Smart Sponge for Fast Liquid Absorption and Thermal Responsive Self‐Squeezing

Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 14; pp. e1908249 - n/a
Main Authors Cui, Ying, Wang, Yujie, Shao, Ziyu, Mao, Anran, Gao, Weiwei, Bai, Hao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost‐effective and energy‐saving manner, especially for viscous liquids such as crude oil. A smart polyurethane‐based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as‐prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary (“tortuosity effect”). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well‐defined porous structure and thermal responsive self‐squeezing capability have great potential in efficient liquid absorption and recycling. A smart porous sponge with aligned channel structure is fabricated by directional freezing. Compared to sponges with random porous structure, the as‐prepared sponge has larger liquid absorption speed due to its lower tortuosity. The absorbed liquid can be remotely squeezed out due to thermally responsive shape memory effect. Such sponges have great potential in efficient liquid absorption and recycling.
AbstractList Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost-effective and energy-saving manner, especially for viscous liquids such as crude oil. A smart polyurethane-based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as-prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary ("tortuosity effect"). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well-defined porous structure and thermal responsive self-squeezing capability have great potential in efficient liquid absorption and recycling.
Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost‐effective and energy‐saving manner, especially for viscous liquids such as crude oil. A smart polyurethane‐based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as‐prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary (“tortuosity effect”). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well‐defined porous structure and thermal responsive self‐squeezing capability have great potential in efficient liquid absorption and recycling. A smart porous sponge with aligned channel structure is fabricated by directional freezing. Compared to sponges with random porous structure, the as‐prepared sponge has larger liquid absorption speed due to its lower tortuosity. The absorbed liquid can be remotely squeezed out due to thermally responsive shape memory effect. Such sponges have great potential in efficient liquid absorption and recycling.
Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost-effective and energy-saving manner, especially for viscous liquids such as crude oil. A smart polyurethane-based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as-prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary ("tortuosity effect"). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well-defined porous structure and thermal responsive self-squeezing capability have great potential in efficient liquid absorption and recycling.Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost-effective and energy-saving manner, especially for viscous liquids such as crude oil. A smart polyurethane-based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as-prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary ("tortuosity effect"). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well-defined porous structure and thermal responsive self-squeezing capability have great potential in efficient liquid absorption and recycling.
Author Bai, Hao
Wang, Yujie
Gao, Weiwei
Cui, Ying
Shao, Ziyu
Mao, Anran
Author_xml – sequence: 1
  givenname: Ying
  surname: Cui
  fullname: Cui, Ying
  organization: Zhejiang University
– sequence: 2
  givenname: Yujie
  surname: Wang
  fullname: Wang, Yujie
  organization: Zhejiang University
– sequence: 3
  givenname: Ziyu
  surname: Shao
  fullname: Shao, Ziyu
  organization: Zhejiang University
– sequence: 4
  givenname: Anran
  surname: Mao
  fullname: Mao, Anran
  organization: Zhejiang University
– sequence: 5
  givenname: Weiwei
  surname: Gao
  fullname: Gao, Weiwei
  organization: Zhejiang University
– sequence: 6
  givenname: Hao
  orcidid: 0000-0002-3348-6129
  surname: Bai
  fullname: Bai, Hao
  email: hbai@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32080931$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAURi0EKgN0y7Ky1E03Ga5_krGXI1raSoOQOrCOnPiaGiXxYCet6KqP0Gfsk9SjoSAhVV3dhc_xvfq-I7I_hAEJOWUwZwD8zNjezDkwDYpLvUdmrOSskKDLfTIDLcpCV1IdkqOU7gBAV1C9IoeCg8qPbEau1r2JI11vwnCL1IVIL0wa6crfT97SZZNC3Iw-DNQMll5_xdibjn7BlPnkvyFdY-d-__y1vp8Qf_jh9oQcONMlfP04j8nNxYfr80_F6urj5_PlqmjlQukCUfFGSWwbYWUlS2ZBOlWWgFoZxAUIh5q3YIRgzDoEy61AMK2TogHmxDF5t_t3E0Penca696nFrjMDhinVXKgFL0GVOqNvX6B3YYpDvm5LVUouKgWZevNITU2Ptt5En5N5qP9GlYH5DmhjSCmie0IY1Nsu6m0X9VMXWZAvhNaPZhvmGI3v_q3pnfbdd_jwnyX18v3l8tn9A2QZnjY
CitedBy_id crossref_primary_10_1016_j_mtbio_2024_100946
crossref_primary_10_1039_D4TA00349G
crossref_primary_10_1016_j_cej_2021_131017
crossref_primary_10_1002_adma_202100074
crossref_primary_10_1021_acsnano_2c02606
crossref_primary_10_1016_j_cej_2022_137482
crossref_primary_10_1021_acsami_1c13574
crossref_primary_10_1007_s10570_024_06178_z
crossref_primary_10_1016_j_seppur_2024_128271
crossref_primary_10_1038_s41467_024_53549_y
crossref_primary_10_1021_acsami_0c22245
crossref_primary_10_1016_j_jhazmat_2022_129346
crossref_primary_10_1002_jbm_a_37268
crossref_primary_10_1016_j_memsci_2021_119643
crossref_primary_10_1021_acsomega_0c00899
crossref_primary_10_1002_adma_202414543
crossref_primary_10_1039_D0NH00246A
crossref_primary_10_1016_j_scitotenv_2022_155184
crossref_primary_10_1002_mabi_202000314
crossref_primary_10_1002_mabi_202200020
crossref_primary_10_1007_s40843_021_1917_1
crossref_primary_10_1016_j_bios_2020_112722
crossref_primary_10_1016_j_cej_2022_135233
crossref_primary_10_1021_acssuschemeng_0c00910
crossref_primary_10_1038_s41467_022_31717_2
crossref_primary_10_1038_s44221_023_00190_6
crossref_primary_10_1016_j_jmst_2023_02_023
crossref_primary_10_1016_j_desal_2025_118725
crossref_primary_10_1039_D4CS00673A
crossref_primary_10_1016_j_ijbiomac_2022_09_054
crossref_primary_10_1021_acsnano_1c10093
crossref_primary_10_1016_j_msec_2022_112698
crossref_primary_10_1002_ghg_2172
crossref_primary_10_1016_j_ijbiomac_2023_124166
crossref_primary_10_1016_j_cej_2020_124623
crossref_primary_10_1021_acsanm_2c05243
crossref_primary_10_1039_D3CC00984J
crossref_primary_10_1002_advs_202101210
crossref_primary_10_1016_j_apsusc_2022_154192
crossref_primary_10_1016_j_pmatsci_2021_100870
crossref_primary_10_1021_acs_langmuir_2c01162
crossref_primary_10_1007_s40843_024_2980_1
crossref_primary_10_1002_adfm_202010155
crossref_primary_10_1016_j_solmat_2023_112340
crossref_primary_10_1002_admi_202100061
crossref_primary_10_1002_smm2_1133
crossref_primary_10_1016_j_nanoen_2024_109850
crossref_primary_10_1016_j_carbpol_2023_121340
crossref_primary_10_34133_research_0150
crossref_primary_10_1080_00986445_2023_2296053
crossref_primary_10_1016_j_cej_2021_129006
crossref_primary_10_1016_j_polymertesting_2022_107753
crossref_primary_10_1002_adma_202002695
crossref_primary_10_1002_adfm_202414340
crossref_primary_10_1016_j_carbpol_2021_118787
crossref_primary_10_1016_j_jhazmat_2023_132353
crossref_primary_10_1021_acsabm_1c00882
crossref_primary_10_1002_adsu_202100211
crossref_primary_10_1016_j_jmbbm_2020_103820
crossref_primary_10_1016_j_jhazmat_2022_130559
crossref_primary_10_1016_j_seppur_2023_123688
crossref_primary_10_1016_j_jece_2022_108724
crossref_primary_10_1016_j_bmt_2022_11_005
crossref_primary_10_1016_j_seppur_2024_127817
crossref_primary_10_1021_acsomega_2c04397
crossref_primary_10_1016_j_scitotenv_2021_149558
crossref_primary_10_1002_adfm_202422957
crossref_primary_10_1007_s11431_020_1641_2
crossref_primary_10_1016_j_fmre_2022_01_019
crossref_primary_10_1007_s10570_025_06422_0
crossref_primary_10_1002_adma_202314175
crossref_primary_10_1021_acsami_3c07310
crossref_primary_10_1002_smll_202303933
crossref_primary_10_1002_marc_202200814
crossref_primary_10_1039_D4TA02576H
crossref_primary_10_1016_j_susmat_2025_e01340
crossref_primary_10_1016_j_seppur_2024_127256
crossref_primary_10_1002_adfm_202302019
crossref_primary_10_1039_D2MH00361A
crossref_primary_10_1002_smll_202301474
crossref_primary_10_1002_adma_202001222
crossref_primary_10_1002_smll_202307041
crossref_primary_10_1016_j_cej_2020_125441
crossref_primary_10_1002_adma_202103495
crossref_primary_10_1002_smll_202206189
crossref_primary_10_1016_j_cej_2021_129820
crossref_primary_10_1016_j_cej_2024_148909
crossref_primary_10_1016_j_jwpe_2024_105614
crossref_primary_10_1021_acsami_2c00785
crossref_primary_10_1126_sciadv_abo0946
crossref_primary_10_1021_acs_inorgchem_2c03887
crossref_primary_10_1007_s40242_023_2338_4
crossref_primary_10_1002_adfm_202006294
crossref_primary_10_1007_s42765_024_00423_7
crossref_primary_10_1016_j_cej_2024_149394
crossref_primary_10_1002_adma_202312428
crossref_primary_10_1016_j_matt_2025_102038
crossref_primary_10_1002_smll_202206463
crossref_primary_10_1016_j_progpolymsci_2020_101289
crossref_primary_10_1016_j_seppur_2022_120617
crossref_primary_10_1007_s40843_020_1611_9
crossref_primary_10_1016_j_jhazmat_2023_130954
crossref_primary_10_1002_smll_202107619
crossref_primary_10_1016_j_seppur_2023_123502
crossref_primary_10_1016_j_cej_2021_129781
crossref_primary_10_1016_j_cej_2024_149927
crossref_primary_10_1016_j_seta_2023_103199
crossref_primary_10_1039_D1TC01315G
crossref_primary_10_33430_V29N4THIE_2022_0001
crossref_primary_10_1039_D2TA04566D
crossref_primary_10_1177_08853282231189931
crossref_primary_10_1021_acsapm_0c01324
crossref_primary_10_1016_j_ijbiomac_2024_135895
crossref_primary_10_1021_acsabm_4c01221
crossref_primary_10_1002_adfm_202313808
crossref_primary_10_1093_burnst_tkab019
crossref_primary_10_1021_acsomega_2c00204
crossref_primary_10_1016_j_nantod_2022_101720
crossref_primary_10_1073_pnas_2316170121
crossref_primary_10_1016_j_carbpol_2023_121538
crossref_primary_10_1016_j_cej_2025_160687
crossref_primary_10_1021_accountsmr_2c00169
crossref_primary_10_1021_acsbiomaterials_3c00161
crossref_primary_10_1021_acsami_1c02421
crossref_primary_10_1016_j_apcatb_2022_121995
crossref_primary_10_1016_j_chemosphere_2021_130274
crossref_primary_10_1246_bcsj_20230146
crossref_primary_10_1021_acsami_0c22702
crossref_primary_10_1002_mame_202100242
crossref_primary_10_1016_j_matdes_2020_109144
crossref_primary_10_1016_j_cej_2023_143532
crossref_primary_10_1002_app_56068
crossref_primary_10_1039_D4TA00069B
crossref_primary_10_1016_j_jhazmat_2022_129018
crossref_primary_10_3390_ijms25105152
crossref_primary_10_1021_acsnano_0c06673
crossref_primary_10_1016_j_jhazmat_2022_130594
crossref_primary_10_1002_cjoc_202300279
crossref_primary_10_1007_s12274_020_3274_y
crossref_primary_10_1021_acs_chemmater_1c00015
crossref_primary_10_1016_j_carbpol_2022_119574
crossref_primary_10_1016_j_jhazmat_2021_126485
crossref_primary_10_1016_j_cej_2024_152418
crossref_primary_10_1002_smtd_202000963
crossref_primary_10_1016_j_colsurfa_2023_132617
Cites_doi 10.1002/adma.201200197
10.1002/anie.201310151
10.1016/S0043-1354(02)00225-7
10.1002/adma.201302406
10.1038/ncomms2818
10.1039/c2ee21848h
10.1021/am302338x
10.1002/anie.201400775
10.1002/adma.201601812
10.1002/adfm.201201323
10.1038/466182a
10.1002/adfm.201200888
10.1002/anie.201207969
10.1039/C7TA01661A
10.1126/sciadv.1500849
10.1002/adma.201706807
10.1021/nn4020533
10.1021/am403266v
10.1002/marc.201600746
10.1016/j.jhazmat.2013.06.042
10.1021/acsami.6b01623
10.1038/ncomms2027
10.1021/cm4025827
10.1126/science.1084282
10.1038/srep12908
10.1039/C7RA01990D
10.1146/annurev-matsci-082908-145419
10.1002/adfm.201702926
10.1039/C5TA01014D
10.1038/ncomms5328
10.1002/anie.201200710
10.1016/j.actamat.2011.04.046
10.1126/science.1120937
10.1016/j.carbon.2016.01.038
10.1016/j.micromeso.2016.04.039
10.1002/adma.201504313
10.1038/s41467-019-08643-x
10.1038/nnano.2008.136
10.1002/adfm.201202662
10.1002/adfm.201900412
10.1038/ncomms6802
10.1038/nnano.2017.33
10.1002/adma.201204576
10.1038/srep02117
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201908249
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32080931
10_1002_adma_201908249
ADMA201908249
Genre article
Journal Article
GrantInformation_xml – fundername: State Key Laboratory of Chemical Engineering
  funderid: SKL‐ChE‐16T02
– fundername: National Natural Science Foundation of China
  funderid: 21674098; 51722306
– fundername: State Key Laboratory of Chemical Engineering
  grantid: SKL-ChE-16T02
– fundername: National Natural Science Foundation of China
  grantid: 51722306
– fundername: National Natural Science Foundation of China
  grantid: 21674098
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4789-ee82b84ecb3d46451d04f8550e98aee703fe92c0a3311dfe0d2d3e0acf43b01f3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:09:54 EDT 2025
Fri Jul 25 04:54:07 EDT 2025
Wed Feb 19 02:31:11 EST 2025
Tue Jul 01 02:32:44 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Wed Jan 22 16:34:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords directional freezing
liquid recycling
fast liquid absorption
tortuosity
thermal responsiveness
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4789-ee82b84ecb3d46451d04f8550e98aee703fe92c0a3311dfe0d2d3e0acf43b01f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3348-6129
PMID 32080931
PQID 2386847680
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2387250859
proquest_journals_2386847680
pubmed_primary_32080931
crossref_primary_10_1002_adma_201908249
crossref_citationtrail_10_1002_adma_201908249
wiley_primary_10_1002_adma_201908249_ADMA201908249
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 79
2015; 1
2017; 7
2002; 36
2013; 3
2013; 25
2013; 4
2015; 3
2013; 23
2019; 10
2010; 466
2016; 100
2008; 3
2011; 59
2013; 7
2013; 5
2013; 260
2015; 7
2012; 51
2006; 311
2016; 5
2014; 5
2012; 3
2017; 38
2017; 12
2013; 52
2017
2019; 29
2018; 30
2003; 302
2016; 28
2012; 24
2012; 22
2012; 5
2016; 8
2016; 230
2014; 53
2009; 39
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
Zhao Q. (e_1_2_5_44_1) 2015; 79
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 36
  start-page: 5029
  year: 2002
  publication-title: Water Res.
– volume: 52
  start-page: 1986
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 3612
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 9793
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 4920
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2015
  publication-title: Sci. Rep.
– volume: 39
  start-page: 445
  year: 2009
  publication-title: Annu. Rev. Mater. Res.
– volume: 466
  start-page: 182
  year: 2010
  publication-title: Nature
– volume: 22
  start-page: 4421
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 311
  start-page: 515
  year: 2006
  publication-title: Science
– volume: 3
  start-page: 1025
  year: 2012
  publication-title: Nat. Commun.
– volume: 5
  start-page: 4328
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  start-page: 800
  year: 2019
  publication-title: Nat. Commun.
– volume: 100
  start-page: 456
  year: 2016
  publication-title: Carbon
– volume: 5
  start-page: 774
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 260
  start-page: 796
  year: 2013
  publication-title: J. Hazard. Mater.
– volume: 53
  start-page: 5556
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 79
  start-page: 49
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 3
  start-page: 2117
  year: 2013
  publication-title: Sci. Rep.
– volume: 24
  start-page: 4144
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5802
  year: 2014
  publication-title: Nat. Commun.
– volume: 25
  start-page: 4551
  year: 2013
  publication-title: Chem. Mater.
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 2881
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 59
  start-page: 5135
  year: 2011
  publication-title: Acta Mater.
– volume: 230
  start-page: 25
  year: 2016
  publication-title: Microporous Mesoporous Mater.
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 7908
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1777
  year: 2013
  publication-title: Nat. Commun.
– volume: 3
  start-page: 332
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 6875
  year: 2013
  publication-title: ACS Nano
– volume: 51
  start-page: 5101
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 302
  start-page: 2082
  year: 2003
  publication-title: Science
– volume: 5
  start-page: 8861
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 50
  year: 2016
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2554
  year: 2013
  publication-title: Adv. Mater.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 12
  start-page: 434
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 5658
  year: 2013
  publication-title: Adv. Mater.
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.201200197
– ident: e_1_2_5_20_1
  doi: 10.1002/anie.201310151
– ident: e_1_2_5_41_1
  doi: 10.1016/S0043-1354(02)00225-7
– ident: e_1_2_5_10_1
  doi: 10.1002/adma.201302406
– ident: e_1_2_5_13_1
  doi: 10.1038/ncomms2818
– ident: e_1_2_5_16_1
  doi: 10.1039/c2ee21848h
– volume: 79
  start-page: 49
  year: 2015
  ident: e_1_2_5_44_1
  publication-title: Prog. Polym. Sci.
– ident: e_1_2_5_22_1
  doi: 10.1021/am302338x
– ident: e_1_2_5_18_1
  doi: 10.1002/anie.201400775
– ident: e_1_2_5_3_1
  doi: 10.1002/adma.201601812
– ident: e_1_2_5_39_1
  doi: 10.1002/adfm.201201323
– ident: e_1_2_5_1_1
  doi: 10.1038/466182a
– ident: e_1_2_5_6_1
  doi: 10.1002/adfm.201200888
– ident: e_1_2_5_19_1
  doi: 10.1002/anie.201207969
– ident: e_1_2_5_26_1
  doi: 10.1039/C7TA01661A
– ident: e_1_2_5_29_1
  doi: 10.1126/sciadv.1500849
– ident: e_1_2_5_32_1
  doi: 10.1002/adma.201706807
– ident: e_1_2_5_28_1
  doi: 10.1021/nn4020533
– ident: e_1_2_5_24_1
  doi: 10.1021/am403266v
– ident: e_1_2_5_43_1
  doi: 10.1002/marc.201600746
– ident: e_1_2_5_37_1
  doi: 10.1016/j.jhazmat.2013.06.042
– ident: e_1_2_5_21_1
  doi: 10.1021/acsami.6b01623
– ident: e_1_2_5_15_1
  doi: 10.1038/ncomms2027
– ident: e_1_2_5_40_1
  doi: 10.1021/cm4025827
– ident: e_1_2_5_2_1
  doi: 10.1126/science.1084282
– ident: e_1_2_5_27_1
  doi: 10.1038/srep12908
– ident: e_1_2_5_23_1
  doi: 10.1039/C7RA01990D
– ident: e_1_2_5_45_1
  doi: 10.1146/annurev-matsci-082908-145419
– ident: e_1_2_5_12_1
  doi: 10.1002/adfm.201702926
– ident: e_1_2_5_25_1
  doi: 10.1039/C5TA01014D
– ident: e_1_2_5_5_1
  doi: 10.1038/ncomms5328
– ident: e_1_2_5_4_1
  doi: 10.1002/anie.201200710
– ident: e_1_2_5_38_1
  doi: 10.1016/j.actamat.2011.04.046
– ident: e_1_2_5_31_1
  doi: 10.1126/science.1120937
– ident: e_1_2_5_36_1
  doi: 10.1016/j.carbon.2016.01.038
– ident: e_1_2_5_42_1
  doi: 10.1016/j.micromeso.2016.04.039
– ident: e_1_2_5_30_1
  doi: 10.1002/adma.201504313
– ident: e_1_2_5_34_1
  doi: 10.1038/s41467-019-08643-x
– ident: e_1_2_5_14_1
  doi: 10.1038/nnano.2008.136
– ident: e_1_2_5_17_1
  doi: 10.1002/adfm.201202662
– ident: e_1_2_5_33_1
  doi: 10.1002/adfm.201900412
– ident: e_1_2_5_11_1
  doi: 10.1038/ncomms6802
– ident: e_1_2_5_7_1
  doi: 10.1038/nnano.2017.33
– ident: e_1_2_5_9_1
  doi: 10.1002/adma.201204576
– ident: e_1_2_5_35_1
  doi: 10.1038/srep02117
SSID ssj0009606
Score 2.636511
Snippet Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1908249
SubjectTerms Absorption
Astronauts
Compressing
Crude oil
directional freezing
Energy conservation
fast liquid absorption
Freezing
Hemostatics
liquid recycling
Materials science
Oil spills
Polyurethane resins
Recovering
Recycling
Shape effects
Shape memory
Sponges
thermal responsiveness
Tortuosity
Title Smart Sponge for Fast Liquid Absorption and Thermal Responsive Self‐Squeezing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201908249
https://www.ncbi.nlm.nih.gov/pubmed/32080931
https://www.proquest.com/docview/2386847680
https://www.proquest.com/docview/2387250859
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v8wbEQSfqm2Sdu3jUMcQL-AUfCtJeiLi7NRtPvjkT_A3-kvMSbvOKSLoS6H0JE1zLvnSnHwhZEfK2IQyijwhpLQXzrwEAuMhFVaGC1uJxA3Op2dR60ocX4fXn3bxF_wQ1Q839AwXr9HBpertj0hDZeZ4gwI8s1vgDj5M2EJUdDHij0J47sj2eOglkYiHrI0-2x8vPj4qfYOa48jVDT3NWSKHjS4yTu72Bn21p1--8Dn-56vmyEyJS2mjMKR5MgH5Apn-xFa4SM7b99bOaPuhm98AtWCXNmWvT09uHwe3GW2oXvfJxR8q84xa87Mhv0MvyhzcZ6Bt6Jj317c2zp1fbI1L5Kp5dHnQ8srzGDwt6nHiAcRMxQK04hkuiAaZLwwSokESSwAbOwwkTPuSc6toA37GMg6-1EZw5QeGL5PJvJvDKqHGiikdgAiVEkxjKnRU1zzgoTEJCF4j3lAfqS7JyvHMjE5a0CyzFDsqrTqqRnYr-YeCpuNHyY2hetPSXXupxS2RHaaj2K-R7eqxdTRcPZE5dAdOpm7xYhzaKlYKs6hexZkF3gkPaoQ55f7ShrRxeNqo7tb-UmidTDGc-bscog0y2X8awKaFR3215VzgA1eDBm8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAeSvlfaMFIIE5pE9vJxgcOK5bVlu4WqdtKvQXHGaOqS7bt7oLoiUfgVXgVHoEnYZy_siCEhNQDl0hRJo5jz4w_j8efAZ5qHdtQR5EnpdZ0EdxTGFjPUWFlbmFLabfBebgb9Q_k68PwcAm-1nthSn6IJuDmLKPw187AXUB664I1VGcFcVDgDu2Wqsqr3MFPH2nWNn2x3aUufsZ579X-y75XHSzgGdmOlYcY8zSWaFKRuZW9IPOldcxeqGKNSEZgUXHjayGoxhb9jGcCfW2sFKkfWEHlXoGr7hhxR9ff3btgrHITgoLeT4SeimRc80T6fGuxvovj4G_gdhErF4Nd7wZ8q5upzHE53pzP0k1z_guD5H_VjmuwWkFv1ilt5SYsYX4LVn4iZLwNb0bvyZTY6GSSv0NGeJ719HTGBken86OMddLp5KxwsUznGSMLo1FtzPaqNOMPyEY4tt8_fxm58MA5lXgHDi7lj-7Ccj7J8T4wS2KpCVCGaSq5cdneUduIQITWKpSiBV6tAImp-NjdsSDjpGSS5onrmKTpmBY8b-RPSiaSP0qu1_qUVB5pmhA0iwiJRLHfgifNY_IlboFI5ziZFzJtgsRxSEXcK_Ww-ZTgNLdQImgBL7TpL3VIOt1hp7l78C8vPYZr_f3hIBls7-48hOvcBTqKlKl1WJ6dzXGD0OAsfVTYH4O3l62oPwCUXWXO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0YKGAkEKu0ie1k4gWLEcOopQ9Qh0rdBTu5rqoOmaEzA6IrPoFP4Vf4Bb6Ea-dRBoSQkLpgEynKjeP4PnxsXx8DPNY6tbFOkkBKrekieKAwsoGjwircwpbSboPz9k6yvidf7sf7S_C12QtT8UO0E27OM3y8dg4-KezaKWmoLjxvUOTO7JaqTqvcxE8fadA2fbbRJw0_4Xzw4s3z9aA-VyDIZTdVAWLKTSoxN6JwC3tREUrriL1QpRqRfMCi4nmohaAKWwwLXggMdW6lMGFkBZV7Ds7LJFTusIj-7ilhlRsPeHY_EQcqkWlDExnytcX6LnaDv2HbRajs-7rBFfjWtFKV4nK0Op-Z1fzkFwLJ_6kZr8LlGnizXuUp12AJy-tw6Sc6xhvwaviOHIkNJ-PyABmheTbQ0xnbOnw_PyxYz0zHxz7AMl0WjPyL-rQR262TjD8gG-LIfv_8ZegmB06oxJuwdyZ_dAuWy3GJd4BZEjN5hDI2RvLc5Xon3VxEIrZWoRQdCBr9Z3nNxu4OBRllFY80z5xislYxHXjayk8qHpI_Sq405pTV8WiaETBLCIckadiBR-1jiiRueUiXOJ57mS4B4jSmIm5XZth-SnAaWSgRdYB7Y_pLHbJef7vX3t39l5cewoXX_UG2tbGzeQ8ucjfL4fOlVmB5djzH-wQFZ-aB9z4Gb8_aTn8A4ShkfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Sponge+for+Fast+Liquid+Absorption+and+Thermal+Responsive+Self%E2%80%90Squeezing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cui%2C+Ying&rft.au=Wang%2C+Yujie&rft.au=Shao%2C+Ziyu&rft.au=Mao%2C+Anran&rft.date=2020-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201908249&rft.externalDBID=10.1002%252Fadma.201908249&rft.externalDocID=ADMA201908249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon