Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li‐Ion Batteries

Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversio...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 23; pp. e1706498 - n/a
Main Authors Luo, Chao, Ji, Xiao, Hou, Singyuk, Eidson, Nico, Fan, Xiulin, Liang, Yujia, Deng, Tao, Jiang, Jianjun, Wang, Chunsheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium‐ion batteries. 4‐Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g−1 at 0.5 C and retains a capacity of 131 mAh g−1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium‐ion batteries. A new chemistry is unveiled to electrochemically convert nitro compounds into azo compounds, which act as active materials to reversibly react with lithium ions. The discovery of nitro and azo compounds for organic electrodes offers new opportunities for high‐performance lithium‐ion batteries.
AbstractList Organic compounds are desirable alternatives for sustainable lithium-ion battery electrodes. However, the electrochemical properties of state-of-the-art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium-ion batteries. 4-Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g-1 at 0.5 C and retains a capacity of 131 mAh g-1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium-ion batteries.Organic compounds are desirable alternatives for sustainable lithium-ion battery electrodes. However, the electrochemical properties of state-of-the-art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium-ion batteries. 4-Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g-1 at 0.5 C and retains a capacity of 131 mAh g-1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium-ion batteries.
Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium‐ion batteries. 4‐Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g−1 at 0.5 C and retains a capacity of 131 mAh g−1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium‐ion batteries. A new chemistry is unveiled to electrochemically convert nitro compounds into azo compounds, which act as active materials to reversibly react with lithium ions. The discovery of nitro and azo compounds for organic electrodes offers new opportunities for high‐performance lithium‐ion batteries.
Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium‐ion batteries. 4‐Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g−1 at 0.5 C and retains a capacity of 131 mAh g−1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium‐ion batteries.
Organic compounds are desirable alternatives for sustainable lithium-ion battery electrodes. However, the electrochemical properties of state-of-the-art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium-ion batteries. 4-Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g at 0.5 C and retains a capacity of 131 mAh g after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium-ion batteries.
Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium‐ion batteries. 4‐Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g −1 at 0.5 C and retains a capacity of 131 mAh g −1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium‐ion batteries.
Author Jiang, Jianjun
Wang, Chunsheng
Hou, Singyuk
Deng, Tao
Ji, Xiao
Eidson, Nico
Luo, Chao
Fan, Xiulin
Liang, Yujia
Author_xml – sequence: 1
  givenname: Chao
  surname: Luo
  fullname: Luo, Chao
  organization: University of Maryland
– sequence: 2
  givenname: Xiao
  surname: Ji
  fullname: Ji, Xiao
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Singyuk
  surname: Hou
  fullname: Hou, Singyuk
  organization: University of Maryland
– sequence: 4
  givenname: Nico
  surname: Eidson
  fullname: Eidson, Nico
  organization: University of Maryland
– sequence: 5
  givenname: Xiulin
  surname: Fan
  fullname: Fan, Xiulin
  organization: University of Maryland
– sequence: 6
  givenname: Yujia
  surname: Liang
  fullname: Liang, Yujia
  organization: University of Maryland
– sequence: 7
  givenname: Tao
  surname: Deng
  fullname: Deng, Tao
  organization: University of Maryland
– sequence: 8
  givenname: Jianjun
  surname: Jiang
  fullname: Jiang, Jianjun
  organization: Huazhong University of Science and Technology
– sequence: 9
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29687487$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9O3DAQhy1EVRbolWNliUsv2drOH9vHZYGCtAWE4Gw59qQYJfFiJ63oiUfoM_IkeLXQVkiIk235-0Yz89tGm73vAaE9SqaUEPZV205PGaGcVIUUG2hCS0azgshyE02IzMtMVoXYQtsx3hJCZEWqj2iLyUrwQvAJ8rPfHs99t_RjbyM-hOB-gsVN8B0-asEMwZsb6JzRLb4EO5rB-R77Bp-59PWf2fiAT9yPG3wBId073RvAC_f48Oc0CQd6GFJpiLvoQ6PbCJ-ezx10fXx0NT_JFuffTuezRWYKLkQmpRHMUGYbS3lVC5PGkjQXpK5E2Zhcpodldc2NziFNw3OmBdCayZLZWkO-g76s6y6DvxshDqpz0UDb6h78GBUjOSWMEyoSuv8KvfVj6FN3iSq45LmoaKI-P1Nj3YFVy-A6He7VyyoTUKwBE3yMARpl3KBX6xqCdq2iRK0SU6vE1N_EkjZ9pb1UflOQa-GXa-H-HVrNDr_P_rlPl82pNQ
CitedBy_id crossref_primary_10_1002_aenm_202002523
crossref_primary_10_1016_j_cej_2020_126621
crossref_primary_10_1016_j_jpowsour_2020_228814
crossref_primary_10_1002_batt_202200406
crossref_primary_10_3390_ma13102402
crossref_primary_10_1002_aenm_202003735
crossref_primary_10_1021_acsenergylett_0c01750
crossref_primary_10_1002_aenm_202101562
crossref_primary_10_1016_j_cej_2024_157372
crossref_primary_10_1002_anie_202208821
crossref_primary_10_1016_j_jenvman_2025_124920
crossref_primary_10_1002_cssc_202001389
crossref_primary_10_1021_acsami_9b05956
crossref_primary_10_1016_j_micromeso_2022_111803
crossref_primary_10_1016_j_electacta_2019_06_051
crossref_primary_10_1021_acs_chemrev_9b00482
crossref_primary_10_1039_D4SC04179H
crossref_primary_10_1002_advs_202310239
crossref_primary_10_1039_D0QM00335B
crossref_primary_10_1039_D4CC01479K
crossref_primary_10_1002_anie_201804068
crossref_primary_10_1039_C9TA04328D
crossref_primary_10_1016_j_ijhydene_2022_01_146
crossref_primary_10_1002_anie_202206093
crossref_primary_10_1002_adfm_202302618
crossref_primary_10_1016_j_jelechem_2024_118526
crossref_primary_10_1021_acsaem_9b00534
crossref_primary_10_1007_s40843_021_1831_1
crossref_primary_10_1021_acsami_1c14838
crossref_primary_10_1007_s40843_021_1689_4
crossref_primary_10_1039_C9EE03637G
crossref_primary_10_1002_advs_202106116
crossref_primary_10_1002_batt_202300001
crossref_primary_10_1007_s41918_022_00152_8
crossref_primary_10_1149_1945_7111_ad1c12
crossref_primary_10_1002_ange_201906301
crossref_primary_10_1002_smll_202200049
crossref_primary_10_1016_j_surfin_2022_102447
crossref_primary_10_1021_acs_inorgchem_3c02583
crossref_primary_10_1016_j_ensm_2023_103102
crossref_primary_10_1007_s40843_020_1375_2
crossref_primary_10_20964_2019_10_49
crossref_primary_10_3390_ma12111770
crossref_primary_10_1002_ange_201910916
crossref_primary_10_1039_C9RA01249D
crossref_primary_10_1039_D4LP00320A
crossref_primary_10_1016_j_jcis_2021_04_018
crossref_primary_10_1021_acsami_4c09801
crossref_primary_10_1016_j_jpowsour_2025_236208
crossref_primary_10_1098_rsos_210567
crossref_primary_10_1016_j_jpowsour_2020_228515
crossref_primary_10_1016_j_cej_2020_127454
crossref_primary_10_1021_jacs_2c06550
crossref_primary_10_1002_adfm_202407258
crossref_primary_10_1007_s11426_023_1738_3
crossref_primary_10_1021_acsaem_0c01216
crossref_primary_10_1021_acs_chemmater_2c01497
crossref_primary_10_1002_cplu_202300026
crossref_primary_10_1016_j_chempr_2024_07_039
crossref_primary_10_1002_cssc_202002851
crossref_primary_10_1016_j_jelechem_2023_117251
crossref_primary_10_1016_j_dyepig_2021_109352
crossref_primary_10_1021_acsanm_2c03347
crossref_primary_10_1002_aenm_202003281
crossref_primary_10_1002_ange_202302539
crossref_primary_10_1039_C8CC09000A
crossref_primary_10_1002_ange_202309446
crossref_primary_10_1039_C8TA04906H
crossref_primary_10_1039_C8TA10513H
crossref_primary_10_1016_j_nanoen_2021_106113
crossref_primary_10_1021_acsami_2c18869
crossref_primary_10_1021_acsami_9b23438
crossref_primary_10_1002_anie_202009279
crossref_primary_10_1002_chem_202005259
crossref_primary_10_1016_j_matchemphys_2022_126430
crossref_primary_10_1002_adfm_202416000
crossref_primary_10_1002_adfm_202210184
crossref_primary_10_1002_ange_202208821
crossref_primary_10_1016_j_cej_2024_148806
crossref_primary_10_1002_aenm_202103010
crossref_primary_10_1039_D3TA00596H
crossref_primary_10_3866_PKU_WHXB202303060
crossref_primary_10_1016_j_jcis_2019_12_126
crossref_primary_10_1016_j_micromeso_2022_111719
crossref_primary_10_1021_acsaem_1c03574
crossref_primary_10_1002_anie_202302539
crossref_primary_10_1007_s11426_024_2456_x
crossref_primary_10_1002_ange_202206093
crossref_primary_10_1002_anie_202309446
crossref_primary_10_1021_acs_chemrev_2c00374
crossref_primary_10_1002_adma_202000140
crossref_primary_10_3390_molecules28186741
crossref_primary_10_1016_j_mtsust_2024_100683
crossref_primary_10_1002_macp_202300427
crossref_primary_10_1016_j_cej_2024_151103
crossref_primary_10_1016_j_chemosphere_2021_129731
crossref_primary_10_1002_adfm_202108225
crossref_primary_10_1021_acs_langmuir_0c00266
crossref_primary_10_1016_j_enchem_2020_100030
crossref_primary_10_1016_j_cej_2022_136598
crossref_primary_10_1002_anie_202000566
crossref_primary_10_1016_j_ensm_2022_06_018
crossref_primary_10_1002_aenm_201900705
crossref_primary_10_1039_D3TA05797F
crossref_primary_10_3390_ma16010177
crossref_primary_10_1021_acs_inorgchem_4c03208
crossref_primary_10_1016_j_etran_2023_100261
crossref_primary_10_1039_C8TA05860A
crossref_primary_10_1039_D4TA00778F
crossref_primary_10_1039_D0TA04741D
crossref_primary_10_20517_energymater_2024_39
crossref_primary_10_1016_j_jcis_2023_03_106
crossref_primary_10_1039_D0NJ00401D
crossref_primary_10_1002_smll_202411558
crossref_primary_10_1007_s40820_023_01104_7
crossref_primary_10_1002_ange_202009279
crossref_primary_10_1038_s41467_021_23521_1
crossref_primary_10_1007_s10854_022_09531_9
crossref_primary_10_1007_s41918_022_00135_9
crossref_primary_10_1002_ange_201804068
crossref_primary_10_3390_molecules26061595
crossref_primary_10_1016_j_jpowsour_2020_227868
crossref_primary_10_1002_slct_202400345
crossref_primary_10_1016_j_est_2024_112939
crossref_primary_10_1039_D3EE00211J
crossref_primary_10_1002_cplu_201800652
crossref_primary_10_1002_celc_201901267
crossref_primary_10_1016_j_xcrp_2022_100951
crossref_primary_10_1002_anie_201906301
crossref_primary_10_1039_D2MA00330A
crossref_primary_10_1039_D2TA07827A
crossref_primary_10_1002_anie_202405426
crossref_primary_10_1002_adma_202311401
crossref_primary_10_1016_j_cej_2022_135207
crossref_primary_10_1002_cssc_201903112
crossref_primary_10_1021_acsami_9b20384
crossref_primary_10_1007_s41918_024_00218_9
crossref_primary_10_1016_j_nanoen_2023_108893
crossref_primary_10_1039_D4TA02085E
crossref_primary_10_1002_aenm_202001445
crossref_primary_10_1016_j_jcis_2022_08_166
crossref_primary_10_1002_smll_202308113
crossref_primary_10_1016_j_dt_2024_05_017
crossref_primary_10_1002_anie_201910916
crossref_primary_10_1021_acsami_2c09618
crossref_primary_10_1016_j_ijhydene_2023_03_092
crossref_primary_10_3390_polym15183728
crossref_primary_10_1002_ajoc_202300309
crossref_primary_10_1007_s40242_021_1345_6
crossref_primary_10_1021_acsenergylett_9b02630
crossref_primary_10_1002_ange_202405426
crossref_primary_10_1016_j_cej_2023_143090
crossref_primary_10_1002_ange_202000566
crossref_primary_10_1016_j_nanoen_2022_107554
crossref_primary_10_1039_D0EE02111C
crossref_primary_10_1039_D3CC02652C
crossref_primary_10_1002_aenm_201802986
crossref_primary_10_1016_j_ensm_2020_08_016
Cites_doi 10.1039/C6RA04077B
10.1002/anie.200700823
10.1021/nl402239p
10.1038/nmat2372
10.1002/anie.201002439
10.1021/ja9024897
10.3390/molecules15107498
10.1366/0003702971939686
10.1021/acsami.6b16473
10.1002/aenm.201200947
10.1038/nchem.2085
10.1038/nmat4919
10.1002/anie.201301850
10.1002/anie.201506673
10.1021/cr500003w
10.1039/b411603h
10.1038/nmat4777
10.1002/adma.201502329
10.1002/adma.200602584
10.1038/nmat3601
10.1038/ncomms6335
10.1038/nenergy.2017.74
10.1021/ja306663g
10.1039/C7GC00849J
10.1039/c3ee40709h
10.1016/j.jscs.2011.07.002
10.1038/nchem.2689
10.1002/aenm.201402034
10.1021/am501370f
10.1002/(SICI)1097-4555(199710)28:10<755::AID-JRS143>3.0.CO;2-V
10.1016/j.mattod.2017.07.005
10.1021/acs.chemrev.6b00070
10.1039/C7EE01473B
10.1021/jp4102702
10.1038/nmat3142
10.1039/c0cs00183j
10.1002/aenm.201100795
10.1021/nl500026j
10.1016/0301-0104(82)85123-9
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201706498
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29687487
10_1002_adma_201706498
ADMA201706498
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1438198
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4788-99c82c12dfd176b8c15291380b685fc39913d2bb7ca3e296732a8e1b2952dbae3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:22:43 EDT 2025
Fri Jul 25 02:40:31 EDT 2025
Mon Jul 21 05:52:10 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Tue Jul 01 00:44:41 EDT 2025
Wed Aug 20 07:26:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords nitro compound
organic electrode materials
lithium-ion batteries
azo compound
electrochemical conversion
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4788-99c82c12dfd176b8c15291380b685fc39913d2bb7ca3e296732a8e1b2952dbae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8626-6381
PMID 29687487
PQID 2047973861
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2031027018
proquest_journals_2047973861
pubmed_primary_29687487
crossref_citationtrail_10_1002_adma_201706498
crossref_primary_10_1002_adma_201706498
wiley_primary_10_1002_adma_201706498_ADMA201706498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2007; 19
2013; 3
2015; 5
2017; 2
2010; 15
1982; 72
2011; 40
2015; 54
1997; 28
2011; 10
2005
2011; 15
2009; 131
2016; 16
2018; 21
2013; 6
2014; 114
2017; 9
2016; 6
2012; 2
2010; 49
2014; 5
1997; 51
2015; 27
2012; 134
2013; 13
2017; 16
2013; 12
2017; 10
2013; 52
2014; 14
2009; 8
2017; 19
2016; 116
2011; 49
2014; 7
2014; 6
2007; 46
2016; 9
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Arivazhagan M. (e_1_2_5_27_1) 2011; 49
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 15
  start-page: 327
  year: 2011
  publication-title: J. Saudi Chem. Soc.
– volume: 21
  start-page: 60
  year: 2018
  publication-title: Mater. Today
– volume: 14
  start-page: 1596
  year: 2014
  publication-title: Nano Lett.
– volume: 5
  start-page: 5335
  year: 2014
  publication-title: Nat. Commun.
– volume: 114
  start-page: 11503
  year: 2014
  publication-title: Chem. Rev.
– volume: 5
  start-page: 1402034
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 30048
  year: 2016
  publication-title: RSC Adv.
– volume: 19
  start-page: 2980
  year: 2017
  publication-title: Green Chem.
– volume: 116
  start-page: 9438
  year: 2016
  publication-title: Chem. Rev.
– volume: 13
  start-page: 4404
  year: 2013
  publication-title: Nano Lett.
– volume: 7
  start-page: 19
  year: 2014
  publication-title: Nat. Chem.
– volume: 54
  start-page: 13947
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 120
  year: 2009
  publication-title: Nat. Mater.
– volume: 15
  start-page: 7498
  year: 2010
  publication-title: Molecules
– volume: 51
  start-page: 1854
  year: 1997
  publication-title: Appl. Spectrosc.
– volume: 2
  start-page: 742
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 947
  year: 2011
  publication-title: Nat. Mater.
– volume: 3
  start-page: 600
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 118
  start-page: 502
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 45
  year: 2016
  publication-title: Nat. Mater.
– volume: 131
  start-page: 8984
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 19694
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 17074
  year: 2017
  publication-title: Nat. Energy
– volume: 9
  start-page: 466
  year: 2016
  publication-title: Nat. Chem.
– volume: 72
  start-page: 267
  year: 1982
  publication-title: Chem. Phys.
– volume: 19
  start-page: 1616
  year: 2007
  publication-title: Adv. Mater.
– start-page: 522
  year: 2005
  publication-title: Chem. Commun.
– volume: 49
  start-page: 8444
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 40
  start-page: 3835
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 7266
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 8322
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2334
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 755
  year: 1997
  publication-title: J. Raman Spectrosc.
– volume: 16
  start-page: 841
  year: 2017
  publication-title: Nat. Mater.
– volume: 12
  start-page: 518
  year: 2013
  publication-title: Nat. Mater.
– volume: 27
  start-page: 5141
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 13121
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 516
  year: 2011
  publication-title: Indian J. Pure Appl. Phys.
– volume: 6
  start-page: 11219
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2280
  year: 2013
  publication-title: Energy Environ. Sci.
– ident: e_1_2_5_32_1
  doi: 10.1039/C6RA04077B
– ident: e_1_2_5_33_1
  doi: 10.1002/anie.200700823
– ident: e_1_2_5_20_1
  doi: 10.1021/nl402239p
– ident: e_1_2_5_8_1
  doi: 10.1038/nmat2372
– ident: e_1_2_5_15_1
  doi: 10.1002/anie.201002439
– ident: e_1_2_5_12_1
  doi: 10.1021/ja9024897
– ident: e_1_2_5_36_1
  doi: 10.3390/molecules15107498
– ident: e_1_2_5_26_1
  doi: 10.1366/0003702971939686
– ident: e_1_2_5_38_1
  doi: 10.1021/acsami.6b16473
– ident: e_1_2_5_16_1
  doi: 10.1002/aenm.201200947
– ident: e_1_2_5_2_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_5_10_1
  doi: 10.1038/nmat4919
– ident: e_1_2_5_21_1
  doi: 10.1002/anie.201301850
– ident: e_1_2_5_18_1
  doi: 10.1002/anie.201506673
– ident: e_1_2_5_31_1
  doi: 10.1021/cr500003w
– ident: e_1_2_5_34_1
  doi: 10.1039/b411603h
– ident: e_1_2_5_1_1
  doi: 10.1038/nmat4777
– ident: e_1_2_5_19_1
  doi: 10.1002/adma.201502329
– ident: e_1_2_5_14_1
  doi: 10.1002/adma.200602584
– ident: e_1_2_5_39_1
  doi: 10.1038/nmat3601
– ident: e_1_2_5_22_1
  doi: 10.1038/ncomms6335
– ident: e_1_2_5_23_1
  doi: 10.1038/nenergy.2017.74
– ident: e_1_2_5_17_1
  doi: 10.1021/ja306663g
– ident: e_1_2_5_24_1
  doi: 10.1039/C7GC00849J
– volume: 49
  start-page: 516
  year: 2011
  ident: e_1_2_5_27_1
  publication-title: Indian J. Pure Appl. Phys.
– ident: e_1_2_5_7_1
  doi: 10.1039/c3ee40709h
– ident: e_1_2_5_30_1
  doi: 10.1016/j.jscs.2011.07.002
– ident: e_1_2_5_11_1
  doi: 10.1038/nchem.2689
– ident: e_1_2_5_6_1
  doi: 10.1002/aenm.201402034
– ident: e_1_2_5_37_1
  doi: 10.1021/am501370f
– ident: e_1_2_5_35_1
  doi: 10.1002/(SICI)1097-4555(199710)28:10<755::AID-JRS143>3.0.CO;2-V
– ident: e_1_2_5_3_1
  doi: 10.1016/j.mattod.2017.07.005
– ident: e_1_2_5_4_1
  doi: 10.1021/acs.chemrev.6b00070
– ident: e_1_2_5_25_1
  doi: 10.1039/C7EE01473B
– ident: e_1_2_5_28_1
  doi: 10.1021/jp4102702
– ident: e_1_2_5_9_1
  doi: 10.1038/nmat3142
– ident: e_1_2_5_40_1
  doi: 10.1039/c0cs00183j
– ident: e_1_2_5_5_1
  doi: 10.1002/aenm.201100795
– ident: e_1_2_5_13_1
  doi: 10.1021/nl500026j
– ident: e_1_2_5_29_1
  doi: 10.1016/0301-0104(82)85123-9
SSID ssj0009606
Score 2.607517
Snippet Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art...
Organic compounds are desirable alternatives for sustainable lithium-ion battery electrodes. However, the electrochemical properties of state-of-the-art...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1706498
SubjectTerms azo compound
Azo compounds
Chemical reduction
Electrochemical analysis
electrochemical conversion
Electrode materials
Electrodes
Lithium
Lithium-ion batteries
Materials science
nitro compound
Nitro compounds
Nitrobenzoic acid
Organic chemistry
Organic compounds
organic electrode materials
Title Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706498
https://www.ncbi.nlm.nih.gov/pubmed/29687487
https://www.proquest.com/docview/2047973861
https://www.proquest.com/docview/2031027018
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsQwFIaDuNKF98t4I4LgqjpJL0mWgzOioiKi4K4kaQqiTMWZceHKR_AZfRLPaTqdGUUE3bVN0jQ9Pc3fNPkOIXsKO3VtsyAPy6EbpgOVOzCIYUIbAR1oOZhzcZmc3EZnd_Hd2Cp-z4eoB9zQM8r3NTq4Nr3DETRUZyU3CPEvkcLVvjhhC1XR9YgfhfK8hO2FcaCSSA6pjU1-OFl8slf6JjUnlWvZ9RzPEz28aD_j5OFg0DcH9vULz_E_rVogc5UupS3_IC2SKdddIrNjtMJlUrReC4rvD4zE1KNtOPziMooLVGjHR9OxFX6AXiMRFm1Oi5xe3kPSWEnQyRTnl9Cr0aoFen7_8fZ-CgU88RM-4FfI7XHn5ugkqOI1BBYh_IFSVnLLeJZnTCRGWtAGioWyaRIZ5xakEAszboywOnRcJSLkWjpmuIp5ZrQLV8l0t-i6dUKbFv8wRjyTCmGnODISC25VwizDChokGNortRXMHGNqPKYew8xTvJFpfSMbZL_O_-QxHj_m3BqaP63cuQepkVAYHpU1yG6dDI6If1d01xUDzANKmYsmg1Os-cemrgoaK6EdokF4afxfriFttS9a9d7GXwptkhnYln5S2xaZ7j8P3DbIp77ZKV3kEwZpECg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbhMxEIBHpRyAA_8_gQJGAnHaNvb-2D5wiEirhCYRqlqpt2Xt9UoRVbYiCYieeARehVfhEXgSZta7mwaEkJB64Lj-W3s99tiz9jcAzzUp9czmQRFWphueBbpw2CGGy8xIVKCVMWc8SQZH0Zvj-HgDvjV3YTwfojW40cio5msa4GSQ3llRQ7O8AgcR_yXSqj5Xue8-f8Jd2_zVsI9d_EKIvd3D14OgdiwQWKLFB1pbJSwXeZFzmRhlUYlpHqquSVRcWNTZPMyFMdJmoRM6kaHIlONG6FjkJnMhlnsJLpMbccL19w9WxCraEFR4vzAOdBKphhPZFTvr9V3Xg78tbtfXypWy27sB35vP5M-4vN9eLsy2PfuFIPlffcebcL1eerOeHyu3YMPNbsO1c0DGO1D2zkpGUyQ5m5qzPgZ_dDmjOzhs1zsMsjVhgR0Q9JbEmpUFm0wx6lxO3AowOkLD3q4uZrDR9MeXr0PM4KGmUze_C0cX0uJ7sDkrZ-4BsK6ln6iRyJUmnisZf2IprE645fSCDgSNgKS25rWT25CT1JOmRUodl7Yd14GXbfpTTyr5Y8qtRt7SesaaY2wkNXmA5R141kbjXEM_kLKZK5eUBjcDQnY5FnHfy2n7KmyswnbIDohK2v5Sh7TXH_fap4f_kukpXBkcjkfpaDjZfwRXMVz5M3xbsLn4sHSPcbW4ME-q8cng3UUL8k99NG0I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1JaxRBFIAfMYLowT06JmoJiqdOuqq3qoOHwc6QMckQgoHc2q6lYVCmgzOjmJM_IT8lfyV_wV_ie71NRhFByMFj19a1vKpX6_cAXipS6rmxXhFUWzc891ThsEE0T3KdoAKtNnP2R_HOUfjuODpegfP2LUzNh-g23KhnVOM1dfATW2wtoKG5rbhBhH8JlWyuVe66b19x0TZ9M0yxhV8JMdh-_3bHa-wKeIZg8Z5SRgrDhS0sT2ItDeowxQPp61hGhUGVzQMrtE5MHjih4iQQuXRcCxUJq3MXYLrX4HoY-4qMRaSHC2AVrQcqul8QeSoOZYuJ9MXWcn6X1eBvc9vlqXKl6wZ34KKtpfqKy8fN-UxvmtNfAJL_UzXehdvNxJv1655yD1bc5D7cuoRjfABl_7RkNECSqakpS9H5i7OMXuCw7dpckGn4CuyQkLck1Kws2GiMXpdi4kKA0QUadrB4lsH2xj--nw0xQo00HbvpQzi6khKvweqknLjHwHxDR6ihsFIRzZW2fqJEGBVzw-kHPfBa-chMQ2snoyGfspozLTJquKxruB687sKf1JySP4bcaMUta8arKfqGiSL7r7wHLzpvHGno-CifuHJOYXApIBKfYxKPajHtfoWFlViOpAeiEra_5CHrp_v97uvJv0R6DjcO0kG2NxztrsNNdJb1Bb4NWJ19nrunOFWc6WdV72Tw4arl-Cekdmu3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Azo+Compounds+Derived+from+Electrochemical+Reduction+of+Nitro+Compounds+for+High+Performance+Li-Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Luo%2C+Chao&rft.au=Ji%2C+Xiao&rft.au=Hou%2C+Singyuk&rft.au=Eidson%2C+Nico&rft.date=2018-06-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=23&rft.spage=e1706498&rft_id=info:doi/10.1002%2Fadma.201706498&rft_id=info%3Apmid%2F29687487&rft.externalDocID=29687487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon