A Thermally Insulating Textile Inspired by Polar Bear Hair
Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 14; pp. e1706807 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a “freeze‐spinning” technique is used to realize continuous and large‐scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing.
A textile with excellent thermal insulation capability, mimicking the porous structure of polar bear hair, is fabricated by a “freeze‐spinning” technique to continuously spin silk fibroin solution into aligned porous fibers. Doped with electroheating materials, this type of textile is beneficial for personal thermal management, thermal stealth in military applications, and wearable electronics. |
---|---|
AbstractList | Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing.Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a “freeze‐spinning” technique is used to realize continuous and large‐scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. A textile with excellent thermal insulation capability, mimicking the porous structure of polar bear hair, is fabricated by a “freeze‐spinning” technique to continuously spin silk fibroin solution into aligned porous fibers. Doped with electroheating materials, this type of textile is beneficial for personal thermal management, thermal stealth in military applications, and wearable electronics. Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. |
Author | Li, Dewen Gong, Huaxin Bai, Hao Wang, Yujie Cui, Ying |
Author_xml | – sequence: 1 givenname: Ying surname: Cui fullname: Cui, Ying organization: Zhejiang University – sequence: 2 givenname: Huaxin surname: Gong fullname: Gong, Huaxin organization: Zhejiang University – sequence: 3 givenname: Yujie surname: Wang fullname: Wang, Yujie organization: Zhejiang University – sequence: 4 givenname: Dewen surname: Li fullname: Li, Dewen organization: Zhejiang University – sequence: 5 givenname: Hao orcidid: 0000-0002-3348-6129 surname: Bai fullname: Bai, Hao email: hbai@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29443435$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKxDAUQIMoOj62LqXgxk3Hm0fTxt34HEHRxbgOaXurlbQdkxadvzfDjAqCuEkgnHNzObtks-1aJOSQwpgCsFNTNmbMgKYgM0g3yIgmjMYCVLJJRqB4Eispsh2y6_0rACgJcpvsMCUEFzwZkbNJNHtB1xhrF9Ft6wdr-rp9jmb40dcWl0_z2mEZ5YvosbPGRecYjqmp3T7Zqoz1eLC-98jT9dXsYhrfPdzcXkzu4kKkWRoXDAVnKbAMQSZQyZLSzFCToVKSlhxzWoFgwESlZC4VLQFQJDkXJfKqFHyPnKzmzl33NqDvdVP7Aq01LXaD1yx0YJRDwgJ6_At97QbXhu0CxXj4hlIVqKM1NeQNlnru6sa4hf6qEgCxAgrXee-w0kXdhy5d2ztTW01BL-PrZXz9HT9o41_a1-Q_BbUS3kPqxT-0nlzeT37cT07ck0M |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00572 crossref_primary_10_1177_00405175241268924 crossref_primary_10_1039_D3NA00350G crossref_primary_10_1016_j_icheatmasstransfer_2023_106730 crossref_primary_10_1088_1402_4896_acb8ed crossref_primary_10_1021_acsanm_4c01883 crossref_primary_10_1016_j_jcis_2023_06_002 crossref_primary_10_1016_j_apsusc_2018_12_279 crossref_primary_10_1007_s42765_022_00209_9 crossref_primary_10_1002_adfm_202009349 crossref_primary_10_1021_acs_iecr_4c02270 crossref_primary_10_1002_adfm_202412424 crossref_primary_10_1021_acs_nanolett_3c02654 crossref_primary_10_1002_smll_202301957 crossref_primary_10_1016_j_ceramint_2020_02_245 crossref_primary_10_1021_acsami_2c15974 crossref_primary_10_1038_s41467_023_44657_2 crossref_primary_10_1016_j_compositesa_2023_107621 crossref_primary_10_1073_pnas_2001802117 crossref_primary_10_1021_acsmaterialslett_0c00322 crossref_primary_10_1007_s42235_022_00314_w crossref_primary_10_1007_s42765_024_00440_6 crossref_primary_10_1007_s42765_022_00175_2 crossref_primary_10_1088_2053_1591_ab8541 crossref_primary_10_1002_mba2_70005 crossref_primary_10_1002_smll_201902730 crossref_primary_10_1016_j_cej_2022_135632 crossref_primary_10_1007_s10570_024_06256_2 crossref_primary_10_1038_s41467_022_31717_2 crossref_primary_10_1039_D0TA05542E crossref_primary_10_1007_s42765_022_00188_x crossref_primary_10_1002_adem_202001169 crossref_primary_10_1002_advs_202203808 crossref_primary_10_1021_acsami_2c05906 crossref_primary_10_1002_adfm_202414838 crossref_primary_10_1002_anie_202002399 crossref_primary_10_1002_app_53018 crossref_primary_10_1007_s10118_019_2331_z crossref_primary_10_1021_acsnano_2c00720 crossref_primary_10_1016_j_mser_2023_100738 crossref_primary_10_1021_acsnano_1c02254 crossref_primary_10_3390_nano12081276 crossref_primary_10_1007_s40843_024_2803_8 crossref_primary_10_1002_anie_201907708 crossref_primary_10_1021_acsami_9b06398 crossref_primary_10_1002_adem_202300386 crossref_primary_10_1021_acs_chemrev_9b00821 crossref_primary_10_1007_s42765_020_00062_8 crossref_primary_10_1002_advs_202404154 crossref_primary_10_1007_s10934_022_01296_0 crossref_primary_10_1080_00405000_2021_1926639 crossref_primary_10_35738_ftr_v5_2024_08 crossref_primary_10_1021_acsmaterialslett_2c00507 crossref_primary_10_1021_acs_langmuir_1c02791 crossref_primary_10_1016_j_apsusc_2021_149255 crossref_primary_10_1021_acsami_1c02910 crossref_primary_10_1021_acsnano_3c00573 crossref_primary_10_1021_acsnano_2c08104 crossref_primary_10_1007_s44258_025_00050_w crossref_primary_10_1039_C8TA10725D crossref_primary_10_1002_adfm_202215168 crossref_primary_10_1021_acsami_1c17216 crossref_primary_10_1021_acsnano_3c03428 crossref_primary_10_1021_acsnano_1c10184 crossref_primary_10_1021_acsami_4c14503 crossref_primary_10_3390_nano14020154 crossref_primary_10_1177_1420326X211067596 crossref_primary_10_1002_adma_201906360 crossref_primary_10_1002_marc_201800424 crossref_primary_10_1016_j_ijbiomac_2022_12_306 crossref_primary_10_1007_s12274_024_6820_1 crossref_primary_10_1002_adfm_202111121 crossref_primary_10_1002_smll_202302835 crossref_primary_10_1002_smtd_202301550 crossref_primary_10_1021_acsami_0c02300 crossref_primary_10_1021_acsami_0c01330 crossref_primary_10_1016_j_cej_2025_160511 crossref_primary_10_1007_s10570_023_05439_7 crossref_primary_10_1016_j_joule_2020_02_011 crossref_primary_10_1002_smll_202308484 crossref_primary_10_1016_j_xcrp_2020_100074 crossref_primary_10_1016_j_compositesb_2021_109299 crossref_primary_10_1021_acsnano_9b01094 crossref_primary_10_1016_j_mtphys_2021_100342 crossref_primary_10_1080_00405000_2025_2479908 crossref_primary_10_1016_j_jmbbm_2020_104166 crossref_primary_10_3389_fphy_2023_1210400 crossref_primary_10_1039_D2TC02657K crossref_primary_10_1364_OL_487282 crossref_primary_10_1016_j_compositesa_2023_107522 crossref_primary_10_3390_molecules29092023 crossref_primary_10_1021_acsami_0c23123 crossref_primary_10_1063_5_0152744 crossref_primary_10_1098_rsif_2021_0252 crossref_primary_10_1021_acsapm_3c00162 crossref_primary_10_1007_s11467_021_1107_4 crossref_primary_10_1007_s10570_022_04467_z crossref_primary_10_1039_D4MH00793J crossref_primary_10_1002_smm2_1189 crossref_primary_10_1126_sciadv_ads7321 crossref_primary_10_1364_OE_393013 crossref_primary_10_1021_acsami_0c03897 crossref_primary_10_1021_acsami_2c23075 crossref_primary_10_1021_acsami_1c07976 crossref_primary_10_1016_j_compositesa_2023_107459 crossref_primary_10_1021_acsnano_4c00967 crossref_primary_10_1016_j_cej_2022_139147 crossref_primary_10_1021_acsanm_1c01408 crossref_primary_10_1002_smll_202403334 crossref_primary_10_1002_smll_202304705 crossref_primary_10_1016_j_apenergy_2023_122027 crossref_primary_10_1016_j_cej_2021_133688 crossref_primary_10_3390_biomimetics9060373 crossref_primary_10_1038_s41467_021_26384_8 crossref_primary_10_3390_polym12010189 crossref_primary_10_1021_acsnano_1c00346 crossref_primary_10_1021_acsnano_3c01836 crossref_primary_10_1039_D4MH00453A crossref_primary_10_3390_ma17010172 crossref_primary_10_1016_j_eurpolymj_2023_112170 crossref_primary_10_1021_acsami_0c21842 crossref_primary_10_1002_adfm_202204731 crossref_primary_10_3390_gels7030145 crossref_primary_10_1021_acsami_0c05333 crossref_primary_10_1021_acs_chemrev_1c00502 crossref_primary_10_1039_D0MH01405B crossref_primary_10_3390_insects12070636 crossref_primary_10_1177_00405175231154018 crossref_primary_10_1016_j_carbpol_2024_122501 crossref_primary_10_1016_j_nantod_2022_101526 crossref_primary_10_1021_acs_chemmater_8b02926 crossref_primary_10_1002_SMMD_20230004 crossref_primary_10_1021_acsami_1c19850 crossref_primary_10_1007_s12221_024_00545_0 crossref_primary_10_1002_adfm_202414229 crossref_primary_10_1073_pnas_2312297121 crossref_primary_10_1002_adom_201900687 crossref_primary_10_3390_buildings13123094 crossref_primary_10_1016_j_cej_2023_142249 crossref_primary_10_1016_j_cej_2023_146729 crossref_primary_10_1039_D0CS01603A crossref_primary_10_1002_adfm_202306079 crossref_primary_10_1016_j_cap_2020_07_008 crossref_primary_10_1016_j_isci_2022_103940 crossref_primary_10_1007_s40242_021_1112_8 crossref_primary_10_1016_j_isci_2021_102798 crossref_primary_10_1016_j_apenergy_2024_125109 crossref_primary_10_3390_pr12050927 crossref_primary_10_1007_s10570_021_04275_x crossref_primary_10_1021_acs_jpcc_2c04254 crossref_primary_10_1039_D2TA08558E crossref_primary_10_1021_acsomega_9b04109 crossref_primary_10_1039_D4TA07869A crossref_primary_10_1016_j_solener_2022_01_012 crossref_primary_10_1016_j_coco_2021_100681 crossref_primary_10_1088_1742_6596_2185_1_012007 crossref_primary_10_3390_polym11010172 crossref_primary_10_1016_j_cej_2024_150255 crossref_primary_10_1016_j_coco_2018_10_001 crossref_primary_10_1021_acs_langmuir_3c00664 crossref_primary_10_1002_marc_202300303 crossref_primary_10_1016_j_joule_2021_12_010 crossref_primary_10_1016_j_joule_2020_12_015 crossref_primary_10_3389_fbioe_2022_926253 crossref_primary_10_1002_adma_202006361 crossref_primary_10_1002_adfm_202301607 crossref_primary_10_1021_acsnano_2c00755 crossref_primary_10_1021_acsami_9b20865 crossref_primary_10_1002_advs_202207652 crossref_primary_10_1016_j_cej_2020_125441 crossref_primary_10_1007_s42235_023_00425_y crossref_primary_10_1016_j_jcis_2018_10_009 crossref_primary_10_1007_s10934_023_01432_4 crossref_primary_10_1038_s41467_019_13959_9 crossref_primary_10_1007_s40843_023_2746_4 crossref_primary_10_1002_aenm_201903921 crossref_primary_10_1021_acsphotonics_8b00952 crossref_primary_10_1002_adfm_202112509 crossref_primary_10_3390_fib13020013 crossref_primary_10_1016_j_cej_2024_150593 crossref_primary_10_1021_acsaelm_0c00383 crossref_primary_10_1021_acsnano_0c09391 crossref_primary_10_1039_C9NA00444K crossref_primary_10_1021_accountsmr_2c00169 crossref_primary_10_1016_j_susmat_2024_e00830 crossref_primary_10_1021_acsanm_4c04067 crossref_primary_10_3390_molecules28247978 crossref_primary_10_1016_j_cej_2021_133490 crossref_primary_10_1002_adem_202101110 crossref_primary_10_1088_1361_6463_ac7484 crossref_primary_10_1093_nsr_nwae295 crossref_primary_10_1002_adma_202313939 crossref_primary_10_1039_D1RA06846F crossref_primary_10_1016_j_cja_2022_08_004 crossref_primary_10_1007_s12274_022_4194_9 crossref_primary_10_1002_adma_202002640 crossref_primary_10_1021_acsami_3c14848 crossref_primary_10_3389_fbioe_2023_1117944 crossref_primary_10_1007_s10971_023_06259_8 crossref_primary_10_1038_s41377_022_01021_1 crossref_primary_10_1038_s43586_024_00307_5 crossref_primary_10_1002_adfm_202200548 crossref_primary_10_1021_acsnano_1c01814 crossref_primary_10_1002_marc_202100463 crossref_primary_10_1002_solr_202000817 crossref_primary_10_1038_s41467_019_11792_8 crossref_primary_10_1016_j_cej_2022_138465 crossref_primary_10_1021_acsapm_4c02756 crossref_primary_10_1002_mame_202100399 crossref_primary_10_1039_D0TC00372G crossref_primary_10_1021_acsnano_8b08913 crossref_primary_10_1021_acs_nanolett_1c00741 crossref_primary_10_1002_smll_202300297 crossref_primary_10_1021_acsami_3c10004 crossref_primary_10_1002_cssc_202400512 crossref_primary_10_1021_acsami_3c11692 crossref_primary_10_1016_j_cej_2021_129341 crossref_primary_10_1002_adfm_202107598 crossref_primary_10_1007_s10570_023_05310_9 crossref_primary_10_1021_acsami_1c12267 crossref_primary_10_1021_acsanm_3c02787 crossref_primary_10_3390_gels10040266 crossref_primary_10_1002_idm2_12033 crossref_primary_10_1016_j_coco_2021_100788 crossref_primary_10_1002_adfm_202420717 crossref_primary_10_1016_j_pmatsci_2022_101003 crossref_primary_10_1002_adfm_201806819 crossref_primary_10_1002_adfm_202304738 crossref_primary_10_1016_j_cej_2023_142095 crossref_primary_10_1126_sciadv_abj7906 crossref_primary_10_3390_textiles4040029 crossref_primary_10_3390_su15032747 crossref_primary_10_1002_adfm_202316657 crossref_primary_10_1021_acsanm_4c03293 crossref_primary_10_1016_j_carbpol_2022_120236 crossref_primary_10_1016_j_icheatmasstransfer_2021_105739 crossref_primary_10_1002_adfm_201907851 crossref_primary_10_1002_adma_202209825 crossref_primary_10_1016_j_eng_2021_06_030 crossref_primary_10_1021_acsami_1c24367 crossref_primary_10_3389_fmats_2021_518886 crossref_primary_10_1007_s10570_024_05877_x crossref_primary_10_1021_acsnano_3c05460 crossref_primary_10_1007_s40843_019_9421_y crossref_primary_10_1016_j_mtener_2021_100925 crossref_primary_10_1039_D0NJ05705C crossref_primary_10_1002_adma_202414731 crossref_primary_10_1007_s42765_023_00264_w crossref_primary_10_3390_nano13162313 crossref_primary_10_1002_advs_202205762 crossref_primary_10_1038_s41467_023_36039_5 crossref_primary_10_1021_acsnano_1c06230 crossref_primary_10_1039_C9NR02160D crossref_primary_10_1007_s42765_019_00024_9 crossref_primary_10_1177_24723444241295415 crossref_primary_10_1002_adfm_202412066 crossref_primary_10_1002_adfm_202417873 crossref_primary_10_1039_D1CS00003A crossref_primary_10_1002_adma_202411599 crossref_primary_10_1007_s40843_022_2212_y crossref_primary_10_1002_pi_6484 crossref_primary_10_1021_acsami_2c05155 crossref_primary_10_1021_acsanm_2c04267 crossref_primary_10_1016_j_pmatsci_2022_101054 crossref_primary_10_3390_polym11111899 crossref_primary_10_1002_adma_202209768 crossref_primary_10_1021_acsnano_2c10279 crossref_primary_10_26599_NR_2025_94907013 crossref_primary_10_1002_adfm_202005513 crossref_primary_10_1021_acsapm_4c00250 crossref_primary_10_1002_adfm_202209029 crossref_primary_10_1002_admt_202200777 crossref_primary_10_1002_adma_202404705 crossref_primary_10_1016_j_reactfunctpolym_2023_105806 crossref_primary_10_3390_polym15040921 crossref_primary_10_1002_pi_6350 crossref_primary_10_1021_acsnano_4c00347 crossref_primary_10_1080_00405000_2023_2212423 crossref_primary_10_1016_j_cej_2024_151040 crossref_primary_10_1016_j_nantod_2022_101723 crossref_primary_10_1177_00405175241279444 crossref_primary_10_3390_nano12132261 crossref_primary_10_1016_j_cej_2022_141202 crossref_primary_10_1021_acs_chemmater_3c01308 crossref_primary_10_1002_admt_202200502 crossref_primary_10_1016_j_compscitech_2020_108640 crossref_primary_10_1016_j_cej_2023_142169 crossref_primary_10_1007_s10971_022_05756_6 crossref_primary_10_1021_acs_chemrev_3c00136 crossref_primary_10_1021_acsami_1c10055 crossref_primary_10_1103_PhysRevMaterials_6_090201 crossref_primary_10_1002_aesr_202300289 crossref_primary_10_1002_adma_202310023 crossref_primary_10_1039_D3MH00768E crossref_primary_10_5650_jos_ess23245 crossref_primary_10_1016_j_cej_2024_156856 crossref_primary_10_1016_j_nanoen_2023_108821 crossref_primary_10_1021_acs_nanolett_1c00400 crossref_primary_10_1177_00405175241292651 crossref_primary_10_1002_admt_202201968 crossref_primary_10_1007_s10570_021_04351_2 crossref_primary_10_1002_smtd_202000963 crossref_primary_10_1007_s42114_024_00911_9 crossref_primary_10_1016_j_pmatsci_2020_100708 crossref_primary_10_1002_admt_201901155 crossref_primary_10_1002_adfm_201900703 crossref_primary_10_1002_adem_202200127 crossref_primary_10_1016_j_jcis_2023_08_013 crossref_primary_10_1080_15583724_2024_2365782 crossref_primary_10_1126_science_adj8013 crossref_primary_10_1016_j_cej_2023_142835 crossref_primary_10_1016_j_colsurfa_2023_131076 crossref_primary_10_1021_acsnano_0c05016 crossref_primary_10_1063_5_0192455 crossref_primary_10_1002_adma_202209215 crossref_primary_10_1002_adma_202313444 crossref_primary_10_1016_j_pmatsci_2023_101144 crossref_primary_10_1021_acsami_4c07334 crossref_primary_10_1002_adem_202101603 crossref_primary_10_1063_5_0055415 crossref_primary_10_1016_j_powtec_2021_06_045 crossref_primary_10_1016_j_apsusc_2023_156962 crossref_primary_10_1021_acsami_8b19067 crossref_primary_10_1016_j_eng_2021_04_016 crossref_primary_10_3390_s21010161 crossref_primary_10_1007_s42765_022_00145_8 crossref_primary_10_1002_adfm_201806407 crossref_primary_10_1007_s40242_022_2170_2 crossref_primary_10_1016_j_jiec_2023_11_009 crossref_primary_10_1002_adfm_202314021 crossref_primary_10_1007_s42235_025_00647_2 crossref_primary_10_1039_D1GC03290A crossref_primary_10_3390_mi12080869 crossref_primary_10_3390_designs3030043 crossref_primary_10_1088_2631_7990_ad996d crossref_primary_10_1080_15440478_2023_2181276 crossref_primary_10_1021_acsami_8b11375 crossref_primary_10_1016_j_cej_2024_157355 crossref_primary_10_1039_D4MH01618A crossref_primary_10_1108_IJCST_12_2021_0180 crossref_primary_10_1002_ange_202002399 crossref_primary_10_1007_s40843_024_2980_1 crossref_primary_10_1016_j_compositesa_2024_108281 crossref_primary_10_1002_adfm_202010155 crossref_primary_10_1016_j_coco_2018_09_009 crossref_primary_10_1021_acs_nanolett_1c03943 crossref_primary_10_1021_acsanm_2c01282 crossref_primary_10_1007_s42114_021_00221_4 crossref_primary_10_1016_j_compscitech_2020_107992 crossref_primary_10_1111_ibi_13100 crossref_primary_10_1002_adma_202004754 crossref_primary_10_34133_research_0150 crossref_primary_10_1002_adma_202002695 crossref_primary_10_1021_acsami_2c07232 crossref_primary_10_1016_j_jeurceramsoc_2023_04_049 crossref_primary_10_1016_j_coco_2021_100814 crossref_primary_10_1002_smll_202401742 crossref_primary_10_1016_j_cej_2018_08_189 crossref_primary_10_1002_asia_202400492 crossref_primary_10_1016_j_clay_2022_106547 crossref_primary_10_1021_acs_chemrev_9b00416 crossref_primary_10_1007_s10570_023_05455_7 crossref_primary_10_1002_lpor_202200383 crossref_primary_10_1039_D2SC03659B crossref_primary_10_1007_s12034_024_03366_2 crossref_primary_10_1039_C9TA00738E crossref_primary_10_7216_teksmuh_1271662 crossref_primary_10_1039_D0MH01818J crossref_primary_10_1002_adma_202001222 crossref_primary_10_1021_acsanm_4c01451 crossref_primary_10_1021_acs_energyfuels_3c00266 crossref_primary_10_1021_acsami_2c07058 crossref_primary_10_1002_adma_202103495 crossref_primary_10_1364_OE_518073 crossref_primary_10_1007_s10971_022_05944_4 crossref_primary_10_1021_acsnano_8b09651 crossref_primary_10_1002_adma_201907176 crossref_primary_10_1007_s42765_023_00316_1 crossref_primary_10_1002_ange_201907708 crossref_primary_10_1016_j_apmt_2021_101222 crossref_primary_10_1021_acsami_3c00408 crossref_primary_10_1039_D4TA00851K crossref_primary_10_1038_s41467_024_50654_w crossref_primary_10_1016_j_cej_2021_129781 crossref_primary_10_1002_adfm_202108808 crossref_primary_10_1016_j_cej_2022_137463 crossref_primary_10_1039_D4MH00500G crossref_primary_10_1007_s42765_022_00132_z crossref_primary_10_1021_acsapm_3c01087 crossref_primary_10_1007_s13762_023_05329_2 crossref_primary_10_3390_molecules28041688 crossref_primary_10_1111_ijac_14604 crossref_primary_10_1002_adma_201908249 crossref_primary_10_1007_s10853_024_09734_x crossref_primary_10_1016_j_xinn_2022_100231 crossref_primary_10_2478_aut_2021_0041 crossref_primary_10_1016_j_pmatsci_2023_101172 crossref_primary_10_1039_D2NR06551G crossref_primary_10_1002_adma_202411856 crossref_primary_10_1002_adfm_201907377 crossref_primary_10_1002_smll_202306698 crossref_primary_10_1021_acsami_2c12610 crossref_primary_10_1007_s42765_020_00038_8 crossref_primary_10_2115_fiberst_2022_0026 crossref_primary_10_1002_adfm_202315532 crossref_primary_10_1063_5_0030241 crossref_primary_10_1002_adfm_201905197 |
Cites_doi | 10.1021/nl5036572 10.1002/adma.201504313 10.1126/science.1060928 10.1002/adma.201500917 10.1021/acsnano.5b02790 10.1038/nnano.2014.38 10.1021/acs.nanolett.7b00579 10.1021/ja068165g 10.1016/j.enbuild.2015.06.053 10.1002/adma.201401449 10.1021/acsphotonics.5b00140 10.1038/nprot.2011.379 10.1038/nmat2858 10.1126/sciadv.1500849 10.1002/smll.201002376 10.1111/j.1744-7402.2012.02841.x 10.1002/adma.201401718 10.2298/TSCI1103911H 10.1021/acsami.5b11622 10.1038/nmat3064 10.1364/AO.19.000339 10.1039/C4TC01873G 10.1038/nenergy.2016.126 10.1038/nnano.2014.248 10.3732/ajb.93.10.1455 10.1098/rsif.2010.0487 10.1098/rsta.2009.0019 10.1038/418741a 10.1039/c0ce00980f |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201706807 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29443435 10_1002_adma_201706807 ADMA201706807 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: State Key Laboratory of Chemical Engineering funderid: SKL‐ChE‐16T02 – fundername: National Natural Science Foundation of China funderid: 51722306; 51603182; 21674098 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4787-c2e4327028e0650f6d118a1a8e9961d3eb1f042024f96b691d00e45b34de3fd43 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 22:28:49 EDT 2025 Mon Jul 14 10:30:51 EDT 2025 Wed Feb 19 02:40:48 EST 2025 Thu Apr 24 22:54:06 EDT 2025 Tue Jul 01 00:44:39 EDT 2025 Wed Jan 22 16:51:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | thermal stealth thermally insulating textile biomimetic personal thermal management wearable electronics |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4787-c2e4327028e0650f6d118a1a8e9961d3eb1f042024f96b691d00e45b34de3fd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3348-6129 |
PMID | 29443435 |
PQID | 2023042119 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2002213052 proquest_journals_2023042119 pubmed_primary_29443435 crossref_citationtrail_10_1002_adma_201706807 crossref_primary_10_1002_adma_201706807 wiley_primary_10_1002_adma_201706807_ADMA201706807 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Apr |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-Apr |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2006; 93 2015; 1 2015; 15 2007; 129 2015; 3 2002; 297 2015; 103 2015; 10 2014; 26 2011; 10 2011; 13 2002; 418 2011; 15 2015; 9 2011; 6 2011; 8 2011; 7 2011; 9 2015; 27 2016; 1 1980; 19 2013; 10 2017; 17 2012; 26 2014; 9 2016; 28 2009; 367 2016; 8 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 Wang Q. (e_1_2_5_3_1) 2012; 26 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 |
References_xml | – volume: 26 start-page: 563 year: 2012 publication-title: J. Xi'an Polytech. Univ. – volume: 129 start-page: 764 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 297 start-page: 787 year: 2002 publication-title: Science – volume: 26 start-page: 6994 year: 2014 publication-title: Adv. Mater. – volume: 15 start-page: 365 year: 2015 publication-title: Nano Lett. – volume: 13 start-page: 4856 year: 2011 publication-title: CrystEngComm – volume: 10 start-page: 569 year: 2011 publication-title: Nat. Mater. – volume: 10 start-page: 285 year: 2013 publication-title: Int. J. Appl. Ceram. Technol. – volume: 1 start-page: 16126 year: 2016 publication-title: Nat. Energy – volume: 10 start-page: 277 year: 2015 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 339 year: 1980 publication-title: Appl. Opt. – volume: 15 start-page: 911 year: 2011 publication-title: Therm. Sci. – volume: 2 start-page: 769 year: 2015 publication-title: ACS Photonics – volume: 418 start-page: 741 year: 2002 publication-title: Nature – volume: 1 start-page: e1500849 year: 2015 publication-title: Sci. Adv. – volume: 7 start-page: 1779 year: 2011 publication-title: Small – volume: 3 start-page: 345 year: 2015 publication-title: J. Mater. Chem. C – volume: 6 start-page: 1612 year: 2011 publication-title: Nat. Protoc. – volume: 9 start-page: 6626 year: 2015 publication-title: ACS Nano – volume: 8 start-page: 761 year: 2011 publication-title: J. R. Soc. Interface – volume: 93 start-page: 1455 year: 2006 publication-title: Am. J. Bot. – volume: 367 start-page: 1749 year: 2009 publication-title: Philos. Trans. R. Soc., A – volume: 8 start-page: 4676 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 840 year: 2011 publication-title: Nat. Mater. – volume: 27 start-page: 4744 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 50 year: 2016 publication-title: Adv. Mater. – volume: 103 start-page: 96 year: 2015 publication-title: J. Energy Build. – volume: 27 start-page: 428 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 397 year: 2014 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 3506 year: 2017 publication-title: Nano Lett. – ident: e_1_2_5_9_1 doi: 10.1021/nl5036572 – ident: e_1_2_5_20_1 doi: 10.1002/adma.201504313 – ident: e_1_2_5_28_1 doi: 10.1126/science.1060928 – ident: e_1_2_5_25_1 doi: 10.1002/adma.201500917 – ident: e_1_2_5_27_1 doi: 10.1021/acsnano.5b02790 – ident: e_1_2_5_26_1 doi: 10.1038/nnano.2014.38 – ident: e_1_2_5_8_1 doi: 10.1021/acs.nanolett.7b00579 – ident: e_1_2_5_16_1 doi: 10.1021/ja068165g – ident: e_1_2_5_11_1 doi: 10.1016/j.enbuild.2015.06.053 – ident: e_1_2_5_1_1 doi: 10.1002/adma.201401449 – ident: e_1_2_5_13_1 doi: 10.1021/acsphotonics.5b00140 – ident: e_1_2_5_21_1 doi: 10.1038/nprot.2011.379 – ident: e_1_2_5_30_1 doi: 10.1038/nmat2858 – ident: e_1_2_5_19_1 doi: 10.1126/sciadv.1500849 – ident: e_1_2_5_14_1 doi: 10.1002/smll.201002376 – ident: e_1_2_5_17_1 doi: 10.1111/j.1744-7402.2012.02841.x – ident: e_1_2_5_2_1 doi: 10.1002/adma.201401718 – ident: e_1_2_5_5_1 doi: 10.2298/TSCI1103911H – ident: e_1_2_5_12_1 doi: 10.1021/acsami.5b11622 – ident: e_1_2_5_29_1 doi: 10.1038/nmat3064 – ident: e_1_2_5_4_1 doi: 10.1364/AO.19.000339 – ident: e_1_2_5_18_1 doi: 10.1039/C4TC01873G – volume: 26 start-page: 563 year: 2012 ident: e_1_2_5_3_1 publication-title: J. Xi'an Polytech. Univ. – ident: e_1_2_5_23_1 doi: 10.1038/nenergy.2016.126 – ident: e_1_2_5_24_1 doi: 10.1038/nnano.2014.248 – ident: e_1_2_5_7_1 doi: 10.3732/ajb.93.10.1455 – ident: e_1_2_5_10_1 doi: 10.1098/rsif.2010.0487 – ident: e_1_2_5_6_1 doi: 10.1098/rsta.2009.0019 – ident: e_1_2_5_22_1 doi: 10.1038/418741a – ident: e_1_2_5_15_1 doi: 10.1039/c0ce00980f |
SSID | ssj0009606 |
Score | 2.685404 |
Snippet | Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1706807 |
SubjectTerms | biomimetic Biomimetics Carbon nanotubes Electric heating Energy consumption Heat loss Materials science personal thermal management Polar bears Smart materials Spinning (materials) Synthetic fibers Textiles Thermal insulation Thermal management Thermal response thermal stealth thermally insulating textile wearable electronics |
Title | A Thermally Insulating Textile Inspired by Polar Bear Hair |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706807 https://www.ncbi.nlm.nih.gov/pubmed/29443435 https://www.proquest.com/docview/2023042119 https://www.proquest.com/docview/2002213052 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5IT3pwX6JVRhA8pc0ySTPe6lKqUBFpobcwk5mAWNrS5VB_ve8lbdoqIugtyxsymbcn730DcGWEkZFKEttoEdjc8BTtoMQsRegAmWw4z8CqW89hs8OfukF3pYs_x4coPriRZmT2mhRcqnF1CRoqdYYbRPAvUdZOTgVbFBW9LvGjKDzPwPb8wBYhjxaojY5XXR--7pW-hZrrkWvmeho7IBeTzitO3ivTiaokH1_wHP_zVruwPY9LWT0XpD3YMP192FpBKzyAmzpDoUJD3uvN2CPVsEuqmWZttO_4LLo0RAOqmZqxF8qY2S2qEWvKt9EhdBoP7bumPd96wU4IrcdOPMN9alWLDMVwaagxEZGujAzmR6720cKnqO7o4FMRqlC42nEMD5TPtfFTzf0jKPUHfXMCrKZMpN2UOxI5X3MchfQhGhphHC_hXmKBvVj6OJnjktP2GL04R1T2YlqTuFgTC64L-mGOyPEjZXnByXiumeOYtovHmbuusOCyuI06RT9KZN8MpkSDkQ0698Cz4DiXgOJRnuDUjBtY4GV8_GUOcf2-VS_OTv8y6Aw28TjKy4XKUJqMpuYcI6GJusik_RMOe_uM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD5i8MB44LINCJfhSUx7CqSOkyZIPBQKagdFaCoSb8GJTyREVRC0QuVf8Vf4RZyTG-smNAmJhz3GcRLb5_bZOf4MsIkh6iBOEhtN6NkKVUp-UNMsJTQeCRmVysiqOyd-60z9PPfOJ-Cx3AuT80NUC25sGZm_ZgPnBentF9ZQbTLiIOZ_CZx6kVd5hKN7mrXd7babJOLvUh4edPdbdnGwgJ0wF42dSFQub8QKkBFK6huC2bqmAyT0XzMu-a-UlJnCVxr6sR_WjOOg8mJXGXRTo1x67weY4mPEma6_-euFsYonBBm9n-vZoa-CkifSkdvj7R2Pg3-B23GsnAW7wzl4Kocpz3G52hoO4q3k4Q8Gyf9qHOdhtoDeopHbygJMYP8TzPxGyPgZdhqC7IZiVa83Em1O09ecFi66FMKoc1x0QzHCiHgkTnlRQOxRP0RLX95-gbN3afwiTPav-7gMoh5jYGqpcjQpd91xYqrvky8N0ZGJkokFdinrKCmo1_kEkF6Uk0bLiGUQVTKw4EdV_yYnHXm15lqpOlHhfO7oLq_0M3WfBd-q2-Q2-F-Q7uP1kOsQeCP84kkLlnKVqz4lQ8X7jT0LZKY4_2hD1Gh2GtXVylse2oDpVrdzHB23T45W4SOVB3l21BpMDm6HuE7AbxB_zUxNwMV76-QzeydXEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD5iTJrGA2MXIFw2T9q0p4DrOGk8aQ_duqodA6EJJN6CE59IiKpU0AqVX7W_sn_EObmxbpomTeJhj3GcxPa5fXaOPwO8QYM2TrPMR2dCX6POyQ9amqUYF5KQUeuCrHr_IOof6y8n4ckCfK_3wpT8EM2CG1tG4a_ZwMcu370jDbWu4A1i-pdYtqu0yj2cXdOk7erDoEsSfqtU7_PRp75fnSvgZ0xF42cKdcD7sGJkgJJHjlC2bdkYCfy3XEDuKyddpuiVmyiNTMtJiTpMA-0wyJ0O6L0P4KGOpOHDIrrf7gireD5QsPsFoW8iHdc0kVLtzrd3Pgz-hm3noXIR63pP4Ec9SmWKy_nOdJLuZDe_EEj-T8O4AssV8Bad0lKewgKOnsHST3SMz-F9R5DVUKQaDmdiwEn6lpPCxREFMOobF40pQjiRzsQhLwmIj9QP0bdnly_g-F4avwqLo4sRroNopxi7Vq6lJdVuS5lS_Yg8qUGpMq0yD_xa1ElWEa_z-R_DpKSMVgnLIGlk4MG7pv64pBz5Y82tWnOSyvVc0V1e52fiPg9eN7fJafCfIDvCiynXIehG6CVUHqyVGtd8ShnNu41DD1ShN39pQ9Lp7neaq41_eegVPDrs9pKvg4O9TXhMxXGZGrUFi5PLKW4T6pukLwtDE3B63yp5C-n7VcI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Thermally+Insulating+Textile+Inspired+by+Polar+Bear+Hair&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cui%2C+Ying&rft.au=Gong%2C+Huaxin&rft.au=Wang%2C+Yujie&rft.au=Li%2C+Dewen&rft.date=2018-04-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=14&rft.spage=e1706807&rft_id=info:doi/10.1002%2Fadma.201706807&rft_id=info%3Apmid%2F29443435&rft.externalDocID=29443435 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |