-Yong, Pak, Ri, Ri (bib0145) 2018; 42 Wang, Quan, Jiang, Chen, Li, Meng, Chen (bib0165) 2016; 300 Fabianska, Bialk-Bielinska, Stepnowski, Stolte, Siedlecka (bib0030) 2014; 280 Wen, Niu, Ruan, Zhang, Zeng (bib0205) 2017; 497 Low, Jiang, Cheng, Wageh, Al‐Ghamdi, Yu (bib0105) 2017; 1 Lv (10.1016/j.jhazmat.2019.121508_bib0115) 2015; 179 Sadeghzadeh-Attar (10.1016/j.jhazmat.2019.121508_bib0155) 2018; 183 Meng (10.1016/j.jhazmat.2019.121508_bib0125) 2016; 423 Ri (10.1016/j.jhazmat.2019.121508_bib0145) 2018; 42 Wan (10.1016/j.jhazmat.2019.121508_bib0160) 2015; 3 Wen (10.1016/j.jhazmat.2019.121508_bib0195) 2017; 46 Zhou (10.1016/j.jhazmat.2019.121508_bib0270) 2013; 47 dos Santos (10.1016/j.jhazmat.2019.121508_bib0025) 2016; 6 Konstantinou (10.1016/j.jhazmat.2019.121508_bib0065) 2004; 49 Low (10.1016/j.jhazmat.2019.121508_bib0105) 2017; 1 Rochman (10.1016/j.jhazmat.2019.121508_bib0150) 2013; 47 Yu (10.1016/j.jhazmat.2019.121508_bib0245) 2018; 522 Liu (10.1016/j.jhazmat.2019.121508_bib0100) 2019; 233 Wen (10.1016/j.jhazmat.2019.121508_bib0205) 2017; 497 Wang (10.1016/j.jhazmat.2019.121508_bib0165) 2016; 300 Wen (10.1016/j.jhazmat.2019.121508_bib0200) 2019; 573 Payan (10.1016/j.jhazmat.2019.121508_bib0135) 2019; 361 Guo (10.1016/j.jhazmat.2019.121508_bib0045) 2019; 370 Wang (10.1016/j.jhazmat.2019.121508_bib0185) 2019; 11 Wang (10.1016/j.jhazmat.2019.121508_bib0180) 2019; 240 Chen (10.1016/j.jhazmat.2019.121508_bib0015) 2013; 117 Liu (10.1016/j.jhazmat.2019.121508_bib0090) 2018; 20 Pan (10.1016/j.jhazmat.2019.121508_bib0130) 2018; 354 Xue (10.1016/j.jhazmat.2019.121508_bib0240) 2019; 373 Zhang (10.1016/j.jhazmat.2019.121508_bib0255) 2014; 280 Li (10.1016/j.jhazmat.2019.121508_bib0080) 2019; 225 Guo (10.1016/j.jhazmat.2019.121508_bib0035) 2018; 6 Barhoumi (10.1016/j.jhazmat.2019.121508_bib0010) 2016; 94 Wang (10.1016/j.jhazmat.2019.121508_bib0170) 2018; 144 Guo (10.1016/j.jhazmat.2019.121508_bib0050) 2019; 248 Xu (10.1016/j.jhazmat.2019.121508_bib0230) 2018; 21 Qiao (10.1016/j.jhazmat.2019.121508_bib0140) 2018; 20 Wen (10.1016/j.jhazmat.2019.121508_bib0190) 2018; 221 Fabianska (10.1016/j.jhazmat.2019.121508_bib0030) 2014; 280 He (10.1016/j.jhazmat.2019.121508_bib0060) 2014; 35 Chen (10.1016/j.jhazmat.2019.121508_bib0020) 2013; 1 Liang (10.1016/j.jhazmat.2019.121508_bib0085) 2019; 361 Li (10.1016/j.jhazmat.2019.121508_bib0075) 2015; 358 He (10.1016/j.jhazmat.2019.121508_bib0055) 2018; 3 Wen (10.1016/j.jhazmat.2019.121508_bib0210) 2018; 358 Wang (10.1016/j.jhazmat.2019.121508_bib0175) 2019 Zhou (10.1016/j.jhazmat.2019.121508_bib0265) 2014; 26 Lv (10.1016/j.jhazmat.2019.121508_bib0120) 2017; 46 Zhao (10.1016/j.jhazmat.2019.121508_bib0260) 2019; 58 Lv (10.1016/j.jhazmat.2019.121508_bib0110) 2016; 55 Zhang (10.1016/j.jhazmat.2019.121508_bib0250) 2018; 182 Kummerer (10.1016/j.jhazmat.2019.121508_bib0070) 2009; 75 Guo (10.1016/j.jhazmat.2019.121508_bib0040) 2013; 3 Wen (10.1016/j.jhazmat.2019.121508_bib0220) 2017; 5 Wen (10.1016/j.jhazmat.2019.121508_bib0215) 2019; 288 Liu (10.1016/j.jhazmat.2019.121508_bib0095) 2014; 4 Abroshan (10.1016/j.jhazmat.2019.121508_bib0005) 2018; 178 Wen (10.1016/j.jhazmat.2019.121508_bib0225) 2018; 358 Xue (10.1016/j.jhazmat.2019.121508_bib0235) 2019; 45 |
References_xml | – volume: 117 start-page: 19346 year: 2013 end-page: 19352 ident: bib0015 article-title: High-efficiency visible-light-driven Ag publication-title: J. Phys. Chem. C – volume: 373 start-page: 1144 year: 2019 end-page: 1157 ident: bib0240 article-title: Assembly of AgI nanoparticles and ultrathin g-C publication-title: Chem. Eng. J. – volume: 5 start-page: 5134 year: 2017 end-page: 5147 ident: bib0220 article-title: Fabrication of SnO publication-title: ACS Sustain. Chem. Eng. – volume: 46 start-page: 4982 year: 2017 end-page: 4993 ident: bib0195 article-title: Novel p-n heterojunction BiOI/CeO publication-title: Dalton Trans. – volume: 58 start-page: 10402 year: 2019 end-page: 10409 ident: bib0260 article-title: Bi-quantum-dot-decorated Bi publication-title: Ind. Eng. Chem. Res. – volume: 225 start-page: 898 year: 2019 end-page: 912 ident: bib0080 article-title: Facile synthesis of bismuth oxyhalogen-based Z-scheme photocatalyst for visible-light-driven pollutant removal: Kinetics, degradation pathways and mechanism publication-title: J. Clean. Prod. – volume: 182 start-page: 113 year: 2018 end-page: 120 ident: bib0250 article-title: Oxygen vacancy-rich mesoporous ZrO publication-title: Sol. Energy Mater. Sol. Cells – volume: 42 start-page: 647 year: 2018 end-page: 653 ident: bib0145 article-title: Construction of the Bi publication-title: New J. Chem. – volume: 240 start-page: 39 year: 2019 end-page: 49 ident: bib0180 article-title: 0D Bi nanodots/2D Bi publication-title: Appl. Catal. B-Environ. – volume: 248 start-page: 552 year: 2019 end-page: 566 ident: bib0050 article-title: Enhanced catalytic performance of graphene-TiO publication-title: Appl. Catal. B-Environ. – volume: 288 year: 2019 ident: bib0215 article-title: Attachment of Ag/AgCl nanoparticles on CdMoO publication-title: J. Mol. Liq. – volume: 35 start-page: 989 year: 2014 end-page: 1007 ident: bib0060 article-title: Recent advances in visible light Bi-based photocatalysts publication-title: Chin. J. Catal. – volume: 11 start-page: 27686 year: 2019 end-page: 27696 ident: bib0185 article-title: Ag-bridged Z-Scheme 2D/2D Bi publication-title: ACS Appl. Mater. Interfaces – volume: 20 start-page: 2553 year: 2018 end-page: 2561 ident: bib0090 article-title: Synthesis of Bi publication-title: Crystengcomm – volume: 3 start-page: 16737 year: 2015 end-page: 16745 ident: bib0160 article-title: Synthesis and facet-dependent enhanced photocatalytic activity of Bi publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 4 start-page: 43399 year: 2014 end-page: 43405 ident: bib0095 article-title: One-pot synthesis of Bi publication-title: RSC Adv. – volume: 280 start-page: 713 year: 2014 end-page: 722 ident: bib0255 article-title: Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi publication-title: J. Hazard. Mater. – volume: 361 start-page: 1121 year: 2019 end-page: 1141 ident: bib0135 article-title: Catalytic decomposition of sulfamethazine antibiotic and pharmaceutical wastewater using Cu-TiO publication-title: Chem. Eng. J. – volume: 55 start-page: 4782 year: 2016 end-page: 4789 ident: bib0110 article-title: Construction of alpha-beta phase junction on Bi publication-title: Inorg. Chem. – volume: 300 start-page: 280 year: 2016 end-page: 290 ident: bib0165 article-title: Synthesis of redox-mediator-free direct Z-scheme AgI/WO publication-title: Chem. Eng. J. – volume: 21 start-page: 1042 year: 2018 end-page: 1063 ident: bib0230 article-title: Direct Z-scheme photocatalysts: principles, synthesis, and applications publication-title: Mater. Today – volume: 423 start-page: 533 year: 2016 end-page: 549 ident: bib0125 article-title: Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches publication-title: J. Mol. Catal. A-Chem. – volume: 94 start-page: 52 year: 2016 end-page: 61 ident: bib0010 article-title: Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine publication-title: Kinet. Mech. Tox. Asses. Water Res. – volume: 361 start-page: 245 year: 2019 end-page: 258 ident: bib0085 article-title: Construction of 2D heterojunction system with enhanced photocatalytic performance: plasmonic Bi and reduced graphene oxide co-modified Bi publication-title: J. Hazard. Mater. – volume: 6 year: 2016 ident: bib0025 article-title: A hole inversion layer at the BiVO publication-title: Sci. Rep.-UK – volume: 3 start-page: 1603 year: 2013 end-page: 1611 ident: bib0040 article-title: Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdate photocatalyst publication-title: Catal. Sci. Technol. – volume: 178 start-page: 154 year: 2018 end-page: 163 ident: bib0005 article-title: Novel magnetically separable Ag publication-title: Sol. Energy Mater. Sol. Cells – volume: 358 start-page: 46 year: 2015 end-page: 56 ident: bib0075 article-title: Ag-based semiconductor photocatalysts in environmental purification publication-title: Appl. Surf. Sci. – volume: 3 start-page: 464 year: 2018 end-page: 504 ident: bib0055 article-title: Review on nanoscale Bi-based photocatalysts publication-title: Nanoscale Horiz. – volume: 358 start-page: 211 year: 2018 end-page: 223 ident: bib0225 article-title: Photocatalytic degradation of levofloxacin by ternary Ag publication-title: J. Catal. – volume: 144 start-page: 215 year: 2018 end-page: 225 ident: bib0170 article-title: Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam publication-title: Water Res. – volume: 221 start-page: 701 year: 2018 end-page: 714 ident: bib0190 article-title: A novel Ag publication-title: Appl. Catal. B-Environ. – volume: 497 start-page: 368 year: 2017 end-page: 377 ident: bib0205 article-title: AgI nanoparticles-decorated CeO publication-title: J. Colloid Interf. Sci. – volume: 45 start-page: 6340 year: 2019 end-page: 6349 ident: bib0235 article-title: In situ synthesis of visible-light-driven Z-scheme AgI/Bi publication-title: Ceram. Int. – year: 2019 ident: bib0175 article-title: Boosting interfacial charge separation of Ba publication-title: Appl. Catal. B – volume: 6 start-page: 8003 year: 2018 end-page: 8018 ident: bib0035 article-title: Construction of direct Z-Scheme AgI/Bi publication-title: ACS Sustain. Chem. Eng. – volume: 1 year: 2017 ident: bib0105 article-title: A review of direct Z‐scheme photocatalysts publication-title: Small Methods – volume: 47 start-page: 13976 year: 2013 end-page: 13984 ident: bib0150 article-title: Polystyrene Plastic: A Source and Sink for Polycyclic Aromatic Hydrocarbons in the Marine Environment publication-title: Environ. Sci. Technol. – volume: 20 start-page: 1116 year: 2018 end-page: 1122 ident: bib0140 article-title: Novel two-dimensional Bi publication-title: Crystengcomm – volume: 179 start-page: 54 year: 2015 end-page: 60 ident: bib0115 article-title: Realizing nanosized interfacial contact via constructing BiVO publication-title: Appl. Catal. B-Environ. – volume: 358 start-page: 141 year: 2018 end-page: 154 ident: bib0210 article-title: Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO publication-title: J. Catal. – volume: 573 start-page: 137 year: 2019 end-page: 145 ident: bib0200 article-title: Fabrication of a zinc tungstate-based a p-n heterojunction photocatalysts towards refractory pollutants degradation under visible light irradiation publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 280 start-page: 579 year: 2014 end-page: 587 ident: bib0030 article-title: Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation publication-title: J. Hazard. Mater. – volume: 354 start-page: 777 year: 2018 end-page: 789 ident: bib0130 article-title: Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe-0/PS process enhanced by ultrasound publication-title: Chem. Eng. J. – volume: 75 start-page: 417 year: 2009 end-page: 434 ident: bib0070 article-title: Antibiotics in the aquatic environment - a review - Part I publication-title: Chemosphere – volume: 47 start-page: 3833 year: 2013 end-page: 3839 ident: bib0270 article-title: Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst publication-title: Environ. Sci. Technol. – volume: 49 start-page: 1 year: 2004 end-page: 14 ident: bib0065 article-title: TiO publication-title: Appl. Catal. B-Environ. – volume: 1 start-page: 877 year: 2013 end-page: 883 ident: bib0020 article-title: One-step approach to novel Bi publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 522 start-page: 82 year: 2018 end-page: 94 ident: bib0245 article-title: Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: Mineralization efficiency and mechanisms publication-title: J. Colloid Interf. Sci. – volume: 370 start-page: 289 year: 2019 end-page: 303 ident: bib0045 article-title: Insight into the energy band alignment of magnetically separable Ag publication-title: J. Catal. – volume: 233 start-page: 198 year: 2019 end-page: 206 ident: bib0100 article-title: Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light publication-title: Chemosphere – volume: 46 start-page: 12675 year: 2017 end-page: 12682 ident: bib0120 article-title: Facile synthesis of CdS/Bi publication-title: Dalton Trans. – volume: 26 start-page: 4920 year: 2014 end-page: 4935 ident: bib0265 article-title: All‐solid‐state Z‐scheme photocatalytic systems publication-title: Adv. Mater. – volume: 183 start-page: 16 year: 2018 end-page: 24 ident: bib0155 article-title: Efficient photocatalytic degradation of methylene blue dye by SnO publication-title: Sol. Energy Mater. Sol. Cells – volume: 280 start-page: 713 year: 2014 ident: 10.1016/j.jhazmat.2019.121508_bib0255 article-title: Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.08.055 – volume: 47 start-page: 13976 year: 2013 ident: 10.1016/j.jhazmat.2019.121508_bib0150 article-title: Polystyrene Plastic: A Source and Sink for Polycyclic Aromatic Hydrocarbons in the Marine Environment publication-title: Environ. Sci. Technol. doi: 10.1021/es403605f – volume: 423 start-page: 533 year: 2016 ident: 10.1016/j.jhazmat.2019.121508_bib0125 article-title: Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches publication-title: J. Mol. Catal. A-Chem. doi: 10.1016/j.molcata.2016.07.030 – volume: 221 start-page: 701 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0190 article-title: A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.09.060 – volume: 117 start-page: 19346 year: 2013 ident: 10.1016/j.jhazmat.2019.121508_bib0015 article-title: High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity publication-title: J. Phys. Chem. C doi: 10.1021/jp406508y – volume: 46 start-page: 4982 year: 2017 ident: 10.1016/j.jhazmat.2019.121508_bib0195 article-title: Novel p-n heterojunction BiOI/CeO2 photocatalyst for wider spectrum visible-light photocatalytic degradation of refractory pollutants publication-title: Dalton Trans. doi: 10.1039/C7DT00106A – volume: 300 start-page: 280 year: 2016 ident: 10.1016/j.jhazmat.2019.121508_bib0165 article-title: Synthesis of redox-mediator-free direct Z-scheme AgI/WO3 nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.128 – volume: 47 start-page: 3833 year: 2013 ident: 10.1016/j.jhazmat.2019.121508_bib0270 article-title: Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst publication-title: Environ. Sci. Technol. doi: 10.1021/es400101f – volume: 1 start-page: 877 year: 2013 ident: 10.1016/j.jhazmat.2019.121508_bib0020 article-title: One-step approach to novel Bi4V2O11 hierarchical hollow microspheres with high visible-light-driven photocatalytic activities publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C2TA00312K – volume: 358 start-page: 141 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0210 article-title: Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2-Ag/AgBr photocatalyst: influencing factors, possible degradation pathways, and mechanism insight publication-title: J. Catal. doi: 10.1016/j.jcat.2017.11.029 – volume: 370 start-page: 289 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0045 article-title: Insight into the energy band alignment of magnetically separable Ag2O/ZnFe2O4 p-n heterostructure with rapid charge transfer assisted visible light photocatalysis publication-title: J. Catal. doi: 10.1016/j.jcat.2019.01.009 – volume: 4 start-page: 43399 year: 2014 ident: 10.1016/j.jhazmat.2019.121508_bib0095 article-title: One-pot synthesis of Bi24O31Br10/Bi4V2O11 heterostructures and their photocatalytic properties publication-title: RSC Adv. doi: 10.1039/C4RA04815F – volume: 178 start-page: 154 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0005 article-title: Novel magnetically separable Ag3PO4/MnFe2O4 nanocomposite and its high photocatalytic degradation performance for organic dyes under solar-light irradiation publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.01.026 – volume: 183 start-page: 16 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0155 article-title: Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.03.046 – volume: 358 start-page: 211 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0225 article-title: Photocatalytic degradation of levofloxacin by ternary Ag2CO3/CeO2/AgBr photocatalyst under visible-light irradiation: degradation pathways, mineralization ability, and an accelerated interfacial charge transfer process study publication-title: J. Catal. doi: 10.1016/j.jcat.2017.12.005 – volume: 20 start-page: 2553 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0090 article-title: Synthesis of Bi2O3-Bi4V2O11 heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of highconcentration phenol and MO dyes publication-title: Crystengcomm doi: 10.1039/C8CE00101D – volume: 46 start-page: 12675 year: 2017 ident: 10.1016/j.jhazmat.2019.121508_bib0120 article-title: Facile synthesis of CdS/Bi4V2O11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water publication-title: Dalton Trans. doi: 10.1039/C7DT02151H – volume: 6 start-page: 8003 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0035 article-title: Construction of direct Z-Scheme AgI/Bi2Sn2O7 nanojunction system with enhanced photocatalytic activity: accelerated interfacial charge transfer induced efficient Cr(VI) reduction, tetracycline degradation and Escherichia coli inactivation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01448 – volume: 225 start-page: 898 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0080 article-title: Facile synthesis of bismuth oxyhalogen-based Z-scheme photocatalyst for visible-light-driven pollutant removal: Kinetics, degradation pathways and mechanism publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.012 – volume: 288 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0215 article-title: Attachment of Ag/AgCl nanoparticles on CdMoO4 microspheres for effective degradation of doxycycline under visible light irradiation: degradation pathways and mineralization activity publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111063 – volume: 573 start-page: 137 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0200 article-title: Fabrication of a zinc tungstate-based a p-n heterojunction photocatalysts towards refractory pollutants degradation under visible light irradiation publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2019.04.026 – volume: 361 start-page: 245 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0085 article-title: Construction of 2D heterojunction system with enhanced photocatalytic performance: plasmonic Bi and reduced graphene oxide co-modified Bi5O7I with high-speed charge transfer channels publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.08.099 – volume: 20 start-page: 1116 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0140 article-title: Novel two-dimensional Bi4V2O11 nanosheets: controllable synthesis, characterization and insight into the band structure publication-title: Crystengcomm doi: 10.1039/C7CE02151H – volume: 3 start-page: 1603 year: 2013 ident: 10.1016/j.jhazmat.2019.121508_bib0040 article-title: Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdate photocatalyst publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy20811g – volume: 21 start-page: 1042 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0230 article-title: Direct Z-scheme photocatalysts: principles, synthesis, and applications publication-title: Mater. Today doi: 10.1016/j.mattod.2018.04.008 – volume: 11 start-page: 27686 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0185 article-title: Ag-bridged Z-Scheme 2D/2D Bi5FeTi3O15/g-C3N4 heterojunction for enhanced photocatalysis: mediator-induced interfacial charge transfer and mechanism insights publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05074 – volume: 3 start-page: 16737 year: 2015 ident: 10.1016/j.jhazmat.2019.121508_bib0160 article-title: Synthesis and facet-dependent enhanced photocatalytic activity of Bi2SiO5/AgI nanoplate photocatalysts publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C5TA03465E – volume: 42 start-page: 647 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0145 article-title: Construction of the Bi2WO6/Bi4V2O11 heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(VI) publication-title: New J. Chem. doi: 10.1039/C7NJ03413J – volume: 6 year: 2016 ident: 10.1016/j.jhazmat.2019.121508_bib0025 article-title: A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting publication-title: Sci. Rep.-UK – volume: 240 start-page: 39 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0180 article-title: 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: enhanced molecular oxygen activation and mechanism insight publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.08.063 – volume: 26 start-page: 4920 year: 2014 ident: 10.1016/j.jhazmat.2019.121508_bib0265 article-title: All‐solid‐state Z‐scheme photocatalytic systems publication-title: Adv. Mater. doi: 10.1002/adma.201400288 – volume: 522 start-page: 82 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0245 article-title: Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: Mineralization efficiency and mechanisms publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2018.03.056 – volume: 55 start-page: 4782 year: 2016 ident: 10.1016/j.jhazmat.2019.121508_bib0110 article-title: Construction of alpha-beta phase junction on Bi4V2O11 via electrospinning retardation effect and its promoted photocatalytic performance publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00130 – volume: 49 start-page: 1 year: 2004 ident: 10.1016/j.jhazmat.2019.121508_bib0065 article-title: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations – a review publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2003.11.010 – volume: 248 start-page: 552 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0050 article-title: Enhanced catalytic performance of graphene-TiO2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.01.052 – volume: 75 start-page: 417 year: 2009 ident: 10.1016/j.jhazmat.2019.121508_bib0070 article-title: Antibiotics in the aquatic environment - a review - Part I publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.11.086 – volume: 94 start-page: 52 year: 2016 ident: 10.1016/j.jhazmat.2019.121508_bib0010 article-title: Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine publication-title: Kinet. Mech. Tox. Asses. Water Res. – volume: 233 start-page: 198 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0100 article-title: Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.229 – volume: 358 start-page: 46 year: 2015 ident: 10.1016/j.jhazmat.2019.121508_bib0075 article-title: Ag-based semiconductor photocatalysts in environmental purification publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.07.139 – volume: 1 year: 2017 ident: 10.1016/j.jhazmat.2019.121508_bib0105 article-title: A review of direct Z‐scheme photocatalysts publication-title: Small Methods doi: 10.1002/smtd.201700080 – volume: 497 start-page: 368 year: 2017 ident: 10.1016/j.jhazmat.2019.121508_bib0205 article-title: AgI nanoparticles-decorated CeO2 microsheets photocatalyst for the degradation of organic dye and tetracycline under visible-light irradiation publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2017.03.029 – volume: 182 start-page: 113 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0250 article-title: Oxygen vacancy-rich mesoporous ZrO2 with remarkably enhanced visible light photocatalytic performance publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.03.023 – volume: 144 start-page: 215 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0170 article-title: Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam publication-title: Water Res. doi: 10.1016/j.watres.2018.07.025 – volume: 58 start-page: 10402 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0260 article-title: Bi-quantum-dot-decorated Bi4V2O11 hollow nanocakes: synthesis, characterization, and application as photocatalysts for CO2 reduction publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01737 – volume: 361 start-page: 1121 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0135 article-title: Catalytic decomposition of sulfamethazine antibiotic and pharmaceutical wastewater using Cu-TiO2@ functionalized SWCNT ternary porous nanocomposite: influential factors, mechanism, and pathway studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.118 – volume: 373 start-page: 1144 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0240 article-title: Assembly of AgI nanoparticles and ultrathin g-C3N4 nanosheets codecorated Bi2WO6direct dual Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced photocatalytic performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.069 – volume: 5 start-page: 5134 year: 2017 ident: 10.1016/j.jhazmat.2019.121508_bib0220 article-title: Fabrication of SnO2 Nanopaticles/BiOI n-p heterostructure for wider Spectrum visible-Light photocatalytic degradation of antibiotic oxytetracycline hydrochloride publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00501 – volume: 280 start-page: 579 year: 2014 ident: 10.1016/j.jhazmat.2019.121508_bib0030 article-title: Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.08.050 – volume: 354 start-page: 777 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0130 article-title: Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe-0/PS process enhanced by ultrasound publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.084 – volume: 3 start-page: 464 year: 2018 ident: 10.1016/j.jhazmat.2019.121508_bib0055 article-title: Review on nanoscale Bi-based photocatalysts publication-title: Nanoscale Horiz. doi: 10.1039/C8NH00062J – volume: 45 start-page: 6340 year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0235 article-title: In situ synthesis of visible-light-driven Z-scheme AgI/Bi2WO6 heterojunction photocatalysts with enhanced photocatalytic activity publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.12.119 – volume: 179 start-page: 54 year: 2015 ident: 10.1016/j.jhazmat.2019.121508_bib0115 article-title: Realizing nanosized interfacial contact via constructing BiVO4/Bi4V2O11 element-copied heterojunction nanofibres for superior photocatalytic properties publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.05.022 – volume: 35 start-page: 989 year: 2014 ident: 10.1016/j.jhazmat.2019.121508_bib0060 article-title: Recent advances in visible light Bi-based photocatalysts publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(14)60075-9 – year: 2019 ident: 10.1016/j.jhazmat.2019.121508_bib0175 article-title: Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation publication-title: Appl. Catal. B |
SSID | ssj0001754 |
Score | 2.6754212 |
Snippet | [Display omitted]
•Novel direct Z-scheme AgI/Bi4V2O11 photocatalysts were prepared.•A superior photocatalytic activity for the degradation of SMZ refractory... Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121508 |
SubjectTerms | AgI/Bi4V2O11 bicarbonates chlorides coprecipitation irradiation light mineralization nitrates photocatalysis photocatalysts Photocatalytic redox potential Sulfamethazine sulfates superoxide anion Visible light Z-scheme |
Title | Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/Bi4V2O11 photocatalyst: Mineralization activity, degradation pathways and promoted charge separation mechanism |
URI | https://dx.doi.org/10.1016/j.jhazmat.2019.121508 https://www.proquest.com/docview/2315097667 https://www.proquest.com/docview/2400507692 |
Volume | 385 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucABQQFRHpWROJLNw06ccFsqqi3QglSKKi6W40ebVTdZkayqcuBv8feYcRKWIkQlrpGdWBl75rM9832EvHAGgmyqdQDhgAW8iHmgjEoDkxWMC5hj3Mu9HRxms2P-9iQ92SC7Yy0MplUOvr_36d5bD0_C4W-Gy6oKj_BSD8ItBwgCy90Xk3MukD9_8n2d5gHhsaeQwhsAaL2u4gnnk_mZ-gbAEDO8Cs-zgCqTf49Pf3hqH3727pI7A26k035o98iGrbfI7d_YBLfIjffq4j758fGs6Rp_KnMJbalBNoheOIk2jrarc6dQNtrTSlNMez-livZ_gX4JjsCIC0unp_vh64p_Tj7EMV2u39h2r-hB5ZmqhwJOipURKEDx8sqnUOn4Ql22VNWGLn3OnzXU8zJZ2tqecRzaLSyWHlft4gE53nvzaXcWDOoMgeYi7wIWKaMB36RKWV6mNhdau1RHLmelgX1H7GJWRkoDBLRGm0gJXZiIJQV4hILnjD0km3VT20eE2qRUwrC0MA42UIaXLHelUGWS2MyBB9omfLSJ1AN1OSponMsxR20uB1NKNKXsTblNJr-6LXvujus65KPB5ZVJKCG-XNf1-ThBJCxQvHVRtW1WrQQADaBMZJn4RxuOPDwiK5LH_z-EJ-RWgocBmCCXPiWb3deVfQaIqSt3_JLYITen--9mhz8BLxQZtA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoeKkpbQenDlXpsyMPOq7ctAu2W3W0loEK9WI7tQFZssiJZIfrH-HvMJA6UqipSr5EnsTLjmc_2zDeEfMw1BNlQKQfCAXN46nNHahk6OkoZj8HGeNvubTKNhsf860l4skJ2-1oYTKu0vr_z6a23tk9c-zfdRVG4h3ipB-GWAwSB5Y7F5GvITgXGvjYYHQyntw4ZImTHIoWXACBwV8jjznZmZ_IXYENM8kpbqgVsNPn3EPWHs24j0P46eWahIx10s3tOVky5QZ7-Rii4QR6N5eULcv39rGqq9mDmCsZSjYQQXe8kWuW0Xp7nEjtHt8zSFDPfT6mk3Y-gP51D0OPc0MHpyP1S8B_BN9-ni7s31s1nOilasmpbw0mxOAJ7UHy69ylsdnwpr2oqS00Xbdqf0bSlZjK0Nh3pOIybG6w-Lur5S3K8v3e0O3RsgwZH8ThpHOZJrQDihFIanoUmiZXKQ-XlCcs0bD383GeZJxWgQKOV9mSsUu2xIAWnkPKEsVdktaxKs0moCTIZaxamOoc9lOYZS_IsllkQmCgHJ7RFeK8ToSx7OTbROBd9mtpMWFUKVKXoVLlFdm7FFh19x0MCSa9wcc8OBYSYh0Q_9AYiYI3ixYssTbWsBWBowGVxFMX_GMORiieO0uD1_0_hPXk8PJqMxXg0PdgmTwI8G8B8ufANWW0uluYtAKgme2cXyA25CBxl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+degradation+of+sulfamethazine+using+a+direct+Z-Scheme+AgI%2FBi4V2O11+photocatalyst%3A+Mineralization+activity%2C+degradation+pathways+and+promoted+charge+separation+mechanism&rft.jtitle=Journal+of+hazardous+materials&rft.au=Wen%2C+Xiao-Ju&rft.au=Qian-Lu&rft.au=Lv%2C+Xiao-Xiao&rft.au=Sun%2C+Jie&rft.date=2020-03-05&rft.issn=0304-3894&rft.volume=385&rft.spage=121508&rft_id=info:doi/10.1016%2Fj.jhazmat.2019.121508&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2019_121508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |