Targeting Mitochondria in Diabetes
Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, a...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 12; p. 6642 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.06.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes. |
---|---|
AbstractList | Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes. Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes.Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes. |
Author | Lalic, Katarina Stoiljkovic, Milica Stanarcic Gajovic, Jelena Jotic, Aleksandra Macesic, Marija Lukic, Ljiljana Milicic, Tanja Krako Jakovljevic, Nina Lalic, Nebojsa M. Pavlovic, Kasja |
AuthorAffiliation | Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia; nina.krako@med.bg.ac.rs (N.K.J.); kasja.pavlovic@med.bg.ac.rs (K.P.); aleksandra.z.jotic@gmail.com (A.J.); katarina.s.lalic@gmail.com (K.L.); mmstoiljkovic@yahoo.com (M.S.); ljikson17@gmail.com (L.L.); icataca@gmail.com (T.M.); macesicmarija@gmail.com (M.M.); stanarcicjelena@gmail.com (J.S.G.) |
AuthorAffiliation_xml | – name: Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia; nina.krako@med.bg.ac.rs (N.K.J.); kasja.pavlovic@med.bg.ac.rs (K.P.); aleksandra.z.jotic@gmail.com (A.J.); katarina.s.lalic@gmail.com (K.L.); mmstoiljkovic@yahoo.com (M.S.); ljikson17@gmail.com (L.L.); icataca@gmail.com (T.M.); macesicmarija@gmail.com (M.M.); stanarcicjelena@gmail.com (J.S.G.) |
Author_xml | – sequence: 1 givenname: Nina orcidid: 0000-0003-3908-5462 surname: Krako Jakovljevic fullname: Krako Jakovljevic, Nina – sequence: 2 givenname: Kasja orcidid: 0000-0003-0168-9631 surname: Pavlovic fullname: Pavlovic, Kasja – sequence: 3 givenname: Aleksandra surname: Jotic fullname: Jotic, Aleksandra – sequence: 4 givenname: Katarina surname: Lalic fullname: Lalic, Katarina – sequence: 5 givenname: Milica surname: Stoiljkovic fullname: Stoiljkovic, Milica – sequence: 6 givenname: Ljiljana orcidid: 0000-0002-3513-4434 surname: Lukic fullname: Lukic, Ljiljana – sequence: 7 givenname: Tanja surname: Milicic fullname: Milicic, Tanja – sequence: 8 givenname: Marija surname: Macesic fullname: Macesic, Marija – sequence: 9 givenname: Jelena surname: Stanarcic Gajovic fullname: Stanarcic Gajovic, Jelena – sequence: 10 givenname: Nebojsa M. surname: Lalic fullname: Lalic, Nebojsa M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34205752$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LAzEQxYNU7IfePEvRiwdXs5Nks7kIUj-h4qWeQzbNtim7SU22gv-9W1pLFU8zML95vDfTRx3nnUHoNMXXhAh8Yxd1BEghyygcoF5KARKMM97Z67uoH-MCYyDAxBHqEgqYcQY9dD5RYWYa62bDV9t4PfduGqwaWje8t6owjYnH6LBUVTQn2zpA748Pk9FzMn57ehndjRNNed4kqeZcsDIXhkJZqMxAzgTO0pxPCeNZSrjGBcPYCAW8tVKASVkpdMapwYUWZIBuN7rLVVGbqTauCaqSy2BrFb6kV1b-njg7lzP_KXNoD0GgFbjcCgT_sTKxkbWN2lSVcsavogRGcyJ466ZFL_6gC78Kro23pqjIKcNrwbN9RzsrP-drgasNoIOPMZhyh6RYrr8j97_T4vAH17ZRjfXrPLb6f-kbJa-Qbw |
CitedBy_id | crossref_primary_10_1016_j_phrs_2023_106672 crossref_primary_10_1016_j_mrgentox_2021_503437 crossref_primary_10_3390_stresses5010012 crossref_primary_10_1016_j_endmts_2024_100157 crossref_primary_10_1021_acsomega_2c00595 crossref_primary_10_31083_j_fbs1601005 crossref_primary_10_1111_eci_14128 crossref_primary_10_3389_fimmu_2024_1422864 crossref_primary_10_3390_ijms26010380 crossref_primary_10_3390_nu15204407 crossref_primary_10_1152_ajpcell_00035_2022 crossref_primary_10_1080_10495398_2023_2272172 crossref_primary_10_1002_pmic_202300022 crossref_primary_10_3390_cells11030338 crossref_primary_10_1186_s12967_023_04008_7 crossref_primary_10_3390_ijms24108650 crossref_primary_10_1007_s00232_023_00299_5 crossref_primary_10_3389_fendo_2024_1422787 crossref_primary_10_1016_j_exer_2023_109498 crossref_primary_10_4103_bbrj_bbrj_47_25 crossref_primary_10_1042_CS20230664 crossref_primary_10_1007_s13167_024_00356_6 crossref_primary_10_1002_edm2_371 crossref_primary_10_1016_j_jnutbio_2024_109648 crossref_primary_10_1016_j_ymgmr_2024_101183 crossref_primary_10_3390_cells11162567 crossref_primary_10_3389_fendo_2023_1229935 crossref_primary_10_3389_fnut_2021_794841 crossref_primary_10_21931_RB_CSS_S2023_08_01_45 crossref_primary_10_1016_j_fbio_2024_105257 crossref_primary_10_1113_JP286103 crossref_primary_10_1038_s41598_023_43438_7 crossref_primary_10_1016_j_heliyon_2024_e28137 crossref_primary_10_3390_nu15194218 crossref_primary_10_1016_j_cellsig_2024_111061 crossref_primary_10_1016_j_freeradbiomed_2022_03_019 crossref_primary_10_3390_biomedicines11010121 crossref_primary_10_3390_nu14214538 crossref_primary_10_3390_biom13010126 crossref_primary_10_1016_j_ekir_2024_09_019 crossref_primary_10_3390_ijms252111641 crossref_primary_10_2139_ssrn_4089504 crossref_primary_10_3390_ijms22168990 crossref_primary_10_3389_fendo_2023_1245111 crossref_primary_10_3390_biomedicines10061456 crossref_primary_10_1016_j_bcp_2024_116556 crossref_primary_10_1186_s40246_024_00582_z crossref_primary_10_3390_antiox11010154 crossref_primary_10_3390_cimb45090457 crossref_primary_10_1080_02656736_2023_2205066 crossref_primary_10_3389_fphys_2022_957968 crossref_primary_10_1016_j_jff_2023_105835 crossref_primary_10_3390_biomedicines10030616 crossref_primary_10_3390_ijms23168852 |
Cites_doi | 10.1007/s00125-013-3127-2 10.1074/jbc.RA118.006670 10.1016/j.celrep.2019.09.070 10.1016/j.cmet.2015.04.004 10.1007/s00125-020-05128-1 10.1007/s40268-015-0099-3 10.1016/j.jacc.2012.09.036 10.1016/j.mito.2021.10.001 10.1007/s00125-007-0594-3 10.1530/EC-14-0092 10.1038/srep35170 10.1016/j.metabol.2016.11.016 10.1530/EJE-16-0488 10.1111/apha.13625 10.1016/j.exger.2015.07.015 10.2337/db17-1124 10.1080/14656566.2020.1729123 10.1152/japplphysiol.01110.2017 10.1007/s00125-011-2098-4 10.2337/db08-0391 10.1002/hep.23093 10.1042/BCJ20160009 10.1111/j.1530-0277.2006.00287.x 10.3390/ijms20215271 10.1111/j.1463-1326.2008.00977.x 10.15277/bjd.2020.247 10.1002/edm2.211 10.3389/fendo.2017.00347 10.1007/s00109-015-1310-2 10.1038/nature01960 10.1038/s41591-018-0125-4 10.1001/jama.282.17.1659 10.1016/j.redox.2017.01.013 10.2337/db09-9028 10.2337/db14-1220 10.1016/j.trsl.2010.04.001 10.1113/jphysiol.2002.034850 10.1136/bmjsem-2016-000143 10.14814/phy2.14489 10.1038/srep09884 10.1007/s00125-020-05177-6 10.1007/s10557-020-07050-5 10.1177/1358863X14521315 10.1016/j.lfs.2020.117414 10.1148/radiol.10091351 10.1177/0269215508084582 10.1016/j.bbabio.2013.10.012 10.1073/pnas.1332551100 10.1016/j.metabol.2020.154416 10.1371/journal.pone.0026883 10.1016/j.jshs.2020.01.001 10.14814/phy2.13741 10.1210/er.2009-0027 10.1016/j.jhepr.2019.07.002 10.1113/JP280603 10.2337/db16-0058 10.1016/S0168-8278(99)80033-6 10.1038/ng1180 10.3945/ajcn.115.122937 10.1038/nrendo.2011.138 10.1042/bj3480607 10.1073/pnas.1303360110 10.2337/dc16-0499 10.1053/gast.2001.23256 10.1007/s00125-011-2340-0 10.1126/science.1104343 10.1016/j.bbagen.2013.11.007 10.1016/j.biocel.2014.02.014 10.2337/dc10-1076 10.1038/cddiscovery.2015.72 10.1016/j.diabres.2019.107843 10.4172/2155-6156.1000126 10.2337/diab.37.6.667 10.1016/j.cell.2015.10.001 10.1097/MCO.0b013e32833cc93d 10.1073/pnas.1032913100 10.1074/jbc.M901488200 10.2337/dc12-0453 10.1016/j.bbamcr.2016.01.017 10.1113/JP270659 10.1210/jc.2007-0482 10.1016/j.freeradbiomed.2015.11.032 10.3389/fendo.2020.592129 10.1152/jappl.1997.83.1.166 10.1038/nm1044 10.1016/j.freeradbiomed.2019.07.017 10.1016/j.jhep.2020.11.030 10.1530/JOE-16-0598 10.3389/fendo.2021.693683 10.2337/diabetes.51.10.2944 10.2337/db13-1751 10.1111/j.1463-1326.2010.01237.x 10.2337/db06-0981 10.1111/eci.12461 10.1038/s41467-019-09418-0 10.1016/j.ebiom.2021.103244 10.2337/db09-1322 10.3390/cells8030249 10.2337/db18-69-OR 10.1038/nm.2049 10.1249/JES.0000000000000192 10.1074/jbc.275.1.223 10.1371/journal.pmed.0020233 10.2337/dc13-2349 10.1042/CS20180690 10.1007/s00125-016-3940-5 10.1186/s13102-018-0110-8 10.1111/j.1572-0241.2003.07725.x 10.3390/ijms21186559 10.1152/ajpheart.00413.2008 10.1016/S0021-9258(18)96046-1 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms22126642 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8233932 34205752 10_3390_ijms22126642 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja grantid: 451-03-68/2020-14/200110 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-1c7795f89e42fba6e285906187d3576137c0b500e9a27002b2e15f9c674e0bc93 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:21:38 EDT 2025 Fri Jul 11 10:33:05 EDT 2025 Fri Jul 25 20:25:07 EDT 2025 Mon Jul 21 06:04:36 EDT 2025 Tue Jul 01 03:07:36 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | diabetes therapy type 2 diabetes liver mitochondria blood cells exercise respiration skeletal muscle insulin resistance respiratory capacity |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-1c7795f89e42fba6e285906187d3576137c0b500e9a27002b2e15f9c674e0bc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to the work. |
ORCID | 0000-0003-3908-5462 0000-0003-0168-9631 0000-0002-3513-4434 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22126642 |
PMID | 34205752 |
PQID | 2544984502 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8233932 proquest_miscellaneous_2548397357 proquest_journals_2544984502 pubmed_primary_34205752 crossref_primary_10_3390_ijms22126642 crossref_citationtrail_10_3390_ijms22126642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210621 |
PublicationDateYYYYMMDD | 2021-06-21 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210621 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Simoneau (ref_19) 1997; 83 Hawley (ref_97) 2016; 65 Wei (ref_98) 2020; 247 Pinti (ref_14) 2019; 316 ref_13 Sanyal (ref_36) 2001; 120 Bird (ref_81) 2017; 2 Nisr (ref_100) 2014; 1837 Timmers (ref_107) 2016; 39 ref_16 Apostolopoulou (ref_103) 2015; 45 ref_15 Iossa (ref_30) 2017; 233 Chatham (ref_39) 1999; 282 Scalzo (ref_29) 2018; 67 Menshikova (ref_60) 2005; 288 Larsen (ref_86) 2021; 35 Tubbs (ref_51) 2014; 63 Phielix (ref_106) 2014; 57 Merry (ref_69) 2016; 98 Nogueira (ref_85) 2000; 275 Howitz (ref_113) 2003; 425 Stump (ref_102) 2003; 100 ref_124 Madiraju (ref_89) 2018; 24 Chen (ref_111) 2015; 5 Golubitzky (ref_110) 2011; 6 Owen (ref_84) 2000; 348 Phielix (ref_105) 2014; 64 Blake (ref_6) 2014; 1840 Larsen (ref_87) 2012; 55 Fouqueray (ref_119) 2012; 36 Shadel (ref_70) 2015; 163 Wadley (ref_66) 2006; 290 Mizuno (ref_99) 2018; 6 Larsen (ref_104) 2013; 61 Crabtree (ref_117) 2020; 20 ref_76 Mootha (ref_21) 2003; 34 Cheng (ref_49) 2009; 15 Boushel (ref_94) 2010; 12 Jones (ref_123) 2016; 59 Taylor (ref_67) 2016; 116 Rocha (ref_7) 2017; 11 Phielix (ref_23) 2008; 57 Thyfault (ref_83) 2020; 63 Pilegaard (ref_64) 2003; 546 Jacobsen (ref_41) 2012; 302 Meex (ref_71) 2009; 59 ref_80 Madiraju (ref_88) 2014; 510 Yamazaki (ref_112) 2008; 295 Singh (ref_109) 2021; 65 Sevastianova (ref_34) 2010; 256 Avila (ref_54) 2011; 120 Sakaguchi (ref_50) 2019; 10 Divakaruni (ref_92) 2013; 110 Schmid (ref_40) 2011; 34 Tyrrell (ref_56) 2015; 70 Bajpeyi (ref_95) 2017; 69 Montgomery (ref_5) 2015; 4 Hood (ref_62) 2016; 473 Lowell (ref_4) 2005; 307 Jacobs (ref_18) 2021; 231 Apostolopoulou (ref_78) 2018; 67 Sahlin (ref_24) 2007; 56 Holloszy (ref_75) 1984; 56 Caldwell (ref_37) 1999; 31 Ritter (ref_28) 2015; 93 Fiorentino (ref_96) 2021; 114 Boushel (ref_25) 2007; 50 Wang (ref_91) 2019; 29 Lambers (ref_59) 2008; 22 Vial (ref_120) 2014; 64 Koliaki (ref_43) 2015; 21 Tsai (ref_73) 2016; 6 Most (ref_108) 2016; 104 Miele (ref_35) 2003; 98 Bilet (ref_79) 2020; 63 Larsen (ref_26) 2011; 54 Vial (ref_122) 2021; 4 Rose (ref_58) 2019; 317 Szendroedi (ref_38) 2009; 50 DeFronzo (ref_3) 2009; 58 Palmeira (ref_68) 2019; 141 Liepinsh (ref_77) 2020; 8 Bender (ref_93) 2016; 1863 Almdal (ref_27) 2009; 11 (ref_2) 1988; 37 DiMenna (ref_82) 2018; 10 Szendroedi (ref_12) 2011; 8 ref_116 Yee (ref_10) 2018; 2018 Cheng (ref_52) 2020; 11 Patti (ref_22) 2003; 100 Vuylsteke (ref_114) 2015; 15 Guan (ref_61) 2019; 47 Johansson (ref_115) 2020; 21 Nakamura (ref_46) 2009; 284 Prompers (ref_17) 2014; 50 Saeedi (ref_1) 2019; 157 Yoon (ref_47) 2001; 413 Fouqueray (ref_118) 2014; 37 Kupriyanova (ref_44) 2021; 74 Holloszy (ref_74) 1967; 242 Kawahara (ref_33) 2007; 31 Patti (ref_9) 2010; 31 Petersen (ref_101) 2005; 2 Grunnet (ref_42) 2017; 176 Gastaldelli (ref_32) 2019; 1 Hartman (ref_55) 2014; 19 Carter (ref_65) 2018; 124 Mahapatra (ref_57) 2018; 132 Widlansky (ref_53) 2010; 156 ref_45 Kelley (ref_20) 2002; 51 Joseph (ref_72) 2016; 594 Ji (ref_63) 2020; 9 Kotronen (ref_31) 2007; 92 Detaille (ref_121) 2016; 2 Bhansali (ref_8) 2017; 8 Koo (ref_48) 2004; 10 Alshawi (ref_90) 2019; 294 Lanza (ref_11) 2010; 13 |
References_xml | – volume: 120 start-page: 248 year: 2011 ident: ref_54 article-title: Platelet Mitochondrial Dysfunction is Evident in Type 2 Diabetes in Association with Modifications of Mitochondrial Anti-Oxidant Stress Proteins publication-title: Exp. Clin. Endocrinol. Diabetes – volume: 290 start-page: E694 year: 2006 ident: ref_66 article-title: Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans publication-title: Am. J. Physiol. Metab. – volume: 57 start-page: 572 year: 2014 ident: ref_106 article-title: Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: A randomised clinical trial publication-title: Diabetologia doi: 10.1007/s00125-013-3127-2 – volume: 294 start-page: 2839 year: 2019 ident: ref_90 article-title: Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006670 – volume: 29 start-page: 1511 year: 2019 ident: ref_91 article-title: Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.09.070 – volume: 21 start-page: 739 year: 2015 ident: ref_43 article-title: Adaptation of Hepatic Mitochondrial Function in Humans with Non-Alcoholic Fatty Liver Is Lost in Steatohepatitis publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.04.004 – volume: 413 start-page: 131 year: 2001 ident: ref_47 article-title: Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 publication-title: Nat. Cell Biol. – volume: 63 start-page: 1211 year: 2020 ident: ref_79 article-title: One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: A human study with unilateral limb suspension publication-title: Diabetologia doi: 10.1007/s00125-020-05128-1 – volume: 15 start-page: 227 year: 2015 ident: ref_114 article-title: Imeglimin: A Potential New Multi-Target Drug for Type 2 Diabetes publication-title: Drugs R&D doi: 10.1007/s40268-015-0099-3 – volume: 61 start-page: 44 year: 2013 ident: ref_104 article-title: Simvastatin Effects on Skeletal Muscle: Relation to decreased mitochondrial function and glucose intolerance publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2012.09.036 – ident: ref_45 doi: 10.1016/j.mito.2021.10.001 – volume: 50 start-page: 790 year: 2007 ident: ref_25 article-title: Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle publication-title: Diabetologia doi: 10.1007/s00125-007-0594-3 – volume: 4 start-page: R1 year: 2015 ident: ref_5 article-title: Mitochondrial dysfunction and insulin resistance: An update publication-title: Endocr. Connect. doi: 10.1530/EC-14-0092 – volume: 6 start-page: 1 year: 2016 ident: ref_73 article-title: Exercise Training Alleviates Hypoxia-induced Mitochondrial Dysfunction in the Lymphocytes of Sedentary Males publication-title: Sci. Rep. doi: 10.1038/srep35170 – volume: 69 start-page: 24 year: 2017 ident: ref_95 article-title: Pioglitazone-induced improvements in insulin sensitivity occur without concomitant changes in muscle mitochondrial function publication-title: Metabolism doi: 10.1016/j.metabol.2016.11.016 – volume: 176 start-page: R67 year: 2017 ident: ref_42 article-title: Mechanisms in Endocrinology: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: A causal mechanism or an innocent bystander? publication-title: Eur. J. Endocrinol. doi: 10.1530/EJE-16-0488 – volume: 231 start-page: e13625 year: 2021 ident: ref_18 article-title: Contextualizing the biological relevance of standardized high-resolution respirometry to assess mitochondrial function in permeabilized human skeletal muscle publication-title: Acta Physiol. doi: 10.1111/apha.13625 – volume: 302 start-page: E43 year: 2012 ident: ref_41 article-title: Effects of high-fat overfeeding on mitochondrial function, glucose and fat metabolism, and adipokine levels in low-birth-weight subjects publication-title: Am. J. Physiol. Metab. – volume: 116 start-page: 1445 year: 2016 ident: ref_67 article-title: Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1α and VEGF mRNA expression in trained individuals publication-title: Graefe’s Arch. Clin. Exp. Ophthalmol. – volume: 70 start-page: 84 year: 2015 ident: ref_56 article-title: Blood-cell bioenergetics are associated with physical function and inflammation in overweight/obese older adults publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2015.07.015 – ident: ref_13 – volume: 67 start-page: 1369 year: 2018 ident: ref_29 article-title: Supplemental Oxygen Improves In Vivo Mitochondrial Oxidative Phosphorylation Flux in Sedentary Obese Adults With Type 2 Diabetes publication-title: Diabetes doi: 10.2337/db17-1124 – volume: 21 start-page: 871 year: 2020 ident: ref_115 article-title: Clinical pharmacology of imeglimin for the treatment of type 2 diabetes publication-title: Expert Opin. Pharmacother. doi: 10.1080/14656566.2020.1729123 – volume: 124 start-page: 1605 year: 2018 ident: ref_65 article-title: Effect of contractile activity on PGC-1α transcription in young and aged skeletal muscle publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01110.2017 – volume: 2018 start-page: 1 year: 2018 ident: ref_10 article-title: Mitochondrial disease: An uncommon but important cause of diabetes mellitus publication-title: Endocrinol. Diabetes Metab. Case Rep. – volume: 54 start-page: 1427 year: 2011 ident: ref_26 article-title: Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-011-2098-4 – volume: 57 start-page: 2943 year: 2008 ident: ref_23 article-title: Lower Intrinsic ADP-Stimulated Mitochondrial Respiration Underlies In Vivo Mitochondrial Dysfunction in Muscle of Male Type 2 Diabetic Patients publication-title: Diabetes doi: 10.2337/db08-0391 – volume: 50 start-page: 1079 year: 2009 ident: ref_38 article-title: Abnormal hepatic energy homeostasis in type 2 diabetes publication-title: Hepatology doi: 10.1002/hep.23093 – volume: 473 start-page: 2295 year: 2016 ident: ref_62 article-title: Unravelling the mechanisms regulating muscle mitochondrial biogenesis publication-title: Biochem. J. doi: 10.1042/BCJ20160009 – volume: 31 start-page: S54 year: 2007 ident: ref_33 article-title: Mutation of Mitochondrial DNA in Livers from Patients with Alcoholic Hepatitis and Nonalcoholic Steatohepatitis publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2006.00287.x – ident: ref_15 doi: 10.3390/ijms20215271 – volume: 11 start-page: 355 year: 2009 ident: ref_27 article-title: Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/j.1463-1326.2008.00977.x – volume: 20 start-page: 28 year: 2020 ident: ref_117 article-title: Imeglimin, a novel, first in-class, blood glucose-lowering agent: A systematic review and meta-analysis of clinical evidence publication-title: Br. J. Diabetes doi: 10.15277/bjd.2020.247 – volume: 4 start-page: 1 year: 2021 ident: ref_122 article-title: The mechanism by which imeglimin inhibits gluconeogenesis in rat liver cells publication-title: Endocrinol. Diabetes Metab. doi: 10.1002/edm2.211 – volume: 8 start-page: 347 year: 2017 ident: ref_8 article-title: Alterations in Mitochondrial Oxidative Stress and Mitophagy in Subjects with Prediabetes and Type 2 Diabetes Mellitus publication-title: Front. Endocrinol. doi: 10.3389/fendo.2017.00347 – volume: 93 start-page: 831 year: 2015 ident: ref_28 article-title: Lipid-mediated muscle insulin resistance: Different fat, different pathways? publication-title: J. Mol. Med. doi: 10.1007/s00109-015-1310-2 – volume: 425 start-page: 191 year: 2003 ident: ref_113 article-title: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan publication-title: Nature doi: 10.1038/nature01960 – volume: 24 start-page: 1384 year: 2018 ident: ref_89 article-title: Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo publication-title: Nat. Med. doi: 10.1038/s41591-018-0125-4 – volume: 282 start-page: 1659 year: 1999 ident: ref_39 article-title: Alterations in Liver ATP Homeostasis in Human Nonalcoholic Steatohepatitis: A pilot study publication-title: JAMA doi: 10.1001/jama.282.17.1659 – volume: 11 start-page: 637 year: 2017 ident: ref_7 article-title: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications publication-title: Redox Biol. doi: 10.1016/j.redox.2017.01.013 – volume: 58 start-page: 773 year: 2009 ident: ref_3 article-title: From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus publication-title: Diabetes doi: 10.2337/db09-9028 – volume: 64 start-page: 2254 year: 2014 ident: ref_120 article-title: Imeglimin Normalizes Glucose Tolerance and Insulin Sensitivity and Improves Mitochondrial Function in Liver of a High-Fat, High-Sucrose Diet Mice Model publication-title: Diabetes doi: 10.2337/db14-1220 – volume: 156 start-page: 15 year: 2010 ident: ref_53 article-title: Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes publication-title: Transl. Res. doi: 10.1016/j.trsl.2010.04.001 – volume: 546 start-page: 851 year: 2003 ident: ref_64 article-title: Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.034850 – volume: 2 start-page: 1 year: 2017 ident: ref_81 article-title: Update on the effects of physical activity on insulin sensitivity in humans publication-title: BMJ Open Sport Exerc. Med. doi: 10.1136/bmjsem-2016-000143 – volume: 8 start-page: 1 year: 2020 ident: ref_77 article-title: Low-intensity exercise stimulates bioenergetics and increases fat oxidation in mitochondria of blood mononuclear cells from sedentary adults publication-title: Physiol. Rep. doi: 10.14814/phy2.14489 – volume: 5 start-page: 9884 year: 2015 ident: ref_111 article-title: A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice publication-title: Sci. Rep. doi: 10.1038/srep09884 – volume: 63 start-page: 1464 year: 2020 ident: ref_83 article-title: Exercise and metabolic health: Beyond skeletal muscle publication-title: Diabetologia doi: 10.1007/s00125-020-05177-6 – volume: 35 start-page: 491 year: 2021 ident: ref_86 article-title: Metformin Lowers Body Weight But Fails to Increase Insulin Sensitivity in Chronic Heart Failure Patients without Diabetes: A Randomized, Double-Blind, Placebo-Controlled Study publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-020-07050-5 – volume: 19 start-page: 67 year: 2014 ident: ref_55 article-title: Relation of mitochondrial oxygen consumption in peripheral blood mononuclear cells to vascular function in type 2 diabetes mellitus publication-title: Vasc. Med. doi: 10.1177/1358863X14521315 – volume: 247 start-page: 117414 year: 2020 ident: ref_98 article-title: Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro publication-title: Life Sci. doi: 10.1016/j.lfs.2020.117414 – volume: 256 start-page: 466 year: 2010 ident: ref_34 article-title: Nonalcoholic Fatty Liver Disease: Detection of Elevated Nicotinamide Adenine Dinucleotide Phosphate with in Vivo 3.0-T31P MR Spectroscopy with Proton Decoupling publication-title: Radiology doi: 10.1148/radiol.10091351 – volume: 22 start-page: 483 year: 2008 ident: ref_59 article-title: Influence of combined exercise training on indices of obesity, diabetes and cardiovascular risk in type 2 diabetes patients publication-title: Clin. Rehabil. doi: 10.1177/0269215508084582 – volume: 1837 start-page: 270 year: 2014 ident: ref_100 article-title: Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation publication-title: Biochim. Biophys. Acta (BBA) Bioenerg. doi: 10.1016/j.bbabio.2013.10.012 – volume: 100 start-page: 7996 year: 2003 ident: ref_102 article-title: Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1332551100 – volume: 114 start-page: 154416 year: 2021 ident: ref_96 article-title: Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes publication-title: Metabolism doi: 10.1016/j.metabol.2020.154416 – volume: 6 start-page: 1 year: 2011 ident: ref_110 article-title: Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient’s Fibroblasts, Reveals AICAR as the Most Beneficial Compound publication-title: PLoS ONE doi: 10.1371/journal.pone.0026883 – volume: 316 start-page: E268 year: 2019 ident: ref_14 article-title: Mitochondrial dysfunction in type 2 diabetes mellitus: An organ-based analysis publication-title: Am. J. Physiol. Metab. – volume: 9 start-page: 386 year: 2020 ident: ref_63 article-title: The role of mitochondria in redox signaling of muscle homeostasis publication-title: J. Sport Health Sci. doi: 10.1016/j.jshs.2020.01.001 – volume: 6 start-page: e13741 year: 2018 ident: ref_99 article-title: Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts publication-title: Physiol. Rep. doi: 10.14814/phy2.13741 – volume: 317 start-page: E503 year: 2019 ident: ref_58 article-title: A comparative study of mitochondrial respiration in circulating blood cells and skeletal muscle fibers in women publication-title: Am. J. Physiol. Metab. – volume: 31 start-page: 364 year: 2010 ident: ref_9 article-title: The Role of Mitochondria in the Pathogenesis of Type 2 Diabetes publication-title: Endocr. Rev. doi: 10.1210/er.2009-0027 – volume: 1 start-page: 312 year: 2019 ident: ref_32 article-title: From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options publication-title: JHEP Rep. doi: 10.1016/j.jhepr.2019.07.002 – ident: ref_80 doi: 10.1113/JP280603 – volume: 65 start-page: 2784 year: 2016 ident: ref_97 article-title: The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels publication-title: Diabetes doi: 10.2337/db16-0058 – volume: 31 start-page: 430 year: 1999 ident: ref_37 article-title: Mitochondrial abnormalities in non-alcoholic steatohepatitis publication-title: J. Hepatol. doi: 10.1016/S0168-8278(99)80033-6 – volume: 34 start-page: 267 year: 2003 ident: ref_21 article-title: PGC-1alpha-Responsive Genes Involved in Oxidative Phosphorylation Are Coordinately Downregulated in Human Diabetes publication-title: Nat. Genet. doi: 10.1038/ng1180 – volume: 104 start-page: 215 year: 2016 ident: ref_108 article-title: Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: A randomized controlled trial publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.115.122937 – volume: 8 start-page: 92 year: 2011 ident: ref_12 article-title: The role of mitochondria in insulin resistance and type 2 diabetes mellitus publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2011.138 – volume: 348 start-page: 607 year: 2000 ident: ref_84 article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem. J. doi: 10.1042/bj3480607 – volume: 110 start-page: 5422 year: 2013 ident: ref_92 article-title: Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1303360110 – volume: 39 start-page: 2211 year: 2016 ident: ref_107 article-title: Resveratrol as Add-on Therapy in Subjects With Well-Controlled Type 2 Diabetes: A Randomized Controlled Trial publication-title: Diabetes Care doi: 10.2337/dc16-0499 – volume: 120 start-page: 1183 year: 2001 ident: ref_36 article-title: Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities publication-title: Gastroenterology doi: 10.1053/gast.2001.23256 – volume: 56 start-page: 831 year: 1984 ident: ref_75 article-title: Adaptations of skeletal muscle to endurance exercise and their metabolic consequences publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol. – volume: 55 start-page: 443 year: 2012 ident: ref_87 article-title: Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration publication-title: Diabetologia doi: 10.1007/s00125-011-2340-0 – volume: 307 start-page: 384 year: 2005 ident: ref_4 article-title: Mitochondrial Dysfunction and Type 2 Diabetes publication-title: Science doi: 10.1126/science.1104343 – volume: 1840 start-page: 1404 year: 2014 ident: ref_6 article-title: Mitochondrial dysfunction and complications associated with diabetes publication-title: Biochim. Biophys. Acta (BBA) Gen. Subj. doi: 10.1016/j.bbagen.2013.11.007 – volume: 50 start-page: 67 year: 2014 ident: ref_17 article-title: MITOCHONDRIA: Investigation of in vivo muscle mitochondrial function by 31P magnetic resonance spectroscopy publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2014.02.014 – volume: 34 start-page: 448 year: 2011 ident: ref_40 article-title: Liver ATP Synthesis Is Lower and Relates to Insulin Sensitivity in Patients With Type 2 Diabetes publication-title: Diabetes Care doi: 10.2337/dc10-1076 – volume: 64 start-page: 1193 year: 2014 ident: ref_105 article-title: Evidence for a Direct Effect of the NAD+Precursor Acipimox on Muscle Mitochondrial Function in Humans publication-title: Diabetes – volume: 2 start-page: 15072 year: 2016 ident: ref_121 article-title: Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration publication-title: Cell Death Discov. doi: 10.1038/cddiscovery.2015.72 – volume: 157 start-page: 107843 year: 2019 ident: ref_1 article-title: Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2019.107843 – ident: ref_116 doi: 10.4172/2155-6156.1000126 – volume: 37 start-page: 667 year: 1988 ident: ref_2 article-title: Lilly lecture: The triumvirate: Beta cell, muscle, liver, a collusion responsible for NIDDM publication-title: Diabetes doi: 10.2337/diab.37.6.667 – volume: 163 start-page: 560 year: 2015 ident: ref_70 article-title: Mitochondrial ROS Signaling in Organismal Homeostasis publication-title: Cell doi: 10.1016/j.cell.2015.10.001 – volume: 13 start-page: 511 year: 2010 ident: ref_11 article-title: Mitochondrial metabolic function assessed in vivo and in vitro publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/MCO.0b013e32833cc93d – volume: 100 start-page: 8466 year: 2003 ident: ref_22 article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role ofPGC1andNRF1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1032913100 – volume: 284 start-page: 14809 year: 2009 ident: ref_46 article-title: Palmitate Induces Insulin Resistance in H4IIEC3 Hepatocytes through Reactive Oxygen Species Produced by Mitochondria publication-title: J. Biol. Chem. doi: 10.1074/jbc.M901488200 – volume: 36 start-page: 565 year: 2012 ident: ref_119 article-title: The Efficacy and Safety of Imeglimin as Add-on Therapy in Patients With Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy publication-title: Diabetes Care doi: 10.2337/dc12-0453 – volume: 1863 start-page: 2436 year: 2016 ident: ref_93 article-title: The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? publication-title: Biochim. Biophys. Acta (BBA) Bioenerg. doi: 10.1016/j.bbamcr.2016.01.017 – volume: 594 start-page: 5105 year: 2016 ident: ref_72 article-title: Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle publication-title: J. Physiol. doi: 10.1113/JP270659 – volume: 92 start-page: 3490 year: 2007 ident: ref_31 article-title: Liver Fat in the Metabolic Syndrome publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2007-0482 – volume: 98 start-page: 123 year: 2016 ident: ref_69 article-title: Mitohormesis in exercise training publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.11.032 – volume: 11 start-page: 1 year: 2020 ident: ref_52 article-title: The Molecular Mechanisms Underlying Mitochondria-Associated Endoplasmic Reticulum Membrane-Induced Insulin Resistance publication-title: Front. Endocrinol. doi: 10.3389/fendo.2020.592129 – volume: 83 start-page: 166 year: 1997 ident: ref_19 article-title: Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1997.83.1.166 – volume: 10 start-page: 530 year: 2004 ident: ref_48 article-title: PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3 publication-title: Nat. Med. doi: 10.1038/nm1044 – volume: 141 start-page: 483 year: 2019 ident: ref_68 article-title: Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.07.017 – volume: 74 start-page: 1028 year: 2021 ident: ref_44 article-title: Early changes in hepatic energy metabolism and lipid content in recent-onset type 1 and 2 diabetes mellitus publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.11.030 – volume: 233 start-page: R15 year: 2017 ident: ref_30 article-title: Skeletal muscle insulin resistance: Role of mitochondria and other ROS sources publication-title: J. Endocrinol. doi: 10.1530/JOE-16-0598 – ident: ref_76 doi: 10.3389/fendo.2021.693683 – volume: 51 start-page: 2944 year: 2002 ident: ref_20 article-title: Dysfunction of Mitochondria in Human Skeletal Muscle in Type 2 Diabetes publication-title: Diabetes doi: 10.2337/diabetes.51.10.2944 – volume: 63 start-page: 3279 year: 2014 ident: ref_51 article-title: Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Is Required for Insulin Signaling and Is Implicated in Hepatic Insulin Resistance publication-title: Diabetes doi: 10.2337/db13-1751 – volume: 12 start-page: 806 year: 2010 ident: ref_94 article-title: Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/j.1463-1326.2010.01237.x – volume: 288 start-page: E818 year: 2005 ident: ref_60 article-title: Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity publication-title: Am. J. Physiol. Metab. – volume: 56 start-page: 1592 year: 2007 ident: ref_24 article-title: Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes publication-title: Diabetes doi: 10.2337/db06-0981 – volume: 45 start-page: 745 year: 2015 ident: ref_103 article-title: The role of mitochondria in statin-induced myopathy publication-title: Eur. J. Clin. Investig. doi: 10.1111/eci.12461 – volume: 10 start-page: 1 year: 2019 ident: ref_50 article-title: FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism publication-title: Nat. Commun. doi: 10.1038/s41467-019-09418-0 – volume: 65 start-page: 103244 year: 2021 ident: ref_109 article-title: Pharmacological advances in mitochondrial therapy publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103244 – volume: 59 start-page: 572 year: 2009 ident: ref_71 article-title: Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity publication-title: Diabetes doi: 10.2337/db09-1322 – ident: ref_124 doi: 10.3390/cells8030249 – volume: 67 start-page: 69 year: 2018 ident: ref_78 article-title: Effects on Insulin Sensitivity, but Not on Mitochondrial Function Are Dependent on Insulin Resistance Status after High Intensity Interval Training publication-title: Diabetes doi: 10.2337/db18-69-OR – volume: 15 start-page: 1307 year: 2009 ident: ref_49 article-title: Foxo1 integrates insulin signaling with mitochondrial function in the liver publication-title: Nat. Med. doi: 10.1038/nm.2049 – volume: 47 start-page: 151 year: 2019 ident: ref_61 article-title: Exercise-Induced Mitophagy in Skeletal Muscle and Heart publication-title: Exerc. Sport Sci. Rev. doi: 10.1249/JES.0000000000000192 – volume: 275 start-page: 223 year: 2000 ident: ref_85 article-title: Dimethylbiguanide Inhibits Cell Respiration via an Indirect Effect Targeted on the Respiratory Chain Complex I publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.1.223 – volume: 2 start-page: 0879 year: 2005 ident: ref_101 article-title: Decreased Insulin-Stimulated ATP Synthesis and Phosphate Transport in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Parents publication-title: PLoS Med. doi: 10.1371/journal.pmed.0020233 – volume: 37 start-page: 1924 year: 2014 ident: ref_118 article-title: The Efficacy and Safety of Imeglimin as Add-on Therapy in Patients with Type 2 Diabetes Inadequately Controlled with Sitagliptin Monotherapy publication-title: Diabetes Care doi: 10.2337/dc13-2349 – volume: 132 start-page: 2509 year: 2018 ident: ref_57 article-title: Blood-based bioenergetic profiling is related to differences in brain morphology in African Americans with Type 2 diabetes publication-title: Clin. Sci. doi: 10.1042/CS20180690 – volume: 59 start-page: 1098 year: 2016 ident: ref_123 article-title: Hepatic glucose and lipid metabolism publication-title: Diabetologia doi: 10.1007/s00125-016-3940-5 – volume: 10 start-page: 1 year: 2018 ident: ref_82 article-title: Exercise as ‘precision medicine’ for insulin resistance and its progression to type 2 diabetes: A research review publication-title: BMC Sports Sci. Med. Rehabil. doi: 10.1186/s13102-018-0110-8 – volume: 98 start-page: 2335 year: 2003 ident: ref_35 article-title: Hepatic Mitochondrial Beta-Oxidation in Patients With Nonalcoholic Steatohepatitis Assessed by 13C-Octanoate Breath Test publication-title: Am. J. Gastroenterol. doi: 10.1111/j.1572-0241.2003.07725.x – ident: ref_16 doi: 10.3390/ijms21186559 – volume: 295 start-page: H761 year: 2008 ident: ref_112 article-title: Short- and long-term effects of (−)-epicatechin on myocardial ischemia-reperfusion injury publication-title: Am. J. Physiol. Circ. Physiol. doi: 10.1152/ajpheart.00413.2008 – volume: 242 start-page: 2278 year: 1967 ident: ref_74 article-title: Biochemical Adaptations in Muscle: Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96046-1 – volume: 510 start-page: 542 year: 2014 ident: ref_88 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nat. Cell Biol. |
SSID | ssj0023259 |
Score | 2.5640845 |
SecondaryResourceType | review_article |
Snippet | Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6642 |
SubjectTerms | Adenosine triphosphate Animals Biopsy Biosynthesis Diabetes Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Disease Enzymes Exercise Fatty acids Glucose Homeostasis Human subjects Humans Hyperglycemia Hypoglycemic Agents - pharmacology Hypoglycemic Agents - therapeutic use Hypotheses Insulin resistance Liver Metabolism Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondrial DNA Musculoskeletal system Nervous system Pancreas Pathogenesis Phosphorylation Physical fitness Respiration Review |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46EbyIv61OqaInCTZpfp5ExDGEedpgt7KkKU60m247-N_70nbdpui5rzR9Sd77XvLxPYSutMxUCjgDZySVmBmqsdKUYEKcctxqQM3-vKPzLNo99tTn_erAbVLRKucxsQjU6cj6M_JbL6WlFeMRvRt_YN81yt-uVi001tGGly7zlC7ZXxRcMS2apRHIQVhwLUriewxl_u3w9X1CIWwLwehqSvqFM3_SJZfyT2sHbVfAMbwvZ3oXrbl8D22WrSS_9tFlt6B0QyIKO7BJIajlKaytcJiHFellcoB6rcfuQxtX_Q-wZVJNMbFSap4p7RjNzEA4LzYH-VfJNIYygcTSRoZHkdMDf31MDXWEZ9oKyVxkrI4PUSMf5e4YhZxYQ0nm4cqACaoNNzK1mmWRTVUsdIBu5i5IbCUO7ntUvCVQJHiHJcsOC9B1bT0uRTH-sGvOvZlUW2OSLCYyQBf1Y1jU_qZikLvRrLAB4CbhLwN0VDq__lDMqMeY8LZcmZbawAtmrz7Jhy-FcLaiMMSYnvw_rFO0RT1xJRKYkiZqTD9n7gyQx9ScF8vrG1Ve1S0 priority: 102 providerName: ProQuest |
Title | Targeting Mitochondria in Diabetes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34205752 https://www.proquest.com/docview/2544984502 https://www.proquest.com/docview/2548397357 https://pubmed.ncbi.nlm.nih.gov/PMC8233932 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_alMFeSruvpu2CO7anoc2SJUt6GKMdzUohZYwG8mYiWaYpqfuRBNr_fne2Y5p2g7345U7IOul0v9MddwAfrS5MjjiDFTzXTDphmbGCM86DCcpbRM303jE4S0-G8nSkRmuw7DbaCHD2V9eO-kkN76Zf7m8fvqPCfyOPE132r5PLq5nAKzhFLL0OG2iTNKnoQLbxBIQNVds0evBgdEHXKfDPRq8ap2eI82ni5CNL1N-CzQZCRof1nm_DWihfwYu6qeTDa_hwXiV3o0mKBqiuuMIyx1MWTcqoSX-ZvYFh__j8xwlrOiEwL7WZM-61tqowNkhRuHEaqOwcWmKj8wQdBp5oHzsVx8GOKZAsnAhcFdanWobYeZu8hU55XYYdiBT3TvCCgMtYpsI65XTurSxin5sktV34vBRB5psy4dStYpqhu0ACyx4LrAufWu6bujzGP_j2l9LMlnucUXU0a6SKkXzQkvF4U8xiXIbrRcWDEE7jKrvwrhZ-O1EiBaFNHK1XtqVloNLZq5RyclGV0DYCfzERu_8x7x68FJTHEqdM8H3ozO8W4T0Ckbnrwboeafya_s8ebBwdn_363SPToHrV6fsDDrreIQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRQguFW8CBRZET8iqPevnASEEVCltekql3JbY61WDYNOSVKh_it_IeB9pA4Jbz57Vesfjmc-e2W8AXjtT2ZJwBqtEaZj06Jh1KJgQ0UYVHKHmdN8xOtLDY_l5oiYb8Kv_FyaVVfY-sXHU5TykO_LdRKXlrFQc352esdQ1KmVX-xYarVkcxIufdGRbvN3_SOu7g7j3afxhyLquAixIY5dMBGOcqqyLEis_1TFRuFFUs6bMCXyL3ATuFefRTVNSFj1GoSoXtJGR-5DIl8jl36DAy9OOMpPLA16OTXM2QTGPaeV0W2if547vzr5-XyCFCa0lrofAv3Dtn-WZV-Ld3h3Y6oBq9r61rLuwEet7cLNtXXlxH16NmxJyCnzZiJwCOdG6JFvOZnXWFdksHsDxtWjmIWzW8zo-hkyJ4FFUCR5NpUbnlTdlcLLiobS5dgN406ugCB0ZeeqJ8a2gQ0lSWHFVYQPYWUmftiQc_5Db7rVZdFtxUVwazgBeroZpE6XMyLSO8_NGhoCioa8cwKNW-asX5RITpqWnzdqyrAQSQff6SD07aYi6LdIUc3zy_2m9gFvD8eiwONw_OngKtzEVzXDNUGzD5vLHeXxGqGfpnzemlsGX67bt3xWDECE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiDcLBQKiJ2RtPH4fEEKUVUtpxaGV9hbWjiO2KtnCblX1r_XXMc5j2wXBredMFGv8eeaz_WUG4I0zlS2JZ7CKl4ZJj45Zh5xxHm1UwRFrTucde_t6-1B-HqvxGlz0_8IkWWUfE5tAXc5COiMfplJazkqV47DqZBFft0bvT36y1EEq3bT27TRaiOzG8zPavs3f7WzRXG8ijj4dfNxmXYcBFqSxC8aDMU5V1kWJlZ_omMq5UYazphRExLkwIfcqz6ObpAta9Bi5qlzQRsbch1SIicL_DSMUT2vMjC83ewKbRm2c8h_TyulWdC-Ey4fTox9zpJShtcTVdPgXx_1Tqnkl943uwp2OtGYfWpTdg7VY34ebbRvL8wfw-qCRk1MSzPYoQFBArUvCdTats05wM38Ih9fimUewXs_q-AQyxYNHXiWqNJEanVfelMHJKg-lFdoN4G3vgiJ0hclTf4zjgjYoyWHFVYcNYHNpfdIW5PiH3UbvzaJblvPiEkQDeLV8TAsq3ZJM6jg7bWyINNKUmgE8bp2__JCQmPgtvW1WpmVpkIp1rz6pp9-bot0WaYgCn_5_WC_hFqG6-LKzv_sMbmPSz-SaId-A9cWv0_icCNDCv2iQlsG364b2b72cFFc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+Mitochondria+in+Diabetes&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Krako+Jakovljevic%2C+Nina&rft.au=Pavlovic%2C+Kasja&rft.au=Jotic%2C+Aleksandra&rft.au=Lalic%2C+Katarina&rft.date=2021-06-21&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=12&rft_id=info:doi/10.3390%2Fijms22126642&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |