Review on Li Deposition in Working Batteries: From Nucleation to Early Growth
Lithium (Li) metal is one of the most promising alternative anode materials of next‐generation high‐energy‐density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and th...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 8; pp. e2004128 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal is one of the most promising alternative anode materials of next‐generation high‐energy‐density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li‐SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode‐design strategies, which contribute to better batteries with superior electrochemical performance and dendrite‐free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal‐based batteries involving the metal deposition process.
Lithium (Li) nucleation and early growth processes significantly determine the final deposition behavior. The recent progress in influential models proposed to understand the process of Li nucleation and early growth is highlighted. Inspired by the abovementioned understanding, diverse anode‐design strategies, which contribute to better batteries with superior electrochemical performance and dendrite‐free deposition behavior, are also summarized. |
---|---|
AbstractList | Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li-SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode-design strategies, which contribute to better batteries with superior electrochemical performance and dendrite-free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal-based batteries involving the metal deposition process.Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li-SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode-design strategies, which contribute to better batteries with superior electrochemical performance and dendrite-free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal-based batteries involving the metal deposition process. Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li-SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode-design strategies, which contribute to better batteries with superior electrochemical performance and dendrite-free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal-based batteries involving the metal deposition process. Lithium (Li) metal is one of the most promising alternative anode materials of next‐generation high‐energy‐density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li‐SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode‐design strategies, which contribute to better batteries with superior electrochemical performance and dendrite‐free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal‐based batteries involving the metal deposition process. Lithium (Li) nucleation and early growth processes significantly determine the final deposition behavior. The recent progress in influential models proposed to understand the process of Li nucleation and early growth is highlighted. Inspired by the abovementioned understanding, diverse anode‐design strategies, which contribute to better batteries with superior electrochemical performance and dendrite‐free deposition behavior, are also summarized. |
Author | Chen, Xiao‐Ru Zhao, Bo‐Chen Zhang, Qiang Yan, Chong |
Author_xml | – sequence: 1 givenname: Xiao‐Ru surname: Chen fullname: Chen, Xiao‐Ru organization: Tsinghua University – sequence: 2 givenname: Bo‐Chen surname: Zhao fullname: Zhao, Bo‐Chen organization: Tsinghua University – sequence: 3 givenname: Chong surname: Yan fullname: Yan, Chong organization: Tsinghua University – sequence: 4 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33432664$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAURoMoOj62LiXgxk3Hm0fT1N34FkYFUVyGNJNqtG3GpHWYf291fIAgri4Xzvm43G8dLTe-sQhtExgSALqvJ7UeUqAAnFC5hAYkpSThkKfLaAA5S5NccLmG1mN8AoBcgFhFa4xxRoXgA3R5Y1-dnWHf4LHDx3bqo2tdv7kG3_vw7JoHfKjb1gZn4wE-Db7GV52prP6gWo9PdKjm-Cz4Wfu4iVZKXUW79Tk30N3pye3ReTK-Prs4Go0TwzMpEyIyLqEUxjA5KTRnhpTM8HRCBCUsLykxhkpqJCsKmlvgYAjVNuVFlkFacraB9ha50-BfOhtbVbtobFXpxvouKsqzjIoUCOnR3V_ok-9C01_XUzmRLANBe2rnk-qK2k7UNLhah7n6elQP8AVggo8x2FIZ1378oA3aVYqAeu9DvfehvvvoteEv7Sv5TyFfCDNX2fk_tBodX45-3Dcnk5p1 |
CitedBy_id | crossref_primary_10_1002_adfm_202101233 crossref_primary_10_1016_j_jechem_2023_01_030 crossref_primary_10_1149_1945_7111_ac239d crossref_primary_10_1016_j_nxnano_2023_100028 crossref_primary_10_1002_adfm_202406426 crossref_primary_10_1002_ange_202203564 crossref_primary_10_1039_D4NR02389G crossref_primary_10_1007_s40843_024_2914_x crossref_primary_10_1002_aenm_202200115 crossref_primary_10_1039_D4EE04617J crossref_primary_10_1088_1361_6528_ad49ad crossref_primary_10_1002_adma_202206228 crossref_primary_10_1007_s41918_024_00233_w crossref_primary_10_1021_acsmaterialslett_3c00152 crossref_primary_10_1016_j_cej_2024_153855 crossref_primary_10_1016_j_cej_2023_143084 crossref_primary_10_1002_aenm_202301742 crossref_primary_10_1002_aenm_202301743 crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1002_anie_202201406 crossref_primary_10_1021_acs_jpcb_3c06735 crossref_primary_10_1002_adfm_202425517 crossref_primary_10_1002_aenm_202403995 crossref_primary_10_1002_adma_202313034 crossref_primary_10_1016_j_mtphys_2022_100672 crossref_primary_10_1016_j_jcrysgro_2022_126891 crossref_primary_10_1021_acs_nanolett_2c04613 crossref_primary_10_1002_smll_202408988 crossref_primary_10_1021_acsaem_4c01618 crossref_primary_10_1002_ange_202304947 crossref_primary_10_1021_acs_nanolett_3c02784 crossref_primary_10_1021_acsenergylett_3c00120 crossref_primary_10_1039_D4EE01816H crossref_primary_10_1002_aenm_202300500 crossref_primary_10_1016_j_jpowsour_2021_230901 crossref_primary_10_1016_j_jallcom_2022_163730 crossref_primary_10_1002_cnl2_147 crossref_primary_10_1016_j_jechem_2022_09_007 crossref_primary_10_1016_j_jechem_2021_12_020 crossref_primary_10_1002_aenm_202400035 crossref_primary_10_1016_j_jechem_2021_12_024 crossref_primary_10_1021_acsaem_4c00418 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_anie_202407770 crossref_primary_10_1021_acssuschemeng_3c05211 crossref_primary_10_1002_ange_202404400 crossref_primary_10_1002_sstr_202200313 crossref_primary_10_1021_acsnano_1c11098 crossref_primary_10_1039_D4GC01364F crossref_primary_10_1093_nsr_nwae421 crossref_primary_10_1016_S1872_5805_23_60744_9 crossref_primary_10_1021_acs_energyfuels_1c02008 crossref_primary_10_1002_aenm_202401479 crossref_primary_10_1016_j_xcrp_2024_102340 crossref_primary_10_1039_D1TA10200A crossref_primary_10_1002_aenm_202102707 crossref_primary_10_1002_adma_202300673 crossref_primary_10_1002_smll_202310633 crossref_primary_10_1021_acsami_4c15229 crossref_primary_10_1002_batt_202400505 crossref_primary_10_1016_j_jechem_2022_03_039 crossref_primary_10_1021_acsnano_4c05208 crossref_primary_10_1016_j_jallcom_2024_175750 crossref_primary_10_1021_acsenergylett_4c02190 crossref_primary_10_1038_s41377_024_01563_6 crossref_primary_10_1016_j_jpowsour_2023_233090 crossref_primary_10_1002_cssc_202201352 crossref_primary_10_1007_s12274_021_3482_0 crossref_primary_10_1088_2515_7655_acfe9b crossref_primary_10_1016_j_ensm_2022_05_043 crossref_primary_10_1016_j_cej_2024_157051 crossref_primary_10_1016_j_jcis_2022_10_025 crossref_primary_10_1002_smll_202301754 crossref_primary_10_1039_D1SC01806J crossref_primary_10_1002_anie_202304947 crossref_primary_10_1039_D2NA00526C crossref_primary_10_1002_aenm_202300959 crossref_primary_10_1021_acsnano_3c09415 crossref_primary_10_1002_aesr_202100186 crossref_primary_10_1021_acsami_2c15812 crossref_primary_10_1002_adfm_202207898 crossref_primary_10_1002_chem_202402032 crossref_primary_10_1039_D4TA07788A crossref_primary_10_1002_adfm_202201430 crossref_primary_10_1021_acsnano_3c08561 crossref_primary_10_1002_tcr_202200114 crossref_primary_10_3390_nano14221773 crossref_primary_10_1002_aenm_202303726 crossref_primary_10_1016_j_jechem_2023_01_003 crossref_primary_10_1016_j_mattod_2021_11_021 crossref_primary_10_1039_D2TA04894A crossref_primary_10_1039_D3TA02379F crossref_primary_10_1016_j_jpowsour_2024_234843 crossref_primary_10_1038_s41467_024_53807_z crossref_primary_10_34133_energymatadv_0010 crossref_primary_10_1021_jacs_2c01815 crossref_primary_10_1149_1945_7111_ac8d72 crossref_primary_10_1002_adfm_202310143 crossref_primary_10_1002_adma_202304256 crossref_primary_10_1039_D4EE05862C crossref_primary_10_1002_adfm_202316561 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1002_idm2_12232 crossref_primary_10_1016_j_cej_2023_144477 crossref_primary_10_1002_aenm_202303737 crossref_primary_10_1021_acsami_2c04978 crossref_primary_10_1021_acsnano_4c05001 crossref_primary_10_1039_D2TA07516D crossref_primary_10_1016_j_mattod_2022_06_006 crossref_primary_10_1016_j_isci_2022_105638 crossref_primary_10_3390_ma16062278 crossref_primary_10_1002_smm2_1174 crossref_primary_10_1002_adma_202206009 crossref_primary_10_1038_s41560_023_01202_1 crossref_primary_10_1002_EXP_20210255 crossref_primary_10_1016_j_apenergy_2025_125314 crossref_primary_10_1002_aenm_202500566 crossref_primary_10_1002_adma_202211032 crossref_primary_10_1002_ange_202309247 crossref_primary_10_1002_adfm_202113316 crossref_primary_10_1016_j_carbon_2024_118941 crossref_primary_10_1016_j_jechem_2022_10_026 crossref_primary_10_3389_fchem_2022_916132 crossref_primary_10_1007_s12598_022_02256_y crossref_primary_10_1002_adma_202415258 crossref_primary_10_1021_acsami_4c18896 crossref_primary_10_1021_acsnano_1c04642 crossref_primary_10_1002_adma_202302418 crossref_primary_10_1016_j_surfcoat_2023_129923 crossref_primary_10_1002_smll_202401940 crossref_primary_10_1016_j_jechem_2022_08_013 crossref_primary_10_1002_sstr_202400254 crossref_primary_10_1039_D3DT02427J crossref_primary_10_1061_JLEED9_EYENG_5182 crossref_primary_10_1002_adma_202308193 crossref_primary_10_1002_aenm_202200398 crossref_primary_10_1021_acsaem_3c00249 crossref_primary_10_1016_j_cej_2024_157701 crossref_primary_10_1016_j_xcrp_2021_100708 crossref_primary_10_1002_cey2_348 crossref_primary_10_1002_smll_202300076 crossref_primary_10_1038_s41467_024_48889_8 crossref_primary_10_1002_anie_202309247 crossref_primary_10_1016_j_ensm_2023_02_036 crossref_primary_10_3390_nano13172436 crossref_primary_10_1002_smll_202106673 crossref_primary_10_1002_adma_202210447 crossref_primary_10_1016_j_cej_2022_137401 crossref_primary_10_1016_j_est_2023_109021 crossref_primary_10_1021_acsami_2c01716 crossref_primary_10_1002_aenm_202300918 crossref_primary_10_1002_inf2_12611 crossref_primary_10_1149_1945_7111_ad0510 crossref_primary_10_1016_j_jechem_2023_06_008 crossref_primary_10_1002_adfm_202203652 crossref_primary_10_1007_s41918_023_00185_7 crossref_primary_10_1002_smtd_202400036 crossref_primary_10_1021_acs_iecr_3c02202 crossref_primary_10_1007_s40843_023_2695_5 crossref_primary_10_1016_j_jpowsour_2023_232808 crossref_primary_10_1016_j_jechem_2023_02_005 crossref_primary_10_1002_smsc_202100055 crossref_primary_10_1002_smll_202101881 crossref_primary_10_1039_D3QI02243A crossref_primary_10_1039_D4TA04603J crossref_primary_10_1016_j_apsusc_2024_161480 crossref_primary_10_1016_j_cej_2024_153444 crossref_primary_10_1007_s11431_023_2594_8 crossref_primary_10_1016_j_apsusc_2022_155205 crossref_primary_10_1016_j_jiec_2023_07_004 crossref_primary_10_1002_smll_202300571 crossref_primary_10_1016_j_est_2022_104789 crossref_primary_10_1002_aenm_202201181 crossref_primary_10_1002_eem2_12449 crossref_primary_10_1039_D1TA10641D crossref_primary_10_1002_adfm_202201584 crossref_primary_10_1002_ece2_58 crossref_primary_10_1002_advs_202308939 crossref_primary_10_1002_ange_202201406 crossref_primary_10_1016_j_cej_2023_142937 crossref_primary_10_1016_j_est_2024_112056 crossref_primary_10_1039_D4TA07790C crossref_primary_10_1063_5_0233513 crossref_primary_10_1007_s12274_024_6853_5 crossref_primary_10_1016_j_cej_2024_155614 crossref_primary_10_1002_adfm_202106550 crossref_primary_10_1021_acssuschemeng_2c01846 crossref_primary_10_1002_adma_202401965 crossref_primary_10_1002_cey2_539 crossref_primary_10_1002_adfm_202101420 crossref_primary_10_1002_adfm_202210862 crossref_primary_10_1002_batt_202300303 crossref_primary_10_1016_S1872_5805_23_60762_0 crossref_primary_10_3390_ma17071693 crossref_primary_10_1021_acsami_3c08559 crossref_primary_10_1002_adfm_202425698 crossref_primary_10_1021_acsami_2c06146 crossref_primary_10_1002_adma_202203699 crossref_primary_10_1002_ange_202407770 crossref_primary_10_1021_acsnano_2c09037 crossref_primary_10_1002_anie_202404400 crossref_primary_10_1002_aenm_202201044 crossref_primary_10_1021_acsami_4c10056 crossref_primary_10_1002_cey2_423 crossref_primary_10_1002_smll_202406193 crossref_primary_10_1002_smll_202307505 crossref_primary_10_1021_acs_nanolett_2c01524 crossref_primary_10_1039_D4CC06729K crossref_primary_10_1016_j_est_2023_109904 crossref_primary_10_1016_j_jechem_2021_04_044 crossref_primary_10_1021_acs_nanolett_4c04331 crossref_primary_10_3390_batteries10110405 crossref_primary_10_1002_adfm_202401457 crossref_primary_10_1016_j_jpcs_2024_112078 crossref_primary_10_1021_acsami_2c08278 crossref_primary_10_1016_j_cej_2022_138651 crossref_primary_10_1021_acs_iecr_4c03035 crossref_primary_10_1002_adfm_202303590 crossref_primary_10_1039_D3TA04822E crossref_primary_10_1093_nsr_nwaf016 crossref_primary_10_1016_j_jechem_2023_03_009 crossref_primary_10_3390_ma17010021 crossref_primary_10_1007_s41918_021_00109_3 crossref_primary_10_1039_D3TA01715J crossref_primary_10_1002_adma_202100793 crossref_primary_10_1002_adfm_202315201 crossref_primary_10_1002_cey2_714 crossref_primary_10_1039_D3TA00096F crossref_primary_10_1039_D4MA00115J crossref_primary_10_1016_j_jechem_2022_11_006 crossref_primary_10_3390_pr10122509 crossref_primary_10_1002_adma_202403570 crossref_primary_10_1021_acsami_2c06522 crossref_primary_10_1016_j_ensm_2024_103247 crossref_primary_10_1002_batt_202300321 crossref_primary_10_1002_smll_202102016 crossref_primary_10_1002_aenm_202401377 crossref_primary_10_1039_D1TA05657C crossref_primary_10_1039_D2TA00601D crossref_primary_10_1039_D2TA02229J crossref_primary_10_1039_D4CP01967A crossref_primary_10_1007_s12274_022_5256_8 crossref_primary_10_1021_acsaem_1c03041 crossref_primary_10_1002_cey2_283 crossref_primary_10_1021_jacs_1c04934 crossref_primary_10_1002_marc_202200803 crossref_primary_10_1039_D3CC00033H crossref_primary_10_1002_adma_202210111 crossref_primary_10_1002_adma_202411197 crossref_primary_10_1016_j_nanoen_2024_109836 crossref_primary_10_1039_D3MH01434G crossref_primary_10_3390_met13040703 crossref_primary_10_1002_adsu_202200010 crossref_primary_10_1002_smll_202304734 crossref_primary_10_1021_acsnano_3c09120 crossref_primary_10_1021_acsenergylett_1c02233 crossref_primary_10_1021_acsami_3c00740 crossref_primary_10_1016_j_cej_2023_143302 crossref_primary_10_1016_j_xcrp_2022_101240 crossref_primary_10_1016_j_jechem_2021_10_016 crossref_primary_10_1016_j_jechem_2021_08_001 crossref_primary_10_1016_j_cej_2021_134353 crossref_primary_10_1073_pnas_2320012121 crossref_primary_10_1002_ange_202407315 crossref_primary_10_1016_j_cej_2021_132971 crossref_primary_10_1039_D3QM00315A crossref_primary_10_34133_2022_9846537 crossref_primary_10_1002_anie_202300966 crossref_primary_10_1016_j_jelechem_2023_117176 crossref_primary_10_1021_acs_nanolett_1c03624 crossref_primary_10_1021_acs_jpclett_2c02800 crossref_primary_10_3390_molecules28020548 crossref_primary_10_1039_D4TA03686G crossref_primary_10_1002_anie_202203564 crossref_primary_10_1016_S1872_5805_23_60745_0 crossref_primary_10_1021_acsami_4c00061 crossref_primary_10_1016_j_ensm_2023_103043 crossref_primary_10_1002_ange_202300966 crossref_primary_10_1002_anie_202407315 crossref_primary_10_1007_s12274_023_5795_7 crossref_primary_10_1007_s11669_023_01044_0 crossref_primary_10_1149_1945_7111_acd879 crossref_primary_10_1002_adma_202300073 |
Cites_doi | 10.1021/cr500062v 10.1039/C5TA10050J 10.1002/anie.201711598 10.1021/jp5128578 10.1016/j.carbon.2020.01.077 10.1016/j.jechem.2019.07.010 10.1016/j.ensm.2018.08.018 10.1126/science.aas9343 10.1021/acs.chemrev.8b00422 10.1016/j.ensm.2019.03.029 10.1155/2019/4608940 10.1002/adfm.201902630 10.1016/j.jechem.2019.01.021 10.1002/adma.201706102 10.1016/j.eng.2018.10.008 10.1002/anie.201911724 10.1021/acsenergylett.8b00526 10.1016/j.ensm.2020.01.025 10.1021/acs.nanolett.7b01020 10.1126/science.aam6014 10.1002/anie.201912217 10.1021/acsami.9b16156 10.1016/j.ensm.2018.04.032 10.1016/j.ensm.2017.12.002 10.1002/advs.201600168 10.1002/aenm.201902932 10.1007/s12209-020-00241-z 10.1002/adfm.201705838 10.1016/j.nanoen.2016.12.001 10.1016/j.matt.2019.05.016 10.1002/aenm.201703404 10.1016/j.ensm.2019.01.007 10.1002/adfm.202001607 10.1002/aenm.201701482 10.1021/jacs.6b05341 10.1021/jacs.8b10488 10.1016/j.joule.2017.06.002 10.1016/j.mattod.2014.10.040 10.1038/nenergy.2016.114 10.1021/jacs.6b08730 10.1016/j.cclet.2018.05.016 10.1038/nnano.2016.32 10.1021/acs.nanolett.8b03070 10.1002/adma.201605903 10.1038/nmat2875 10.1002/anie.201710806 10.1002/inf2.12056 10.1016/j.joule.2018.08.018 10.1016/j.nanoen.2017.10.065 10.1016/j.electacta.2018.01.212 10.1002/anie.201905251 10.1149/2.0041514jes 10.1021/acsenergylett.7b00982 10.1016/j.chempr.2018.06.017 10.1016/j.ensm.2018.07.004 10.1038/nnano.2017.16 10.1016/j.jechem.2019.09.033 10.1149/2.0581915jes 10.1080/14786440109462590 10.1002/adma.201902785 10.1002/anie.201911267 10.1073/pnas.1708489114 10.1002/advs.201500213 10.1063/1.4901055 10.1016/j.jechem.2019.09.031 10.1149/1.1837571 10.1016/j.jpowsour.2018.11.036 10.1016/S0378-7753(01)00734-0 10.1002/adma.201808392 10.1016/j.ensm.2019.05.004 10.1016/j.jechem.2019.03.014 10.1002/aenm.201903645 10.1016/j.jechem.2018.12.013 10.1016/j.etran.2019.100033 10.1002/aenm.201800564 10.1039/c0jm04225k 10.1149/2.028309jes 10.1021/jacs.9b05029 10.1039/C7CP03304D 10.1038/s41560-018-0312-z 10.1002/anie.201808714 10.1016/j.nanoen.2019.04.036 10.1016/j.electacta.2012.05.001 10.1021/acsenergylett.8b00935 10.1002/inf2.12000 10.1002/adma.201806082 10.1002/adma.201804684 10.1002/adma.201807131 10.1002/smll.201401837 10.1002/adma.201504117 10.1016/j.ensm.2019.04.005 10.1039/C9RA05067A 10.1021/jacs.9b10195 10.1021/ja508723m 10.1002/adma.201807585 10.1002/smtd.201800035 10.1038/s41560-018-0104-5 10.1002/adma.201901125 10.1038/srep34267 10.1016/j.jpowsour.2019.227073 10.1126/sciadv.1601659 10.1038/s41467-018-06126-z 10.1021/cr020731c 10.1002/adma.201905658 10.1002/anie.201807034 10.1002/adma.201706216 10.1016/j.chempr.2017.01.003 10.1002/adfm.201904629 10.1126/sciadv.aau7728 10.1021/ar2002705 10.1021/acs.chemrev.7b00115 10.1149/2.0701914jes 10.1016/j.jechem.2019.09.028 10.1016/j.jechem.2017.11.010 10.1002/smll.201801423 10.1021/jacs.6b13314 10.1002/aenm.201703505 10.1002/aenm.201402073 10.1016/j.susmat.2020.e00158 10.1038/s41560-018-0108-1 10.1016/j.chempr.2018.11.005 10.1002/anie.202000375 10.1039/D0TA05132B 10.1016/j.ensm.2018.06.024 10.1038/s41586-019-1175-6 10.1021/acs.nanolett.8b05101 10.1002/adma.201800561 10.1002/anie.200702505 10.1002/anie.201702099 10.1002/aenm.201802365 10.1038/s41467-020-14358-1 10.1038/35037553 10.1021/ja312241y 10.1002/anie.201707093 10.1016/0022-0728(84)80207-7 10.1149/1.057304jes 10.1021/cm901452z 10.1002/adma.201506124 10.1038/s41560-017-0047-2 10.1021/acs.nanolett.9b03548 10.1002/smll.201903520 10.1002/adma.201603755 10.1016/j.joule.2019.09.022 10.1038/s41557-018-0166-9 10.1016/j.enchem.2019.100003 10.1021/jacs.6b06324 10.1016/j.joule.2020.03.020 10.1016/j.joule.2018.03.008 10.1038/35104644 10.1002/adfm.201905940 10.1038/s41586-019-1481-z 10.1039/C7RA12690E 10.1016/j.chempr.2017.10.017 10.1002/adma.201904537 10.1002/aenm.201700260 10.1038/nenergy.2016.10 10.1002/adma.201907516 10.1016/j.ensm.2018.10.015 10.1002/smtd.201800354 10.1002/aenm.201703152 10.1016/0025-5408(80)90012-4 10.1016/S0039-6028(98)00363-X 10.1126/science.1212741 10.1126/sciadv.aat3446 10.1126/sciadv.aau9245 10.1039/C8CC02280A 10.1126/sciadv.aat5168 10.1002/adma.201504526 10.1002/inf2.12046 10.1038/ncomms10992 10.1002/adma.201804165 10.1038/s41467-017-00519-2 10.1016/j.jechem.2019.05.010 10.1002/smtd.201900177 10.1021/acsami.9b23251 10.1002/adfm.201605989 10.1021/cr100290v 10.1016/j.cclet.2017.11.039 10.1021/acsami.6b03857 10.1103/PhysRevA.42.7355 10.1016/j.chempr.2017.12.003 10.1021/acsenergylett.8b02376 10.1002/aenm.201602367 10.1039/C9TA08935G 10.1016/j.jechem.2020.03.051 10.1038/ncomms7362 10.1126/science.aaf8991 10.1016/j.nanoen.2017.08.056 10.1002/adfm.201700348 10.1038/nmat4821 10.1038/nmat4041 10.1039/C9TA11542K 10.1038/s41560-019-0338-x 10.1002/aenm.201804000 10.1073/pnas.1809187115 10.1021/acs.nanolett.6b04755 10.1002/adma.201601409 10.1016/0022-0248(90)90505-F 10.1007/s12274-017-1461-2 10.1002/aenm.201703644 10.1002/anie.201811955 10.1016/j.chempr.2018.12.002 10.1021/acs.chemmater.7b00072 10.1039/C9TA09502K 10.1002/aenm.201901932 10.1016/j.jechem.2018.11.016 10.1021/jacs.7b05251 10.1002/anie.201813905 10.1038/s41563-019-0438-9 10.1038/nmat1368 10.1002/adfm.201910777 10.1021/jacs.7b10864 10.1021/jacs.7b06437 10.1002/anie.201903466 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202004128 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33432664 10_1002_adma_202004128 ADMA202004128 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21776019; 21825501; U1801257 – fundername: National Key Research and Development Program funderid: 2016YFA0202500; 2016YFA0200102 – fundername: National Natural Science Foundation of China grantid: 21776019 – fundername: National Key Research and Development Program grantid: 2016YFA0202500 – fundername: National Natural Science Foundation of China grantid: 21825501 – fundername: National Key Research and Development Program grantid: 2016YFA0200102 – fundername: National Natural Science Foundation of China grantid: U1801257 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4788-167480f6cc38dba43c1f3c45d162139f21cc282c83bb29e040c12ae54b7705f43 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:17:30 EDT 2025 Sun Jul 13 04:33:06 EDT 2025 Thu Apr 03 07:03:55 EDT 2025 Tue Jul 01 02:32:57 EDT 2025 Thu Apr 24 22:50:21 EDT 2025 Wed Jan 22 16:29:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | nucleation lithium deposition lithium dendrite growth dendrite inhibition lithium metal batteries |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4788-167480f6cc38dba43c1f3c45d162139f21cc282c83bb29e040c12ae54b7705f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PMID | 33432664 |
PQID | 2491837062 |
PQPubID | 2045203 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2477265011 proquest_journals_2491837062 pubmed_primary_33432664 crossref_citationtrail_10_1002_adma_202004128 crossref_primary_10_1002_adma_202004128 wiley_primary_10_1002_adma_202004128_ADMA202004128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 2019 2018 2017 2020; 57 27 27 2018 2017 2017 2018 2019 2019; 8 139 139 57 30 37 2018 2019 2019 2018; 54 11 58 4 2017 2016; 1 1 2019; 19 2019; 18 2005 2011 2018 2019 2019; 4 334 361 5 2 2020; 12 2020; 11 2016 2019; 11 58 2018 2018; 30 3 2020; 10 2018 2019; 8 9 2000; 407 1990; 42 2018; 8 2018; 2 2018; 4 2015; 137 2004 2019 2017 2015 1980 1997 2019; 104 31 7 18 15 144 1 2017 2018; 29 4 2001; 97‐98 2014; 13 2019; 29 2018; 30 2019 2019; 4 4 2016 2017 2010; 354 29 9 2016 2019; 138 439 2019; 7 2016 2018 2019; 3 57 20 2019; 9 2018; 28 2011 2018; 21 8 2017 2019; 17 58 2019; 3 2019; 5 2016 2020 2018 2017 2020; 28 2 115 2 45 2019; 31 2019; 1 2016 2017; 4 16 2019 2020 2017 2019 2018 2019; 31 59 28 39 4 29 1998; 411 2017 2017; 56 27 2020; 32 2016 2016 2020 2020 2020 2020; 28 28 26 43 44 51 2018; 27 2019 2018 2019 2020; 31 3 141 41 2019 2018 2019 2019 2019; 9 8 23 16 16 2018 2018 2019; 3 8 23 2016; 6 2016; 1 2013 2018; 160 14 2020; 30 1984; 177 2017; 56 2014 2019; 10 31 2015; 119 2019 2018; 15 9 2016; 28 2014; 141 2018 2019 2018 2019; 57 19 3 29 2017 2017; 3 42 2019; 572 2017 2019 2017; 41 1 19 2017; 7 2017; 8 1990; 99 2011 2008 2018 2019; 111 47 3 4 2017; 4 2019 2017 2019; 58 29 412 2020; 59 2019 2019; 31 18 2013; 160 2017; 114 2017; 358 2018 2018; 265 3 2020; 8 2016 2019 2019; 7 7 58 2020; 4 2019; 61 2017 2019 2018; 139 37 18 2020 2020 2020; 161 32 24 2017; 32 2020 2020 2018 2017; 12 30 4 9 2020; 45 2015; 162 2015; 6 2015; 5 2018 2017 2014 2019; 30 117 114 1 2018; 140 1901; 1 2016 2018; 138 140 2019; 141 2012; 76 2019 2019; 37 17 2017; 17 2017; 12 2017 2018 2018; 10 8 2 2013; 135 2010 2018; 22 4 2016; 138 2019 2019; 166 166 2015 2018 2018; 2 12 2001 2018 2013 2019; 414 118 46 569 e_1_2_7_3_4 e_1_2_7_3_3 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_83_2 e_1_2_7_60_3 e_1_2_7_60_2 e_1_2_7_11_4 e_1_2_7_11_3 e_1_2_7_83_3 e_1_2_7_11_2 e_1_2_7_83_4 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_116_1 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_4_3 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_4_7 e_1_2_7_4_6 e_1_2_7_105_1 e_1_2_7_4_5 e_1_2_7_4_4 e_1_2_7_12_6 e_1_2_7_12_5 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_12_4 e_1_2_7_12_3 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_67_1 e_1_2_7_67_3 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_70_3 e_1_2_7_70_4 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_70_5 e_1_2_7_78_1 e_1_2_7_1_4 e_1_2_7_106_1 e_1_2_7_1_3 e_1_2_7_9_1 e_1_2_7_81_3 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_81_2 e_1_2_7_1_2 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_89_1 e_1_2_7_89_2 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_110_2 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_77_2 e_1_2_7_77_3 e_1_2_7_39_1 e_1_2_7_39_2 e_1_2_7_39_3 e_1_2_7_39_4 e_1_2_7_2_5 e_1_2_7_107_2 e_1_2_7_2_4 e_1_2_7_107_3 e_1_2_7_2_3 e_1_2_7_2_2 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_80_2 e_1_2_7_80_3 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_27_1 e_1_2_7_119_2 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_38_1 e_1_2_7_119_6 e_1_2_7_119_5 e_1_2_7_119_4 e_1_2_7_119_3 e_1_2_7_108_1 e_1_2_7_108_2 e_1_2_7_7_4 e_1_2_7_7_3 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_15_3 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_64_2 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_49_2 e_1_2_7_108_5 e_1_2_7_108_6 e_1_2_7_108_3 e_1_2_7_108_4 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_37_1 e_1_2_7_109_1 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_16_3 e_1_2_7_101_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_40_2 e_1_2_7_63_1 Ozhabes Y. (e_1_2_7_72_1) 2015 e_1_2_7_86_1 e_1_2_7_48_1 e_1_2_7_48_2 e_1_2_7_109_2 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_97_3 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_20_5 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_4 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_85_2 e_1_2_7_47_1 Huang G. (e_1_2_7_58_1) 2019; 31 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_35_3 e_1_2_7_6_1 e_1_2_7_6_4 e_1_2_7_6_3 e_1_2_7_6_2 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_2 e_1_2_7_69_1 e_1_2_7_115_1 e_1_2_7_95_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 177 start-page: 13 year: 1984 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 10 31 start-page: 4257 year: 2014 2019 publication-title: Small Adv. Mater. – volume: 141 year: 2014 publication-title: J. Chem. Phys. – volume: 42 start-page: 7355 year: 1990 publication-title: Phys. Rev. A – volume: 61 start-page: 47 year: 2019 publication-title: Nano Energy – volume: 119 start-page: 3957 year: 2015 publication-title: J. Phys. Chem. C – volume: 139 37 18 start-page: 197 7066 year: 2017 2019 2018 publication-title: J. Am. Chem. Soc. J. Energy Chem. Nano Lett. – volume: 22 4 start-page: 587 831 year: 2010 2018 publication-title: Chem. Mater. Engineering – volume: 111 47 3 4 start-page: 3577 2930 279 180 year: 2011 2008 2018 2019 publication-title: Chem. Rev. Angew. Chem., Int. Ed. Nat. Energy Nat. Energy – volume: 41 1 19 start-page: 552 year: 2017 2019 2017 publication-title: Nano Energy EnergyChem Phys. Chem. Chem. Phys. – volume: 414 118 46 569 start-page: 359 1053 245 year: 2001 2018 2013 2019 publication-title: Nature Chem. Rev. Accounts. Chem. Res. Nature – volume: 31 3 141 41 start-page: 16 9422 149 year: 2019 2018 2019 2020 publication-title: Adv. Mater. Nat. Energy J. Am. Chem. Soc. J. Energy Chem. – volume: 138 439 year: 2016 2019 publication-title: J. Am. Chem. Soc. J. Power Sources – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 3 8 23 start-page: 14 556 year: 2018 2018 2019 publication-title: ACS Energy Lett. Adv. Energy Mater. Energy Storage Mater. – volume: 2019 year: 2019 publication-title: Research – volume: 9 8 23 16 16 start-page: 539 259 419 year: 2019 2018 2019 2019 2019 publication-title: Adv. Energy Mater. Adv. Energy Mater. Energy Storage Mater. Energy Storage Mater. Energy Storage Mater. – volume: 358 start-page: 506 year: 2017 publication-title: Science – volume: 21 8 start-page: 9938 year: 2011 2018 publication-title: J. Mater. Chem. Adv. Energy Mater. – volume: 10 8 2 start-page: 1356 year: 2017 2018 2018 publication-title: Nano Res. Adv. Energy Mater. Small Methods – volume: 17 start-page: 3731 year: 2017 publication-title: Nano Lett. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 28 28 26 43 44 51 start-page: 6932 2155 127 16 73 1 year: 2016 2016 2020 2020 2020 2020 publication-title: Adv. Mater. Adv. Mater. Trans. Tianjin Univ. J. Energy Chem. J. Energy Chem. J. Energy Chem. – volume: 1 start-page: 45 year: 1901 publication-title: Philos. Mag. – volume: 5 start-page: 74 year: 2019 publication-title: Chem – volume: 3 57 20 start-page: 992 1 year: 2016 2018 2019 publication-title: Adv. Sci. Angew. Chem., Int. Ed. Energy Storage Mater. – volume: 4 start-page: 1121 year: 2020 publication-title: Joule – volume: 18 start-page: 1105 year: 2019 publication-title: Nat. Mater. – volume: 2 start-page: 2434 year: 2018 publication-title: Joule – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 37 17 start-page: 29 309 year: 2019 2019 publication-title: J. Energy Chem. Energy Storage Mater. – volume: 161 32 24 start-page: 198 year: 2020 2020 2020 publication-title: Carbon Adv. Mater. Sustainable Mater. Technol. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 97‐98 start-page: 804 year: 2001 publication-title: J. Power Sources – volume: 28 2 115 2 45 start-page: 1853 379 258 1 year: 2016 2020 2018 2017 2020 publication-title: Adv. Mater. InfoMat Proc. Natl. Acad. Sci. USA Chem J. Energy Chem. – volume: 30 3 start-page: 2059 year: 2018 2018 publication-title: Adv. Mater. ACS Energy Lett. – volume: 407 start-page: 724 year: 2000 publication-title: Nature – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 114 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 start-page: 271 year: 2017 publication-title: Nano Energy – volume: 4 4 start-page: 187 411 year: 2019 2019 publication-title: Nat. Energy ACS Energy Lett. – volume: 31 18 start-page: 7 320 year: 2019 2019 publication-title: Adv. Mater. Energy Storage Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 59 28 39 4 29 start-page: 6665 2171 160 2192 year: 2019 2020 2017 2019 2018 2019 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Chin. Chem. Lett. J. Energy Chem. Chem Adv. Funct. Mater. – volume: 13 start-page: 961 year: 2014 publication-title: Nat. Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 54 11 58 4 start-page: 6648 64 7802 298 year: 2018 2019 2019 2018 publication-title: Chem. Commun. Nat. Chem. Angew. Chem., Int. Ed. Chem – volume: 57 27 27 start-page: 124 year: 2018 2017 2020 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Energy Storage Mater. – volume: 76 start-page: 270 year: 2012 publication-title: Electrochim. Acta – volume: 99 start-page: 165 year: 1990 publication-title: J. Cryst. Growth – volume: 135 start-page: 4450 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 4 16 start-page: 2427 572 year: 2016 2017 publication-title: J. Mater. Chem. A Nat. Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 4 334 361 5 2 start-page: 366 928 777 313 year: 2005 2011 2018 2019 2019 publication-title: Nat. Mater. Science Science Chem eTransportation – volume: 8 start-page: 336 year: 2017 publication-title: Nat. Commun. – volume: 104 31 7 18 15 144 1 start-page: 4271 252 783 1188 533 year: 2004 2019 2017 2015 1980 1997 2019 publication-title: Chem. Rev. Adv. Mater. Adv. Energy Mater. Mater. Today Mater. Res. Bull. J. Electrochem. Soc. InfoMat – volume: 1 start-page: 317 year: 2019 publication-title: Matter – volume: 59 start-page: 7743 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 24 year: 2019 publication-title: Energy Storage Mater. – volume: 30 117 114 1 start-page: 6 year: 2018 2017 2014 2019 publication-title: Adv. Mater. Chem. Rev. Chem. Rev. InfoMat – volume: 45 start-page: 7 year: 2020 publication-title: J. Energy Chem. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 58 29 412 start-page: 2093 78 year: 2019 2017 2019 publication-title: Angew. Chem., Int. Ed. Adv. Mater. J. Power Sources – volume: 12 start-page: 627 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 138 140 start-page: 9385 82 year: 2016 2018 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 28 start-page: 2888 year: 2016 publication-title: Adv. Mater. – volume: 8 139 139 57 30 37 start-page: 4815 1505 525 126 year: 2018 2017 2017 2018 2019 2019 publication-title: Adv. Energy Mater. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chin. Chem. Lett. J. Energy Chem. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 8 9 start-page: 5255 year: 2018 2019 publication-title: RSC Adv. RSC Adv. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 15 9 start-page: 3729 year: 2019 2018 publication-title: Small Nat. Commun. – volume: 265 3 start-page: 609 227 year: 2018 2018 publication-title: Electrochim. Acta Nat. Energy – volume: 7 7 58 start-page: 1094 year: 2016 2019 2019 publication-title: Nat. Commun. J. Mater. Chem. A Angew. Chem., Int. Ed. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 3 42 start-page: 262 year: 2017 2017 publication-title: Sci. Adv. Nano Energy – volume: 8 start-page: 2021 year: 2020 publication-title: J. Mater. Chem. A – year: 2015 – volume: 29 4 start-page: 6205 year: 2017 2018 publication-title: Chem. Mater. Sci. Adv. – volume: 137 start-page: 1384 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2647 year: 2019 publication-title: Joule – volume: 2 12 start-page: 833 161 year: 2018 2018 publication-title: Joule Energy Storage Mater. – volume: 57 19 3 29 start-page: 8191 1564 year: 2018 2019 2018 2019 publication-title: Angew. Chem., Int. Ed. Nano Lett. ACS Energy Lett. Adv. Funct. Mater. – volume: 11 58 start-page: 626 year: 2016 2019 publication-title: Nat. Nanotechnol. Angew. Chem., Int. Ed. – volume: 12 30 4 9 start-page: 8366 174 4282 year: 2020 2020 2018 2017 publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. Chem ACS Appl. Mater. Interfaces – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 166 166 year: 2019 2019 publication-title: J. Electrochem. Soc. J. Electrochem. Soc. – volume: 56 27 year: 2017 2017 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. – volume: 19 start-page: 1387 year: 2019 publication-title: Nano Lett. – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 17 58 start-page: 1132 year: 2017 2019 publication-title: Nano Lett. Angew. Chem., Int. Ed. – volume: 354 29 9 start-page: 107 1004 year: 2016 2017 2010 publication-title: Science Adv. Mater. Nat. Mater. – volume: 3 year: 2019 publication-title: Small Methods – volume: 18 start-page: 59 year: 2019 publication-title: Energy Storage Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 572 start-page: 511 year: 2019 publication-title: Nature – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 1 1 start-page: 394 year: 2017 2016 publication-title: Joule Nat. Energy – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 160 14 start-page: D337 year: 2013 2018 publication-title: J. Electrochem. Soc. Small – volume: 27 start-page: 513 year: 2018 publication-title: J. Energy Chem. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 411 start-page: 186 year: 1998 publication-title: Surf. Sci. – volume: 11 start-page: 488 year: 2020 publication-title: Nat. Commun. – volume: 160 start-page: A662 year: 2013 publication-title: J. Electrochem. Soc. – volume: 59 start-page: 3252 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_7_6_3 doi: 10.1021/cr500062v – ident: e_1_2_7_109_1 doi: 10.1039/C5TA10050J – ident: e_1_2_7_35_2 doi: 10.1002/anie.201711598 – ident: e_1_2_7_86_1 doi: 10.1021/jp5128578 – ident: e_1_2_7_97_1 doi: 10.1016/j.carbon.2020.01.077 – ident: e_1_2_7_119_4 doi: 10.1016/j.jechem.2019.07.010 – ident: e_1_2_7_58_2 doi: 10.1016/j.ensm.2018.08.018 – ident: e_1_2_7_2_3 doi: 10.1126/science.aas9343 – ident: e_1_2_7_3_2 doi: 10.1021/acs.chemrev.8b00422 – ident: e_1_2_7_81_3 doi: 10.1016/j.ensm.2019.03.029 – ident: e_1_2_7_62_1 doi: 10.1155/2019/4608940 – ident: e_1_2_7_99_1 doi: 10.1002/adfm.201902630 – ident: e_1_2_7_12_4 doi: 10.1016/j.jechem.2019.01.021 – ident: e_1_2_7_85_1 doi: 10.1002/adma.201706102 – ident: e_1_2_7_5_2 doi: 10.1016/j.eng.2018.10.008 – ident: e_1_2_7_113_1 doi: 10.1002/anie.201911724 – ident: e_1_2_7_39_3 doi: 10.1021/acsenergylett.8b00526 – ident: e_1_2_7_60_3 doi: 10.1016/j.ensm.2020.01.025 – ident: e_1_2_7_76_1 doi: 10.1021/acs.nanolett.7b01020 – ident: e_1_2_7_30_1 doi: 10.1126/science.aam6014 – ident: e_1_2_7_12_2 doi: 10.1002/anie.201912217 – ident: e_1_2_7_102_1 doi: 10.1021/acsami.9b16156 – ident: e_1_2_7_70_4 doi: 10.1016/j.ensm.2018.04.032 – ident: e_1_2_7_8_2 doi: 10.1016/j.ensm.2017.12.002 – ident: e_1_2_7_17_1 doi: 10.1002/advs.201600168 – ident: e_1_2_7_98_1 doi: 10.1002/aenm.201902932 – ident: e_1_2_7_119_3 doi: 10.1007/s12209-020-00241-z – ident: e_1_2_7_115_1 doi: 10.1002/adfm.201705838 – ident: e_1_2_7_41_1 doi: 10.1016/j.nanoen.2016.12.001 – ident: e_1_2_7_111_1 doi: 10.1016/j.matt.2019.05.016 – ident: e_1_2_7_67_2 doi: 10.1002/aenm.201703404 – ident: e_1_2_7_90_1 doi: 10.1016/j.ensm.2019.01.007 – ident: e_1_2_7_101_1 doi: 10.1002/adfm.202001607 – ident: e_1_2_7_108_1 doi: 10.1002/aenm.201701482 – ident: e_1_2_7_110_1 doi: 10.1021/jacs.6b05341 – ident: e_1_2_7_65_1 doi: 10.1021/jacs.8b10488 – ident: e_1_2_7_89_1 doi: 10.1016/j.joule.2017.06.002 – ident: e_1_2_7_4_4 doi: 10.1016/j.mattod.2014.10.040 – ident: e_1_2_7_89_2 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.6b08730 – ident: e_1_2_7_108_5 doi: 10.1016/j.cclet.2018.05.016 – ident: e_1_2_7_64_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_7_77_3 doi: 10.1021/acs.nanolett.8b03070 – ident: e_1_2_7_80_2 doi: 10.1002/adma.201605903 – ident: e_1_2_7_80_3 doi: 10.1038/nmat2875 – ident: e_1_2_7_108_4 doi: 10.1002/anie.201710806 – ident: e_1_2_7_4_7 doi: 10.1002/inf2.12056 – ident: e_1_2_7_37_1 doi: 10.1016/j.joule.2018.08.018 – ident: e_1_2_7_94_2 doi: 10.1016/j.nanoen.2017.10.065 – ident: e_1_2_7_40_1 doi: 10.1016/j.electacta.2018.01.212 – ident: e_1_2_7_52_2 doi: 10.1002/anie.201905251 – ident: e_1_2_7_82_1 doi: 10.1149/2.0041514jes – ident: e_1_2_7_81_1 doi: 10.1021/acsenergylett.7b00982 – ident: e_1_2_7_12_5 doi: 10.1016/j.chempr.2018.06.017 – ident: e_1_2_7_71_2 doi: 10.1016/j.ensm.2018.07.004 – ident: e_1_2_7_45_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_20_5 doi: 10.1016/j.jechem.2019.09.033 – ident: e_1_2_7_51_1 doi: 10.1149/2.0581915jes – ident: e_1_2_7_33_1 doi: 10.1080/14786440109462590 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201902785 – ident: e_1_2_7_64_2 doi: 10.1002/anie.201911267 – ident: e_1_2_7_91_1 doi: 10.1073/pnas.1708489114 – ident: e_1_2_7_35_1 doi: 10.1002/advs.201500213 – ident: e_1_2_7_28_1 doi: 10.1063/1.4901055 – ident: e_1_2_7_119_5 doi: 10.1016/j.jechem.2019.09.031 – ident: e_1_2_7_4_6 doi: 10.1149/1.1837571 – ident: e_1_2_7_107_3 doi: 10.1016/j.jpowsour.2018.11.036 – ident: e_1_2_7_34_1 doi: 10.1016/S0378-7753(01)00734-0 – ident: e_1_2_7_93_1 doi: 10.1002/adma.201808392 – ident: e_1_2_7_35_3 doi: 10.1016/j.ensm.2019.05.004 – ident: e_1_2_7_77_2 doi: 10.1016/j.jechem.2019.03.014 – ident: e_1_2_7_50_1 doi: 10.1002/aenm.201903645 – ident: e_1_2_7_108_6 doi: 10.1016/j.jechem.2018.12.013 – ident: e_1_2_7_2_5 doi: 10.1016/j.etran.2019.100033 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201800564 – ident: e_1_2_7_10_1 doi: 10.1039/c0jm04225k – ident: e_1_2_7_14_1 doi: 10.1149/2.028309jes – ident: e_1_2_7_7_3 doi: 10.1021/jacs.9b05029 – volume: 31 start-page: 7 year: 2019 ident: e_1_2_7_58_1 publication-title: Adv. Mater. – ident: e_1_2_7_15_3 doi: 10.1039/C7CP03304D – ident: e_1_2_7_49_1 doi: 10.1038/s41560-018-0312-z – ident: e_1_2_7_60_1 doi: 10.1002/anie.201808714 – ident: e_1_2_7_57_1 doi: 10.1016/j.nanoen.2019.04.036 – ident: e_1_2_7_27_1 doi: 10.1016/j.electacta.2012.05.001 – ident: e_1_2_7_85_2 doi: 10.1021/acsenergylett.8b00935 – ident: e_1_2_7_6_4 doi: 10.1002/inf2.12000 – ident: e_1_2_7_117_1 doi: 10.1002/adma.201806082 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201804684 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201807131 – ident: e_1_2_7_22_1 doi: 10.1002/smll.201401837 – ident: e_1_2_7_119_2 doi: 10.1002/adma.201504117 – ident: e_1_2_7_70_3 doi: 10.1016/j.ensm.2019.04.005 – ident: e_1_2_7_44_2 doi: 10.1039/C9RA05067A – ident: e_1_2_7_42_1 doi: 10.1021/jacs.9b10195 – ident: e_1_2_7_106_1 doi: 10.1021/ja508723m – ident: e_1_2_7_116_1 doi: 10.1002/adma.201807585 – ident: e_1_2_7_67_3 doi: 10.1002/smtd.201800035 – ident: e_1_2_7_40_2 doi: 10.1038/s41560-018-0104-5 – ident: e_1_2_7_4_2 doi: 10.1002/adma.201901125 – ident: e_1_2_7_120_1 doi: 10.1038/srep34267 – ident: e_1_2_7_48_2 doi: 10.1016/j.jpowsour.2019.227073 – ident: e_1_2_7_94_1 doi: 10.1126/sciadv.1601659 – ident: e_1_2_7_69_2 doi: 10.1038/s41467-018-06126-z – ident: e_1_2_7_4_1 doi: 10.1021/cr020731c – ident: e_1_2_7_97_2 doi: 10.1002/adma.201905658 – ident: e_1_2_7_39_1 doi: 10.1002/anie.201807034 – ident: e_1_2_7_61_1 doi: 10.1002/adma.201706216 – ident: e_1_2_7_20_4 doi: 10.1016/j.chempr.2017.01.003 – ident: e_1_2_7_12_6 doi: 10.1002/adfm.201904629 – ident: e_1_2_7_24_1 doi: 10.1126/sciadv.aau7728 – ident: e_1_2_7_3_3 doi: 10.1021/ar2002705 – ident: e_1_2_7_6_2 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_51_2 doi: 10.1149/2.0701914jes – ident: e_1_2_7_47_1 doi: 10.1016/j.jechem.2019.09.028 – ident: e_1_2_7_13_1 doi: 10.1016/j.jechem.2017.11.010 – ident: e_1_2_7_14_2 doi: 10.1002/smll.201801423 – ident: e_1_2_7_108_2 doi: 10.1021/jacs.6b13314 – ident: e_1_2_7_55_1 doi: 10.1002/aenm.201703505 – ident: e_1_2_7_92_1 doi: 10.1002/aenm.201402073 – ident: e_1_2_7_97_3 doi: 10.1016/j.susmat.2020.e00158 – ident: e_1_2_7_1_3 doi: 10.1038/s41560-018-0108-1 – ident: e_1_2_7_2_4 doi: 10.1016/j.chempr.2018.11.005 – ident: e_1_2_7_38_1 doi: 10.1002/anie.202000375 – ident: e_1_2_7_121_1 doi: 10.1039/D0TA05132B – ident: e_1_2_7_70_5 doi: 10.1016/j.ensm.2018.06.024 – ident: e_1_2_7_3_4 doi: 10.1038/s41586-019-1175-6 – ident: e_1_2_7_88_1 doi: 10.1021/acs.nanolett.8b05101 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201800561 – ident: e_1_2_7_1_2 doi: 10.1002/anie.200702505 – ident: e_1_2_7_59_1 doi: 10.1002/anie.201702099 – ident: e_1_2_7_81_2 doi: 10.1002/aenm.201802365 – ident: e_1_2_7_18_1 doi: 10.1038/s41467-020-14358-1 – ident: e_1_2_7_70_2 doi: 10.1002/aenm.201703505 – ident: e_1_2_7_26_1 doi: 10.1038/35037553 – ident: e_1_2_7_95_1 doi: 10.1021/ja312241y – ident: e_1_2_7_75_1 doi: 10.1002/anie.201707093 – ident: e_1_2_7_43_1 doi: 10.1016/0022-0728(84)80207-7 – ident: e_1_2_7_23_1 doi: 10.1149/1.057304jes – ident: e_1_2_7_5_1 doi: 10.1021/cm901452z – ident: e_1_2_7_96_1 doi: 10.1002/adma.201506124 – ident: e_1_2_7_7_2 doi: 10.1038/s41560-017-0047-2 – ident: e_1_2_7_39_2 doi: 10.1021/acs.nanolett.9b03548 – ident: e_1_2_7_69_1 doi: 10.1002/smll.201903520 – ident: e_1_2_7_107_2 doi: 10.1002/adma.201603755 – ident: e_1_2_7_74_1 doi: 10.1016/j.joule.2019.09.022 – ident: e_1_2_7_11_2 doi: 10.1038/s41557-018-0166-9 – ident: e_1_2_7_15_2 doi: 10.1016/j.enchem.2019.100003 – ident: e_1_2_7_48_1 doi: 10.1021/jacs.6b06324 – ident: e_1_2_7_105_1 doi: 10.1016/j.joule.2020.03.020 – ident: e_1_2_7_8_1 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_7_3_1 doi: 10.1038/35104644 – ident: e_1_2_7_39_4 doi: 10.1002/adfm.201905940 – ident: e_1_2_7_9_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_7_44_1 doi: 10.1039/C7RA12690E – ident: e_1_2_7_83_3 doi: 10.1016/j.chempr.2017.10.017 – ident: e_1_2_7_22_2 doi: 10.1002/adma.201904537 – ident: e_1_2_7_4_3 doi: 10.1002/aenm.201700260 – ident: e_1_2_7_53_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_7_100_1 doi: 10.1002/adma.201907516 – ident: e_1_2_7_56_1 doi: 10.1016/j.ensm.2018.10.015 – ident: e_1_2_7_63_1 doi: 10.1002/smtd.201800354 – ident: e_1_2_7_10_2 doi: 10.1002/aenm.201703152 – ident: e_1_2_7_4_5 doi: 10.1016/0025-5408(80)90012-4 – ident: e_1_2_7_31_1 doi: 10.1016/S0039-6028(98)00363-X – ident: e_1_2_7_2_2 doi: 10.1126/science.1212741 – ident: e_1_2_7_112_1 doi: 10.1126/sciadv.aat3446 – ident: e_1_2_7_104_1 doi: 10.1126/sciadv.aau9245 – ident: e_1_2_7_11_1 doi: 10.1039/C8CC02280A – ident: e_1_2_7_21_2 doi: 10.1126/sciadv.aat5168 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201504526 – ident: e_1_2_7_20_2 doi: 10.1002/inf2.12046 – ident: e_1_2_7_16_1 doi: 10.1038/ncomms10992 – ident: e_1_2_7_54_1 doi: 10.1002/adma.201804165 – ident: e_1_2_7_79_1 doi: 10.1038/s41467-017-00519-2 – ident: e_1_2_7_7_4 doi: 10.1016/j.jechem.2019.05.010 – ident: e_1_2_7_68_1 doi: 10.1002/smtd.201900177 – ident: e_1_2_7_83_1 doi: 10.1021/acsami.9b23251 – ident: e_1_2_7_75_2 doi: 10.1002/adfm.201605989 – ident: e_1_2_7_1_1 doi: 10.1021/cr100290v – ident: e_1_2_7_12_3 doi: 10.1016/j.cclet.2017.11.039 – ident: e_1_2_7_83_4 doi: 10.1021/acsami.6b03857 – ident: e_1_2_7_32_1 doi: 10.1103/PhysRevA.42.7355 – ident: e_1_2_7_11_4 doi: 10.1016/j.chempr.2017.12.003 – ident: e_1_2_7_49_2 doi: 10.1021/acsenergylett.8b02376 – ident: e_1_2_7_78_1 doi: 10.1002/aenm.201602367 – ident: e_1_2_7_87_1 doi: 10.1039/C9TA08935G – ident: e_1_2_7_119_6 doi: 10.1016/j.jechem.2020.03.051 – ident: e_1_2_7_84_1 doi: 10.1038/ncomms7362 – ident: e_1_2_7_80_1 doi: 10.1126/science.aaf8991 – ident: e_1_2_7_15_1 doi: 10.1016/j.nanoen.2017.08.056 – ident: e_1_2_7_60_2 doi: 10.1002/adfm.201700348 – ident: e_1_2_7_109_2 doi: 10.1038/nmat4821 – ident: e_1_2_7_73_1 doi: 10.1038/nmat4041 – ident: e_1_2_7_114_1 doi: 10.1039/C9TA11542K – ident: e_1_2_7_1_4 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_7_66_1 doi: 10.1002/aenm.201804000 – ident: e_1_2_7_20_3 doi: 10.1073/pnas.1809187115 – ident: e_1_2_7_52_1 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_7_119_1 doi: 10.1002/adma.201601409 – ident: e_1_2_7_29_1 doi: 10.1016/0022-0248(90)90505-F – ident: e_1_2_7_67_1 doi: 10.1007/s12274-017-1461-2 – ident: e_1_2_7_103_1 doi: 10.1002/aenm.201703644 – ident: e_1_2_7_16_3 doi: 10.1002/anie.201811955 – ident: e_1_2_7_36_1 doi: 10.1016/j.chempr.2018.12.002 – volume-title: arXiv: 1504.05799 year: 2015 ident: e_1_2_7_72_1 – ident: e_1_2_7_21_1 doi: 10.1021/acs.chemmater.7b00072 – ident: e_1_2_7_16_2 doi: 10.1039/C9TA09502K – ident: e_1_2_7_70_1 doi: 10.1002/aenm.201901932 – ident: e_1_2_7_71_1 doi: 10.1016/j.jechem.2018.11.016 – ident: e_1_2_7_77_1 doi: 10.1021/jacs.7b05251 – ident: e_1_2_7_107_1 doi: 10.1002/anie.201813905 – ident: e_1_2_7_118_1 doi: 10.1038/s41563-019-0438-9 – ident: e_1_2_7_2_1 doi: 10.1038/nmat1368 – ident: e_1_2_7_83_2 doi: 10.1002/adfm.201910777 – ident: e_1_2_7_110_2 doi: 10.1021/jacs.7b10864 – ident: e_1_2_7_108_3 doi: 10.1021/jacs.7b06437 – ident: e_1_2_7_11_3 doi: 10.1002/anie.201903466 |
SSID | ssj0009606 |
Score | 2.7061102 |
SecondaryResourceType | review_article |
Snippet | Lithium (Li) metal is one of the most promising alternative anode materials of next‐generation high‐energy‐density batteries demanded for advanced energy... Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2004128 |
SubjectTerms | Anodes Crystallography dendrite inhibition Dendritic structure Deposition Electrochemical analysis Electrode materials Energy storage Lithium lithium dendrite growth lithium deposition lithium metal batteries Materials science Morphology Nucleation Space charge Storage batteries Surface diffusion |
Title | Review on Li Deposition in Working Batteries: From Nucleation to Early Growth |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202004128 https://www.ncbi.nlm.nih.gov/pubmed/33432664 https://www.proquest.com/docview/2491837062 https://www.proquest.com/docview/2477265011 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9NAEIdHKCc4QMvTkKJFQuLkJN6HH71FpGlUkRwQkXKz1uu1iAo2apxL_3pm1o80IFSJHi2v5bVnZ_c39sy3AB9zW4QCl2ZUbirypdCFr1EloEEsLvgmkYmheuflKlys5dVGbe5U8Td8iP6DG3mGm6_JwXW2Gx-goTp33CDuiFFU7UsJW6SKvh74USTPHWxPKD8JZdxRGyd8fHz58ar0l9Q8Vq5u6Zk_A911usk4uR7t62xkbv_gOT7kqU7gaatL2bQZSKfwyJbP4ckdWuELWDb_EVhVsi9bNrNdvhfblqz95s4aXCdG3-dsflP9ZCvCJTvjs7pijqbMLjHyr7-_hPX84tvnhd_uxuAbQuz7VK4QT4rQGBHnmZbCBIUwUuVByFFGFjwwBuM3E4ss44nFycEEXFslsyiaqEKKVzAoq9K-AWZi1A2TSMtcCamKKMkCi4Gmwok3ph2wPfA7a6SmRZXTjhk_0gayzFN6TWn_mjz41Lf_1UA6_tly2Bk3bZ11l2IEGhADKOQefOhPo5vRvxNd2mpPbTAMQTUbBB68bgZFfytBxblhKD3gzrT39CGdzpbT_ujt_1z0Dh5zyq1x2eNDGNQ3e3uG4qjO3jsH-A2-yQEj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHFA60h_IotCkvIyFxCmz8yIPbClgW2N0DAolblDiOQG2TimYv_es74zxgQRUSHKM4ipPx2L-xx58B9jKT-wKHZlRuKnClSHI3QZWABjE44OtIRpr2O48n_vBGXtyqNpuQ9sLUfIhuwo08w_bX5OA0IX34SA1NMgsO4hYZFX6ABTrW20ZVV48EKRLoFrcnlBv5Mmy5jT1-OPv87Lj0QmzOalc7-AyWIG2rXeec_DiYVumB_vuM6Piu71qGz400Zf26La3AnClW4dMTYOEXGNdLCaws2OienZg25YvdF6yZdmc1sRMD8CM2eCh_sQkRk639WVUyC1RmZxj8V3drcDM4vT4eus2BDK4myr5LOxbCXu5rLcIsTaTQXi60VJnnc1SSOfe0xhBOhyJNeWSwf9AeT4ySaRD0VC7FOswXZWG-AdMhSodekMhMCanyIEo9g7Gmwr43pEOwHXBbc8S6oZXToRk_45qzzGP6TXH3mxzY78r_rjkd_y252Vo3bvz1T4xBqEcYIJ87sNvdRk-j5ZOkMOWUymAkgoLW8xz4WreK7lWC9uf6vnSAW9u-Uoe4fzLud1ff3_LQDiwOr8ejeHQ-udyAj5xSbWwy-SbMVw9Ts4VaqUq3rTf8A-NNBT4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bb9MwFIePoEgTPADbGATK5kmTeMqW-JaEt4pSOmiraaJS36LEccTEllQlfeGv59i5tAWhSfAYxVYcHx_7d3z5DHCW6VwyHJpRuYnA5SzJ3QRVAhpE44CvIh4pc955OpPjOf-8EIutU_w1H6KbcDOeYftr4-DLLL_YQEOTzHKDqCVGhQ_hEZdeaNr18HoDkDL63NL2mHAjycMW2-jRi938u8PSH1pzV7rasWf0DJK21PWWk-_n6yo9Vz9_Azr-z289h6eNMCWDuiXtwwNdHMCTLVzhIUzrhQRSFmRyQ4a63fBFbgrSTLqTmteJ4fd7MlqVd2RmeMnW-qQqicUpk08Y-lffXsB89PHrh7HbXMfgKsPYd815hdDLpVIszNKEM-XnTHGR-ZKijsyprxQGcCpkaUojjb2D8mmiBU-DwBM5Z0fQK8pCvwKiQhQOXpDwTDAu8iBKfY2RpsCeNzRXYDvgttaIVcMqN1dm3MY1ZZnGpprirpoceNelX9aUjr-m7LfGjRtv_RFjCOobCJCkDpx2r9HPzOJJUuhybdJgHIJy1vcdeFk3iu5TzJzOlZI7QK1p7ylDPBhOB93T63_JdAJ7V8NRPLmcfXkDj6nZZ2N3kvehV63W-i0KpSo9tr7wC9jHA_Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+Li+Deposition+in+Working+Batteries%3A+From+Nucleation+to+Early+Growth&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Xiao-Ru&rft.au=Zhao%2C+Bo-Chen&rft.au=Yan%2C+Chong&rft.au=Zhang%2C+Qiang&rft.date=2021-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=8&rft.spage=e2004128&rft_id=info:doi/10.1002%2Fadma.202004128&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |