Smart Sponge for Fast Liquid Absorption and Thermal Responsive Self‐Squeezing
Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 14; pp. e1908249 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost‐effective and energy‐saving manner, especially for viscous liquids such as crude oil. A smart polyurethane‐based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as‐prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary (“tortuosity effect”). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well‐defined porous structure and thermal responsive self‐squeezing capability have great potential in efficient liquid absorption and recycling.
A smart porous sponge with aligned channel structure is fabricated by directional freezing. Compared to sponges with random porous structure, the as‐prepared sponge has larger liquid absorption speed due to its lower tortuosity. The absorbed liquid can be remotely squeezed out due to thermally responsive shape memory effect. Such sponges have great potential in efficient liquid absorption and recycling. |
---|---|
AbstractList | Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost-effective and energy-saving manner, especially for viscous liquids such as crude oil. A smart polyurethane-based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as-prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary ("tortuosity effect"). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well-defined porous structure and thermal responsive self-squeezing capability have great potential in efficient liquid absorption and recycling. Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost‐effective and energy‐saving manner, especially for viscous liquids such as crude oil. A smart polyurethane‐based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as‐prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary (“tortuosity effect”). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well‐defined porous structure and thermal responsive self‐squeezing capability have great potential in efficient liquid absorption and recycling. A smart porous sponge with aligned channel structure is fabricated by directional freezing. Compared to sponges with random porous structure, the as‐prepared sponge has larger liquid absorption speed due to its lower tortuosity. The absorbed liquid can be remotely squeezed out due to thermally responsive shape memory effect. Such sponges have great potential in efficient liquid absorption and recycling. Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost-effective and energy-saving manner, especially for viscous liquids such as crude oil. A smart polyurethane-based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as-prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary ("tortuosity effect"). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well-defined porous structure and thermal responsive self-squeezing capability have great potential in efficient liquid absorption and recycling.Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis, astronauts' urine recycling, and so on. Although many liquid absorbing materials have been developed, it still remains a grand challenge to achieve both fast absorption and efficient recycling in a cost-effective and energy-saving manner, especially for viscous liquids such as crude oil. A smart polyurethane-based porous sponge with aligned channel structure is prepared by directional freezing. Compared to common sponges with random porous structure, the as-prepared smart sponge has larger liquid absorption speed due to its lower tortuosity and stronger capillary ("tortuosity effect"). More importantly, the absorbed liquid can be remotely squeezed out due to a thermally responsive shape memory effect when the sponge is heated up. Such smart sponges with well-defined porous structure and thermal responsive self-squeezing capability have great potential in efficient liquid absorption and recycling. |
Author | Bai, Hao Wang, Yujie Gao, Weiwei Cui, Ying Shao, Ziyu Mao, Anran |
Author_xml | – sequence: 1 givenname: Ying surname: Cui fullname: Cui, Ying organization: Zhejiang University – sequence: 2 givenname: Yujie surname: Wang fullname: Wang, Yujie organization: Zhejiang University – sequence: 3 givenname: Ziyu surname: Shao fullname: Shao, Ziyu organization: Zhejiang University – sequence: 4 givenname: Anran surname: Mao fullname: Mao, Anran organization: Zhejiang University – sequence: 5 givenname: Weiwei surname: Gao fullname: Gao, Weiwei organization: Zhejiang University – sequence: 6 givenname: Hao orcidid: 0000-0002-3348-6129 surname: Bai fullname: Bai, Hao email: hbai@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32080931$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAURi0EKgN0y7Ky1E03Ga5_krGXI1raSoOQOrCOnPiaGiXxYCet6KqP0Gfsk9SjoSAhVV3dhc_xvfq-I7I_hAEJOWUwZwD8zNjezDkwDYpLvUdmrOSskKDLfTIDLcpCV1IdkqOU7gBAV1C9IoeCg8qPbEau1r2JI11vwnCL1IVIL0wa6crfT97SZZNC3Iw-DNQMll5_xdibjn7BlPnkvyFdY-d-__y1vp8Qf_jh9oQcONMlfP04j8nNxYfr80_F6urj5_PlqmjlQukCUfFGSWwbYWUlS2ZBOlWWgFoZxAUIh5q3YIRgzDoEy61AMK2TogHmxDF5t_t3E0Penca696nFrjMDhinVXKgFL0GVOqNvX6B3YYpDvm5LVUouKgWZevNITU2Ptt5En5N5qP9GlYH5DmhjSCmie0IY1Nsu6m0X9VMXWZAvhNaPZhvmGI3v_q3pnfbdd_jwnyX18v3l8tn9A2QZnjY |
CitedBy_id | crossref_primary_10_1016_j_mtbio_2024_100946 crossref_primary_10_1039_D4TA00349G crossref_primary_10_1016_j_cej_2021_131017 crossref_primary_10_1002_adma_202100074 crossref_primary_10_1021_acsnano_2c02606 crossref_primary_10_1016_j_cej_2022_137482 crossref_primary_10_1021_acsami_1c13574 crossref_primary_10_1007_s10570_024_06178_z crossref_primary_10_1016_j_seppur_2024_128271 crossref_primary_10_1038_s41467_024_53549_y crossref_primary_10_1021_acsami_0c22245 crossref_primary_10_1016_j_jhazmat_2022_129346 crossref_primary_10_1002_jbm_a_37268 crossref_primary_10_1016_j_memsci_2021_119643 crossref_primary_10_1021_acsomega_0c00899 crossref_primary_10_1002_adma_202414543 crossref_primary_10_1039_D0NH00246A crossref_primary_10_1016_j_scitotenv_2022_155184 crossref_primary_10_1002_mabi_202000314 crossref_primary_10_1002_mabi_202200020 crossref_primary_10_1007_s40843_021_1917_1 crossref_primary_10_1016_j_bios_2020_112722 crossref_primary_10_1016_j_cej_2022_135233 crossref_primary_10_1021_acssuschemeng_0c00910 crossref_primary_10_1038_s41467_022_31717_2 crossref_primary_10_1038_s44221_023_00190_6 crossref_primary_10_1016_j_jmst_2023_02_023 crossref_primary_10_1016_j_desal_2025_118725 crossref_primary_10_1039_D4CS00673A crossref_primary_10_1016_j_ijbiomac_2022_09_054 crossref_primary_10_1021_acsnano_1c10093 crossref_primary_10_1016_j_msec_2022_112698 crossref_primary_10_1002_ghg_2172 crossref_primary_10_1016_j_ijbiomac_2023_124166 crossref_primary_10_1016_j_cej_2020_124623 crossref_primary_10_1021_acsanm_2c05243 crossref_primary_10_1039_D3CC00984J crossref_primary_10_1002_advs_202101210 crossref_primary_10_1016_j_apsusc_2022_154192 crossref_primary_10_1016_j_pmatsci_2021_100870 crossref_primary_10_1021_acs_langmuir_2c01162 crossref_primary_10_1007_s40843_024_2980_1 crossref_primary_10_1002_adfm_202010155 crossref_primary_10_1016_j_solmat_2023_112340 crossref_primary_10_1002_admi_202100061 crossref_primary_10_1002_smm2_1133 crossref_primary_10_1016_j_nanoen_2024_109850 crossref_primary_10_1016_j_carbpol_2023_121340 crossref_primary_10_34133_research_0150 crossref_primary_10_1080_00986445_2023_2296053 crossref_primary_10_1016_j_cej_2021_129006 crossref_primary_10_1016_j_polymertesting_2022_107753 crossref_primary_10_1002_adma_202002695 crossref_primary_10_1002_adfm_202414340 crossref_primary_10_1016_j_carbpol_2021_118787 crossref_primary_10_1016_j_jhazmat_2023_132353 crossref_primary_10_1021_acsabm_1c00882 crossref_primary_10_1002_adsu_202100211 crossref_primary_10_1016_j_jmbbm_2020_103820 crossref_primary_10_1016_j_jhazmat_2022_130559 crossref_primary_10_1016_j_seppur_2023_123688 crossref_primary_10_1016_j_jece_2022_108724 crossref_primary_10_1016_j_bmt_2022_11_005 crossref_primary_10_1016_j_seppur_2024_127817 crossref_primary_10_1021_acsomega_2c04397 crossref_primary_10_1016_j_scitotenv_2021_149558 crossref_primary_10_1002_adfm_202422957 crossref_primary_10_1007_s11431_020_1641_2 crossref_primary_10_1016_j_fmre_2022_01_019 crossref_primary_10_1007_s10570_025_06422_0 crossref_primary_10_1002_adma_202314175 crossref_primary_10_1021_acsami_3c07310 crossref_primary_10_1002_smll_202303933 crossref_primary_10_1002_marc_202200814 crossref_primary_10_1039_D4TA02576H crossref_primary_10_1016_j_susmat_2025_e01340 crossref_primary_10_1016_j_seppur_2024_127256 crossref_primary_10_1002_adfm_202302019 crossref_primary_10_1039_D2MH00361A crossref_primary_10_1002_smll_202301474 crossref_primary_10_1002_adma_202001222 crossref_primary_10_1002_smll_202307041 crossref_primary_10_1016_j_cej_2020_125441 crossref_primary_10_1002_adma_202103495 crossref_primary_10_1002_smll_202206189 crossref_primary_10_1016_j_cej_2021_129820 crossref_primary_10_1016_j_cej_2024_148909 crossref_primary_10_1016_j_jwpe_2024_105614 crossref_primary_10_1021_acsami_2c00785 crossref_primary_10_1126_sciadv_abo0946 crossref_primary_10_1021_acs_inorgchem_2c03887 crossref_primary_10_1007_s40242_023_2338_4 crossref_primary_10_1002_adfm_202006294 crossref_primary_10_1007_s42765_024_00423_7 crossref_primary_10_1016_j_cej_2024_149394 crossref_primary_10_1002_adma_202312428 crossref_primary_10_1016_j_matt_2025_102038 crossref_primary_10_1002_smll_202206463 crossref_primary_10_1016_j_progpolymsci_2020_101289 crossref_primary_10_1016_j_seppur_2022_120617 crossref_primary_10_1007_s40843_020_1611_9 crossref_primary_10_1016_j_jhazmat_2023_130954 crossref_primary_10_1002_smll_202107619 crossref_primary_10_1016_j_seppur_2023_123502 crossref_primary_10_1016_j_cej_2021_129781 crossref_primary_10_1016_j_cej_2024_149927 crossref_primary_10_1016_j_seta_2023_103199 crossref_primary_10_1039_D1TC01315G crossref_primary_10_33430_V29N4THIE_2022_0001 crossref_primary_10_1039_D2TA04566D crossref_primary_10_1177_08853282231189931 crossref_primary_10_1021_acsapm_0c01324 crossref_primary_10_1016_j_ijbiomac_2024_135895 crossref_primary_10_1021_acsabm_4c01221 crossref_primary_10_1002_adfm_202313808 crossref_primary_10_1093_burnst_tkab019 crossref_primary_10_1021_acsomega_2c00204 crossref_primary_10_1016_j_nantod_2022_101720 crossref_primary_10_1073_pnas_2316170121 crossref_primary_10_1016_j_carbpol_2023_121538 crossref_primary_10_1016_j_cej_2025_160687 crossref_primary_10_1021_accountsmr_2c00169 crossref_primary_10_1021_acsbiomaterials_3c00161 crossref_primary_10_1021_acsami_1c02421 crossref_primary_10_1016_j_apcatb_2022_121995 crossref_primary_10_1016_j_chemosphere_2021_130274 crossref_primary_10_1246_bcsj_20230146 crossref_primary_10_1021_acsami_0c22702 crossref_primary_10_1002_mame_202100242 crossref_primary_10_1016_j_matdes_2020_109144 crossref_primary_10_1016_j_cej_2023_143532 crossref_primary_10_1002_app_56068 crossref_primary_10_1039_D4TA00069B crossref_primary_10_1016_j_jhazmat_2022_129018 crossref_primary_10_3390_ijms25105152 crossref_primary_10_1021_acsnano_0c06673 crossref_primary_10_1016_j_jhazmat_2022_130594 crossref_primary_10_1002_cjoc_202300279 crossref_primary_10_1007_s12274_020_3274_y crossref_primary_10_1021_acs_chemmater_1c00015 crossref_primary_10_1016_j_carbpol_2022_119574 crossref_primary_10_1016_j_jhazmat_2021_126485 crossref_primary_10_1016_j_cej_2024_152418 crossref_primary_10_1002_smtd_202000963 crossref_primary_10_1016_j_colsurfa_2023_132617 |
Cites_doi | 10.1002/adma.201200197 10.1002/anie.201310151 10.1016/S0043-1354(02)00225-7 10.1002/adma.201302406 10.1038/ncomms2818 10.1039/c2ee21848h 10.1021/am302338x 10.1002/anie.201400775 10.1002/adma.201601812 10.1002/adfm.201201323 10.1038/466182a 10.1002/adfm.201200888 10.1002/anie.201207969 10.1039/C7TA01661A 10.1126/sciadv.1500849 10.1002/adma.201706807 10.1021/nn4020533 10.1021/am403266v 10.1002/marc.201600746 10.1016/j.jhazmat.2013.06.042 10.1021/acsami.6b01623 10.1038/ncomms2027 10.1021/cm4025827 10.1126/science.1084282 10.1038/srep12908 10.1039/C7RA01990D 10.1146/annurev-matsci-082908-145419 10.1002/adfm.201702926 10.1039/C5TA01014D 10.1038/ncomms5328 10.1002/anie.201200710 10.1016/j.actamat.2011.04.046 10.1126/science.1120937 10.1016/j.carbon.2016.01.038 10.1016/j.micromeso.2016.04.039 10.1002/adma.201504313 10.1038/s41467-019-08643-x 10.1038/nnano.2008.136 10.1002/adfm.201202662 10.1002/adfm.201900412 10.1038/ncomms6802 10.1038/nnano.2017.33 10.1002/adma.201204576 10.1038/srep02117 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201908249 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32080931 10_1002_adma_201908249 ADMA201908249 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: State Key Laboratory of Chemical Engineering funderid: SKL‐ChE‐16T02 – fundername: National Natural Science Foundation of China funderid: 21674098; 51722306 – fundername: State Key Laboratory of Chemical Engineering grantid: SKL-ChE-16T02 – fundername: National Natural Science Foundation of China grantid: 51722306 – fundername: National Natural Science Foundation of China grantid: 21674098 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4789-ee82b84ecb3d46451d04f8550e98aee703fe92c0a3311dfe0d2d3e0acf43b01f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:09:54 EDT 2025 Fri Jul 25 04:54:07 EDT 2025 Wed Feb 19 02:31:11 EST 2025 Tue Jul 01 02:32:44 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Wed Jan 22 16:34:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | directional freezing liquid recycling fast liquid absorption tortuosity thermal responsiveness |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4789-ee82b84ecb3d46451d04f8550e98aee703fe92c0a3311dfe0d2d3e0acf43b01f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3348-6129 |
PMID | 32080931 |
PQID | 2386847680 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2387250859 proquest_journals_2386847680 pubmed_primary_32080931 crossref_primary_10_1002_adma_201908249 crossref_citationtrail_10_1002_adma_201908249 wiley_primary_10_1002_adma_201908249_ADMA201908249 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 79 2015; 1 2017; 7 2002; 36 2013; 3 2013; 25 2013; 4 2015; 3 2013; 23 2019; 10 2010; 466 2016; 100 2008; 3 2011; 59 2013; 7 2013; 5 2013; 260 2015; 7 2012; 51 2006; 311 2016; 5 2014; 5 2012; 3 2017; 38 2017; 12 2013; 52 2017 2019; 29 2018; 30 2003; 302 2016; 28 2012; 24 2012; 22 2012; 5 2016; 8 2016; 230 2014; 53 2009; 39 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 Zhao Q. (e_1_2_5_44_1) 2015; 79 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – year: 2017 publication-title: Adv. Funct. Mater. – volume: 36 start-page: 5029 year: 2002 publication-title: Water Res. – volume: 52 start-page: 1986 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 53 start-page: 3612 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 9793 year: 2017 publication-title: J. Mater. Chem. A – volume: 22 start-page: 4920 year: 2012 publication-title: Adv. Funct. Mater. – volume: 7 year: 2015 publication-title: Sci. Rep. – volume: 39 start-page: 445 year: 2009 publication-title: Annu. Rev. Mater. Res. – volume: 466 start-page: 182 year: 2010 publication-title: Nature – volume: 22 start-page: 4421 year: 2012 publication-title: Adv. Funct. Mater. – volume: 311 start-page: 515 year: 2006 publication-title: Science – volume: 3 start-page: 1025 year: 2012 publication-title: Nat. Commun. – volume: 5 start-page: 4328 year: 2014 publication-title: Nat. Commun. – volume: 10 start-page: 800 year: 2019 publication-title: Nat. Commun. – volume: 100 start-page: 456 year: 2016 publication-title: Carbon – volume: 5 start-page: 774 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 260 start-page: 796 year: 2013 publication-title: J. Hazard. Mater. – volume: 53 start-page: 5556 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 79 start-page: 49 year: 2015 publication-title: Prog. Polym. Sci. – volume: 3 start-page: 2117 year: 2013 publication-title: Sci. Rep. – volume: 24 start-page: 4144 year: 2012 publication-title: Adv. Mater. – volume: 5 start-page: 5802 year: 2014 publication-title: Nat. Commun. – volume: 25 start-page: 4551 year: 2013 publication-title: Chem. Mater. – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 2881 year: 2013 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 59 start-page: 5135 year: 2011 publication-title: Acta Mater. – volume: 230 start-page: 25 year: 2016 publication-title: Microporous Mesoporous Mater. – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 7908 year: 2012 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1777 year: 2013 publication-title: Nat. Commun. – volume: 3 start-page: 332 year: 2008 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 6875 year: 2013 publication-title: ACS Nano – volume: 51 start-page: 5101 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 302 start-page: 2082 year: 2003 publication-title: Science – volume: 5 start-page: 8861 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 50 year: 2016 publication-title: Adv. Mater. – volume: 25 start-page: 2554 year: 2013 publication-title: Adv. Mater. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 12 start-page: 434 year: 2017 publication-title: Nat. Nanotechnol. – volume: 25 start-page: 5658 year: 2013 publication-title: Adv. Mater. – ident: e_1_2_5_8_1 doi: 10.1002/adma.201200197 – ident: e_1_2_5_20_1 doi: 10.1002/anie.201310151 – ident: e_1_2_5_41_1 doi: 10.1016/S0043-1354(02)00225-7 – ident: e_1_2_5_10_1 doi: 10.1002/adma.201302406 – ident: e_1_2_5_13_1 doi: 10.1038/ncomms2818 – ident: e_1_2_5_16_1 doi: 10.1039/c2ee21848h – volume: 79 start-page: 49 year: 2015 ident: e_1_2_5_44_1 publication-title: Prog. Polym. Sci. – ident: e_1_2_5_22_1 doi: 10.1021/am302338x – ident: e_1_2_5_18_1 doi: 10.1002/anie.201400775 – ident: e_1_2_5_3_1 doi: 10.1002/adma.201601812 – ident: e_1_2_5_39_1 doi: 10.1002/adfm.201201323 – ident: e_1_2_5_1_1 doi: 10.1038/466182a – ident: e_1_2_5_6_1 doi: 10.1002/adfm.201200888 – ident: e_1_2_5_19_1 doi: 10.1002/anie.201207969 – ident: e_1_2_5_26_1 doi: 10.1039/C7TA01661A – ident: e_1_2_5_29_1 doi: 10.1126/sciadv.1500849 – ident: e_1_2_5_32_1 doi: 10.1002/adma.201706807 – ident: e_1_2_5_28_1 doi: 10.1021/nn4020533 – ident: e_1_2_5_24_1 doi: 10.1021/am403266v – ident: e_1_2_5_43_1 doi: 10.1002/marc.201600746 – ident: e_1_2_5_37_1 doi: 10.1016/j.jhazmat.2013.06.042 – ident: e_1_2_5_21_1 doi: 10.1021/acsami.6b01623 – ident: e_1_2_5_15_1 doi: 10.1038/ncomms2027 – ident: e_1_2_5_40_1 doi: 10.1021/cm4025827 – ident: e_1_2_5_2_1 doi: 10.1126/science.1084282 – ident: e_1_2_5_27_1 doi: 10.1038/srep12908 – ident: e_1_2_5_23_1 doi: 10.1039/C7RA01990D – ident: e_1_2_5_45_1 doi: 10.1146/annurev-matsci-082908-145419 – ident: e_1_2_5_12_1 doi: 10.1002/adfm.201702926 – ident: e_1_2_5_25_1 doi: 10.1039/C5TA01014D – ident: e_1_2_5_5_1 doi: 10.1038/ncomms5328 – ident: e_1_2_5_4_1 doi: 10.1002/anie.201200710 – ident: e_1_2_5_38_1 doi: 10.1016/j.actamat.2011.04.046 – ident: e_1_2_5_31_1 doi: 10.1126/science.1120937 – ident: e_1_2_5_36_1 doi: 10.1016/j.carbon.2016.01.038 – ident: e_1_2_5_42_1 doi: 10.1016/j.micromeso.2016.04.039 – ident: e_1_2_5_30_1 doi: 10.1002/adma.201504313 – ident: e_1_2_5_34_1 doi: 10.1038/s41467-019-08643-x – ident: e_1_2_5_14_1 doi: 10.1038/nnano.2008.136 – ident: e_1_2_5_17_1 doi: 10.1002/adfm.201202662 – ident: e_1_2_5_33_1 doi: 10.1002/adfm.201900412 – ident: e_1_2_5_11_1 doi: 10.1038/ncomms6802 – ident: e_1_2_5_7_1 doi: 10.1038/nnano.2017.33 – ident: e_1_2_5_9_1 doi: 10.1002/adma.201204576 – ident: e_1_2_5_35_1 doi: 10.1038/srep02117 |
SSID | ssj0009606 |
Score | 2.636511 |
Snippet | Liquid absorption and recycling play a crucial role in many industrial and environmental applications, such as oil spill cleanup and recovery, hemostasis,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1908249 |
SubjectTerms | Absorption Astronauts Compressing Crude oil directional freezing Energy conservation fast liquid absorption Freezing Hemostatics liquid recycling Materials science Oil spills Polyurethane resins Recovering Recycling Shape effects Shape memory Sponges thermal responsiveness Tortuosity |
Title | Smart Sponge for Fast Liquid Absorption and Thermal Responsive Self‐Squeezing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201908249 https://www.ncbi.nlm.nih.gov/pubmed/32080931 https://www.proquest.com/docview/2386847680 https://www.proquest.com/docview/2387250859 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v8wbEQSfqm2Sdu3jUMcQL-AUfCtJeiLi7NRtPvjkT_A3-kvMSbvOKSLoS6H0JE1zLvnSnHwhZEfK2IQyijwhpLQXzrwEAuMhFVaGC1uJxA3Op2dR60ocX4fXn3bxF_wQ1Q839AwXr9HBpertj0hDZeZ4gwI8s1vgDj5M2EJUdDHij0J47sj2eOglkYiHrI0-2x8vPj4qfYOa48jVDT3NWSKHjS4yTu72Bn21p1--8Dn-56vmyEyJS2mjMKR5MgH5Apn-xFa4SM7b99bOaPuhm98AtWCXNmWvT09uHwe3GW2oXvfJxR8q84xa87Mhv0MvyhzcZ6Bt6Jj317c2zp1fbI1L5Kp5dHnQ8srzGDwt6nHiAcRMxQK04hkuiAaZLwwSokESSwAbOwwkTPuSc6toA37GMg6-1EZw5QeGL5PJvJvDKqHGiikdgAiVEkxjKnRU1zzgoTEJCF4j3lAfqS7JyvHMjE5a0CyzFDsqrTqqRnYr-YeCpuNHyY2hetPSXXupxS2RHaaj2K-R7eqxdTRcPZE5dAdOpm7xYhzaKlYKs6hexZkF3gkPaoQ55f7ShrRxeNqo7tb-UmidTDGc-bscog0y2X8awKaFR3215VzgA1eDBm8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAeSvlfaMFIIE5pE9vJxgcOK5bVlu4WqdtKvQXHGaOqS7bt7oLoiUfgVXgVHoEnYZy_siCEhNQDl0hRJo5jz4w_j8efAZ5qHdtQR5EnpdZ0EdxTGFjPUWFlbmFLabfBebgb9Q_k68PwcAm-1nthSn6IJuDmLKPw187AXUB664I1VGcFcVDgDu2Wqsqr3MFPH2nWNn2x3aUufsZ579X-y75XHSzgGdmOlYcY8zSWaFKRuZW9IPOldcxeqGKNSEZgUXHjayGoxhb9jGcCfW2sFKkfWEHlXoGr7hhxR9ff3btgrHITgoLeT4SeimRc80T6fGuxvovj4G_gdhErF4Nd7wZ8q5upzHE53pzP0k1z_guD5H_VjmuwWkFv1ilt5SYsYX4LVn4iZLwNb0bvyZTY6GSSv0NGeJ719HTGBken86OMddLp5KxwsUznGSMLo1FtzPaqNOMPyEY4tt8_fxm58MA5lXgHDi7lj-7Ccj7J8T4wS2KpCVCGaSq5cdneUduIQITWKpSiBV6tAImp-NjdsSDjpGSS5onrmKTpmBY8b-RPSiaSP0qu1_qUVB5pmhA0iwiJRLHfgifNY_IlboFI5ziZFzJtgsRxSEXcK_Ww-ZTgNLdQImgBL7TpL3VIOt1hp7l78C8vPYZr_f3hIBls7-48hOvcBTqKlKl1WJ6dzXGD0OAsfVTYH4O3l62oPwCUXWXO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0YKGAkEKu0ie1k4gWLEcOopQ9Qh0rdBTu5rqoOmaEzA6IrPoFP4Vf4Bb6Ea-dRBoSQkLpgEynKjeP4PnxsXx8DPNY6tbFOkkBKrekieKAwsoGjwircwpbSboPz9k6yvidf7sf7S_C12QtT8UO0E27OM3y8dg4-KezaKWmoLjxvUOTO7JaqTqvcxE8fadA2fbbRJw0_4Xzw4s3z9aA-VyDIZTdVAWLKTSoxN6JwC3tREUrriL1QpRqRfMCi4nmohaAKWwwLXggMdW6lMGFkBZV7Ds7LJFTusIj-7ilhlRsPeHY_EQcqkWlDExnytcX6LnaDv2HbRajs-7rBFfjWtFKV4nK0Op-Z1fzkFwLJ_6kZr8LlGnizXuUp12AJy-tw6Sc6xhvwaviOHIkNJ-PyABmheTbQ0xnbOnw_PyxYz0zHxz7AMl0WjPyL-rQR262TjD8gG-LIfv_8ZegmB06oxJuwdyZ_dAuWy3GJd4BZEjN5hDI2RvLc5Xon3VxEIrZWoRQdCBr9Z3nNxu4OBRllFY80z5xislYxHXjayk8qHpI_Sq405pTV8WiaETBLCIckadiBR-1jiiRueUiXOJ57mS4B4jSmIm5XZth-SnAaWSgRdYB7Y_pLHbJef7vX3t39l5cewoXX_UG2tbGzeQ8ucjfL4fOlVmB5djzH-wQFZ-aB9z4Gb8_aTn8A4ShkfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Sponge+for+Fast+Liquid+Absorption+and+Thermal+Responsive+Self%E2%80%90Squeezing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cui%2C+Ying&rft.au=Wang%2C+Yujie&rft.au=Shao%2C+Ziyu&rft.au=Mao%2C+Anran&rft.date=2020-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201908249&rft.externalDBID=10.1002%252Fadma.201908249&rft.externalDocID=ADMA201908249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |