Review on Li Deposition in Working Batteries: From Nucleation to Early Growth

Lithium (Li) metal is one of the most promising alternative anode materials of next‐generation high‐energy‐density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 8; pp. e2004128 - n/a
Main Authors Chen, Xiao‐Ru, Zhao, Bo‐Chen, Yan, Chong, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal is one of the most promising alternative anode materials of next‐generation high‐energy‐density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li‐SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode‐design strategies, which contribute to better batteries with superior electrochemical performance and dendrite‐free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal‐based batteries involving the metal deposition process. Lithium (Li) nucleation and early growth processes significantly determine the final deposition behavior. The recent progress in influential models proposed to understand the process of Li nucleation and early growth is highlighted. Inspired by the abovementioned understanding, diverse anode‐design strategies, which contribute to better batteries with superior electrochemical performance and dendrite‐free deposition behavior, are also summarized.
AbstractList Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li-SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode-design strategies, which contribute to better batteries with superior electrochemical performance and dendrite-free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal-based batteries involving the metal deposition process.Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li-SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode-design strategies, which contribute to better batteries with superior electrochemical performance and dendrite-free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal-based batteries involving the metal deposition process.
Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li-SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode-design strategies, which contribute to better batteries with superior electrochemical performance and dendrite-free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal-based batteries involving the metal deposition process.
Lithium (Li) metal is one of the most promising alternative anode materials of next‐generation high‐energy‐density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li‐SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode‐design strategies, which contribute to better batteries with superior electrochemical performance and dendrite‐free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal‐based batteries involving the metal deposition process. Lithium (Li) nucleation and early growth processes significantly determine the final deposition behavior. The recent progress in influential models proposed to understand the process of Li nucleation and early growth is highlighted. Inspired by the abovementioned understanding, diverse anode‐design strategies, which contribute to better batteries with superior electrochemical performance and dendrite‐free deposition behavior, are also summarized.
Author Chen, Xiao‐Ru
Zhao, Bo‐Chen
Zhang, Qiang
Yan, Chong
Author_xml – sequence: 1
  givenname: Xiao‐Ru
  surname: Chen
  fullname: Chen, Xiao‐Ru
  organization: Tsinghua University
– sequence: 2
  givenname: Bo‐Chen
  surname: Zhao
  fullname: Zhao, Bo‐Chen
  organization: Tsinghua University
– sequence: 3
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Tsinghua University
– sequence: 4
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33432664$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAURoMoOj62LiXgxk3Hm0fT1N34FkYFUVyGNJNqtG3GpHWYf291fIAgri4Xzvm43G8dLTe-sQhtExgSALqvJ7UeUqAAnFC5hAYkpSThkKfLaAA5S5NccLmG1mN8AoBcgFhFa4xxRoXgA3R5Y1-dnWHf4LHDx3bqo2tdv7kG3_vw7JoHfKjb1gZn4wE-Db7GV52prP6gWo9PdKjm-Cz4Wfu4iVZKXUW79Tk30N3pye3ReTK-Prs4Go0TwzMpEyIyLqEUxjA5KTRnhpTM8HRCBCUsLykxhkpqJCsKmlvgYAjVNuVFlkFacraB9ha50-BfOhtbVbtobFXpxvouKsqzjIoUCOnR3V_ok-9C01_XUzmRLANBe2rnk-qK2k7UNLhah7n6elQP8AVggo8x2FIZ1378oA3aVYqAeu9DvfehvvvoteEv7Sv5TyFfCDNX2fk_tBodX45-3Dcnk5p1
CitedBy_id crossref_primary_10_1002_adfm_202101233
crossref_primary_10_1016_j_jechem_2023_01_030
crossref_primary_10_1149_1945_7111_ac239d
crossref_primary_10_1016_j_nxnano_2023_100028
crossref_primary_10_1002_adfm_202406426
crossref_primary_10_1002_ange_202203564
crossref_primary_10_1039_D4NR02389G
crossref_primary_10_1007_s40843_024_2914_x
crossref_primary_10_1002_aenm_202200115
crossref_primary_10_1039_D4EE04617J
crossref_primary_10_1088_1361_6528_ad49ad
crossref_primary_10_1002_adma_202206228
crossref_primary_10_1007_s41918_024_00233_w
crossref_primary_10_1021_acsmaterialslett_3c00152
crossref_primary_10_1016_j_cej_2024_153855
crossref_primary_10_1016_j_cej_2023_143084
crossref_primary_10_1002_aenm_202301742
crossref_primary_10_1002_aenm_202301743
crossref_primary_10_23919_IEN_2022_0003
crossref_primary_10_1002_anie_202201406
crossref_primary_10_1021_acs_jpcb_3c06735
crossref_primary_10_1002_adfm_202425517
crossref_primary_10_1002_aenm_202403995
crossref_primary_10_1002_adma_202313034
crossref_primary_10_1016_j_mtphys_2022_100672
crossref_primary_10_1016_j_jcrysgro_2022_126891
crossref_primary_10_1021_acs_nanolett_2c04613
crossref_primary_10_1002_smll_202408988
crossref_primary_10_1021_acsaem_4c01618
crossref_primary_10_1002_ange_202304947
crossref_primary_10_1021_acs_nanolett_3c02784
crossref_primary_10_1021_acsenergylett_3c00120
crossref_primary_10_1039_D4EE01816H
crossref_primary_10_1002_aenm_202300500
crossref_primary_10_1016_j_jpowsour_2021_230901
crossref_primary_10_1016_j_jallcom_2022_163730
crossref_primary_10_1002_cnl2_147
crossref_primary_10_1016_j_jechem_2022_09_007
crossref_primary_10_1016_j_jechem_2021_12_020
crossref_primary_10_1002_aenm_202400035
crossref_primary_10_1016_j_jechem_2021_12_024
crossref_primary_10_1021_acsaem_4c00418
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1002_anie_202407770
crossref_primary_10_1021_acssuschemeng_3c05211
crossref_primary_10_1002_ange_202404400
crossref_primary_10_1002_sstr_202200313
crossref_primary_10_1021_acsnano_1c11098
crossref_primary_10_1039_D4GC01364F
crossref_primary_10_1093_nsr_nwae421
crossref_primary_10_1016_S1872_5805_23_60744_9
crossref_primary_10_1021_acs_energyfuels_1c02008
crossref_primary_10_1002_aenm_202401479
crossref_primary_10_1016_j_xcrp_2024_102340
crossref_primary_10_1039_D1TA10200A
crossref_primary_10_1002_aenm_202102707
crossref_primary_10_1002_adma_202300673
crossref_primary_10_1002_smll_202310633
crossref_primary_10_1021_acsami_4c15229
crossref_primary_10_1002_batt_202400505
crossref_primary_10_1016_j_jechem_2022_03_039
crossref_primary_10_1021_acsnano_4c05208
crossref_primary_10_1016_j_jallcom_2024_175750
crossref_primary_10_1021_acsenergylett_4c02190
crossref_primary_10_1038_s41377_024_01563_6
crossref_primary_10_1016_j_jpowsour_2023_233090
crossref_primary_10_1002_cssc_202201352
crossref_primary_10_1007_s12274_021_3482_0
crossref_primary_10_1088_2515_7655_acfe9b
crossref_primary_10_1016_j_ensm_2022_05_043
crossref_primary_10_1016_j_cej_2024_157051
crossref_primary_10_1016_j_jcis_2022_10_025
crossref_primary_10_1002_smll_202301754
crossref_primary_10_1039_D1SC01806J
crossref_primary_10_1002_anie_202304947
crossref_primary_10_1039_D2NA00526C
crossref_primary_10_1002_aenm_202300959
crossref_primary_10_1021_acsnano_3c09415
crossref_primary_10_1002_aesr_202100186
crossref_primary_10_1021_acsami_2c15812
crossref_primary_10_1002_adfm_202207898
crossref_primary_10_1002_chem_202402032
crossref_primary_10_1039_D4TA07788A
crossref_primary_10_1002_adfm_202201430
crossref_primary_10_1021_acsnano_3c08561
crossref_primary_10_1002_tcr_202200114
crossref_primary_10_3390_nano14221773
crossref_primary_10_1002_aenm_202303726
crossref_primary_10_1016_j_jechem_2023_01_003
crossref_primary_10_1016_j_mattod_2021_11_021
crossref_primary_10_1039_D2TA04894A
crossref_primary_10_1039_D3TA02379F
crossref_primary_10_1016_j_jpowsour_2024_234843
crossref_primary_10_1038_s41467_024_53807_z
crossref_primary_10_34133_energymatadv_0010
crossref_primary_10_1021_jacs_2c01815
crossref_primary_10_1149_1945_7111_ac8d72
crossref_primary_10_1002_adfm_202310143
crossref_primary_10_1002_adma_202304256
crossref_primary_10_1039_D4EE05862C
crossref_primary_10_1002_adfm_202316561
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1002_idm2_12232
crossref_primary_10_1016_j_cej_2023_144477
crossref_primary_10_1002_aenm_202303737
crossref_primary_10_1021_acsami_2c04978
crossref_primary_10_1021_acsnano_4c05001
crossref_primary_10_1039_D2TA07516D
crossref_primary_10_1016_j_mattod_2022_06_006
crossref_primary_10_1016_j_isci_2022_105638
crossref_primary_10_3390_ma16062278
crossref_primary_10_1002_smm2_1174
crossref_primary_10_1002_adma_202206009
crossref_primary_10_1038_s41560_023_01202_1
crossref_primary_10_1002_EXP_20210255
crossref_primary_10_1016_j_apenergy_2025_125314
crossref_primary_10_1002_aenm_202500566
crossref_primary_10_1002_adma_202211032
crossref_primary_10_1002_ange_202309247
crossref_primary_10_1002_adfm_202113316
crossref_primary_10_1016_j_carbon_2024_118941
crossref_primary_10_1016_j_jechem_2022_10_026
crossref_primary_10_3389_fchem_2022_916132
crossref_primary_10_1007_s12598_022_02256_y
crossref_primary_10_1002_adma_202415258
crossref_primary_10_1021_acsami_4c18896
crossref_primary_10_1021_acsnano_1c04642
crossref_primary_10_1002_adma_202302418
crossref_primary_10_1016_j_surfcoat_2023_129923
crossref_primary_10_1002_smll_202401940
crossref_primary_10_1016_j_jechem_2022_08_013
crossref_primary_10_1002_sstr_202400254
crossref_primary_10_1039_D3DT02427J
crossref_primary_10_1061_JLEED9_EYENG_5182
crossref_primary_10_1002_adma_202308193
crossref_primary_10_1002_aenm_202200398
crossref_primary_10_1021_acsaem_3c00249
crossref_primary_10_1016_j_cej_2024_157701
crossref_primary_10_1016_j_xcrp_2021_100708
crossref_primary_10_1002_cey2_348
crossref_primary_10_1002_smll_202300076
crossref_primary_10_1038_s41467_024_48889_8
crossref_primary_10_1002_anie_202309247
crossref_primary_10_1016_j_ensm_2023_02_036
crossref_primary_10_3390_nano13172436
crossref_primary_10_1002_smll_202106673
crossref_primary_10_1002_adma_202210447
crossref_primary_10_1016_j_cej_2022_137401
crossref_primary_10_1016_j_est_2023_109021
crossref_primary_10_1021_acsami_2c01716
crossref_primary_10_1002_aenm_202300918
crossref_primary_10_1002_inf2_12611
crossref_primary_10_1149_1945_7111_ad0510
crossref_primary_10_1016_j_jechem_2023_06_008
crossref_primary_10_1002_adfm_202203652
crossref_primary_10_1007_s41918_023_00185_7
crossref_primary_10_1002_smtd_202400036
crossref_primary_10_1021_acs_iecr_3c02202
crossref_primary_10_1007_s40843_023_2695_5
crossref_primary_10_1016_j_jpowsour_2023_232808
crossref_primary_10_1016_j_jechem_2023_02_005
crossref_primary_10_1002_smsc_202100055
crossref_primary_10_1002_smll_202101881
crossref_primary_10_1039_D3QI02243A
crossref_primary_10_1039_D4TA04603J
crossref_primary_10_1016_j_apsusc_2024_161480
crossref_primary_10_1016_j_cej_2024_153444
crossref_primary_10_1007_s11431_023_2594_8
crossref_primary_10_1016_j_apsusc_2022_155205
crossref_primary_10_1016_j_jiec_2023_07_004
crossref_primary_10_1002_smll_202300571
crossref_primary_10_1016_j_est_2022_104789
crossref_primary_10_1002_aenm_202201181
crossref_primary_10_1002_eem2_12449
crossref_primary_10_1039_D1TA10641D
crossref_primary_10_1002_adfm_202201584
crossref_primary_10_1002_ece2_58
crossref_primary_10_1002_advs_202308939
crossref_primary_10_1002_ange_202201406
crossref_primary_10_1016_j_cej_2023_142937
crossref_primary_10_1016_j_est_2024_112056
crossref_primary_10_1039_D4TA07790C
crossref_primary_10_1063_5_0233513
crossref_primary_10_1007_s12274_024_6853_5
crossref_primary_10_1016_j_cej_2024_155614
crossref_primary_10_1002_adfm_202106550
crossref_primary_10_1021_acssuschemeng_2c01846
crossref_primary_10_1002_adma_202401965
crossref_primary_10_1002_cey2_539
crossref_primary_10_1002_adfm_202101420
crossref_primary_10_1002_adfm_202210862
crossref_primary_10_1002_batt_202300303
crossref_primary_10_1016_S1872_5805_23_60762_0
crossref_primary_10_3390_ma17071693
crossref_primary_10_1021_acsami_3c08559
crossref_primary_10_1002_adfm_202425698
crossref_primary_10_1021_acsami_2c06146
crossref_primary_10_1002_adma_202203699
crossref_primary_10_1002_ange_202407770
crossref_primary_10_1021_acsnano_2c09037
crossref_primary_10_1002_anie_202404400
crossref_primary_10_1002_aenm_202201044
crossref_primary_10_1021_acsami_4c10056
crossref_primary_10_1002_cey2_423
crossref_primary_10_1002_smll_202406193
crossref_primary_10_1002_smll_202307505
crossref_primary_10_1021_acs_nanolett_2c01524
crossref_primary_10_1039_D4CC06729K
crossref_primary_10_1016_j_est_2023_109904
crossref_primary_10_1016_j_jechem_2021_04_044
crossref_primary_10_1021_acs_nanolett_4c04331
crossref_primary_10_3390_batteries10110405
crossref_primary_10_1002_adfm_202401457
crossref_primary_10_1016_j_jpcs_2024_112078
crossref_primary_10_1021_acsami_2c08278
crossref_primary_10_1016_j_cej_2022_138651
crossref_primary_10_1021_acs_iecr_4c03035
crossref_primary_10_1002_adfm_202303590
crossref_primary_10_1039_D3TA04822E
crossref_primary_10_1093_nsr_nwaf016
crossref_primary_10_1016_j_jechem_2023_03_009
crossref_primary_10_3390_ma17010021
crossref_primary_10_1007_s41918_021_00109_3
crossref_primary_10_1039_D3TA01715J
crossref_primary_10_1002_adma_202100793
crossref_primary_10_1002_adfm_202315201
crossref_primary_10_1002_cey2_714
crossref_primary_10_1039_D3TA00096F
crossref_primary_10_1039_D4MA00115J
crossref_primary_10_1016_j_jechem_2022_11_006
crossref_primary_10_3390_pr10122509
crossref_primary_10_1002_adma_202403570
crossref_primary_10_1021_acsami_2c06522
crossref_primary_10_1016_j_ensm_2024_103247
crossref_primary_10_1002_batt_202300321
crossref_primary_10_1002_smll_202102016
crossref_primary_10_1002_aenm_202401377
crossref_primary_10_1039_D1TA05657C
crossref_primary_10_1039_D2TA00601D
crossref_primary_10_1039_D2TA02229J
crossref_primary_10_1039_D4CP01967A
crossref_primary_10_1007_s12274_022_5256_8
crossref_primary_10_1021_acsaem_1c03041
crossref_primary_10_1002_cey2_283
crossref_primary_10_1021_jacs_1c04934
crossref_primary_10_1002_marc_202200803
crossref_primary_10_1039_D3CC00033H
crossref_primary_10_1002_adma_202210111
crossref_primary_10_1002_adma_202411197
crossref_primary_10_1016_j_nanoen_2024_109836
crossref_primary_10_1039_D3MH01434G
crossref_primary_10_3390_met13040703
crossref_primary_10_1002_adsu_202200010
crossref_primary_10_1002_smll_202304734
crossref_primary_10_1021_acsnano_3c09120
crossref_primary_10_1021_acsenergylett_1c02233
crossref_primary_10_1021_acsami_3c00740
crossref_primary_10_1016_j_cej_2023_143302
crossref_primary_10_1016_j_xcrp_2022_101240
crossref_primary_10_1016_j_jechem_2021_10_016
crossref_primary_10_1016_j_jechem_2021_08_001
crossref_primary_10_1016_j_cej_2021_134353
crossref_primary_10_1073_pnas_2320012121
crossref_primary_10_1002_ange_202407315
crossref_primary_10_1016_j_cej_2021_132971
crossref_primary_10_1039_D3QM00315A
crossref_primary_10_34133_2022_9846537
crossref_primary_10_1002_anie_202300966
crossref_primary_10_1016_j_jelechem_2023_117176
crossref_primary_10_1021_acs_nanolett_1c03624
crossref_primary_10_1021_acs_jpclett_2c02800
crossref_primary_10_3390_molecules28020548
crossref_primary_10_1039_D4TA03686G
crossref_primary_10_1002_anie_202203564
crossref_primary_10_1016_S1872_5805_23_60745_0
crossref_primary_10_1021_acsami_4c00061
crossref_primary_10_1016_j_ensm_2023_103043
crossref_primary_10_1002_ange_202300966
crossref_primary_10_1002_anie_202407315
crossref_primary_10_1007_s12274_023_5795_7
crossref_primary_10_1007_s11669_023_01044_0
crossref_primary_10_1149_1945_7111_acd879
crossref_primary_10_1002_adma_202300073
Cites_doi 10.1021/cr500062v
10.1039/C5TA10050J
10.1002/anie.201711598
10.1021/jp5128578
10.1016/j.carbon.2020.01.077
10.1016/j.jechem.2019.07.010
10.1016/j.ensm.2018.08.018
10.1126/science.aas9343
10.1021/acs.chemrev.8b00422
10.1016/j.ensm.2019.03.029
10.1155/2019/4608940
10.1002/adfm.201902630
10.1016/j.jechem.2019.01.021
10.1002/adma.201706102
10.1016/j.eng.2018.10.008
10.1002/anie.201911724
10.1021/acsenergylett.8b00526
10.1016/j.ensm.2020.01.025
10.1021/acs.nanolett.7b01020
10.1126/science.aam6014
10.1002/anie.201912217
10.1021/acsami.9b16156
10.1016/j.ensm.2018.04.032
10.1016/j.ensm.2017.12.002
10.1002/advs.201600168
10.1002/aenm.201902932
10.1007/s12209-020-00241-z
10.1002/adfm.201705838
10.1016/j.nanoen.2016.12.001
10.1016/j.matt.2019.05.016
10.1002/aenm.201703404
10.1016/j.ensm.2019.01.007
10.1002/adfm.202001607
10.1002/aenm.201701482
10.1021/jacs.6b05341
10.1021/jacs.8b10488
10.1016/j.joule.2017.06.002
10.1016/j.mattod.2014.10.040
10.1038/nenergy.2016.114
10.1021/jacs.6b08730
10.1016/j.cclet.2018.05.016
10.1038/nnano.2016.32
10.1021/acs.nanolett.8b03070
10.1002/adma.201605903
10.1038/nmat2875
10.1002/anie.201710806
10.1002/inf2.12056
10.1016/j.joule.2018.08.018
10.1016/j.nanoen.2017.10.065
10.1016/j.electacta.2018.01.212
10.1002/anie.201905251
10.1149/2.0041514jes
10.1021/acsenergylett.7b00982
10.1016/j.chempr.2018.06.017
10.1016/j.ensm.2018.07.004
10.1038/nnano.2017.16
10.1016/j.jechem.2019.09.033
10.1149/2.0581915jes
10.1080/14786440109462590
10.1002/adma.201902785
10.1002/anie.201911267
10.1073/pnas.1708489114
10.1002/advs.201500213
10.1063/1.4901055
10.1016/j.jechem.2019.09.031
10.1149/1.1837571
10.1016/j.jpowsour.2018.11.036
10.1016/S0378-7753(01)00734-0
10.1002/adma.201808392
10.1016/j.ensm.2019.05.004
10.1016/j.jechem.2019.03.014
10.1002/aenm.201903645
10.1016/j.jechem.2018.12.013
10.1016/j.etran.2019.100033
10.1002/aenm.201800564
10.1039/c0jm04225k
10.1149/2.028309jes
10.1021/jacs.9b05029
10.1039/C7CP03304D
10.1038/s41560-018-0312-z
10.1002/anie.201808714
10.1016/j.nanoen.2019.04.036
10.1016/j.electacta.2012.05.001
10.1021/acsenergylett.8b00935
10.1002/inf2.12000
10.1002/adma.201806082
10.1002/adma.201804684
10.1002/adma.201807131
10.1002/smll.201401837
10.1002/adma.201504117
10.1016/j.ensm.2019.04.005
10.1039/C9RA05067A
10.1021/jacs.9b10195
10.1021/ja508723m
10.1002/adma.201807585
10.1002/smtd.201800035
10.1038/s41560-018-0104-5
10.1002/adma.201901125
10.1038/srep34267
10.1016/j.jpowsour.2019.227073
10.1126/sciadv.1601659
10.1038/s41467-018-06126-z
10.1021/cr020731c
10.1002/adma.201905658
10.1002/anie.201807034
10.1002/adma.201706216
10.1016/j.chempr.2017.01.003
10.1002/adfm.201904629
10.1126/sciadv.aau7728
10.1021/ar2002705
10.1021/acs.chemrev.7b00115
10.1149/2.0701914jes
10.1016/j.jechem.2019.09.028
10.1016/j.jechem.2017.11.010
10.1002/smll.201801423
10.1021/jacs.6b13314
10.1002/aenm.201703505
10.1002/aenm.201402073
10.1016/j.susmat.2020.e00158
10.1038/s41560-018-0108-1
10.1016/j.chempr.2018.11.005
10.1002/anie.202000375
10.1039/D0TA05132B
10.1016/j.ensm.2018.06.024
10.1038/s41586-019-1175-6
10.1021/acs.nanolett.8b05101
10.1002/adma.201800561
10.1002/anie.200702505
10.1002/anie.201702099
10.1002/aenm.201802365
10.1038/s41467-020-14358-1
10.1038/35037553
10.1021/ja312241y
10.1002/anie.201707093
10.1016/0022-0728(84)80207-7
10.1149/1.057304jes
10.1021/cm901452z
10.1002/adma.201506124
10.1038/s41560-017-0047-2
10.1021/acs.nanolett.9b03548
10.1002/smll.201903520
10.1002/adma.201603755
10.1016/j.joule.2019.09.022
10.1038/s41557-018-0166-9
10.1016/j.enchem.2019.100003
10.1021/jacs.6b06324
10.1016/j.joule.2020.03.020
10.1016/j.joule.2018.03.008
10.1038/35104644
10.1002/adfm.201905940
10.1038/s41586-019-1481-z
10.1039/C7RA12690E
10.1016/j.chempr.2017.10.017
10.1002/adma.201904537
10.1002/aenm.201700260
10.1038/nenergy.2016.10
10.1002/adma.201907516
10.1016/j.ensm.2018.10.015
10.1002/smtd.201800354
10.1002/aenm.201703152
10.1016/0025-5408(80)90012-4
10.1016/S0039-6028(98)00363-X
10.1126/science.1212741
10.1126/sciadv.aat3446
10.1126/sciadv.aau9245
10.1039/C8CC02280A
10.1126/sciadv.aat5168
10.1002/adma.201504526
10.1002/inf2.12046
10.1038/ncomms10992
10.1002/adma.201804165
10.1038/s41467-017-00519-2
10.1016/j.jechem.2019.05.010
10.1002/smtd.201900177
10.1021/acsami.9b23251
10.1002/adfm.201605989
10.1021/cr100290v
10.1016/j.cclet.2017.11.039
10.1021/acsami.6b03857
10.1103/PhysRevA.42.7355
10.1016/j.chempr.2017.12.003
10.1021/acsenergylett.8b02376
10.1002/aenm.201602367
10.1039/C9TA08935G
10.1016/j.jechem.2020.03.051
10.1038/ncomms7362
10.1126/science.aaf8991
10.1016/j.nanoen.2017.08.056
10.1002/adfm.201700348
10.1038/nmat4821
10.1038/nmat4041
10.1039/C9TA11542K
10.1038/s41560-019-0338-x
10.1002/aenm.201804000
10.1073/pnas.1809187115
10.1021/acs.nanolett.6b04755
10.1002/adma.201601409
10.1016/0022-0248(90)90505-F
10.1007/s12274-017-1461-2
10.1002/aenm.201703644
10.1002/anie.201811955
10.1016/j.chempr.2018.12.002
10.1021/acs.chemmater.7b00072
10.1039/C9TA09502K
10.1002/aenm.201901932
10.1016/j.jechem.2018.11.016
10.1021/jacs.7b05251
10.1002/anie.201813905
10.1038/s41563-019-0438-9
10.1038/nmat1368
10.1002/adfm.201910777
10.1021/jacs.7b10864
10.1021/jacs.7b06437
10.1002/anie.201903466
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202004128
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33432664
10_1002_adma_202004128
ADMA202004128
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21776019; 21825501; U1801257
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500; 2016YFA0200102
– fundername: National Natural Science Foundation of China
  grantid: 21776019
– fundername: National Key Research and Development Program
  grantid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  grantid: 21825501
– fundername: National Key Research and Development Program
  grantid: 2016YFA0200102
– fundername: National Natural Science Foundation of China
  grantid: U1801257
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4788-167480f6cc38dba43c1f3c45d162139f21cc282c83bb29e040c12ae54b7705f43
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:17:30 EDT 2025
Sun Jul 13 04:33:06 EDT 2025
Thu Apr 03 07:03:55 EDT 2025
Tue Jul 01 02:32:57 EDT 2025
Thu Apr 24 22:50:21 EDT 2025
Wed Jan 22 16:29:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords nucleation
lithium deposition
lithium dendrite growth
dendrite inhibition
lithium metal batteries
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4788-167480f6cc38dba43c1f3c45d162139f21cc282c83bb29e040c12ae54b7705f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3929-1541
PMID 33432664
PQID 2491837062
PQPubID 2045203
PageCount 23
ParticipantIDs proquest_miscellaneous_2477265011
proquest_journals_2491837062
pubmed_primary_33432664
crossref_citationtrail_10_1002_adma_202004128
crossref_primary_10_1002_adma_202004128
wiley_primary_10_1002_adma_202004128_ADMA202004128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 2019
2018 2017 2020; 57 27 27
2018 2017 2017 2018 2019 2019; 8 139 139 57 30 37
2018 2019 2019 2018; 54 11 58 4
2017 2016; 1 1
2019; 19
2019; 18
2005 2011 2018 2019 2019; 4 334 361 5 2
2020; 12
2020; 11
2016 2019; 11 58
2018 2018; 30 3
2020; 10
2018 2019; 8 9
2000; 407
1990; 42
2018; 8
2018; 2
2018; 4
2015; 137
2004 2019 2017 2015 1980 1997 2019; 104 31 7 18 15 144 1
2017 2018; 29 4
2001; 97‐98
2014; 13
2019; 29
2018; 30
2019 2019; 4 4
2016 2017 2010; 354 29 9
2016 2019; 138 439
2019; 7
2016 2018 2019; 3 57 20
2019; 9
2018; 28
2011 2018; 21 8
2017 2019; 17 58
2019; 3
2019; 5
2016 2020 2018 2017 2020; 28 2 115 2 45
2019; 31
2019; 1
2016 2017; 4 16
2019 2020 2017 2019 2018 2019; 31 59 28 39 4 29
1998; 411
2017 2017; 56 27
2020; 32
2016 2016 2020 2020 2020 2020; 28 28 26 43 44 51
2018; 27
2019 2018 2019 2020; 31 3 141 41
2019 2018 2019 2019 2019; 9 8 23 16 16
2018 2018 2019; 3 8 23
2016; 6
2016; 1
2013 2018; 160 14
2020; 30
1984; 177
2017; 56
2014 2019; 10 31
2015; 119
2019 2018; 15 9
2016; 28
2014; 141
2018 2019 2018 2019; 57 19 3 29
2017 2017; 3 42
2019; 572
2017 2019 2017; 41 1 19
2017; 7
2017; 8
1990; 99
2011 2008 2018 2019; 111 47 3 4
2017; 4
2019 2017 2019; 58 29 412
2020; 59
2019 2019; 31 18
2013; 160
2017; 114
2017; 358
2018 2018; 265 3
2020; 8
2016 2019 2019; 7 7 58
2020; 4
2019; 61
2017 2019 2018; 139 37 18
2020 2020 2020; 161 32 24
2017; 32
2020 2020 2018 2017; 12 30 4 9
2020; 45
2015; 162
2015; 6
2015; 5
2018 2017 2014 2019; 30 117 114 1
2018; 140
1901; 1
2016 2018; 138 140
2019; 141
2012; 76
2019 2019; 37 17
2017; 17
2017; 12
2017 2018 2018; 10 8 2
2013; 135
2010 2018; 22 4
2016; 138
2019 2019; 166 166
2015
2018 2018; 2 12
2001 2018 2013 2019; 414 118 46 569
e_1_2_7_3_4
e_1_2_7_3_3
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_83_2
e_1_2_7_60_3
e_1_2_7_60_2
e_1_2_7_11_4
e_1_2_7_11_3
e_1_2_7_83_3
e_1_2_7_11_2
e_1_2_7_83_4
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_116_1
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_4_3
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_4_7
e_1_2_7_4_6
e_1_2_7_105_1
e_1_2_7_4_5
e_1_2_7_4_4
e_1_2_7_12_6
e_1_2_7_12_5
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_12_4
e_1_2_7_12_3
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_67_1
e_1_2_7_67_3
e_1_2_7_29_1
e_1_2_7_117_1
e_1_2_7_70_3
e_1_2_7_70_4
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_70_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_70_5
e_1_2_7_78_1
e_1_2_7_1_4
e_1_2_7_106_1
e_1_2_7_1_3
e_1_2_7_9_1
e_1_2_7_81_3
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_81_2
e_1_2_7_1_2
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_89_1
e_1_2_7_89_2
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_110_2
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_77_2
e_1_2_7_77_3
e_1_2_7_39_1
e_1_2_7_39_2
e_1_2_7_39_3
e_1_2_7_39_4
e_1_2_7_2_5
e_1_2_7_107_2
e_1_2_7_2_4
e_1_2_7_107_3
e_1_2_7_2_3
e_1_2_7_2_2
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_80_2
e_1_2_7_80_3
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_27_1
e_1_2_7_119_2
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_38_1
e_1_2_7_119_6
e_1_2_7_119_5
e_1_2_7_119_4
e_1_2_7_119_3
e_1_2_7_108_1
e_1_2_7_108_2
e_1_2_7_7_4
e_1_2_7_7_3
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_15_3
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_64_2
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_49_2
e_1_2_7_108_5
e_1_2_7_108_6
e_1_2_7_108_3
e_1_2_7_108_4
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_37_1
e_1_2_7_109_1
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_16_3
e_1_2_7_101_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_40_2
e_1_2_7_63_1
Ozhabes Y. (e_1_2_7_72_1) 2015
e_1_2_7_86_1
e_1_2_7_48_1
e_1_2_7_48_2
e_1_2_7_109_2
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_97_3
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_20_5
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_4
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_85_2
e_1_2_7_47_1
Huang G. (e_1_2_7_58_1) 2019; 31
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_35_3
e_1_2_7_6_1
e_1_2_7_6_4
e_1_2_7_6_3
e_1_2_7_6_2
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_2
e_1_2_7_69_1
e_1_2_7_115_1
e_1_2_7_95_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 177
  start-page: 13
  year: 1984
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 10 31
  start-page: 4257
  year: 2014 2019
  publication-title: Small Adv. Mater.
– volume: 141
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 42
  start-page: 7355
  year: 1990
  publication-title: Phys. Rev. A
– volume: 61
  start-page: 47
  year: 2019
  publication-title: Nano Energy
– volume: 119
  start-page: 3957
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 139 37 18
  start-page: 197 7066
  year: 2017 2019 2018
  publication-title: J. Am. Chem. Soc. J. Energy Chem. Nano Lett.
– volume: 22 4
  start-page: 587 831
  year: 2010 2018
  publication-title: Chem. Mater. Engineering
– volume: 111 47 3 4
  start-page: 3577 2930 279 180
  year: 2011 2008 2018 2019
  publication-title: Chem. Rev. Angew. Chem., Int. Ed. Nat. Energy Nat. Energy
– volume: 41 1 19
  start-page: 552
  year: 2017 2019 2017
  publication-title: Nano Energy EnergyChem Phys. Chem. Chem. Phys.
– volume: 414 118 46 569
  start-page: 359 1053 245
  year: 2001 2018 2013 2019
  publication-title: Nature Chem. Rev. Accounts. Chem. Res. Nature
– volume: 31 3 141 41
  start-page: 16 9422 149
  year: 2019 2018 2019 2020
  publication-title: Adv. Mater. Nat. Energy J. Am. Chem. Soc. J. Energy Chem.
– volume: 138 439
  year: 2016 2019
  publication-title: J. Am. Chem. Soc. J. Power Sources
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 3 8 23
  start-page: 14 556
  year: 2018 2018 2019
  publication-title: ACS Energy Lett. Adv. Energy Mater. Energy Storage Mater.
– volume: 2019
  year: 2019
  publication-title: Research
– volume: 9 8 23 16 16
  start-page: 539 259 419
  year: 2019 2018 2019 2019 2019
  publication-title: Adv. Energy Mater. Adv. Energy Mater. Energy Storage Mater. Energy Storage Mater. Energy Storage Mater.
– volume: 358
  start-page: 506
  year: 2017
  publication-title: Science
– volume: 21 8
  start-page: 9938
  year: 2011 2018
  publication-title: J. Mater. Chem. Adv. Energy Mater.
– volume: 10 8 2
  start-page: 1356
  year: 2017 2018 2018
  publication-title: Nano Res. Adv. Energy Mater. Small Methods
– volume: 17
  start-page: 3731
  year: 2017
  publication-title: Nano Lett.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 28 28 26 43 44 51
  start-page: 6932 2155 127 16 73 1
  year: 2016 2016 2020 2020 2020 2020
  publication-title: Adv. Mater. Adv. Mater. Trans. Tianjin Univ. J. Energy Chem. J. Energy Chem. J. Energy Chem.
– volume: 1
  start-page: 45
  year: 1901
  publication-title: Philos. Mag.
– volume: 5
  start-page: 74
  year: 2019
  publication-title: Chem
– volume: 3 57 20
  start-page: 992 1
  year: 2016 2018 2019
  publication-title: Adv. Sci. Angew. Chem., Int. Ed. Energy Storage Mater.
– volume: 4
  start-page: 1121
  year: 2020
  publication-title: Joule
– volume: 18
  start-page: 1105
  year: 2019
  publication-title: Nat. Mater.
– volume: 2
  start-page: 2434
  year: 2018
  publication-title: Joule
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 37 17
  start-page: 29 309
  year: 2019 2019
  publication-title: J. Energy Chem. Energy Storage Mater.
– volume: 161 32 24
  start-page: 198
  year: 2020 2020 2020
  publication-title: Carbon Adv. Mater. Sustainable Mater. Technol.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 97‐98
  start-page: 804
  year: 2001
  publication-title: J. Power Sources
– volume: 28 2 115 2 45
  start-page: 1853 379 258 1
  year: 2016 2020 2018 2017 2020
  publication-title: Adv. Mater. InfoMat Proc. Natl. Acad. Sci. USA Chem J. Energy Chem.
– volume: 30 3
  start-page: 2059
  year: 2018 2018
  publication-title: Adv. Mater. ACS Energy Lett.
– volume: 407
  start-page: 724
  year: 2000
  publication-title: Nature
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  start-page: 271
  year: 2017
  publication-title: Nano Energy
– volume: 4 4
  start-page: 187 411
  year: 2019 2019
  publication-title: Nat. Energy ACS Energy Lett.
– volume: 31 18
  start-page: 7 320
  year: 2019 2019
  publication-title: Adv. Mater. Energy Storage Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31 59 28 39 4 29
  start-page: 6665 2171 160 2192
  year: 2019 2020 2017 2019 2018 2019
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Chin. Chem. Lett. J. Energy Chem. Chem Adv. Funct. Mater.
– volume: 13
  start-page: 961
  year: 2014
  publication-title: Nat. Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 54 11 58 4
  start-page: 6648 64 7802 298
  year: 2018 2019 2019 2018
  publication-title: Chem. Commun. Nat. Chem. Angew. Chem., Int. Ed. Chem
– volume: 57 27 27
  start-page: 124
  year: 2018 2017 2020
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Energy Storage Mater.
– volume: 76
  start-page: 270
  year: 2012
  publication-title: Electrochim. Acta
– volume: 99
  start-page: 165
  year: 1990
  publication-title: J. Cryst. Growth
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 4 16
  start-page: 2427 572
  year: 2016 2017
  publication-title: J. Mater. Chem. A Nat. Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 4 334 361 5 2
  start-page: 366 928 777 313
  year: 2005 2011 2018 2019 2019
  publication-title: Nat. Mater. Science Science Chem eTransportation
– volume: 8
  start-page: 336
  year: 2017
  publication-title: Nat. Commun.
– volume: 104 31 7 18 15 144 1
  start-page: 4271 252 783 1188 533
  year: 2004 2019 2017 2015 1980 1997 2019
  publication-title: Chem. Rev. Adv. Mater. Adv. Energy Mater. Mater. Today Mater. Res. Bull. J. Electrochem. Soc. InfoMat
– volume: 1
  start-page: 317
  year: 2019
  publication-title: Matter
– volume: 59
  start-page: 7743
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 24
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 30 117 114 1
  start-page: 6
  year: 2018 2017 2014 2019
  publication-title: Adv. Mater. Chem. Rev. Chem. Rev. InfoMat
– volume: 45
  start-page: 7
  year: 2020
  publication-title: J. Energy Chem.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 58 29 412
  start-page: 2093 78
  year: 2019 2017 2019
  publication-title: Angew. Chem., Int. Ed. Adv. Mater. J. Power Sources
– volume: 12
  start-page: 627
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 138 140
  start-page: 9385 82
  year: 2016 2018
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 28
  start-page: 2888
  year: 2016
  publication-title: Adv. Mater.
– volume: 8 139 139 57 30 37
  start-page: 4815 1505 525 126
  year: 2018 2017 2017 2018 2019 2019
  publication-title: Adv. Energy Mater. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chin. Chem. Lett. J. Energy Chem.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 8 9
  start-page: 5255
  year: 2018 2019
  publication-title: RSC Adv. RSC Adv.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 15 9
  start-page: 3729
  year: 2019 2018
  publication-title: Small Nat. Commun.
– volume: 265 3
  start-page: 609 227
  year: 2018 2018
  publication-title: Electrochim. Acta Nat. Energy
– volume: 7 7 58
  start-page: 1094
  year: 2016 2019 2019
  publication-title: Nat. Commun. J. Mater. Chem. A Angew. Chem., Int. Ed.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 3 42
  start-page: 262
  year: 2017 2017
  publication-title: Sci. Adv. Nano Energy
– volume: 8
  start-page: 2021
  year: 2020
  publication-title: J. Mater. Chem. A
– year: 2015
– volume: 29 4
  start-page: 6205
  year: 2017 2018
  publication-title: Chem. Mater. Sci. Adv.
– volume: 137
  start-page: 1384
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2647
  year: 2019
  publication-title: Joule
– volume: 2 12
  start-page: 833 161
  year: 2018 2018
  publication-title: Joule Energy Storage Mater.
– volume: 57 19 3 29
  start-page: 8191 1564
  year: 2018 2019 2018 2019
  publication-title: Angew. Chem., Int. Ed. Nano Lett. ACS Energy Lett. Adv. Funct. Mater.
– volume: 11 58
  start-page: 626
  year: 2016 2019
  publication-title: Nat. Nanotechnol. Angew. Chem., Int. Ed.
– volume: 12 30 4 9
  start-page: 8366 174 4282
  year: 2020 2020 2018 2017
  publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. Chem ACS Appl. Mater. Interfaces
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 166 166
  year: 2019 2019
  publication-title: J. Electrochem. Soc. J. Electrochem. Soc.
– volume: 56 27
  year: 2017 2017
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater.
– volume: 19
  start-page: 1387
  year: 2019
  publication-title: Nano Lett.
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 17 58
  start-page: 1132
  year: 2017 2019
  publication-title: Nano Lett. Angew. Chem., Int. Ed.
– volume: 354 29 9
  start-page: 107 1004
  year: 2016 2017 2010
  publication-title: Science Adv. Mater. Nat. Mater.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 18
  start-page: 59
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 572
  start-page: 511
  year: 2019
  publication-title: Nature
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 1 1
  start-page: 394
  year: 2017 2016
  publication-title: Joule Nat. Energy
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 160 14
  start-page: D337
  year: 2013 2018
  publication-title: J. Electrochem. Soc. Small
– volume: 27
  start-page: 513
  year: 2018
  publication-title: J. Energy Chem.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 411
  start-page: 186
  year: 1998
  publication-title: Surf. Sci.
– volume: 11
  start-page: 488
  year: 2020
  publication-title: Nat. Commun.
– volume: 160
  start-page: A662
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 59
  start-page: 3252
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_6_3
  doi: 10.1021/cr500062v
– ident: e_1_2_7_109_1
  doi: 10.1039/C5TA10050J
– ident: e_1_2_7_35_2
  doi: 10.1002/anie.201711598
– ident: e_1_2_7_86_1
  doi: 10.1021/jp5128578
– ident: e_1_2_7_97_1
  doi: 10.1016/j.carbon.2020.01.077
– ident: e_1_2_7_119_4
  doi: 10.1016/j.jechem.2019.07.010
– ident: e_1_2_7_58_2
  doi: 10.1016/j.ensm.2018.08.018
– ident: e_1_2_7_2_3
  doi: 10.1126/science.aas9343
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_7_81_3
  doi: 10.1016/j.ensm.2019.03.029
– ident: e_1_2_7_62_1
  doi: 10.1155/2019/4608940
– ident: e_1_2_7_99_1
  doi: 10.1002/adfm.201902630
– ident: e_1_2_7_12_4
  doi: 10.1016/j.jechem.2019.01.021
– ident: e_1_2_7_85_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_7_5_2
  doi: 10.1016/j.eng.2018.10.008
– ident: e_1_2_7_113_1
  doi: 10.1002/anie.201911724
– ident: e_1_2_7_39_3
  doi: 10.1021/acsenergylett.8b00526
– ident: e_1_2_7_60_3
  doi: 10.1016/j.ensm.2020.01.025
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.nanolett.7b01020
– ident: e_1_2_7_30_1
  doi: 10.1126/science.aam6014
– ident: e_1_2_7_12_2
  doi: 10.1002/anie.201912217
– ident: e_1_2_7_102_1
  doi: 10.1021/acsami.9b16156
– ident: e_1_2_7_70_4
  doi: 10.1016/j.ensm.2018.04.032
– ident: e_1_2_7_8_2
  doi: 10.1016/j.ensm.2017.12.002
– ident: e_1_2_7_17_1
  doi: 10.1002/advs.201600168
– ident: e_1_2_7_98_1
  doi: 10.1002/aenm.201902932
– ident: e_1_2_7_119_3
  doi: 10.1007/s12209-020-00241-z
– ident: e_1_2_7_115_1
  doi: 10.1002/adfm.201705838
– ident: e_1_2_7_41_1
  doi: 10.1016/j.nanoen.2016.12.001
– ident: e_1_2_7_111_1
  doi: 10.1016/j.matt.2019.05.016
– ident: e_1_2_7_67_2
  doi: 10.1002/aenm.201703404
– ident: e_1_2_7_90_1
  doi: 10.1016/j.ensm.2019.01.007
– ident: e_1_2_7_101_1
  doi: 10.1002/adfm.202001607
– ident: e_1_2_7_108_1
  doi: 10.1002/aenm.201701482
– ident: e_1_2_7_110_1
  doi: 10.1021/jacs.6b05341
– ident: e_1_2_7_65_1
  doi: 10.1021/jacs.8b10488
– ident: e_1_2_7_89_1
  doi: 10.1016/j.joule.2017.06.002
– ident: e_1_2_7_4_4
  doi: 10.1016/j.mattod.2014.10.040
– ident: e_1_2_7_89_2
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.6b08730
– ident: e_1_2_7_108_5
  doi: 10.1016/j.cclet.2018.05.016
– ident: e_1_2_7_64_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_7_77_3
  doi: 10.1021/acs.nanolett.8b03070
– ident: e_1_2_7_80_2
  doi: 10.1002/adma.201605903
– ident: e_1_2_7_80_3
  doi: 10.1038/nmat2875
– ident: e_1_2_7_108_4
  doi: 10.1002/anie.201710806
– ident: e_1_2_7_4_7
  doi: 10.1002/inf2.12056
– ident: e_1_2_7_37_1
  doi: 10.1016/j.joule.2018.08.018
– ident: e_1_2_7_94_2
  doi: 10.1016/j.nanoen.2017.10.065
– ident: e_1_2_7_40_1
  doi: 10.1016/j.electacta.2018.01.212
– ident: e_1_2_7_52_2
  doi: 10.1002/anie.201905251
– ident: e_1_2_7_82_1
  doi: 10.1149/2.0041514jes
– ident: e_1_2_7_81_1
  doi: 10.1021/acsenergylett.7b00982
– ident: e_1_2_7_12_5
  doi: 10.1016/j.chempr.2018.06.017
– ident: e_1_2_7_71_2
  doi: 10.1016/j.ensm.2018.07.004
– ident: e_1_2_7_45_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_20_5
  doi: 10.1016/j.jechem.2019.09.033
– ident: e_1_2_7_51_1
  doi: 10.1149/2.0581915jes
– ident: e_1_2_7_33_1
  doi: 10.1080/14786440109462590
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201902785
– ident: e_1_2_7_64_2
  doi: 10.1002/anie.201911267
– ident: e_1_2_7_91_1
  doi: 10.1073/pnas.1708489114
– ident: e_1_2_7_35_1
  doi: 10.1002/advs.201500213
– ident: e_1_2_7_28_1
  doi: 10.1063/1.4901055
– ident: e_1_2_7_119_5
  doi: 10.1016/j.jechem.2019.09.031
– ident: e_1_2_7_4_6
  doi: 10.1149/1.1837571
– ident: e_1_2_7_107_3
  doi: 10.1016/j.jpowsour.2018.11.036
– ident: e_1_2_7_34_1
  doi: 10.1016/S0378-7753(01)00734-0
– ident: e_1_2_7_93_1
  doi: 10.1002/adma.201808392
– ident: e_1_2_7_35_3
  doi: 10.1016/j.ensm.2019.05.004
– ident: e_1_2_7_77_2
  doi: 10.1016/j.jechem.2019.03.014
– ident: e_1_2_7_50_1
  doi: 10.1002/aenm.201903645
– ident: e_1_2_7_108_6
  doi: 10.1016/j.jechem.2018.12.013
– ident: e_1_2_7_2_5
  doi: 10.1016/j.etran.2019.100033
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201800564
– ident: e_1_2_7_10_1
  doi: 10.1039/c0jm04225k
– ident: e_1_2_7_14_1
  doi: 10.1149/2.028309jes
– ident: e_1_2_7_7_3
  doi: 10.1021/jacs.9b05029
– volume: 31
  start-page: 7
  year: 2019
  ident: e_1_2_7_58_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_15_3
  doi: 10.1039/C7CP03304D
– ident: e_1_2_7_49_1
  doi: 10.1038/s41560-018-0312-z
– ident: e_1_2_7_60_1
  doi: 10.1002/anie.201808714
– ident: e_1_2_7_57_1
  doi: 10.1016/j.nanoen.2019.04.036
– ident: e_1_2_7_27_1
  doi: 10.1016/j.electacta.2012.05.001
– ident: e_1_2_7_85_2
  doi: 10.1021/acsenergylett.8b00935
– ident: e_1_2_7_6_4
  doi: 10.1002/inf2.12000
– ident: e_1_2_7_117_1
  doi: 10.1002/adma.201806082
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201804684
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201807131
– ident: e_1_2_7_22_1
  doi: 10.1002/smll.201401837
– ident: e_1_2_7_119_2
  doi: 10.1002/adma.201504117
– ident: e_1_2_7_70_3
  doi: 10.1016/j.ensm.2019.04.005
– ident: e_1_2_7_44_2
  doi: 10.1039/C9RA05067A
– ident: e_1_2_7_42_1
  doi: 10.1021/jacs.9b10195
– ident: e_1_2_7_106_1
  doi: 10.1021/ja508723m
– ident: e_1_2_7_116_1
  doi: 10.1002/adma.201807585
– ident: e_1_2_7_67_3
  doi: 10.1002/smtd.201800035
– ident: e_1_2_7_40_2
  doi: 10.1038/s41560-018-0104-5
– ident: e_1_2_7_4_2
  doi: 10.1002/adma.201901125
– ident: e_1_2_7_120_1
  doi: 10.1038/srep34267
– ident: e_1_2_7_48_2
  doi: 10.1016/j.jpowsour.2019.227073
– ident: e_1_2_7_94_1
  doi: 10.1126/sciadv.1601659
– ident: e_1_2_7_69_2
  doi: 10.1038/s41467-018-06126-z
– ident: e_1_2_7_4_1
  doi: 10.1021/cr020731c
– ident: e_1_2_7_97_2
  doi: 10.1002/adma.201905658
– ident: e_1_2_7_39_1
  doi: 10.1002/anie.201807034
– ident: e_1_2_7_61_1
  doi: 10.1002/adma.201706216
– ident: e_1_2_7_20_4
  doi: 10.1016/j.chempr.2017.01.003
– ident: e_1_2_7_12_6
  doi: 10.1002/adfm.201904629
– ident: e_1_2_7_24_1
  doi: 10.1126/sciadv.aau7728
– ident: e_1_2_7_3_3
  doi: 10.1021/ar2002705
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_51_2
  doi: 10.1149/2.0701914jes
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jechem.2019.09.028
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jechem.2017.11.010
– ident: e_1_2_7_14_2
  doi: 10.1002/smll.201801423
– ident: e_1_2_7_108_2
  doi: 10.1021/jacs.6b13314
– ident: e_1_2_7_55_1
  doi: 10.1002/aenm.201703505
– ident: e_1_2_7_92_1
  doi: 10.1002/aenm.201402073
– ident: e_1_2_7_97_3
  doi: 10.1016/j.susmat.2020.e00158
– ident: e_1_2_7_1_3
  doi: 10.1038/s41560-018-0108-1
– ident: e_1_2_7_2_4
  doi: 10.1016/j.chempr.2018.11.005
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.202000375
– ident: e_1_2_7_121_1
  doi: 10.1039/D0TA05132B
– ident: e_1_2_7_70_5
  doi: 10.1016/j.ensm.2018.06.024
– ident: e_1_2_7_3_4
  doi: 10.1038/s41586-019-1175-6
– ident: e_1_2_7_88_1
  doi: 10.1021/acs.nanolett.8b05101
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201800561
– ident: e_1_2_7_1_2
  doi: 10.1002/anie.200702505
– ident: e_1_2_7_59_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_7_81_2
  doi: 10.1002/aenm.201802365
– ident: e_1_2_7_18_1
  doi: 10.1038/s41467-020-14358-1
– ident: e_1_2_7_70_2
  doi: 10.1002/aenm.201703505
– ident: e_1_2_7_26_1
  doi: 10.1038/35037553
– ident: e_1_2_7_95_1
  doi: 10.1021/ja312241y
– ident: e_1_2_7_75_1
  doi: 10.1002/anie.201707093
– ident: e_1_2_7_43_1
  doi: 10.1016/0022-0728(84)80207-7
– ident: e_1_2_7_23_1
  doi: 10.1149/1.057304jes
– ident: e_1_2_7_5_1
  doi: 10.1021/cm901452z
– ident: e_1_2_7_96_1
  doi: 10.1002/adma.201506124
– ident: e_1_2_7_7_2
  doi: 10.1038/s41560-017-0047-2
– ident: e_1_2_7_39_2
  doi: 10.1021/acs.nanolett.9b03548
– ident: e_1_2_7_69_1
  doi: 10.1002/smll.201903520
– ident: e_1_2_7_107_2
  doi: 10.1002/adma.201603755
– ident: e_1_2_7_74_1
  doi: 10.1016/j.joule.2019.09.022
– ident: e_1_2_7_11_2
  doi: 10.1038/s41557-018-0166-9
– ident: e_1_2_7_15_2
  doi: 10.1016/j.enchem.2019.100003
– ident: e_1_2_7_48_1
  doi: 10.1021/jacs.6b06324
– ident: e_1_2_7_105_1
  doi: 10.1016/j.joule.2020.03.020
– ident: e_1_2_7_8_1
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_7_3_1
  doi: 10.1038/35104644
– ident: e_1_2_7_39_4
  doi: 10.1002/adfm.201905940
– ident: e_1_2_7_9_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_7_44_1
  doi: 10.1039/C7RA12690E
– ident: e_1_2_7_83_3
  doi: 10.1016/j.chempr.2017.10.017
– ident: e_1_2_7_22_2
  doi: 10.1002/adma.201904537
– ident: e_1_2_7_4_3
  doi: 10.1002/aenm.201700260
– ident: e_1_2_7_53_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_100_1
  doi: 10.1002/adma.201907516
– ident: e_1_2_7_56_1
  doi: 10.1016/j.ensm.2018.10.015
– ident: e_1_2_7_63_1
  doi: 10.1002/smtd.201800354
– ident: e_1_2_7_10_2
  doi: 10.1002/aenm.201703152
– ident: e_1_2_7_4_5
  doi: 10.1016/0025-5408(80)90012-4
– ident: e_1_2_7_31_1
  doi: 10.1016/S0039-6028(98)00363-X
– ident: e_1_2_7_2_2
  doi: 10.1126/science.1212741
– ident: e_1_2_7_112_1
  doi: 10.1126/sciadv.aat3446
– ident: e_1_2_7_104_1
  doi: 10.1126/sciadv.aau9245
– ident: e_1_2_7_11_1
  doi: 10.1039/C8CC02280A
– ident: e_1_2_7_21_2
  doi: 10.1126/sciadv.aat5168
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201504526
– ident: e_1_2_7_20_2
  doi: 10.1002/inf2.12046
– ident: e_1_2_7_16_1
  doi: 10.1038/ncomms10992
– ident: e_1_2_7_54_1
  doi: 10.1002/adma.201804165
– ident: e_1_2_7_79_1
  doi: 10.1038/s41467-017-00519-2
– ident: e_1_2_7_7_4
  doi: 10.1016/j.jechem.2019.05.010
– ident: e_1_2_7_68_1
  doi: 10.1002/smtd.201900177
– ident: e_1_2_7_83_1
  doi: 10.1021/acsami.9b23251
– ident: e_1_2_7_75_2
  doi: 10.1002/adfm.201605989
– ident: e_1_2_7_1_1
  doi: 10.1021/cr100290v
– ident: e_1_2_7_12_3
  doi: 10.1016/j.cclet.2017.11.039
– ident: e_1_2_7_83_4
  doi: 10.1021/acsami.6b03857
– ident: e_1_2_7_32_1
  doi: 10.1103/PhysRevA.42.7355
– ident: e_1_2_7_11_4
  doi: 10.1016/j.chempr.2017.12.003
– ident: e_1_2_7_49_2
  doi: 10.1021/acsenergylett.8b02376
– ident: e_1_2_7_78_1
  doi: 10.1002/aenm.201602367
– ident: e_1_2_7_87_1
  doi: 10.1039/C9TA08935G
– ident: e_1_2_7_119_6
  doi: 10.1016/j.jechem.2020.03.051
– ident: e_1_2_7_84_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_7_80_1
  doi: 10.1126/science.aaf8991
– ident: e_1_2_7_15_1
  doi: 10.1016/j.nanoen.2017.08.056
– ident: e_1_2_7_60_2
  doi: 10.1002/adfm.201700348
– ident: e_1_2_7_109_2
  doi: 10.1038/nmat4821
– ident: e_1_2_7_73_1
  doi: 10.1038/nmat4041
– ident: e_1_2_7_114_1
  doi: 10.1039/C9TA11542K
– ident: e_1_2_7_1_4
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_7_66_1
  doi: 10.1002/aenm.201804000
– ident: e_1_2_7_20_3
  doi: 10.1073/pnas.1809187115
– ident: e_1_2_7_52_1
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_7_119_1
  doi: 10.1002/adma.201601409
– ident: e_1_2_7_29_1
  doi: 10.1016/0022-0248(90)90505-F
– ident: e_1_2_7_67_1
  doi: 10.1007/s12274-017-1461-2
– ident: e_1_2_7_103_1
  doi: 10.1002/aenm.201703644
– ident: e_1_2_7_16_3
  doi: 10.1002/anie.201811955
– ident: e_1_2_7_36_1
  doi: 10.1016/j.chempr.2018.12.002
– volume-title: arXiv: 1504.05799
  year: 2015
  ident: e_1_2_7_72_1
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.chemmater.7b00072
– ident: e_1_2_7_16_2
  doi: 10.1039/C9TA09502K
– ident: e_1_2_7_70_1
  doi: 10.1002/aenm.201901932
– ident: e_1_2_7_71_1
  doi: 10.1016/j.jechem.2018.11.016
– ident: e_1_2_7_77_1
  doi: 10.1021/jacs.7b05251
– ident: e_1_2_7_107_1
  doi: 10.1002/anie.201813905
– ident: e_1_2_7_118_1
  doi: 10.1038/s41563-019-0438-9
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat1368
– ident: e_1_2_7_83_2
  doi: 10.1002/adfm.201910777
– ident: e_1_2_7_110_2
  doi: 10.1021/jacs.7b10864
– ident: e_1_2_7_108_3
  doi: 10.1021/jacs.7b06437
– ident: e_1_2_7_11_3
  doi: 10.1002/anie.201903466
SSID ssj0009606
Score 2.7061102
SecondaryResourceType review_article
Snippet Lithium (Li) metal is one of the most promising alternative anode materials of next‐generation high‐energy‐density batteries demanded for advanced energy...
Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2004128
SubjectTerms Anodes
Crystallography
dendrite inhibition
Dendritic structure
Deposition
Electrochemical analysis
Electrode materials
Energy storage
Lithium
lithium dendrite growth
lithium deposition
lithium metal batteries
Materials science
Morphology
Nucleation
Space charge
Storage batteries
Surface diffusion
Title Review on Li Deposition in Working Batteries: From Nucleation to Early Growth
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202004128
https://www.ncbi.nlm.nih.gov/pubmed/33432664
https://www.proquest.com/docview/2491837062
https://www.proquest.com/docview/2477265011
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9NAEIdHKCc4QMvTkKJFQuLkJN6HH71FpGlUkRwQkXKz1uu1iAo2apxL_3pm1o80IFSJHi2v5bVnZ_c39sy3AB9zW4QCl2ZUbirypdCFr1EloEEsLvgmkYmheuflKlys5dVGbe5U8Td8iP6DG3mGm6_JwXW2Gx-goTp33CDuiFFU7UsJW6SKvh74USTPHWxPKD8JZdxRGyd8fHz58ar0l9Q8Vq5u6Zk_A911usk4uR7t62xkbv_gOT7kqU7gaatL2bQZSKfwyJbP4ckdWuELWDb_EVhVsi9bNrNdvhfblqz95s4aXCdG3-dsflP9ZCvCJTvjs7pijqbMLjHyr7-_hPX84tvnhd_uxuAbQuz7VK4QT4rQGBHnmZbCBIUwUuVByFFGFjwwBuM3E4ss44nFycEEXFslsyiaqEKKVzAoq9K-AWZi1A2TSMtcCamKKMkCi4Gmwok3ph2wPfA7a6SmRZXTjhk_0gayzFN6TWn_mjz41Lf_1UA6_tly2Bk3bZ11l2IEGhADKOQefOhPo5vRvxNd2mpPbTAMQTUbBB68bgZFfytBxblhKD3gzrT39CGdzpbT_ujt_1z0Dh5zyq1x2eNDGNQ3e3uG4qjO3jsH-A2-yQEj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHFA60h_IotCkvIyFxCmz8yIPbClgW2N0DAolblDiOQG2TimYv_es74zxgQRUSHKM4ipPx2L-xx58B9jKT-wKHZlRuKnClSHI3QZWABjE44OtIRpr2O48n_vBGXtyqNpuQ9sLUfIhuwo08w_bX5OA0IX34SA1NMgsO4hYZFX6ABTrW20ZVV48EKRLoFrcnlBv5Mmy5jT1-OPv87Lj0QmzOalc7-AyWIG2rXeec_DiYVumB_vuM6Piu71qGz400Zf26La3AnClW4dMTYOEXGNdLCaws2OienZg25YvdF6yZdmc1sRMD8CM2eCh_sQkRk639WVUyC1RmZxj8V3drcDM4vT4eus2BDK4myr5LOxbCXu5rLcIsTaTQXi60VJnnc1SSOfe0xhBOhyJNeWSwf9AeT4ySaRD0VC7FOswXZWG-AdMhSodekMhMCanyIEo9g7Gmwr43pEOwHXBbc8S6oZXToRk_45qzzGP6TXH3mxzY78r_rjkd_y252Vo3bvz1T4xBqEcYIJ87sNvdRk-j5ZOkMOWUymAkgoLW8xz4WreK7lWC9uf6vnSAW9u-Uoe4fzLud1ff3_LQDiwOr8ejeHQ-udyAj5xSbWwy-SbMVw9Ts4VaqUq3rTf8A-NNBT4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bb9MwFIePoEgTPADbGATK5kmTeMqW-JaEt4pSOmiraaJS36LEccTEllQlfeGv59i5tAWhSfAYxVYcHx_7d3z5DHCW6VwyHJpRuYnA5SzJ3QRVAhpE44CvIh4pc955OpPjOf-8EIutU_w1H6KbcDOeYftr4-DLLL_YQEOTzHKDqCVGhQ_hEZdeaNr18HoDkDL63NL2mHAjycMW2-jRi938u8PSH1pzV7rasWf0DJK21PWWk-_n6yo9Vz9_Azr-z289h6eNMCWDuiXtwwNdHMCTLVzhIUzrhQRSFmRyQ4a63fBFbgrSTLqTmteJ4fd7MlqVd2RmeMnW-qQqicUpk08Y-lffXsB89PHrh7HbXMfgKsPYd815hdDLpVIszNKEM-XnTHGR-ZKijsyprxQGcCpkaUojjb2D8mmiBU-DwBM5Z0fQK8pCvwKiQhQOXpDwTDAu8iBKfY2RpsCeNzRXYDvgttaIVcMqN1dm3MY1ZZnGpprirpoceNelX9aUjr-m7LfGjRtv_RFjCOobCJCkDpx2r9HPzOJJUuhybdJgHIJy1vcdeFk3iu5TzJzOlZI7QK1p7ylDPBhOB93T63_JdAJ7V8NRPLmcfXkDj6nZZ2N3kvehV63W-i0KpSo9tr7wC9jHA_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+Li+Deposition+in+Working+Batteries%3A+From+Nucleation+to+Early+Growth&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Xiao-Ru&rft.au=Zhao%2C+Bo-Chen&rft.au=Yan%2C+Chong&rft.au=Zhang%2C+Qiang&rft.date=2021-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=8&rft.spage=e2004128&rft_id=info:doi/10.1002%2Fadma.202004128&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon