Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li‐Ion Batteries
Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversio...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 23; pp. e1706498 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium‐ion batteries. 4‐Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g−1 at 0.5 C and retains a capacity of 131 mAh g−1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium‐ion batteries.
A new chemistry is unveiled to electrochemically convert nitro compounds into azo compounds, which act as active materials to reversibly react with lithium ions. The discovery of nitro and azo compounds for organic electrodes offers new opportunities for high‐performance lithium‐ion batteries. |
---|---|
AbstractList | Organic compounds are desirable alternatives for sustainable lithium-ion battery electrodes. However, the electrochemical properties of state-of-the-art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium-ion batteries. 4-Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g-1 at 0.5 C and retains a capacity of 131 mAh g-1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium-ion batteries.Organic compounds are desirable alternatives for sustainable lithium-ion battery electrodes. However, the electrochemical properties of state-of-the-art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium-ion batteries. 4-Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g-1 at 0.5 C and retains a capacity of 131 mAh g-1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium-ion batteries. Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium‐ion batteries. 4‐Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g−1 at 0.5 C and retains a capacity of 131 mAh g−1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium‐ion batteries. A new chemistry is unveiled to electrochemically convert nitro compounds into azo compounds, which act as active materials to reversibly react with lithium ions. The discovery of nitro and azo compounds for organic electrodes offers new opportunities for high‐performance lithium‐ion batteries. Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium‐ion batteries. 4‐Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g−1 at 0.5 C and retains a capacity of 131 mAh g−1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium‐ion batteries. Organic compounds are desirable alternatives for sustainable lithium-ion battery electrodes. However, the electrochemical properties of state-of-the-art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium-ion batteries. 4-Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g at 0.5 C and retains a capacity of 131 mAh g after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium-ion batteries. Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art organic electrodes are still worse than commercial inorganic counterparts. Here, a new chemistry is reported based on the electrochemical conversion of nitro compounds to azo compounds for high performance lithium‐ion batteries. 4‐Nitrobenzoic acid lithium salt (NBALS) is selected as a model nitro compound to systemically investigate the structure, lithiation/delithiation mechanism, and electrochemical performance of nitro compounds. NBALS delivers an initial capacity of 153 mAh g −1 at 0.5 C and retains a capacity of 131 mAh g −1 after 100 cycles. Detailed characterizations demonstrate that during initial electrochemical lithiation, the nitro group in crystalline NBALS is irreversibly reduced into an amorphous azo compound. Subsequently, the azo compound is reversibly lithiated/delithiated in the following charge/discharge cycles with high electrochemical performance. The lithiation/delithiation mechanism of azo compounds is also validated by directly using azo compounds as electrode materials, which exhibit similar electrochemical performance to nitro compounds, while having a much higher initial Coulombic efficiency. Therefore, this work proves that nitro compounds can be electrochemically converted to azo compounds for high performance lithium‐ion batteries. |
Author | Jiang, Jianjun Wang, Chunsheng Hou, Singyuk Deng, Tao Ji, Xiao Eidson, Nico Luo, Chao Fan, Xiulin Liang, Yujia |
Author_xml | – sequence: 1 givenname: Chao surname: Luo fullname: Luo, Chao organization: University of Maryland – sequence: 2 givenname: Xiao surname: Ji fullname: Ji, Xiao organization: Huazhong University of Science and Technology – sequence: 3 givenname: Singyuk surname: Hou fullname: Hou, Singyuk organization: University of Maryland – sequence: 4 givenname: Nico surname: Eidson fullname: Eidson, Nico organization: University of Maryland – sequence: 5 givenname: Xiulin surname: Fan fullname: Fan, Xiulin organization: University of Maryland – sequence: 6 givenname: Yujia surname: Liang fullname: Liang, Yujia organization: University of Maryland – sequence: 7 givenname: Tao surname: Deng fullname: Deng, Tao organization: University of Maryland – sequence: 8 givenname: Jianjun surname: Jiang fullname: Jiang, Jianjun organization: Huazhong University of Science and Technology – sequence: 9 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng email: cswang@umd.edu organization: University of Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29687487$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9O3DAQhy1EVRbolWNliUsv2drOH9vHZYGCtAWE4Gw59qQYJfFiJ63oiUfoM_IkeLXQVkiIk235-0Yz89tGm73vAaE9SqaUEPZV205PGaGcVIUUG2hCS0azgshyE02IzMtMVoXYQtsx3hJCZEWqj2iLyUrwQvAJ8rPfHs99t_RjbyM-hOB-gsVN8B0-asEMwZsb6JzRLb4EO5rB-R77Bp-59PWf2fiAT9yPG3wBId073RvAC_f48Oc0CQd6GFJpiLvoQ6PbCJ-ezx10fXx0NT_JFuffTuezRWYKLkQmpRHMUGYbS3lVC5PGkjQXpK5E2Zhcpodldc2NziFNw3OmBdCayZLZWkO-g76s6y6DvxshDqpz0UDb6h78GBUjOSWMEyoSuv8KvfVj6FN3iSq45LmoaKI-P1Nj3YFVy-A6He7VyyoTUKwBE3yMARpl3KBX6xqCdq2iRK0SU6vE1N_EkjZ9pb1UflOQa-GXa-H-HVrNDr_P_rlPl82pNQ |
CitedBy_id | crossref_primary_10_1002_aenm_202002523 crossref_primary_10_1016_j_cej_2020_126621 crossref_primary_10_1016_j_jpowsour_2020_228814 crossref_primary_10_1002_batt_202200406 crossref_primary_10_3390_ma13102402 crossref_primary_10_1002_aenm_202003735 crossref_primary_10_1021_acsenergylett_0c01750 crossref_primary_10_1002_aenm_202101562 crossref_primary_10_1016_j_cej_2024_157372 crossref_primary_10_1002_anie_202208821 crossref_primary_10_1016_j_jenvman_2025_124920 crossref_primary_10_1002_cssc_202001389 crossref_primary_10_1021_acsami_9b05956 crossref_primary_10_1016_j_micromeso_2022_111803 crossref_primary_10_1016_j_electacta_2019_06_051 crossref_primary_10_1021_acs_chemrev_9b00482 crossref_primary_10_1039_D4SC04179H crossref_primary_10_1002_advs_202310239 crossref_primary_10_1039_D0QM00335B crossref_primary_10_1039_D4CC01479K crossref_primary_10_1002_anie_201804068 crossref_primary_10_1039_C9TA04328D crossref_primary_10_1016_j_ijhydene_2022_01_146 crossref_primary_10_1002_anie_202206093 crossref_primary_10_1002_adfm_202302618 crossref_primary_10_1016_j_jelechem_2024_118526 crossref_primary_10_1021_acsaem_9b00534 crossref_primary_10_1007_s40843_021_1831_1 crossref_primary_10_1021_acsami_1c14838 crossref_primary_10_1007_s40843_021_1689_4 crossref_primary_10_1039_C9EE03637G crossref_primary_10_1002_advs_202106116 crossref_primary_10_1002_batt_202300001 crossref_primary_10_1007_s41918_022_00152_8 crossref_primary_10_1149_1945_7111_ad1c12 crossref_primary_10_1002_ange_201906301 crossref_primary_10_1002_smll_202200049 crossref_primary_10_1016_j_surfin_2022_102447 crossref_primary_10_1021_acs_inorgchem_3c02583 crossref_primary_10_1016_j_ensm_2023_103102 crossref_primary_10_1007_s40843_020_1375_2 crossref_primary_10_20964_2019_10_49 crossref_primary_10_3390_ma12111770 crossref_primary_10_1002_ange_201910916 crossref_primary_10_1039_C9RA01249D crossref_primary_10_1039_D4LP00320A crossref_primary_10_1016_j_jcis_2021_04_018 crossref_primary_10_1021_acsami_4c09801 crossref_primary_10_1016_j_jpowsour_2025_236208 crossref_primary_10_1098_rsos_210567 crossref_primary_10_1016_j_jpowsour_2020_228515 crossref_primary_10_1016_j_cej_2020_127454 crossref_primary_10_1021_jacs_2c06550 crossref_primary_10_1002_adfm_202407258 crossref_primary_10_1007_s11426_023_1738_3 crossref_primary_10_1021_acsaem_0c01216 crossref_primary_10_1021_acs_chemmater_2c01497 crossref_primary_10_1002_cplu_202300026 crossref_primary_10_1016_j_chempr_2024_07_039 crossref_primary_10_1002_cssc_202002851 crossref_primary_10_1016_j_jelechem_2023_117251 crossref_primary_10_1016_j_dyepig_2021_109352 crossref_primary_10_1021_acsanm_2c03347 crossref_primary_10_1002_aenm_202003281 crossref_primary_10_1002_ange_202302539 crossref_primary_10_1039_C8CC09000A crossref_primary_10_1002_ange_202309446 crossref_primary_10_1039_C8TA04906H crossref_primary_10_1039_C8TA10513H crossref_primary_10_1016_j_nanoen_2021_106113 crossref_primary_10_1021_acsami_2c18869 crossref_primary_10_1021_acsami_9b23438 crossref_primary_10_1002_anie_202009279 crossref_primary_10_1002_chem_202005259 crossref_primary_10_1016_j_matchemphys_2022_126430 crossref_primary_10_1002_adfm_202416000 crossref_primary_10_1002_adfm_202210184 crossref_primary_10_1002_ange_202208821 crossref_primary_10_1016_j_cej_2024_148806 crossref_primary_10_1002_aenm_202103010 crossref_primary_10_1039_D3TA00596H crossref_primary_10_3866_PKU_WHXB202303060 crossref_primary_10_1016_j_jcis_2019_12_126 crossref_primary_10_1016_j_micromeso_2022_111719 crossref_primary_10_1021_acsaem_1c03574 crossref_primary_10_1002_anie_202302539 crossref_primary_10_1007_s11426_024_2456_x crossref_primary_10_1002_ange_202206093 crossref_primary_10_1002_anie_202309446 crossref_primary_10_1021_acs_chemrev_2c00374 crossref_primary_10_1002_adma_202000140 crossref_primary_10_3390_molecules28186741 crossref_primary_10_1016_j_mtsust_2024_100683 crossref_primary_10_1002_macp_202300427 crossref_primary_10_1016_j_cej_2024_151103 crossref_primary_10_1016_j_chemosphere_2021_129731 crossref_primary_10_1002_adfm_202108225 crossref_primary_10_1021_acs_langmuir_0c00266 crossref_primary_10_1016_j_enchem_2020_100030 crossref_primary_10_1016_j_cej_2022_136598 crossref_primary_10_1002_anie_202000566 crossref_primary_10_1016_j_ensm_2022_06_018 crossref_primary_10_1002_aenm_201900705 crossref_primary_10_1039_D3TA05797F crossref_primary_10_3390_ma16010177 crossref_primary_10_1021_acs_inorgchem_4c03208 crossref_primary_10_1016_j_etran_2023_100261 crossref_primary_10_1039_C8TA05860A crossref_primary_10_1039_D4TA00778F crossref_primary_10_1039_D0TA04741D crossref_primary_10_20517_energymater_2024_39 crossref_primary_10_1016_j_jcis_2023_03_106 crossref_primary_10_1039_D0NJ00401D crossref_primary_10_1002_smll_202411558 crossref_primary_10_1007_s40820_023_01104_7 crossref_primary_10_1002_ange_202009279 crossref_primary_10_1038_s41467_021_23521_1 crossref_primary_10_1007_s10854_022_09531_9 crossref_primary_10_1007_s41918_022_00135_9 crossref_primary_10_1002_ange_201804068 crossref_primary_10_3390_molecules26061595 crossref_primary_10_1016_j_jpowsour_2020_227868 crossref_primary_10_1002_slct_202400345 crossref_primary_10_1016_j_est_2024_112939 crossref_primary_10_1039_D3EE00211J crossref_primary_10_1002_cplu_201800652 crossref_primary_10_1002_celc_201901267 crossref_primary_10_1016_j_xcrp_2022_100951 crossref_primary_10_1002_anie_201906301 crossref_primary_10_1039_D2MA00330A crossref_primary_10_1039_D2TA07827A crossref_primary_10_1002_anie_202405426 crossref_primary_10_1002_adma_202311401 crossref_primary_10_1016_j_cej_2022_135207 crossref_primary_10_1002_cssc_201903112 crossref_primary_10_1021_acsami_9b20384 crossref_primary_10_1007_s41918_024_00218_9 crossref_primary_10_1016_j_nanoen_2023_108893 crossref_primary_10_1039_D4TA02085E crossref_primary_10_1002_aenm_202001445 crossref_primary_10_1016_j_jcis_2022_08_166 crossref_primary_10_1002_smll_202308113 crossref_primary_10_1016_j_dt_2024_05_017 crossref_primary_10_1002_anie_201910916 crossref_primary_10_1021_acsami_2c09618 crossref_primary_10_1016_j_ijhydene_2023_03_092 crossref_primary_10_3390_polym15183728 crossref_primary_10_1002_ajoc_202300309 crossref_primary_10_1007_s40242_021_1345_6 crossref_primary_10_1021_acsenergylett_9b02630 crossref_primary_10_1002_ange_202405426 crossref_primary_10_1016_j_cej_2023_143090 crossref_primary_10_1002_ange_202000566 crossref_primary_10_1016_j_nanoen_2022_107554 crossref_primary_10_1039_D0EE02111C crossref_primary_10_1039_D3CC02652C crossref_primary_10_1002_aenm_201802986 crossref_primary_10_1016_j_ensm_2020_08_016 |
Cites_doi | 10.1039/C6RA04077B 10.1002/anie.200700823 10.1021/nl402239p 10.1038/nmat2372 10.1002/anie.201002439 10.1021/ja9024897 10.3390/molecules15107498 10.1366/0003702971939686 10.1021/acsami.6b16473 10.1002/aenm.201200947 10.1038/nchem.2085 10.1038/nmat4919 10.1002/anie.201301850 10.1002/anie.201506673 10.1021/cr500003w 10.1039/b411603h 10.1038/nmat4777 10.1002/adma.201502329 10.1002/adma.200602584 10.1038/nmat3601 10.1038/ncomms6335 10.1038/nenergy.2017.74 10.1021/ja306663g 10.1039/C7GC00849J 10.1039/c3ee40709h 10.1016/j.jscs.2011.07.002 10.1038/nchem.2689 10.1002/aenm.201402034 10.1021/am501370f 10.1002/(SICI)1097-4555(199710)28:10<755::AID-JRS143>3.0.CO;2-V 10.1016/j.mattod.2017.07.005 10.1021/acs.chemrev.6b00070 10.1039/C7EE01473B 10.1021/jp4102702 10.1038/nmat3142 10.1039/c0cs00183j 10.1002/aenm.201100795 10.1021/nl500026j 10.1016/0301-0104(82)85123-9 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201706498 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29687487 10_1002_adma_201706498 ADMA201706498 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1438198 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4788-99c82c12dfd176b8c15291380b685fc39913d2bb7ca3e296732a8e1b2952dbae3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 22:22:43 EDT 2025 Fri Jul 25 02:40:31 EDT 2025 Mon Jul 21 05:52:10 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Tue Jul 01 00:44:41 EDT 2025 Wed Aug 20 07:26:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | nitro compound organic electrode materials lithium-ion batteries azo compound electrochemical conversion |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4788-99c82c12dfd176b8c15291380b685fc39913d2bb7ca3e296732a8e1b2952dbae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8626-6381 |
PMID | 29687487 |
PQID | 2047973861 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2031027018 proquest_journals_2047973861 pubmed_primary_29687487 crossref_citationtrail_10_1002_adma_201706498 crossref_primary_10_1002_adma_201706498 wiley_primary_10_1002_adma_201706498_ADMA201706498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2007; 19 2013; 3 2015; 5 2017; 2 2010; 15 1982; 72 2011; 40 2015; 54 1997; 28 2011; 10 2005 2011; 15 2009; 131 2016; 16 2018; 21 2013; 6 2014; 114 2017; 9 2016; 6 2012; 2 2010; 49 2014; 5 1997; 51 2015; 27 2012; 134 2013; 13 2017; 16 2013; 12 2017; 10 2013; 52 2014; 14 2009; 8 2017; 19 2016; 116 2011; 49 2014; 7 2014; 6 2007; 46 2016; 9 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Arivazhagan M. (e_1_2_5_27_1) 2011; 49 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 15 start-page: 327 year: 2011 publication-title: J. Saudi Chem. Soc. – volume: 21 start-page: 60 year: 2018 publication-title: Mater. Today – volume: 14 start-page: 1596 year: 2014 publication-title: Nano Lett. – volume: 5 start-page: 5335 year: 2014 publication-title: Nat. Commun. – volume: 114 start-page: 11503 year: 2014 publication-title: Chem. Rev. – volume: 5 start-page: 1402034 year: 2015 publication-title: Adv. Energy Mater. – volume: 6 start-page: 30048 year: 2016 publication-title: RSC Adv. – volume: 19 start-page: 2980 year: 2017 publication-title: Green Chem. – volume: 116 start-page: 9438 year: 2016 publication-title: Chem. Rev. – volume: 13 start-page: 4404 year: 2013 publication-title: Nano Lett. – volume: 7 start-page: 19 year: 2014 publication-title: Nat. Chem. – volume: 54 start-page: 13947 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 120 year: 2009 publication-title: Nat. Mater. – volume: 15 start-page: 7498 year: 2010 publication-title: Molecules – volume: 51 start-page: 1854 year: 1997 publication-title: Appl. Spectrosc. – volume: 2 start-page: 742 year: 2012 publication-title: Adv. Energy Mater. – volume: 10 start-page: 947 year: 2011 publication-title: Nat. Mater. – volume: 3 start-page: 600 year: 2013 publication-title: Adv. Energy Mater. – volume: 118 start-page: 502 year: 2014 publication-title: J. Phys. Chem. C – volume: 16 start-page: 45 year: 2016 publication-title: Nat. Mater. – volume: 131 start-page: 8984 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 19694 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 17074 year: 2017 publication-title: Nat. Energy – volume: 9 start-page: 466 year: 2016 publication-title: Nat. Chem. – volume: 72 start-page: 267 year: 1982 publication-title: Chem. Phys. – volume: 19 start-page: 1616 year: 2007 publication-title: Adv. Mater. – start-page: 522 year: 2005 publication-title: Chem. Commun. – volume: 49 start-page: 8444 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 40 start-page: 3835 year: 2011 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 7266 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 8322 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 2334 year: 2017 publication-title: Energy Environ. Sci. – volume: 28 start-page: 755 year: 1997 publication-title: J. Raman Spectrosc. – volume: 16 start-page: 841 year: 2017 publication-title: Nat. Mater. – volume: 12 start-page: 518 year: 2013 publication-title: Nat. Mater. – volume: 27 start-page: 5141 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 13121 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 516 year: 2011 publication-title: Indian J. Pure Appl. Phys. – volume: 6 start-page: 11219 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2280 year: 2013 publication-title: Energy Environ. Sci. – ident: e_1_2_5_32_1 doi: 10.1039/C6RA04077B – ident: e_1_2_5_33_1 doi: 10.1002/anie.200700823 – ident: e_1_2_5_20_1 doi: 10.1021/nl402239p – ident: e_1_2_5_8_1 doi: 10.1038/nmat2372 – ident: e_1_2_5_15_1 doi: 10.1002/anie.201002439 – ident: e_1_2_5_12_1 doi: 10.1021/ja9024897 – ident: e_1_2_5_36_1 doi: 10.3390/molecules15107498 – ident: e_1_2_5_26_1 doi: 10.1366/0003702971939686 – ident: e_1_2_5_38_1 doi: 10.1021/acsami.6b16473 – ident: e_1_2_5_16_1 doi: 10.1002/aenm.201200947 – ident: e_1_2_5_2_1 doi: 10.1038/nchem.2085 – ident: e_1_2_5_10_1 doi: 10.1038/nmat4919 – ident: e_1_2_5_21_1 doi: 10.1002/anie.201301850 – ident: e_1_2_5_18_1 doi: 10.1002/anie.201506673 – ident: e_1_2_5_31_1 doi: 10.1021/cr500003w – ident: e_1_2_5_34_1 doi: 10.1039/b411603h – ident: e_1_2_5_1_1 doi: 10.1038/nmat4777 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201502329 – ident: e_1_2_5_14_1 doi: 10.1002/adma.200602584 – ident: e_1_2_5_39_1 doi: 10.1038/nmat3601 – ident: e_1_2_5_22_1 doi: 10.1038/ncomms6335 – ident: e_1_2_5_23_1 doi: 10.1038/nenergy.2017.74 – ident: e_1_2_5_17_1 doi: 10.1021/ja306663g – ident: e_1_2_5_24_1 doi: 10.1039/C7GC00849J – volume: 49 start-page: 516 year: 2011 ident: e_1_2_5_27_1 publication-title: Indian J. Pure Appl. Phys. – ident: e_1_2_5_7_1 doi: 10.1039/c3ee40709h – ident: e_1_2_5_30_1 doi: 10.1016/j.jscs.2011.07.002 – ident: e_1_2_5_11_1 doi: 10.1038/nchem.2689 – ident: e_1_2_5_6_1 doi: 10.1002/aenm.201402034 – ident: e_1_2_5_37_1 doi: 10.1021/am501370f – ident: e_1_2_5_35_1 doi: 10.1002/(SICI)1097-4555(199710)28:10<755::AID-JRS143>3.0.CO;2-V – ident: e_1_2_5_3_1 doi: 10.1016/j.mattod.2017.07.005 – ident: e_1_2_5_4_1 doi: 10.1021/acs.chemrev.6b00070 – ident: e_1_2_5_25_1 doi: 10.1039/C7EE01473B – ident: e_1_2_5_28_1 doi: 10.1021/jp4102702 – ident: e_1_2_5_9_1 doi: 10.1038/nmat3142 – ident: e_1_2_5_40_1 doi: 10.1039/c0cs00183j – ident: e_1_2_5_5_1 doi: 10.1002/aenm.201100795 – ident: e_1_2_5_13_1 doi: 10.1021/nl500026j – ident: e_1_2_5_29_1 doi: 10.1016/0301-0104(82)85123-9 |
SSID | ssj0009606 |
Score | 2.607517 |
Snippet | Organic compounds are desirable alternatives for sustainable lithium‐ion battery electrodes. However, the electrochemical properties of state‐of‐the‐art... Organic compounds are desirable alternatives for sustainable lithium-ion battery electrodes. However, the electrochemical properties of state-of-the-art... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1706498 |
SubjectTerms | azo compound Azo compounds Chemical reduction Electrochemical analysis electrochemical conversion Electrode materials Electrodes Lithium Lithium-ion batteries Materials science nitro compound Nitro compounds Nitrobenzoic acid Organic chemistry Organic compounds organic electrode materials |
Title | Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706498 https://www.ncbi.nlm.nih.gov/pubmed/29687487 https://www.proquest.com/docview/2047973861 https://www.proquest.com/docview/2031027018 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsQwFIaDuNKF98t4I4LgqjpJL0mWgzOioiKi4K4kaQqiTMWZceHKR_AZfRLPaTqdGUUE3bVN0jQ9Pc3fNPkOIXsKO3VtsyAPy6EbpgOVOzCIYUIbAR1oOZhzcZmc3EZnd_Hd2Cp-z4eoB9zQM8r3NTq4Nr3DETRUZyU3CPEvkcLVvjhhC1XR9YgfhfK8hO2FcaCSSA6pjU1-OFl8slf6JjUnlWvZ9RzPEz28aD_j5OFg0DcH9vULz_E_rVogc5UupS3_IC2SKdddIrNjtMJlUrReC4rvD4zE1KNtOPziMooLVGjHR9OxFX6AXiMRFm1Oi5xe3kPSWEnQyRTnl9Cr0aoFen7_8fZ-CgU88RM-4FfI7XHn5ugkqOI1BBYh_IFSVnLLeJZnTCRGWtAGioWyaRIZ5xakEAszboywOnRcJSLkWjpmuIp5ZrQLV8l0t-i6dUKbFv8wRjyTCmGnODISC25VwizDChokGNortRXMHGNqPKYew8xTvJFpfSMbZL_O_-QxHj_m3BqaP63cuQepkVAYHpU1yG6dDI6If1d01xUDzANKmYsmg1Os-cemrgoaK6EdokF4afxfriFttS9a9d7GXwptkhnYln5S2xaZ7j8P3DbIp77ZKV3kEwZpECg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbhMxEIBHpRyAA_8_gQJGAnHaNvb-2D5wiEirhCYRqlqpt2Xt9UoRVbYiCYieeARehVfhEXgSZta7mwaEkJB64Lj-W3s99tiz9jcAzzUp9czmQRFWphueBbpw2CGGy8xIVKCVMWc8SQZH0Zvj-HgDvjV3YTwfojW40cio5msa4GSQ3llRQ7O8AgcR_yXSqj5Xue8-f8Jd2_zVsI9d_EKIvd3D14OgdiwQWKLFB1pbJSwXeZFzmRhlUYlpHqquSVRcWNTZPMyFMdJmoRM6kaHIlONG6FjkJnMhlnsJLpMbccL19w9WxCraEFR4vzAOdBKphhPZFTvr9V3Xg78tbtfXypWy27sB35vP5M-4vN9eLsy2PfuFIPlffcebcL1eerOeHyu3YMPNbsO1c0DGO1D2zkpGUyQ5m5qzPgZ_dDmjOzhs1zsMsjVhgR0Q9JbEmpUFm0wx6lxO3AowOkLD3q4uZrDR9MeXr0PM4KGmUze_C0cX0uJ7sDkrZ-4BsK6ln6iRyJUmnisZf2IprE645fSCDgSNgKS25rWT25CT1JOmRUodl7Yd14GXbfpTTyr5Y8qtRt7SesaaY2wkNXmA5R141kbjXEM_kLKZK5eUBjcDQnY5FnHfy2n7KmyswnbIDohK2v5Sh7TXH_fap4f_kukpXBkcjkfpaDjZfwRXMVz5M3xbsLn4sHSPcbW4ME-q8cng3UUL8k99NG0I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1JaxRBFIAfMYLowT06JmoJiqdOuqq3qoOHwc6QMckQgoHc2q6lYVCmgzOjmJM_IT8lfyV_wV_ie71NRhFByMFj19a1vKpX6_cAXipS6rmxXhFUWzc891ThsEE0T3KdoAKtNnP2R_HOUfjuODpegfP2LUzNh-g23KhnVOM1dfATW2wtoKG5rbhBhH8JlWyuVe66b19x0TZ9M0yxhV8JMdh-_3bHa-wKeIZg8Z5SRgrDhS0sT2ItDeowxQPp61hGhUGVzQMrtE5MHjih4iQQuXRcCxUJq3MXYLrX4HoY-4qMRaSHC2AVrQcqul8QeSoOZYuJ9MXWcn6X1eBvc9vlqXKl6wZ34KKtpfqKy8fN-UxvmtNfAJL_UzXehdvNxJv1655yD1bc5D7cuoRjfABl_7RkNECSqakpS9H5i7OMXuCw7dpckGn4CuyQkLck1Kws2GiMXpdi4kKA0QUadrB4lsH2xj--nw0xQo00HbvpQzi6khKvweqknLjHwHxDR6ihsFIRzZW2fqJEGBVzw-kHPfBa-chMQ2snoyGfspozLTJquKxruB687sKf1JySP4bcaMUta8arKfqGiSL7r7wHLzpvHGno-CifuHJOYXApIBKfYxKPajHtfoWFlViOpAeiEra_5CHrp_v97uvJv0R6DjcO0kG2NxztrsNNdJb1Bb4NWJ19nrunOFWc6WdV72Tw4arl-Cekdmu3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Azo+Compounds+Derived+from+Electrochemical+Reduction+of+Nitro+Compounds+for+High+Performance+Li-Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Luo%2C+Chao&rft.au=Ji%2C+Xiao&rft.au=Hou%2C+Singyuk&rft.au=Eidson%2C+Nico&rft.date=2018-06-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=23&rft.spage=e1706498&rft_id=info:doi/10.1002%2Fadma.201706498&rft_id=info%3Apmid%2F29687487&rft.externalDocID=29687487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |