SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation
SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and...
Saved in:
Published in | International journal of molecular sciences Vol. 20; no. 6; p. 1365 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.03.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality. |
---|---|
AbstractList | SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality. SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality. SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat . These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality. [...]clarification of the maturation mechanisms in oocytes is of great importance for the optimization of IVM protocols. [...]the high mitochondrial membrane potential required for ATP synthesis, favors the production of elevated ROS levels [13]. [...]the cellular antioxidant system components, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), are important for defending the cell against ROS-induced deleterious effects during IVM [5]. [...]in the present study, bovine oocytes were cultured in IVM medium supplemented with 1, 2, and 5 μM SirReal2, and the parameters of nuclear and cytoplasmic maturation were investigated. SIRT2 Inhibition Blocks Cytoplasmic Maturation The intracellular events leading to the redistribution of organelle, including CGs, ER, and mitochondria, are necessary for oocyte cytoplasmic maturation. [...]we first examined the functions of SIRT2 during cytoplasmic maturation events with confocal scanning and quantitative analysis. SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes and . These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality. |
Author | Yang, Lulu Chen, Huali Geng, Guoxia Jiang, Xiaohan Yang, Li Cheng, Jianyong Li, Qingwang Xu, Dejun Hua, Rongmao Wu, Lin |
AuthorAffiliation | 1 College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China; 2015060124@nwafu.edu.cn (D.X.); nwafu1@sina.com (L.W.); nwafuc@sina.com (X.J.); nwafuj@sina.com (L.Y.); nwafu6@sina.com (J.C.); nwafu3@sina.com (H.C.); esserver@yeah.net (R.H.) 2 College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; nwafuh@sina.com (G.G.); nwyll@sina.com (L.Y.) |
AuthorAffiliation_xml | – name: 2 College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; nwafuh@sina.com (G.G.); nwyll@sina.com (L.Y.) – name: 1 College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China; 2015060124@nwafu.edu.cn (D.X.); nwafu1@sina.com (L.W.); nwafuc@sina.com (X.J.); nwafuj@sina.com (L.Y.); nwafu6@sina.com (J.C.); nwafu3@sina.com (H.C.); esserver@yeah.net (R.H.) |
Author_xml | – sequence: 1 givenname: Dejun surname: Xu fullname: Xu, Dejun – sequence: 2 givenname: Lin surname: Wu fullname: Wu, Lin – sequence: 3 givenname: Xiaohan surname: Jiang fullname: Jiang, Xiaohan – sequence: 4 givenname: Li surname: Yang fullname: Yang, Li – sequence: 5 givenname: Jianyong surname: Cheng fullname: Cheng, Jianyong – sequence: 6 givenname: Huali surname: Chen fullname: Chen, Huali – sequence: 7 givenname: Rongmao surname: Hua fullname: Hua, Rongmao – sequence: 8 givenname: Guoxia surname: Geng fullname: Geng, Guoxia – sequence: 9 givenname: Lulu surname: Yang fullname: Yang, Lulu – sequence: 10 givenname: Qingwang surname: Li fullname: Li, Qingwang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30889926$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQhi1URNvAjTOyxIVDAv5Y79oXpNICjdSoUilny-v1NhPt2sX2VuQ38KdxaKlCxcn2-JlXM_POMTrwwTuEXlPynnNFPsBmTIyQmvJaPENHtGJsUZ7Nwd79EB2ntCGEcSbUC3TIiZRKsfoI_fq2vLpmeOnX0EKG4PGVS9OQEwaPVw5CBotPYnQpz_EKcrDr4LsIZsBn29RP3u6S5tj4Dp9BylNsjbcOh74IdeEnPg-jCymbBAl3UwR_gz-FO_AOXwa7zQ6vTEkyO5WX6HlvhuRePZwz9P3L5-vT88XF5dfl6cnFwlaNzAtqJBVMMGclU6TitWmNrLgVtRW9ahpC67qlihgrFRdtLTojes5k6zprq17wGfp4r3s7tWMJOp-jGfRthNHErQ4G9L8_Htb6JtzpumoYa5oi8O5BIIYfUxmNHiFZNwzGuzAlzaiqhOSkkgV9-wTdhCn60p5mnLNiiCquzNCb_YoeS_nrUwHm94CNIaXo-keEEr1bA72_BgVnT3AL-c-MSz8w_D_pNzcot9k |
CitedBy_id | crossref_primary_10_1002_jcp_30461 crossref_primary_10_3390_ijms23095013 crossref_primary_10_1096_fj_202100490R crossref_primary_10_1093_micmic_ozad127 crossref_primary_10_1042_BST20210798 crossref_primary_10_1016_j_biopha_2021_112001 crossref_primary_10_1016_j_theriogenology_2019_09_010 crossref_primary_10_3389_fncel_2024_1434459 crossref_primary_10_1262_jrd_2022_052 crossref_primary_10_1186_s40104_022_00809_w crossref_primary_10_1016_j_lfs_2019_116639 crossref_primary_10_1007_s10815_024_03151_4 crossref_primary_10_1096_fj_202301946R crossref_primary_10_1002_tox_23397 crossref_primary_10_1186_s13048_024_01427_y crossref_primary_10_3390_biomedicines10071689 crossref_primary_10_3390_ani15060802 crossref_primary_10_1016_j_jsbmb_2021_105826 crossref_primary_10_1262_jrd_2020_013 crossref_primary_10_2174_1570159X18666200123165002 crossref_primary_10_3390_biom14091160 crossref_primary_10_18632_aging_102703 crossref_primary_10_3390_ani14020193 crossref_primary_10_1007_s11033_023_09121_w crossref_primary_10_1002_mnfr_202300904 crossref_primary_10_1016_j_ijbiomac_2025_141488 crossref_primary_10_1017_S0967199422000181 |
Cites_doi | 10.1038/sj.onc.1210616 10.1016/j.bbrc.2018.11.140 10.1089/ars.2010.3405 10.1038/nature01036 10.1016/j.theriogenology.2009.04.017 10.1006/bbrc.2000.3000 10.1038/onc.2008.21 10.1016/j.cub.2006.09.014 10.1073/pnas.0400593101 10.1128/MCB.23.9.3173-3185.2003 10.1530/jrf.0.0300493 10.1146/annurev-animal-022114-110822 10.1126/science.1094637 10.1016/j.ydbio.2007.02.006 10.1002/mrd.21102 10.1038/onc.2011.347 10.1007/s10495-016-1341-3 10.1016/j.rbmo.2010.08.014 10.1038/nrm3293 10.1016/j.ccr.2011.09.004 10.1083/jcb.104.2.289 10.1093/molehr/gau064 10.1146/annurev.cellbio.13.1.83 10.1016/j.neuron.2005.06.018 10.1146/annurev.genet.38.072902.093019 10.1089/ars.2012.4713 10.1111/jpi.12275 10.4161/cc.4.7.1796 10.1111/acel.12698 10.1111/j.1474-9726.2007.00304.x 10.1093/hmg/ddr326 10.7150/ijbs.7.575 10.1186/1477-7827-11-31 10.1074/jbc.C112.403048 10.1038/nrm3531 10.1016/j.theriogenology.2005.09.020 10.1016/j.neo.2018.03.008 10.4161/cc.6.9.4219 10.1038/35001622 10.1002/jcp.26484 10.1016/j.mito.2015.10.001 10.1016/0012-1606(88)90415-0 10.1074/jbc.M110.140228 10.1093/molehr/gar024 10.1371/journal.pone.0000784 10.1093/hmg/ddx298 10.1071/RD9960485 10.1126/science.1124000 10.1002/jcp.22171 10.1016/S1472-6483(10)60038-7 10.1016/S0015-0282(16)58330-7 10.1016/S1642-431X(12)60001-1 10.1101/gad.1412706 10.1002/cmdc.201800391 10.1016/S1097-2765(03)00038-8 10.1002/em.22213 10.1523/JNEUROSCI.0048-10.2010 10.1074/jbc.M805514200 10.1074/jbc.M412357200 10.1016/j.anireprosci.2007.03.023 10.1016/j.fertnstert.2011.04.089 10.1002/(SICI)1098-2795(199606)44:2<260::AID-MRD17>3.0.CO;2-6 10.1093/humupd/4.3.223 10.1146/annurev.pathol.4.110807.092250 10.1016/S1357-2725(02)00038-9 10.1016/j.jsbmb.2018.07.005 10.1371/journal.pgen.1003377 10.1016/j.theriogenology.2008.10.023 10.1095/biolreprod64.3.904 10.1002/(SICI)1098-2795(199612)45:4<521::AID-MRD15>3.0.CO;2-Z 10.1074/jbc.M401138200 10.1172/JCI42020 10.1096/fj.13-244111 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms20061365 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC6472277 30889926 10_3390_ijms20061365 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the National Science and Technology Support Projects grantid: 2015BAD03B04 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c478t-1a815252ec8290436aba843c56c5f9770166b190ac8935b65da5f328bedcc4f53 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:23:40 EDT 2025 Tue Aug 05 10:41:49 EDT 2025 Fri Jul 25 20:31:25 EDT 2025 Wed Feb 19 02:35:13 EST 2025 Thu Apr 24 23:03:20 EDT 2025 Tue Jul 01 01:45:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | acetylation meiosis oocyte maturation mitochondria SIRT2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-1a815252ec8290436aba843c56c5f9770166b190ac8935b65da5f328bedcc4f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20061365 |
PMID | 30889926 |
PQID | 2332232902 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6472277 proquest_miscellaneous_2194583048 proquest_journals_2332232902 pubmed_primary_30889926 crossref_primary_10_3390_ijms20061365 crossref_citationtrail_10_3390_ijms20061365 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-18 |
PublicationDateYYYYMMDD | 2019-03-18 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Schatten (ref_41) 1988; 130 Kawamura (ref_34) 2010; 120 Rumpf (ref_32) 2015; 6263 Picca (ref_49) 2015; 25 Ajduk (ref_45) 2008; 8 Verstreken (ref_52) 2005; 47 Zhang (ref_30) 2014; 28 Inoue (ref_38) 2007; 6 Frye (ref_19) 2000; 273 Dryden (ref_27) 2003; 23 Sirard (ref_4) 2006; 65 Calnan (ref_60) 2008; 27 Okamoto (ref_51) 2005; 39 Eppig (ref_1) 1996; 44 Wakai (ref_50) 2014; 20 Liu (ref_58) 2012; 287 Kuliev (ref_11) 2011; 22 Li (ref_6) 2013; 14 Tertoolen (ref_65) 2004; 279 Sudo (ref_40) 2010; 30 Ferreira (ref_5) 2009; 71 Vogt (ref_59) 2005; 4 North (ref_29) 2003; 11 ref_23 Kim (ref_25) 2011; 20 Huang (ref_75) 2008; 106 Li (ref_21) 2011; 7 Storz (ref_54) 2011; 14 Merry (ref_13) 2002; 34 Desai (ref_36) 1997; 13 Tan (ref_55) 2008; 283 Wan (ref_35) 2018; 59 Wang (ref_57) 2012; 31 Barnes (ref_8) 1996; 65 Lonergan (ref_7) 2016; 4 Qiang (ref_68) 2010; 285 Daitoku (ref_63) 2004; 101 Li (ref_33) 2018; 20 Saunders (ref_22) 2007; 26 Moor (ref_2) 1998; 4 Brunet (ref_66) 2004; 303 Su (ref_73) 2015; 59 Lemos (ref_53) 2017; 26 Stojkovic (ref_12) 2001; 64 Tervit (ref_74) 1972; 30 Kops (ref_56) 2002; 419 Combelles (ref_9) 2009; 18 Fitzharris (ref_15) 2007; 305 Olmos (ref_61) 2013; 19 Ishii (ref_43) 2006; 311 Imai (ref_18) 2000; 403 Eppig (ref_3) 1996; 8 Yu (ref_47) 2010; 224 Zhang (ref_16) 2013; 11 Sundaresan (ref_69) 2009; 119 Xie (ref_28) 2018; 233 Rebollar (ref_76) 2009; 72 Haigis (ref_20) 2010; 5 Ma (ref_44) 2013; 9 Wang (ref_24) 2007; 6 Houtkooper (ref_17) 2012; 13 Spiegelman (ref_71) 2018; 13 Maxwell (ref_26) 2011; 20 Qiu (ref_31) 2018; 17 Zhao (ref_48) 2011; 95 Paczkowski (ref_46) 2010; 77 Frescas (ref_67) 2005; 280 Piperno (ref_37) 1987; 104 Xu (ref_72) 2019; 185 Reed (ref_39) 2006; 16 Damiani (ref_14) 1996; 45 Wang (ref_62) 2019; 508 Fukuoka (ref_64) 2003; 12 Wang (ref_70) 2017; 22 Fragouli (ref_10) 2011; 17 Vaquero (ref_42) 2006; 20 |
References_xml | – volume: 26 start-page: 5489 year: 2007 ident: ref_22 article-title: Sirtuins: Critical regulators at the crossroads between cancer and aging publication-title: Oncogene doi: 10.1038/sj.onc.1210616 – volume: 508 start-page: 398 year: 2019 ident: ref_62 article-title: Pyrroloquinoline quinine protects HK-2cells against high glucose-induced oxidative stress and apoptosis through Sirt3 and PI3K/Akt/FoxO3a signaling pathway publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.11.140 – volume: 14 start-page: 593 year: 2011 ident: ref_54 article-title: Forkhead homeobox type O transcription factors in the responses to oxidative stress publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3405 – volume: 419 start-page: 316 year: 2002 ident: ref_56 article-title: Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress publication-title: Nature doi: 10.1038/nature01036 – volume: 72 start-page: 612 year: 2009 ident: ref_76 article-title: Influence of metabolic status on oocyte quality and follicular characteristics at different postpartum periods in primiparous rabbit does publication-title: Theriogenology doi: 10.1016/j.theriogenology.2009.04.017 – volume: 273 start-page: 793 year: 2000 ident: ref_19 article-title: Phylogenetic classifcation of prokaryotic and eukaryotic Sir2-like proteins publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.3000 – volume: 6263 start-page: 1 year: 2015 ident: ref_32 article-title: Selective Sirt2 inhibition by ligand-induced rearrangement of the active site publication-title: Nat. Commun. – volume: 27 start-page: 2276 year: 2008 ident: ref_60 article-title: The FoxO code publication-title: Oncogene doi: 10.1038/onc.2008.21 – volume: 16 start-page: 2166 year: 2006 ident: ref_39 article-title: Microtubule acetylation promotes kinesin-1 binding and transport publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.09.014 – volume: 101 start-page: 10042 year: 2004 ident: ref_63 article-title: Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400593101 – volume: 23 start-page: 3173 year: 2003 ident: ref_27 article-title: Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle publication-title: Mol. Cell. Biol doi: 10.1128/MCB.23.9.3173-3185.2003 – volume: 30 start-page: 493 year: 1972 ident: ref_74 article-title: Successful culture of in vitro sheep and cattle ova publication-title: J. Reprod. Fertil. doi: 10.1530/jrf.0.0300493 – volume: 4 start-page: 255 year: 2016 ident: ref_7 article-title: Maturation of oocytes in vitro publication-title: Annu. Rev. Anim. Biosci. doi: 10.1146/annurev-animal-022114-110822 – volume: 303 start-page: 2011 year: 2004 ident: ref_66 article-title: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase publication-title: Science doi: 10.1126/science.1094637 – volume: 305 start-page: 133 year: 2007 ident: ref_15 article-title: Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2007.02.006 – volume: 77 start-page: 51 year: 2010 ident: ref_46 article-title: Aberrant protein expression is associated with decreased developmental potential in porcine cumulusoocyte complexes publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.21102 – volume: 31 start-page: 1546 year: 2012 ident: ref_57 article-title: Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation publication-title: Oncogene doi: 10.1038/onc.2011.347 – volume: 22 start-page: 519 year: 2017 ident: ref_70 article-title: SIRT2-mediated FOXO3a deacetylation drives its nuclear translocation triggering FasL-induced cell apoptosis during renal ischemia reperfusion publication-title: Apoptosis doi: 10.1007/s10495-016-1341-3 – volume: 22 start-page: 2 year: 2011 ident: ref_11 article-title: Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing publication-title: Reprod. Biomed. Online doi: 10.1016/j.rbmo.2010.08.014 – volume: 13 start-page: 225 year: 2012 ident: ref_17 article-title: Sirtuins as regulators of metabolism and healthspan publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3293 – volume: 20 start-page: 487 year: 2011 ident: ref_25 article-title: SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.09.004 – volume: 119 start-page: 2758 year: 2009 ident: ref_69 article-title: Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice publication-title: J. Clin. Investig. – volume: 104 start-page: 289 year: 1987 ident: ref_37 article-title: Microtubules containing acetylated alpha-tubulin in mammalian cells in culture publication-title: J. Cell. Biol. doi: 10.1083/jcb.104.2.289 – volume: 20 start-page: 1090 year: 2014 ident: ref_50 article-title: Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation publication-title: Mol. Hum. Reprod. doi: 10.1093/molehr/gau064 – volume: 13 start-page: 83 year: 1997 ident: ref_36 article-title: Microtubule polymerization dynamics publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.13.1.83 – volume: 12 start-page: 503 year: 2003 ident: ref_64 article-title: Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation publication-title: Int. J. Mol. Med. – volume: 47 start-page: 365 year: 2005 ident: ref_52 article-title: Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions publication-title: Neuron doi: 10.1016/j.neuron.2005.06.018 – volume: 39 start-page: 503 year: 2005 ident: ref_51 article-title: Mitochondrial Morphology and Dynamics in Yeast and Multicellular Eukaryotes publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.38.072902.093019 – volume: 19 start-page: 1507 year: 2013 ident: ref_61 article-title: SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4713 – volume: 59 start-page: 455 year: 2015 ident: ref_73 article-title: Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos publication-title: J. Pineal Res. doi: 10.1111/jpi.12275 – volume: 4 start-page: 908 year: 2005 ident: ref_59 article-title: Triple layer control: Phosphorylation, acetylation and ubiquitination of FOXO proteins publication-title: Cell Cycle doi: 10.4161/cc.4.7.1796 – volume: 17 start-page: 1 year: 2018 ident: ref_31 article-title: Sirt2-BubR1 acetylation pathway mediates the effects of advanced maternal age on oocyte quality publication-title: Aging Cell doi: 10.1111/acel.12698 – volume: 6 start-page: 505 year: 2007 ident: ref_24 article-title: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction publication-title: Aging Cell doi: 10.1111/j.1474-9726.2007.00304.x – volume: 20 start-page: 3986 year: 2011 ident: ref_26 article-title: The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr326 – volume: 7 start-page: 575 year: 2011 ident: ref_21 article-title: Mammalian sirtuins and energy metabolism publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.7.575 – volume: 11 start-page: 1 year: 2013 ident: ref_16 article-title: Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development publication-title: Reprod. Biol. Endocrinol. doi: 10.1186/1477-7827-11-31 – volume: 287 start-page: 32307 year: 2012 ident: ref_58 article-title: Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.C112.403048 – volume: 14 start-page: 141 year: 2013 ident: ref_6 article-title: The road to maturation: Somatic cell interaction and self-organization of the mammalian oocyte publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3531 – volume: 65 start-page: 126 year: 2006 ident: ref_4 article-title: Contribution of the oocyte to embryo quality publication-title: Theriogenology doi: 10.1016/j.theriogenology.2005.09.020 – volume: 20 start-page: 745 year: 2018 ident: ref_33 article-title: SIRT2 Promotes the Migration and Invasion of Gastric Cancer through RAS/ERK/JNK/MMP-9 Pathway by Increasing PEPCK1-Related Metabolism publication-title: Neoplasia doi: 10.1016/j.neo.2018.03.008 – volume: 6 start-page: 1011 year: 2007 ident: ref_38 article-title: The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation publication-title: Cell Cycle doi: 10.4161/cc.6.9.4219 – volume: 403 start-page: 795 year: 2000 ident: ref_18 article-title: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase publication-title: Nature doi: 10.1038/35001622 – volume: 233 start-page: 6952 year: 2018 ident: ref_28 article-title: Glucose metabolism during in vitro maturation of mouse oocytes: An study using RNA interference publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26484 – volume: 25 start-page: 67 year: 2015 ident: ref_49 article-title: Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies publication-title: Mitochondrion doi: 10.1016/j.mito.2015.10.001 – volume: 130 start-page: 74 year: 1988 ident: ref_41 article-title: Acetylated alpha-tubulin in microtubules during mouse fertilization and early development publication-title: Dev. Biol. doi: 10.1016/0012-1606(88)90415-0 – volume: 285 start-page: 27396 year: 2010 ident: ref_68 article-title: Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.140228 – volume: 17 start-page: 286 year: 2011 ident: ref_10 article-title: The cytogenetics of polar bodies: Insights into female meiosis and the diagnosis of aneuploidy publication-title: Mol. Hum. Reprod. doi: 10.1093/molehr/gar024 – ident: ref_23 doi: 10.1371/journal.pone.0000784 – volume: 26 start-page: 4105 year: 2017 ident: ref_53 article-title: The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddx298 – volume: 8 start-page: 485 year: 1996 ident: ref_3 article-title: Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals publication-title: Reprod. Fertil. Dev. doi: 10.1071/RD9960485 – volume: 311 start-page: 844 year: 2006 ident: ref_43 article-title: Histone H4-K16 acetylation controls chromatin structure and protein interactions publication-title: Science doi: 10.1126/science.1124000 – volume: 224 start-page: 672 year: 2010 ident: ref_47 article-title: Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22171 – volume: 18 start-page: 864 year: 2009 ident: ref_9 article-title: Could oxidative stress influence the in-vitro maturation of oocytes? publication-title: Reprod. Biomed. Online doi: 10.1016/S1472-6483(10)60038-7 – volume: 65 start-page: 1151 year: 1996 ident: ref_8 article-title: Production of embryos from in vitro-matured primary human oocytes publication-title: Fertil. Steril. doi: 10.1016/S0015-0282(16)58330-7 – volume: 8 start-page: 3 year: 2008 ident: ref_45 article-title: Cytoplasmic maturation of mammalian oocytes: Development of a mechanism responsible for sperm-induced Ca2+ oscillations publication-title: Reprod. Biol. doi: 10.1016/S1642-431X(12)60001-1 – volume: 20 start-page: 1256 year: 2006 ident: ref_42 article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis publication-title: Genes Dev. doi: 10.1101/gad.1412706 – volume: 13 start-page: 1890 year: 2018 ident: ref_71 article-title: Direct Comparison of SIRT2 Inhibitors: Potency, Specificity, Activity-Dependent Inhibition, and On-Target Anticancer Activities publication-title: Chem. Med. Chem. doi: 10.1002/cmdc.201800391 – volume: 11 start-page: 437 year: 2003 ident: ref_29 article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00038-8 – volume: 59 start-page: 805 year: 2018 ident: ref_35 article-title: Meiotic arrest and spindle defects are associated with altered KIF11 expression in porcine oocytes publication-title: Environ. Mol. Mutagen. doi: 10.1002/em.22213 – volume: 30 start-page: 7215 year: 2010 ident: ref_40 article-title: Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0048-10.2010 – volume: 283 start-page: 29730 year: 2008 ident: ref_55 article-title: Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805514200 – volume: 280 start-page: 20589 year: 2005 ident: ref_67 article-title: Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412357200 – volume: 106 start-page: 25 year: 2008 ident: ref_75 article-title: Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes publication-title: Anim. Reprod. Sci. doi: 10.1016/j.anireprosci.2007.03.023 – volume: 95 start-page: 2786 year: 2011 ident: ref_48 article-title: Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2011.04.089 – volume: 44 start-page: 260 year: 1996 ident: ref_1 article-title: Mammalian oocyte growth and development in vitro publication-title: Mol. Reprod. doi: 10.1002/(SICI)1098-2795(199606)44:2<260::AID-MRD17>3.0.CO;2-6 – volume: 4 start-page: 223 year: 1998 ident: ref_2 article-title: Oocyte maturation and embryonic failure publication-title: Hum. Reprod. Update doi: 10.1093/humupd/4.3.223 – volume: 5 start-page: 253 year: 2010 ident: ref_20 article-title: Mammalian sirtuins: Biological insights and disease relevance publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev.pathol.4.110807.092250 – volume: 34 start-page: 1340 year: 2002 ident: ref_13 article-title: Molecular mechanisms linking calorie restriction and longevity publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(02)00038-9 – volume: 185 start-page: 27 year: 2019 ident: ref_72 article-title: SIRT2 plays a novel role on progesterone, estradiol and testosterone synthesis via PPARs/LXRα pathways in bovine ovarian granular cells publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/j.jsbmb.2018.07.005 – volume: 9 start-page: 1 year: 2013 ident: ref_44 article-title: Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003377 – volume: 71 start-page: 836 year: 2009 ident: ref_5 article-title: Cytoplasmic maturation of bovine oocytes: Structural and biochemical modifications and acquisition of developmental competence publication-title: Theriogenology doi: 10.1016/j.theriogenology.2008.10.023 – volume: 64 start-page: 904 year: 2001 ident: ref_12 article-title: Mitochondrial distribution an adenosine triphosphate content of bovine oocytes before and after in vitro maturation: Correlation with morphological criteria and developmental capacity after in vitro fertilization and culture publication-title: Biol. Reprod. doi: 10.1095/biolreprod64.3.904 – volume: 45 start-page: 521 year: 1996 ident: ref_14 article-title: Evaluation of developmental competence, nuclear and ooplasmicmaturation of calf oocytes publication-title: Mol. Reprod. Dev. doi: 10.1002/(SICI)1098-2795(199612)45:4<521::AID-MRD15>3.0.CO;2-Z – volume: 279 start-page: 28873 year: 2004 ident: ref_65 article-title: FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2 (SIRT1) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401138200 – volume: 120 start-page: 2817 year: 2010 ident: ref_34 article-title: Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest publication-title: J. Clin. Investig. doi: 10.1172/JCI42020 – volume: 28 start-page: 1435 year: 2014 ident: ref_30 article-title: Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis publication-title: FASEB J. doi: 10.1096/fj.13-244111 |
SSID | ssj0023259 |
Score | 2.415578 |
Snippet | SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation... [...]clarification of the maturation mechanisms in oocytes is of great importance for the optimization of IVM protocols. [...]the high mitochondrial membrane... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1365 |
SubjectTerms | Chromosomes Defects Metabolism Mitochondria Quality Quantitative analysis |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLagCIkL4t1AQYMEJxp1M488TggoS4u0IJVW6i2aV9SgMilNVmJ_A38aO8mGLgjO40misWf8eez4A3hhZ1Yo6XB_e-FiqX0VG6VULETiDXp4Yx1dDSw-pQcn8uOpOh0v3NqxrHJ9JvYHtWss3ZHvcYGmJ3gx468vvsfEGkXZ1ZFC4zrcSNDTUElXPv8wBVyC92RpCfqgOFVFOhS-Cwzz9-qv31qKpqnKa9Ml_YUz_yyXvOJ_5nfg9ggc2ZtB03fhmg_34OZAJbm6Dz-_HB4dc3YYzmrTV2GxI98uz7uW1YEtfN3gNJxMTBy7bIHbGI-94Mj62P6qJe9Gk3aZDo7to-qXl4bsgTUVPsg1PxjxqTcIJdu6ZcO_jewt3UZ49rmxq86zBbUI7fX8AE7m74_fHcQj0UJsZZZ3caJzokHi3lJaVYpUG51LYVVqVYUAEWFhahA5aIvoRplUOa0qwXODa2JlpcRD2ApN8NvA9KxwRhqb4epLrZSxWleIenpeLGtsBK_Wa13asQs5kWGclxiNkGbKq5qJ4OUkfTF03_iH3M5abeW4B9vyt8VE8Hwaxt1DKREdfLNEmaSgxDEeYxE8GrQ8vUhQBVjB0wiyDf1PAtSZe3Mk1Gd9h27qyc-z7PH_P-sJ3EL4VVBFW5LvwFZ3ufRPEeJ05llvx78AJFr92A priority: 102 providerName: ProQuest |
Title | SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30889926 https://www.proquest.com/docview/2332232902 https://www.proquest.com/docview/2194583048 https://pubmed.ncbi.nlm.nih.gov/PMC6472277 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviDeBsjISnGhoN7bzOCBEaZcWKQUtXWlvke04atCStJus1P0N_Glmkk20pXDhkos9iTIzznxjT-YDeG0ODJcixfVteeoKZTNXSyldzodWY4TXJqWtgfjMP5mIL1M53YCObXSlwOqvqR3xSU3ms3fXV8sPuODfU8aJKft-_uNnRZkxVWxtwjbGpIC4DGLRnycgbJBRW_Z-S2IH7nKq9Ymov8J6bLoFOP-sm1wLRKP7cG-FINnH1uQPYMMWD-FOyym5fAS_vp-Ozz12WlzkuinHYmNbLWZ1xfKCxTYvUQyFiZJjj8W4nlEFRUpuyI6WFYU5EtpjqkjZEfrAYq7JMViZ4Y3S8poRsXqJmLLKK9b-5MgOaVvCsq-lWdaWxdQrtDH4Y5iMjs8_nbgrxgXXiCCs3aEKiQ_Js4bOVwX3lVah4Eb6RmaIFBEf-hohhDIIc6T2Zapkxr1Qo06MyCR_AltFWdhnwNRBlGqhTYDKF0pKbZTKEP40BFlGGwfedrpOzKodObFizBJMS8hIybqRHHjTz75s23D8Y95uZ7ak86XE4_jV4vhCngOv-mFcRnQ2ogpbLnDOMKITZPyeOfC0tXL_oM49HAhu2L-fQC26b44U-UXTqpua83tB8Py_JV_ADkK0iKrehuEubNXzhX2JMKjWA9gMpgFew9HnAWwfHp99Gw8oMMlB4_u_ATpOEHU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJvQAkaiJxp140eyOSAELMsubYpUtlJvqV9Rg9qkNFnB_gb-C7-RmWQTuiC49eyxE3k-z4zt8XyEvDADw6WwsL4dt75QLvO1lNLnPHAaPLw2Fo8Gkv1wcig-HsmjNfKzewuDaZWdTWwMtS0NnpHvMA7Q4ywesNfnX31kjcLb1Y5Co4XFrlt8gy1b9Wo6Av1uMTZ-P3s38ZesAr4R0bD2AzVEzh_mDN4hCh4qrYaCGxkamUE0BDFQqMFNKgOuXOpQWiUzzobaWWNEhiwRYPKvCQ6eHF-mjz_0GzzOGnI2GCDwQxmHbaI9CA528i9nFe7eMats1QX-Fdf-mZ55yd-Nb5Nby0CVvmmRdYesueIuud5SVy7ukR-fpwczRqfFSa6brC964Kr5aV3RvKCJy0voBp2R-WObJmA2wMwWFtFOR4sKvSl22qaqsHQEUJtfaMQfLTMYyJbfKfK3lxC6VnlF27eU9C2efjj6qTSL2tEES5I2uLpPDq9EBQ_IelEW7hGhahBbLbSJYPaFklIbpTKIshoeLqONR152c52aZdVzJN84TWH3g5pJL2vGI1u99Hlb7eMfcpud2tLlmq_S3wj1yPO-GVYrXsGowpVzkAlivKgGs-mRh62W-w9xzDiLWeiRaEX_vQBWAl9tKfKTpiI4cgCwKHr8_996Rm5MZsleujfd390gNyH0izGbLhhukvX6Yu6eQHhV66cNpik5vupF9AuE6Dnl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqqUBcEDuBAkaiJxrNxI6zHBCiTEcdygzV0Eq9BW9Rg0pSmoxgfgP_iF_He9nogODWs5dEfp_fYj-_j5AXeqS58A3sb8uN60ubukoI4XLuWQUWXmmDRwOzebB_7L87EScb5Gf3FgbTKjudWCtqU2g8Ix8yDtDjLB6xYdqmRRyOJ6_Pv7rIIIU3rR2dRgORA7v6BuFb-Wo6BllvMzbZO3q777YMA672w6hyPRkh_w-zGu8TfR5IJSOfaxFokYJnBP5QoMBkSg1mXahAGClSziJljdZ-iowRoP43Q4yKBmRzd29-uOjDPc5qqjaYwnMDEQdN2j3n8WiYff5SYiyPOWbrBvEvL_fPZM1L1m9yi9xs3Vb6psHZbbJh8zvkWkNkubpLfnycLo4YneanmapzwOjClsuzqqRZTmc2K2AYDEYekB06AyUCSjc3iH06XpVoW3HQDpW5oWMA3vJCIRppkcJEpvhOkc29AEe2zEravKyku3gWYumHQq8qS2dYoLRG2T1yfCVCuE8GeZHbh4TKUWyUr3QIq-9LIZSWMgWfq2bl0ko75GW31olua6AjFcdZArEQSia5LBmHbPe9z5vaH__ot9WJLWk1QJn8xqtDnvfNsHfxQkbmtlhCHy_Ga2tQog550Ei5_xDH_LOYBQ4J1-Tfd8C64OsteXZa1wdHRgAWho_-_1vPyHXYQMn76fzgMbkBfmCMqXVetEUG1cXSPgFfq1JPW1BT8umq99EvLo4_dw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT2+Inhibition+Results+in+Meiotic+Arrest%2C+Mitochondrial+Dysfunction%2C+and+Disturbance+of+Redox+Homeostasis+during+Bovine+Oocyte+Maturation&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Xu%2C+Dejun&rft.au=Wu%2C+Lin&rft.au=Jiang%2C+Xiaohan&rft.au=Yang%2C+Li&rft.date=2019-03-18&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=20&rft.issue=6&rft_id=info:doi/10.3390%2Fijms20061365&rft_id=info%3Apmid%2F30889926&rft.externalDocID=PMC6472277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |