Influence of Critical Parameters on Cytotoxicity Induced by Mesoporous Silica Nanoparticles
Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemica...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 12; no. 12; p. 2016 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.06.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemical properties of MSNs, such as diameter size, morphology, and surface charge, control their biological interactions and toxicity. Experimental conditions also play an essential role in influencing toxicological results. Therefore, the present study includes studies from the last five years to statistically analyse the effect of various physicochemical features on MSN-induced in-vitro cytotoxicity profiles. Due to non-normally distributed data and the presence of outliers, a Kruskal–Wallis H test was conducted on different physicochemical characteristics, including diameter sizes, zeta-potential measurements, and functionalisation of MSNs, based on the viability results, and statistical differences were obtained. Subsequently, pairwise comparisons were performed using Dunn’s procedure with a Bonferroni correction for multiple comparisons. Other experimental parameters, such as type of cell line used, cell viability measurement assay, and incubation time, were also explored and analysed for statistically significant results. |
---|---|
AbstractList | Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemical properties of MSNs, such as diameter size, morphology, and surface charge, control their biological interactions and toxicity. Experimental conditions also play an essential role in influencing toxicological results. Therefore, the present study includes studies from the last five years to statistically analyse the effect of various physicochemical features on MSN-induced in-vitro cytotoxicity profiles. Due to non-normally distributed data and the presence of outliers, a Kruskal–Wallis H test was conducted on different physicochemical characteristics, including diameter sizes, zeta-potential measurements, and functionalisation of MSNs, based on the viability results, and statistical differences were obtained. Subsequently, pairwise comparisons were performed using Dunn’s procedure with a Bonferroni correction for multiple comparisons. Other experimental parameters, such as type of cell line used, cell viability measurement assay, and incubation time, were also explored and analysed for statistically significant results. Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemical properties of MSNs, such as diameter size, morphology, and surface charge, control their biological interactions and toxicity. Experimental conditions also play an essential role in influencing toxicological results. Therefore, the present study includes studies from the last five years to statistically analyse the effect of various physicochemical features on MSN-induced in-vitro cytotoxicity profiles. Due to non-normally distributed data and the presence of outliers, a Kruskal-Wallis H test was conducted on different physicochemical characteristics, including diameter sizes, zeta-potential measurements, and functionalisation of MSNs, based on the viability results, and statistical differences were obtained. Subsequently, pairwise comparisons were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. Other experimental parameters, such as type of cell line used, cell viability measurement assay, and incubation time, were also explored and analysed for statistically significant results.Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemical properties of MSNs, such as diameter size, morphology, and surface charge, control their biological interactions and toxicity. Experimental conditions also play an essential role in influencing toxicological results. Therefore, the present study includes studies from the last five years to statistically analyse the effect of various physicochemical features on MSN-induced in-vitro cytotoxicity profiles. Due to non-normally distributed data and the presence of outliers, a Kruskal-Wallis H test was conducted on different physicochemical characteristics, including diameter sizes, zeta-potential measurements, and functionalisation of MSNs, based on the viability results, and statistical differences were obtained. Subsequently, pairwise comparisons were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. Other experimental parameters, such as type of cell line used, cell viability measurement assay, and incubation time, were also explored and analysed for statistically significant results. |
Author | Ahmad, Zeeshan Patel, Trisha Sokunbi, Moses Chang, Ming-Wei Ahmadi, Amirsadra Singh, Neenu |
AuthorAffiliation | 3 Leicester School of Pharmaceutical Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; zahmad@dmu.ac.uk 2 Nanotechnology and Integrated Bioengineering Centre, Jordanstown Campus, University of Ulster, Newtownabbey BT37 0QB, UK; m.chang@ulster.ac.uk 1 Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; p2569486@alumni365.dmu.ac.uk (A.A.); moses.sokunbi@dmu.ac.uk (M.S.); p17197170@my365.dmu.ac.uk (T.P.) |
AuthorAffiliation_xml | – name: 3 Leicester School of Pharmaceutical Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; zahmad@dmu.ac.uk – name: 2 Nanotechnology and Integrated Bioengineering Centre, Jordanstown Campus, University of Ulster, Newtownabbey BT37 0QB, UK; m.chang@ulster.ac.uk – name: 1 Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; p2569486@alumni365.dmu.ac.uk (A.A.); moses.sokunbi@dmu.ac.uk (M.S.); p17197170@my365.dmu.ac.uk (T.P.) |
Author_xml | – sequence: 1 givenname: Amirsadra surname: Ahmadi fullname: Ahmadi, Amirsadra – sequence: 2 givenname: Moses orcidid: 0000-0002-8389-4577 surname: Sokunbi fullname: Sokunbi, Moses – sequence: 3 givenname: Trisha surname: Patel fullname: Patel, Trisha – sequence: 4 givenname: Ming-Wei orcidid: 0000-0002-0137-8895 surname: Chang fullname: Chang, Ming-Wei – sequence: 5 givenname: Zeeshan surname: Ahmad fullname: Ahmad, Zeeshan – sequence: 6 givenname: Neenu surname: Singh fullname: Singh, Neenu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35745355$$D View this record in MEDLINE/PubMed |
BookMark | eNptksuPFCEQxolZ467r3jwbEi8eHOXVDVxMzMTHJOsjUU8eCNDVK5MeGIE2zn8v68ya2Y1cgOJXXz6q6iE6iSkCQo8pecG5Ji-jjYkyyhih_T10xojUC6E1PTk6n6KLUtakLU256vgDdMo7KTredWfo-yqO0wzRA04jXuZQg7cT_myz3UCFXHCKeLmrqabfwYe6w6s4zB4G7Hb4A5S0TTnNBX8JU0vEH5ufrc1NZILyCN0f7VTg4rCfo29v33xdvl9cfnq3Wr6-XHghVV1QygehlbZSgFKEE9F3lgBQ7iVIaqnuFQfNpRYDjE7Qwavec-E6oWUL83O02usOya7NNoeNzTuTbDB_AylfmYMlIxxVzoGSgyTCeWlHR0H1ol1kD0I0rVd7re3sNjB4iDXb6Zbo7ZcYfpir9MtoxhShugk8Owjk9HOGUs0mFA_TZCO0QhnWK0q4UIw19OkddJ3mHFupGiXb3xraNerJsaN_Vm562AC2B3xOpWQYTeuTrSFdGwyTocRcz4o5npWW9PxO0o3uf_E_u06_nw |
CitedBy_id | crossref_primary_10_1002_slct_202400450 crossref_primary_10_3390_ijms24076349 crossref_primary_10_1002_cbic_202200672 crossref_primary_10_1016_j_jobab_2023_09_001 crossref_primary_10_1002_smll_202401787 crossref_primary_10_1021_acs_langmuir_4c02871 crossref_primary_10_1016_j_molliq_2025_127368 crossref_primary_10_1016_j_etap_2025_104638 crossref_primary_10_1016_j_ijpharm_2024_123852 crossref_primary_10_2147_IJN_S397626 crossref_primary_10_1016_j_mtbio_2024_101229 crossref_primary_10_1016_j_colsurfb_2024_113758 crossref_primary_10_3390_molecules28073194 crossref_primary_10_1080_10717544_2024_2381340 crossref_primary_10_3389_fbioe_2023_1332993 |
Cites_doi | 10.1039/C7TB02429K 10.1016/j.talanta.2013.01.037 10.1073/pnas.1919755117 10.3389/fbioe.2020.599454 10.1016/j.ejps.2016.10.019 10.1021/acsami.6b11802 10.1016/j.msec.2019.01.129 10.1016/j.nano.2017.11.021 10.1039/C0MB00109K 10.1038/s41598-021-92419-1 10.1186/s13046-017-0492-6 10.1016/j.biopha.2018.10.167 10.1016/j.tiv.2010.01.001 10.1016/j.colsurfb.2018.02.015 10.1080/03639045.2018.1438467 10.1021/acs.molpharmaceut.6b00190 10.1021/tx700326b 10.1016/j.tox.2012.05.010 10.1371/journal.pone.0160705 10.1016/j.etap.2012.05.014 10.1038/s41598-017-09312-z 10.1007/s00204-010-0642-5 10.1016/j.biomaterials.2007.03.006 10.1007/978-1-60327-198-1_4 10.2147/IJN.S224183 10.1155/2018/5280736 10.1021/acsnano.8b04910 10.1016/j.biomaterials.2012.10.072 10.1002/smll.201301004 10.1186/2050-7771-2-1 10.1016/j.taap.2006.10.004 10.1016/j.ijpharm.2017.01.031 10.1021/acs.molpharmaceut.8b01073 10.1016/j.nano.2019.102041 10.1126/science.1114397 10.1152/ajplung.00277.2005 10.1016/j.msec.2020.111239 10.1016/j.actbio.2016.01.017 10.3390/pharmaceutics12060487 10.1186/1477-3155-9-29 10.1016/j.ijpharm.2017.12.039 10.1371/journal.pone.0231634 10.1124/jpet.118.253682 10.1007/978-1-60327-198-1_2 10.1021/acsami.8b06275 10.1080/01480545.2019.1571503 10.1021/acsami.7b05278 10.1021/am4014693 10.1021/ja0645943 10.2147/IJN.S195504 10.3390/pharmaceutics14010056 10.1021/acsomega.8b00427 10.1016/j.colsurfb.2019.03.019 10.3390/pharmaceutics13020184 10.1016/j.tiv.2018.06.019 10.3389/fmats.2020.00036 10.2147/IJN.S143293 10.1016/j.ijbiomac.2021.09.188 10.1039/C5TB02709H 10.1289/ehp.7339 10.1016/j.apsb.2018.01.007 10.3109/17435390.2011.626538 10.1002/adhm.201700012 10.1186/s11671-019-3208-3 10.1016/j.xphs.2020.09.026 10.1021/acsami.7b00411 10.1158/0008-5472.CAN-16-1681 10.3389/fphar.2020.00898 10.1016/j.pdpdt.2020.101770 10.1021/acsami.8b06998 10.3390/nano8121028 10.1021/acsami.6b12647 10.1007/s00775-019-01640-x 10.2174/2211738506666181031160108 10.1039/C6NR08282C 10.1039/C4NR06420H 10.1073/pnas.0510146103 10.1183/09031936.00178308 10.1016/j.ejps.2015.12.014 10.1016/j.actbio.2019.06.033 10.1038/cddis.2015.367 10.1073/pnas.88.12.5413 10.1021/bc500452y 10.3109/07388551.2012.685860 10.1002/smll.201402331 10.1021/acsami.7b05359 10.2147/IJN.S177109 10.1002/smll.200800461 10.1016/j.jhazmat.2020.124502 10.1016/j.actbio.2017.11.007 10.1016/j.tiv.2016.09.012 10.1016/j.ijpharm.2016.01.068 10.1039/C6TB01329E 10.1166/jbn.2016.2318 10.2147/IJN.S133832 10.1093/toxsci/kfr206 10.1111/1523-1747.ep12340708 10.1016/j.colsurfb.2020.110824 10.2147/IJN.S276105 10.3390/ma11081310 10.3390/polym10040390 10.1096/fj.02-0088com 10.1007/978-1-60327-198-1_6 10.1021/nn103077k 10.1080/03639045.2019.1629688 10.1016/j.tiv.2015.09.030 10.1038/sj.onc.1203176 10.3389/fbioe.2020.00170 10.1038/onc.2015.262 10.1016/j.actbio.2018.05.022 10.1021/acs.analchem.9b00633 10.1080/21691401.2018.1473412 10.1016/j.tiv.2011.05.003 10.1002/humu.23035 10.1016/j.tiv.2009.02.007 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano12122016 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection (via ProQuest) Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_4b18bbe87d704bc7afb1e86404b76e44 PMC9228019 35745355 10_3390_nano12122016 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c478t-113d4989a74e88030465a0ee13c7e71a19683e93794defb41dc86c34b54979373 |
IEDL.DBID | BENPR |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:26:45 EDT 2025 Thu Aug 21 18:17:23 EDT 2025 Thu Jul 10 23:50:43 EDT 2025 Fri Jul 25 11:49:28 EDT 2025 Mon Jul 21 05:58:22 EDT 2025 Tue Jul 01 00:51:16 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | toxicity mesoporous silica nanoparticles diameter size incubation functionalisation zeta potential cytotoxicity nanotoxicology |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-113d4989a74e88030465a0ee13c7e71a19683e93794defb41dc86c34b54979373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0137-8895 0000-0002-8389-4577 |
OpenAccessLink | https://www.proquest.com/docview/2679796815?pq-origsite=%requestingapplication% |
PMID | 35745355 |
PQID | 2679796815 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4b18bbe87d704bc7afb1e86404b76e44 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9228019 proquest_miscellaneous_2681034822 proquest_journals_2679796815 pubmed_primary_35745355 crossref_citationtrail_10_3390_nano12122016 crossref_primary_10_3390_nano12122016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220611 |
PublicationDateYYYYMMDD | 2022-06-11 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220611 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Ali (ref_28) 2020; 188 Vrana (ref_117) 1999; 18 Feng (ref_5) 2019; 16 Nguyen (ref_46) 2017; 9 Ban (ref_122) 2020; 117 Kienzle (ref_48) 2017; 6 ref_18 Guo (ref_35) 2016; 4 Nabeshi (ref_67) 2010; 65 Sun (ref_2) 2019; 14 ref_16 Xie (ref_33) 2016; 83 Wang (ref_29) 2019; 45 Panyam (ref_93) 2002; 16 Song (ref_113) 2009; 34 ref_25 Zhang (ref_38) 2016; 76 Jin (ref_1) 2018; 3 Thi (ref_8) 2019; 99 Hecke (ref_17) 2012; 15 Zou (ref_39) 2016; 37 ref_124 Zhao (ref_20) 2019; 179 Braun (ref_60) 2018; 52 Yazdimamaghani (ref_86) 2019; 21 Patil (ref_71) 2012; 34 Li (ref_58) 2018; 46 Kim (ref_105) 2019; 14 Albers (ref_70) 2013; 7 Laaksonen (ref_85) 2007; 20 Kundu (ref_23) 2020; 116 Li (ref_40) 2017; 96 Ishimine (ref_116) 2018; 2018 You (ref_37) 2016; 4 Manaia (ref_13) 2017; 12 Moore (ref_47) 2016; 12 Li (ref_66) 2011; 25 Saroj (ref_56) 2018; 44 ref_83 Hsiao (ref_97) 2014; 5 Lu (ref_62) 2018; 13 Weiss (ref_69) 2011; 85 Cohen (ref_102) 2016; 35 Jafari (ref_64) 2019; 109 Kipen (ref_73) 2005; 289 McNeil (ref_10) 2011; Volume 697 ref_89 Gounani (ref_55) 2018; 537 Aliyandi (ref_121) 2020; 8 Mohamed (ref_106) 2011; 9 Chauhan (ref_14) 2019; 6 Hou (ref_59) 2018; 10 Zhang (ref_27) 2020; 8 Cha (ref_77) 2007; 17 Slowing (ref_95) 2006; 128 Chen (ref_115) 2021; 192 Passagne (ref_109) 2012; 299 Paatero (ref_51) 2017; 7 McNeil (ref_11) 2011; Volume 697 (ref_74) 2005; 113 Blechinger (ref_110) 2013; 9 Tzankova (ref_4) 2019; 44 Dong (ref_65) 2020; 15 Mohammadpour (ref_15) 2019; 370 Deng (ref_24) 2021; 409 Napierska (ref_68) 2009; 5 Yan (ref_22) 2020; 11 Henseleit (ref_114) 1997; 109 Zhao (ref_80) 2011; 5 Chen (ref_42) 2016; 8 Gaidano (ref_96) 1991; 88 Fei (ref_44) 2017; 519 Nel (ref_75) 2006; 311 Paris (ref_34) 2016; 33 Guo (ref_61) 2018; 10 Yang (ref_112) 2014; 2 Wu (ref_21) 2019; 96 Lin (ref_79) 2006; 217 Ferrauto (ref_41) 2017; 9 Liu (ref_49) 2017; 9 Zhou (ref_91) 2018; 8 Shapero (ref_107) 2011; 7 Zhou (ref_45) 2017; 36 Hei (ref_54) 2017; 5 Yang (ref_32) 2019; 14 Niculescu (ref_9) 2020; 7 Li (ref_101) 2016; 501 McNeil (ref_12) 2011; Volume 697 Fisichella (ref_84) 2009; 23 Tran (ref_57) 2018; 74 Kettiger (ref_81) 2015; 30 Yazdimamaghani (ref_88) 2018; 14 Ye (ref_87) 2010; 24 Zheng (ref_104) 2014; 25 Zhu (ref_108) 2013; 107 Pietruska (ref_72) 2011; 124 ref_30 Velletri (ref_119) 2016; 7 (ref_78) 2012; 7 Wright (ref_19) 2021; 110 Elle (ref_36) 2016; 13 Li (ref_90) 2013; 34 Yuan (ref_103) 2015; 7 Breznan (ref_63) 2018; 12 Noghreiyan (ref_26) 2020; 30 Lozano (ref_53) 2018; 65 Douroumis (ref_92) 2013; 33 Wan (ref_3) 2019; 91 Chou (ref_50) 2017; 9 Liu (ref_118) 2006; 103 Chung (ref_98) 2007; 28 Cheng (ref_43) 2017; 9 Li (ref_52) 2017; 12 Choi (ref_99) 2018; 165 Paula (ref_123) 2013; 5 Morishige (ref_76) 2010; 65 Benezra (ref_100) 2015; 11 Bouaoun (ref_120) 2016; 37 Pronsato (ref_111) 2013; 37 Abbasi (ref_82) 2021; 11 ref_7 ref_6 Edeler (ref_31) 2019; 24 |
References_xml | – volume: 5 start-page: 9497 year: 2017 ident: ref_54 article-title: Dually Responsive Mesoporous Silica Nanoparticles Regulated by Upper Critical Solution Temperature Polymers for Intracellular Drug Delivery publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02429K – volume: 107 start-page: 408 year: 2013 ident: ref_108 article-title: Size-Dependent Cellular Uptake Efficiency, Mechanism, and Cytotoxicity of Silica Nanoparticles toward HeLa Cells publication-title: Talanta doi: 10.1016/j.talanta.2013.01.037 – volume: 117 start-page: 10492 year: 2020 ident: ref_122 article-title: Machine Learning Predicts the Functional Composition of the Protein Corona and the Cellular Recognition of Nanoparticles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1919755117 – volume: 8 start-page: 599454 year: 2020 ident: ref_121 article-title: Disentangling Biomolecular Corona Interactions with Cell Receptors and Implications for Targeting of Nanomedicines publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.599454 – volume: 96 start-page: 456 year: 2017 ident: ref_40 article-title: PH-Sensitive Mesoporous Silica Nanoparticles Anticancer Prodrugs for Sustained Release of Ursolic Acid and the Enhanced Anti-Cancer Efficacy for Hepatocellular Carcinoma Cancer publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2016.10.019 – volume: 8 start-page: 33829 year: 2016 ident: ref_42 article-title: Multifunctional Redox-Responsive Mesoporous Silica Nanoparticles for Efficient Targeting Drug Delivery and Magnetic Resonance Imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11802 – volume: 99 start-page: 631 year: 2019 ident: ref_8 article-title: Functionalized Mesoporous Silica Nanoparticles and Biomedical Applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.01.129 – volume: 14 start-page: 533 year: 2018 ident: ref_88 article-title: Global Gene Expression Analysis of Macrophage Response Induced by Nonporous and Porous Silica Nanoparticles publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2017.11.021 – volume: 7 start-page: 371 year: 2011 ident: ref_107 article-title: Time and Space Resolved Uptake Study of Silica Nanoparticles by Human Cells publication-title: Mol. Biosyst. doi: 10.1039/C0MB00109K – volume: 11 start-page: 15133 year: 2021 ident: ref_82 article-title: The Synergistic Interference Effect of Silica Nanoparticles Concentration and the Wavelength of ELISA on the Colorimetric Assay of Cell Toxicity publication-title: Sci. Rep. doi: 10.1038/s41598-021-92419-1 – volume: 36 start-page: 24 year: 2017 ident: ref_45 article-title: Intracellular PH-Responsive and Rituximab-Conjugated Mesoporous Silica Nanoparticles for Targeted Drug Delivery to Lymphoma B Cells publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-017-0492-6 – volume: 109 start-page: 1100 year: 2019 ident: ref_64 article-title: Mesoporous Silica Nanoparticles for Therapeutic/Diagnostic Applications publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.10.167 – volume: 24 start-page: 751 year: 2010 ident: ref_87 article-title: Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2010.01.001 – ident: ref_16 – volume: 165 start-page: 56 year: 2018 ident: ref_99 article-title: PEGylated Polyaminoacid-Capped Mesoporous Silica Nanoparticles for Mitochondria-Targeted Delivery of Celastrol in Solid Tumors publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2018.02.015 – volume: 44 start-page: 1198 year: 2018 ident: ref_56 article-title: Tailor-Made PH-Sensitive Polyacrylic Acid Functionalized Mesoporous Silica Nanoparticles for Efficient and Controlled Delivery of Anti-Cancer Drug Etoposide publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2018.1438467 – volume: 13 start-page: 2647 year: 2016 ident: ref_36 article-title: Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.6b00190 – volume: 65 start-page: 596 year: 2010 ident: ref_76 article-title: Cytotoxicity of Amorphous Silica Particles against Macrophage-like THP-1 Cells Depends on Particle-Size and Surface Properties publication-title: Die Pharm-An Int. J. Pharm. Sci. – volume: 20 start-page: 1913 year: 2007 ident: ref_85 article-title: Failure of MTT as a Toxicity Testing Agent for Mesoporous Silicon Microparticles publication-title: Chem. Res. Toxicol. doi: 10.1021/tx700326b – volume: 299 start-page: 112 year: 2012 ident: ref_109 article-title: Implication of Oxidative Stress in Size-Dependent Toxicity of Silica Nanoparticles in Kidney Cells publication-title: Toxicology doi: 10.1016/j.tox.2012.05.010 – ident: ref_7 doi: 10.1371/journal.pone.0160705 – volume: 34 start-page: 436 year: 2012 ident: ref_71 article-title: Evaluation of Cytotoxic, Oxidative Stress, Proinflammatory and Genotoxic Responses of Micro- and Nano-Particles of Dolomite on Human Lung Epithelial Cells A(549) publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2012.05.014 – volume: 7 start-page: 8423 year: 2017 ident: ref_51 article-title: Analyses in Zebrafish Embryos Reveal That Nanotoxicity Profiles Are Dependent on Surface-Functionalization Controlled Penetrance of Biological Membranes publication-title: Sci. Rep. doi: 10.1038/s41598-017-09312-z – volume: 85 start-page: 813 year: 2011 ident: ref_69 article-title: Uptake and Intracellular Localization of Submicron and Nano-Sized SiO₂ Particles in HeLa Cells publication-title: Arch. Toxicol. doi: 10.1007/s00204-010-0642-5 – volume: 28 start-page: 2959 year: 2007 ident: ref_98 article-title: The Effect of Surface Charge on the Uptake and Biological Function of Mesoporous Silica Nanoparticles in 3T3-L1 Cells and Human Mesenchymal Stem Cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.03.006 – volume: Volume 697 start-page: 35 year: 2011 ident: ref_10 article-title: Measuring the Hydrodynamic Size of Nanoparticles in Aqueous Media Using Batch-Mode Dynamic Light Scattering publication-title: Characterization of Nanoparticles Intended for Drug Delivery doi: 10.1007/978-1-60327-198-1_4 – volume: 14 start-page: 7375 year: 2019 ident: ref_105 article-title: A reliable approach for assessing size-dependent effects of silica nanoparticles on cellular internalization behavior and cytotoxic mechanisms publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S224183 – volume: 2018 start-page: 5280736 year: 2018 ident: ref_116 article-title: The Relationship between TP53 Gene Status and Carboxylesterase 2 Expression in Human Colorectal Cancer publication-title: Dis. Markers doi: 10.1155/2018/5280736 – volume: 12 start-page: 12062 year: 2018 ident: ref_63 article-title: Physicochemical Properties Can Be Key Determinants of Mesoporous Silica Nanoparticle Potency in Vitro publication-title: ACS Nano doi: 10.1021/acsnano.8b04910 – volume: 34 start-page: 1391 year: 2013 ident: ref_90 article-title: A Mesoporous Silica Nanoparticle--PEI--Fusogenic Peptide System for SiRNA Delivery in Cancer Therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.10.072 – volume: 9 start-page: 3970 year: 2013 ident: ref_110 article-title: Uptake Kinetics and Nanotoxicity of Silica Nanoparticles Are Cell Type Dependent publication-title: Small Weinh. Bergstr. Ger. doi: 10.1002/smll.201301004 – volume: 2 start-page: 1 year: 2014 ident: ref_112 article-title: Monocyte and Macrophage Differentiation: Circulation Inflammatory Monocyte as Biomarker for Inflammatory Diseases publication-title: Biomark. Res. doi: 10.1186/2050-7771-2-1 – volume: 217 start-page: 252 year: 2006 ident: ref_79 article-title: In Vitro Toxicity of Silica Nanoparticles in Human Lung Cancer Cells publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2006.10.004 – volume: 519 start-page: 250 year: 2017 ident: ref_44 article-title: RGD Conjugated Liposome-Hollow Silica Hybrid Nanovehicles for Targeted and Controlled Delivery of Arsenic Trioxide against Hepatic Carcinoma publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.01.031 – volume: 16 start-page: 422 year: 2019 ident: ref_5 article-title: Thermo- and PH-Responsive, Lipid-Coated, Mesoporous Silica Nanoparticle-Based Dual Drug Delivery System To Improve the Antitumor Effect of Hydrophobic Drugs publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.8b01073 – volume: 21 start-page: 102041 year: 2019 ident: ref_86 article-title: Time- and Dose-Dependent Gene Expression Analysis of Macrophage Response as a Function of Porosity of Silica Nanoparticles publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2019.102041 – volume: 311 start-page: 622 year: 2006 ident: ref_75 article-title: Toxic Potential of Materials at the Nanolevel publication-title: Science doi: 10.1126/science.1114397 – volume: 289 start-page: L696 year: 2005 ident: ref_73 article-title: Smaller Is Not Always Better: Nanotechnology Yields Nanotoxicology publication-title: Am. J. Physiol.-Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.00277.2005 – volume: 116 start-page: 111239 year: 2020 ident: ref_23 article-title: Tumor Targeted Delivery of Umbelliferone via a Smart Mesoporous Silica Nanoparticles Controlled-Release Drug Delivery System for Increased Anticancer Efficiency publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.111239 – volume: 33 start-page: 275 year: 2016 ident: ref_34 article-title: Decidua-Derived Mesenchymal Stem Cells as Carriers of Mesoporous Silica Nanoparticles. In Vitro and in Vivo Evaluation on Mammary Tumors publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.01.017 – ident: ref_94 doi: 10.3390/pharmaceutics12060487 – volume: 9 start-page: 29 year: 2011 ident: ref_106 article-title: Activation of Stress-Related Signalling Pathway in Human Cells upon SiO2 Nanoparticles Exposure as an Early Indicator of Cytotoxicity publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-9-29 – volume: 537 start-page: 148 year: 2018 ident: ref_55 article-title: Loading of Polymyxin B onto Anionic Mesoporous Silica Nanoparticles Retains Antibacterial Activity and Enhances Biocompatibility publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.12.039 – ident: ref_83 doi: 10.1371/journal.pone.0231634 – volume: 370 start-page: 751 year: 2019 ident: ref_15 article-title: Transient Receptor Potential Ion Channel–Dependent Toxicity of Silica Nanoparticles and Poly(Amido Amine) Dendrimers publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.118.253682 – volume: Volume 697 start-page: 9 year: 2011 ident: ref_11 article-title: Challenges for Nanoparticle Characterization publication-title: Characterization of Nanoparticles Intended for Drug Delivery doi: 10.1007/978-1-60327-198-1_2 – volume: 10 start-page: 25994 year: 2018 ident: ref_61 article-title: Nanosizing Noncrystalline and Porous Silica Material—Naturally Occurring Opal Shale for Systemic Tumor Targeting Drug Delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06275 – volume: 44 start-page: 238 year: 2019 ident: ref_4 article-title: In Vitro Toxicity Evaluation of Lomefloxacin-Loaded MCM-41 Mesoporous Silica Nanoparticles publication-title: Drug Chem. Toxicol. doi: 10.1080/01480545.2019.1571503 – volume: 9 start-page: 21673 year: 2017 ident: ref_49 article-title: Dacarbazine-Loaded Hollow Mesoporous Silica Nanoparticles Grafted with Folic Acid for Enhancing Antimetastatic Melanoma Response publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05278 – volume: 5 start-page: 8387 year: 2013 ident: ref_123 article-title: Influence of Protein Corona on the Transport of Molecules into Cells by Mesoporous Silica Nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4014693 – volume: 5 start-page: 248 year: 2014 ident: ref_97 article-title: Size and Cell Type Dependent Uptake of Silica Nanoparticles publication-title: J. Nanomed. Nanotechnol. – volume: 128 start-page: 14792 year: 2006 ident: ref_95 article-title: Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0645943 – volume: 14 start-page: 1489 year: 2019 ident: ref_2 article-title: Mesoporous Silica Nanoparticles as a Delivery System for Improving Antiangiogenic Therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S195504 – ident: ref_124 doi: 10.3390/pharmaceutics14010056 – volume: 3 start-page: 4306 year: 2018 ident: ref_1 article-title: Multiple-Responsive Mesoporous Silica Nanoparticles for Highly Accurate Drugs Delivery to Tumor Cells publication-title: ACS Omega doi: 10.1021/acsomega.8b00427 – volume: 179 start-page: 352 year: 2019 ident: ref_20 article-title: A Facile Strategy to Fabricate a PH-Responsive Mesoporous Silica Nanoparticle End-Capped with Amphiphilic Peptides by Self-Assembly publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2019.03.019 – ident: ref_25 doi: 10.3390/pharmaceutics13020184 – volume: 52 start-page: 214 year: 2018 ident: ref_60 article-title: Comparison of Different Cytotoxicity Assays for in Vitro Evaluation of Mesoporous Silica Nanoparticles publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2018.06.019 – volume: 7 start-page: 36 year: 2020 ident: ref_9 article-title: Mesoporous Silica Nanoparticles for Bio-Applications publication-title: Front. Mater. doi: 10.3389/fmats.2020.00036 – volume: 12 start-page: 6239 year: 2017 ident: ref_52 article-title: EpCAM Aptamer-Functionalized Polydopamine-Coated Mesoporous Silica Nanoparticles Loaded with DM1 for Targeted Therapy in Colorectal Cancer publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S143293 – volume: 192 start-page: 45 year: 2021 ident: ref_115 article-title: P53 Regulates Lipid Metabolism in Cancer publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.09.188 – volume: 4 start-page: 2322 year: 2016 ident: ref_35 article-title: The Potential of Peptide Dendron Functionalized and Gadolinium Loaded Mesoporous Silica Nanoparticles as Magnetic Resonance Imaging Contrast Agents publication-title: J. Mater. Chem. B doi: 10.1039/C5TB02709H – volume: 113 start-page: 823 year: 2005 ident: ref_74 article-title: Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles publication-title: Environ. Health Perspect. doi: 10.1289/ehp.7339 – volume: 8 start-page: 165 year: 2018 ident: ref_91 article-title: Mesoporous Silica Nanoparticles for Drug and Gene Delivery publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2018.01.007 – volume: 7 start-page: 30 year: 2013 ident: ref_70 article-title: In Vitro Cytotoxicity of Silver Nanoparticles on Osteoblasts and Osteoclasts at Antibacterial Concentrations publication-title: Nanotoxicology doi: 10.3109/17435390.2011.626538 – volume: 6 start-page: 1700012 year: 2017 ident: ref_48 article-title: Dendritic Mesoporous Silica Nanoparticles for PH-Stimuli-Responsive Drug Delivery of TNF-Alpha publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700012 – volume: 14 start-page: 390 year: 2019 ident: ref_32 article-title: An Efficient Cell-Targeting Drug Delivery System Based on Aptamer-Modified Mesoporous Silica Nanoparticles publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-019-3208-3 – volume: 110 start-page: 217 year: 2021 ident: ref_19 article-title: A Comparison of Chitosan, Mesoporous Silica and Poly(Lactic-Co-Glycolic) Acid Nanocarriers for Optimising Intestinal Uptake of Oral Protein Therapeutics publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2020.09.026 – volume: 9 start-page: 9470 year: 2017 ident: ref_46 article-title: Bifunctional Succinylated ε-Polylysine-Coated Mesoporous Silica Nanoparticles for PH-Responsive and Intracellular Drug Delivery Targeting the Colon publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00411 – volume: 76 start-page: 7208 year: 2016 ident: ref_38 article-title: A Hyaluronidase-Responsive Nanoparticle-Based Drug Delivery System for Targeting Colon Cancer Cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-1681 – volume: 11 start-page: 898 year: 2020 ident: ref_22 article-title: Preparation of RGD Peptide/Folate Acid Double-Targeted Mesoporous Silica Nanoparticles and Its Application in Human Breast Cancer MCF-7 Cells publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.00898 – volume: 30 start-page: 101770 year: 2020 ident: ref_26 article-title: Investigation of the Emission Spectra and Cytotoxicity of TiO2 and Ti-MSN/PpIX Nanoparticles to Induce Photodynamic Effects Using X-Ray publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2020.101770 – volume: 10 start-page: 21927 year: 2018 ident: ref_59 article-title: Self-Regulated Carboxyphenylboronic Acid-Modified Mesoporous Silica Nanoparticles with “Touch Switch” Releasing Property for Insulin Delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06998 – ident: ref_89 doi: 10.3390/nano8121028 – volume: 9 start-page: 2093 year: 2017 ident: ref_43 article-title: Multifunctional Peptide-Amphiphile End-Capped Mesoporous Silica Nanoparticles for Tumor Targeting Drug Delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12647 – volume: 24 start-page: 223 year: 2019 ident: ref_31 article-title: The Interaction between SBA-15 Derivative Loaded with Ph3Sn(CH2)6OH and Human Melanoma A375 Cell Line: Uptake and Stem Phenotype Loss publication-title: JBIC J. Biol. Inorg. Chem. doi: 10.1007/s00775-019-01640-x – volume: 6 start-page: 245 year: 2019 ident: ref_14 article-title: Cellular Toxicity of Mesoporous Silica Nanoparticle in SHSY5Y and BMMNCs Cell publication-title: Pharm. Nanotechnol. doi: 10.2174/2211738506666181031160108 – volume: 9 start-page: 99 year: 2017 ident: ref_41 article-title: Large Photoacoustic Effect Enhancement for ICG Confined inside MCM-41 Mesoporous Silica Nanoparticles publication-title: Nanoscale doi: 10.1039/C6NR08282C – volume: 7 start-page: 3067 year: 2015 ident: ref_103 article-title: Conjugated Polymer and Drug Co-Encapsulated Nanoparticles for Chemo- and Photo-Thermal Combination Therapy with Two-Photon Regulated Fast Drug Release publication-title: Nanoscale doi: 10.1039/C4NR06420H – volume: 103 start-page: 976 year: 2006 ident: ref_118 article-title: Analysis of P53 Mutations and Their Expression in 56 Colorectal Cancer Cell Lines publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0510146103 – volume: 34 start-page: 559 year: 2009 ident: ref_113 article-title: Exposure to Nanoparticles Is Related to Pleural Effusion, Pulmonary Fibrosis and Granuloma publication-title: Eur. Respir. J. doi: 10.1183/09031936.00178308 – volume: 83 start-page: 28 year: 2016 ident: ref_33 article-title: EpCAM Aptamer-Functionalized Mesoporous Silica Nanoparticles for Efficient Colon Cancer Cell-Targeted Drug Delivery publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2015.12.014 – volume: 96 start-page: 123 year: 2019 ident: ref_21 article-title: An Injectable and Tumor-Specific Responsive Hydrogel with Tissue-Adhesive and Nanomedicine-Releasing Abilities for Precise Locoregional Chemotherapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.06.033 – volume: 7 start-page: e2015 year: 2016 ident: ref_119 article-title: P53 Functional Abnormality in Mesenchymal Stem Cells Promotes Osteosarcoma Development publication-title: Cell Death Dis. doi: 10.1038/cddis.2015.367 – volume: 88 start-page: 5413 year: 1991 ident: ref_96 article-title: P53 Mutations in Human Lymphoid Malignancies: Association with Burkitt Lymphoma and Chronic Lymphocytic Leukemia publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.12.5413 – volume: 25 start-page: 1925 year: 2014 ident: ref_104 article-title: FITC-Conjugated Cyclic RGD Peptides as Fluorescent Probes for Staining Integrin Avβ3/Avβ5 in Tumor Tissues publication-title: Bioconjug. Chem. doi: 10.1021/bc500452y – volume: 33 start-page: 229 year: 2013 ident: ref_92 article-title: Mesoporous Silica Nanoparticles in Nanotechnology publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2012.685860 – volume: 11 start-page: 1721 year: 2015 ident: ref_100 article-title: Ultrasmall integrin-targeted silica nanoparticles modulate signaling events and cellular processes in a concentration-dependent manner publication-title: Small doi: 10.1002/smll.201402331 – volume: 9 start-page: 22235 year: 2017 ident: ref_50 article-title: Molecular Elucidation of Biological Response to Mesoporous Silica Nanoparticles in Vitro and in Vivo publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05359 – volume: 13 start-page: 5849 year: 2018 ident: ref_62 article-title: Antibacterial and Biodegradable Tissue Nano-Adhesives for Rapid Wound Closure publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S177109 – volume: 5 start-page: 846 year: 2009 ident: ref_68 article-title: Size-Dependent Cytotoxicity of Monodisperse Silica Nanoparticles in Human Endothelial Cells publication-title: Small doi: 10.1002/smll.200800461 – volume: 409 start-page: 124502 year: 2021 ident: ref_24 article-title: Subacute Toxicity of Mesoporous Silica Nanoparticles to the Intestinal Tract and the Underlying Mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124502 – volume: 65 start-page: 393 year: 2018 ident: ref_53 article-title: Lectin-Conjugated PH-Responsive Mesoporous Silica Nanoparticles for Targeted Bone Cancer Treatment publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.11.007 – volume: 37 start-page: 113 year: 2016 ident: ref_39 article-title: The Applicability of Conventional Cytotoxicity Assays to Predict Safety/Toxicity of Mesoporous Silica Nanoparticles, Silver and Gold Nanoparticles and Multi-Walled Carbon Nanotubes publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2016.09.012 – volume: 501 start-page: 112 year: 2016 ident: ref_101 article-title: Synthesis of a Bi-Functional Dendrimer-Based Nanovehicle Co-Modified with RGDyC and TAT Peptides for Neovascular Targeting and Penetration publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.01.068 – volume: 65 start-page: 199 year: 2010 ident: ref_67 article-title: Size-Dependent Cytotoxic Effects of Amorphous Silica Nanoparticles on Langerhans Cells publication-title: Pharmazie – volume: 4 start-page: 5980 year: 2016 ident: ref_37 article-title: Tailored Mesoporous Silica Nanosystem with Enhanced Permeability of the Blood–Brain Barrier to Antagonize Glioblastoma publication-title: J. Mater. Chem. B doi: 10.1039/C6TB01329E – volume: 12 start-page: 2172 year: 2016 ident: ref_47 article-title: Mucin-1-Antibody-Conjugated Mesoporous Silica Nanoparticles for Selective Breast Cancer Detection in a Mucin-1 Transgenic Murine Mouse Model publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2016.2318 – volume: 12 start-page: 4991 year: 2017 ident: ref_13 article-title: Physicochemical Characterization of Drug Nanocarriers publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S133832 – volume: 7 start-page: 5577 year: 2012 ident: ref_78 article-title: The Role of Surface Charge in Cellular Uptake and Cytotoxicity of Medical Nanoparticles publication-title: Int. J. Nanomed. – volume: 124 start-page: 138 year: 2011 ident: ref_72 article-title: Bioavailability, Intracellular Mobilization of Nickel, and HIF-1α Activation in Human Lung Epithelial Cells Exposed to Metallic Nickel and Nickel Oxide Nanoparticles publication-title: Toxicol. Sci. J. Soc. Toxicol. doi: 10.1093/toxsci/kfr206 – volume: 15 start-page: 241 year: 2012 ident: ref_17 article-title: Power Study of Anova versus Kruskal-Wallis Test publication-title: J. Stat. Manag. Syst. – volume: 109 start-page: 722 year: 1997 ident: ref_114 article-title: Role of P53 in UVB-Induced Apoptosis in Human HaCaT Keratinocytes publication-title: J. Investig. Dermatol. doi: 10.1111/1523-1747.ep12340708 – volume: 188 start-page: 110824 year: 2020 ident: ref_28 article-title: Synthesis of Lactoferrin Mesoporous Silica Nanoparticles for Pemetrexed/Ellagic Acid Synergistic Breast Cancer Therapy publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2020.110824 – volume: 15 start-page: 9089 year: 2020 ident: ref_65 article-title: The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S276105 – ident: ref_6 doi: 10.3390/ma11081310 – ident: ref_18 – ident: ref_30 doi: 10.3390/polym10040390 – volume: 16 start-page: 1217 year: 2002 ident: ref_93 article-title: Rapid Endo-Lysosomal Escape of Poly(DL-Lactide-Coglycolide) Nanoparticles: Implications for Drug and Gene Delivery publication-title: FASEB J. doi: 10.1096/fj.02-0088com – volume: Volume 697 start-page: 63 year: 2011 ident: ref_12 article-title: Zeta Potential Measurement publication-title: Characterization of Nanoparticles Intended for Drug Delivery doi: 10.1007/978-1-60327-198-1_6 – volume: 5 start-page: 1366 year: 2011 ident: ref_80 article-title: Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects publication-title: ACS Nano doi: 10.1021/nn103077k – volume: 45 start-page: 1487 year: 2019 ident: ref_29 article-title: Combined Chemo/Photothermal Therapy Based on Mesoporous Silica-Au Core-Shell Nanoparticles for Hepatocellular Carcinoma Treatment publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2019.1629688 – volume: 30 start-page: 355 year: 2015 ident: ref_81 article-title: Comparative Safety Evaluation of Silica-Based Particles publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2015.09.030 – volume: 18 start-page: 7016 year: 1999 ident: ref_117 article-title: Induction of Apoptosis in U937 Human Leukemia Cells by Suberoylanilide Hydroxamic Acid (SAHA) Proceeds through Pathways That Are Regulated by Bcl-2/Bcl-XL, c-Jun, and P21CIP1, but Independent of P53 publication-title: Oncogene doi: 10.1038/sj.onc.1203176 – volume: 8 start-page: 170 year: 2020 ident: ref_27 article-title: Efficient Delivery of Triptolide Plus a MiR-30-5p Inhibitor Through the Use of Near Infrared Laser Responsive or CADY Modified MSNs for Efficacy in Rheumatoid Arthritis Therapeutics publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00170 – volume: 35 start-page: 1977 year: 2016 ident: ref_102 article-title: The Thyroid Hormone-Avβ3 Integrin Axis in Ovarian Cancer: Regulation of Gene Transcription and MAPK-Dependent Proliferation publication-title: Oncogene doi: 10.1038/onc.2015.262 – volume: 74 start-page: 397 year: 2018 ident: ref_57 article-title: Targeted and Controlled Drug Delivery by Multifunctional Mesoporous Silica Nanoparticles with Internal Fluorescent Conjugates and External Polydopamine and Graphene Oxide Layers publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.05.022 – volume: 91 start-page: 6088 year: 2019 ident: ref_3 article-title: Ratiometric Fluorescent Quantification of the Size-Dependent Cellular Toxicity of Silica Nanoparticles publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b00633 – volume: 17 start-page: 1573 year: 2007 ident: ref_77 article-title: Cytotoxic Effects of Nanoparticles Assessed in Vitro and in Vivo publication-title: J. Microbiol. Biotechnol. – volume: 37 start-page: 1 year: 2013 ident: ref_111 article-title: High Passage Numbers Induce Resistance to Apoptosis in C2C12 Muscle Cells publication-title: Biocell. J. Soc. Latinoam. Microsc. Electron. Al – volume: 46 start-page: 921 year: 2018 ident: ref_58 article-title: Curcumin-Loaded Redox-Responsive Mesoporous Silica Nanoparticles for Targeted Breast Cancer Therapy publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1473412 – volume: 25 start-page: 1343 year: 2011 ident: ref_66 article-title: Size-Dependent Cytotoxicity of Amorphous Silica Nanoparticles in Human Hepatoma HepG2 Cells publication-title: Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA doi: 10.1016/j.tiv.2011.05.003 – volume: 37 start-page: 865 year: 2016 ident: ref_120 article-title: TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data publication-title: Hum. Mutat. doi: 10.1002/humu.23035 – volume: 23 start-page: 697 year: 2009 ident: ref_84 article-title: Mesoporous Silica Nanoparticles Enhance MTT Formazan Exocytosis in HeLa Cells and Astrocytes publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2009.02.007 |
SSID | ssj0000913853 |
Score | 2.3059704 |
Snippet | Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2016 |
SubjectTerms | Bioavailability Biocompatibility Biomedical materials Cell viability Cytotoxicity Diameters functionalisation Investigations mesoporous silica nanoparticles Morphology Nanomaterials Nanoparticles nanotoxicology Outliers (statistics) Parameters Physicochemical properties Pore size Silica Silicon dioxide Statistical analysis Surface charge Surface chemistry Surface stability Thermal stability Toxicity Zeta potential |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDelp_Yw9tFu2briQXcaoXHs-OO4lZZu0FLYCoUdgpUo7MFIyl4K638_Kcl75JWVXXaM7YMtWdZPsfyTEEcBFOgM8hSA4JvJtEkjtaQN2NoiFpjn_Br54tKeX5svN8XNrNQX54SN9MCj4I4NKA-A3tUuM1C52IBCbw19OItmYAIlnzcLpoYzOChNjmjMdNcU1x-3se0UndPk8OyGDxqo-v-GLx-mSc78ztlT8WQCjPLjONFnYgvb52J3RiP4Qnz_vKo0IrtGrooXyKvIiVfMnim7Vp7c913f_V5UBLslF-yosJZwLy9w2REG7-6W8uuC_-BJOnApkp4S5vbE9dnpt5PzdCqakFbG-T5VStcm-BCdQbJNvvgsYoaodOXQqUgW5zUSKAmmxgaMqitvK22AAkXmytP7YrvtWnwlJB0GMTAFfJOBAUMCx5oAEWkgrwNFzon4sBJjWU2M4lzY4mdJkQULvZwLPRHv16NvRyaNR8Z9Yo2sxzD_9dBAu6KcFl_-a1ck4mClz3IyymWZW0dLtF4ViXi37iZz4juS2CJJmsZ4lTHhT56Il6P61zPRhTMF4bNEuI2NsTHVzZ528WOg7A7MOqTC6_-xtjdiJ-c3GFxASR2I7f7XHb4lZNTD4WAEfwBQvg2u priority: 102 providerName: Directory of Open Access Journals |
Title | Influence of Critical Parameters on Cytotoxicity Induced by Mesoporous Silica Nanoparticles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35745355 https://www.proquest.com/docview/2679796815 https://www.proquest.com/docview/2681034822 https://pubmed.ncbi.nlm.nih.gov/PMC9228019 https://doaj.org/article/4b18bbe87d704bc7afb1e86404b76e44 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R7QUOiG9SyspIcEJR48SJ7ROiVZeC1KoCKlXiEMXJpKyE4rabSvTfM5N1ll0EHGPPwfHY4zfj8RuA19ZJlyUujZ0j-KaSTMUVtcStK5oCMcc05dfIxyfF0Zn6dJ6fh4DbIqRVjjZxMNSNrzlGvpcW2mpbGJm_u7yKuWoU366GEhpbsE0m2JgJbO8fnpx-XkVZmPWSDqRlxntG_v1eV3VekjAdfMXGWTRQ9v8NZ_6ZLrl2_swewP0AHMX7paYfwh3sHsG9NTrBx_Dt41hxRPhWjEUMxGnFCVjMoil8Jw5ue9_7n_Oa4Lfgwh01NsLdimNceMLi_mYhvsw5kifI8JJHHRLnnsDZ7PDrwVEciifEtdKmj6XMGmWNrbRC2qN8AZpXCaLMao1aVrTzTIYETqxqsHVKNrUp6kw5chiZMy97CpPOd_gcBBmFyjIVfJs45ZRyGhsCRlXr0saSBx3B23Eayzowi3OBix8leRg86eX6pEfwZiV9uWTU-IfcPmtkJcM82EODv74ow8-XyknjHBrd6ES5WtOYJJpC0YcuUKkIdkd9lmFzLsrfSymCV6tu2lZ8V1J1SDNNMkYmTPyTRvBsqf7VSLJcq5xwWgR6Y2FsDHWzp5t_H6i7LbMPSbvz_2G9gLspv7LgEklyFyb99Q2-JOzTuylsmdmHaVjm0yGC8AvEEQgZ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaiJxQ1Tpw4PiAEhWWXdiskWqkShzROJrASiks3Feyf4jcyk8eyi4Bbj4mtyBmP52GPvw_gmbHSRoENfWspfFNBpPyc3viVTcoEMcYw5NvI04NkfKTeH8fHG_BzuAvDZZWDTWwNdekK3iPfCRNttElSGb88_eYzaxSfrg4UGp1a7OHiO6Vs8xeTNzS_22E4enu4O_Z7VgG_UDptfCmjUpnU5FohKS-fDMZ5gCijQqOWOalkGiF5baNKrKySZZEmRaQsZVIMJhfRdy_BZRWRJ-eb6aN3yz0dxtgk99fV11N7sFPntZPkHcjNJmueryUI-FtU-2dx5oq3G92A632YKl51enUTNrC-BddWwAtvw6fJwG8iXCUGygTxIedyL8bsFK4Wu4vGNe7HrKBgXzBNSIGlsAsxxbmjyN-dz8XHGe8bCjLzlL_3ZXp34OhChHoXNmtX430QZIJyw8DzVWCVVcpqLCkMyysblobydQ-eD2LMih7HnOk0vmaUz7DQs1Whe7C97H3a4Xf8o99rnpFlH0bdbl-4s89Z__OZsjK1FlNd6kDZQtOYJKaJogedoFIebA3zmfWmYJ79VlwPni6baRHzyUxeI0ma-qQyYJih0IN73fQvRxLFWsUUFXqg1xRjbajrLfXsSwsUbhjrSJoH_x_WE7gyPpzuZ_uTg72HcDXk-x1MziS3YLM5O8dHFHU19nGr6gJOLnpt_QIwST-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAkekLRxrETxweE6GPVpXS1AipV4hDixGlXQnHppoL9a_w6ZjYPdhFw6zGOFTnj8Tzs8fcBvNSGGxGY0DcGwzcZCOln2OKXJi5iayMbhnQb-WgSHxzLdyfRyQb87O7CUFllZxOXhrpwOe2RD8NYaaXjhEfDsi2LmO6N3px_84lBik5aOzqNRkUO7eI7pm_z1-M9nOvtMBztf9o98FuGAT-XKql9zkUhdaIzJS0qMp0SRllgLRe5sopnqJ6JsOjBtSxsaSQv8iTOhTSYVRGwnMDvXoNNRVnRADZ39ifTD_0ODyFuojNsqu2F0MGwyirH0Veg043X_OCSLuBvMe6fpZorvm90G261QSt722jZHdiw1V24uQJleA8-jzu2E-ZK1hEosGlGxV-E4MlcxXYXtavdj1mOoT8j0pDcFsws2JGdO8wD3OWcfZzRLiJDo4_ZfFu0dx-Or0SsD2BQuco-AoYGKdMEQ18GRhopjbIFBmVZacJCY_buwatOjGneopoTucbXFLMbEnq6KnQPtvve5w2axz_67dCM9H0Ig3vZ4C5O0_bnU2l4YoxNVKECaXKFY-I2iSU-qNhK6cFWN59paxjm6W819uBF_xqXNJ3TZJVFSWOfhAcEOhR68LCZ_n4kIlIywhjRA7WmGGtDXX9Tzc6WsOGakI-4fvz_YT2H67iu0vfjyeETuBHSZQ9iauJbMKgvLu1TDMFq86zVdQZfrnp5_QJYgUUi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Critical+Parameters+on+Cytotoxicity+Induced+by+Mesoporous+Silica+Nanoparticles&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Ahmadi%2C+Amirsadra&rft.au=Sokunbi%2C+Moses&rft.au=Patel%2C+Trisha&rft.au=Chang%2C+Ming-Wei&rft.date=2022-06-11&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=12&rft.issue=12&rft_id=info:doi/10.3390%2Fnano12122016&rft_id=info%3Apmid%2F35745355&rft.externalDocID=35745355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |