Simulation optimisation of pull control policies for serial manufacturing lines and assembly manufacturing systems using genetic algorithms

Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production management literature. A recent development that is less well-studied than the serial line case is the application of pull-type policies to assembly s...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production research Vol. 48; no. 10; pp. 2887 - 2912
Main Authors Koulouriotis, D.E., Xanthopoulos, A.S., Tourassis, V.D.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis Group 15.05.2010
Taylor & Francis
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0020-7543
1366-588X
DOI10.1080/00207540802603759

Cover

Abstract Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production management literature. A recent development that is less well-studied than the serial line case is the application of pull-type policies to assembly systems where manufacturing operations take place both sequentially and in parallel. Systems of this type contain assembly stations where two or more parts from lower hierarchical manufacturing stations merge in order to produce a single part of the subsequent stage. In this paper we extend the application of the Base Stock, Kanban, CONWIP, CONWIP/Kanban Hybrid and Extended Kanban production control policies to assembly systems that produce final products of a single type. Discrete-event simulation is utilised in order to evaluate the performance of serial lines and assembly systems. It is essential to determine the best control parameters for each policy when operating in the same environment. The approach that we propose and probe for the problem of control parameter selection is that of a genetic algorithm with resampling, a technique used for the optimisation of stochastic objective functions. Finally, we report our findings from numerical experiments conducted for two serial line simulation scenarios and two assembly system simulation scenarios.
AbstractList Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production management literature. A recent development that is less well-studied than the serial line case is the application of pull-type policies to assembly systems where manufacturing operations take place both sequentially and in parallel. Systems of this type contain assembly stations where two or more parts from lower hierarchical manufacturing stations merge in order to produce a single part of the subsequent stage. In this paper we extend the application of the Base Stock, Kanban, CONWIP, CONWIP/Kanban Hybrid and Extended Kanban production control policies to assembly systems that produce final products of a single type. Discrete-event simulation is utilised in order to evaluate the performance of serial lines and assembly systems. It is essential to determine the best control parameters for each policy when operating in the same environment. The approach that we propose and probe for the problem of control parameter selection is that of a genetic algorithm with resampling, a technique used for the optimisation of stochastic objective functions. Finally, we report our findings from numerical experiments conducted for two serial line simulation scenarios and two assembly system simulation scenarios.
Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production management literature. A recent development that is less well-studied than the serial line case is the application of pull-type policies to assembly systems where manufacturing operations take place both sequentially and in parallel. Systems of this type contain assembly stations where two or more parts from lower hierarchical manufacturing stations merge in order to produce a single part of the subsequent stage. In this paper we extend the application of the Base Stock, Kanban, CONWIP, CONWIP/Kanban Hybrid and Extended Kanban production control policies to assembly systems that produce final products of a single type. Discrete-event simulation is utilised in order to evaluate the performance of serial lines and assembly systems. It is essential to determine the best control parameters for each policy when operating in the same environment. The approach that we propose and probe for the problem of control parameter selection is that of a genetic algorithm with resampling, a technique used for the optimisation of stochastic objective functions. Finally, we report our findings from numerical experiments conducted for two serial line simulation scenarios and two assembly system simulation scenarios. [PUBLICATION ABSTRACT]
Author Xanthopoulos, A.S.
Koulouriotis, D.E.
Tourassis, V.D.
Author_xml – sequence: 1
  givenname: D.E.
  surname: Koulouriotis
  fullname: Koulouriotis, D.E.
  email: jimk@pme.duth.gr
  organization: Production and Management Engineering Department , Democritus University of Thrace, University Campus
– sequence: 2
  givenname: A.S.
  surname: Xanthopoulos
  fullname: Xanthopoulos, A.S.
  organization: Production and Management Engineering Department , Democritus University of Thrace, University Campus
– sequence: 3
  givenname: V.D.
  surname: Tourassis
  fullname: Tourassis, V.D.
  organization: Production and Management Engineering Department , Democritus University of Thrace, University Campus
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22701974$$DView record in Pascal Francis
BookMark eNqNkc2KFDEURoOMYM_oA7gLgrgqzV9V0uBGBh2FARcquAvpJNVmSCVlboqxn8GXnrTduuiBwWySyz0nueE7R2cpJ4_Qc0peU6LIG0IYkb1oRzYQLvv1I7SifBi6XqnvZ2i173cN4E_QOcANaatXYoV-fwnTEk0NOeE81zAFOBYjnpcYsc2plhzxnGOwwQMec8HgSzARTyYto7F1KSFtcQyptU1y2AD4aRN3JwDsoPoJ8AL7auuTr8FiE7e5hPpjgqfo8Wgi-GfH_QJ9-_D-6-XH7vrz1afLd9edFVLVjm2o4MpyTox33FvHBuUIcU4JawfKmByFF0q6NRkpI2qjXM_8hhDDKZNC8gv06nDvXPLPxUPV7dfWx2iSzwto2fOhV1ztyRcn5E1eSmrDaUbVMFAxsAa9PEIGrIljMckG0HMJkyk73eYhdC1F4-iBsyUDFD_-QyjR-xD1vRCbI08cG-qfgGoxIT5ovj2YIbXEJnObS3S6ml3M5e-I_D8efkC_Z-n6q_I7Y6nJxg
CODEN IJPRB8
CitedBy_id crossref_primary_10_1080_00207543_2014_997404
crossref_primary_10_1080_0951192X_2016_1145812
crossref_primary_10_1016_j_ymssp_2019_106570
crossref_primary_10_1016_j_cie_2022_108858
crossref_primary_10_1080_00207543_2019_1643512
crossref_primary_10_1080_0740817X_2015_1019162
crossref_primary_10_1108_01445151211198719
crossref_primary_10_2478_ttj_2020_0015
crossref_primary_10_1080_02286203_2019_1588007
crossref_primary_10_1016_j_simpat_2015_04_005
crossref_primary_10_1080_0305215X_2021_1963720
crossref_primary_10_1007_s00170_014_6052_8
crossref_primary_10_1016_j_ifacol_2021_08_197
crossref_primary_10_1108_JM2_05_2019_0103
crossref_primary_10_1080_00207543_2018_1464230
crossref_primary_10_1080_09537287_2020_1742398
crossref_primary_10_1007_s12205_017_2009_4
crossref_primary_10_1007_s00170_013_5282_5
crossref_primary_10_1016_j_ejor_2011_03_005
crossref_primary_10_1080_17477778_2024_2311380
crossref_primary_10_3390_app10217851
crossref_primary_10_1016_j_asoc_2013_07_015
crossref_primary_10_1016_j_orp_2015_07_001
crossref_primary_10_7250_itms_2019_0002
Cites_doi 10.1023/A:1018984125703
10.1109/WSC.1998.746048
10.1016/0272-6963(90)90144-3
10.1016/S0045-7825(99)00386-2
10.1023/A:1018980024795
10.1016/j.ejor.2003.09.035
10.1111/j.1937-5956.1992.tb00338.x
10.1080/07408170008963914
10.1080/07408170008967457
10.1080/07408170108936807
10.1109/WSC.2000.899706
10.1109/WSC.2000.899877
10.1007/3-540-58484-6_260
10.1016/j.ijpe.2004.06.003
10.1080/00207549008942761
10.1080/00207540600871228
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2010
2015 INIST-CNRS
Copyright Taylor & Francis Group 2010
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2010
– notice: 2015 INIST-CNRS
– notice: Copyright Taylor & Francis Group 2010
DBID AAYXX
CITATION
IQODW
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207540802603759
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1366-588X
EndPage 2912
ExternalDocumentID 2006938461
22701974
10_1080_00207540802603759
360543
Genre Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
8VB
A8Z
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADUMR
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBD
EBE
EBO
EBR
EBS
EBU
EJD
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
M4Z
ML~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
07I
1OL
1TA
4B5
ABDPE
ACKIV
ACTTO
ADXEU
AEHZU
AEZBV
AFBWG
AFFNX
AFION
AGBLW
AGVKY
AGWUF
AI.
AKHJE
AKMBP
ALRRR
ALXIB
BGSSV
BWMZZ
C0-
C5H
CYRSC
DAOYK
DEXXA
FETWF
IFELN
IQODW
L8C
LJTGL
NUSFT
OPCYK
TAJZE
TAP
TASJS
UB6
VH1
ZCG
ZY4
7SC
8FD
AGBKS
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c478t-2b1438c330aed3ecd268d00dd84cc61227f4e487d90f1208b8d52eb00a3127473
ISSN 0020-7543
IngestDate Thu Sep 04 20:05:27 EDT 2025
Wed Aug 13 11:02:29 EDT 2025
Mon Jul 21 09:11:40 EDT 2025
Thu Apr 24 22:54:05 EDT 2025
Tue Jul 01 03:29:59 EDT 2025
Wed Dec 25 09:03:57 EST 2024
Mon May 13 12:08:27 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Knowledge engineering
time series analysis
Evolutionary algorithm
In-process inventory
Data mining
Robotics
automated manufacturing systems
Kanban
Base stock
Assembly
Discrete event system
Production system
Assembly line
Script
Computer vision
Data analysis
Lean production
Decision support system
Process control
decision support systems
Production management
assembly lines
evolutionary computation
Genetic algorithm
Just in time
Time-series analysis
Objective function
Artificial intelligence
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c478t-2b1438c330aed3ecd268d00dd84cc61227f4e487d90f1208b8d52eb00a3127473
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://hal.archives-ouvertes.fr/hal-00580104
PQID 218661462
PQPubID 30924
PageCount 26
ParticipantIDs pascalfrancis_primary_22701974
proquest_journals_218661462
informaworld_taylorfrancis_310_1080_00207540802603759
crossref_primary_10_1080_00207540802603759
proquest_miscellaneous_753658387
crossref_citationtrail_10_1080_00207540802603759
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100515
PublicationDateYYYYMMDD 2010-05-15
PublicationDate_xml – month: 05
  year: 2010
  text: 20100515
  day: 15
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
– name: London
PublicationTitle International journal of production research
PublicationYear 2010
Publisher Taylor & Francis Group
Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
– name: Taylor & Francis LLC
References Buzacott JA (CIT0004) 1993
Manitz M (CIT0014) 2007
Fitzpatrick JM (CIT0010) 1988; 3
Dengiz B (CIT0007) 2000
Di Mascolo M (CIT0008) 1996
Swisher JR (CIT0020) 2000
Law A (CIT0012) 1991
Takahashi K (CIT0021) 2005; 93
CIT0001
CIT0003
CIT0013
CIT0005
Hammel U (CIT0011) 1994; 3
CIT0016
Bowden RO (CIT0002) 1998
CIT0015
CIT0018
CIT0006
CIT0017
CIT0009
CIT0019
References_xml – volume-title: Stochastic models of manufacturing systems
  year: 1993
  ident: CIT0004
– ident: CIT0019
  doi: 10.1023/A:1018984125703
– start-page: 1693
  volume-title: Proceedings of the 1998 winter simulation conference
  year: 1998
  ident: CIT0002
  doi: 10.1109/WSC.1998.746048
– ident: CIT0017
  doi: 10.1016/0272-6963(90)90144-3
– ident: CIT0001
  doi: 10.1016/S0045-7825(99)00386-2
– year: 2007
  ident: CIT0014
  publication-title: Computers and Operations Research
– volume-title: Simulation modelling and analysis
  year: 1991
  ident: CIT0012
– ident: CIT0013
  doi: 10.1023/A:1018980024795
– ident: CIT0015
  doi: 10.1016/j.ejor.2003.09.035
– ident: CIT0003
  doi: 10.1111/j.1937-5956.1992.tb00338.x
– ident: CIT0006
  doi: 10.1080/07408170008963914
– volume: 3
  start-page: 101
  year: 1988
  ident: CIT0010
  publication-title: Machine Learning: Special Issue on Genetic Algorithms
– volume-title: Symposium on discrete events and manufacturing systems of the multiconference IMACS-IEEE/SMC CESA’ 96
  year: 1996
  ident: CIT0008
– ident: CIT0005
  doi: 10.1080/07408170008967457
– ident: CIT0016
  doi: 10.1080/07408170108936807
– start-page: 119
  volume-title: Proceedings of the 2000 winter simulation conference
  year: 2000
  ident: CIT0020
  doi: 10.1109/WSC.2000.899706
– start-page: 805
  volume-title: Proceedings of the 2000 winter simulation conference
  year: 2000
  ident: CIT0007
  doi: 10.1109/WSC.2000.899877
– volume: 3
  start-page: 159
  year: 1994
  ident: CIT0011
  publication-title: Parallel Problem Solving from Nature
  doi: 10.1007/3-540-58484-6_260
– volume: 93
  start-page: 25
  year: 2005
  ident: CIT0021
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2004.06.003
– ident: CIT0018
  doi: 10.1080/00207549008942761
– ident: CIT0009
  doi: 10.1080/00207540600871228
SSID ssj0000584
Score 2.123231
Snippet Several efficient pull production control policies for serial lines implementing the lean/JIT manufacturing philosophy can be found in the production...
SourceID proquest
pascalfrancis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2887
SubjectTerms Applied sciences
artificial intelligence
Assembly
Assembly lines
automated manufacturing systems
Computer science; control theory; systems
Computer simulation
computer vision
data mining
Data processing. List processing. Character string processing
decision support systems
Decision theory. Utility theory
evolutionary computation
Exact sciences and technology
Genetic algorithms
Inventory control, production control. Distribution
Just in time
Kanbans
knowledge engineering
Manufacturing
Mathematical models
Mathematical programming
Memory organisation. Data processing
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Policies
Production control
Production controls
robotics
Serials
Simulation
Software
Studies
time series analysis
Title Simulation optimisation of pull control policies for serial manufacturing lines and assembly manufacturing systems using genetic algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/00207540802603759
https://www.proquest.com/docview/218661462
https://www.proquest.com/docview/753658387
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaW3QscEL-iLKx84ESVKLGd2Dmu6KIKBJfdFRWXKL-wq7aptokEvALvxXMxEztO2kLFokhRlTiuk_lsj8cz3xDyKuQyQ54oJ2Jp4ogkyp0UOp0jclH6XEleMoxG_vAxnF6Kd7NgdnDwa-C11NSpm_34Y1zJ_0gVroFcMUr2FpK1lcIF-A3yhTNIGM7_JOPzq4XJvjWuoOsvjGtO68UMS0vrh46ZGKAPt9QLY90ydFttMKpBhymisqnZmkGZLhbp_PtWAc34vB43rW0BWlS0TK_zL9XNVf3VUJ5f927xvZVxwE2x0vSy2ERDMmSN0e-rZo77AVWtSQ8m7pnb3ZslyHCwwhI6d7J7bu8hCyI02SR1dyfu0Iyhd-B1IKcNK_AcGWjOJrfQozEPQydQbe5hO1wLNYSlNxx8lZm79UTOIu2gvTNJdF6VDNQlgbHGISYCjvoZsfMC2Joorfuib3lVt6q4Q46YlOgucHQ6nXz-1OsEgTJ84Polu_11ZHnfrmRDQ9rgz0XH3WQNfbfUSVd29IdWKbp4QO6b1Qw91dB8SA6K5SNyb8Bx-Zj87EFKhyClVUkRpNSAlHYgpdASqkFKNzBIW5BSACntQLpVwICUtiClBqS0B-kTcvn27OLN1DEZQJxMSFU7LAV1XmWce0mR8yLLWahyz8tzJbIMdHMmS1HAkjuPvNJnnkpVHjDMhpVwH80t_Ck5XFbL4hmhCSwNMl-pVLJMlKpM8RBwwBIpj6Q_Il731ePM0ONjlpZ5_Fdpj8hr-8hKc8PsK-wNRRnXrUHOCHK3eFx_q0ck2PMI3_NXJxswsY2D7wUrOilG5LjDTWwGgXWMyelAVw_ZiFB7FzCBG4jJsqiadSwDHqKbhXx-mzc_Jnf7Dv-CHNY3TfESNPk6PTHd5Dc8-_Tq
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BOQAHvhGhUHzghJTKsZ3EOSJEtUC7F1qpt8ixk1J1k1RNVgL-An-amcRZulu0hyrHOIntPI_H9sx7AO8TmVriiQozUZhQmcyFBQ66UDlVRVKnshKUjXw0T2Yn6utpfOo33DofVklr6GokihhsNQ1u2oyeQuIohRtnOkVpoglpuGZ34V6MfjshXPL5P0sca8_CzEMsL6dTzf-9Ym1eWmMtpXBJ02GPVaPUxQ2rPUxFB48hnxoxRqBc7C_7Yt_-3uB3vH0rn8Aj76WyjyOsnsKdsnkGD69xFz6HP9_Pay_9xVq0O7WPC2JtxS7xA8wHwTOSgUAD0jFsKxsBz2rTLCmlYsiRZFS5jmFFGXryZV0sfm0UGOmmO0ZB-mcMIU-Zl8wsztqr8_5H3b2Ak4PPx59moVd2CK1KdR-KglTXrZTclE6W1olEO86d08pa9LlEWqkSl1Iu41UkuC60iwWpHBkZ0TJavoSdpm3KV8AMunw20rpIhVWVrgq6FF7o-rosjQLg03_Nrac9J_WNRR6t2FE3-jmAD6tHLkfOj22F-XWw5P2w0eKhcrN43v_sA4i3PCK3fGpvDYirymF_oaeeqgB2J2Tm3hR1OYmOoQ-WiADY6i5igg6GTFO2yy7HJWtCx-fp61vW7B3cnx0fHeaHX-bfduHBFGERxW9gp79alm_RceuLvWF0_gWcxzlP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOvBGhUHzghJQqsZ3EOSJgVV4rJKjUW-RHXCo2yarOSsBf4E8zkzhLd4v2UOUYJ3Gc8Xgm_ub7CHmZ88IgT1RcMq1ioUoba5h0sbDCpVwW3DGsRv48z4-OxYeT7CRgc3yAVWIO7UaiiMFX4-ReWjch4rCCGxY6gVWiOUq4ltfJjRxCE0T08WT-zxFnMpAwJzG059Om5v9usbEsbZCWIlpSeRgwNypdXHLaw0o0uzvKrfqBwBABKD8OV70-NL-36B2v_JL3yJ0Qo9LXo1HdJ9fq9gG5fYG58CH58_WsCcJftAOv0wRUEO0cXUJWSwMEnqIIBLgPT-FV6WjutFHtCgsqhgpJin3zFPpJIY6vG734tdVgJJv2FCH6pxQMHusuqVqcdudn_ffGPyLHs3ff3hzFQdchNqKQfcw0aq4bzhNVW14by3Jpk8RaKYyBiIsVTtSQSNkycSlLpJY2Y6hxpHiKSTR_TPbarq2fEKog4DOplLpgRjjpNB4CDgh8bVmkEUmmz1qZQHqO2huLKl1zo26Nc0RerS9ZjowfuxonF22l6offLMFSLjev-p99RLIdl_AdjzrYsMN152C8IE4vRET2J8OsgiPyFUqOQQSWs4jQ9VmwCdwWUm3drXwFCWuOm-fF0yv27AW5-eXtrPr0fv5xn9ya4BVp9ozs9eer-jlEbb0-GObmX5YeN_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+optimisation+of+pull+control+policies+for+serial+manufacturing+lines+and+assembly+manufacturing+systems+using+genetic+algorithms&rft.jtitle=International+journal+of+production+research&rft.au=Koulouriotis%2C+D.E.&rft.au=Xanthopoulos%2C+A.S.&rft.au=Tourassis%2C+V.D.&rft.date=2010-05-15&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=48&rft.issue=10&rft.spage=2887&rft.epage=2912&rft_id=info:doi/10.1080%2F00207540802603759&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207540802603759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon