Flexible Approach to Measurement Error Correction in Case-Control Studies

We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of t...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 64; no. 4; pp. 1207 - 1214
Main Author Guolo, A.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.12.2008
Blackwell Publishing
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/j.1541-0420.2008.00999.x

Cover

Loading…
Abstract We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer.
AbstractList Summary We investigate the use of prospective likelihood methods to analyze retrospective case–control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case–control sampling scheme can be ignored if one adequately models the distribution of the error‐prone covariates in the case–control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case–control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error‐prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer.
We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. [PUBLICATION ABSTRACT]
We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer.
Summary We investigate the use of prospective likelihood methods to analyze retrospective case–control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case–control sampling scheme can be ignored if one adequately models the distribution of the error‐prone covariates in the case–control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case–control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error‐prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer.
We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. /// Nous étudions l'utilisation des méthodes de vraisemblance prospective pour l'analyse rétrospective de données cas-témoin lorsque certaines de covariables sont mesurées avec erreur. Nous montrons que les méthodes prospectives peuvent être appliquées en ignorant le schéma d'échantillonnage cas-témoin si on modélise correctement la distribution des covariables sujettes à erreur dans le dispositif d'échantillonnage cas-témoin. En effet, dans ce cas, les méthodes de vraisemblance prospectives conduisent à des estimateurs consistants, avec des écarts-types asymptotiquement corrects. Cependant la distribution de telles covariables n'est pas la même dans la population et dans l'échantillonnage cas-témoin, imposant ainsi le besoin de modéliser la flexibilité de distribution. Dans cet article, nous illustrons le principe général en modélisant la distribution des covariables continues sujettes à erreur par une distribution normale asymétrisée (skewnormal). La performance de la méthode est évaluée par des études sur simulations, qui donnent des résultats satisfaisants en terme de biais et de recouvrement. Enfin, la méthodes est appliquée à l'analyse de deux jeux de données qui proviennent respectivement d'une étude sur le cholestérol et d'une étude sur le cancer du sein.
We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer.SUMMARYWe investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer.
Author Guolo, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Guolo
  fullname: Guolo, A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18325066$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFnwBEHLhlGdux4xxAaqO2rNSlh1KVm-UkE_CSjRc7Ubf_vl5SFqmn-mJb73vj0RsfkYPe9UhIQmFO4_q0mlOR0RQyBnMGoOYARVHMty_IbC8ckBkAyJRn9MchOQphFa-FAPaKHFLFmQApZ2Rx3uHWVh0mJ5uNd6b-lQwuWaIJo8c19kNy5r3zSem8x3qwrk9sn5QmYFq6fvCuS66HsbEYXpOXrekCvnncj8nN-dn38mt6eXWxKE8u0zrLVZHmrM2ENEaqAiqoM6ipZJg1bWUoSsxzBVVmqEJsUKAQDQJVRaM4b6lsWMWPycepbmz3z4hh0Gsbauw606Mbg5aF4rQQIoIfnoArN_o-9qYZ5YpnOcsj9O4RGqs1Nnrj7dr4e_0voQioCai9C8Fj-x8BvRuGXuld5nqXud4NQ_8dht5G65cn1toOZpfh4I3tnlPg81TgznZ4_-yH9eniahlP0f928q_C4Pzez0T8BQx41NNJt2HA7V43_reWOc-Fvv12oUtZ3ubqVOpl5N9PfGucNj-9DfrmmgHlQIWEnDP-AGE6wz8
CODEN BIOMA5
CitedBy_id crossref_primary_10_1186_1471_2288_11_67
crossref_primary_10_1080_27658449_2021_1945743
crossref_primary_10_1111_j_1467_9469_2010_00714_x
crossref_primary_10_1016_j_csda_2012_07_018
crossref_primary_10_1093_biostatistics_kxaa037
crossref_primary_10_1093_biostatistics_kxz028
crossref_primary_10_1186_s40488_020_00103_y
crossref_primary_10_1080_10485252_2012_687735
crossref_primary_10_1002_sim_5506
crossref_primary_10_1002_bimj_201500009
crossref_primary_10_1007_s00180_019_00888_w
crossref_primary_10_1214_10_AOAS446
Cites_doi 10.1002/(SICI)1097-0258(19970130)16:2<169::AID-SIM478>3.0.CO;2-M
10.1093/ajcn/32.12.2546
10.1201/9781420010138
10.2307/2290714
10.1093/comjnl/7.4.308
10.1080/01621459.1995.10476498
10.1080/00949650211425
10.1093/biomet/86.3.541
10.1093/biomet/66.3.403
10.1093/oxfordjournals.aje.a114459
10.1016/S0167-9473(00)00014-1
10.1111/1467-985X.00252
10.1093/biomet/83.4.813
10.1080/01621459.1996.10476940
10.1111/j.0006-341X.1999.00044.x
10.1016/S0304-4076(96)01806-4
10.1056/NEJM198701013160105
ContentType Journal Article
Copyright Copyright 2008 The International Biometric Society
2008, The International Biometric Society
2008 International Biometric Society
Copyright_xml – notice: Copyright 2008 The International Biometric Society
– notice: 2008, The International Biometric Society
– notice: 2008 International Biometric Society
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
DOI 10.1111/j.1541-0420.2008.00999.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
ProQuest Computer Science Collection
MEDLINE
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1214
ExternalDocumentID 1595020741
18325066
10_1111_j_1541_0420_2008_00999_x
BIOM999
25502203
ark_67375_WNG_C6CW78B6_M
US201301560732
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAPXW
AAUAY
AAZSN
ABEJV
ABMNT
ABXSQ
ABXVV
ADACV
AJAOE
ALIPV
BSCLL
IPSME
KOP
OIG
OJZSN
ROX
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ABDFA
ABGNP
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AIHAF
AJNCP
ALRMG
NU-
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
H13
NPM
PJZUB
PPXIY
PQGLB
JQ2
7X8
ID FETCH-LOGICAL-c4789-72f456aa6890b0c40c162e4dfba1e6e7780b4a18eede5e55de0189d833f16d2b3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Jul 11 03:10:30 EDT 2025
Sun Aug 17 02:40:57 EDT 2025
Mon Jul 21 05:44:20 EDT 2025
Tue Jul 01 00:57:58 EDT 2025
Thu Apr 24 23:07:34 EDT 2025
Wed Jan 22 16:41:36 EST 2025
Thu Jul 03 21:22:34 EDT 2025
Wed Oct 30 09:49:06 EDT 2024
Wed Dec 27 18:48:03 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4789-72f456aa6890b0c40c162e4dfba1e6e7780b4a18eede5e55de0189d833f16d2b3
Notes http://dx.doi.org/10.1111/j.1541-0420.2008.00999.x
ArticleID:BIOM999
ark:/67375/WNG-C6CW78B6-M
istex:6492FED74E7D3F738D7398FF0C8ADA4F83DB224F
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 18325066
PQID 213834727
PQPubID 35366
PageCount 8
ParticipantIDs proquest_miscellaneous_69831955
proquest_journals_213834727
pubmed_primary_18325066
crossref_primary_10_1111_j_1541_0420_2008_00999_x
crossref_citationtrail_10_1111_j_1541_0420_2008_00999_x
wiley_primary_10_1111_j_1541_0420_2008_00999_x_BIOM999
jstor_primary_25502203
istex_primary_ark_67375_WNG_C6CW78B6_M
fao_agris_US201301560732
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2008
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: December 2008
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2008
Publisher Blackwell Publishing Inc
Blackwell Publishing
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell Publishing
– name: Blackwell Publishing Ltd
References Wang, C. Y., Wang, S., and Carroll, R. J. (1997). Estimation in choice-based sampling with measurement error and bootstrap analysis. Journal of Econometrics 77, 65-86.
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12, 171-178.
Roeder, K., Carroll, R. J., and Lindsay, B. G. (1996). A semiparametric mixture approach to case-control studies with errors in covariables. Journal of the American Statistical Association 91, 722-732.
Wu, M. L., Whittemore, A. S., and Jung, D. L. (1986). Errors in reported dietary intakes. American Journal of Epidemiology 124, 826-835.
Carroll, R. J., Roeder, K., and Wasserman, L. (1999). Flexible parametric measurement error models. Biometrics 55, 44-54.
Satten, G. A. and Kupper, L. L. (1993). Inferences about exposure-disease association using probability of exposure information. Journal of the American Statistical Association 88, 200-208.
Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. (2006). Measurement Error in Nonlinear Models: A Modern Perspective. Boca Raton , Florida : Chapman & Hall, CRC Press.
Nelder, J. A. and Mead, R. (1965). A simplex algorithm for function minimization. Computer Journal 7, 308-313.
Richardson, S., Leblond, L., Jaussent, I., and Green, P. J. (2002). Mixture models in measurement error problems, with reference to epidemiological studies. Journal of the Royal Statistical Society, Series A 165, 549-566.
Willett, W. C., Meir, J. S., Colditz, G. A., Rosner, B. A., Hennekens, C. H., and Speizer, F. E. (1987). Dietary fat and the risk of breast cancer. New England Journal of Medicine 316, 22-25.
Küchenhoff, H. and Carroll, R. J. (1997). Segmented regression with errors in predictors: Semi-parametric and parametric methods. Statistics in Medicine 16, 169-188.
Schafer, D. W. and Purdy, K. G. (1996). Likelihood analysis for errors-in-variables regression with replicate measurements. Biometrika 83, 813-824.
Higdon, R. and Schafer, D. W. (2001). Maximum likelihood computations for regression with measurement error. Computational Statistics & Data Analysis 35, 283-299.
Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika 66, 403-411.
Prentice, R. L., Pepe, M., and Self, S. G. (1989). Dietary fat and breast cancer: A review of the literature and a discussion of methodologic issues. Cancer Research 49, 3147-3156.
Carroll, R. J., Maca, J. D., and Ruppert, D. (1999). Nonparametric regression in the presence of measurement error. Biometrika 86, 541-554.
R Development Core Team (2005). R: A language and environment for statistical computing. Vienna : R Foundation for Statistical Computing . Available at: http://www.R-project.org .
Schafer, D. (2002). Likelihood analysis and flexible structural modeling for measurement error model regression. Journal of Statistical Computation and Simulation 72, 33-45.
Beaton, G. H., Milner, J., and Little, J. A. (1979). Sources of variation in 24-hour dietary recall data: Implications for nutrition study design and interpretation. American Journal of Clinical Nutrition 32, 2546-2559.
Carroll, R. J., Wang, S., and Wang, C. Y. (1995). Prospective analysis of logistic case-control studies. Journal of the American Statistical Association 90, 157-169.
Jones, D. Y., Schatzkin, A., Green, S. B., Block, G., Brinton, L. A., Ziegler, R. G., Hoover, R., and Taylor, P. R. (1987). Dietary fat and breast cancer in the National Health and Nutrition Survey I: Epidemiologic follow-up study. Journal of the National Cancer Institute 79, 465-471.
1987; 79
1986; 124
1995; 90
1997; 77
2002; 165
2002; 72
1965; 7
1993; 88
1987; 316
1996; 83
1999; 55
2006
1997; 16
1999; 86
2005
2003
1996; 91
1985; 12
1989; 49
2001; 35
1979; 66
1979; 32
Azzalini A. (e_1_2_10_3_1) 1985; 12
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_21_1
e_1_2_10_11_1
e_1_2_10_22_1
Armstrong B. (e_1_2_10_2_1) 2003
R Development Core Team (e_1_2_10_15_1) 2005
e_1_2_10_20_1
Prentice R. L. (e_1_2_10_14_1) 1989; 49
Jones D. Y. (e_1_2_10_10_1) 1987; 79
Wu M. L. (e_1_2_10_23_1) 1986; 124
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_7_1
Roeder K. (e_1_2_10_17_1) 1996; 91
References_xml – reference: Beaton, G. H., Milner, J., and Little, J. A. (1979). Sources of variation in 24-hour dietary recall data: Implications for nutrition study design and interpretation. American Journal of Clinical Nutrition 32, 2546-2559.
– reference: Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12, 171-178.
– reference: Jones, D. Y., Schatzkin, A., Green, S. B., Block, G., Brinton, L. A., Ziegler, R. G., Hoover, R., and Taylor, P. R. (1987). Dietary fat and breast cancer in the National Health and Nutrition Survey I: Epidemiologic follow-up study. Journal of the National Cancer Institute 79, 465-471.
– reference: Schafer, D. W. and Purdy, K. G. (1996). Likelihood analysis for errors-in-variables regression with replicate measurements. Biometrika 83, 813-824.
– reference: Willett, W. C., Meir, J. S., Colditz, G. A., Rosner, B. A., Hennekens, C. H., and Speizer, F. E. (1987). Dietary fat and the risk of breast cancer. New England Journal of Medicine 316, 22-25.
– reference: Roeder, K., Carroll, R. J., and Lindsay, B. G. (1996). A semiparametric mixture approach to case-control studies with errors in covariables. Journal of the American Statistical Association 91, 722-732.
– reference: Prentice, R. L., Pepe, M., and Self, S. G. (1989). Dietary fat and breast cancer: A review of the literature and a discussion of methodologic issues. Cancer Research 49, 3147-3156.
– reference: Richardson, S., Leblond, L., Jaussent, I., and Green, P. J. (2002). Mixture models in measurement error problems, with reference to epidemiological studies. Journal of the Royal Statistical Society, Series A 165, 549-566.
– reference: Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. (2006). Measurement Error in Nonlinear Models: A Modern Perspective. Boca Raton , Florida : Chapman & Hall, CRC Press.
– reference: Satten, G. A. and Kupper, L. L. (1993). Inferences about exposure-disease association using probability of exposure information. Journal of the American Statistical Association 88, 200-208.
– reference: Carroll, R. J., Maca, J. D., and Ruppert, D. (1999). Nonparametric regression in the presence of measurement error. Biometrika 86, 541-554.
– reference: Higdon, R. and Schafer, D. W. (2001). Maximum likelihood computations for regression with measurement error. Computational Statistics & Data Analysis 35, 283-299.
– reference: Schafer, D. (2002). Likelihood analysis and flexible structural modeling for measurement error model regression. Journal of Statistical Computation and Simulation 72, 33-45.
– reference: Wu, M. L., Whittemore, A. S., and Jung, D. L. (1986). Errors in reported dietary intakes. American Journal of Epidemiology 124, 826-835.
– reference: Carroll, R. J., Wang, S., and Wang, C. Y. (1995). Prospective analysis of logistic case-control studies. Journal of the American Statistical Association 90, 157-169.
– reference: R Development Core Team (2005). R: A language and environment for statistical computing. Vienna : R Foundation for Statistical Computing . Available at: http://www.R-project.org .
– reference: Nelder, J. A. and Mead, R. (1965). A simplex algorithm for function minimization. Computer Journal 7, 308-313.
– reference: Carroll, R. J., Roeder, K., and Wasserman, L. (1999). Flexible parametric measurement error models. Biometrics 55, 44-54.
– reference: Küchenhoff, H. and Carroll, R. J. (1997). Segmented regression with errors in predictors: Semi-parametric and parametric methods. Statistics in Medicine 16, 169-188.
– reference: Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika 66, 403-411.
– reference: Wang, C. Y., Wang, S., and Carroll, R. J. (1997). Estimation in choice-based sampling with measurement error and bootstrap analysis. Journal of Econometrics 77, 65-86.
– volume: 55
  start-page: 44
  year: 1999
  end-page: 54
  article-title: Flexible parametric measurement error models
  publication-title: Biometrics
– volume: 91
  start-page: 722
  year: 1996
  end-page: 732
  article-title: A semiparametric mixture approach to case‐control studies with errors in covariables
  publication-title: Journal of the American Statistical Association
– volume: 66
  start-page: 403
  year: 1979
  end-page: 411
  article-title: Logistic disease incidence models and case‐control studies
  publication-title: Biometrika
– volume: 35
  start-page: 283
  year: 2001
  end-page: 299
  article-title: Maximum likelihood computations for regression with measurement error
  publication-title: Computational Statistics & Data Analysis
– year: 2005
– volume: 16
  start-page: 169
  year: 1997
  end-page: 188
  article-title: Segmented regression with errors in predictors: Semi‐parametric and parametric methods
  publication-title: Statistics in Medicine
– volume: 49
  start-page: 3147
  year: 1989
  end-page: 3156
  article-title: Dietary fat and breast cancer: A review of the literature and a discussion of methodologic issues
  publication-title: Cancer Research
– volume: 32
  start-page: 2546
  year: 1979
  end-page: 2559
  article-title: Sources of variation in 24‐hour dietary recall data: Implications for nutrition study design and interpretation
  publication-title: American Journal of Clinical Nutrition
– year: 2006
– year: 2003
– volume: 12
  start-page: 171
  year: 1985
  end-page: 178
  article-title: A class of distributions which includes the normal ones
  publication-title: Scandinavian Journal of Statistics
– volume: 72
  start-page: 33
  year: 2002
  end-page: 45
  article-title: Likelihood analysis and flexible structural modeling for measurement error model regression
  publication-title: Journal of Statistical Computation and Simulation
– volume: 88
  start-page: 200
  year: 1993
  end-page: 208
  article-title: Inferences about exposure‐disease association using probability of exposure information
  publication-title: Journal of the American Statistical Association
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  article-title: A simplex algorithm for function minimization
  publication-title: Computer Journal
– volume: 165
  start-page: 549
  year: 2002
  end-page: 566
  article-title: Mixture models in measurement error problems, with reference to epidemiological studies
  publication-title: Journal of the Royal Statistical Society, Series A
– volume: 83
  start-page: 813
  year: 1996
  end-page: 824
  article-title: Likelihood analysis for errors‐in‐variables regression with replicate measurements
  publication-title: Biometrika
– volume: 79
  start-page: 465
  year: 1987
  end-page: 471
  article-title: Dietary fat and breast cancer in the National Health and Nutrition Survey I: Epidemiologic follow‐up study
  publication-title: Journal of the National Cancer Institute
– volume: 316
  start-page: 22
  year: 1987
  end-page: 25
  article-title: Dietary fat and the risk of breast cancer
  publication-title: New England Journal of Medicine
– volume: 90
  start-page: 157
  year: 1995
  end-page: 169
  article-title: Prospective analysis of logistic case‐control studies
  publication-title: Journal of the American Statistical Association
– volume: 124
  start-page: 826
  year: 1986
  end-page: 835
  article-title: Errors in reported dietary intakes
  publication-title: American Journal of Epidemiology
– volume: 86
  start-page: 541
  year: 1999
  end-page: 554
  article-title: Nonparametric regression in the presence of measurement error
  publication-title: Biometrika
– volume: 77
  start-page: 65
  year: 1997
  end-page: 86
  article-title: Estimation in choice‐based sampling with measurement error and bootstrap analysis
  publication-title: Journal of Econometrics
– volume-title: R: A language and environment for statistical computing
  year: 2005
  ident: e_1_2_10_15_1
– volume: 79
  start-page: 465
  year: 1987
  ident: e_1_2_10_10_1
  article-title: Dietary fat and breast cancer in the National Health and Nutrition Survey I: Epidemiologic follow‐up study
  publication-title: Journal of the National Cancer Institute
– ident: e_1_2_10_11_1
  doi: 10.1002/(SICI)1097-0258(19970130)16:2<169::AID-SIM478>3.0.CO;2-M
– ident: e_1_2_10_4_1
  doi: 10.1093/ajcn/32.12.2546
– ident: e_1_2_10_8_1
  doi: 10.1201/9781420010138
– ident: e_1_2_10_18_1
  doi: 10.2307/2290714
– ident: e_1_2_10_12_1
  doi: 10.1093/comjnl/7.4.308
– volume: 49
  start-page: 3147
  year: 1989
  ident: e_1_2_10_14_1
  article-title: Dietary fat and breast cancer: A review of the literature and a discussion of methodologic issues
  publication-title: Cancer Research
– volume-title: Exposure Assessment in Occupational and Environmental Epidemiology
  year: 2003
  ident: e_1_2_10_2_1
– ident: e_1_2_10_7_1
  doi: 10.1080/01621459.1995.10476498
– ident: e_1_2_10_19_1
  doi: 10.1080/00949650211425
– ident: e_1_2_10_5_1
  doi: 10.1093/biomet/86.3.541
– ident: e_1_2_10_13_1
  doi: 10.1093/biomet/66.3.403
– volume: 124
  start-page: 826
  year: 1986
  ident: e_1_2_10_23_1
  article-title: Errors in reported dietary intakes
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a114459
– ident: e_1_2_10_9_1
  doi: 10.1016/S0167-9473(00)00014-1
– ident: e_1_2_10_16_1
  doi: 10.1111/1467-985X.00252
– ident: e_1_2_10_20_1
  doi: 10.1093/biomet/83.4.813
– volume: 91
  start-page: 722
  year: 1996
  ident: e_1_2_10_17_1
  article-title: A semiparametric mixture approach to case‐control studies with errors in covariables
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1996.10476940
– ident: e_1_2_10_6_1
  doi: 10.1111/j.0006-341X.1999.00044.x
– ident: e_1_2_10_21_1
  doi: 10.1016/S0304-4076(96)01806-4
– ident: e_1_2_10_22_1
  doi: 10.1056/NEJM198701013160105
– volume: 12
  start-page: 171
  year: 1985
  ident: e_1_2_10_3_1
  article-title: A class of distributions which includes the normal ones
  publication-title: Scandinavian Journal of Statistics
SSID ssj0009502
Score 1.9813553
Snippet We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We...
Summary We investigate the use of prospective likelihood methods to analyze retrospective case–control data where some of the covariates are measured with...
Summary We investigate the use of prospective likelihood methods to analyze retrospective case–control data where some of the covariates are measured with...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1207
SubjectTerms Biometric Methodology
Biostatistics
Breast cancer
Breast Neoplasms
Case control studies
Cholesterol
Cholesterols
Confidence interval
Disease models
Error analysis
Error rates
Estimation bias
Humans
Likelihood
Likelihood Functions
Logistic regression
logit analysis
Measurement error
Medical statistics
Modeling
Parametric models
Regression calibration
retrospective studies
Retrospective study
Skewnormal distribution
Standard error
Statistical methods
Title Flexible Approach to Measurement Error Correction in Case-Control Studies
URI https://api.istex.fr/ark:/67375/WNG-C6CW78B6-M/fulltext.pdf
https://www.jstor.org/stable/25502203
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2008.00999.x
https://www.ncbi.nlm.nih.gov/pubmed/18325066
https://www.proquest.com/docview/213834727
https://www.proquest.com/docview/69831955
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7aQCE99LFtGjd96FB682LLsqw9bky2acEptF2yN2HZcigb7OLdhSSn_of-w_6SzviVbMkhlF6MwZJB8mjmk_zNNwDvjCkUTyfKLYhCI_LIutjSuIUQRaCykNsmby05kcdz8WkRLjr-E-XCtPoQw4EbrYzGX9MCT81qe5GHArfCgns9JRLBzpjwJFG3CB994Tf0d71WOJyoXsJfbJN6bn3RVqS6X6QV4lea-oueungbKN3GuE2Qmj2GZT-8lpuyHG_WZpxd_aX8-H_G_wQedViWTVvjewr3bDmCB211y8sRPEwGSdjVCHYJ1raq0M8gmbIZKXGac8umnao5W1csuT6xZEd1XdUspuohTe4F-16yGGPu75-_4pZfzzoS5HOYz46-xcduV9jBzUSEJhHxAnFbmko18YyXCS_zJbciL0zqW2mjSHlGpL7C-G1DG4a59Xw1yVUQFL7MuQn2YKesSrsPLLcZNo-k8DOqnU3y-dIrDF4xJnty4kDUf0SddarnVHzjXN_Y_eA8aprHriYnzaO-cMAfev5olT_u0Gcf7USnZ-ig9fwrp9_ClKoeBdyB943xDO9K6yWR6qJQn5580LGMTyN1KHXiwF5jXUND3PRROnTgwEFvbrpzNCvN_UAFAkGoA2-Hp-gh6LdPWtpqs9JyotDPhqEDL1obvR4OuvMQMacDsrG0O49TH378nODdy3_teAC7DfGm4QW9gp11vbGvEd2tzZtm3f4Bl305tg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1BEaI98BEoNQW6B8TNkb1erzfH1DSkUAcJGjW3lddeI9TIqfIhFU78B_4hv4QZ23Eb1EOFuESRsmtpJ7Mzb9dv3gC8MaZQPO0ptyAKjcgj6-JI4xZCFIHKQm6rurVkJIdj8WESTpp2QFQLU-tDtBdutDOqeE0bnC6kN3d5KPAsLLi35kQi2ukioLxHDb6pncG7z_yaAq9XS4cT2Uv4k01az41P2shVd4t0hgiWjH-5Ji_eBEs3UW6VpgaPYLpeYM1OOe-ulqab_fhL-_E_WeAxPGzgLOvX_vcE7tiyA_frBpffO7CTtKqwiw5sE7KthaGfQtJnAxLjNFPL-o2wOVvOWHJ1acmO5vPZnMXUQKQqv2DfShZj2v3981dcU-xZw4N8BuPB0Wk8dJveDm4mIvSKiBcI3dJUqp5nvEx4mS-5FXlhUt9KG0XKMyL1FaZwG9owzK3nq16ugqDwZc5NsAtb5ay0e8Bym-HwSAo_o_bZpKAvvcLgJ6ZlT_YciNb_os4a4XPqvzHV1w5AaEdNdmzacpId9aUDfjvzohb_uMWcPXQUnX7FGK3HXzi9GaZq9SjgDrytvKd9Vjo_J15dFOqz0Xsdy_gsUodSJw7sVu7VDsRzH1VEBw7sr_1NN7FmobkfqEAgDnXgoP0VgwS9-UlLO1sttOwpDLVh6MDz2kmvloMRPUTY6YCsXO3W69SHx58S_PbiXycewIPhaXKiT45HH_dhu-LhVDShl7C1nK_sKwR7S_O62sR_ADwsPdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL2CIlBZ8BgoDQXqBWKXUeI4jrOchg4tkAEBo87OihMHoamSah5SYcU_8Id8CdfOox3URYXYRCPFjmTPfRwn554L8FKpUtAsFm5pKDSsiLSLI5VbMlYGIg-ptnVr6YQfTdnbWThr-U-mFqbRh-hfuBnPsPHaOPhZUW46ecjwKMyo11EiEewMEU_eYhx9xwCkT_SSAK_XKIcbrhfzZ5usniuftJGqbpZZjQDW7P15x128CpVuglybpcb3Yd6tryGnzIfrlRrmP_6Sfvw_G_AA7rVglowa63sIN3Q1gNtNe8vvA7ib9pqwywFsG1zbyEI_gnRExkaKU51qMmplzcmqJunFK0tyuFjUC5KY9iG2-IJ8q0iCSff3z19JQ7AnLQvyMUzHh1-SI7ft7ODmLEKbiGiJwC3LuIg95eXMy31ONStKlfma6ygSnmKZLzCB61CHYaE9X8SFCILS5wVVwQ5sVXWld4EUOsfhEWd-bppnG_187pUKr5iUPR47EHV_osxb2XPTfeNUXjr-4D5Ks49tU06zj_LcAb-fedZIf1xjzi7aicy-YoSW08_UfBc2tepRQB14ZY2nf1a2mBtWXRTKk8kbmfDkJBIHXKYO7Fjr6gfiqc_UQwcO7HXmJttIs5TUD0TAEIU6sN_fxRBhvvtkla7XS8ljgYE2DB140tjoxXIwnocIOh3g1tKuvU55cPwhxV9P_3XiPtz5-Hos3x9P3u3BtiXhWI7QM9haLdb6OSK9lXphXfgPT5g8iA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Flexible+Approach+to+Measurement+Error+Correction+in+Case-Control+Studies&rft.jtitle=Biometrics&rft.au=Guolo%2C+A&rft.date=2008-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=64&rft.issue=4&rft.spage=1207&rft_id=info:doi/10.1111%2Fj.1541-0420.2008.00999.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1595020741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon