Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/Bi4V2O11 photocatalyst: Mineralization activity, degradation pathways and promoted charge separation mechanism

[Display omitted] •Novel direct Z-scheme AgI/Bi4V2O11 photocatalysts were prepared.•A superior photocatalytic activity for the degradation of SMZ refractory pollutants.•A plausible degradation pathway for SMZ was proposed.•The fabrication Z-scheme heterostructure play a central role in promoting cha...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 385; p. 121508
Main Authors Wen, Xiao-Ju, Qian-Lu, Lv, Xiao-Xiao, Sun, Jie, Guo, Jie, Fei, Zheng-Hao, Niu, Cheng-Gang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.03.2020
Subjects
Online AccessGet full text
ISSN0304-3894
1873-3336
1873-3336
DOI10.1016/j.jhazmat.2019.121508

Cover

Loading…
Abstract [Display omitted] •Novel direct Z-scheme AgI/Bi4V2O11 photocatalysts were prepared.•A superior photocatalytic activity for the degradation of SMZ refractory pollutants.•A plausible degradation pathway for SMZ was proposed.•The fabrication Z-scheme heterostructure play a central role in promoting charge separation and active radical generation. Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi4V2O11 composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO3− and SO42−, the presence of Cl− and HCO3− presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O2−, h+ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi4V2O11-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts.
AbstractList Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi4V2O11 composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO3- and SO42-, the presence of Cl- and HCO3- presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O2-, h+ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi4V2O11-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts.Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi4V2O11 composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO3- and SO42-, the presence of Cl- and HCO3- presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O2-, h+ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi4V2O11-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts.
Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi₄V₂O₁₁ heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi₄V₂O₁₁ heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi₄V₂O₁₁ composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO₃⁻ and SO₄²⁻, the presence of Cl⁻ and HCO₃⁻ presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O₂⁻, h⁺ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi₄V₂O₁₁-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts.
[Display omitted] •Novel direct Z-scheme AgI/Bi4V2O11 photocatalysts were prepared.•A superior photocatalytic activity for the degradation of SMZ refractory pollutants.•A plausible degradation pathway for SMZ was proposed.•The fabrication Z-scheme heterostructure play a central role in promoting charge separation and active radical generation. Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would greatly improve the photocatalytic performance of catalyst. Herein, a Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst was prepared by a hydrothermal process combined with in situ coprecipitation process. Multiple techniques were employed to investigate the morphology, composition, chemical and electronic properties of the as-prepared samples. The obtained Z-scheme AgI/Bi4V2O11 heterojunction photocatalyst exhibited remarkably enhanced photocatalytic performance towards sulfamethazine (SMZ) degradation under visible light irradiation. Especially, the 20 wt% AgI/Bi4V2O11 composites exhibited the highest photocatalytic activity for sulfamethazine (SMZ) degradation and 91.47% SMZ would be eliminated within 60 min. In comparison with NO3− and SO42−, the presence of Cl− and HCO3− presented more obviously inhibition effects on SMZ degradation. The possible degradation pathways of SMZ were speculated by identifying degradation intermediates. O2−, h+ and OH all involved in the photocatalytic degradation SMZ. The highly enhanced photocatalytic performance might be attributed to form Z-scheme junction between AgI and BVO, which are conducive to the efficient charges separation and maintain high redox potential. This work enriches Bi4V2O11-based Z-scheme heterojunction photocatalytic system and provides a reference for the preparation of effective Z-scheme junction photocatalysts.
ArticleNumber 121508
Author Guo, Jie
Wen, Xiao-Ju
Sun, Jie
Qian-Lu
Fei, Zheng-Hao
Niu, Cheng-Gang
Lv, Xiao-Xiao
Author_xml – sequence: 1
  givenname: Xiao-Ju
  orcidid: 0000-0002-6450-7244
  surname: Wen
  fullname: Wen, Xiao-Ju
  email: wenxiaoju1990@126.com
  organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China
– sequence: 2
  surname: Qian-Lu
  fullname: Qian-Lu
  organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China
– sequence: 3
  givenname: Xiao-Xiao
  surname: Lv
  fullname: Lv, Xiao-Xiao
  email: lvxiaoxiao0120@163.com
  organization: Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong Province, 518172, China
– sequence: 4
  givenname: Jie
  surname: Sun
  fullname: Sun, Jie
  organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China
– sequence: 5
  givenname: Jie
  surname: Guo
  fullname: Guo, Jie
  organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China
– sequence: 6
  givenname: Zheng-Hao
  surname: Fei
  fullname: Fei, Zheng-Hao
  organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224051, China
– sequence: 7
  givenname: Cheng-Gang
  orcidid: 0000-0002-5904-9111
  surname: Niu
  fullname: Niu, Cheng-Gang
  organization: College of Environmental Science Engineering, Hunan University, Changsha, Hunan province, 410082, China
BookMark eNqFkU1v1DAQhi1UJLaFn4DkIweyHcf5MhxQqaBUKioSHwcu1qw92XiVxFvbW7T9Y_17pKQSgsueLI3e5x1rnmN2NPqRGHspYClAVKeb5abDuwHTMgehliIXJTRP2EI0tcyklNURW4CEIpONKp6x4xg3ACDqsliw-y-dT95gwn6fnOGW1gEtJudH7lsed32LA6Wp343Ed9GNa47cukAm8Z_ZV9PRQPxsfXn63hU_8msh-PZvY0xv-OcJDNi7u7kUTXK3Lu1f_7Nqi6n7hfvIcbR8G_zgE1luOgxr4pG2GObcQNNsdHF4zp622Ed68fiesO8fP3w7_5RdXV9cnp9dZaaom5RJQGsqqUpEKlYlNbUxbWmgbeTKQqFEK-QK0FQlkDUWsDbKgsxVraQqGilP2Ku5d_rUzY5i0oOLhvoeR_K7qPMCoIS6UvnhqJy8qLqq6ilazlETfIyBWr0NbsCw1wL0g1O90Y9O9YNTPTuduLf_ccalP5dJAV1_kH430zQd7NZR0NE4Gg3NOrX17kDDb_PJx2w
CitedBy_id crossref_primary_10_1016_j_seppur_2021_119152
crossref_primary_10_3762_bjnano_14_26
crossref_primary_10_1016_j_ijhydene_2024_07_441
crossref_primary_10_1007_s13738_021_02345_2
crossref_primary_10_1007_s10876_024_02692_z
crossref_primary_10_1039_D1RA00055A
crossref_primary_10_1039_D4RA03431G
crossref_primary_10_1016_j_jallcom_2021_161292
crossref_primary_10_1016_j_seppur_2025_132499
crossref_primary_10_1016_j_seppur_2020_118109
crossref_primary_10_1016_j_seppur_2020_117935
crossref_primary_10_1016_j_jhazmat_2022_129061
crossref_primary_10_1016_j_jclepro_2025_145060
crossref_primary_10_1016_j_molliq_2020_113300
crossref_primary_10_1016_j_jallcom_2021_163469
crossref_primary_10_1007_s10854_023_09861_2
crossref_primary_10_1016_j_jcis_2024_05_159
crossref_primary_10_1016_j_surfin_2024_104226
crossref_primary_10_1016_j_colsurfa_2021_127523
crossref_primary_10_1016_j_fuel_2020_118618
crossref_primary_10_1016_j_jcis_2020_06_075
crossref_primary_10_1038_s41598_020_76997_0
crossref_primary_10_1016_j_cej_2021_134000
crossref_primary_10_1016_j_mssp_2021_106239
crossref_primary_10_1016_j_seppur_2022_122838
crossref_primary_10_1016_j_seppur_2022_120533
crossref_primary_10_1039_D0NJ02549F
crossref_primary_10_1016_j_jhazmat_2020_123780
crossref_primary_10_1016_j_cej_2020_127456
crossref_primary_10_1016_j_optmat_2023_113635
crossref_primary_10_1080_01411594_2021_2012175
crossref_primary_10_1080_03601234_2024_2363580
crossref_primary_10_1016_j_heliyon_2024_e36288
crossref_primary_10_1016_j_mtener_2021_100829
crossref_primary_10_1021_acs_est_3c03711
crossref_primary_10_1016_j_seppur_2022_121094
crossref_primary_10_1016_j_jcis_2021_10_123
crossref_primary_10_1016_j_psep_2024_12_082
crossref_primary_10_1016_j_ccr_2024_216377
crossref_primary_10_1016_j_jwpe_2022_102671
crossref_primary_10_1016_j_optmat_2021_111819
crossref_primary_10_1039_D3EN00488K
crossref_primary_10_3390_antibiotics11010051
crossref_primary_10_1016_j_apsusc_2021_151671
crossref_primary_10_1016_j_apsusc_2023_156528
crossref_primary_10_1016_j_jcis_2021_11_135
crossref_primary_10_1016_j_jallcom_2024_174794
crossref_primary_10_1016_j_apt_2020_08_017
crossref_primary_10_3390_ijms25136871
crossref_primary_10_1039_D2CY01815B
crossref_primary_10_1016_j_jcis_2021_11_141
crossref_primary_10_1016_j_jhazmat_2020_122345
crossref_primary_10_1016_j_jcis_2023_03_007
crossref_primary_10_1016_j_materresbull_2023_112567
crossref_primary_10_1016_j_cej_2024_153261
crossref_primary_10_1021_acs_langmuir_3c02408
crossref_primary_10_1016_j_colsurfa_2025_136136
crossref_primary_10_1007_s12613_021_2332_0
crossref_primary_10_1016_j_inoche_2020_108399
crossref_primary_10_2109_jcersj2_21151
crossref_primary_10_1016_j_apsusc_2023_156415
crossref_primary_10_1016_j_cej_2024_149571
crossref_primary_10_1016_j_jclepro_2022_131992
crossref_primary_10_1016_j_apsusc_2023_156416
crossref_primary_10_1016_j_surfin_2024_104361
crossref_primary_10_1016_j_jwpe_2024_105909
crossref_primary_10_1016_j_cej_2020_124402
crossref_primary_10_1016_j_jpcs_2023_111781
crossref_primary_10_1016_j_apsusc_2024_160057
crossref_primary_10_1016_j_jallcom_2022_166147
crossref_primary_10_1007_s11164_022_04832_4
crossref_primary_10_1016_j_seppur_2021_118787
crossref_primary_10_1021_acs_inorgchem_3c03582
crossref_primary_10_2166_wst_2022_318
crossref_primary_10_1016_j_jece_2023_109641
crossref_primary_10_1007_s10876_025_02771_9
crossref_primary_10_1007_s11814_022_1332_8
crossref_primary_10_1039_D1EW00731A
crossref_primary_10_1016_j_eti_2021_102032
crossref_primary_10_1016_j_cej_2021_131585
crossref_primary_10_1016_j_jece_2023_110521
crossref_primary_10_1016_j_jhazmat_2020_122128
crossref_primary_10_1016_j_apcata_2024_119614
crossref_primary_10_1039_D3EN00172E
crossref_primary_10_1016_j_seppur_2025_131911
crossref_primary_10_1016_j_seppur_2024_127482
crossref_primary_10_1007_s11581_020_03749_5
crossref_primary_10_1016_j_colsurfa_2025_136315
crossref_primary_10_1016_j_inoche_2021_108675
crossref_primary_10_1007_s10971_025_06711_x
crossref_primary_10_1016_j_jeurceramsoc_2023_11_003
crossref_primary_10_1016_j_jphotochem_2023_115276
crossref_primary_10_1016_j_seppur_2024_126832
crossref_primary_10_1016_j_cej_2023_144240
crossref_primary_10_1016_j_jece_2020_104505
crossref_primary_10_1007_s10854_021_06193_x
crossref_primary_10_1016_j_colsurfa_2021_126262
crossref_primary_10_1016_j_jenvman_2024_121875
crossref_primary_10_1016_j_optmat_2021_111573
crossref_primary_10_1016_j_scitotenv_2022_156828
crossref_primary_10_1016_j_surfin_2024_104552
crossref_primary_10_1016_j_seppur_2022_122664
crossref_primary_10_1016_j_optmat_2021_111576
crossref_primary_10_1016_j_seppur_2021_120164
crossref_primary_10_1016_j_jclepro_2024_142364
crossref_primary_10_1016_j_cej_2022_137620
crossref_primary_10_1016_j_seppur_2024_126266
crossref_primary_10_1002_jctb_6756
crossref_primary_10_1155_2020_1950645
crossref_primary_10_1016_j_jallcom_2024_175687
crossref_primary_10_1016_j_colsurfa_2022_128297
crossref_primary_10_1016_j_cclet_2021_04_003
crossref_primary_10_1016_j_surfin_2024_104685
crossref_primary_10_1016_j_jhazmat_2021_126928
crossref_primary_10_1016_j_jallcom_2021_160092
crossref_primary_10_1007_s10854_022_07762_4
crossref_primary_10_1016_j_seppur_2024_130754
crossref_primary_10_1016_j_compositesb_2024_111594
crossref_primary_10_1016_j_jcis_2020_11_044
crossref_primary_10_1016_j_cej_2021_128991
crossref_primary_10_1016_j_mtchem_2023_101603
crossref_primary_10_1016_j_jcis_2021_11_100
crossref_primary_10_1016_j_jclepro_2023_138921
crossref_primary_10_1016_j_jallcom_2021_159542
crossref_primary_10_1021_acs_jpcc_1c04229
crossref_primary_10_3390_ijerph19041949
crossref_primary_10_1016_j_seppur_2023_124458
crossref_primary_10_1016_j_chemosphere_2022_136386
crossref_primary_10_1016_j_gee_2024_12_008
crossref_primary_10_1016_j_seppur_2021_119430
crossref_primary_10_1016_j_chemosphere_2021_131579
crossref_primary_10_1016_j_jcis_2020_06_126
crossref_primary_10_1016_j_mssp_2023_108031
crossref_primary_10_1016_j_cej_2024_157491
crossref_primary_10_1016_j_envpol_2024_123325
crossref_primary_10_1016_j_diamond_2021_108788
crossref_primary_10_1016_j_jallcom_2022_168483
crossref_primary_10_1016_j_heliyon_2024_e29123
crossref_primary_10_1016_j_cej_2022_141105
crossref_primary_10_1016_j_mtnano_2023_100385
crossref_primary_10_1080_03067319_2023_2282714
crossref_primary_10_1016_j_jhazmat_2023_132009
crossref_primary_10_3390_cryst14010055
crossref_primary_10_1016_j_jmst_2023_07_012
crossref_primary_10_1007_s10854_021_07291_6
crossref_primary_10_1007_s11356_020_10820_1
crossref_primary_10_1016_j_jclepro_2024_140951
crossref_primary_10_1016_j_surfin_2025_105899
crossref_primary_10_1016_j_cej_2023_146867
crossref_primary_10_1016_j_jhazmat_2021_125815
crossref_primary_10_1039_D1CS00684C
crossref_primary_10_1016_j_ceramint_2023_10_138
crossref_primary_10_1016_j_jmrt_2022_09_130
crossref_primary_10_1016_j_inoche_2021_108750
crossref_primary_10_1007_s11356_022_18628_x
crossref_primary_10_1016_j_seppur_2024_127443
crossref_primary_10_1016_j_seppur_2021_120318
crossref_primary_10_1007_s11581_023_05363_7
crossref_primary_10_1016_j_jpcs_2024_112289
crossref_primary_10_1016_j_ijhydene_2023_12_125
crossref_primary_10_1142_S1793292021500181
crossref_primary_10_1016_j_seppur_2021_120089
crossref_primary_10_1016_j_jhazmat_2021_126217
crossref_primary_10_1039_D2NJ01187E
crossref_primary_10_1016_j_mssp_2023_107966
crossref_primary_10_1016_j_colsurfa_2021_127710
crossref_primary_10_1016_j_chphi_2024_100505
crossref_primary_10_1016_j_apmt_2022_101574
crossref_primary_10_1016_j_jcis_2022_05_101
crossref_primary_10_1016_j_molstruc_2023_135385
crossref_primary_10_1021_acsomega_3c08939
crossref_primary_10_1016_j_seppur_2021_120406
crossref_primary_10_1016_j_jhazmat_2022_130326
crossref_primary_10_1007_s13399_023_04583_1
crossref_primary_10_1016_j_cej_2024_150844
crossref_primary_10_1016_j_jcis_2020_12_043
crossref_primary_10_1016_j_seppur_2022_121480
crossref_primary_10_1016_j_jpcs_2021_110381
crossref_primary_10_1016_j_jhazmat_2021_126209
crossref_primary_10_1016_j_jallcom_2022_164671
crossref_primary_10_1039_D1NJ00161B
crossref_primary_10_1016_j_colsurfa_2024_134054
crossref_primary_10_1016_j_jcis_2022_10_131
crossref_primary_10_1016_j_jece_2023_109832
crossref_primary_10_1016_j_seppur_2024_128875
crossref_primary_10_1002_crat_202000219
crossref_primary_10_1002_slct_202403270
crossref_primary_10_1016_j_cej_2023_146281
crossref_primary_10_1016_j_jphotochem_2022_114223
crossref_primary_10_1016_j_jcis_2022_03_075
crossref_primary_10_1016_j_seppur_2020_117691
crossref_primary_10_1016_j_ceramint_2024_11_090
crossref_primary_10_1016_j_jcis_2021_03_117
crossref_primary_10_1016_j_jcis_2021_10_027
crossref_primary_10_1016_j_cej_2022_138894
crossref_primary_10_1016_j_jcis_2024_04_163
crossref_primary_10_1016_j_envres_2021_111360
crossref_primary_10_1016_j_jssc_2024_124940
crossref_primary_10_1016_j_cej_2022_138098
crossref_primary_10_1016_j_jece_2021_106498
crossref_primary_10_1016_j_seppur_2024_128187
crossref_primary_10_1016_j_cej_2022_139745
crossref_primary_10_1016_j_chemosphere_2024_141218
crossref_primary_10_1007_s11356_021_15180_y
crossref_primary_10_1007_s11144_022_02341_4
crossref_primary_10_1016_j_compositesb_2021_109200
crossref_primary_10_1016_j_optmat_2023_113842
crossref_primary_10_1016_j_colsurfa_2021_126633
crossref_primary_10_1016_j_ceramint_2021_08_249
crossref_primary_10_1016_j_jhazmat_2020_124948
crossref_primary_10_1016_j_jcis_2024_06_063
crossref_primary_10_1016_j_jece_2020_104341
crossref_primary_10_1016_j_jallcom_2021_163539
crossref_primary_10_1016_j_seppur_2022_120858
crossref_primary_10_1016_j_envres_2023_117639
crossref_primary_10_1016_j_seppur_2022_120977
crossref_primary_10_3390_catal14020147
crossref_primary_10_1016_j_optmat_2021_111947
crossref_primary_10_1002_smll_202309972
crossref_primary_10_1021_acsomega_2c04496
crossref_primary_10_1016_j_jece_2024_112277
crossref_primary_10_1016_j_jmst_2024_01_002
crossref_primary_10_1016_j_solidstatesciences_2021_106610
crossref_primary_10_1080_10643389_2020_1859289
crossref_primary_10_1016_j_enmm_2022_100765
crossref_primary_10_1016_j_apsusc_2024_161403
crossref_primary_10_1016_j_ceramint_2024_04_283
crossref_primary_10_1002_adfm_202411155
crossref_primary_10_1016_j_jwpe_2020_101335
crossref_primary_10_1016_j_mssp_2020_105611
crossref_primary_10_1016_j_jallcom_2024_178313
crossref_primary_10_1016_j_envpol_2021_117864
crossref_primary_10_1039_D3RA07534F
crossref_primary_10_1016_j_mssp_2022_107058
crossref_primary_10_1016_j_cej_2020_126313
crossref_primary_10_1016_j_jenvman_2023_119302
crossref_primary_10_1007_s11164_022_04699_5
crossref_primary_10_1016_j_scitotenv_2021_152237
crossref_primary_10_1016_j_ceramint_2020_12_121
crossref_primary_10_1016_j_colsurfa_2022_129667
crossref_primary_10_1016_j_jallcom_2022_166653
crossref_primary_10_1007_s44169_023_00030_4
crossref_primary_10_1016_j_apsusc_2024_160205
crossref_primary_10_1002_slct_202203601
crossref_primary_10_1016_j_jclepro_2023_139617
crossref_primary_10_1016_j_mssp_2021_106338
crossref_primary_10_1016_j_jhazmat_2022_129895
crossref_primary_10_1016_j_molstruc_2022_134183
crossref_primary_10_1016_j_apcatb_2024_124099
crossref_primary_10_1016_j_mssp_2023_107909
crossref_primary_10_1016_j_jiec_2024_01_033
crossref_primary_10_1016_j_molliq_2021_115476
crossref_primary_10_1016_j_ceramint_2020_07_055
Cites_doi 10.1016/j.jhazmat.2014.08.055
10.1021/es403605f
10.1016/j.molcata.2016.07.030
10.1016/j.apcatb.2017.09.060
10.1021/jp406508y
10.1039/C7DT00106A
10.1016/j.cej.2016.04.128
10.1021/es400101f
10.1039/C2TA00312K
10.1016/j.jcat.2017.11.029
10.1016/j.jcat.2019.01.009
10.1039/C4RA04815F
10.1016/j.solmat.2018.01.026
10.1016/j.solmat.2018.03.046
10.1016/j.jcat.2017.12.005
10.1039/C8CE00101D
10.1039/C7DT02151H
10.1021/acssuschemeng.8b01448
10.1016/j.jclepro.2019.04.012
10.1016/j.molliq.2019.111063
10.1016/j.colsurfa.2019.04.026
10.1016/j.jhazmat.2018.08.099
10.1039/C7CE02151H
10.1039/c3cy20811g
10.1016/j.mattod.2018.04.008
10.1021/acsami.9b05074
10.1039/C5TA03465E
10.1039/C7NJ03413J
10.1016/j.apcatb.2018.08.063
10.1002/adma.201400288
10.1016/j.jcis.2018.03.056
10.1021/acs.inorgchem.6b00130
10.1016/j.apcatb.2003.11.010
10.1016/j.apcatb.2019.01.052
10.1016/j.chemosphere.2008.11.086
10.1016/j.chemosphere.2019.05.229
10.1016/j.apsusc.2015.07.139
10.1002/smtd.201700080
10.1016/j.jcis.2017.03.029
10.1016/j.solmat.2018.03.023
10.1016/j.watres.2018.07.025
10.1021/acs.iecr.9b01737
10.1016/j.cej.2018.12.118
10.1016/j.cej.2019.05.069
10.1021/acssuschemeng.7b00501
10.1016/j.jhazmat.2014.08.050
10.1016/j.cej.2018.08.084
10.1039/C8NH00062J
10.1016/j.ceramint.2018.12.119
10.1016/j.apcatb.2015.05.022
10.1016/S1872-2067(14)60075-9
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2019.121508
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 10_1016_j_jhazmat_2019_121508
S0304389419314621
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c478t-30adc6395aae4b5e87ccf5c0f83bd0491f13b0ac650edcd0a7c9d032979394833
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Fri Sep 05 14:21:20 EDT 2025
Fri Sep 05 13:31:54 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Tue Jul 01 00:49:23 EDT 2025
Fri Feb 23 02:50:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photocatalytic
Visible light
Z-scheme
Sulfamethazine
AgI/Bi4V2O11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-30adc6395aae4b5e87ccf5c0f83bd0491f13b0ac650edcd0a7c9d032979394833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5904-9111
0000-0002-6450-7244
PQID 2315097667
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2400507692
proquest_miscellaneous_2315097667
crossref_primary_10_1016_j_jhazmat_2019_121508
crossref_citationtrail_10_1016_j_jhazmat_2019_121508
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2019_121508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-05
PublicationDateYYYYMMDD 2020-03-05
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-05
  day: 05
PublicationDecade 2020
PublicationTitle Journal of hazardous materials
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Mao, Peng (bib0090) 2018; 20
Xue, Peng, Huang, Zeng, Wen, Deng, Yang, Yan (bib0235) 2019; 45
Guo, Jiang, Wang, Shang, Lu, Li, Wu (bib0050) 2019; 248
Wan, Zhang (bib0160) 2015; 3
Wang, Wu, Feng, Tu, Xiao, Xiong, Ang, Yuan, Chew (bib0170) 2018; 144
Wang, Li, Zhang, Li, Wu (bib0180) 2019; 240
Xu, Zhang, Yu, Wageh, Al-Ghamdi, Jaroniec (bib0230) 2018; 21
Lv, Li, Hong, Lu, Xu, Chen, Shi (bib0120) 2017; 46
Wen, Niu, Zhang, Liang, Zeng (bib0190) 2018; 221
Payan, Isari, Gholizade (bib0135) 2019; 361
Zhou, Song, Chen, Yin (bib0270) 2013; 47
Li, Fang, Yu, Zhou, Zhu, Xie (bib0075) 2015; 358
Pan, Zhang, Zhou, Cai, Li, Tian (bib0130) 2018; 354
Wen, Shen, Fei, Niu, Lu, Guo, Lu (bib0200) 2019; 573
Li, Lai, Xu, Zeng, Huang, Qin, Yi, Cheng, Wang, Huang, Liu, Zhang (bib0080) 2019; 225
Zhao, Duan, Chen (bib0260) 2019; 58
Chen, Liu, Wang, Ding, Sun, Yan (bib0020) 2013; 1
He, Xu, Cheng, Yu, Ho (bib0055) 2018; 3
Wang, Li, Li, Zhang (bib0175) 2019
Zhou, Yu, Jaroniec (bib0265) 2014; 26
Guo, Niu, Zhang, Wen, Liang, Zhang, Guan, Tang, Zeng (bib0035) 2018; 6
Liu, Niu, Feng, Sui, Zhu (bib0095) 2014; 4
Zhang, Hu, Jiang, Chen, Meng, Fu (bib0255) 2014; 280
Qiao, Zhu, Liu, Chu, Pan (bib0140) 2018; 20
Barhoumi, Oturan, Olvera-Vargas, Brillas, Gadri, Ammar, Oturan (bib0010) 2016; 94
Wen, Niu, Zhang, Zeng (bib0220) 2017; 5
He, Cao, Zhou, Yu (bib0060) 2014; 35
Xue, Huang, Li, Zeng, Deng, Yang, Chen, Li, Gong, Li (bib0240) 2019; 373
Yu, Huang, Wang, Yuan, Jiang, Wu, Zhang, Zeng (bib0245) 2018; 522
Guo, Xu, Wang, Zhang, He, Li (bib0040) 2013; 3
Lv, Chen, Sun, Zhou (bib0110) 2016; 55
Wen, Niu, Zhang, Zeng (bib0195) 2017; 46
dos Santos, Rodriguez, Afonso, Mesquita, Nascimento, Patrocinio, Silva, Oliveira, Fabris, Pereira (bib0025) 2016; 6
Guo, Niu, Liang, Niu, Huang, Zhang, Tang, Yang, Feng, Zeng (bib0045) 2019; 370
Wang, Li, Zhang (bib0185) 2019; 11
Wen, Shen, Niu, Lai, Zhu, Sun, Hu, Fei (bib0215) 2019; 288
Abroshan, Farhadi, Zabardasti (bib0005) 2018; 178
Kummerer (bib0070) 2009; 75
Liang, Niu, Zhang, Wen, Yang, Guo, Zeng (bib0085) 2019; 361
Lv, Chen, Sun, Zhou, Fan, Zhang (bib0115) 2015; 179
Zhang, Gao, Jia, Wang, Chen, Xu (bib0250) 2018; 182
Wen, Niu, Zhang, Liang, Guo, Zeng (bib0210) 2018; 358
Konstantinou, Albanis (bib0065) 2004; 49
Rochman, Manzano, Hentschel, Simonich, Hoh (bib0150) 2013; 47
Wen, Niu, Guo, Zhang, Liang, Zeng (bib0225) 2018; 358
Sadeghzadeh-Attar (bib0155) 2018; 183
Meng, Zhang (bib0125) 2016; 423
Chen, Wang, Zhang, Fang (bib0015) 2013; 117
Liu, Ji, Li, Liu (bib0100) 2019; 233
Ri, Song-Gol, Ju-Yong, Pak, Ri, Ri (bib0145) 2018; 42
Wang, Quan, Jiang, Chen, Li, Meng, Chen (bib0165) 2016; 300
Fabianska, Bialk-Bielinska, Stepnowski, Stolte, Siedlecka (bib0030) 2014; 280
Wen, Niu, Ruan, Zhang, Zeng (bib0205) 2017; 497
Low, Jiang, Cheng, Wageh, Al‐Ghamdi, Yu (bib0105) 2017; 1
Lv (10.1016/j.jhazmat.2019.121508_bib0115) 2015; 179
Sadeghzadeh-Attar (10.1016/j.jhazmat.2019.121508_bib0155) 2018; 183
Meng (10.1016/j.jhazmat.2019.121508_bib0125) 2016; 423
Ri (10.1016/j.jhazmat.2019.121508_bib0145) 2018; 42
Wan (10.1016/j.jhazmat.2019.121508_bib0160) 2015; 3
Wen (10.1016/j.jhazmat.2019.121508_bib0195) 2017; 46
Zhou (10.1016/j.jhazmat.2019.121508_bib0270) 2013; 47
dos Santos (10.1016/j.jhazmat.2019.121508_bib0025) 2016; 6
Konstantinou (10.1016/j.jhazmat.2019.121508_bib0065) 2004; 49
Low (10.1016/j.jhazmat.2019.121508_bib0105) 2017; 1
Rochman (10.1016/j.jhazmat.2019.121508_bib0150) 2013; 47
Yu (10.1016/j.jhazmat.2019.121508_bib0245) 2018; 522
Liu (10.1016/j.jhazmat.2019.121508_bib0100) 2019; 233
Wen (10.1016/j.jhazmat.2019.121508_bib0205) 2017; 497
Wang (10.1016/j.jhazmat.2019.121508_bib0165) 2016; 300
Wen (10.1016/j.jhazmat.2019.121508_bib0200) 2019; 573
Payan (10.1016/j.jhazmat.2019.121508_bib0135) 2019; 361
Guo (10.1016/j.jhazmat.2019.121508_bib0045) 2019; 370
Wang (10.1016/j.jhazmat.2019.121508_bib0185) 2019; 11
Wang (10.1016/j.jhazmat.2019.121508_bib0180) 2019; 240
Chen (10.1016/j.jhazmat.2019.121508_bib0015) 2013; 117
Liu (10.1016/j.jhazmat.2019.121508_bib0090) 2018; 20
Pan (10.1016/j.jhazmat.2019.121508_bib0130) 2018; 354
Xue (10.1016/j.jhazmat.2019.121508_bib0240) 2019; 373
Zhang (10.1016/j.jhazmat.2019.121508_bib0255) 2014; 280
Li (10.1016/j.jhazmat.2019.121508_bib0080) 2019; 225
Guo (10.1016/j.jhazmat.2019.121508_bib0035) 2018; 6
Barhoumi (10.1016/j.jhazmat.2019.121508_bib0010) 2016; 94
Wang (10.1016/j.jhazmat.2019.121508_bib0170) 2018; 144
Guo (10.1016/j.jhazmat.2019.121508_bib0050) 2019; 248
Xu (10.1016/j.jhazmat.2019.121508_bib0230) 2018; 21
Qiao (10.1016/j.jhazmat.2019.121508_bib0140) 2018; 20
Wen (10.1016/j.jhazmat.2019.121508_bib0190) 2018; 221
Fabianska (10.1016/j.jhazmat.2019.121508_bib0030) 2014; 280
He (10.1016/j.jhazmat.2019.121508_bib0060) 2014; 35
Chen (10.1016/j.jhazmat.2019.121508_bib0020) 2013; 1
Liang (10.1016/j.jhazmat.2019.121508_bib0085) 2019; 361
Li (10.1016/j.jhazmat.2019.121508_bib0075) 2015; 358
He (10.1016/j.jhazmat.2019.121508_bib0055) 2018; 3
Wen (10.1016/j.jhazmat.2019.121508_bib0210) 2018; 358
Wang (10.1016/j.jhazmat.2019.121508_bib0175) 2019
Zhou (10.1016/j.jhazmat.2019.121508_bib0265) 2014; 26
Lv (10.1016/j.jhazmat.2019.121508_bib0120) 2017; 46
Zhao (10.1016/j.jhazmat.2019.121508_bib0260) 2019; 58
Lv (10.1016/j.jhazmat.2019.121508_bib0110) 2016; 55
Zhang (10.1016/j.jhazmat.2019.121508_bib0250) 2018; 182
Kummerer (10.1016/j.jhazmat.2019.121508_bib0070) 2009; 75
Guo (10.1016/j.jhazmat.2019.121508_bib0040) 2013; 3
Wen (10.1016/j.jhazmat.2019.121508_bib0220) 2017; 5
Wen (10.1016/j.jhazmat.2019.121508_bib0215) 2019; 288
Liu (10.1016/j.jhazmat.2019.121508_bib0095) 2014; 4
Abroshan (10.1016/j.jhazmat.2019.121508_bib0005) 2018; 178
Wen (10.1016/j.jhazmat.2019.121508_bib0225) 2018; 358
Xue (10.1016/j.jhazmat.2019.121508_bib0235) 2019; 45
References_xml – volume: 117
  start-page: 19346
  year: 2013
  end-page: 19352
  ident: bib0015
  article-title: High-efficiency visible-light-driven Ag
  publication-title: J. Phys. Chem. C
– volume: 373
  start-page: 1144
  year: 2019
  end-page: 1157
  ident: bib0240
  article-title: Assembly of AgI nanoparticles and ultrathin g-C
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 5134
  year: 2017
  end-page: 5147
  ident: bib0220
  article-title: Fabrication of SnO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 46
  start-page: 4982
  year: 2017
  end-page: 4993
  ident: bib0195
  article-title: Novel p-n heterojunction BiOI/CeO
  publication-title: Dalton Trans.
– volume: 58
  start-page: 10402
  year: 2019
  end-page: 10409
  ident: bib0260
  article-title: Bi-quantum-dot-decorated Bi
  publication-title: Ind. Eng. Chem. Res.
– volume: 225
  start-page: 898
  year: 2019
  end-page: 912
  ident: bib0080
  article-title: Facile synthesis of bismuth oxyhalogen-based Z-scheme photocatalyst for visible-light-driven pollutant removal: Kinetics, degradation pathways and mechanism
  publication-title: J. Clean. Prod.
– volume: 182
  start-page: 113
  year: 2018
  end-page: 120
  ident: bib0250
  article-title: Oxygen vacancy-rich mesoporous ZrO
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 42
  start-page: 647
  year: 2018
  end-page: 653
  ident: bib0145
  article-title: Construction of the Bi
  publication-title: New J. Chem.
– volume: 240
  start-page: 39
  year: 2019
  end-page: 49
  ident: bib0180
  article-title: 0D Bi nanodots/2D Bi
  publication-title: Appl. Catal. B-Environ.
– volume: 248
  start-page: 552
  year: 2019
  end-page: 566
  ident: bib0050
  article-title: Enhanced catalytic performance of graphene-TiO
  publication-title: Appl. Catal. B-Environ.
– volume: 288
  year: 2019
  ident: bib0215
  article-title: Attachment of Ag/AgCl nanoparticles on CdMoO
  publication-title: J. Mol. Liq.
– volume: 35
  start-page: 989
  year: 2014
  end-page: 1007
  ident: bib0060
  article-title: Recent advances in visible light Bi-based photocatalysts
  publication-title: Chin. J. Catal.
– volume: 11
  start-page: 27686
  year: 2019
  end-page: 27696
  ident: bib0185
  article-title: Ag-bridged Z-Scheme 2D/2D Bi
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20
  start-page: 2553
  year: 2018
  end-page: 2561
  ident: bib0090
  article-title: Synthesis of Bi
  publication-title: Crystengcomm
– volume: 3
  start-page: 16737
  year: 2015
  end-page: 16745
  ident: bib0160
  article-title: Synthesis and facet-dependent enhanced photocatalytic activity of Bi
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 4
  start-page: 43399
  year: 2014
  end-page: 43405
  ident: bib0095
  article-title: One-pot synthesis of Bi
  publication-title: RSC Adv.
– volume: 280
  start-page: 713
  year: 2014
  end-page: 722
  ident: bib0255
  article-title: Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi
  publication-title: J. Hazard. Mater.
– volume: 361
  start-page: 1121
  year: 2019
  end-page: 1141
  ident: bib0135
  article-title: Catalytic decomposition of sulfamethazine antibiotic and pharmaceutical wastewater using Cu-TiO
  publication-title: Chem. Eng. J.
– volume: 55
  start-page: 4782
  year: 2016
  end-page: 4789
  ident: bib0110
  article-title: Construction of alpha-beta phase junction on Bi
  publication-title: Inorg. Chem.
– volume: 300
  start-page: 280
  year: 2016
  end-page: 290
  ident: bib0165
  article-title: Synthesis of redox-mediator-free direct Z-scheme AgI/WO
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 1042
  year: 2018
  end-page: 1063
  ident: bib0230
  article-title: Direct Z-scheme photocatalysts: principles, synthesis, and applications
  publication-title: Mater. Today
– volume: 423
  start-page: 533
  year: 2016
  end-page: 549
  ident: bib0125
  article-title: Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches
  publication-title: J. Mol. Catal. A-Chem.
– volume: 94
  start-page: 52
  year: 2016
  end-page: 61
  ident: bib0010
  article-title: Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine
  publication-title: Kinet. Mech. Tox. Asses. Water Res.
– volume: 361
  start-page: 245
  year: 2019
  end-page: 258
  ident: bib0085
  article-title: Construction of 2D heterojunction system with enhanced photocatalytic performance: plasmonic Bi and reduced graphene oxide co-modified Bi
  publication-title: J. Hazard. Mater.
– volume: 6
  year: 2016
  ident: bib0025
  article-title: A hole inversion layer at the BiVO
  publication-title: Sci. Rep.-UK
– volume: 3
  start-page: 1603
  year: 2013
  end-page: 1611
  ident: bib0040
  article-title: Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdate photocatalyst
  publication-title: Catal. Sci. Technol.
– volume: 178
  start-page: 154
  year: 2018
  end-page: 163
  ident: bib0005
  article-title: Novel magnetically separable Ag
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 358
  start-page: 46
  year: 2015
  end-page: 56
  ident: bib0075
  article-title: Ag-based semiconductor photocatalysts in environmental purification
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 464
  year: 2018
  end-page: 504
  ident: bib0055
  article-title: Review on nanoscale Bi-based photocatalysts
  publication-title: Nanoscale Horiz.
– volume: 358
  start-page: 211
  year: 2018
  end-page: 223
  ident: bib0225
  article-title: Photocatalytic degradation of levofloxacin by ternary Ag
  publication-title: J. Catal.
– volume: 144
  start-page: 215
  year: 2018
  end-page: 225
  ident: bib0170
  article-title: Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam
  publication-title: Water Res.
– volume: 221
  start-page: 701
  year: 2018
  end-page: 714
  ident: bib0190
  article-title: A novel Ag
  publication-title: Appl. Catal. B-Environ.
– volume: 497
  start-page: 368
  year: 2017
  end-page: 377
  ident: bib0205
  article-title: AgI nanoparticles-decorated CeO
  publication-title: J. Colloid Interf. Sci.
– volume: 45
  start-page: 6340
  year: 2019
  end-page: 6349
  ident: bib0235
  article-title: In situ synthesis of visible-light-driven Z-scheme AgI/Bi
  publication-title: Ceram. Int.
– year: 2019
  ident: bib0175
  article-title: Boosting interfacial charge separation of Ba
  publication-title: Appl. Catal. B
– volume: 6
  start-page: 8003
  year: 2018
  end-page: 8018
  ident: bib0035
  article-title: Construction of direct Z-Scheme AgI/Bi
  publication-title: ACS Sustain. Chem. Eng.
– volume: 1
  year: 2017
  ident: bib0105
  article-title: A review of direct Z‐scheme photocatalysts
  publication-title: Small Methods
– volume: 47
  start-page: 13976
  year: 2013
  end-page: 13984
  ident: bib0150
  article-title: Polystyrene Plastic: A Source and Sink for Polycyclic Aromatic Hydrocarbons in the Marine Environment
  publication-title: Environ. Sci. Technol.
– volume: 20
  start-page: 1116
  year: 2018
  end-page: 1122
  ident: bib0140
  article-title: Novel two-dimensional Bi
  publication-title: Crystengcomm
– volume: 179
  start-page: 54
  year: 2015
  end-page: 60
  ident: bib0115
  article-title: Realizing nanosized interfacial contact via constructing BiVO
  publication-title: Appl. Catal. B-Environ.
– volume: 358
  start-page: 141
  year: 2018
  end-page: 154
  ident: bib0210
  article-title: Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO
  publication-title: J. Catal.
– volume: 573
  start-page: 137
  year: 2019
  end-page: 145
  ident: bib0200
  article-title: Fabrication of a zinc tungstate-based a p-n heterojunction photocatalysts towards refractory pollutants degradation under visible light irradiation
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 280
  start-page: 579
  year: 2014
  end-page: 587
  ident: bib0030
  article-title: Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation
  publication-title: J. Hazard. Mater.
– volume: 354
  start-page: 777
  year: 2018
  end-page: 789
  ident: bib0130
  article-title: Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe-0/PS process enhanced by ultrasound
  publication-title: Chem. Eng. J.
– volume: 75
  start-page: 417
  year: 2009
  end-page: 434
  ident: bib0070
  article-title: Antibiotics in the aquatic environment - a review - Part I
  publication-title: Chemosphere
– volume: 47
  start-page: 3833
  year: 2013
  end-page: 3839
  ident: bib0270
  article-title: Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 1
  year: 2004
  end-page: 14
  ident: bib0065
  article-title: TiO
  publication-title: Appl. Catal. B-Environ.
– volume: 1
  start-page: 877
  year: 2013
  end-page: 883
  ident: bib0020
  article-title: One-step approach to novel Bi
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 522
  start-page: 82
  year: 2018
  end-page: 94
  ident: bib0245
  article-title: Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: Mineralization efficiency and mechanisms
  publication-title: J. Colloid Interf. Sci.
– volume: 370
  start-page: 289
  year: 2019
  end-page: 303
  ident: bib0045
  article-title: Insight into the energy band alignment of magnetically separable Ag
  publication-title: J. Catal.
– volume: 233
  start-page: 198
  year: 2019
  end-page: 206
  ident: bib0100
  article-title: Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light
  publication-title: Chemosphere
– volume: 46
  start-page: 12675
  year: 2017
  end-page: 12682
  ident: bib0120
  article-title: Facile synthesis of CdS/Bi
  publication-title: Dalton Trans.
– volume: 26
  start-page: 4920
  year: 2014
  end-page: 4935
  ident: bib0265
  article-title: All‐solid‐state Z‐scheme photocatalytic systems
  publication-title: Adv. Mater.
– volume: 183
  start-page: 16
  year: 2018
  end-page: 24
  ident: bib0155
  article-title: Efficient photocatalytic degradation of methylene blue dye by SnO
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 280
  start-page: 713
  year: 2014
  ident: 10.1016/j.jhazmat.2019.121508_bib0255
  article-title: Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.08.055
– volume: 47
  start-page: 13976
  year: 2013
  ident: 10.1016/j.jhazmat.2019.121508_bib0150
  article-title: Polystyrene Plastic: A Source and Sink for Polycyclic Aromatic Hydrocarbons in the Marine Environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403605f
– volume: 423
  start-page: 533
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121508_bib0125
  article-title: Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches
  publication-title: J. Mol. Catal. A-Chem.
  doi: 10.1016/j.molcata.2016.07.030
– volume: 221
  start-page: 701
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0190
  article-title: A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.09.060
– volume: 117
  start-page: 19346
  year: 2013
  ident: 10.1016/j.jhazmat.2019.121508_bib0015
  article-title: High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp406508y
– volume: 46
  start-page: 4982
  year: 2017
  ident: 10.1016/j.jhazmat.2019.121508_bib0195
  article-title: Novel p-n heterojunction BiOI/CeO2 photocatalyst for wider spectrum visible-light photocatalytic degradation of refractory pollutants
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT00106A
– volume: 300
  start-page: 280
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121508_bib0165
  article-title: Synthesis of redox-mediator-free direct Z-scheme AgI/WO3 nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.04.128
– volume: 47
  start-page: 3833
  year: 2013
  ident: 10.1016/j.jhazmat.2019.121508_bib0270
  article-title: Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400101f
– volume: 1
  start-page: 877
  year: 2013
  ident: 10.1016/j.jhazmat.2019.121508_bib0020
  article-title: One-step approach to novel Bi4V2O11 hierarchical hollow microspheres with high visible-light-driven photocatalytic activities
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C2TA00312K
– volume: 358
  start-page: 141
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0210
  article-title: Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2-Ag/AgBr photocatalyst: influencing factors, possible degradation pathways, and mechanism insight
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.11.029
– volume: 370
  start-page: 289
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0045
  article-title: Insight into the energy band alignment of magnetically separable Ag2O/ZnFe2O4 p-n heterostructure with rapid charge transfer assisted visible light photocatalysis
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.01.009
– volume: 4
  start-page: 43399
  year: 2014
  ident: 10.1016/j.jhazmat.2019.121508_bib0095
  article-title: One-pot synthesis of Bi24O31Br10/Bi4V2O11 heterostructures and their photocatalytic properties
  publication-title: RSC Adv.
  doi: 10.1039/C4RA04815F
– volume: 178
  start-page: 154
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0005
  article-title: Novel magnetically separable Ag3PO4/MnFe2O4 nanocomposite and its high photocatalytic degradation performance for organic dyes under solar-light irradiation
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.01.026
– volume: 183
  start-page: 16
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0155
  article-title: Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.03.046
– volume: 358
  start-page: 211
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0225
  article-title: Photocatalytic degradation of levofloxacin by ternary Ag2CO3/CeO2/AgBr photocatalyst under visible-light irradiation: degradation pathways, mineralization ability, and an accelerated interfacial charge transfer process study
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.12.005
– volume: 20
  start-page: 2553
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0090
  article-title: Synthesis of Bi2O3-Bi4V2O11 heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of highconcentration phenol and MO dyes
  publication-title: Crystengcomm
  doi: 10.1039/C8CE00101D
– volume: 46
  start-page: 12675
  year: 2017
  ident: 10.1016/j.jhazmat.2019.121508_bib0120
  article-title: Facile synthesis of CdS/Bi4V2O11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT02151H
– volume: 6
  start-page: 8003
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0035
  article-title: Construction of direct Z-Scheme AgI/Bi2Sn2O7 nanojunction system with enhanced photocatalytic activity: accelerated interfacial charge transfer induced efficient Cr(VI) reduction, tetracycline degradation and Escherichia coli inactivation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01448
– volume: 225
  start-page: 898
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0080
  article-title: Facile synthesis of bismuth oxyhalogen-based Z-scheme photocatalyst for visible-light-driven pollutant removal: Kinetics, degradation pathways and mechanism
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.012
– volume: 288
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0215
  article-title: Attachment of Ag/AgCl nanoparticles on CdMoO4 microspheres for effective degradation of doxycycline under visible light irradiation: degradation pathways and mineralization activity
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111063
– volume: 573
  start-page: 137
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0200
  article-title: Fabrication of a zinc tungstate-based a p-n heterojunction photocatalysts towards refractory pollutants degradation under visible light irradiation
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2019.04.026
– volume: 361
  start-page: 245
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0085
  article-title: Construction of 2D heterojunction system with enhanced photocatalytic performance: plasmonic Bi and reduced graphene oxide co-modified Bi5O7I with high-speed charge transfer channels
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.08.099
– volume: 20
  start-page: 1116
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0140
  article-title: Novel two-dimensional Bi4V2O11 nanosheets: controllable synthesis, characterization and insight into the band structure
  publication-title: Crystengcomm
  doi: 10.1039/C7CE02151H
– volume: 3
  start-page: 1603
  year: 2013
  ident: 10.1016/j.jhazmat.2019.121508_bib0040
  article-title: Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdate photocatalyst
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy20811g
– volume: 21
  start-page: 1042
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0230
  article-title: Direct Z-scheme photocatalysts: principles, synthesis, and applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.04.008
– volume: 11
  start-page: 27686
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0185
  article-title: Ag-bridged Z-Scheme 2D/2D Bi5FeTi3O15/g-C3N4 heterojunction for enhanced photocatalysis: mediator-induced interfacial charge transfer and mechanism insights
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05074
– volume: 3
  start-page: 16737
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121508_bib0160
  article-title: Synthesis and facet-dependent enhanced photocatalytic activity of Bi2SiO5/AgI nanoplate photocatalysts
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C5TA03465E
– volume: 42
  start-page: 647
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0145
  article-title: Construction of the Bi2WO6/Bi4V2O11 heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(VI)
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ03413J
– volume: 6
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121508_bib0025
  article-title: A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting
  publication-title: Sci. Rep.-UK
– volume: 240
  start-page: 39
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0180
  article-title: 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: enhanced molecular oxygen activation and mechanism insight
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.08.063
– volume: 26
  start-page: 4920
  year: 2014
  ident: 10.1016/j.jhazmat.2019.121508_bib0265
  article-title: All‐solid‐state Z‐scheme photocatalytic systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400288
– volume: 522
  start-page: 82
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0245
  article-title: Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: Mineralization efficiency and mechanisms
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2018.03.056
– volume: 55
  start-page: 4782
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121508_bib0110
  article-title: Construction of alpha-beta phase junction on Bi4V2O11 via electrospinning retardation effect and its promoted photocatalytic performance
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00130
– volume: 49
  start-page: 1
  year: 2004
  ident: 10.1016/j.jhazmat.2019.121508_bib0065
  article-title: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations – a review
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2003.11.010
– volume: 248
  start-page: 552
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0050
  article-title: Enhanced catalytic performance of graphene-TiO2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.01.052
– volume: 75
  start-page: 417
  year: 2009
  ident: 10.1016/j.jhazmat.2019.121508_bib0070
  article-title: Antibiotics in the aquatic environment - a review - Part I
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.11.086
– volume: 94
  start-page: 52
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121508_bib0010
  article-title: Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine
  publication-title: Kinet. Mech. Tox. Asses. Water Res.
– volume: 233
  start-page: 198
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0100
  article-title: Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.05.229
– volume: 358
  start-page: 46
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121508_bib0075
  article-title: Ag-based semiconductor photocatalysts in environmental purification
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.07.139
– volume: 1
  year: 2017
  ident: 10.1016/j.jhazmat.2019.121508_bib0105
  article-title: A review of direct Z‐scheme photocatalysts
  publication-title: Small Methods
  doi: 10.1002/smtd.201700080
– volume: 497
  start-page: 368
  year: 2017
  ident: 10.1016/j.jhazmat.2019.121508_bib0205
  article-title: AgI nanoparticles-decorated CeO2 microsheets photocatalyst for the degradation of organic dye and tetracycline under visible-light irradiation
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2017.03.029
– volume: 182
  start-page: 113
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0250
  article-title: Oxygen vacancy-rich mesoporous ZrO2 with remarkably enhanced visible light photocatalytic performance
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.03.023
– volume: 144
  start-page: 215
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0170
  article-title: Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.07.025
– volume: 58
  start-page: 10402
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0260
  article-title: Bi-quantum-dot-decorated Bi4V2O11 hollow nanocakes: synthesis, characterization, and application as photocatalysts for CO2 reduction
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b01737
– volume: 361
  start-page: 1121
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0135
  article-title: Catalytic decomposition of sulfamethazine antibiotic and pharmaceutical wastewater using Cu-TiO2@ functionalized SWCNT ternary porous nanocomposite: influential factors, mechanism, and pathway studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.118
– volume: 373
  start-page: 1144
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0240
  article-title: Assembly of AgI nanoparticles and ultrathin g-C3N4 nanosheets codecorated Bi2WO6direct dual Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced photocatalytic performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.069
– volume: 5
  start-page: 5134
  year: 2017
  ident: 10.1016/j.jhazmat.2019.121508_bib0220
  article-title: Fabrication of SnO2 Nanopaticles/BiOI n-p heterostructure for wider Spectrum visible-Light photocatalytic degradation of antibiotic oxytetracycline hydrochloride
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00501
– volume: 280
  start-page: 579
  year: 2014
  ident: 10.1016/j.jhazmat.2019.121508_bib0030
  article-title: Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.08.050
– volume: 354
  start-page: 777
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0130
  article-title: Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe-0/PS process enhanced by ultrasound
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.084
– volume: 3
  start-page: 464
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121508_bib0055
  article-title: Review on nanoscale Bi-based photocatalysts
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C8NH00062J
– volume: 45
  start-page: 6340
  year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0235
  article-title: In situ synthesis of visible-light-driven Z-scheme AgI/Bi2WO6 heterojunction photocatalysts with enhanced photocatalytic activity
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.12.119
– volume: 179
  start-page: 54
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121508_bib0115
  article-title: Realizing nanosized interfacial contact via constructing BiVO4/Bi4V2O11 element-copied heterojunction nanofibres for superior photocatalytic properties
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.05.022
– volume: 35
  start-page: 989
  year: 2014
  ident: 10.1016/j.jhazmat.2019.121508_bib0060
  article-title: Recent advances in visible light Bi-based photocatalysts
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(14)60075-9
– year: 2019
  ident: 10.1016/j.jhazmat.2019.121508_bib0175
  article-title: Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation
  publication-title: Appl. Catal. B
SSID ssj0001754
Score 2.6754212
Snippet [Display omitted] •Novel direct Z-scheme AgI/Bi4V2O11 photocatalysts were prepared.•A superior photocatalytic activity for the degradation of SMZ refractory...
Z-scheme heterojunction can not only promote the separation of photogenerated carriers, but also retain the strong redox potential of the system, which would...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121508
SubjectTerms AgI/Bi4V2O11
bicarbonates
chlorides
coprecipitation
irradiation
light
mineralization
nitrates
photocatalysis
photocatalysts
Photocatalytic
redox potential
Sulfamethazine
sulfates
superoxide anion
Visible light
Z-scheme
Title Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/Bi4V2O11 photocatalyst: Mineralization activity, degradation pathways and promoted charge separation mechanism
URI https://dx.doi.org/10.1016/j.jhazmat.2019.121508
https://www.proquest.com/docview/2315097667
https://www.proquest.com/docview/2400507692
Volume 385
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucABQQFRHpWROJLNw06ccFsqqi3QglSKKi6W40ebVTdZkayqcuBv8feYcRKWIkQlrpGdWBl75rM9832EvHAGgmyqdQDhgAW8iHmgjEoDkxWMC5hj3Mu9HRxms2P-9iQ92SC7Yy0MplUOvr_36d5bD0_C4W-Gy6oKj_BSD8ItBwgCy90Xk3MukD9_8n2d5gHhsaeQwhsAaL2u4gnnk_mZ-gbAEDO8Cs-zgCqTf49Pf3hqH3727pI7A26k035o98iGrbfI7d_YBLfIjffq4j758fGs6Rp_KnMJbalBNoheOIk2jrarc6dQNtrTSlNMez-livZ_gX4JjsCIC0unp_vh64p_Tj7EMV2u39h2r-hB5ZmqhwJOipURKEDx8sqnUOn4Ql22VNWGLn3OnzXU8zJZ2tqecRzaLSyWHlft4gE53nvzaXcWDOoMgeYi7wIWKaMB36RKWV6mNhdau1RHLmelgX1H7GJWRkoDBLRGm0gJXZiIJQV4hILnjD0km3VT20eE2qRUwrC0MA42UIaXLHelUGWS2MyBB9omfLSJ1AN1OSponMsxR20uB1NKNKXsTblNJr-6LXvujus65KPB5ZVJKCG-XNf1-ThBJCxQvHVRtW1WrQQADaBMZJn4RxuOPDwiK5LH_z-EJ-RWgocBmCCXPiWb3deVfQaIqSt3_JLYITen--9mhz8BLxQZtA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoeKkpbQenDlXpsyMPOq7ctAu2W3W0loEK9WI7tQFZssiJZIfrH-HvMJA6UqipSr5EnsTLjmc_2zDeEfMw1BNlQKQfCAXN46nNHahk6OkoZj8HGeNvubTKNhsf860l4skJ2-1oYTKu0vr_z6a23tk9c-zfdRVG4h3ipB-GWAwSB5Y7F5GvITgXGvjYYHQyntw4ZImTHIoWXACBwV8jjznZmZ_IXYENM8kpbqgVsNPn3EPWHs24j0P46eWahIx10s3tOVky5QZ7-Rii4QR6N5eULcv39rGqq9mDmCsZSjYQQXe8kWuW0Xp7nEjtHt8zSFDPfT6mk3Y-gP51D0OPc0MHpyP1S8B_BN9-ni7s31s1nOilasmpbw0mxOAJ7UHy69ylsdnwpr2oqS00Xbdqf0bSlZjK0Nh3pOIybG6w-Lur5S3K8v3e0O3RsgwZH8ThpHOZJrQDihFIanoUmiZXKQ-XlCcs0bD383GeZJxWgQKOV9mSsUu2xIAWnkPKEsVdktaxKs0moCTIZaxamOoc9lOYZS_IsllkQmCgHJ7RFeK8ToSx7OTbROBd9mtpMWFUKVKXoVLlFdm7FFh19x0MCSa9wcc8OBYSYh0Q_9AYiYI3ixYssTbWsBWBowGVxFMX_GMORiieO0uD1_0_hPXk8PJqMxXg0PdgmTwI8G8B8ufANWW0uluYtAKgme2cXyA25CBxl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+degradation+of+sulfamethazine+using+a+direct+Z-Scheme+AgI%2FBi4V2O11+photocatalyst%3A+Mineralization+activity%2C+degradation+pathways+and+promoted+charge+separation+mechanism&rft.jtitle=Journal+of+hazardous+materials&rft.au=Wen%2C+Xiao-Ju&rft.au=Qian-Lu&rft.au=Lv%2C+Xiao-Xiao&rft.au=Sun%2C+Jie&rft.date=2020-03-05&rft.issn=0304-3894&rft.volume=385&rft.spage=121508&rft_id=info:doi/10.1016%2Fj.jhazmat.2019.121508&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2019_121508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon