Flexible Approach to Measurement Error Correction in Case-Control Studies
We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of t...
Saved in:
Published in | Biometrics Vol. 64; no. 4; pp. 1207 - 1214 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.12.2008
Blackwell Publishing Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/j.1541-0420.2008.00999.x |
Cover
Loading…
Abstract | We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. |
---|---|
AbstractList | Summary We investigate the use of prospective likelihood methods to analyze retrospective case–control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case–control sampling scheme can be ignored if one adequately models the distribution of the error‐prone covariates in the case–control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case–control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error‐prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. [PUBLICATION ABSTRACT] We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. Summary We investigate the use of prospective likelihood methods to analyze retrospective case–control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case–control sampling scheme can be ignored if one adequately models the distribution of the error‐prone covariates in the case–control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case–control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error‐prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. /// Nous étudions l'utilisation des méthodes de vraisemblance prospective pour l'analyse rétrospective de données cas-témoin lorsque certaines de covariables sont mesurées avec erreur. Nous montrons que les méthodes prospectives peuvent être appliquées en ignorant le schéma d'échantillonnage cas-témoin si on modélise correctement la distribution des covariables sujettes à erreur dans le dispositif d'échantillonnage cas-témoin. En effet, dans ce cas, les méthodes de vraisemblance prospectives conduisent à des estimateurs consistants, avec des écarts-types asymptotiquement corrects. Cependant la distribution de telles covariables n'est pas la même dans la population et dans l'échantillonnage cas-témoin, imposant ainsi le besoin de modéliser la flexibilité de distribution. Dans cet article, nous illustrons le principe général en modélisant la distribution des covariables continues sujettes à erreur par une distribution normale asymétrisée (skewnormal). La performance de la méthode est évaluée par des études sur simulations, qui donnent des résultats satisfaisants en terme de biais et de recouvrement. Enfin, la méthodes est appliquée à l'analyse de deux jeux de données qui proviennent respectivement d'une étude sur le cholestérol et d'une étude sur le cancer du sein. We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer.SUMMARYWe investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. |
Author | Guolo, A. |
Author_xml | – sequence: 1 givenname: A. surname: Guolo fullname: Guolo, A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18325066$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFnwBEHLhlGdux4xxAaqO2rNSlh1KVm-UkE_CSjRc7Ubf_vl5SFqmn-mJb73vj0RsfkYPe9UhIQmFO4_q0mlOR0RQyBnMGoOYARVHMty_IbC8ckBkAyJRn9MchOQphFa-FAPaKHFLFmQApZ2Rx3uHWVh0mJ5uNd6b-lQwuWaIJo8c19kNy5r3zSem8x3qwrk9sn5QmYFq6fvCuS66HsbEYXpOXrekCvnncj8nN-dn38mt6eXWxKE8u0zrLVZHmrM2ENEaqAiqoM6ipZJg1bWUoSsxzBVVmqEJsUKAQDQJVRaM4b6lsWMWPycepbmz3z4hh0Gsbauw606Mbg5aF4rQQIoIfnoArN_o-9qYZ5YpnOcsj9O4RGqs1Nnrj7dr4e_0voQioCai9C8Fj-x8BvRuGXuld5nqXud4NQ_8dht5G65cn1toOZpfh4I3tnlPg81TgznZ4_-yH9eniahlP0f928q_C4Pzez0T8BQx41NNJt2HA7V43_reWOc-Fvv12oUtZ3ubqVOpl5N9PfGucNj-9DfrmmgHlQIWEnDP-AGE6wz8 |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1186_1471_2288_11_67 crossref_primary_10_1080_27658449_2021_1945743 crossref_primary_10_1111_j_1467_9469_2010_00714_x crossref_primary_10_1016_j_csda_2012_07_018 crossref_primary_10_1093_biostatistics_kxaa037 crossref_primary_10_1093_biostatistics_kxz028 crossref_primary_10_1186_s40488_020_00103_y crossref_primary_10_1080_10485252_2012_687735 crossref_primary_10_1002_sim_5506 crossref_primary_10_1002_bimj_201500009 crossref_primary_10_1007_s00180_019_00888_w crossref_primary_10_1214_10_AOAS446 |
Cites_doi | 10.1002/(SICI)1097-0258(19970130)16:2<169::AID-SIM478>3.0.CO;2-M 10.1093/ajcn/32.12.2546 10.1201/9781420010138 10.2307/2290714 10.1093/comjnl/7.4.308 10.1080/01621459.1995.10476498 10.1080/00949650211425 10.1093/biomet/86.3.541 10.1093/biomet/66.3.403 10.1093/oxfordjournals.aje.a114459 10.1016/S0167-9473(00)00014-1 10.1111/1467-985X.00252 10.1093/biomet/83.4.813 10.1080/01621459.1996.10476940 10.1111/j.0006-341X.1999.00044.x 10.1016/S0304-4076(96)01806-4 10.1056/NEJM198701013160105 |
ContentType | Journal Article |
Copyright | Copyright 2008 The International Biometric Society 2008, The International Biometric Society 2008 International Biometric Society |
Copyright_xml | – notice: Copyright 2008 The International Biometric Society – notice: 2008, The International Biometric Society – notice: 2008 International Biometric Society |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 |
DOI | 10.1111/j.1541-0420.2008.00999.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | ProQuest Computer Science Collection MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 1214 |
ExternalDocumentID | 1595020741 18325066 10_1111_j_1541_0420_2008_00999_x BIOM999 25502203 ark_67375_WNG_C6CW78B6_M US201301560732 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABDBF ABEML ABFAN ABHUG ABJCF ABJNI ABLJU ABPPZ ABPTK ABPVW ABTAH ABUWG ABWRO ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVGU AFVYC AFXKK AFZJQ AGJLS AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJBDE AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANPLD APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EFSUC EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ X6Y XBAML XFK XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAPXW AAUAY AAZSN ABEJV ABMNT ABXSQ ABXVV ADACV AJAOE ALIPV BSCLL IPSME KOP OIG OJZSN ROX AAMMB AANHP AAWIL AAYCA ABAWQ ABDFA ABGNP ACHJO ACRPL ACUHS ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFWVQ AGLNM AGORE AGQPQ AGXDD AIDQK AIDYY AIHAF AJNCP ALRMG NU- AAYXX AHGBF AJBYB CITATION PHGZM PHGZT CGR CUY CVF ECM EIF H13 NPM PJZUB PPXIY PQGLB JQ2 7X8 |
ID | FETCH-LOGICAL-c4789-72f456aa6890b0c40c162e4dfba1e6e7780b4a18eede5e55de0189d833f16d2b3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Jul 11 03:10:30 EDT 2025 Sun Aug 17 02:40:57 EDT 2025 Mon Jul 21 05:44:20 EDT 2025 Tue Jul 01 00:57:58 EDT 2025 Thu Apr 24 23:07:34 EDT 2025 Wed Jan 22 16:41:36 EST 2025 Thu Jul 03 21:22:34 EDT 2025 Wed Oct 30 09:49:06 EDT 2024 Wed Dec 27 18:48:03 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4789-72f456aa6890b0c40c162e4dfba1e6e7780b4a18eede5e55de0189d833f16d2b3 |
Notes | http://dx.doi.org/10.1111/j.1541-0420.2008.00999.x ArticleID:BIOM999 ark:/67375/WNG-C6CW78B6-M istex:6492FED74E7D3F738D7398FF0C8ADA4F83DB224F SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 18325066 |
PQID | 213834727 |
PQPubID | 35366 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_69831955 proquest_journals_213834727 pubmed_primary_18325066 crossref_primary_10_1111_j_1541_0420_2008_00999_x crossref_citationtrail_10_1111_j_1541_0420_2008_00999_x wiley_primary_10_1111_j_1541_0420_2008_00999_x_BIOM999 jstor_primary_25502203 istex_primary_ark_67375_WNG_C6CW78B6_M fao_agris_US201301560732 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2008 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: December 2008 |
PublicationDecade | 2000 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Inc Blackwell Publishing Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Inc – name: Blackwell Publishing – name: Blackwell Publishing Ltd |
References | Wang, C. Y., Wang, S., and Carroll, R. J. (1997). Estimation in choice-based sampling with measurement error and bootstrap analysis. Journal of Econometrics 77, 65-86. Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12, 171-178. Roeder, K., Carroll, R. J., and Lindsay, B. G. (1996). A semiparametric mixture approach to case-control studies with errors in covariables. Journal of the American Statistical Association 91, 722-732. Wu, M. L., Whittemore, A. S., and Jung, D. L. (1986). Errors in reported dietary intakes. American Journal of Epidemiology 124, 826-835. Carroll, R. J., Roeder, K., and Wasserman, L. (1999). Flexible parametric measurement error models. Biometrics 55, 44-54. Satten, G. A. and Kupper, L. L. (1993). Inferences about exposure-disease association using probability of exposure information. Journal of the American Statistical Association 88, 200-208. Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. (2006). Measurement Error in Nonlinear Models: A Modern Perspective. Boca Raton , Florida : Chapman & Hall, CRC Press. Nelder, J. A. and Mead, R. (1965). A simplex algorithm for function minimization. Computer Journal 7, 308-313. Richardson, S., Leblond, L., Jaussent, I., and Green, P. J. (2002). Mixture models in measurement error problems, with reference to epidemiological studies. Journal of the Royal Statistical Society, Series A 165, 549-566. Willett, W. C., Meir, J. S., Colditz, G. A., Rosner, B. A., Hennekens, C. H., and Speizer, F. E. (1987). Dietary fat and the risk of breast cancer. New England Journal of Medicine 316, 22-25. Küchenhoff, H. and Carroll, R. J. (1997). Segmented regression with errors in predictors: Semi-parametric and parametric methods. Statistics in Medicine 16, 169-188. Schafer, D. W. and Purdy, K. G. (1996). Likelihood analysis for errors-in-variables regression with replicate measurements. Biometrika 83, 813-824. Higdon, R. and Schafer, D. W. (2001). Maximum likelihood computations for regression with measurement error. Computational Statistics & Data Analysis 35, 283-299. Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika 66, 403-411. Prentice, R. L., Pepe, M., and Self, S. G. (1989). Dietary fat and breast cancer: A review of the literature and a discussion of methodologic issues. Cancer Research 49, 3147-3156. Carroll, R. J., Maca, J. D., and Ruppert, D. (1999). Nonparametric regression in the presence of measurement error. Biometrika 86, 541-554. R Development Core Team (2005). R: A language and environment for statistical computing. Vienna : R Foundation for Statistical Computing . Available at: http://www.R-project.org . Schafer, D. (2002). Likelihood analysis and flexible structural modeling for measurement error model regression. Journal of Statistical Computation and Simulation 72, 33-45. Beaton, G. H., Milner, J., and Little, J. A. (1979). Sources of variation in 24-hour dietary recall data: Implications for nutrition study design and interpretation. American Journal of Clinical Nutrition 32, 2546-2559. Carroll, R. J., Wang, S., and Wang, C. Y. (1995). Prospective analysis of logistic case-control studies. Journal of the American Statistical Association 90, 157-169. Jones, D. Y., Schatzkin, A., Green, S. B., Block, G., Brinton, L. A., Ziegler, R. G., Hoover, R., and Taylor, P. R. (1987). Dietary fat and breast cancer in the National Health and Nutrition Survey I: Epidemiologic follow-up study. Journal of the National Cancer Institute 79, 465-471. 1987; 79 1986; 124 1995; 90 1997; 77 2002; 165 2002; 72 1965; 7 1993; 88 1987; 316 1996; 83 1999; 55 2006 1997; 16 1999; 86 2005 2003 1996; 91 1985; 12 1989; 49 2001; 35 1979; 66 1979; 32 Azzalini A. (e_1_2_10_3_1) 1985; 12 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_21_1 e_1_2_10_11_1 e_1_2_10_22_1 Armstrong B. (e_1_2_10_2_1) 2003 R Development Core Team (e_1_2_10_15_1) 2005 e_1_2_10_20_1 Prentice R. L. (e_1_2_10_14_1) 1989; 49 Jones D. Y. (e_1_2_10_10_1) 1987; 79 Wu M. L. (e_1_2_10_23_1) 1986; 124 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_8_1 e_1_2_10_7_1 Roeder K. (e_1_2_10_17_1) 1996; 91 |
References_xml | – reference: Beaton, G. H., Milner, J., and Little, J. A. (1979). Sources of variation in 24-hour dietary recall data: Implications for nutrition study design and interpretation. American Journal of Clinical Nutrition 32, 2546-2559. – reference: Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12, 171-178. – reference: Jones, D. Y., Schatzkin, A., Green, S. B., Block, G., Brinton, L. A., Ziegler, R. G., Hoover, R., and Taylor, P. R. (1987). Dietary fat and breast cancer in the National Health and Nutrition Survey I: Epidemiologic follow-up study. Journal of the National Cancer Institute 79, 465-471. – reference: Schafer, D. W. and Purdy, K. G. (1996). Likelihood analysis for errors-in-variables regression with replicate measurements. Biometrika 83, 813-824. – reference: Willett, W. C., Meir, J. S., Colditz, G. A., Rosner, B. A., Hennekens, C. H., and Speizer, F. E. (1987). Dietary fat and the risk of breast cancer. New England Journal of Medicine 316, 22-25. – reference: Roeder, K., Carroll, R. J., and Lindsay, B. G. (1996). A semiparametric mixture approach to case-control studies with errors in covariables. Journal of the American Statistical Association 91, 722-732. – reference: Prentice, R. L., Pepe, M., and Self, S. G. (1989). Dietary fat and breast cancer: A review of the literature and a discussion of methodologic issues. Cancer Research 49, 3147-3156. – reference: Richardson, S., Leblond, L., Jaussent, I., and Green, P. J. (2002). Mixture models in measurement error problems, with reference to epidemiological studies. Journal of the Royal Statistical Society, Series A 165, 549-566. – reference: Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. (2006). Measurement Error in Nonlinear Models: A Modern Perspective. Boca Raton , Florida : Chapman & Hall, CRC Press. – reference: Satten, G. A. and Kupper, L. L. (1993). Inferences about exposure-disease association using probability of exposure information. Journal of the American Statistical Association 88, 200-208. – reference: Carroll, R. J., Maca, J. D., and Ruppert, D. (1999). Nonparametric regression in the presence of measurement error. Biometrika 86, 541-554. – reference: Higdon, R. and Schafer, D. W. (2001). Maximum likelihood computations for regression with measurement error. Computational Statistics & Data Analysis 35, 283-299. – reference: Schafer, D. (2002). Likelihood analysis and flexible structural modeling for measurement error model regression. Journal of Statistical Computation and Simulation 72, 33-45. – reference: Wu, M. L., Whittemore, A. S., and Jung, D. L. (1986). Errors in reported dietary intakes. American Journal of Epidemiology 124, 826-835. – reference: Carroll, R. J., Wang, S., and Wang, C. Y. (1995). Prospective analysis of logistic case-control studies. Journal of the American Statistical Association 90, 157-169. – reference: R Development Core Team (2005). R: A language and environment for statistical computing. Vienna : R Foundation for Statistical Computing . Available at: http://www.R-project.org . – reference: Nelder, J. A. and Mead, R. (1965). A simplex algorithm for function minimization. Computer Journal 7, 308-313. – reference: Carroll, R. J., Roeder, K., and Wasserman, L. (1999). Flexible parametric measurement error models. Biometrics 55, 44-54. – reference: Küchenhoff, H. and Carroll, R. J. (1997). Segmented regression with errors in predictors: Semi-parametric and parametric methods. Statistics in Medicine 16, 169-188. – reference: Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika 66, 403-411. – reference: Wang, C. Y., Wang, S., and Carroll, R. J. (1997). Estimation in choice-based sampling with measurement error and bootstrap analysis. Journal of Econometrics 77, 65-86. – volume: 55 start-page: 44 year: 1999 end-page: 54 article-title: Flexible parametric measurement error models publication-title: Biometrics – volume: 91 start-page: 722 year: 1996 end-page: 732 article-title: A semiparametric mixture approach to case‐control studies with errors in covariables publication-title: Journal of the American Statistical Association – volume: 66 start-page: 403 year: 1979 end-page: 411 article-title: Logistic disease incidence models and case‐control studies publication-title: Biometrika – volume: 35 start-page: 283 year: 2001 end-page: 299 article-title: Maximum likelihood computations for regression with measurement error publication-title: Computational Statistics & Data Analysis – year: 2005 – volume: 16 start-page: 169 year: 1997 end-page: 188 article-title: Segmented regression with errors in predictors: Semi‐parametric and parametric methods publication-title: Statistics in Medicine – volume: 49 start-page: 3147 year: 1989 end-page: 3156 article-title: Dietary fat and breast cancer: A review of the literature and a discussion of methodologic issues publication-title: Cancer Research – volume: 32 start-page: 2546 year: 1979 end-page: 2559 article-title: Sources of variation in 24‐hour dietary recall data: Implications for nutrition study design and interpretation publication-title: American Journal of Clinical Nutrition – year: 2006 – year: 2003 – volume: 12 start-page: 171 year: 1985 end-page: 178 article-title: A class of distributions which includes the normal ones publication-title: Scandinavian Journal of Statistics – volume: 72 start-page: 33 year: 2002 end-page: 45 article-title: Likelihood analysis and flexible structural modeling for measurement error model regression publication-title: Journal of Statistical Computation and Simulation – volume: 88 start-page: 200 year: 1993 end-page: 208 article-title: Inferences about exposure‐disease association using probability of exposure information publication-title: Journal of the American Statistical Association – volume: 7 start-page: 308 year: 1965 end-page: 313 article-title: A simplex algorithm for function minimization publication-title: Computer Journal – volume: 165 start-page: 549 year: 2002 end-page: 566 article-title: Mixture models in measurement error problems, with reference to epidemiological studies publication-title: Journal of the Royal Statistical Society, Series A – volume: 83 start-page: 813 year: 1996 end-page: 824 article-title: Likelihood analysis for errors‐in‐variables regression with replicate measurements publication-title: Biometrika – volume: 79 start-page: 465 year: 1987 end-page: 471 article-title: Dietary fat and breast cancer in the National Health and Nutrition Survey I: Epidemiologic follow‐up study publication-title: Journal of the National Cancer Institute – volume: 316 start-page: 22 year: 1987 end-page: 25 article-title: Dietary fat and the risk of breast cancer publication-title: New England Journal of Medicine – volume: 90 start-page: 157 year: 1995 end-page: 169 article-title: Prospective analysis of logistic case‐control studies publication-title: Journal of the American Statistical Association – volume: 124 start-page: 826 year: 1986 end-page: 835 article-title: Errors in reported dietary intakes publication-title: American Journal of Epidemiology – volume: 86 start-page: 541 year: 1999 end-page: 554 article-title: Nonparametric regression in the presence of measurement error publication-title: Biometrika – volume: 77 start-page: 65 year: 1997 end-page: 86 article-title: Estimation in choice‐based sampling with measurement error and bootstrap analysis publication-title: Journal of Econometrics – volume-title: R: A language and environment for statistical computing year: 2005 ident: e_1_2_10_15_1 – volume: 79 start-page: 465 year: 1987 ident: e_1_2_10_10_1 article-title: Dietary fat and breast cancer in the National Health and Nutrition Survey I: Epidemiologic follow‐up study publication-title: Journal of the National Cancer Institute – ident: e_1_2_10_11_1 doi: 10.1002/(SICI)1097-0258(19970130)16:2<169::AID-SIM478>3.0.CO;2-M – ident: e_1_2_10_4_1 doi: 10.1093/ajcn/32.12.2546 – ident: e_1_2_10_8_1 doi: 10.1201/9781420010138 – ident: e_1_2_10_18_1 doi: 10.2307/2290714 – ident: e_1_2_10_12_1 doi: 10.1093/comjnl/7.4.308 – volume: 49 start-page: 3147 year: 1989 ident: e_1_2_10_14_1 article-title: Dietary fat and breast cancer: A review of the literature and a discussion of methodologic issues publication-title: Cancer Research – volume-title: Exposure Assessment in Occupational and Environmental Epidemiology year: 2003 ident: e_1_2_10_2_1 – ident: e_1_2_10_7_1 doi: 10.1080/01621459.1995.10476498 – ident: e_1_2_10_19_1 doi: 10.1080/00949650211425 – ident: e_1_2_10_5_1 doi: 10.1093/biomet/86.3.541 – ident: e_1_2_10_13_1 doi: 10.1093/biomet/66.3.403 – volume: 124 start-page: 826 year: 1986 ident: e_1_2_10_23_1 article-title: Errors in reported dietary intakes publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a114459 – ident: e_1_2_10_9_1 doi: 10.1016/S0167-9473(00)00014-1 – ident: e_1_2_10_16_1 doi: 10.1111/1467-985X.00252 – ident: e_1_2_10_20_1 doi: 10.1093/biomet/83.4.813 – volume: 91 start-page: 722 year: 1996 ident: e_1_2_10_17_1 article-title: A semiparametric mixture approach to case‐control studies with errors in covariables publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1996.10476940 – ident: e_1_2_10_6_1 doi: 10.1111/j.0006-341X.1999.00044.x – ident: e_1_2_10_21_1 doi: 10.1016/S0304-4076(96)01806-4 – ident: e_1_2_10_22_1 doi: 10.1056/NEJM198701013160105 – volume: 12 start-page: 171 year: 1985 ident: e_1_2_10_3_1 article-title: A class of distributions which includes the normal ones publication-title: Scandinavian Journal of Statistics |
SSID | ssj0009502 |
Score | 1.9813553 |
Snippet | We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We... Summary We investigate the use of prospective likelihood methods to analyze retrospective case–control data where some of the covariates are measured with... Summary We investigate the use of prospective likelihood methods to analyze retrospective case–control data where some of the covariates are measured with... |
SourceID | proquest pubmed crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1207 |
SubjectTerms | Biometric Methodology Biostatistics Breast cancer Breast Neoplasms Case control studies Cholesterol Cholesterols Confidence interval Disease models Error analysis Error rates Estimation bias Humans Likelihood Likelihood Functions Logistic regression logit analysis Measurement error Medical statistics Modeling Parametric models Regression calibration retrospective studies Retrospective study Skewnormal distribution Standard error Statistical methods |
Title | Flexible Approach to Measurement Error Correction in Case-Control Studies |
URI | https://api.istex.fr/ark:/67375/WNG-C6CW78B6-M/fulltext.pdf https://www.jstor.org/stable/25502203 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2008.00999.x https://www.ncbi.nlm.nih.gov/pubmed/18325066 https://www.proquest.com/docview/213834727 https://www.proquest.com/docview/69831955 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7aQCE99LFtGjd96FB682LLsqw9bky2acEptF2yN2HZcigb7OLdhSSn_of-w_6SzviVbMkhlF6MwZJB8mjmk_zNNwDvjCkUTyfKLYhCI_LIutjSuIUQRaCykNsmby05kcdz8WkRLjr-E-XCtPoQw4EbrYzGX9MCT81qe5GHArfCgns9JRLBzpjwJFG3CB994Tf0d71WOJyoXsJfbJN6bn3RVqS6X6QV4lea-oueungbKN3GuE2Qmj2GZT-8lpuyHG_WZpxd_aX8-H_G_wQedViWTVvjewr3bDmCB211y8sRPEwGSdjVCHYJ1raq0M8gmbIZKXGac8umnao5W1csuT6xZEd1XdUspuohTe4F-16yGGPu75-_4pZfzzoS5HOYz46-xcduV9jBzUSEJhHxAnFbmko18YyXCS_zJbciL0zqW2mjSHlGpL7C-G1DG4a59Xw1yVUQFL7MuQn2YKesSrsPLLcZNo-k8DOqnU3y-dIrDF4xJnty4kDUf0SddarnVHzjXN_Y_eA8aprHriYnzaO-cMAfev5olT_u0Gcf7USnZ-ig9fwrp9_ClKoeBdyB943xDO9K6yWR6qJQn5580LGMTyN1KHXiwF5jXUND3PRROnTgwEFvbrpzNCvN_UAFAkGoA2-Hp-gh6LdPWtpqs9JyotDPhqEDL1obvR4OuvMQMacDsrG0O49TH378nODdy3_teAC7DfGm4QW9gp11vbGvEd2tzZtm3f4Bl305tg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1BEaI98BEoNQW6B8TNkb1erzfH1DSkUAcJGjW3lddeI9TIqfIhFU78B_4hv4QZ23Eb1EOFuESRsmtpJ7Mzb9dv3gC8MaZQPO0ptyAKjcgj6-JI4xZCFIHKQm6rurVkJIdj8WESTpp2QFQLU-tDtBdutDOqeE0bnC6kN3d5KPAsLLi35kQi2ukioLxHDb6pncG7z_yaAq9XS4cT2Uv4k01az41P2shVd4t0hgiWjH-5Ji_eBEs3UW6VpgaPYLpeYM1OOe-ulqab_fhL-_E_WeAxPGzgLOvX_vcE7tiyA_frBpffO7CTtKqwiw5sE7KthaGfQtJnAxLjNFPL-o2wOVvOWHJ1acmO5vPZnMXUQKQqv2DfShZj2v3981dcU-xZw4N8BuPB0Wk8dJveDm4mIvSKiBcI3dJUqp5nvEx4mS-5FXlhUt9KG0XKMyL1FaZwG9owzK3nq16ugqDwZc5NsAtb5ay0e8Bym-HwSAo_o_bZpKAvvcLgJ6ZlT_YciNb_os4a4XPqvzHV1w5AaEdNdmzacpId9aUDfjvzohb_uMWcPXQUnX7FGK3HXzi9GaZq9SjgDrytvKd9Vjo_J15dFOqz0Xsdy_gsUodSJw7sVu7VDsRzH1VEBw7sr_1NN7FmobkfqEAgDnXgoP0VgwS9-UlLO1sttOwpDLVh6MDz2kmvloMRPUTY6YCsXO3W69SHx58S_PbiXycewIPhaXKiT45HH_dhu-LhVDShl7C1nK_sKwR7S_O62sR_ADwsPdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL2CIlBZ8BgoDQXqBWKXUeI4jrOchg4tkAEBo87OihMHoamSah5SYcU_8Id8CdfOox3URYXYRCPFjmTPfRwn554L8FKpUtAsFm5pKDSsiLSLI5VbMlYGIg-ptnVr6YQfTdnbWThr-U-mFqbRh-hfuBnPsPHaOPhZUW46ecjwKMyo11EiEewMEU_eYhx9xwCkT_SSAK_XKIcbrhfzZ5usniuftJGqbpZZjQDW7P15x128CpVuglybpcb3Yd6tryGnzIfrlRrmP_6Sfvw_G_AA7rVglowa63sIN3Q1gNtNe8vvA7ib9pqwywFsG1zbyEI_gnRExkaKU51qMmplzcmqJunFK0tyuFjUC5KY9iG2-IJ8q0iCSff3z19JQ7AnLQvyMUzHh1-SI7ft7ODmLEKbiGiJwC3LuIg95eXMy31ONStKlfma6ygSnmKZLzCB61CHYaE9X8SFCILS5wVVwQ5sVXWld4EUOsfhEWd-bppnG_187pUKr5iUPR47EHV_osxb2XPTfeNUXjr-4D5Ks49tU06zj_LcAb-fedZIf1xjzi7aicy-YoSW08_UfBc2tepRQB14ZY2nf1a2mBtWXRTKk8kbmfDkJBIHXKYO7Fjr6gfiqc_UQwcO7HXmJttIs5TUD0TAEIU6sN_fxRBhvvtkla7XS8ljgYE2DB140tjoxXIwnocIOh3g1tKuvU55cPwhxV9P_3XiPtz5-Hos3x9P3u3BtiXhWI7QM9haLdb6OSK9lXphXfgPT5g8iA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Flexible+Approach+to+Measurement+Error+Correction+in+Case-Control+Studies&rft.jtitle=Biometrics&rft.au=Guolo%2C+A&rft.date=2008-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=64&rft.issue=4&rft.spage=1207&rft_id=info:doi/10.1111%2Fj.1541-0420.2008.00999.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1595020741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |