Cover

Loading…
Abstract Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes.
AbstractList Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes.
Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes.Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes.
Author Lalic, Katarina
Stoiljkovic, Milica
Stanarcic Gajovic, Jelena
Jotic, Aleksandra
Macesic, Marija
Lukic, Ljiljana
Milicic, Tanja
Krako Jakovljevic, Nina
Lalic, Nebojsa M.
Pavlovic, Kasja
AuthorAffiliation Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia; nina.krako@med.bg.ac.rs (N.K.J.); kasja.pavlovic@med.bg.ac.rs (K.P.); aleksandra.z.jotic@gmail.com (A.J.); katarina.s.lalic@gmail.com (K.L.); mmstoiljkovic@yahoo.com (M.S.); ljikson17@gmail.com (L.L.); icataca@gmail.com (T.M.); macesicmarija@gmail.com (M.M.); stanarcicjelena@gmail.com (J.S.G.)
AuthorAffiliation_xml – name: Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia; nina.krako@med.bg.ac.rs (N.K.J.); kasja.pavlovic@med.bg.ac.rs (K.P.); aleksandra.z.jotic@gmail.com (A.J.); katarina.s.lalic@gmail.com (K.L.); mmstoiljkovic@yahoo.com (M.S.); ljikson17@gmail.com (L.L.); icataca@gmail.com (T.M.); macesicmarija@gmail.com (M.M.); stanarcicjelena@gmail.com (J.S.G.)
Author_xml – sequence: 1
  givenname: Nina
  orcidid: 0000-0003-3908-5462
  surname: Krako Jakovljevic
  fullname: Krako Jakovljevic, Nina
– sequence: 2
  givenname: Kasja
  orcidid: 0000-0003-0168-9631
  surname: Pavlovic
  fullname: Pavlovic, Kasja
– sequence: 3
  givenname: Aleksandra
  surname: Jotic
  fullname: Jotic, Aleksandra
– sequence: 4
  givenname: Katarina
  surname: Lalic
  fullname: Lalic, Katarina
– sequence: 5
  givenname: Milica
  surname: Stoiljkovic
  fullname: Stoiljkovic, Milica
– sequence: 6
  givenname: Ljiljana
  orcidid: 0000-0002-3513-4434
  surname: Lukic
  fullname: Lukic, Ljiljana
– sequence: 7
  givenname: Tanja
  surname: Milicic
  fullname: Milicic, Tanja
– sequence: 8
  givenname: Marija
  surname: Macesic
  fullname: Macesic, Marija
– sequence: 9
  givenname: Jelena
  surname: Stanarcic Gajovic
  fullname: Stanarcic Gajovic, Jelena
– sequence: 10
  givenname: Nebojsa M.
  surname: Lalic
  fullname: Lalic, Nebojsa M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34205752$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LAzEQxYNU7IfePEvRiwdXs5Nks7kIUj-h4qWeQzbNtim7SU22gv-9W1pLFU8zML95vDfTRx3nnUHoNMXXhAh8Yxd1BEghyygcoF5KARKMM97Z67uoH-MCYyDAxBHqEgqYcQY9dD5RYWYa62bDV9t4PfduGqwaWje8t6owjYnH6LBUVTQn2zpA748Pk9FzMn57ehndjRNNed4kqeZcsDIXhkJZqMxAzgTO0pxPCeNZSrjGBcPYCAW8tVKASVkpdMapwYUWZIBuN7rLVVGbqTauCaqSy2BrFb6kV1b-njg7lzP_KXNoD0GgFbjcCgT_sTKxkbWN2lSVcsavogRGcyJ466ZFL_6gC78Kro23pqjIKcNrwbN9RzsrP-drgasNoIOPMZhyh6RYrr8j97_T4vAH17ZRjfXrPLb6f-kbJa-Qbw
CitedBy_id crossref_primary_10_1016_j_phrs_2023_106672
crossref_primary_10_1016_j_mrgentox_2021_503437
crossref_primary_10_3390_stresses5010012
crossref_primary_10_1016_j_endmts_2024_100157
crossref_primary_10_1021_acsomega_2c00595
crossref_primary_10_31083_j_fbs1601005
crossref_primary_10_1111_eci_14128
crossref_primary_10_3389_fimmu_2024_1422864
crossref_primary_10_3390_ijms26010380
crossref_primary_10_3390_nu15204407
crossref_primary_10_1152_ajpcell_00035_2022
crossref_primary_10_1080_10495398_2023_2272172
crossref_primary_10_1002_pmic_202300022
crossref_primary_10_3390_cells11030338
crossref_primary_10_1186_s12967_023_04008_7
crossref_primary_10_3390_ijms24108650
crossref_primary_10_1007_s00232_023_00299_5
crossref_primary_10_3389_fendo_2024_1422787
crossref_primary_10_1016_j_exer_2023_109498
crossref_primary_10_4103_bbrj_bbrj_47_25
crossref_primary_10_1042_CS20230664
crossref_primary_10_1007_s13167_024_00356_6
crossref_primary_10_1002_edm2_371
crossref_primary_10_1016_j_jnutbio_2024_109648
crossref_primary_10_1016_j_ymgmr_2024_101183
crossref_primary_10_3390_cells11162567
crossref_primary_10_3389_fendo_2023_1229935
crossref_primary_10_3389_fnut_2021_794841
crossref_primary_10_21931_RB_CSS_S2023_08_01_45
crossref_primary_10_1016_j_fbio_2024_105257
crossref_primary_10_1113_JP286103
crossref_primary_10_1038_s41598_023_43438_7
crossref_primary_10_1016_j_heliyon_2024_e28137
crossref_primary_10_3390_nu15194218
crossref_primary_10_1016_j_cellsig_2024_111061
crossref_primary_10_1016_j_freeradbiomed_2022_03_019
crossref_primary_10_3390_biomedicines11010121
crossref_primary_10_3390_nu14214538
crossref_primary_10_3390_biom13010126
crossref_primary_10_1016_j_ekir_2024_09_019
crossref_primary_10_3390_ijms252111641
crossref_primary_10_2139_ssrn_4089504
crossref_primary_10_3390_ijms22168990
crossref_primary_10_3389_fendo_2023_1245111
crossref_primary_10_3390_biomedicines10061456
crossref_primary_10_1016_j_bcp_2024_116556
crossref_primary_10_1186_s40246_024_00582_z
crossref_primary_10_3390_antiox11010154
crossref_primary_10_3390_cimb45090457
crossref_primary_10_1080_02656736_2023_2205066
crossref_primary_10_3389_fphys_2022_957968
crossref_primary_10_1016_j_jff_2023_105835
crossref_primary_10_3390_biomedicines10030616
crossref_primary_10_3390_ijms23168852
Cites_doi 10.1007/s00125-013-3127-2
10.1074/jbc.RA118.006670
10.1016/j.celrep.2019.09.070
10.1016/j.cmet.2015.04.004
10.1007/s00125-020-05128-1
10.1007/s40268-015-0099-3
10.1016/j.jacc.2012.09.036
10.1016/j.mito.2021.10.001
10.1007/s00125-007-0594-3
10.1530/EC-14-0092
10.1038/srep35170
10.1016/j.metabol.2016.11.016
10.1530/EJE-16-0488
10.1111/apha.13625
10.1016/j.exger.2015.07.015
10.2337/db17-1124
10.1080/14656566.2020.1729123
10.1152/japplphysiol.01110.2017
10.1007/s00125-011-2098-4
10.2337/db08-0391
10.1002/hep.23093
10.1042/BCJ20160009
10.1111/j.1530-0277.2006.00287.x
10.3390/ijms20215271
10.1111/j.1463-1326.2008.00977.x
10.15277/bjd.2020.247
10.1002/edm2.211
10.3389/fendo.2017.00347
10.1007/s00109-015-1310-2
10.1038/nature01960
10.1038/s41591-018-0125-4
10.1001/jama.282.17.1659
10.1016/j.redox.2017.01.013
10.2337/db09-9028
10.2337/db14-1220
10.1016/j.trsl.2010.04.001
10.1113/jphysiol.2002.034850
10.1136/bmjsem-2016-000143
10.14814/phy2.14489
10.1038/srep09884
10.1007/s00125-020-05177-6
10.1007/s10557-020-07050-5
10.1177/1358863X14521315
10.1016/j.lfs.2020.117414
10.1148/radiol.10091351
10.1177/0269215508084582
10.1016/j.bbabio.2013.10.012
10.1073/pnas.1332551100
10.1016/j.metabol.2020.154416
10.1371/journal.pone.0026883
10.1016/j.jshs.2020.01.001
10.14814/phy2.13741
10.1210/er.2009-0027
10.1016/j.jhepr.2019.07.002
10.1113/JP280603
10.2337/db16-0058
10.1016/S0168-8278(99)80033-6
10.1038/ng1180
10.3945/ajcn.115.122937
10.1038/nrendo.2011.138
10.1042/bj3480607
10.1073/pnas.1303360110
10.2337/dc16-0499
10.1053/gast.2001.23256
10.1007/s00125-011-2340-0
10.1126/science.1104343
10.1016/j.bbagen.2013.11.007
10.1016/j.biocel.2014.02.014
10.2337/dc10-1076
10.1038/cddiscovery.2015.72
10.1016/j.diabres.2019.107843
10.4172/2155-6156.1000126
10.2337/diab.37.6.667
10.1016/j.cell.2015.10.001
10.1097/MCO.0b013e32833cc93d
10.1073/pnas.1032913100
10.1074/jbc.M901488200
10.2337/dc12-0453
10.1016/j.bbamcr.2016.01.017
10.1113/JP270659
10.1210/jc.2007-0482
10.1016/j.freeradbiomed.2015.11.032
10.3389/fendo.2020.592129
10.1152/jappl.1997.83.1.166
10.1038/nm1044
10.1016/j.freeradbiomed.2019.07.017
10.1016/j.jhep.2020.11.030
10.1530/JOE-16-0598
10.3389/fendo.2021.693683
10.2337/diabetes.51.10.2944
10.2337/db13-1751
10.1111/j.1463-1326.2010.01237.x
10.2337/db06-0981
10.1111/eci.12461
10.1038/s41467-019-09418-0
10.1016/j.ebiom.2021.103244
10.2337/db09-1322
10.3390/cells8030249
10.2337/db18-69-OR
10.1038/nm.2049
10.1249/JES.0000000000000192
10.1074/jbc.275.1.223
10.1371/journal.pmed.0020233
10.2337/dc13-2349
10.1042/CS20180690
10.1007/s00125-016-3940-5
10.1186/s13102-018-0110-8
10.1111/j.1572-0241.2003.07725.x
10.3390/ijms21186559
10.1152/ajpheart.00413.2008
10.1016/S0021-9258(18)96046-1
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms22126642
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8233932
34205752
10_3390_ijms22126642
Genre Journal Article
Review
GrantInformation_xml – fundername: Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
  grantid: 451-03-68/2020-14/200110
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-1c7795f89e42fba6e285906187d3576137c0b500e9a27002b2e15f9c674e0bc93
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:21:38 EDT 2025
Fri Jul 11 10:33:05 EDT 2025
Fri Jul 25 20:25:07 EDT 2025
Mon Jul 21 06:04:36 EDT 2025
Tue Jul 01 03:07:36 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords diabetes therapy
type 2 diabetes
liver
mitochondria
blood cells
exercise
respiration
skeletal muscle
insulin resistance
respiratory capacity
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-1c7795f89e42fba6e285906187d3576137c0b500e9a27002b2e15f9c674e0bc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to the work.
ORCID 0000-0003-3908-5462
0000-0003-0168-9631
0000-0002-3513-4434
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22126642
PMID 34205752
PQID 2544984502
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8233932
proquest_miscellaneous_2548397357
proquest_journals_2544984502
pubmed_primary_34205752
crossref_primary_10_3390_ijms22126642
crossref_citationtrail_10_3390_ijms22126642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210621
PublicationDateYYYYMMDD 2021-06-21
PublicationDate_xml – month: 6
  year: 2021
  text: 20210621
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Simoneau (ref_19) 1997; 83
Hawley (ref_97) 2016; 65
Wei (ref_98) 2020; 247
Pinti (ref_14) 2019; 316
ref_13
Sanyal (ref_36) 2001; 120
Bird (ref_81) 2017; 2
Nisr (ref_100) 2014; 1837
Timmers (ref_107) 2016; 39
ref_16
Apostolopoulou (ref_103) 2015; 45
ref_15
Iossa (ref_30) 2017; 233
Chatham (ref_39) 1999; 282
Scalzo (ref_29) 2018; 67
Menshikova (ref_60) 2005; 288
Larsen (ref_86) 2021; 35
Tubbs (ref_51) 2014; 63
Phielix (ref_106) 2014; 57
Merry (ref_69) 2016; 98
Nogueira (ref_85) 2000; 275
Howitz (ref_113) 2003; 425
Stump (ref_102) 2003; 100
ref_124
Madiraju (ref_89) 2018; 24
Chen (ref_111) 2015; 5
Golubitzky (ref_110) 2011; 6
Owen (ref_84) 2000; 348
Phielix (ref_105) 2014; 64
Blake (ref_6) 2014; 1840
Larsen (ref_87) 2012; 55
Fouqueray (ref_119) 2012; 36
Shadel (ref_70) 2015; 163
Wadley (ref_66) 2006; 290
Mizuno (ref_99) 2018; 6
Larsen (ref_104) 2013; 61
Crabtree (ref_117) 2020; 20
ref_76
Mootha (ref_21) 2003; 34
Cheng (ref_49) 2009; 15
Boushel (ref_94) 2010; 12
Jones (ref_123) 2016; 59
Taylor (ref_67) 2016; 116
Rocha (ref_7) 2017; 11
Phielix (ref_23) 2008; 57
Thyfault (ref_83) 2020; 63
Pilegaard (ref_64) 2003; 546
Jacobsen (ref_41) 2012; 302
Meex (ref_71) 2009; 59
ref_80
Madiraju (ref_88) 2014; 510
Yamazaki (ref_112) 2008; 295
Singh (ref_109) 2021; 65
Sevastianova (ref_34) 2010; 256
Avila (ref_54) 2011; 120
Sakaguchi (ref_50) 2019; 10
Divakaruni (ref_92) 2013; 110
Schmid (ref_40) 2011; 34
Tyrrell (ref_56) 2015; 70
Bajpeyi (ref_95) 2017; 69
Montgomery (ref_5) 2015; 4
Hood (ref_62) 2016; 473
Lowell (ref_4) 2005; 307
Jacobs (ref_18) 2021; 231
Apostolopoulou (ref_78) 2018; 67
Sahlin (ref_24) 2007; 56
Holloszy (ref_75) 1984; 56
Caldwell (ref_37) 1999; 31
Ritter (ref_28) 2015; 93
Fiorentino (ref_96) 2021; 114
Boushel (ref_25) 2007; 50
Wang (ref_91) 2019; 29
Lambers (ref_59) 2008; 22
Vial (ref_120) 2014; 64
Koliaki (ref_43) 2015; 21
Tsai (ref_73) 2016; 6
Most (ref_108) 2016; 104
Miele (ref_35) 2003; 98
Bilet (ref_79) 2020; 63
Larsen (ref_26) 2011; 54
Vial (ref_122) 2021; 4
Rose (ref_58) 2019; 317
Szendroedi (ref_38) 2009; 50
DeFronzo (ref_3) 2009; 58
Palmeira (ref_68) 2019; 141
Liepinsh (ref_77) 2020; 8
Bender (ref_93) 2016; 1863
Almdal (ref_27) 2009; 11
(ref_2) 1988; 37
DiMenna (ref_82) 2018; 10
Szendroedi (ref_12) 2011; 8
ref_116
Yee (ref_10) 2018; 2018
Cheng (ref_52) 2020; 11
Patti (ref_22) 2003; 100
Vuylsteke (ref_114) 2015; 15
Guan (ref_61) 2019; 47
Johansson (ref_115) 2020; 21
Nakamura (ref_46) 2009; 284
Prompers (ref_17) 2014; 50
Saeedi (ref_1) 2019; 157
Yoon (ref_47) 2001; 413
Fouqueray (ref_118) 2014; 37
Kupriyanova (ref_44) 2021; 74
Holloszy (ref_74) 1967; 242
Kawahara (ref_33) 2007; 31
Patti (ref_9) 2010; 31
Petersen (ref_101) 2005; 2
Grunnet (ref_42) 2017; 176
Gastaldelli (ref_32) 2019; 1
Hartman (ref_55) 2014; 19
Carter (ref_65) 2018; 124
Mahapatra (ref_57) 2018; 132
Widlansky (ref_53) 2010; 156
ref_45
Kelley (ref_20) 2002; 51
Joseph (ref_72) 2016; 594
Ji (ref_63) 2020; 9
Kotronen (ref_31) 2007; 92
Detaille (ref_121) 2016; 2
Bhansali (ref_8) 2017; 8
Koo (ref_48) 2004; 10
Alshawi (ref_90) 2019; 294
Lanza (ref_11) 2010; 13
References_xml – volume: 120
  start-page: 248
  year: 2011
  ident: ref_54
  article-title: Platelet Mitochondrial Dysfunction is Evident in Type 2 Diabetes in Association with Modifications of Mitochondrial Anti-Oxidant Stress Proteins
  publication-title: Exp. Clin. Endocrinol. Diabetes
– volume: 290
  start-page: E694
  year: 2006
  ident: ref_66
  article-title: Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans
  publication-title: Am. J. Physiol. Metab.
– volume: 57
  start-page: 572
  year: 2014
  ident: ref_106
  article-title: Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: A randomised clinical trial
  publication-title: Diabetologia
  doi: 10.1007/s00125-013-3127-2
– volume: 294
  start-page: 2839
  year: 2019
  ident: ref_90
  article-title: Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.006670
– volume: 29
  start-page: 1511
  year: 2019
  ident: ref_91
  article-title: Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.09.070
– volume: 21
  start-page: 739
  year: 2015
  ident: ref_43
  article-title: Adaptation of Hepatic Mitochondrial Function in Humans with Non-Alcoholic Fatty Liver Is Lost in Steatohepatitis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.04.004
– volume: 413
  start-page: 131
  year: 2001
  ident: ref_47
  article-title: Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
  publication-title: Nat. Cell Biol.
– volume: 63
  start-page: 1211
  year: 2020
  ident: ref_79
  article-title: One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: A human study with unilateral limb suspension
  publication-title: Diabetologia
  doi: 10.1007/s00125-020-05128-1
– volume: 15
  start-page: 227
  year: 2015
  ident: ref_114
  article-title: Imeglimin: A Potential New Multi-Target Drug for Type 2 Diabetes
  publication-title: Drugs R&D
  doi: 10.1007/s40268-015-0099-3
– volume: 61
  start-page: 44
  year: 2013
  ident: ref_104
  article-title: Simvastatin Effects on Skeletal Muscle: Relation to decreased mitochondrial function and glucose intolerance
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2012.09.036
– ident: ref_45
  doi: 10.1016/j.mito.2021.10.001
– volume: 50
  start-page: 790
  year: 2007
  ident: ref_25
  article-title: Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0594-3
– volume: 4
  start-page: R1
  year: 2015
  ident: ref_5
  article-title: Mitochondrial dysfunction and insulin resistance: An update
  publication-title: Endocr. Connect.
  doi: 10.1530/EC-14-0092
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_73
  article-title: Exercise Training Alleviates Hypoxia-induced Mitochondrial Dysfunction in the Lymphocytes of Sedentary Males
  publication-title: Sci. Rep.
  doi: 10.1038/srep35170
– volume: 69
  start-page: 24
  year: 2017
  ident: ref_95
  article-title: Pioglitazone-induced improvements in insulin sensitivity occur without concomitant changes in muscle mitochondrial function
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.11.016
– volume: 176
  start-page: R67
  year: 2017
  ident: ref_42
  article-title: Mechanisms in Endocrinology: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: A causal mechanism or an innocent bystander?
  publication-title: Eur. J. Endocrinol.
  doi: 10.1530/EJE-16-0488
– volume: 231
  start-page: e13625
  year: 2021
  ident: ref_18
  article-title: Contextualizing the biological relevance of standardized high-resolution respirometry to assess mitochondrial function in permeabilized human skeletal muscle
  publication-title: Acta Physiol.
  doi: 10.1111/apha.13625
– volume: 302
  start-page: E43
  year: 2012
  ident: ref_41
  article-title: Effects of high-fat overfeeding on mitochondrial function, glucose and fat metabolism, and adipokine levels in low-birth-weight subjects
  publication-title: Am. J. Physiol. Metab.
– volume: 116
  start-page: 1445
  year: 2016
  ident: ref_67
  article-title: Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1α and VEGF mRNA expression in trained individuals
  publication-title: Graefe’s Arch. Clin. Exp. Ophthalmol.
– volume: 70
  start-page: 84
  year: 2015
  ident: ref_56
  article-title: Blood-cell bioenergetics are associated with physical function and inflammation in overweight/obese older adults
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2015.07.015
– ident: ref_13
– volume: 67
  start-page: 1369
  year: 2018
  ident: ref_29
  article-title: Supplemental Oxygen Improves In Vivo Mitochondrial Oxidative Phosphorylation Flux in Sedentary Obese Adults With Type 2 Diabetes
  publication-title: Diabetes
  doi: 10.2337/db17-1124
– volume: 21
  start-page: 871
  year: 2020
  ident: ref_115
  article-title: Clinical pharmacology of imeglimin for the treatment of type 2 diabetes
  publication-title: Expert Opin. Pharmacother.
  doi: 10.1080/14656566.2020.1729123
– volume: 124
  start-page: 1605
  year: 2018
  ident: ref_65
  article-title: Effect of contractile activity on PGC-1α transcription in young and aged skeletal muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01110.2017
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_10
  article-title: Mitochondrial disease: An uncommon but important cause of diabetes mellitus
  publication-title: Endocrinol. Diabetes Metab. Case Rep.
– volume: 54
  start-page: 1427
  year: 2011
  ident: ref_26
  article-title: Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2098-4
– volume: 57
  start-page: 2943
  year: 2008
  ident: ref_23
  article-title: Lower Intrinsic ADP-Stimulated Mitochondrial Respiration Underlies In Vivo Mitochondrial Dysfunction in Muscle of Male Type 2 Diabetic Patients
  publication-title: Diabetes
  doi: 10.2337/db08-0391
– volume: 50
  start-page: 1079
  year: 2009
  ident: ref_38
  article-title: Abnormal hepatic energy homeostasis in type 2 diabetes
  publication-title: Hepatology
  doi: 10.1002/hep.23093
– volume: 473
  start-page: 2295
  year: 2016
  ident: ref_62
  article-title: Unravelling the mechanisms regulating muscle mitochondrial biogenesis
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20160009
– volume: 31
  start-page: S54
  year: 2007
  ident: ref_33
  article-title: Mutation of Mitochondrial DNA in Livers from Patients with Alcoholic Hepatitis and Nonalcoholic Steatohepatitis
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1111/j.1530-0277.2006.00287.x
– ident: ref_15
  doi: 10.3390/ijms20215271
– volume: 11
  start-page: 355
  year: 2009
  ident: ref_27
  article-title: Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/j.1463-1326.2008.00977.x
– volume: 20
  start-page: 28
  year: 2020
  ident: ref_117
  article-title: Imeglimin, a novel, first in-class, blood glucose-lowering agent: A systematic review and meta-analysis of clinical evidence
  publication-title: Br. J. Diabetes
  doi: 10.15277/bjd.2020.247
– volume: 4
  start-page: 1
  year: 2021
  ident: ref_122
  article-title: The mechanism by which imeglimin inhibits gluconeogenesis in rat liver cells
  publication-title: Endocrinol. Diabetes Metab.
  doi: 10.1002/edm2.211
– volume: 8
  start-page: 347
  year: 2017
  ident: ref_8
  article-title: Alterations in Mitochondrial Oxidative Stress and Mitophagy in Subjects with Prediabetes and Type 2 Diabetes Mellitus
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2017.00347
– volume: 93
  start-page: 831
  year: 2015
  ident: ref_28
  article-title: Lipid-mediated muscle insulin resistance: Different fat, different pathways?
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-015-1310-2
– volume: 425
  start-page: 191
  year: 2003
  ident: ref_113
  article-title: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
  publication-title: Nature
  doi: 10.1038/nature01960
– volume: 24
  start-page: 1384
  year: 2018
  ident: ref_89
  article-title: Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0125-4
– volume: 282
  start-page: 1659
  year: 1999
  ident: ref_39
  article-title: Alterations in Liver ATP Homeostasis in Human Nonalcoholic Steatohepatitis: A pilot study
  publication-title: JAMA
  doi: 10.1001/jama.282.17.1659
– volume: 11
  start-page: 637
  year: 2017
  ident: ref_7
  article-title: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.01.013
– volume: 58
  start-page: 773
  year: 2009
  ident: ref_3
  article-title: From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus
  publication-title: Diabetes
  doi: 10.2337/db09-9028
– volume: 64
  start-page: 2254
  year: 2014
  ident: ref_120
  article-title: Imeglimin Normalizes Glucose Tolerance and Insulin Sensitivity and Improves Mitochondrial Function in Liver of a High-Fat, High-Sucrose Diet Mice Model
  publication-title: Diabetes
  doi: 10.2337/db14-1220
– volume: 156
  start-page: 15
  year: 2010
  ident: ref_53
  article-title: Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2010.04.001
– volume: 546
  start-page: 851
  year: 2003
  ident: ref_64
  article-title: Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.034850
– volume: 2
  start-page: 1
  year: 2017
  ident: ref_81
  article-title: Update on the effects of physical activity on insulin sensitivity in humans
  publication-title: BMJ Open Sport Exerc. Med.
  doi: 10.1136/bmjsem-2016-000143
– volume: 8
  start-page: 1
  year: 2020
  ident: ref_77
  article-title: Low-intensity exercise stimulates bioenergetics and increases fat oxidation in mitochondria of blood mononuclear cells from sedentary adults
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.14489
– volume: 5
  start-page: 9884
  year: 2015
  ident: ref_111
  article-title: A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep09884
– volume: 63
  start-page: 1464
  year: 2020
  ident: ref_83
  article-title: Exercise and metabolic health: Beyond skeletal muscle
  publication-title: Diabetologia
  doi: 10.1007/s00125-020-05177-6
– volume: 35
  start-page: 491
  year: 2021
  ident: ref_86
  article-title: Metformin Lowers Body Weight But Fails to Increase Insulin Sensitivity in Chronic Heart Failure Patients without Diabetes: A Randomized, Double-Blind, Placebo-Controlled Study
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1007/s10557-020-07050-5
– volume: 19
  start-page: 67
  year: 2014
  ident: ref_55
  article-title: Relation of mitochondrial oxygen consumption in peripheral blood mononuclear cells to vascular function in type 2 diabetes mellitus
  publication-title: Vasc. Med.
  doi: 10.1177/1358863X14521315
– volume: 247
  start-page: 117414
  year: 2020
  ident: ref_98
  article-title: Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.117414
– volume: 256
  start-page: 466
  year: 2010
  ident: ref_34
  article-title: Nonalcoholic Fatty Liver Disease: Detection of Elevated Nicotinamide Adenine Dinucleotide Phosphate with in Vivo 3.0-T31P MR Spectroscopy with Proton Decoupling
  publication-title: Radiology
  doi: 10.1148/radiol.10091351
– volume: 22
  start-page: 483
  year: 2008
  ident: ref_59
  article-title: Influence of combined exercise training on indices of obesity, diabetes and cardiovascular risk in type 2 diabetes patients
  publication-title: Clin. Rehabil.
  doi: 10.1177/0269215508084582
– volume: 1837
  start-page: 270
  year: 2014
  ident: ref_100
  article-title: Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation
  publication-title: Biochim. Biophys. Acta (BBA) Bioenerg.
  doi: 10.1016/j.bbabio.2013.10.012
– volume: 100
  start-page: 7996
  year: 2003
  ident: ref_102
  article-title: Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1332551100
– volume: 114
  start-page: 154416
  year: 2021
  ident: ref_96
  article-title: Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2020.154416
– volume: 6
  start-page: 1
  year: 2011
  ident: ref_110
  article-title: Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient’s Fibroblasts, Reveals AICAR as the Most Beneficial Compound
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0026883
– volume: 316
  start-page: E268
  year: 2019
  ident: ref_14
  article-title: Mitochondrial dysfunction in type 2 diabetes mellitus: An organ-based analysis
  publication-title: Am. J. Physiol. Metab.
– volume: 9
  start-page: 386
  year: 2020
  ident: ref_63
  article-title: The role of mitochondria in redox signaling of muscle homeostasis
  publication-title: J. Sport Health Sci.
  doi: 10.1016/j.jshs.2020.01.001
– volume: 6
  start-page: e13741
  year: 2018
  ident: ref_99
  article-title: Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.13741
– volume: 317
  start-page: E503
  year: 2019
  ident: ref_58
  article-title: A comparative study of mitochondrial respiration in circulating blood cells and skeletal muscle fibers in women
  publication-title: Am. J. Physiol. Metab.
– volume: 31
  start-page: 364
  year: 2010
  ident: ref_9
  article-title: The Role of Mitochondria in the Pathogenesis of Type 2 Diabetes
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2009-0027
– volume: 1
  start-page: 312
  year: 2019
  ident: ref_32
  article-title: From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options
  publication-title: JHEP Rep.
  doi: 10.1016/j.jhepr.2019.07.002
– ident: ref_80
  doi: 10.1113/JP280603
– volume: 65
  start-page: 2784
  year: 2016
  ident: ref_97
  article-title: The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels
  publication-title: Diabetes
  doi: 10.2337/db16-0058
– volume: 31
  start-page: 430
  year: 1999
  ident: ref_37
  article-title: Mitochondrial abnormalities in non-alcoholic steatohepatitis
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(99)80033-6
– volume: 34
  start-page: 267
  year: 2003
  ident: ref_21
  article-title: PGC-1alpha-Responsive Genes Involved in Oxidative Phosphorylation Are Coordinately Downregulated in Human Diabetes
  publication-title: Nat. Genet.
  doi: 10.1038/ng1180
– volume: 104
  start-page: 215
  year: 2016
  ident: ref_108
  article-title: Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: A randomized controlled trial
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.115.122937
– volume: 8
  start-page: 92
  year: 2011
  ident: ref_12
  article-title: The role of mitochondria in insulin resistance and type 2 diabetes mellitus
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2011.138
– volume: 348
  start-page: 607
  year: 2000
  ident: ref_84
  article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
  publication-title: Biochem. J.
  doi: 10.1042/bj3480607
– volume: 110
  start-page: 5422
  year: 2013
  ident: ref_92
  article-title: Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1303360110
– volume: 39
  start-page: 2211
  year: 2016
  ident: ref_107
  article-title: Resveratrol as Add-on Therapy in Subjects With Well-Controlled Type 2 Diabetes: A Randomized Controlled Trial
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0499
– volume: 120
  start-page: 1183
  year: 2001
  ident: ref_36
  article-title: Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities
  publication-title: Gastroenterology
  doi: 10.1053/gast.2001.23256
– volume: 56
  start-page: 831
  year: 1984
  ident: ref_75
  article-title: Adaptations of skeletal muscle to endurance exercise and their metabolic consequences
  publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol.
– volume: 55
  start-page: 443
  year: 2012
  ident: ref_87
  article-title: Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2340-0
– volume: 307
  start-page: 384
  year: 2005
  ident: ref_4
  article-title: Mitochondrial Dysfunction and Type 2 Diabetes
  publication-title: Science
  doi: 10.1126/science.1104343
– volume: 1840
  start-page: 1404
  year: 2014
  ident: ref_6
  article-title: Mitochondrial dysfunction and complications associated with diabetes
  publication-title: Biochim. Biophys. Acta (BBA) Gen. Subj.
  doi: 10.1016/j.bbagen.2013.11.007
– volume: 50
  start-page: 67
  year: 2014
  ident: ref_17
  article-title: MITOCHONDRIA: Investigation of in vivo muscle mitochondrial function by 31P magnetic resonance spectroscopy
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2014.02.014
– volume: 34
  start-page: 448
  year: 2011
  ident: ref_40
  article-title: Liver ATP Synthesis Is Lower and Relates to Insulin Sensitivity in Patients With Type 2 Diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc10-1076
– volume: 64
  start-page: 1193
  year: 2014
  ident: ref_105
  article-title: Evidence for a Direct Effect of the NAD+Precursor Acipimox on Muscle Mitochondrial Function in Humans
  publication-title: Diabetes
– volume: 2
  start-page: 15072
  year: 2016
  ident: ref_121
  article-title: Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration
  publication-title: Cell Death Discov.
  doi: 10.1038/cddiscovery.2015.72
– volume: 157
  start-page: 107843
  year: 2019
  ident: ref_1
  article-title: Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2019.107843
– ident: ref_116
  doi: 10.4172/2155-6156.1000126
– volume: 37
  start-page: 667
  year: 1988
  ident: ref_2
  article-title: Lilly lecture: The triumvirate: Beta cell, muscle, liver, a collusion responsible for NIDDM
  publication-title: Diabetes
  doi: 10.2337/diab.37.6.667
– volume: 163
  start-page: 560
  year: 2015
  ident: ref_70
  article-title: Mitochondrial ROS Signaling in Organismal Homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.001
– volume: 13
  start-page: 511
  year: 2010
  ident: ref_11
  article-title: Mitochondrial metabolic function assessed in vivo and in vitro
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
  doi: 10.1097/MCO.0b013e32833cc93d
– volume: 100
  start-page: 8466
  year: 2003
  ident: ref_22
  article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role ofPGC1andNRF1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1032913100
– volume: 284
  start-page: 14809
  year: 2009
  ident: ref_46
  article-title: Palmitate Induces Insulin Resistance in H4IIEC3 Hepatocytes through Reactive Oxygen Species Produced by Mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M901488200
– volume: 36
  start-page: 565
  year: 2012
  ident: ref_119
  article-title: The Efficacy and Safety of Imeglimin as Add-on Therapy in Patients With Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy
  publication-title: Diabetes Care
  doi: 10.2337/dc12-0453
– volume: 1863
  start-page: 2436
  year: 2016
  ident: ref_93
  article-title: The mitochondrial pyruvate carrier in health and disease: To carry or not to carry?
  publication-title: Biochim. Biophys. Acta (BBA) Bioenerg.
  doi: 10.1016/j.bbamcr.2016.01.017
– volume: 594
  start-page: 5105
  year: 2016
  ident: ref_72
  article-title: Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle
  publication-title: J. Physiol.
  doi: 10.1113/JP270659
– volume: 92
  start-page: 3490
  year: 2007
  ident: ref_31
  article-title: Liver Fat in the Metabolic Syndrome
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2007-0482
– volume: 98
  start-page: 123
  year: 2016
  ident: ref_69
  article-title: Mitohormesis in exercise training
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.11.032
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_52
  article-title: The Molecular Mechanisms Underlying Mitochondria-Associated Endoplasmic Reticulum Membrane-Induced Insulin Resistance
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2020.592129
– volume: 83
  start-page: 166
  year: 1997
  ident: ref_19
  article-title: Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1997.83.1.166
– volume: 10
  start-page: 530
  year: 2004
  ident: ref_48
  article-title: PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3
  publication-title: Nat. Med.
  doi: 10.1038/nm1044
– volume: 141
  start-page: 483
  year: 2019
  ident: ref_68
  article-title: Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.07.017
– volume: 74
  start-page: 1028
  year: 2021
  ident: ref_44
  article-title: Early changes in hepatic energy metabolism and lipid content in recent-onset type 1 and 2 diabetes mellitus
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.11.030
– volume: 233
  start-page: R15
  year: 2017
  ident: ref_30
  article-title: Skeletal muscle insulin resistance: Role of mitochondria and other ROS sources
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-16-0598
– ident: ref_76
  doi: 10.3389/fendo.2021.693683
– volume: 51
  start-page: 2944
  year: 2002
  ident: ref_20
  article-title: Dysfunction of Mitochondria in Human Skeletal Muscle in Type 2 Diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.10.2944
– volume: 63
  start-page: 3279
  year: 2014
  ident: ref_51
  article-title: Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Is Required for Insulin Signaling and Is Implicated in Hepatic Insulin Resistance
  publication-title: Diabetes
  doi: 10.2337/db13-1751
– volume: 12
  start-page: 806
  year: 2010
  ident: ref_94
  article-title: Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/j.1463-1326.2010.01237.x
– volume: 288
  start-page: E818
  year: 2005
  ident: ref_60
  article-title: Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity
  publication-title: Am. J. Physiol. Metab.
– volume: 56
  start-page: 1592
  year: 2007
  ident: ref_24
  article-title: Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes
  publication-title: Diabetes
  doi: 10.2337/db06-0981
– volume: 45
  start-page: 745
  year: 2015
  ident: ref_103
  article-title: The role of mitochondria in statin-induced myopathy
  publication-title: Eur. J. Clin. Investig.
  doi: 10.1111/eci.12461
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_50
  article-title: FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09418-0
– volume: 65
  start-page: 103244
  year: 2021
  ident: ref_109
  article-title: Pharmacological advances in mitochondrial therapy
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103244
– volume: 59
  start-page: 572
  year: 2009
  ident: ref_71
  article-title: Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity
  publication-title: Diabetes
  doi: 10.2337/db09-1322
– ident: ref_124
  doi: 10.3390/cells8030249
– volume: 67
  start-page: 69
  year: 2018
  ident: ref_78
  article-title: Effects on Insulin Sensitivity, but Not on Mitochondrial Function Are Dependent on Insulin Resistance Status after High Intensity Interval Training
  publication-title: Diabetes
  doi: 10.2337/db18-69-OR
– volume: 15
  start-page: 1307
  year: 2009
  ident: ref_49
  article-title: Foxo1 integrates insulin signaling with mitochondrial function in the liver
  publication-title: Nat. Med.
  doi: 10.1038/nm.2049
– volume: 47
  start-page: 151
  year: 2019
  ident: ref_61
  article-title: Exercise-Induced Mitophagy in Skeletal Muscle and Heart
  publication-title: Exerc. Sport Sci. Rev.
  doi: 10.1249/JES.0000000000000192
– volume: 275
  start-page: 223
  year: 2000
  ident: ref_85
  article-title: Dimethylbiguanide Inhibits Cell Respiration via an Indirect Effect Targeted on the Respiratory Chain Complex I
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.1.223
– volume: 2
  start-page: 0879
  year: 2005
  ident: ref_101
  article-title: Decreased Insulin-Stimulated ATP Synthesis and Phosphate Transport in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Parents
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0020233
– volume: 37
  start-page: 1924
  year: 2014
  ident: ref_118
  article-title: The Efficacy and Safety of Imeglimin as Add-on Therapy in Patients with Type 2 Diabetes Inadequately Controlled with Sitagliptin Monotherapy
  publication-title: Diabetes Care
  doi: 10.2337/dc13-2349
– volume: 132
  start-page: 2509
  year: 2018
  ident: ref_57
  article-title: Blood-based bioenergetic profiling is related to differences in brain morphology in African Americans with Type 2 diabetes
  publication-title: Clin. Sci.
  doi: 10.1042/CS20180690
– volume: 59
  start-page: 1098
  year: 2016
  ident: ref_123
  article-title: Hepatic glucose and lipid metabolism
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-3940-5
– volume: 10
  start-page: 1
  year: 2018
  ident: ref_82
  article-title: Exercise as ‘precision medicine’ for insulin resistance and its progression to type 2 diabetes: A research review
  publication-title: BMC Sports Sci. Med. Rehabil.
  doi: 10.1186/s13102-018-0110-8
– volume: 98
  start-page: 2335
  year: 2003
  ident: ref_35
  article-title: Hepatic Mitochondrial Beta-Oxidation in Patients With Nonalcoholic Steatohepatitis Assessed by 13C-Octanoate Breath Test
  publication-title: Am. J. Gastroenterol.
  doi: 10.1111/j.1572-0241.2003.07725.x
– ident: ref_16
  doi: 10.3390/ijms21186559
– volume: 295
  start-page: H761
  year: 2008
  ident: ref_112
  article-title: Short- and long-term effects of (−)-epicatechin on myocardial ischemia-reperfusion injury
  publication-title: Am. J. Physiol. Circ. Physiol.
  doi: 10.1152/ajpheart.00413.2008
– volume: 242
  start-page: 2278
  year: 1967
  ident: ref_74
  article-title: Biochemical Adaptations in Muscle: Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96046-1
– volume: 510
  start-page: 542
  year: 2014
  ident: ref_88
  article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
  publication-title: Nat. Cell Biol.
SSID ssj0023259
Score 2.5640845
SecondaryResourceType review_article
Snippet Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6642
SubjectTerms Adenosine triphosphate
Animals
Biopsy
Biosynthesis
Diabetes
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Disease
Enzymes
Exercise
Fatty acids
Glucose
Homeostasis
Human subjects
Humans
Hyperglycemia
Hypoglycemic Agents - pharmacology
Hypoglycemic Agents - therapeutic use
Hypotheses
Insulin resistance
Liver
Metabolism
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial DNA
Musculoskeletal system
Nervous system
Pancreas
Pathogenesis
Phosphorylation
Physical fitness
Respiration
Review
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46EbyIv61OqaInCTZpfp5ExDGEedpgt7KkKU60m247-N_70nbdpui5rzR9Sd77XvLxPYSutMxUCjgDZySVmBmqsdKUYEKcctxqQM3-vKPzLNo99tTn_erAbVLRKucxsQjU6cj6M_JbL6WlFeMRvRt_YN81yt-uVi001tGGly7zlC7ZXxRcMS2apRHIQVhwLUriewxl_u3w9X1CIWwLwehqSvqFM3_SJZfyT2sHbVfAMbwvZ3oXrbl8D22WrSS_9tFlt6B0QyIKO7BJIajlKaytcJiHFellcoB6rcfuQxtX_Q-wZVJNMbFSap4p7RjNzEA4LzYH-VfJNIYygcTSRoZHkdMDf31MDXWEZ9oKyVxkrI4PUSMf5e4YhZxYQ0nm4cqACaoNNzK1mmWRTVUsdIBu5i5IbCUO7ntUvCVQJHiHJcsOC9B1bT0uRTH-sGvOvZlUW2OSLCYyQBf1Y1jU_qZikLvRrLAB4CbhLwN0VDq__lDMqMeY8LZcmZbawAtmrz7Jhy-FcLaiMMSYnvw_rFO0RT1xJRKYkiZqTD9n7gyQx9ScF8vrG1Ve1S0
  priority: 102
  providerName: ProQuest
Title Targeting Mitochondria in Diabetes
URI https://www.ncbi.nlm.nih.gov/pubmed/34205752
https://www.proquest.com/docview/2544984502
https://www.proquest.com/docview/2548397357
https://pubmed.ncbi.nlm.nih.gov/PMC8233932
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_alMFeSruvpu2CO7anoc2SJUt6GKMdzUohZYwG8mYiWaYpqfuRBNr_fne2Y5p2g7345U7IOul0v9MddwAfrS5MjjiDFTzXTDphmbGCM86DCcpbRM303jE4S0-G8nSkRmuw7DbaCHD2V9eO-kkN76Zf7m8fvqPCfyOPE132r5PLq5nAKzhFLL0OG2iTNKnoQLbxBIQNVds0evBgdEHXKfDPRq8ap2eI82ni5CNL1N-CzQZCRof1nm_DWihfwYu6qeTDa_hwXiV3o0mKBqiuuMIyx1MWTcqoSX-ZvYFh__j8xwlrOiEwL7WZM-61tqowNkhRuHEaqOwcWmKj8wQdBp5oHzsVx8GOKZAsnAhcFdanWobYeZu8hU55XYYdiBT3TvCCgMtYpsI65XTurSxin5sktV34vBRB5psy4dStYpqhu0ACyx4LrAufWu6bujzGP_j2l9LMlnucUXU0a6SKkXzQkvF4U8xiXIbrRcWDEE7jKrvwrhZ-O1EiBaFNHK1XtqVloNLZq5RyclGV0DYCfzERu_8x7x68FJTHEqdM8H3ozO8W4T0Ckbnrwboeafya_s8ebBwdn_363SPToHrV6fsDDrreIQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRQguFW8CBRZET8iqPevnASEEVCltekql3JbY61WDYNOSVKh_it_IeB9pA4Jbz57Vesfjmc-e2W8AXjtT2ZJwBqtEaZj06Jh1KJgQ0UYVHKHmdN8xOtLDY_l5oiYb8Kv_FyaVVfY-sXHU5TykO_LdRKXlrFQc352esdQ1KmVX-xYarVkcxIufdGRbvN3_SOu7g7j3afxhyLquAixIY5dMBGOcqqyLEis_1TFRuFFUs6bMCXyL3ATuFefRTVNSFj1GoSoXtJGR-5DIl8jl36DAy9OOMpPLA16OTXM2QTGPaeV0W2if547vzr5-XyCFCa0lrofAv3Dtn-WZV-Ld3h3Y6oBq9r61rLuwEet7cLNtXXlxH16NmxJyCnzZiJwCOdG6JFvOZnXWFdksHsDxtWjmIWzW8zo-hkyJ4FFUCR5NpUbnlTdlcLLiobS5dgN406ugCB0ZeeqJ8a2gQ0lSWHFVYQPYWUmftiQc_5Db7rVZdFtxUVwazgBeroZpE6XMyLSO8_NGhoCioa8cwKNW-asX5RITpqWnzdqyrAQSQff6SD07aYi6LdIUc3zy_2m9gFvD8eiwONw_OngKtzEVzXDNUGzD5vLHeXxGqGfpnzemlsGX67bt3xWDECE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiDcLBQKiJ2RtPH4fEEKUVUtpxaGV9hbWjiO2KtnCblX1r_XXMc5j2wXBredMFGv8eeaz_WUG4I0zlS2JZ7CKl4ZJj45Zh5xxHm1UwRFrTucde_t6-1B-HqvxGlz0_8IkWWUfE5tAXc5COiMfplJazkqV47DqZBFft0bvT36y1EEq3bT27TRaiOzG8zPavs3f7WzRXG8ijj4dfNxmXYcBFqSxC8aDMU5V1kWJlZ_omMq5UYazphRExLkwIfcqz6ObpAta9Bi5qlzQRsbch1SIicL_DSMUT2vMjC83ewKbRm2c8h_TyulWdC-Ey4fTox9zpJShtcTVdPgXx_1Tqnkl943uwp2OtGYfWpTdg7VY34ebbRvL8wfw-qCRk1MSzPYoQFBArUvCdTats05wM38Ih9fimUewXs_q-AQyxYNHXiWqNJEanVfelMHJKg-lFdoN4G3vgiJ0hclTf4zjgjYoyWHFVYcNYHNpfdIW5PiH3UbvzaJblvPiEkQDeLV8TAsq3ZJM6jg7bWyINNKUmgE8bp2__JCQmPgtvW1WpmVpkIp1rz6pp9-bot0WaYgCn_5_WC_hFqG6-LKzv_sMbmPSz-SaId-A9cWv0_icCNDCv2iQlsG364b2b72cFFc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+Mitochondria+in+Diabetes&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Krako+Jakovljevic%2C+Nina&rft.au=Pavlovic%2C+Kasja&rft.au=Jotic%2C+Aleksandra&rft.au=Lalic%2C+Katarina&rft.date=2021-06-21&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=12&rft_id=info:doi/10.3390%2Fijms22126642&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon