SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation

SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 20; no. 6; p. 1365
Main Authors Xu, Dejun, Wu, Lin, Jiang, Xiaohan, Yang, Li, Cheng, Jianyong, Chen, Huali, Hua, Rongmao, Geng, Guoxia, Yang, Lulu, Li, Qingwang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.03.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.
AbstractList SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.
SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.
SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat . These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.
[...]clarification of the maturation mechanisms in oocytes is of great importance for the optimization of IVM protocols. [...]the high mitochondrial membrane potential required for ATP synthesis, favors the production of elevated ROS levels [13]. [...]the cellular antioxidant system components, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), are important for defending the cell against ROS-induced deleterious effects during IVM [5]. [...]in the present study, bovine oocytes were cultured in IVM medium supplemented with 1, 2, and 5 μM SirReal2, and the parameters of nuclear and cytoplasmic maturation were investigated. SIRT2 Inhibition Blocks Cytoplasmic Maturation The intracellular events leading to the redistribution of organelle, including CGs, ER, and mitochondria, are necessary for oocyte cytoplasmic maturation. [...]we first examined the functions of SIRT2 during cytoplasmic maturation events with confocal scanning and quantitative analysis.
SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes and . These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.
Author Yang, Lulu
Chen, Huali
Geng, Guoxia
Jiang, Xiaohan
Yang, Li
Cheng, Jianyong
Li, Qingwang
Xu, Dejun
Hua, Rongmao
Wu, Lin
AuthorAffiliation 1 College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China; 2015060124@nwafu.edu.cn (D.X.); nwafu1@sina.com (L.W.); nwafuc@sina.com (X.J.); nwafuj@sina.com (L.Y.); nwafu6@sina.com (J.C.); nwafu3@sina.com (H.C.); esserver@yeah.net (R.H.)
2 College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; nwafuh@sina.com (G.G.); nwyll@sina.com (L.Y.)
AuthorAffiliation_xml – name: 2 College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; nwafuh@sina.com (G.G.); nwyll@sina.com (L.Y.)
– name: 1 College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China; 2015060124@nwafu.edu.cn (D.X.); nwafu1@sina.com (L.W.); nwafuc@sina.com (X.J.); nwafuj@sina.com (L.Y.); nwafu6@sina.com (J.C.); nwafu3@sina.com (H.C.); esserver@yeah.net (R.H.)
Author_xml – sequence: 1
  givenname: Dejun
  surname: Xu
  fullname: Xu, Dejun
– sequence: 2
  givenname: Lin
  surname: Wu
  fullname: Wu, Lin
– sequence: 3
  givenname: Xiaohan
  surname: Jiang
  fullname: Jiang, Xiaohan
– sequence: 4
  givenname: Li
  surname: Yang
  fullname: Yang, Li
– sequence: 5
  givenname: Jianyong
  surname: Cheng
  fullname: Cheng, Jianyong
– sequence: 6
  givenname: Huali
  surname: Chen
  fullname: Chen, Huali
– sequence: 7
  givenname: Rongmao
  surname: Hua
  fullname: Hua, Rongmao
– sequence: 8
  givenname: Guoxia
  surname: Geng
  fullname: Geng, Guoxia
– sequence: 9
  givenname: Lulu
  surname: Yang
  fullname: Yang, Lulu
– sequence: 10
  givenname: Qingwang
  surname: Li
  fullname: Li, Qingwang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30889926$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhi1URNvAjTOyxIVDAv5Y79oXpNICjdSoUilny-v1NhPt2sX2VuQ38KdxaKlCxcn2-JlXM_POMTrwwTuEXlPynnNFPsBmTIyQmvJaPENHtGJsUZ7Nwd79EB2ntCGEcSbUC3TIiZRKsfoI_fq2vLpmeOnX0EKG4PGVS9OQEwaPVw5CBotPYnQpz_EKcrDr4LsIZsBn29RP3u6S5tj4Dp9BylNsjbcOh74IdeEnPg-jCymbBAl3UwR_gz-FO_AOXwa7zQ6vTEkyO5WX6HlvhuRePZwz9P3L5-vT88XF5dfl6cnFwlaNzAtqJBVMMGclU6TitWmNrLgVtRW9ahpC67qlihgrFRdtLTojes5k6zprq17wGfp4r3s7tWMJOp-jGfRthNHErQ4G9L8_Htb6JtzpumoYa5oi8O5BIIYfUxmNHiFZNwzGuzAlzaiqhOSkkgV9-wTdhCn60p5mnLNiiCquzNCb_YoeS_nrUwHm94CNIaXo-keEEr1bA72_BgVnT3AL-c-MSz8w_D_pNzcot9k
CitedBy_id crossref_primary_10_1002_jcp_30461
crossref_primary_10_3390_ijms23095013
crossref_primary_10_1096_fj_202100490R
crossref_primary_10_1093_micmic_ozad127
crossref_primary_10_1042_BST20210798
crossref_primary_10_1016_j_biopha_2021_112001
crossref_primary_10_1016_j_theriogenology_2019_09_010
crossref_primary_10_3389_fncel_2024_1434459
crossref_primary_10_1262_jrd_2022_052
crossref_primary_10_1186_s40104_022_00809_w
crossref_primary_10_1016_j_lfs_2019_116639
crossref_primary_10_1007_s10815_024_03151_4
crossref_primary_10_1096_fj_202301946R
crossref_primary_10_1002_tox_23397
crossref_primary_10_1186_s13048_024_01427_y
crossref_primary_10_3390_biomedicines10071689
crossref_primary_10_3390_ani15060802
crossref_primary_10_1016_j_jsbmb_2021_105826
crossref_primary_10_1262_jrd_2020_013
crossref_primary_10_2174_1570159X18666200123165002
crossref_primary_10_3390_biom14091160
crossref_primary_10_18632_aging_102703
crossref_primary_10_3390_ani14020193
crossref_primary_10_1007_s11033_023_09121_w
crossref_primary_10_1002_mnfr_202300904
crossref_primary_10_1016_j_ijbiomac_2025_141488
crossref_primary_10_1017_S0967199422000181
Cites_doi 10.1038/sj.onc.1210616
10.1016/j.bbrc.2018.11.140
10.1089/ars.2010.3405
10.1038/nature01036
10.1016/j.theriogenology.2009.04.017
10.1006/bbrc.2000.3000
10.1038/onc.2008.21
10.1016/j.cub.2006.09.014
10.1073/pnas.0400593101
10.1128/MCB.23.9.3173-3185.2003
10.1530/jrf.0.0300493
10.1146/annurev-animal-022114-110822
10.1126/science.1094637
10.1016/j.ydbio.2007.02.006
10.1002/mrd.21102
10.1038/onc.2011.347
10.1007/s10495-016-1341-3
10.1016/j.rbmo.2010.08.014
10.1038/nrm3293
10.1016/j.ccr.2011.09.004
10.1083/jcb.104.2.289
10.1093/molehr/gau064
10.1146/annurev.cellbio.13.1.83
10.1016/j.neuron.2005.06.018
10.1146/annurev.genet.38.072902.093019
10.1089/ars.2012.4713
10.1111/jpi.12275
10.4161/cc.4.7.1796
10.1111/acel.12698
10.1111/j.1474-9726.2007.00304.x
10.1093/hmg/ddr326
10.7150/ijbs.7.575
10.1186/1477-7827-11-31
10.1074/jbc.C112.403048
10.1038/nrm3531
10.1016/j.theriogenology.2005.09.020
10.1016/j.neo.2018.03.008
10.4161/cc.6.9.4219
10.1038/35001622
10.1002/jcp.26484
10.1016/j.mito.2015.10.001
10.1016/0012-1606(88)90415-0
10.1074/jbc.M110.140228
10.1093/molehr/gar024
10.1371/journal.pone.0000784
10.1093/hmg/ddx298
10.1071/RD9960485
10.1126/science.1124000
10.1002/jcp.22171
10.1016/S1472-6483(10)60038-7
10.1016/S0015-0282(16)58330-7
10.1016/S1642-431X(12)60001-1
10.1101/gad.1412706
10.1002/cmdc.201800391
10.1016/S1097-2765(03)00038-8
10.1002/em.22213
10.1523/JNEUROSCI.0048-10.2010
10.1074/jbc.M805514200
10.1074/jbc.M412357200
10.1016/j.anireprosci.2007.03.023
10.1016/j.fertnstert.2011.04.089
10.1002/(SICI)1098-2795(199606)44:2<260::AID-MRD17>3.0.CO;2-6
10.1093/humupd/4.3.223
10.1146/annurev.pathol.4.110807.092250
10.1016/S1357-2725(02)00038-9
10.1016/j.jsbmb.2018.07.005
10.1371/journal.pgen.1003377
10.1016/j.theriogenology.2008.10.023
10.1095/biolreprod64.3.904
10.1002/(SICI)1098-2795(199612)45:4<521::AID-MRD15>3.0.CO;2-Z
10.1074/jbc.M401138200
10.1172/JCI42020
10.1096/fj.13-244111
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms20061365
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC6472277
30889926
10_3390_ijms20061365
Genre Journal Article
GrantInformation_xml – fundername: the National Science and Technology Support Projects
  grantid: 2015BAD03B04
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c478t-1a815252ec8290436aba843c56c5f9770166b190ac8935b65da5f328bedcc4f53
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:23:40 EDT 2025
Tue Aug 05 10:41:49 EDT 2025
Fri Jul 25 20:31:25 EDT 2025
Wed Feb 19 02:35:13 EST 2025
Thu Apr 24 23:03:20 EDT 2025
Tue Jul 01 01:45:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords acetylation
meiosis
oocyte maturation
mitochondria
SIRT2
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-1a815252ec8290436aba843c56c5f9770166b190ac8935b65da5f328bedcc4f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20061365
PMID 30889926
PQID 2332232902
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6472277
proquest_miscellaneous_2194583048
proquest_journals_2332232902
pubmed_primary_30889926
crossref_primary_10_3390_ijms20061365
crossref_citationtrail_10_3390_ijms20061365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-18
PublicationDateYYYYMMDD 2019-03-18
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-18
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Schatten (ref_41) 1988; 130
Kawamura (ref_34) 2010; 120
Rumpf (ref_32) 2015; 6263
Picca (ref_49) 2015; 25
Ajduk (ref_45) 2008; 8
Verstreken (ref_52) 2005; 47
Zhang (ref_30) 2014; 28
Inoue (ref_38) 2007; 6
Frye (ref_19) 2000; 273
Dryden (ref_27) 2003; 23
Sirard (ref_4) 2006; 65
Calnan (ref_60) 2008; 27
Okamoto (ref_51) 2005; 39
Eppig (ref_1) 1996; 44
Wakai (ref_50) 2014; 20
Liu (ref_58) 2012; 287
Kuliev (ref_11) 2011; 22
Li (ref_6) 2013; 14
Tertoolen (ref_65) 2004; 279
Sudo (ref_40) 2010; 30
Ferreira (ref_5) 2009; 71
Vogt (ref_59) 2005; 4
North (ref_29) 2003; 11
ref_23
Kim (ref_25) 2011; 20
Huang (ref_75) 2008; 106
Li (ref_21) 2011; 7
Storz (ref_54) 2011; 14
Merry (ref_13) 2002; 34
Desai (ref_36) 1997; 13
Tan (ref_55) 2008; 283
Wan (ref_35) 2018; 59
Wang (ref_57) 2012; 31
Barnes (ref_8) 1996; 65
Lonergan (ref_7) 2016; 4
Qiang (ref_68) 2010; 285
Daitoku (ref_63) 2004; 101
Li (ref_33) 2018; 20
Saunders (ref_22) 2007; 26
Moor (ref_2) 1998; 4
Brunet (ref_66) 2004; 303
Su (ref_73) 2015; 59
Lemos (ref_53) 2017; 26
Stojkovic (ref_12) 2001; 64
Tervit (ref_74) 1972; 30
Kops (ref_56) 2002; 419
Combelles (ref_9) 2009; 18
Fitzharris (ref_15) 2007; 305
Olmos (ref_61) 2013; 19
Ishii (ref_43) 2006; 311
Imai (ref_18) 2000; 403
Eppig (ref_3) 1996; 8
Yu (ref_47) 2010; 224
Zhang (ref_16) 2013; 11
Sundaresan (ref_69) 2009; 119
Xie (ref_28) 2018; 233
Rebollar (ref_76) 2009; 72
Haigis (ref_20) 2010; 5
Ma (ref_44) 2013; 9
Wang (ref_24) 2007; 6
Houtkooper (ref_17) 2012; 13
Spiegelman (ref_71) 2018; 13
Maxwell (ref_26) 2011; 20
Qiu (ref_31) 2018; 17
Zhao (ref_48) 2011; 95
Paczkowski (ref_46) 2010; 77
Frescas (ref_67) 2005; 280
Piperno (ref_37) 1987; 104
Xu (ref_72) 2019; 185
Reed (ref_39) 2006; 16
Damiani (ref_14) 1996; 45
Wang (ref_62) 2019; 508
Fukuoka (ref_64) 2003; 12
Wang (ref_70) 2017; 22
Fragouli (ref_10) 2011; 17
Vaquero (ref_42) 2006; 20
References_xml – volume: 26
  start-page: 5489
  year: 2007
  ident: ref_22
  article-title: Sirtuins: Critical regulators at the crossroads between cancer and aging
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210616
– volume: 508
  start-page: 398
  year: 2019
  ident: ref_62
  article-title: Pyrroloquinoline quinine protects HK-2cells against high glucose-induced oxidative stress and apoptosis through Sirt3 and PI3K/Akt/FoxO3a signaling pathway
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.11.140
– volume: 14
  start-page: 593
  year: 2011
  ident: ref_54
  article-title: Forkhead homeobox type O transcription factors in the responses to oxidative stress
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3405
– volume: 419
  start-page: 316
  year: 2002
  ident: ref_56
  article-title: Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress
  publication-title: Nature
  doi: 10.1038/nature01036
– volume: 72
  start-page: 612
  year: 2009
  ident: ref_76
  article-title: Influence of metabolic status on oocyte quality and follicular characteristics at different postpartum periods in primiparous rabbit does
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2009.04.017
– volume: 273
  start-page: 793
  year: 2000
  ident: ref_19
  article-title: Phylogenetic classifcation of prokaryotic and eukaryotic Sir2-like proteins
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.3000
– volume: 6263
  start-page: 1
  year: 2015
  ident: ref_32
  article-title: Selective Sirt2 inhibition by ligand-induced rearrangement of the active site
  publication-title: Nat. Commun.
– volume: 27
  start-page: 2276
  year: 2008
  ident: ref_60
  article-title: The FoxO code
  publication-title: Oncogene
  doi: 10.1038/onc.2008.21
– volume: 16
  start-page: 2166
  year: 2006
  ident: ref_39
  article-title: Microtubule acetylation promotes kinesin-1 binding and transport
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.09.014
– volume: 101
  start-page: 10042
  year: 2004
  ident: ref_63
  article-title: Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0400593101
– volume: 23
  start-page: 3173
  year: 2003
  ident: ref_27
  article-title: Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.23.9.3173-3185.2003
– volume: 30
  start-page: 493
  year: 1972
  ident: ref_74
  article-title: Successful culture of in vitro sheep and cattle ova
  publication-title: J. Reprod. Fertil.
  doi: 10.1530/jrf.0.0300493
– volume: 4
  start-page: 255
  year: 2016
  ident: ref_7
  article-title: Maturation of oocytes in vitro
  publication-title: Annu. Rev. Anim. Biosci.
  doi: 10.1146/annurev-animal-022114-110822
– volume: 303
  start-page: 2011
  year: 2004
  ident: ref_66
  article-title: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
  publication-title: Science
  doi: 10.1126/science.1094637
– volume: 305
  start-page: 133
  year: 2007
  ident: ref_15
  article-title: Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2007.02.006
– volume: 77
  start-page: 51
  year: 2010
  ident: ref_46
  article-title: Aberrant protein expression is associated with decreased developmental potential in porcine cumulusoocyte complexes
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.21102
– volume: 31
  start-page: 1546
  year: 2012
  ident: ref_57
  article-title: Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation
  publication-title: Oncogene
  doi: 10.1038/onc.2011.347
– volume: 22
  start-page: 519
  year: 2017
  ident: ref_70
  article-title: SIRT2-mediated FOXO3a deacetylation drives its nuclear translocation triggering FasL-induced cell apoptosis during renal ischemia reperfusion
  publication-title: Apoptosis
  doi: 10.1007/s10495-016-1341-3
– volume: 22
  start-page: 2
  year: 2011
  ident: ref_11
  article-title: Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing
  publication-title: Reprod. Biomed. Online
  doi: 10.1016/j.rbmo.2010.08.014
– volume: 13
  start-page: 225
  year: 2012
  ident: ref_17
  article-title: Sirtuins as regulators of metabolism and healthspan
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3293
– volume: 20
  start-page: 487
  year: 2011
  ident: ref_25
  article-title: SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.09.004
– volume: 119
  start-page: 2758
  year: 2009
  ident: ref_69
  article-title: Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
  publication-title: J. Clin. Investig.
– volume: 104
  start-page: 289
  year: 1987
  ident: ref_37
  article-title: Microtubules containing acetylated alpha-tubulin in mammalian cells in culture
  publication-title: J. Cell. Biol.
  doi: 10.1083/jcb.104.2.289
– volume: 20
  start-page: 1090
  year: 2014
  ident: ref_50
  article-title: Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation
  publication-title: Mol. Hum. Reprod.
  doi: 10.1093/molehr/gau064
– volume: 13
  start-page: 83
  year: 1997
  ident: ref_36
  article-title: Microtubule polymerization dynamics
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.13.1.83
– volume: 12
  start-page: 503
  year: 2003
  ident: ref_64
  article-title: Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation
  publication-title: Int. J. Mol. Med.
– volume: 47
  start-page: 365
  year: 2005
  ident: ref_52
  article-title: Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.06.018
– volume: 39
  start-page: 503
  year: 2005
  ident: ref_51
  article-title: Mitochondrial Morphology and Dynamics in Yeast and Multicellular Eukaryotes
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.38.072902.093019
– volume: 19
  start-page: 1507
  year: 2013
  ident: ref_61
  article-title: SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4713
– volume: 59
  start-page: 455
  year: 2015
  ident: ref_73
  article-title: Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12275
– volume: 4
  start-page: 908
  year: 2005
  ident: ref_59
  article-title: Triple layer control: Phosphorylation, acetylation and ubiquitination of FOXO proteins
  publication-title: Cell Cycle
  doi: 10.4161/cc.4.7.1796
– volume: 17
  start-page: 1
  year: 2018
  ident: ref_31
  article-title: Sirt2-BubR1 acetylation pathway mediates the effects of advanced maternal age on oocyte quality
  publication-title: Aging Cell
  doi: 10.1111/acel.12698
– volume: 6
  start-page: 505
  year: 2007
  ident: ref_24
  article-title: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2007.00304.x
– volume: 20
  start-page: 3986
  year: 2011
  ident: ref_26
  article-title: The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddr326
– volume: 7
  start-page: 575
  year: 2011
  ident: ref_21
  article-title: Mammalian sirtuins and energy metabolism
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.7.575
– volume: 11
  start-page: 1
  year: 2013
  ident: ref_16
  article-title: Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development
  publication-title: Reprod. Biol. Endocrinol.
  doi: 10.1186/1477-7827-11-31
– volume: 287
  start-page: 32307
  year: 2012
  ident: ref_58
  article-title: Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C112.403048
– volume: 14
  start-page: 141
  year: 2013
  ident: ref_6
  article-title: The road to maturation: Somatic cell interaction and self-organization of the mammalian oocyte
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3531
– volume: 65
  start-page: 126
  year: 2006
  ident: ref_4
  article-title: Contribution of the oocyte to embryo quality
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2005.09.020
– volume: 20
  start-page: 745
  year: 2018
  ident: ref_33
  article-title: SIRT2 Promotes the Migration and Invasion of Gastric Cancer through RAS/ERK/JNK/MMP-9 Pathway by Increasing PEPCK1-Related Metabolism
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2018.03.008
– volume: 6
  start-page: 1011
  year: 2007
  ident: ref_38
  article-title: The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.9.4219
– volume: 403
  start-page: 795
  year: 2000
  ident: ref_18
  article-title: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
  publication-title: Nature
  doi: 10.1038/35001622
– volume: 233
  start-page: 6952
  year: 2018
  ident: ref_28
  article-title: Glucose metabolism during in vitro maturation of mouse oocytes: An study using RNA interference
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26484
– volume: 25
  start-page: 67
  year: 2015
  ident: ref_49
  article-title: Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2015.10.001
– volume: 130
  start-page: 74
  year: 1988
  ident: ref_41
  article-title: Acetylated alpha-tubulin in microtubules during mouse fertilization and early development
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(88)90415-0
– volume: 285
  start-page: 27396
  year: 2010
  ident: ref_68
  article-title: Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.140228
– volume: 17
  start-page: 286
  year: 2011
  ident: ref_10
  article-title: The cytogenetics of polar bodies: Insights into female meiosis and the diagnosis of aneuploidy
  publication-title: Mol. Hum. Reprod.
  doi: 10.1093/molehr/gar024
– ident: ref_23
  doi: 10.1371/journal.pone.0000784
– volume: 26
  start-page: 4105
  year: 2017
  ident: ref_53
  article-title: The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddx298
– volume: 8
  start-page: 485
  year: 1996
  ident: ref_3
  article-title: Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals
  publication-title: Reprod. Fertil. Dev.
  doi: 10.1071/RD9960485
– volume: 311
  start-page: 844
  year: 2006
  ident: ref_43
  article-title: Histone H4-K16 acetylation controls chromatin structure and protein interactions
  publication-title: Science
  doi: 10.1126/science.1124000
– volume: 224
  start-page: 672
  year: 2010
  ident: ref_47
  article-title: Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.22171
– volume: 18
  start-page: 864
  year: 2009
  ident: ref_9
  article-title: Could oxidative stress influence the in-vitro maturation of oocytes?
  publication-title: Reprod. Biomed. Online
  doi: 10.1016/S1472-6483(10)60038-7
– volume: 65
  start-page: 1151
  year: 1996
  ident: ref_8
  article-title: Production of embryos from in vitro-matured primary human oocytes
  publication-title: Fertil. Steril.
  doi: 10.1016/S0015-0282(16)58330-7
– volume: 8
  start-page: 3
  year: 2008
  ident: ref_45
  article-title: Cytoplasmic maturation of mammalian oocytes: Development of a mechanism responsible for sperm-induced Ca2+ oscillations
  publication-title: Reprod. Biol.
  doi: 10.1016/S1642-431X(12)60001-1
– volume: 20
  start-page: 1256
  year: 2006
  ident: ref_42
  article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1412706
– volume: 13
  start-page: 1890
  year: 2018
  ident: ref_71
  article-title: Direct Comparison of SIRT2 Inhibitors: Potency, Specificity, Activity-Dependent Inhibition, and On-Target Anticancer Activities
  publication-title: Chem. Med. Chem.
  doi: 10.1002/cmdc.201800391
– volume: 11
  start-page: 437
  year: 2003
  ident: ref_29
  article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00038-8
– volume: 59
  start-page: 805
  year: 2018
  ident: ref_35
  article-title: Meiotic arrest and spindle defects are associated with altered KIF11 expression in porcine oocytes
  publication-title: Environ. Mol. Mutagen.
  doi: 10.1002/em.22213
– volume: 30
  start-page: 7215
  year: 2010
  ident: ref_40
  article-title: Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0048-10.2010
– volume: 283
  start-page: 29730
  year: 2008
  ident: ref_55
  article-title: Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M805514200
– volume: 280
  start-page: 20589
  year: 2005
  ident: ref_67
  article-title: Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412357200
– volume: 106
  start-page: 25
  year: 2008
  ident: ref_75
  article-title: Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes
  publication-title: Anim. Reprod. Sci.
  doi: 10.1016/j.anireprosci.2007.03.023
– volume: 95
  start-page: 2786
  year: 2011
  ident: ref_48
  article-title: Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2011.04.089
– volume: 44
  start-page: 260
  year: 1996
  ident: ref_1
  article-title: Mammalian oocyte growth and development in vitro
  publication-title: Mol. Reprod.
  doi: 10.1002/(SICI)1098-2795(199606)44:2<260::AID-MRD17>3.0.CO;2-6
– volume: 4
  start-page: 223
  year: 1998
  ident: ref_2
  article-title: Oocyte maturation and embryonic failure
  publication-title: Hum. Reprod. Update
  doi: 10.1093/humupd/4.3.223
– volume: 5
  start-page: 253
  year: 2010
  ident: ref_20
  article-title: Mammalian sirtuins: Biological insights and disease relevance
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev.pathol.4.110807.092250
– volume: 34
  start-page: 1340
  year: 2002
  ident: ref_13
  article-title: Molecular mechanisms linking calorie restriction and longevity
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(02)00038-9
– volume: 185
  start-page: 27
  year: 2019
  ident: ref_72
  article-title: SIRT2 plays a novel role on progesterone, estradiol and testosterone synthesis via PPARs/LXRα pathways in bovine ovarian granular cells
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/j.jsbmb.2018.07.005
– volume: 9
  start-page: 1
  year: 2013
  ident: ref_44
  article-title: Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003377
– volume: 71
  start-page: 836
  year: 2009
  ident: ref_5
  article-title: Cytoplasmic maturation of bovine oocytes: Structural and biochemical modifications and acquisition of developmental competence
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2008.10.023
– volume: 64
  start-page: 904
  year: 2001
  ident: ref_12
  article-title: Mitochondrial distribution an adenosine triphosphate content of bovine oocytes before and after in vitro maturation: Correlation with morphological criteria and developmental capacity after in vitro fertilization and culture
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod64.3.904
– volume: 45
  start-page: 521
  year: 1996
  ident: ref_14
  article-title: Evaluation of developmental competence, nuclear and ooplasmicmaturation of calf oocytes
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/(SICI)1098-2795(199612)45:4<521::AID-MRD15>3.0.CO;2-Z
– volume: 279
  start-page: 28873
  year: 2004
  ident: ref_65
  article-title: FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2 (SIRT1)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401138200
– volume: 120
  start-page: 2817
  year: 2010
  ident: ref_34
  article-title: Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI42020
– volume: 28
  start-page: 1435
  year: 2014
  ident: ref_30
  article-title: Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis
  publication-title: FASEB J.
  doi: 10.1096/fj.13-244111
SSID ssj0023259
Score 2.415578
Snippet SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation...
[...]clarification of the maturation mechanisms in oocytes is of great importance for the optimization of IVM protocols. [...]the high mitochondrial membrane...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1365
SubjectTerms Chromosomes
Defects
Metabolism
Mitochondria
Quality
Quantitative analysis
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLagCIkL4t1AQYMEJxp1M488TggoS4u0IJVW6i2aV9SgMilNVmJ_A38aO8mGLgjO40misWf8eez4A3hhZ1Yo6XB_e-FiqX0VG6VULETiDXp4Yx1dDSw-pQcn8uOpOh0v3NqxrHJ9JvYHtWss3ZHvcYGmJ3gx468vvsfEGkXZ1ZFC4zrcSNDTUElXPv8wBVyC92RpCfqgOFVFOhS-Cwzz9-qv31qKpqnKa9Ml_YUz_yyXvOJ_5nfg9ggc2ZtB03fhmg_34OZAJbm6Dz-_HB4dc3YYzmrTV2GxI98uz7uW1YEtfN3gNJxMTBy7bIHbGI-94Mj62P6qJe9Gk3aZDo7to-qXl4bsgTUVPsg1PxjxqTcIJdu6ZcO_jewt3UZ49rmxq86zBbUI7fX8AE7m74_fHcQj0UJsZZZ3caJzokHi3lJaVYpUG51LYVVqVYUAEWFhahA5aIvoRplUOa0qwXODa2JlpcRD2ApN8NvA9KxwRhqb4epLrZSxWleIenpeLGtsBK_Wa13asQs5kWGclxiNkGbKq5qJ4OUkfTF03_iH3M5abeW4B9vyt8VE8Hwaxt1DKREdfLNEmaSgxDEeYxE8GrQ8vUhQBVjB0wiyDf1PAtSZe3Mk1Gd9h27qyc-z7PH_P-sJ3EL4VVBFW5LvwFZ3ufRPEeJ05llvx78AJFr92A
  priority: 102
  providerName: ProQuest
Title SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation
URI https://www.ncbi.nlm.nih.gov/pubmed/30889926
https://www.proquest.com/docview/2332232902
https://www.proquest.com/docview/2194583048
https://pubmed.ncbi.nlm.nih.gov/PMC6472277
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviDeBsjISnGhoN7bzOCBEaZcWKQUtXWlvke04atCStJus1P0N_Glmkk20pXDhkos9iTIzznxjT-YDeG0ODJcixfVteeoKZTNXSyldzodWY4TXJqWtgfjMP5mIL1M53YCObXSlwOqvqR3xSU3ms3fXV8sPuODfU8aJKft-_uNnRZkxVWxtwjbGpIC4DGLRnycgbJBRW_Z-S2IH7nKq9Ymov8J6bLoFOP-sm1wLRKP7cG-FINnH1uQPYMMWD-FOyym5fAS_vp-Ozz12WlzkuinHYmNbLWZ1xfKCxTYvUQyFiZJjj8W4nlEFRUpuyI6WFYU5EtpjqkjZEfrAYq7JMViZ4Y3S8poRsXqJmLLKK9b-5MgOaVvCsq-lWdaWxdQrtDH4Y5iMjs8_nbgrxgXXiCCs3aEKiQ_Js4bOVwX3lVah4Eb6RmaIFBEf-hohhDIIc6T2Zapkxr1Qo06MyCR_AltFWdhnwNRBlGqhTYDKF0pKbZTKEP40BFlGGwfedrpOzKodObFizBJMS8hIybqRHHjTz75s23D8Y95uZ7ak86XE4_jV4vhCngOv-mFcRnQ2ogpbLnDOMKITZPyeOfC0tXL_oM49HAhu2L-fQC26b44U-UXTqpua83tB8Py_JV_ADkK0iKrehuEubNXzhX2JMKjWA9gMpgFew9HnAWwfHp99Gw8oMMlB4_u_ATpOEHU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJvQAkaiJxp140eyOSAELMsubYpUtlJvqV9Rg9qkNFnB_gb-C7-RmWQTuiC49eyxE3k-z4zt8XyEvDADw6WwsL4dt75QLvO1lNLnPHAaPLw2Fo8Gkv1wcig-HsmjNfKzewuDaZWdTWwMtS0NnpHvMA7Q4ywesNfnX31kjcLb1Y5Co4XFrlt8gy1b9Wo6Av1uMTZ-P3s38ZesAr4R0bD2AzVEzh_mDN4hCh4qrYaCGxkamUE0BDFQqMFNKgOuXOpQWiUzzobaWWNEhiwRYPKvCQ6eHF-mjz_0GzzOGnI2GCDwQxmHbaI9CA528i9nFe7eMats1QX-Fdf-mZ55yd-Nb5Nby0CVvmmRdYesueIuud5SVy7ukR-fpwczRqfFSa6brC964Kr5aV3RvKCJy0voBp2R-WObJmA2wMwWFtFOR4sKvSl22qaqsHQEUJtfaMQfLTMYyJbfKfK3lxC6VnlF27eU9C2efjj6qTSL2tEES5I2uLpPDq9EBQ_IelEW7hGhahBbLbSJYPaFklIbpTKIshoeLqONR152c52aZdVzJN84TWH3g5pJL2vGI1u99Hlb7eMfcpud2tLlmq_S3wj1yPO-GVYrXsGowpVzkAlivKgGs-mRh62W-w9xzDiLWeiRaEX_vQBWAl9tKfKTpiI4cgCwKHr8_996Rm5MZsleujfd390gNyH0izGbLhhukvX6Yu6eQHhV66cNpik5vupF9AuE6Dnl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqqUBcEDuBAkaiJxrNxI6zHBCiTEcdygzV0Eq9BW9Rg0pSmoxgfgP_iF_He9nogODWs5dEfp_fYj-_j5AXeqS58A3sb8uN60ubukoI4XLuWQUWXmmDRwOzebB_7L87EScb5Gf3FgbTKjudWCtqU2g8Ix8yDtDjLB6xYdqmRRyOJ6_Pv7rIIIU3rR2dRgORA7v6BuFb-Wo6BllvMzbZO3q777YMA672w6hyPRkh_w-zGu8TfR5IJSOfaxFokYJnBP5QoMBkSg1mXahAGClSziJljdZ-iowRoP43Q4yKBmRzd29-uOjDPc5qqjaYwnMDEQdN2j3n8WiYff5SYiyPOWbrBvEvL_fPZM1L1m9yi9xs3Vb6psHZbbJh8zvkWkNkubpLfnycLo4YneanmapzwOjClsuzqqRZTmc2K2AYDEYekB06AyUCSjc3iH06XpVoW3HQDpW5oWMA3vJCIRppkcJEpvhOkc29AEe2zEravKyku3gWYumHQq8qS2dYoLRG2T1yfCVCuE8GeZHbh4TKUWyUr3QIq-9LIZSWMgWfq2bl0ko75GW31olua6AjFcdZArEQSia5LBmHbPe9z5vaH__ot9WJLWk1QJn8xqtDnvfNsHfxQkbmtlhCHy_Ga2tQog550Ei5_xDH_LOYBQ4J1-Tfd8C64OsteXZa1wdHRgAWho_-_1vPyHXYQMn76fzgMbkBfmCMqXVetEUG1cXSPgFfq1JPW1BT8umq99EvLo4_dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT2+Inhibition+Results+in+Meiotic+Arrest%2C+Mitochondrial+Dysfunction%2C+and+Disturbance+of+Redox+Homeostasis+during+Bovine+Oocyte+Maturation&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Xu%2C+Dejun&rft.au=Wu%2C+Lin&rft.au=Jiang%2C+Xiaohan&rft.au=Yang%2C+Li&rft.date=2019-03-18&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=20&rft.issue=6&rft_id=info:doi/10.3390%2Fijms20061365&rft_id=info%3Apmid%2F30889926&rft.externalDocID=PMC6472277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon