Regulation of AQP4 in the Central Nervous System
Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an important factor in CNS water and potassium homeostasis. Changes in AQP4 activity and expression have been implicated in several CNS disorder...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 5; p. 1603 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.02.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an important factor in CNS water and potassium homeostasis. Changes in AQP4 activity and expression have been implicated in several CNS disorders, including (but not limited to) epilepsy, edema, stroke, and glioblastoma. For this reason, many studies have been done to understand the various ways in which AQP4 is regulated endogenously, and could be regulated pharmaceutically. In particular, four regulatory methods have been thoroughly studied; regulation of gene expression via microRNAs, regulation of AQP4 channel gating/trafficking via phosphorylation, regulation of water permeability using heavy metal ions, and regulation of water permeability using small molecule inhibitors. A major challenge when studying AQP4 regulation is inter-method variability. A compound or phosphorylation which shows an inhibitory effect in vitro may show no effect in a different in vitro method, or even show an increase in AQP4 expression in vivo. Although a large amount of variability exists between in vitro methods, some microRNAs, heavy metal ions, and two small molecule inhibitors, acetazolamide and TGN-020, have shown promise in the field of AQP4 regulation. |
---|---|
AbstractList | Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an important factor in CNS water and potassium homeostasis. Changes in AQP4 activity and expression have been implicated in several CNS disorders, including (but not limited to) epilepsy, edema, stroke, and glioblastoma. For this reason, many studies have been done to understand the various ways in which AQP4 is regulated endogenously, and could be regulated pharmaceutically. In particular, four regulatory methods have been thoroughly studied; regulation of gene expression via microRNAs, regulation of AQP4 channel gating/trafficking via phosphorylation, regulation of water permeability using heavy metal ions, and regulation of water permeability using small molecule inhibitors. A major challenge when studying AQP4 regulation is inter-method variability. A compound or phosphorylation which shows an inhibitory effect in vitro may show no effect in a different in vitro method, or even show an increase in AQP4 expression in vivo. Although a large amount of variability exists between in vitro methods, some microRNAs, heavy metal ions, and two small molecule inhibitors, acetazolamide and TGN-020, have shown promise in the field of AQP4 regulation. Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an important factor in CNS water and potassium homeostasis. Changes in AQP4 activity and expression have been implicated in several CNS disorders, including (but not limited to) epilepsy, edema, stroke, and glioblastoma. For this reason, many studies have been done to understand the various ways in which AQP4 is regulated endogenously, and could be regulated pharmaceutically. In particular, four regulatory methods have been thoroughly studied; regulation of gene expression via microRNAs, regulation of AQP4 channel gating/trafficking via phosphorylation, regulation of water permeability using heavy metal ions, and regulation of water permeability using small molecule inhibitors. A major challenge when studying AQP4 regulation is inter-method variability. A compound or phosphorylation which shows an inhibitory effect in vitro may show no effect in a different in vitro method, or even show an increase in AQP4 expression in vivo. Although a large amount of variability exists between in vitro methods, some microRNAs, heavy metal ions, and two small molecule inhibitors, acetazolamide and TGN-020, have shown promise in the field of AQP4 regulation.Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an important factor in CNS water and potassium homeostasis. Changes in AQP4 activity and expression have been implicated in several CNS disorders, including (but not limited to) epilepsy, edema, stroke, and glioblastoma. For this reason, many studies have been done to understand the various ways in which AQP4 is regulated endogenously, and could be regulated pharmaceutically. In particular, four regulatory methods have been thoroughly studied; regulation of gene expression via microRNAs, regulation of AQP4 channel gating/trafficking via phosphorylation, regulation of water permeability using heavy metal ions, and regulation of water permeability using small molecule inhibitors. A major challenge when studying AQP4 regulation is inter-method variability. A compound or phosphorylation which shows an inhibitory effect in vitro may show no effect in a different in vitro method, or even show an increase in AQP4 expression in vivo. Although a large amount of variability exists between in vitro methods, some microRNAs, heavy metal ions, and two small molecule inhibitors, acetazolamide and TGN-020, have shown promise in the field of AQP4 regulation. |
Author | Yasui, Masato Vandebroek, Arno |
AuthorAffiliation | Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; myasui@a3.keio.jp |
AuthorAffiliation_xml | – name: Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; myasui@a3.keio.jp |
Author_xml | – sequence: 1 givenname: Arno surname: Vandebroek fullname: Vandebroek, Arno – sequence: 2 givenname: Masato surname: Yasui fullname: Yasui, Masato |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32111087$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUlPwzAQhS0EogvcOKNIXDgQGC_ZLkhVxSZV7JwtJ0xaV0lc4qRS_z2mLVWpOHlkf356b16P7FemQkJOKFxynsCVnpaWUQhoCHyPdKlgzAcIo_2tuUN61k4BGGdBckg6nFFKIY66BF5x3Baq0abyTO4NXp6FpyuvmaA3xKqpVeE9Yj03rfXeFrbB8ogc5KqweLw---Tj9uZ9eO-Pnu4ehoORn4kobnyKAjNEkeQY0DgN4zDPlMoSxRBilfJIsDDKI3BTQkWqUhBJ5O5B5RxVyHmfXK90Z21a4me2MiNntS5VvZBGafn3pdITOTZzGUEs4iBwAudrgdp8tWgbWWqbYVGoCl0cyXiYCBEIt5Q-OdtBp6atKxdvSYUBBEnsqNNtRxsrv8t0wMUKyGpjbY35BqEgf7qS2105nO3gmW6WTbg8uvj_0zdF-pZd |
CitedBy_id | crossref_primary_10_3390_ijms24032828 crossref_primary_10_1016_j_neulet_2021_136049 crossref_primary_10_3389_fnagi_2022_1029533 crossref_primary_10_1007_s10571_021_01159_3 crossref_primary_10_1186_s40824_022_00332_z crossref_primary_10_1007_s42399_021_01067_z crossref_primary_10_3390_ijms25031672 crossref_primary_10_1002_adfm_202419613 crossref_primary_10_1134_S0022093023060212 crossref_primary_10_1002_epi4_12990 crossref_primary_10_1007_s12011_022_03134_5 crossref_primary_10_1167_iovs_65_5_30 crossref_primary_10_1002_nbm_5093 crossref_primary_10_1007_s12264_021_00772_y crossref_primary_10_32607_actanaturae_11710 crossref_primary_10_3892_ijmm_2025_5490 crossref_primary_10_1111_ncn3_12653 crossref_primary_10_1016_j_nbd_2023_106035 crossref_primary_10_1016_j_clim_2022_109139 crossref_primary_10_3390_cells10102682 crossref_primary_10_1038_s41398_023_02614_z crossref_primary_10_1113_JP284196 crossref_primary_10_3389_fnins_2022_926128 crossref_primary_10_1177_0271678X231208476 crossref_primary_10_3390_life12111943 crossref_primary_10_1002_adma_202402445 crossref_primary_10_1177_0271678X241237073 crossref_primary_10_1007_s11064_020_03123_x crossref_primary_10_1111_cns_14308 crossref_primary_10_3390_jcm14020386 crossref_primary_10_1038_s41598_024_73321_y crossref_primary_10_1016_j_neuropharm_2021_108910 crossref_primary_10_1002_nbm_4677 crossref_primary_10_1111_cns_14669 crossref_primary_10_1007_s10753_024_02082_7 crossref_primary_10_1016_j_abb_2022_109393 crossref_primary_10_2174_1871527320666210506185042 crossref_primary_10_1094_PHYTO_02_21_0048_R crossref_primary_10_1111_jnc_15831 crossref_primary_10_3389_fphys_2020_00939 crossref_primary_10_1111_cns_14717 crossref_primary_10_1016_j_bbrep_2021_101132 crossref_primary_10_1097_SHK_0000000000001869 crossref_primary_10_3390_diagnostics13091585 crossref_primary_10_3390_ijms24065883 crossref_primary_10_1016_j_psychres_2022_114658 crossref_primary_10_1177_17562864211049208 crossref_primary_10_1007_s12028_023_01746_w crossref_primary_10_1080_01616412_2022_2039509 crossref_primary_10_1152_japplphysiol_00861_2019 crossref_primary_10_3390_cancers14174180 crossref_primary_10_1002_jnr_24718 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107205 crossref_primary_10_3390_ijms241511923 crossref_primary_10_1016_j_fitote_2024_106098 crossref_primary_10_31083_j_fbl2802035 crossref_primary_10_3390_biology13110862 crossref_primary_10_3390_ijms25052968 crossref_primary_10_1007_s12011_023_03602_6 crossref_primary_10_1007_s12035_024_04320_3 crossref_primary_10_31083_j_jin2206162 crossref_primary_10_31857_S0869813923110079 crossref_primary_10_1007_s12035_020_01985_4 crossref_primary_10_1016_j_nbd_2025_106885 crossref_primary_10_1097_WNR_0000000000002114 crossref_primary_10_1007_s00018_022_04136_1 crossref_primary_10_1177_10738584231194927 crossref_primary_10_3390_jcm11236964 crossref_primary_10_1162_imag_a_00325 crossref_primary_10_1177_0271678X231183742 crossref_primary_10_1007_s13577_024_01078_7 crossref_primary_10_1111_jnc_16029 crossref_primary_10_3390_antiox11112296 crossref_primary_10_1371_journal_pone_0307577 crossref_primary_10_3390_life13102038 crossref_primary_10_1007_s11064_021_03478_9 crossref_primary_10_3390_ijms26030873 crossref_primary_10_1016_j_jneuroim_2021_577752 crossref_primary_10_1016_j_wneu_2024_02_123 crossref_primary_10_14336_AD_2021_0731 crossref_primary_10_1007_s10571_023_01386_w crossref_primary_10_3390_ijms25179539 crossref_primary_10_1007_s12264_022_00977_9 crossref_primary_10_1007_s11011_022_01092_4 crossref_primary_10_1007_s11033_022_08184_5 crossref_primary_10_3390_ijms232315271 crossref_primary_10_1016_j_nbd_2023_106347 crossref_primary_10_3389_fncel_2023_1125412 crossref_primary_10_3390_biom12050633 crossref_primary_10_3389_fimmu_2022_1008795 crossref_primary_10_1007_s12028_021_01261_w crossref_primary_10_1016_j_jnrt_2022_100030 crossref_primary_10_1007_s12264_024_01193_3 crossref_primary_10_1038_s41526_024_00441_0 crossref_primary_10_3389_fimmu_2023_1191826 crossref_primary_10_1080_07853890_2024_2401111 crossref_primary_10_1002_jbt_70159 crossref_primary_10_1016_j_physbeh_2023_114353 crossref_primary_10_1093_burnst_tkac061 crossref_primary_10_3389_fnins_2022_1048429 crossref_primary_10_3390_cells10081911 crossref_primary_10_3389_fimmu_2022_870029 crossref_primary_10_1177_0271678X211045748 crossref_primary_10_1186_s12964_023_01459_9 crossref_primary_10_1515_med_2023_0800 crossref_primary_10_1038_s41598_024_53836_0 crossref_primary_10_1155_2022_3106688 crossref_primary_10_1007_s00232_022_00257_7 crossref_primary_10_3389_fncel_2022_900588 crossref_primary_10_3389_fneur_2025_1554813 crossref_primary_10_1007_s00018_024_05341_w crossref_primary_10_3390_jcdd9100353 crossref_primary_10_1016_j_bbr_2024_115220 crossref_primary_10_1002_brx2_70011 crossref_primary_10_1007_s11064_021_03265_6 |
Cites_doi | 10.1016/j.neuron.2010.10.013 10.1016/j.str.2015.08.020 10.1152/ajpcell.00182.2014 10.3171/2008.4.JNS17512 10.1038/72256 10.1136/jnnp.72.2.262 10.1074/jbc.M111.280701 10.1016/j.mam.2012.02.003 10.1038/ncomms1871 10.1212/WNL.82.10_supplement.S63.001 10.1016/j.bmcl.2006.12.010 10.1002/glia.20627 10.1016/j.bmc.2008.06.005 10.3390/ijms17101413 10.1016/j.mcn.2006.09.008 10.1016/j.jocn.2010.02.014 10.1089/neu.2008.0782 10.1097/01.WCB.0000090621.86921.D5 10.1038/jcbfm.2015.156 10.1002/glia.20318 10.1016/j.bmc.2007.12.038 10.3390/ijms19010046 10.1016/j.neuroscience.2005.07.027 10.1124/mol.57.3.576 10.1083/jcb.201308118 10.1097/NEN.0b013e3182632566 10.1016/j.bmc.2007.12.040 10.3389/fchem.2018.00238 10.1097/WNR.0b013e32835fc827 10.1016/j.mcn.2007.08.007 10.1371/journal.pone.0010455 10.1016/j.bbadis.2012.07.004 10.1038/nrd4226 10.1371/journal.pone.0034936 10.1038/s41598-018-22268-y 10.1038/nsmb.2630 10.1074/jbc.M115.646034 10.1002/glia.22498 10.1038/s41586-018-0368-8 10.1038/sj.emboj.7601512 10.1007/s11064-015-1519-z 10.1093/jmicro/dfv368 10.1016/S0361-9230(99)00072-6 10.1038/aps.2015.47 10.1002/glia.21023 10.3390/ijms20071589 10.1158/0008-5472.CAN-18-2015 10.1074/jbc.M407645200 10.1146/annurev.cellbio.23.090506.123406 10.1371/journal.pone.0066751 10.1186/s12950-017-0153-8 10.1007/s00401-005-0984-x 10.1073/pnas.0902725106 10.1016/j.neuro.2019.03.006 10.1179/1743132814Y.0000000434 10.1016/j.bbrc.2008.09.155 10.1038/46045 10.1016/j.brainres.2013.09.022 10.1016/S0021-9258(17)37486-0 10.1042/BJ20130046 10.3390/cells8020082 10.1080/14728222.2017.1398236 10.1038/srep33330 10.1016/j.neuroscience.2009.10.029 10.1016/j.neuroscience.2009.09.072 10.1007/s10072-010-0431-1 10.1038/nrneurol.2010.72 10.3390/ijms17071029 10.1042/BC20070132 10.1016/S1474-4422(12)70133-3 10.1007/s12035-015-9446-1 10.1074/jbc.273.11.6001 10.1007/978-94-024-1057-0_16 10.2131/jts.37.749 10.1093/hmg/ddm322 10.1096/fj.07-104836 10.1038/ncb0502-e127 10.1093/emboj/cdg139 10.1155/2019/2831501 10.1111/ejn.13652 10.1021/bi901762y 10.1016/j.neuroscience.2009.09.020 10.1016/j.neuroscience.2004.08.053 10.1152/ajprenal.00260.2001 10.1073/pnas.0409308102 10.3171/jns.1998.89.6.0991 10.1016/j.jsb.2008.11.010 10.1523/JNEUROSCI.17-01-00171.1997 10.1038/nrn1252 10.1261/rna.7135204 10.1016/j.toxlet.2019.11.011 10.1016/j.eplepsyres.2013.01.006 10.1074/jbc.M110.144576 10.1038/npp.2012.34 10.1007/s00467-006-0411-0 10.1074/jbc.M104368200 10.1155/2017/9530951 10.1016/j.brainres.2012.10.065 10.1002/glia.21169 10.1042/BC20060068 10.1016/j.jstrokecerebrovasdis.2017.10.010 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms21051603 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7084855 32111087 10_3390_ijms21051603 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 18H02606 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-1e4ecee49fe518b686fcaac9a2e08ab374267f70b37914bab0497ab30af3ea633 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:28:26 EDT 2025 Tue Aug 05 11:16:22 EDT 2025 Fri Jul 25 19:58:13 EDT 2025 Wed Feb 19 02:05:38 EST 2025 Tue Jul 01 04:15:09 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | oocyte aquaporin-4 water channel acetazolamide microRNA metal ion phosphorylation proteoliposome TGN-020 small molecule inhibitor |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-1e4ecee49fe518b686fcaac9a2e08ab374267f70b37914bab0497ab30af3ea633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21051603 |
PMID | 32111087 |
PQID | 2369650598 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084855 proquest_miscellaneous_2369445402 proquest_journals_2369650598 pubmed_primary_32111087 crossref_primary_10_3390_ijms21051603 crossref_citationtrail_10_3390_ijms21051603 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200226 |
PublicationDateYYYYMMDD | 2020-02-26 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200226 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Igarashi (ref_38) 2014; 36 Lan (ref_37) 2016; 53 Xiong (ref_53) 2018; 39 Yasui (ref_78) 1999; 402 Bertram (ref_39) 2010; 68 Verkman (ref_5) 2017; 21 Bushati (ref_45) 2007; 23 Li (ref_10) 2001; 276 Jarius (ref_32) 2010; 6 Manley (ref_7) 2000; 6 Nielsen (ref_6) 1997; 17 ref_16 Zeng (ref_43) 2007; 34 Wang (ref_90) 2015; 36 Assentoft (ref_75) 2014; 307 Sepramaniam (ref_54) 2012; 287 Gunnarson (ref_69) 2005; 136 Lu (ref_8) 2008; 22 Zelenina (ref_70) 2002; 283 ref_20 Ho (ref_74) 2009; 106 Cai (ref_46) 2004; 10 Smith (ref_27) 2014; 204 Zhong (ref_50) 2020; 319 Igarashi (ref_105) 2013; 24 Tradtrantip (ref_19) 2017; 969 ref_26 Hoshi (ref_36) 2012; 71 Kato (ref_83) 2013; 454 Yamamoto (ref_81) 2012; 37 Jullienne (ref_48) 2018; 8 Huang (ref_92) 2013; 1539 Wingerchuk (ref_35) 2014; 82 Fazzina (ref_63) 2009; 27 Kim (ref_47) 2007; 26 Li (ref_9) 2002; 43 Ottersen (ref_77) 2003; 4 Warth (ref_12) 2005; 109 Yukutake (ref_82) 2009; 48 Huber (ref_96) 2009; 17 Louveau (ref_93) 2018; 560 Carmosino (ref_58) 2007; 99 Yukutake (ref_79) 2008; 100 Anthony (ref_71) 2000; 57 Assentoft (ref_3) 2015; 40 Alvestad (ref_30) 2013; 105 Esposito (ref_104) 2008; 17 Salman (ref_29) 2017; 46 Moeller (ref_64) 2009; 164 Fawcett (ref_28) 1999; 49 Kamegawa (ref_99) 2016; 65 Papadopoulos (ref_15) 2007; 22 Strohschein (ref_40) 2011; 59 Cohen (ref_57) 2002; 4 Gomes (ref_44) 2018; 6 Kadohira (ref_59) 2008; 377 Nagelhus (ref_11) 2004; 129 Vitvitsky (ref_41) 2012; 1822 Saadoun (ref_21) 2002; 72 Li (ref_42) 2012; 37 Rao (ref_85) 2010; 58 ref_56 Gunnarson (ref_67) 2008; 56 Reichow (ref_72) 2013; 20 Cai (ref_102) 2017; 14 Zheng (ref_55) 2017; 9 Assentoft (ref_61) 2013; 61 Kaptan (ref_73) 2015; 23 Zhong (ref_86) 2019; 73 ref_51 (ref_76) 2016; 10 Qing (ref_89) 2009; 110 Zelenina (ref_84) 2004; 279 Yukutake (ref_80) 2010; 168 McCoy (ref_65) 2010; 168 Tanimura (ref_97) 2009; 166 Hua (ref_88) 2003; 23 ref_68 Ding (ref_24) 2010; 17 Simone (ref_25) 2019; 79 Papadopoulos (ref_34) 2012; 11 Igarashi (ref_17) 2011; 32 Huber (ref_95) 2009; 17 Binder (ref_14) 2006; 53 Yang (ref_98) 2008; 16 Xi (ref_87) 1998; 89 Sturdivant (ref_101) 2016; 6 ref_33 Zanotto (ref_103) 2013; 1491 Vermeulen (ref_91) 2003; 22 Zhang (ref_13) 2008; 37 Wang (ref_49) 2015; 35 Lundby (ref_62) 2012; 3 Wolburg (ref_22) 2012; 33 ref_106 Verkman (ref_1) 2014; 13 Sepramaniam (ref_52) 2010; 285 Nakano (ref_18) 2018; 27 ref_100 Eid (ref_31) 2005; 102 ref_2 Hasegawa (ref_4) 1994; 269 Han (ref_60) 1998; 273 Ding (ref_23) 2011; 38 Kitchen (ref_66) 2015; 290 Huber (ref_94) 2007; 17 |
References_xml | – volume: 38 start-page: 1521 year: 2011 ident: ref_23 article-title: Role of aquaporin-4 in the regulation of migration and invasion of human glioma cells publication-title: Int. J. Oncol. – volume: 68 start-page: 270 year: 2010 ident: ref_39 article-title: The genetics of Alzheimer disease: Back to the future publication-title: Neuron doi: 10.1016/j.neuron.2010.10.013 – volume: 23 start-page: 2309 year: 2015 ident: ref_73 article-title: H95 Is a pH-Dependent Gate in Aquaporin 4 publication-title: Structure doi: 10.1016/j.str.2015.08.020 – volume: 307 start-page: C957 year: 2014 ident: ref_75 article-title: AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at COOH-terminal serine residues publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00182.2014 – volume: 110 start-page: 462 year: 2009 ident: ref_89 article-title: Brain edema after intracerebral hemorrhage in rats: The role of iron overload and aquaporin 4: Laboratory investigation publication-title: J. Neurosurg. doi: 10.3171/2008.4.JNS17512 – volume: 6 start-page: 159 year: 2000 ident: ref_7 article-title: Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke publication-title: Nat. Med. doi: 10.1038/72256 – volume: 72 start-page: 262 year: 2002 ident: ref_21 article-title: Aquaporin-4 expression is increased in oedematous human brain tumours publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.72.2.262 – volume: 287 start-page: 12006 year: 2012 ident: ref_54 article-title: MicroRNA-130a Represses Transcriptional Activity of Aquaporin 4 M1 Promoter publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.280701 – volume: 33 start-page: 579 year: 2012 ident: ref_22 article-title: The disturbed blood–brain barrier in human glioblastoma publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2012.02.003 – volume: 3 start-page: 876 year: 2012 ident: ref_62 article-title: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues publication-title: Nat. Commun. doi: 10.1038/ncomms1871 – volume: 10 start-page: 233 year: 2016 ident: ref_76 article-title: Metal Ion Toxins and Brain Aquaporin-4 Expression: An Overview publication-title: Front. Neurosci. – volume: 82 start-page: S63.001 year: 2014 ident: ref_35 article-title: Revised Diagnostic Criteria for Neuromyelitis Optica Spectrum Disorders (S63.001) publication-title: Neurology doi: 10.1212/WNL.82.10_supplement.S63.001 – volume: 17 start-page: 1270 year: 2007 ident: ref_94 article-title: Identification of arylsulfonamides as Aquaporin 4 inhibitors publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2006.12.010 – volume: 56 start-page: 587 year: 2008 ident: ref_67 article-title: Identification of a molecular target for glutamate regulation of astrocyte water permeability publication-title: Glia doi: 10.1002/glia.20627 – volume: 16 start-page: 7489 year: 2008 ident: ref_98 article-title: Lack of aquaporin-4 water transport inhibition by antiepileptics and arylsulfonamides publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2008.06.005 – ident: ref_16 doi: 10.3390/ijms17101413 – volume: 34 start-page: 34 year: 2007 ident: ref_43 article-title: Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2006.09.008 – volume: 17 start-page: 1359 year: 2010 ident: ref_24 article-title: Aquaporin-4 in glioma invasion and an analysis of molecular mechanisms publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2010.02.014 – volume: 27 start-page: 453 year: 2009 ident: ref_63 article-title: The Protein Kinase C Activator Phorbol Myristate Acetate Decreases Brain Edema by Aquaporin 4 Downregulation after Middle Cerebral Artery Occlusion in the Rat publication-title: J. Neurotrauma doi: 10.1089/neu.2008.0782 – volume: 23 start-page: 1448 year: 2003 ident: ref_88 article-title: Thrombin Preconditioning Attenuates Brain Edema Induced by Erythrocytes and Iron publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/01.WCB.0000090621.86921.D5 – volume: 35 start-page: 1977 year: 2015 ident: ref_49 article-title: MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4 publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2015.156 – volume: 53 start-page: 631 year: 2006 ident: ref_14 article-title: Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels publication-title: Glia doi: 10.1002/glia.20318 – volume: 17 start-page: 418 year: 2009 ident: ref_95 article-title: Inhibition of Aquaporin 4 by antiepileptic drugs publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2007.12.038 – ident: ref_106 doi: 10.3390/ijms19010046 – volume: 136 start-page: 105 year: 2005 ident: ref_69 article-title: Lead induces increased water permeability in astrocytes expressing aquaporin 4 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.07.027 – volume: 57 start-page: 576 year: 2000 ident: ref_71 article-title: Cloned Human Aquaporin-1 Is a Cyclic GMP-Gated Ion Channel publication-title: Mol. Pharm. doi: 10.1124/mol.57.3.576 – volume: 204 start-page: 559 year: 2014 ident: ref_27 article-title: Aggregation state determines the localization and function of M1– and M23–aquaporin-4 in astrocytes publication-title: J. Cell Biol. doi: 10.1083/jcb.201308118 – volume: 71 start-page: 750 year: 2012 ident: ref_36 article-title: Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0b013e3182632566 – volume: 39 start-page: 1939 year: 2018 ident: ref_53 article-title: miRNA-320a inhibits glioma cell invasion and migration by directly targeting aquaporin 4 publication-title: Oncol. Rep. – volume: 17 start-page: 411 year: 2009 ident: ref_96 article-title: Identification of Aquaporin 4 inhibitors using in vitro and in silico methods publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2007.12.040 – volume: 6 start-page: 238 year: 2018 ident: ref_44 article-title: The Emerging Role of microRNAs in Aquaporin Regulation publication-title: Front. Chem. doi: 10.3389/fchem.2018.00238 – volume: 24 start-page: 324 year: 2013 ident: ref_105 article-title: Inhibition of aquaporin-4 significantly increases regional cerebral blood flow publication-title: NeuroReport doi: 10.1097/WNR.0b013e32835fc827 – volume: 37 start-page: 1 year: 2008 ident: ref_13 article-title: Aquaporin-4 independent Kir4.1 K+ channel function in brain glial cells publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2007.08.007 – ident: ref_33 doi: 10.1371/journal.pone.0010455 – volume: 1822 start-page: 1671 year: 2012 ident: ref_41 article-title: Na+ and K+ ion imbalances in Alzheimer’s disease publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2012.07.004 – volume: 13 start-page: 259 year: 2014 ident: ref_1 article-title: Aquaporins: Important but elusive drug targets publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4226 – ident: ref_68 doi: 10.1371/journal.pone.0034936 – volume: 8 start-page: 4186 year: 2018 ident: ref_48 article-title: Modulating the water channel AQP4 alters miRNA expression, astrocyte connectivity and water diffusion in the rodent brain publication-title: Sci. Rep. doi: 10.1038/s41598-018-22268-y – volume: 20 start-page: 1085 year: 2013 ident: ref_72 article-title: Allosteric mechanism of water-channel gating by Ca 2+ —calmodulin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2630 – volume: 290 start-page: 16873 year: 2015 ident: ref_66 article-title: Identification and Molecular Mechanisms of the Rapid Tonicity-induced Relocalization of the Aquaporin 4 Channel publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.646034 – volume: 61 start-page: 1101 year: 2013 ident: ref_61 article-title: Phosphorylation of rat aquaporin-4 at Ser 111 is not required for channel gating: No Phosphorylation-Dependent Gating of AQP4 publication-title: Glia doi: 10.1002/glia.22498 – volume: 43 start-page: 573 year: 2002 ident: ref_9 article-title: Mildly Abnormal Retinal Function in Transgenic Mice without Müller Cell Aquaporin-4 Water Channels publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 560 start-page: 185 year: 2018 ident: ref_93 article-title: Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease publication-title: Nature doi: 10.1038/s41586-018-0368-8 – volume: 26 start-page: 775 year: 2007 ident: ref_47 article-title: Processing of intronic microRNAs publication-title: EMBO J. doi: 10.1038/sj.emboj.7601512 – volume: 40 start-page: 2615 year: 2015 ident: ref_3 article-title: Regulation and Function of AQP4 in the Central Nervous System publication-title: Neurochem. Res. doi: 10.1007/s11064-015-1519-z – volume: 65 start-page: 177 year: 2016 ident: ref_99 article-title: Two-dimensional crystal structure of aquaporin-4 bound to the inhibitor acetazolamide publication-title: Microscopy doi: 10.1093/jmicro/dfv368 – volume: 49 start-page: 377 year: 1999 ident: ref_28 article-title: The glial scar and central nervous system repair publication-title: Brain Res. Bull. doi: 10.1016/S0361-9230(99)00072-6 – volume: 36 start-page: 939 year: 2015 ident: ref_90 article-title: Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression publication-title: Acta Pharm. Sin. doi: 10.1038/aps.2015.47 – volume: 58 start-page: 1490 year: 2010 ident: ref_85 article-title: Aquaporin-4 in manganese-treated cultured astrocytes publication-title: Glia doi: 10.1002/glia.21023 – ident: ref_2 doi: 10.3390/ijms20071589 – volume: 79 start-page: 2182 year: 2019 ident: ref_25 article-title: AQP4 Aggregation State Is a Determinant for Glioma Cell Fate publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-2015 – volume: 279 start-page: 51939 year: 2004 ident: ref_84 article-title: Copper Inhibits the Water and Glycerol Permeability of Aquaporin-3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M407645200 – volume: 23 start-page: 175 year: 2007 ident: ref_45 article-title: microRNA Functions publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.23.090506.123406 – ident: ref_26 doi: 10.1371/journal.pone.0066751 – volume: 14 start-page: 6 year: 2017 ident: ref_102 article-title: Overexpression of aquaporin 4 in articular chondrocytes exacerbates the severity of adjuvant-induced arthritis in rats: An in vivo and in vitro study publication-title: J. Inflamm. doi: 10.1186/s12950-017-0153-8 – volume: 109 start-page: 418 year: 2005 ident: ref_12 article-title: Redistribution of the water channel protein aquaporin-4 and the K+ channel protein Kir4.1 differs in low- and high-grade human brain tumors publication-title: Acta Neuropathol. doi: 10.1007/s00401-005-0984-x – volume: 106 start-page: 7437 year: 2009 ident: ref_74 article-title: Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0902725106 – volume: 73 start-page: 142 year: 2019 ident: ref_86 article-title: Involvement of mitogen-activated protein kinase pathways in ferrous iron-induced aquaporin-4 expression in cultured astrocytes publication-title: NeuroToxicology doi: 10.1016/j.neuro.2019.03.006 – volume: 36 start-page: 1094 year: 2014 ident: ref_38 article-title: Water influx into cerebrospinal fluid is significantly reduced in senile plaque bearing transgenic mice, supporting beta-amyloid clearance hypothesis of Alzheimer’s disease publication-title: Neurol. Res. doi: 10.1179/1743132814Y.0000000434 – volume: 377 start-page: 463 year: 2008 ident: ref_59 article-title: Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.09.155 – volume: 402 start-page: 184 year: 1999 ident: ref_78 article-title: Rapid gating and anion permeability of an intracellular aquaporin publication-title: Nature doi: 10.1038/46045 – volume: 1539 start-page: 61 year: 2013 ident: ref_92 article-title: The internalization and lysosomal degradation of brain AQP4 after ischemic injury publication-title: Brain Res. doi: 10.1016/j.brainres.2013.09.022 – volume: 269 start-page: 5497 year: 1994 ident: ref_4 article-title: Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37486-0 – volume: 454 start-page: 275 year: 2013 ident: ref_83 article-title: A general anaesthetic propofol inhibits aquaporin-4 in the presence of Zn2+ publication-title: Biochem. J. doi: 10.1042/BJ20130046 – ident: ref_56 doi: 10.3390/cells8020082 – volume: 21 start-page: 1161 year: 2017 ident: ref_5 article-title: The aquaporin-4 water channel as a potential drug target in neurological disorders publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2017.1398236 – volume: 6 start-page: 33330 year: 2016 ident: ref_101 article-title: Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury publication-title: Sci. Rep. doi: 10.1038/srep33330 – volume: 168 start-page: 885 year: 2010 ident: ref_80 article-title: Regulation of water permeability through aquaporin-4 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.10.029 – volume: 164 start-page: 1674 year: 2009 ident: ref_64 article-title: Vasopressin-dependent short-term regulation of aquaporin 4 expressed in Xenopus oocytes publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.09.072 – volume: 32 start-page: 113 year: 2011 ident: ref_17 article-title: Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema publication-title: Neurol. Sci. doi: 10.1007/s10072-010-0431-1 – volume: 6 start-page: 383 year: 2010 ident: ref_32 article-title: AQP4 antibodies in neuromyelitis optica: Diagnostic and pathogenetic relevance publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2010.72 – ident: ref_20 doi: 10.3390/ijms17071029 – volume: 100 start-page: 355 year: 2008 ident: ref_79 article-title: Mercury chloride decreases the water permeability of aquaporin-4-reconstituted proteoliposomes publication-title: Biol. Cell doi: 10.1042/BC20070132 – volume: 11 start-page: 535 year: 2012 ident: ref_34 article-title: Aquaporin 4 and neuromyelitis optica publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(12)70133-3 – volume: 53 start-page: 5300 year: 2016 ident: ref_37 article-title: The Potential Roles of Aquaporin 4 in Alzheimer’s disease publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9446-1 – volume: 273 start-page: 6001 year: 1998 ident: ref_60 article-title: Regulation of Aquaporin-4 Water Channels by Phorbol Ester-dependent Protein Phosphorylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.11.6001 – volume: 969 start-page: 239 year: 2017 ident: ref_19 article-title: Aquaporin-Targeted Therapeutics: State-of-the-Field publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-94-024-1057-0_16 – volume: 37 start-page: 749 year: 2012 ident: ref_81 article-title: Increased expression of aquaporin-4 with methylmercury exposure in the brain of the common marmoset publication-title: J. Toxicol. Sci. doi: 10.2131/jts.37.749 – volume: 17 start-page: 440 year: 2008 ident: ref_104 article-title: Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm322 – volume: 22 start-page: 3216 year: 2008 ident: ref_8 article-title: Impaired olfaction in mice lacking aquaporin-4 water channels publication-title: FAESB J. doi: 10.1096/fj.07-104836 – volume: 4 start-page: E127 year: 2002 ident: ref_57 article-title: The origins of protein phosphorylation publication-title: Nat. Cell Biol. doi: 10.1038/ncb0502-e127 – volume: 22 start-page: 1313 year: 2003 ident: ref_91 article-title: Transcriptional activation of the NF-κB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1) publication-title: EMBO J. doi: 10.1093/emboj/cdg139 – ident: ref_100 doi: 10.1155/2019/2831501 – volume: 46 start-page: 2121 year: 2017 ident: ref_29 article-title: Transcriptome analysis suggests a role for the differential expression of cerebral aquaporins and the MAPK signalling pathway in human temporal lobe epilepsy publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.13652 – volume: 48 start-page: 12059 year: 2009 ident: ref_82 article-title: Rapid and Reversible Inhibition of Aquaporin-4 by Zinc publication-title: Biochemistry doi: 10.1021/bi901762y – volume: 168 start-page: 971 year: 2010 ident: ref_65 article-title: Water permeability through aquaporin-4 is regulated by protein kinase C and becomes rate-limiting for glioma invasion publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.09.020 – volume: 129 start-page: 905 year: 2004 ident: ref_11 article-title: Aquaporin-4 in the central nervous system: Cellular and subcellular distribution and coexpression with KIR4.1 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.08.053 – volume: 283 start-page: F309 year: 2002 ident: ref_70 article-title: Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00260.2001 – volume: 102 start-page: 1193 year: 2005 ident: ref_31 article-title: Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409308102 – volume: 89 start-page: 991 year: 1998 ident: ref_87 article-title: Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats publication-title: J. Neurosurg. doi: 10.3171/jns.1998.89.6.0991 – volume: 166 start-page: 16 year: 2009 ident: ref_97 article-title: Acetazolamide reversibly inhibits water conduction by aquaporin-4 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2008.11.010 – volume: 17 start-page: 171 year: 1997 ident: ref_6 article-title: Specialized membrane domains for water transport in glial cells: High-resolution immunogold cytochemistry of aquaporin-4 in rat brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-01-00171.1997 – volume: 4 start-page: 991 year: 2003 ident: ref_77 article-title: The molecular basis of water transport in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1252 – volume: 10 start-page: 1957 year: 2004 ident: ref_46 article-title: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs publication-title: RNA doi: 10.1261/rna.7135204 – volume: 319 start-page: 160 year: 2020 ident: ref_50 article-title: MicroRNA-29b-3p aggravates 1,2-dichloroethane-induced brain edema by targeting aquaporin 4 in Sprague-Dawley rats and CD-1 mice publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2019.11.011 – volume: 105 start-page: 30 year: 2013 ident: ref_30 article-title: Mislocalization of AQP4 precedes chronic seizures in the kainate model of temporal lobe epilepsy publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2013.01.006 – volume: 285 start-page: 29223 year: 2010 ident: ref_52 article-title: MicroRNA 320a Functions as a Novel Endogenous Modulator of Aquaporins 1 and 4 as Well as a Potential Therapeutic Target in Cerebral Ischemia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.144576 – volume: 37 start-page: 1867 year: 2012 ident: ref_42 article-title: Aquaporin-4 Deficiency Impairs Synaptic Plasticity and Associative Fear Memory in the Lateral Amygdala: Involvement of Downregulation of Glutamate Transporter-1 Expression publication-title: Neuropsychopharmacology doi: 10.1038/npp.2012.34 – volume: 22 start-page: 778 year: 2007 ident: ref_15 article-title: Aquaporin-4 and brain edema publication-title: Pediatr. Nephrol. doi: 10.1007/s00467-006-0411-0 – volume: 276 start-page: 31233 year: 2001 ident: ref_10 article-title: Impaired Hearing in Mice Lacking Aquaporin-4 Water Channels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M104368200 – volume: 9 start-page: 3452 year: 2017 ident: ref_55 article-title: Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4) publication-title: Am. J. Transl. Res. – ident: ref_51 doi: 10.1155/2017/9530951 – volume: 1491 start-page: 14 year: 2013 ident: ref_103 article-title: Non-specific inhibitors of aquaporin-4 stimulate S100B secretion in acute hippocampal slices of rats publication-title: Brain Res. doi: 10.1016/j.brainres.2012.10.065 – volume: 59 start-page: 973 year: 2011 ident: ref_40 article-title: Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus publication-title: Glia doi: 10.1002/glia.21169 – volume: 99 start-page: 25 year: 2007 ident: ref_58 article-title: Trafficking and phosphorylation dynamics of AQP4 in histamine-treated human gastric cells publication-title: Biol. Cell doi: 10.1042/BC20060068 – volume: 27 start-page: 758 year: 2018 ident: ref_18 article-title: Goreisan Prevents Brain Edema after Cerebral Ischemic Stroke by Inhibiting Aquaporin 4 Upregulation in Mice publication-title: J. Stroke Cerebrovasc. Dis. doi: 10.1016/j.jstrokecerebrovasdis.2017.10.010 |
SSID | ssj0023259 |
Score | 2.588416 |
SecondaryResourceType | review_article |
Snippet | Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1603 |
SubjectTerms | Acetazolamide Animals Aquaporin 4 - genetics Aquaporin 4 - metabolism Brain cancer Cell adhesion & migration Central Nervous System - metabolism Central Nervous System Diseases - metabolism Edema Gene expression Homeostasis Humans Ions - metabolism Ischemia Kinases Localization Metals - metabolism MicroRNAs Nervous system Neurological disorders Niacinamide - analogs & derivatives Permeability Phosphorylation Potassium - metabolism Proteins Proteolipids Review Roles Thiadiazoles Water - metabolism |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR39YXEfQkxaZJk_Qki7gugqKi4K0kaYor2lV3PfjvnbTd6ip6K-1Ay0yab75kMh_AfpFyI6yhOHgLE_Jcm1BrRcOcxRazc0Q45w8KX1yK3h0_v0_umwW3YVNWOZ4Tq4k6H1i_Rn4Ue-E5hOtUHb-8hl41yu-uNhIa0zBLEWl8SZfqnrWEi8WVWBpFDApFkoq68J0hzT_qPz4Pke0kXmV5EpJ-5Zk_yyW_4U93ERaaxJF06kgvwZQrl2GulpL8WIHophaVRzeTQUE611ec9EuC6R1pFnDJJU4LyPNJ3aR8Fe66p7cnvbBRQwgtl2oUUscdIhpPC5dQZYQShdXapjp2kdKGIccVspARXqWUG20w95d4P9IFc1owtgYz5aB0G0CUppg2mDx1OuImzrVMhY61pcxJS60I4HDskMw2rcK9YsVThpTBuy_77r4ADlrrl7pFxh9222PfZs2PMsy-whrAXvsYh7jft9ClQ7dUNtx3CowDWK9D0b6IIYGlkZIByIkgtQa-ffbkk7L_ULXRll5KIEk2__-sLZiPPcX2p9jFNsyM3t7dDuYhI7NbDbZPui7c1A priority: 102 providerName: ProQuest |
Title | Regulation of AQP4 in the Central Nervous System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32111087 https://www.proquest.com/docview/2369650598 https://www.proquest.com/docview/2369445402 https://pubmed.ncbi.nlm.nih.gov/PMC7084855 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54QdmLeLdeRgR9kmrTpkn7IKLiFMExxcHeSpKlOJmdlwn67z1ZL0ynL76U0pxQOCft-b5czgewl8ZMca0oDt5UuawrlStlRN1u4GtE55jhjD0ofNPkV2123Qk7U1CqjRYOfPuV2lk9qfZr__Dj5fMEP_hjyziRsh_1Hp_ekLmEVjF5GmYxJwmrZXDDqvUEhA1hnG97n-hRg_kAWRD17K668dw0ATh_7pscS0SNRVgoECQ5zUO-BFMmW4a5XFPycwW8u1xdHv1NBik5vW0x0ssI4jxSzOSSJv4fkPCTvFr5KrQbF_fnV24hi-BqJqKhSw0zmNpYnJqQRopHPNVS6lj6xoukCpDscpEKD-9iypRUSAIEPvdkGhjJg2ANZrJBZjaARJIiflDd2EiPKb8rRcylLzUNjNBUcwcOSockuqgZbqUr-glyB-vJZNyTDuxX1s95rYw_7LZL3yZlwBPfCgsiHIsjB3arZhzrdgFDZgbdMrJhtmSg78B6HorqRWUMHRDfglQZ2Dra31uy3sOonrawmgJhuPnvnltQ8y0Ntyfd-TbMDF_fzQ5ilaGqw7ToCLxGjcs6zJ5dNFt3dZs9wvpogH4BfdnvFw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hUNVeKvpOgdaVyqmKiB3HTg4IoZbtUmDVViBxS23HUbeCLGUXIf4Uv5GZvGBbtTduUTxSopnxPOyZ-QDel5m0ylmOylvaUBbGhsakPCxi4TA6Rw_nqVH4YKSGR_LLcXK8ANddLwyVVXY2sTbUxcTRGfmGIOA5dNdZunX2OyTUKLpd7SA0GrXY81eXmLJNN3c_oXzXhRjsHH4chi2qQOikTmch99KjZ5BZ6ROeWpWq0hnjMiN8lBobY66odKkjfMq4tMZiDK3xfWTK2BtFB6Bo8pdkjJ6cOtMHn_sELxY1OBtHnxeqJFNNoT0SRhvjX6dTzK4SQnWed4F_xbV_lmfe8XeDZXjcBqpsu9GsJ7Dgq6fwoIGuvHoG0fcGxB7FyiYl2_72VbJxxTCcZO2BMRuhGZpcTFkzFP05HN0Ln17AYjWp_CtgqeEYptgi8yaSVhRGZ8oI43jsteNOBfChY0ju2tHkhJBxkmOKQuzL77IvgPWe-qwZyfEPutWOt3m7Maf5rRoF8K5fxi1F9ySm8siWmkbSZEIRwMtGFP2HYkyYeZTqAPSckHoCGtc9v1KNf9ZjuzVBFyTJ6___1lt4ODw82M_3d0d7K_BIUHpPHfRqFRZn5xd-DWOgmX1TKx6DH_et6Td3qRsP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4oJZnoAUj0ROKNnYcOz4gVGhXLYXVUlGpt2A7jlgE2cJuVfWv8euY2TzoguDWWxSPlGhmPDOfH_MBPK-MdMo7js5buViW1sXW5jwuU-GxOscMF-ii8PuxOjiRb0-z0zX42d2FoWOVXUxcBupy5mmNfCiIeA7TtcmHVXssYrI3enX2PSYGKdpp7eg0Ghc5CpcXCN_mLw_30NY7Qoz2P745iFuGgdhLnS9iHmTALCFNFTKeO5WrylvrjRUhya1LETcqXekEnwyXzjqspzW-T2yVBqtoMRTD_7omVDSA9df748lxD_dSsaRq45gBY5UZ1Ry7T1OTDKdfvs0Ra2XE8byaEP-qcv88rHkl-4024HZbtrLdxs82YS3Ud-BGQ2R5eReS44bSHo3MZhXb_TCRbFozLC5Zu3zMxhiUZudz1rRIvwcn16Kp-zCoZ3V4CCy3HIsWV5pgE-lEabVRVljP06A99yqCF51CCt82Kie-jK8FAhZSX3FVfRHs9NJnTYOOf8htdbot2mk6L347VQTP-mGcYLRrYuuAalnKSOpTKCJ40Jii_1CK8JknuY5ArxipF6Dm3asj9fTzsom3JiKDLHv0_996CjfRy4t3h-Ojx3BLENan6_RqCwaLH-dhGwuihXvSeh6DT9ft7L8ALEYgoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+AQP4+in+the+Central+Nervous+System&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Vandebroek%2C+Arno&rft.au=Yasui%2C+Masato&rft.date=2020-02-26&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=21&rft.issue=5&rft_id=info:doi/10.3390%2Fijms21051603&rft_id=info%3Apmid%2F32111087&rft.externalDocID=PMC7084855 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |