Simulation optimisation of pull control policies for serial manufacturing lines and assembly manufacturing systems using genetic algorithms
Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production management literature. A recent development that is less well-studied than the serial line case is the application of pull-type policies to assembly s...
Saved in:
Published in | International journal of production research Vol. 48; no. 10; pp. 2887 - 2912 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis Group
15.05.2010
Taylor & Francis Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7543 1366-588X |
DOI | 10.1080/00207540802603759 |
Cover
Abstract | Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production management literature. A recent development that is less well-studied than the serial line case is the application of pull-type policies to assembly systems where manufacturing operations take place both sequentially and in parallel. Systems of this type contain assembly stations where two or more parts from lower hierarchical manufacturing stations merge in order to produce a single part of the subsequent stage. In this paper we extend the application of the Base Stock, Kanban, CONWIP, CONWIP/Kanban Hybrid and Extended Kanban production control policies to assembly systems that produce final products of a single type. Discrete-event simulation is utilised in order to evaluate the performance of serial lines and assembly systems. It is essential to determine the best control parameters for each policy when operating in the same environment. The approach that we propose and probe for the problem of control parameter selection is that of a genetic algorithm with resampling, a technique used for the optimisation of stochastic objective functions. Finally, we report our findings from numerical experiments conducted for two serial line simulation scenarios and two assembly system simulation scenarios. |
---|---|
AbstractList | Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production management literature. A recent development that is less well-studied than the serial line case is the application of pull-type policies to assembly systems where manufacturing operations take place both sequentially and in parallel. Systems of this type contain assembly stations where two or more parts from lower hierarchical manufacturing stations merge in order to produce a single part of the subsequent stage. In this paper we extend the application of the Base Stock, Kanban, CONWIP, CONWIP/Kanban Hybrid and Extended Kanban production control policies to assembly systems that produce final products of a single type. Discrete-event simulation is utilised in order to evaluate the performance of serial lines and assembly systems. It is essential to determine the best control parameters for each policy when operating in the same environment. The approach that we propose and probe for the problem of control parameter selection is that of a genetic algorithm with resampling, a technique used for the optimisation of stochastic objective functions. Finally, we report our findings from numerical experiments conducted for two serial line simulation scenarios and two assembly system simulation scenarios. Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production management literature. A recent development that is less well-studied than the serial line case is the application of pull-type policies to assembly systems where manufacturing operations take place both sequentially and in parallel. Systems of this type contain assembly stations where two or more parts from lower hierarchical manufacturing stations merge in order to produce a single part of the subsequent stage. In this paper we extend the application of the Base Stock, Kanban, CONWIP, CONWIP/Kanban Hybrid and Extended Kanban production control policies to assembly systems that produce final products of a single type. Discrete-event simulation is utilised in order to evaluate the performance of serial lines and assembly systems. It is essential to determine the best control parameters for each policy when operating in the same environment. The approach that we propose and probe for the problem of control parameter selection is that of a genetic algorithm with resampling, a technique used for the optimisation of stochastic objective functions. Finally, we report our findings from numerical experiments conducted for two serial line simulation scenarios and two assembly system simulation scenarios. [PUBLICATION ABSTRACT] |
Author | Xanthopoulos, A.S. Koulouriotis, D.E. Tourassis, V.D. |
Author_xml | – sequence: 1 givenname: D.E. surname: Koulouriotis fullname: Koulouriotis, D.E. email: jimk@pme.duth.gr organization: Production and Management Engineering Department , Democritus University of Thrace, University Campus – sequence: 2 givenname: A.S. surname: Xanthopoulos fullname: Xanthopoulos, A.S. organization: Production and Management Engineering Department , Democritus University of Thrace, University Campus – sequence: 3 givenname: V.D. surname: Tourassis fullname: Tourassis, V.D. organization: Production and Management Engineering Department , Democritus University of Thrace, University Campus |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22701974$$DView record in Pascal Francis |
BookMark | eNqNkc2KFDEURoOMYM_oA7gLgrgqzV9V0uBGBh2FARcquAvpJNVmSCVlboqxn8GXnrTduuiBwWySyz0nueE7R2cpJ4_Qc0peU6LIG0IYkb1oRzYQLvv1I7SifBi6XqnvZ2i173cN4E_QOcANaatXYoV-fwnTEk0NOeE81zAFOBYjnpcYsc2plhzxnGOwwQMec8HgSzARTyYto7F1KSFtcQyptU1y2AD4aRN3JwDsoPoJ8AL7auuTr8FiE7e5hPpjgqfo8Wgi-GfH_QJ9-_D-6-XH7vrz1afLd9edFVLVjm2o4MpyTox33FvHBuUIcU4JawfKmByFF0q6NRkpI2qjXM_8hhDDKZNC8gv06nDvXPLPxUPV7dfWx2iSzwto2fOhV1ztyRcn5E1eSmrDaUbVMFAxsAa9PEIGrIljMckG0HMJkyk73eYhdC1F4-iBsyUDFD_-QyjR-xD1vRCbI08cG-qfgGoxIT5ovj2YIbXEJnObS3S6ml3M5e-I_D8efkC_Z-n6q_I7Y6nJxg |
CODEN | IJPRB8 |
CitedBy_id | crossref_primary_10_1080_00207543_2014_997404 crossref_primary_10_1080_0951192X_2016_1145812 crossref_primary_10_1016_j_ymssp_2019_106570 crossref_primary_10_1016_j_cie_2022_108858 crossref_primary_10_1080_00207543_2019_1643512 crossref_primary_10_1080_0740817X_2015_1019162 crossref_primary_10_1108_01445151211198719 crossref_primary_10_2478_ttj_2020_0015 crossref_primary_10_1080_02286203_2019_1588007 crossref_primary_10_1016_j_simpat_2015_04_005 crossref_primary_10_1080_0305215X_2021_1963720 crossref_primary_10_1007_s00170_014_6052_8 crossref_primary_10_1016_j_ifacol_2021_08_197 crossref_primary_10_1108_JM2_05_2019_0103 crossref_primary_10_1080_00207543_2018_1464230 crossref_primary_10_1080_09537287_2020_1742398 crossref_primary_10_1007_s12205_017_2009_4 crossref_primary_10_1007_s00170_013_5282_5 crossref_primary_10_1016_j_ejor_2011_03_005 crossref_primary_10_1080_17477778_2024_2311380 crossref_primary_10_3390_app10217851 crossref_primary_10_1016_j_asoc_2013_07_015 crossref_primary_10_1016_j_orp_2015_07_001 crossref_primary_10_7250_itms_2019_0002 |
Cites_doi | 10.1023/A:1018984125703 10.1109/WSC.1998.746048 10.1016/0272-6963(90)90144-3 10.1016/S0045-7825(99)00386-2 10.1023/A:1018980024795 10.1016/j.ejor.2003.09.035 10.1111/j.1937-5956.1992.tb00338.x 10.1080/07408170008963914 10.1080/07408170008967457 10.1080/07408170108936807 10.1109/WSC.2000.899706 10.1109/WSC.2000.899877 10.1007/3-540-58484-6_260 10.1016/j.ijpe.2004.06.003 10.1080/00207549008942761 10.1080/00207540600871228 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2010 2015 INIST-CNRS Copyright Taylor & Francis Group 2010 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2010 – notice: 2015 INIST-CNRS – notice: Copyright Taylor & Francis Group 2010 |
DBID | AAYXX CITATION IQODW 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1080/00207540802603759 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1366-588X |
EndPage | 2912 |
ExternalDocumentID | 2006938461 22701974 10_1080_00207540802603759 360543 |
Genre | Feature |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB A8Z AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABRLO ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADUMR ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EBD EBE EBO EBR EBS EBU EJD EMK EPL ESTFP E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P K1G KYCEM M4Z ML~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH RNS ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TH9 TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 07I 1OL 1TA 4B5 ABDPE ACKIV ACTTO ADXEU AEHZU AEZBV AFBWG AFFNX AFION AGBLW AGVKY AGWUF AI. AKHJE AKMBP ALRRR ALXIB BGSSV BWMZZ C0- C5H CYRSC DAOYK DEXXA FETWF IFELN IQODW L8C LJTGL NUSFT OPCYK TAJZE TAP TASJS UB6 VH1 ZCG ZY4 7SC 8FD AGBKS F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c478t-2b1438c330aed3ecd268d00dd84cc61227f4e487d90f1208b8d52eb00a3127473 |
ISSN | 0020-7543 |
IngestDate | Thu Sep 04 20:05:27 EDT 2025 Wed Aug 13 11:02:29 EDT 2025 Mon Jul 21 09:11:40 EDT 2025 Thu Apr 24 22:54:05 EDT 2025 Tue Jul 01 03:29:59 EDT 2025 Wed Dec 25 09:03:57 EST 2024 Mon May 13 12:08:27 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Knowledge engineering time series analysis Evolutionary algorithm In-process inventory Data mining Robotics automated manufacturing systems Kanban Base stock Assembly Discrete event system Production system Assembly line Script Computer vision Data analysis Lean production Decision support system Process control decision support systems Production management assembly lines evolutionary computation Genetic algorithm Just in time Time-series analysis Objective function Artificial intelligence |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c478t-2b1438c330aed3ecd268d00dd84cc61227f4e487d90f1208b8d52eb00a3127473 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
OpenAccessLink | https://hal.archives-ouvertes.fr/hal-00580104 |
PQID | 218661462 |
PQPubID | 30924 |
PageCount | 26 |
ParticipantIDs | pascalfrancis_primary_22701974 proquest_journals_218661462 informaworld_taylorfrancis_310_1080_00207540802603759 crossref_primary_10_1080_00207540802603759 proquest_miscellaneous_753658387 crossref_citationtrail_10_1080_00207540802603759 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100515 |
PublicationDateYYYYMMDD | 2010-05-15 |
PublicationDate_xml | – month: 05 year: 2010 text: 20100515 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon – name: London |
PublicationTitle | International journal of production research |
PublicationYear | 2010 |
Publisher | Taylor & Francis Group Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis – name: Taylor & Francis LLC |
References | Buzacott JA (CIT0004) 1993 Manitz M (CIT0014) 2007 Fitzpatrick JM (CIT0010) 1988; 3 Dengiz B (CIT0007) 2000 Di Mascolo M (CIT0008) 1996 Swisher JR (CIT0020) 2000 Law A (CIT0012) 1991 Takahashi K (CIT0021) 2005; 93 CIT0001 CIT0003 CIT0013 CIT0005 Hammel U (CIT0011) 1994; 3 CIT0016 Bowden RO (CIT0002) 1998 CIT0015 CIT0018 CIT0006 CIT0017 CIT0009 CIT0019 |
References_xml | – volume-title: Stochastic models of manufacturing systems year: 1993 ident: CIT0004 – ident: CIT0019 doi: 10.1023/A:1018984125703 – start-page: 1693 volume-title: Proceedings of the 1998 winter simulation conference year: 1998 ident: CIT0002 doi: 10.1109/WSC.1998.746048 – ident: CIT0017 doi: 10.1016/0272-6963(90)90144-3 – ident: CIT0001 doi: 10.1016/S0045-7825(99)00386-2 – year: 2007 ident: CIT0014 publication-title: Computers and Operations Research – volume-title: Simulation modelling and analysis year: 1991 ident: CIT0012 – ident: CIT0013 doi: 10.1023/A:1018980024795 – ident: CIT0015 doi: 10.1016/j.ejor.2003.09.035 – ident: CIT0003 doi: 10.1111/j.1937-5956.1992.tb00338.x – ident: CIT0006 doi: 10.1080/07408170008963914 – volume: 3 start-page: 101 year: 1988 ident: CIT0010 publication-title: Machine Learning: Special Issue on Genetic Algorithms – volume-title: Symposium on discrete events and manufacturing systems of the multiconference IMACS-IEEE/SMC CESA’ 96 year: 1996 ident: CIT0008 – ident: CIT0005 doi: 10.1080/07408170008967457 – ident: CIT0016 doi: 10.1080/07408170108936807 – start-page: 119 volume-title: Proceedings of the 2000 winter simulation conference year: 2000 ident: CIT0020 doi: 10.1109/WSC.2000.899706 – start-page: 805 volume-title: Proceedings of the 2000 winter simulation conference year: 2000 ident: CIT0007 doi: 10.1109/WSC.2000.899877 – volume: 3 start-page: 159 year: 1994 ident: CIT0011 publication-title: Parallel Problem Solving from Nature doi: 10.1007/3-540-58484-6_260 – volume: 93 start-page: 25 year: 2005 ident: CIT0021 publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2004.06.003 – ident: CIT0018 doi: 10.1080/00207549008942761 – ident: CIT0009 doi: 10.1080/00207540600871228 |
SSID | ssj0000584 |
Score | 2.123231 |
Snippet | Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production... |
SourceID | proquest pascalfrancis crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2887 |
SubjectTerms | Applied sciences artificial intelligence Assembly Assembly lines automated manufacturing systems Computer science; control theory; systems Computer simulation computer vision data mining Data processing. List processing. Character string processing decision support systems Decision theory. Utility theory evolutionary computation Exact sciences and technology Genetic algorithms Inventory control, production control. Distribution Just in time Kanbans knowledge engineering Manufacturing Mathematical models Mathematical programming Memory organisation. Data processing Operational research and scientific management Operational research. Management science Optimization algorithms Policies Production control Production controls robotics Serials Simulation Software Studies time series analysis |
Title | Simulation optimisation of pull control policies for serial manufacturing lines and assembly manufacturing systems using genetic algorithms |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207540802603759 https://www.proquest.com/docview/218661462 https://www.proquest.com/docview/753658387 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaW3QscEL-iLKx84ESVKLGd2Dmu6KIKBJfdFRWXKL-wq7aptokEvALvxXMxEztO2kLFokhRlTiuk_lsj8cz3xDyKuQyQ54oJ2Jp4ogkyp0UOp0jclH6XEleMoxG_vAxnF6Kd7NgdnDwa-C11NSpm_34Y1zJ_0gVroFcMUr2FpK1lcIF-A3yhTNIGM7_JOPzq4XJvjWuoOsvjGtO68UMS0vrh46ZGKAPt9QLY90ydFttMKpBhymisqnZmkGZLhbp_PtWAc34vB43rW0BWlS0TK_zL9XNVf3VUJ5f927xvZVxwE2x0vSy2ERDMmSN0e-rZo77AVWtSQ8m7pnb3ZslyHCwwhI6d7J7bu8hCyI02SR1dyfu0Iyhd-B1IKcNK_AcGWjOJrfQozEPQydQbe5hO1wLNYSlNxx8lZm79UTOIu2gvTNJdF6VDNQlgbHGISYCjvoZsfMC2Joorfuib3lVt6q4Q46YlOgucHQ6nXz-1OsEgTJ84Polu_11ZHnfrmRDQ9rgz0XH3WQNfbfUSVd29IdWKbp4QO6b1Qw91dB8SA6K5SNyb8Bx-Zj87EFKhyClVUkRpNSAlHYgpdASqkFKNzBIW5BSACntQLpVwICUtiClBqS0B-kTcvn27OLN1DEZQJxMSFU7LAV1XmWce0mR8yLLWahyz8tzJbIMdHMmS1HAkjuPvNJnnkpVHjDMhpVwH80t_Ck5XFbL4hmhCSwNMl-pVLJMlKpM8RBwwBIpj6Q_Il731ePM0ONjlpZ5_Fdpj8hr-8hKc8PsK-wNRRnXrUHOCHK3eFx_q0ck2PMI3_NXJxswsY2D7wUrOilG5LjDTWwGgXWMyelAVw_ZiFB7FzCBG4jJsqiadSwDHqKbhXx-mzc_Jnf7Dv-CHNY3TfESNPk6PTHd5Dc8-_Tq |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BOQAHvhGhUHzghJTKsZ3EOSJEtUC7F1qpt8ixk1J1k1RNVgL-An-amcRZulu0hyrHOIntPI_H9sx7AO8TmVriiQozUZhQmcyFBQ66UDlVRVKnshKUjXw0T2Yn6utpfOo33DofVklr6GokihhsNQ1u2oyeQuIohRtnOkVpoglpuGZ34V6MfjshXPL5P0sca8_CzEMsL6dTzf-9Ym1eWmMtpXBJ02GPVaPUxQ2rPUxFB48hnxoxRqBc7C_7Yt_-3uB3vH0rn8Aj76WyjyOsnsKdsnkGD69xFz6HP9_Pay_9xVq0O7WPC2JtxS7xA8wHwTOSgUAD0jFsKxsBz2rTLCmlYsiRZFS5jmFFGXryZV0sfm0UGOmmO0ZB-mcMIU-Zl8wsztqr8_5H3b2Ak4PPx59moVd2CK1KdR-KglTXrZTclE6W1olEO86d08pa9LlEWqkSl1Iu41UkuC60iwWpHBkZ0TJavoSdpm3KV8AMunw20rpIhVWVrgq6FF7o-rosjQLg03_Nrac9J_WNRR6t2FE3-jmAD6tHLkfOj22F-XWw5P2w0eKhcrN43v_sA4i3PCK3fGpvDYirymF_oaeeqgB2J2Tm3hR1OYmOoQ-WiADY6i5igg6GTFO2yy7HJWtCx-fp61vW7B3cnx0fHeaHX-bfduHBFGERxW9gp79alm_RceuLvWF0_gWcxzlP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOvBGhUHzghJQqsZ3EOSJgVV4rJKjUW-RHXCo2yarOSsBf4E8zkzhLd4v2UOUYJ3Gc8Xgm_ub7CHmZ88IgT1RcMq1ioUoba5h0sbDCpVwW3DGsRv48z4-OxYeT7CRgc3yAVWIO7UaiiMFX4-ReWjch4rCCGxY6gVWiOUq4ltfJjRxCE0T08WT-zxFnMpAwJzG059Om5v9usbEsbZCWIlpSeRgwNypdXHLaw0o0uzvKrfqBwBABKD8OV70-NL-36B2v_JL3yJ0Qo9LXo1HdJ9fq9gG5fYG58CH58_WsCcJftAOv0wRUEO0cXUJWSwMEnqIIBLgPT-FV6WjutFHtCgsqhgpJin3zFPpJIY6vG734tdVgJJv2FCH6pxQMHusuqVqcdudn_ffGPyLHs3ff3hzFQdchNqKQfcw0aq4bzhNVW14by3Jpk8RaKYyBiIsVTtSQSNkycSlLpJY2Y6hxpHiKSTR_TPbarq2fEKog4DOplLpgRjjpNB4CDgh8bVmkEUmmz1qZQHqO2huLKl1zo26Nc0RerS9ZjowfuxonF22l6offLMFSLjev-p99RLIdl_AdjzrYsMN152C8IE4vRET2J8OsgiPyFUqOQQSWs4jQ9VmwCdwWUm3drXwFCWuOm-fF0yv27AW5-eXtrPr0fv5xn9ya4BVp9ozs9eer-jlEbb0-GObmX5YeN_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+optimisation+of+pull+control+policies+for+serial+manufacturing+lines+and+assembly+manufacturing+systems+using+genetic+algorithms&rft.jtitle=International+journal+of+production+research&rft.au=Koulouriotis%2C+D.E.&rft.au=Xanthopoulos%2C+A.S.&rft.au=Tourassis%2C+V.D.&rft.date=2010-05-15&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=48&rft.issue=10&rft.spage=2887&rft.epage=2912&rft_id=info:doi/10.1080%2F00207540802603759&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207540802603759 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |