Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI

Background Detecting and segmenting brain metastases is a tedious and time‐consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging. Purpose To demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a deep‐learning a...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 51; no. 1; pp. 175 - 182
Main Authors Grøvik, Endre, Yi, Darvin, Iv, Michael, Tong, Elizabeth, Rubin, Daniel, Zaharchuk, Greg
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Detecting and segmenting brain metastases is a tedious and time‐consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging. Purpose To demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a deep‐learning approach based on a fully convolution neural network (CNN). Study Type Retrospective. Population In all, 156 patients with brain metastases from several primary cancers were included. Field Strength 1.5T and 3T. [Correction added on May 24, 2019, after first online publication: In the preceding sentence, the first field strength listed was corrected.] Sequence Pretherapy MR images included pre‐ and postgadolinium T1‐weighted 3D fast spin echo (CUBE), postgadolinium T1‐weighted 3D axial IR‐prepped FSPGR (BRAVO), and 3D CUBE fluid attenuated inversion recovery (FLAIR). Assessment The ground truth was established by manual delineation by two experienced neuroradiologists. CNN training/development was performed using 100 and 5 patients, respectively, with a 2.5D network based on a GoogLeNet architecture. The results were evaluated in 51 patients, equally separated into those with few (1–3), multiple (4–10), and many (>10) lesions. Statistical Tests Network performance was evaluated using precision, recall, Dice/F1 score, and receiver operating characteristic (ROC) curve statistics. For an optimal probability threshold, detection and segmentation performance was assessed on a per‐metastasis basis. The Wilcoxon rank sum test was used to test the differences between patient subgroups. Results The area under the ROC curve (AUC), averaged across all patients, was 0.98 ± 0.04. The AUC in the subgroups was 0.99 ± 0.01, 0.97 ± 0.05, and 0.97 ± 0.03 for patients having 1–3, 4–10, and >10 metastases, respectively. Using an average optimal probability threshold determined by the development set, precision, recall, and Dice score were 0.79 ± 0.20, 0.53 ± 0.22, and 0.79 ± 0.12, respectively. At the same probability threshold, the network showed an average false‐positive rate of 8.3/patient (no lesion‐size limit) and 3.4/patient (10 mm3 lesion size limit). Data Conclusion A deep‐learning approach using multisequence MRI can automatically detect and segment brain metastases with high accuracy. Level of Evidence: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:175–182.
AbstractList Detecting and segmenting brain metastases is a tedious and time-consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging. To demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a deep-learning approach based on a fully convolution neural network (CNN). Retrospective. In all, 156 patients with brain metastases from several primary cancers were included. 1.5T and 3T. [Correction added on May 24, 2019, after first online publication: In the preceding sentence, the first field strength listed was corrected.] SEQUENCE: Pretherapy MR images included pre- and postgadolinium T -weighted 3D fast spin echo (CUBE), postgadolinium T -weighted 3D axial IR-prepped FSPGR (BRAVO), and 3D CUBE fluid attenuated inversion recovery (FLAIR). The ground truth was established by manual delineation by two experienced neuroradiologists. CNN training/development was performed using 100 and 5 patients, respectively, with a 2.5D network based on a GoogLeNet architecture. The results were evaluated in 51 patients, equally separated into those with few (1-3), multiple (4-10), and many (>10) lesions. Network performance was evaluated using precision, recall, Dice/F1 score, and receiver operating characteristic (ROC) curve statistics. For an optimal probability threshold, detection and segmentation performance was assessed on a per-metastasis basis. The Wilcoxon rank sum test was used to test the differences between patient subgroups. The area under the ROC curve (AUC), averaged across all patients, was 0.98 ± 0.04. The AUC in the subgroups was 0.99 ± 0.01, 0.97 ± 0.05, and 0.97 ± 0.03 for patients having 1-3, 4-10, and >10 metastases, respectively. Using an average optimal probability threshold determined by the development set, precision, recall, and Dice score were 0.79 ± 0.20, 0.53 ± 0.22, and 0.79 ± 0.12, respectively. At the same probability threshold, the network showed an average false-positive rate of 8.3/patient (no lesion-size limit) and 3.4/patient (10 mm lesion size limit). A deep-learning approach using multisequence MRI can automatically detect and segment brain metastases with high accuracy. 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:175-182.
Background Detecting and segmenting brain metastases is a tedious and time‐consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging. Purpose To demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a deep‐learning approach based on a fully convolution neural network (CNN). Study Type Retrospective. Population In all, 156 patients with brain metastases from several primary cancers were included. Field Strength 1.5T and 3T. [Correction added on May 24, 2019, after first online publication: In the preceding sentence, the first field strength listed was corrected.] Sequence Pretherapy MR images included pre‐ and postgadolinium T1‐weighted 3D fast spin echo (CUBE), postgadolinium T1‐weighted 3D axial IR‐prepped FSPGR (BRAVO), and 3D CUBE fluid attenuated inversion recovery (FLAIR). Assessment The ground truth was established by manual delineation by two experienced neuroradiologists. CNN training/development was performed using 100 and 5 patients, respectively, with a 2.5D network based on a GoogLeNet architecture. The results were evaluated in 51 patients, equally separated into those with few (1–3), multiple (4–10), and many (>10) lesions. Statistical Tests Network performance was evaluated using precision, recall, Dice/F1 score, and receiver operating characteristic (ROC) curve statistics. For an optimal probability threshold, detection and segmentation performance was assessed on a per‐metastasis basis. The Wilcoxon rank sum test was used to test the differences between patient subgroups. Results The area under the ROC curve (AUC), averaged across all patients, was 0.98 ± 0.04. The AUC in the subgroups was 0.99 ± 0.01, 0.97 ± 0.05, and 0.97 ± 0.03 for patients having 1–3, 4–10, and >10 metastases, respectively. Using an average optimal probability threshold determined by the development set, precision, recall, and Dice score were 0.79 ± 0.20, 0.53 ± 0.22, and 0.79 ± 0.12, respectively. At the same probability threshold, the network showed an average false‐positive rate of 8.3/patient (no lesion‐size limit) and 3.4/patient (10 mm3 lesion size limit). Data Conclusion A deep‐learning approach using multisequence MRI can automatically detect and segment brain metastases with high accuracy. Level of Evidence: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:175–182.
BackgroundDetecting and segmenting brain metastases is a tedious and time‐consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging.PurposeTo demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a deep‐learning approach based on a fully convolution neural network (CNN).Study TypeRetrospective.PopulationIn all, 156 patients with brain metastases from several primary cancers were included.Field Strength1.5T and 3T. [Correction added on May 24, 2019, after first online publication: In the preceding sentence, the first field strength listed was corrected.]SequencePretherapy MR images included pre‐ and postgadolinium T1‐weighted 3D fast spin echo (CUBE), postgadolinium T1‐weighted 3D axial IR‐prepped FSPGR (BRAVO), and 3D CUBE fluid attenuated inversion recovery (FLAIR).AssessmentThe ground truth was established by manual delineation by two experienced neuroradiologists. CNN training/development was performed using 100 and 5 patients, respectively, with a 2.5D network based on a GoogLeNet architecture. The results were evaluated in 51 patients, equally separated into those with few (1–3), multiple (4–10), and many (>10) lesions.Statistical TestsNetwork performance was evaluated using precision, recall, Dice/F1 score, and receiver operating characteristic (ROC) curve statistics. For an optimal probability threshold, detection and segmentation performance was assessed on a per‐metastasis basis. The Wilcoxon rank sum test was used to test the differences between patient subgroups.ResultsThe area under the ROC curve (AUC), averaged across all patients, was 0.98 ± 0.04. The AUC in the subgroups was 0.99 ± 0.01, 0.97 ± 0.05, and 0.97 ± 0.03 for patients having 1–3, 4–10, and >10 metastases, respectively. Using an average optimal probability threshold determined by the development set, precision, recall, and Dice score were 0.79 ± 0.20, 0.53 ± 0.22, and 0.79 ± 0.12, respectively. At the same probability threshold, the network showed an average false‐positive rate of 8.3/patient (no lesion‐size limit) and 3.4/patient (10 mm3 lesion size limit).Data ConclusionA deep‐learning approach using multisequence MRI can automatically detect and segment brain metastases with high accuracy.Level of Evidence: 3Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:175–182.
Detecting and segmenting brain metastases is a tedious and time-consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging.BACKGROUNDDetecting and segmenting brain metastases is a tedious and time-consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging.To demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a deep-learning approach based on a fully convolution neural network (CNN).PURPOSETo demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a deep-learning approach based on a fully convolution neural network (CNN).Retrospective.STUDY TYPERetrospective.In all, 156 patients with brain metastases from several primary cancers were included.POPULATIONIn all, 156 patients with brain metastases from several primary cancers were included.1.5T and 3T. [Correction added on May 24, 2019, after first online publication: In the preceding sentence, the first field strength listed was corrected.] SEQUENCE: Pretherapy MR images included pre- and postgadolinium T1 -weighted 3D fast spin echo (CUBE), postgadolinium T1 -weighted 3D axial IR-prepped FSPGR (BRAVO), and 3D CUBE fluid attenuated inversion recovery (FLAIR).FIELD STRENGTH1.5T and 3T. [Correction added on May 24, 2019, after first online publication: In the preceding sentence, the first field strength listed was corrected.] SEQUENCE: Pretherapy MR images included pre- and postgadolinium T1 -weighted 3D fast spin echo (CUBE), postgadolinium T1 -weighted 3D axial IR-prepped FSPGR (BRAVO), and 3D CUBE fluid attenuated inversion recovery (FLAIR).The ground truth was established by manual delineation by two experienced neuroradiologists. CNN training/development was performed using 100 and 5 patients, respectively, with a 2.5D network based on a GoogLeNet architecture. The results were evaluated in 51 patients, equally separated into those with few (1-3), multiple (4-10), and many (>10) lesions.ASSESSMENTThe ground truth was established by manual delineation by two experienced neuroradiologists. CNN training/development was performed using 100 and 5 patients, respectively, with a 2.5D network based on a GoogLeNet architecture. The results were evaluated in 51 patients, equally separated into those with few (1-3), multiple (4-10), and many (>10) lesions.Network performance was evaluated using precision, recall, Dice/F1 score, and receiver operating characteristic (ROC) curve statistics. For an optimal probability threshold, detection and segmentation performance was assessed on a per-metastasis basis. The Wilcoxon rank sum test was used to test the differences between patient subgroups.STATISTICAL TESTSNetwork performance was evaluated using precision, recall, Dice/F1 score, and receiver operating characteristic (ROC) curve statistics. For an optimal probability threshold, detection and segmentation performance was assessed on a per-metastasis basis. The Wilcoxon rank sum test was used to test the differences between patient subgroups.The area under the ROC curve (AUC), averaged across all patients, was 0.98 ± 0.04. The AUC in the subgroups was 0.99 ± 0.01, 0.97 ± 0.05, and 0.97 ± 0.03 for patients having 1-3, 4-10, and >10 metastases, respectively. Using an average optimal probability threshold determined by the development set, precision, recall, and Dice score were 0.79 ± 0.20, 0.53 ± 0.22, and 0.79 ± 0.12, respectively. At the same probability threshold, the network showed an average false-positive rate of 8.3/patient (no lesion-size limit) and 3.4/patient (10 mm3 lesion size limit).RESULTSThe area under the ROC curve (AUC), averaged across all patients, was 0.98 ± 0.04. The AUC in the subgroups was 0.99 ± 0.01, 0.97 ± 0.05, and 0.97 ± 0.03 for patients having 1-3, 4-10, and >10 metastases, respectively. Using an average optimal probability threshold determined by the development set, precision, recall, and Dice score were 0.79 ± 0.20, 0.53 ± 0.22, and 0.79 ± 0.12, respectively. At the same probability threshold, the network showed an average false-positive rate of 8.3/patient (no lesion-size limit) and 3.4/patient (10 mm3 lesion size limit).A deep-learning approach using multisequence MRI can automatically detect and segment brain metastases with high accuracy.DATA CONCLUSIONA deep-learning approach using multisequence MRI can automatically detect and segment brain metastases with high accuracy.3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:175-182.LEVEL OF EVIDENCE3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:175-182.
Author Yi, Darvin
Grøvik, Endre
Iv, Michael
Rubin, Daniel
Zaharchuk, Greg
Tong, Elizabeth
AuthorAffiliation 2 Department for Diagnostic Physics, Oslo University Hospital, Oslo, Norway
3 Department of Biomedical Data Science, Stanford University, Stanford, California, USA
1 Department of Radiology, Stanford University, Stanford, California, USA
AuthorAffiliation_xml – name: 1 Department of Radiology, Stanford University, Stanford, California, USA
– name: 2 Department for Diagnostic Physics, Oslo University Hospital, Oslo, Norway
– name: 3 Department of Biomedical Data Science, Stanford University, Stanford, California, USA
Author_xml – sequence: 1
  givenname: Endre
  orcidid: 0000-0002-9925-1162
  surname: Grøvik
  fullname: Grøvik, Endre
  organization: Oslo University Hospital
– sequence: 2
  givenname: Darvin
  surname: Yi
  fullname: Yi, Darvin
  organization: Stanford University
– sequence: 3
  givenname: Michael
  surname: Iv
  fullname: Iv, Michael
  organization: Stanford University
– sequence: 4
  givenname: Elizabeth
  surname: Tong
  fullname: Tong, Elizabeth
  organization: Stanford University
– sequence: 5
  givenname: Daniel
  surname: Rubin
  fullname: Rubin, Daniel
  organization: Stanford University
– sequence: 6
  givenname: Greg
  surname: Zaharchuk
  fullname: Zaharchuk, Greg
  email: gregz@stanford.edu
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31050074$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFTEQhoNU7Ife-AMk4I0IW_Oxye7eCFK_KhVB9DrMyc4ec9hNjsmu0n_vtNuKFpEEEmaed3hn5pgdxBSRscdSnEoh1IvdlMOpso2199iRNEpVyrT2gP7C6Eq2ojlkx6XshBBdV5sH7FBTRoimPmL-NeKejwg5hrjlGGEzYuGwzGmCOXje44x-DilyiD0vuJ0wznAdSAPfZAiRTzhDoUtCCk_LOIeC3xeMHvnHz-cP2f0BxoKPbt4T9vXtmy9n76uLT-_Oz15dVL5uWlvVBrTtam3RKjGA9Y2yYHU9mF6KvpeNsWAAoEXpwQxaCYmCCGqpHWSH-oS9XOvul82EvSejGUa3z2GCfOkSBPd3JoZvbpt-uEbSXDpLBZ7dFMiJ7JfZTaF4HEeImJbilFKd0nXbGUKf3kF3acmR2nNK02mMsTVRT_509NvK7fwJECvgcyol4-B8WKdLBsPopHBXK3ZXK3bXKybJ8zuS26r_hOUK_wwjXv6HdB9oUavmFzq8uAg
CitedBy_id crossref_primary_10_3390_bioengineering10040492
crossref_primary_10_1016_j_ejmp_2021_03_009
crossref_primary_10_1016_j_ijrobp_2022_06_081
crossref_primary_10_1038_s41597_024_03634_0
crossref_primary_10_1080_07357907_2022_2044842
crossref_primary_10_1016_j_jacr_2023_06_034
crossref_primary_10_1088_1361_6560_abca53
crossref_primary_10_1007_s00330_021_08427_2
crossref_primary_10_3389_fonc_2024_1338225
crossref_primary_10_1002_mp_15863
crossref_primary_10_1007_s00234_024_03454_4
crossref_primary_10_52589_BJCNIT_LOYYI2RS
crossref_primary_10_1109_TCDS_2022_3213944
crossref_primary_10_1038_s41746_021_00398_4
crossref_primary_10_1093_neuonc_noaa232
crossref_primary_10_3174_ajnr_A7998
crossref_primary_10_1148_ryai_2021200204
crossref_primary_10_3390_diagnostics12082023
crossref_primary_10_1016_j_biosx_2022_100188
crossref_primary_10_1016_j_seizure_2021_05_023
crossref_primary_10_1007_s00521_024_10334_8
crossref_primary_10_1007_s00234_021_02743_6
crossref_primary_10_1016_j_patcog_2023_109651
crossref_primary_10_1002_jmri_27741
crossref_primary_10_1002_ima_70042
crossref_primary_10_1088_1361_6560_ac1835
crossref_primary_10_1088_1361_6560_acace7
crossref_primary_10_1002_jmri_28272
crossref_primary_10_1007_s00264_023_05875_x
crossref_primary_10_1088_2057_1976_ac9b5b
crossref_primary_10_1002_jmri_28274
crossref_primary_10_3389_fneur_2020_00270
crossref_primary_10_1093_neuonc_noac025
crossref_primary_10_13104_imri_2021_25_4_266
crossref_primary_10_1007_s00066_020_01663_3
crossref_primary_10_1016_j_ijrobp_2024_07_2318
crossref_primary_10_3389_fonc_2021_739639
crossref_primary_10_1371_journal_pone_0241796
crossref_primary_10_3390_brainsci13101495
crossref_primary_10_1186_s13014_020_01514_6
crossref_primary_10_1109_JBHI_2020_2982103
crossref_primary_10_1148_ryai_230126
crossref_primary_10_1148_ryai_230520
crossref_primary_10_3389_fbioe_2023_1239637
crossref_primary_10_1007_s11831_022_09758_z
crossref_primary_10_1007_s13755_024_00330_6
crossref_primary_10_3349_ymj_2023_0590
crossref_primary_10_3390_cancers16020415
crossref_primary_10_1117_1_JMI_8_3_037001
crossref_primary_10_1038_s41598_021_04354_w
crossref_primary_10_3390_cancers14133264
crossref_primary_10_1007_s10278_023_00856_3
crossref_primary_10_1002_jmri_27131
crossref_primary_10_1016_j_ins_2023_01_016
crossref_primary_10_3389_fneur_2020_00001
crossref_primary_10_1093_noajnl_vdae060
crossref_primary_10_1002_jmri_27129
crossref_primary_10_1007_s11227_020_03535_0
crossref_primary_10_1007_s00521_024_10919_3
crossref_primary_10_1002_cpe_6821
crossref_primary_10_1007_s00330_023_10120_5
crossref_primary_10_1038_s41598_022_23687_8
crossref_primary_10_1002_jmri_28456
crossref_primary_10_3389_fbinf_2022_999700
crossref_primary_10_1142_S0219519423400985
crossref_primary_10_1016_j_radonc_2020_09_016
crossref_primary_10_26416_Med_145_1_2022_6215
crossref_primary_10_1038_s41467_024_52414_2
crossref_primary_10_3390_cancers14092069
crossref_primary_10_3390_cancers14102555
crossref_primary_10_1109_TPDS_2023_3240174
crossref_primary_10_1097_RLI_0000000000000745
crossref_primary_10_1016_j_compmedimag_2024_102401
crossref_primary_10_3348_kjr_2023_0671
crossref_primary_10_3390_app11199180
crossref_primary_10_1016_j_eclinm_2020_100669
crossref_primary_10_1111_jon_12916
crossref_primary_10_1186_s41747_025_00554_5
crossref_primary_10_3389_fneur_2022_932219
crossref_primary_10_3174_ajnr_A6982
crossref_primary_10_1186_s13014_023_02246_z
crossref_primary_10_1093_neuonc_noae113
crossref_primary_10_1016_j_neucom_2024_128583
crossref_primary_10_1007_s00330_023_10318_7
crossref_primary_10_1038_s41598_023_42048_7
crossref_primary_10_1186_s12859_020_03936_1
crossref_primary_10_1016_j_crad_2023_07_009
crossref_primary_10_1259_bjr_20220841
crossref_primary_10_1016_j_ejrad_2021_109577
crossref_primary_10_1002_mp_15136
crossref_primary_10_1016_j_semradonc_2022_06_002
crossref_primary_10_1016_j_ijrobp_2020_06_026
crossref_primary_10_1186_s40644_024_00669_9
crossref_primary_10_1002_mp_15534
crossref_primary_10_1016_j_radonc_2024_110419
crossref_primary_10_3389_fonc_2023_1273013
crossref_primary_10_3390_cancers13195010
crossref_primary_10_1016_j_ymeth_2020_06_003
crossref_primary_10_1016_j_radonc_2022_11_014
crossref_primary_10_1093_noajnl_vdac138
crossref_primary_10_1016_j_adro_2022_101085
crossref_primary_10_1016_j_imu_2024_101475
crossref_primary_10_2463_mrms_mp_2024_0082
crossref_primary_10_3390_bioengineering11050454
crossref_primary_10_1016_j_semradonc_2022_06_007
crossref_primary_10_3389_fneur_2022_905761
crossref_primary_10_1002_jcu_23558
crossref_primary_10_3390_jimaging10120319
crossref_primary_10_3390_diagnostics11122181
crossref_primary_10_3390_diagnostics13040668
crossref_primary_10_1097_RLI_0000000000001115
crossref_primary_10_3389_fninf_2022_1056068
crossref_primary_10_1007_s11060_022_04234_x
crossref_primary_10_1016_j_radonc_2023_110007
crossref_primary_10_1142_S0218001423560013
crossref_primary_10_3390_diagnostics11091676
crossref_primary_10_1093_neuonc_noab071
crossref_primary_10_1109_ACCESS_2021_3132046
crossref_primary_10_1007_s00330_023_09648_3
crossref_primary_10_1186_s13244_021_01044_z
crossref_primary_10_1007_s00234_021_02649_3
crossref_primary_10_1038_s41598_020_64912_6
crossref_primary_10_3390_cancers13112557
crossref_primary_10_3390_app9163335
crossref_primary_10_3390_biomedicines12112561
crossref_primary_10_1016_j_ijrobp_2022_09_068
crossref_primary_10_1038_s41598_023_31403_3
crossref_primary_10_26634_jcom_11_2_20132
crossref_primary_10_1186_s40478_023_01509_w
crossref_primary_10_1093_noajnl_vdac081
crossref_primary_10_3390_diagnostics11061016
crossref_primary_10_1016_j_media_2023_103044
crossref_primary_10_1016_j_mri_2021_12_007
crossref_primary_10_1038_s41698_024_00789_2
crossref_primary_10_2217_cns_2020_0003
crossref_primary_10_1016_j_acra_2023_05_010
crossref_primary_10_1109_JBHI_2022_3153394
crossref_primary_10_3390_diagnostics13162670
crossref_primary_10_1186_s40644_024_00753_0
crossref_primary_10_1007_s00330_023_09420_7
crossref_primary_10_13104_imri_2022_26_1_1
crossref_primary_10_3389_fradi_2021_713681
crossref_primary_10_1002_jmri_29101
crossref_primary_10_3389_fonc_2021_773299
crossref_primary_10_1007_s00330_021_07783_3
crossref_primary_10_1016_j_ejrad_2021_110015
crossref_primary_10_3174_ajnr_A7380
crossref_primary_10_1007_s41870_023_01572_5
crossref_primary_10_1007_s00234_022_02902_3
crossref_primary_10_1038_s41597_023_02123_0
Cites_doi 10.1093/neuonc/nox077
10.1007/s11912-011-0203-y
10.1016/j.compbiomed.2018.02.004
10.1016/j.media.2016.10.004
10.1093/jrr/rrs053
10.1371/journal.pone.0178265
10.1016/S1470-2045(15)70057-4
10.1088/0031-9155/61/24/8440
10.1109/TMI.2016.2538465
10.1002/(SICI)1097-0142(19961015)78:8<1781::AID-CNCR19>3.0.CO;2-U
10.1002/hbm.10062
10.1093/neuonc/now127
10.1007/s10278-015-9839-8
10.1186/1756-9966-30-10
10.1016/j.media.2017.10.002
10.1007/s10278-017-9983-4
10.3174/ajnr.A5747
10.1016/j.procs.2016.09.407
10.1118/1.4898200
10.1111/cgf.12193
10.1371/journal.pone.0185844
10.1259/bjr.20110718
ContentType Journal Article
Copyright 2019 International Society for Magnetic Resonance in Medicine
2019 International Society for Magnetic Resonance in Medicine.
2020 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2019 International Society for Magnetic Resonance in Medicine
– notice: 2019 International Society for Magnetic Resonance in Medicine.
– notice: 2020 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/jmri.26766
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 182
ExternalDocumentID PMC7199496
31050074
10_1002_jmri_26766
JMRI26766
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Norges Forskningsråd
  funderid: 261984
– fundername: Kreftforeningen
  funderid: 3434180; 6817564
– fundername: Helse Sør‐Øst RHF
  funderid: 2013069; 2016102
– fundername: NLM NIH HHS
  grantid: T15 LM007033
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4786-45a369436e620fa6c726a634f5d10dd1756a5aaa8e1ca5f3201e06a69458f19e3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 14:10:14 EDT 2025
Fri Jul 11 08:30:05 EDT 2025
Fri Jul 25 10:32:47 EDT 2025
Wed Feb 19 02:28:00 EST 2025
Tue Jul 01 03:56:42 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:35:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
segmentation
multisequence
brain metastases
Language English
License 2019 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4786-45a369436e620fa6c726a634f5d10dd1756a5aaa8e1ca5f3201e06a69458f19e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
E.G and D.Y are Co-First authors.
ORCID 0000-0002-9925-1162
PMID 31050074
PQID 2323275564
PQPubID 1006400
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7199496
proquest_miscellaneous_2229234895
proquest_journals_2323275564
pubmed_primary_31050074
crossref_citationtrail_10_1002_jmri_26766
crossref_primary_10_1002_jmri_26766
wiley_primary_10_1002_jmri_26766_JMRI26766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2002; 17
2015; 16
2013; 86
2016; 102
2011; 30
1412
2016; 18
2012; 14
2014; 41
2018; 43
2016; 35
1996; 78
2017; 30
2018; 39
2017; 36
2013; 54
2013; 32
2017; 12
2017
2017; 19
2016
2016; 61
2015
2018; 95
2016; 29
Zhao L (e_1_2_6_14_1) 2015
Szegedy C (e_1_2_6_21_1) 2015
e_1_2_6_32_1
e_1_2_6_31_1
e_1_2_6_30_1
Lin T‐Y (e_1_2_6_29_1) 2017
Grossiord E (e_1_2_6_10_1)
Huang G (e_1_2_6_26_1) 2017
e_1_2_6_19_1
Ronneberger O (e_1_2_6_27_1) 2015
e_1_2_6_13_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
Yoon BC (e_1_2_6_33_1) 2018; 39
e_1_2_6_20_1
Liu Y (e_1_2_6_17_1) 2017; 12
Havaei M (e_1_2_6_12_1) 2016
Kingma DP (e_1_2_6_22_1)
He K (e_1_2_6_25_1) 2016
Zhao H (e_1_2_6_28_1) 2017
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Goceri E (e_1_2_6_8_1) 2017
Moghbel M (e_1_2_6_9_1) 2017
References_xml – volume: 16
  start-page: e270
  year: 2015
  end-page: e278
  article-title: Response assessment criteria for brain metastases: Proposal from the RANO group
  publication-title: Lancet Oncol
– volume: 19
  start-page: 1511
  year: 2017
  end-page: 1521
  article-title: Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: A population‐based study
  publication-title: Neuro Oncol
– volume: 35
  start-page: 1240
  year: 2016
  end-page: 1251
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans Med Imaging
– volume: 12
  start-page: e0178265
  year: 2017
  article-title: Computer‐aided detection of brain metastasis on 3D MR imaging: Observer performance study
  publication-title: PLoS One
– start-page: 306
  year: 2015
  end-page: 309
  article-title: Deep feature learning with discrimination mechanism for brain tumor segmentation and diagnosis
  publication-title: IEEE Int Conf Intell Inf Hiding Multimed Signal Process
– volume: 61
  start-page: 8440
  year: 2016
  end-page: 8461
  article-title: Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications
  publication-title: Phys Med Biol
– start-page: 6230
  year: 2017
  end-page: 6239
  article-title: Pyramid scene parsing network
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– volume: 39
  start-page: 1635
  year: 2018
  end-page: 1642
  article-title: Evaluation of thick‐slab overlapping MIP images of contrast‐enhanced 3D T1‐weighted CUBE for detection of intracranial metastases: A pilot study for comparison of lesion detection, interpretation time, and sensitivity with nonoverlapping CUBE MIP, CUBE, and inversion‐recovery‐prepared fast‐spoiled gradient recalled brain volume
  publication-title: Am J Neuroradiol
– start-page: 1
  year: 2015
  end-page: 9
  article-title: Going deeper with convolutions
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– volume: 2017
  start-page: 174
  end-page: 178
– start-page: 936
  year: 2017
  end-page: 944
  article-title: Feature pyramid networks for object detection
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– start-page: 2261
  year: 2017
  end-page: 2269
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– volume: 41
  start-page: 111715
  year: 2014
  article-title: Interactive prostate segmentation using atlas‐guided semi‐supervised learning and adaptive feature selection
  publication-title: Med Phys
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  article-title: Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med Image Anal
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– volume: 86
  start-page: 20110718
  year: 2013
  article-title: Automated delineation of radiotherapy volumes: Are we going in the right direction?
  publication-title: Br J Radiol
– volume: 14
  start-page: 48
  year: 2012
  end-page: 54
  article-title: Epidemiology of brain metastases
  publication-title: Curr Oncol Rep
– start-page: 125
  year: 2016
  end-page: 148
  article-title: Deep learning trends for focal brain pathology segmentation in MRI
  publication-title: Mach Learn Heal Inform
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– volume: 29
  start-page: 264
  year: 2016
  end-page: 277
  article-title: User interaction in semi‐automatic segmentation of organs at risk: A case study in radiotherapy
  publication-title: J Digit Imaging
– volume: 43
  start-page: 98
  year: 2018
  end-page: 111
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med Image Anal
– volume: 32
  start-page: 144
  year: 2013
  end-page: 157
  article-title: Sketch‐based editing tools for tumour segmentation in 3D medical images
  publication-title: Comput Graph Forum
– volume: 78
  start-page: 1781
  year: 1996
  end-page: 1788
  article-title: Brain metastases: Histology, multiplicity, surgery, and survival
  publication-title: Cancer
– start-page: 1
  year: 2017
  end-page: 41
  article-title: Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography
  publication-title: Artif Intell Rev
– volume: 30
  start-page: 449
  year: 2017
  end-page: 459
  article-title: Deep learning for brain MRI segmentation: State of the art and future directions
  publication-title: J Digit Imaging
– start-page: 6980
  year: 1412
  publication-title: Ba JA. A method for stochastic optimization. arXiv Prepr 2014:arXiv
– volume: 102
  start-page: 317
  year: 2016
  end-page: 324
  article-title: Review of MRI‐based brain tumor image segmentation using deep learning methods
  publication-title: Procedia Comput Sci
– volume: 54
  start-page: 135
  year: 2013
  end-page: 139
  article-title: Usefulness of double dose contrast‐enhanced magnetic resonance imaging for clear delineation of gross tumor volume in stereotactic radiotherapy treatment planning of metastatic brain tumors: A dose comparison study
  publication-title: J Radiat Res
– volume: 30
  start-page: 10
  year: 2011
  article-title: Brain metastases from solid tumors: Disease outcome according to type of treatment and therapeutic resources of the treating center
  publication-title: J Exp Clin Cancer Res
– start-page: 177
  year: 2017
  end-page: 182
  article-title: Computer‐based segmentation, change detection and quantification for lesions in multiple sclerosis
  publication-title: IEEE Int Conf Comput Sci Eng
– volume: 18
  start-page: 1043
  year: 2016
  end-page: 1065
  article-title: Updates in the management of brain metastases
  publication-title: Neuro Oncol
– volume: 12
  start-page: e0185844
  year: 2017
  article-title: A deep convolutional neural network‐based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
  publication-title: PLoS One
– volume: 95
  start-page: 43
  year: 2018
  end-page: 54
  article-title: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network
  publication-title: Comput Biol Med
– start-page: 234
  year: 2015
  end-page: 241
  article-title: U‐Net: Convolutional networks for biomedical image segmentation
  publication-title: Int Conf Med Image Comput Comput Interv
– ident: e_1_2_6_4_1
  doi: 10.1093/neuonc/nox077
– ident: e_1_2_6_3_1
  doi: 10.1007/s11912-011-0203-y
– ident: e_1_2_6_18_1
  doi: 10.1016/j.compbiomed.2018.02.004
– start-page: 6230
  year: 2017
  ident: e_1_2_6_28_1
  article-title: Pyramid scene parsing network
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– start-page: 125
  year: 2016
  ident: e_1_2_6_12_1
  article-title: Deep learning trends for focal brain pathology segmentation in MRI
  publication-title: Mach Learn Heal Inform
– start-page: 306
  year: 2015
  ident: e_1_2_6_14_1
  article-title: Deep feature learning with discrimination mechanism for brain tumor segmentation and diagnosis
  publication-title: IEEE Int Conf Intell Inf Hiding Multimed Signal Process
– ident: e_1_2_6_15_1
  doi: 10.1016/j.media.2016.10.004
– ident: e_1_2_6_32_1
  doi: 10.1093/jrr/rrs053
– ident: e_1_2_6_24_1
  doi: 10.1371/journal.pone.0178265
– start-page: 6980
  ident: e_1_2_6_22_1
  publication-title: Ba JA. A method for stochastic optimization. arXiv Prepr 2014:arXiv
– ident: e_1_2_6_7_1
  doi: 10.1016/S1470-2045(15)70057-4
– ident: e_1_2_6_19_1
  doi: 10.1088/0031-9155/61/24/8440
– ident: e_1_2_6_13_1
  doi: 10.1109/TMI.2016.2538465
– start-page: 936
  year: 2017
  ident: e_1_2_6_29_1
  article-title: Feature pyramid networks for object detection
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– start-page: 1
  year: 2015
  ident: e_1_2_6_21_1
  article-title: Going deeper with convolutions
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– ident: e_1_2_6_6_1
  doi: 10.1002/(SICI)1097-0142(19961015)78:8<1781::AID-CNCR19>3.0.CO;2-U
– start-page: 770
  year: 2016
  ident: e_1_2_6_25_1
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– ident: e_1_2_6_20_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_6_2_1
  doi: 10.1093/neuonc/now127
– ident: e_1_2_6_30_1
  doi: 10.1007/s10278-015-9839-8
– ident: e_1_2_6_5_1
  doi: 10.1186/1756-9966-30-10
– ident: e_1_2_6_16_1
  doi: 10.1016/j.media.2017.10.002
– start-page: 177
  year: 2017
  ident: e_1_2_6_8_1
  article-title: Computer‐based segmentation, change detection and quantification for lesions in multiple sclerosis
  publication-title: IEEE Int Conf Comput Sci Eng
– start-page: 174
  volume-title: IEEE 14th Int Symp Biomed Imaging
  ident: e_1_2_6_10_1
– start-page: 234
  year: 2015
  ident: e_1_2_6_27_1
  article-title: U‐Net: Convolutional networks for biomedical image segmentation
  publication-title: Int Conf Med Image Comput Comput Interv
– start-page: 1
  year: 2017
  ident: e_1_2_6_9_1
  article-title: Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography
  publication-title: Artif Intell Rev
– ident: e_1_2_6_11_1
  doi: 10.1007/s10278-017-9983-4
– volume: 39
  start-page: 1635
  year: 2018
  ident: e_1_2_6_33_1
  article-title: Evaluation of thick‐slab overlapping MIP images of contrast‐enhanced 3D T1‐weighted CUBE for detection of intracranial metastases: A pilot study for comparison of lesion detection, interpretation time, and sensitivity with nonoverlapping CUBE MIP, CUBE, and inversion‐recovery‐prepared fast‐spoiled gradient recalled brain volume
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5747
– ident: e_1_2_6_23_1
  doi: 10.1016/j.procs.2016.09.407
– start-page: 2261
  year: 2017
  ident: e_1_2_6_26_1
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– ident: e_1_2_6_31_1
  doi: 10.1118/1.4898200
– ident: e_1_2_6_35_1
  doi: 10.1111/cgf.12193
– volume: 12
  start-page: e0185844
  year: 2017
  ident: e_1_2_6_17_1
  article-title: A deep convolutional neural network‐based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0185844
– ident: e_1_2_6_34_1
  doi: 10.1259/bjr.20110718
SSID ssj0009945
Score 2.6541522
Snippet Background Detecting and segmenting brain metastases is a tedious and time‐consuming task for many radiologists, particularly with the growing use of...
Detecting and segmenting brain metastases is a tedious and time-consuming task for many radiologists, particularly with the growing use of multisequence 3D...
BackgroundDetecting and segmenting brain metastases is a tedious and time‐consuming task for many radiologists, particularly with the growing use of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 175
SubjectTerms Adult
Aged
Artificial neural networks
Automation
Brain
Brain - diagnostic imaging
Brain cancer
brain metastases
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - secondary
Convolution
Deep Learning
Female
Field strength
Ground truth
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Lesions
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Metastases
Metastasis
Middle Aged
multisequence
Neural networks
Neuroimaging
Patients
Performance evaluation
Population studies
Recall
Retrospective Studies
segmentation
Sensitivity and Specificity
Statistical analysis
Statistical tests
Subgroups
Toxicity
Title Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26766
https://www.ncbi.nlm.nih.gov/pubmed/31050074
https://www.proquest.com/docview/2323275564
https://www.proquest.com/docview/2229234895
https://pubmed.ncbi.nlm.nih.gov/PMC7199496
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPVRceD8CLTKCC0jZJo5fkXqpgKpUWg4VlXpB0cRxSoHNVk32wq9n7DyWpQgJblEyVhzPjP3FnvkG4FWJyFFrR7OfFbEobRqjq0RsBK19Bo2x0icKzz-q4zNxci7Pt-BgzIXp-SGmDTfvGWG-9g6OZbu_Jg39uri-nHGllefb9sFaHhGdrrmj8jxUKCb8kMWpSfTETcr31003V6MbEPNmpOSvCDYsQUd34PPY-T7y5Nts1ZUz--M3Xsf__bq7cHvApuywN6Z7sOWa-7AzH07fH4B959wVG-pMXDAX0q5ahqtuGYhfWeW6ENnVMGwq1rqLxZDZ1LBlzUpfjYItXIeESFtqSLdDPOMYzs3mpx8ewtnR-09vj-OhSENshTYqFhIzlYtMOcWTGpXVXKHKRC2rNKkqQicKJSIal1qUdUaAwyUkQdoxdZq77BFsN8vGPQFmdZVU9P-oeJ2LtLRoLdeVpyz0vIEqjeD1qKzCDgzmvpDG96LnXuaFH7UijFoELyfZq563449Su6POi8F324IwZsa1lEpE8GJ6TF7nj1KwccsVyXBOyFiYXEbwuDeR6TUEmKVHZhHoDeOZBDyj9-aT5vJLYPbWnqk5p269Cbbxl54XJ6SScPX0X4SfwS3uNwzCHtIubHfXK7dHqKornwfv-QkhaCAi
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSNBLeZdAASO4gJRt4viVI6JU29LtoWql3qKJ7ZS2bLZqspf-esZONstShAS3KB4riWfG_jIef0PIhxKAgVIOZz_DY16aNAZneaw5rn0atDbCHxSeHMrxCd8_Fad9bo4_C9PxQwwBN-8ZYb72Du4D0ttL1tCL6fX5iEkl5V1yz5f09tT5O0dL9qg8DzWKEUFkcaoTNbCTsu1l39X16BbIvJ0r-SuGDYvQ7sOu0moTuAt97snlaN6WI3PzG7Pjf3_fI7LRw1P6ubOnx-SOq5-Q-5N-A_4pMTvOXdG-1MQZdeHkVUNh3s4C9yu1rg3JXTWF2tLGnU37w001nVW09AUp6NS1gKC0wY54O6Q0LjK66eRo7xk52f16_GUc93UaYsOVljEXkMmcZ9JJllQgjWISZMYrYdPEWgQoEgQAaJcaEFWGmMMlKIHq0VWau-w5WatntXtBqFE2sfgLKVmV87Q0YAxT1rMWeupAmUbk40JbhelJzH0tjR9FR7_MCj9qRRi1iLwfZK866o4_Sm0tlF707tsUCDMzpoSQPCLvhmZ0PL-bArWbzVGGMQTHXOciIpudjQyPQcwsPDiLiFqxnkHAk3qvttTn3wO5t_JkzTm-1qdgHH9582IfVRKuXv6L8FvyYHw8OSgO9g6_vSLrzMcPQkhpi6y113P3GkFWW74JrvQTBAokPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD8CBYzgAlK2ieNXJC6IZdUWtkIVlXpBkWM7pcBmV93shV_P2HksSxES3KJkrDieGfuLPfMNwItSa6qldDj7GRaz0qSxdpbFiuHap7RShvtE4emR2D9hh6f8dAte97kwLT_EsOHmPSPM197BF7baW5OGfp1dnI-okEJcgatMJLkv3DA-XpNH5XkoUYwAIotTlciBnJTurdtuLkeXMOblUMlfIWxYgyY34HPf-zb05Nto1ZQj8-M3Ysf__bybcL0Dp-RNa023YMvVt2Fn2h2_3wEzdm5BukITZ8SFvKsl0atmHphfiXVNCO2qia4tWbqzWZfaVJN5RUpfjoLMXKMRki6xId4OAY19PDeZHh_chZPJu09v9-OuSkNsmFQiZlxnImeZcIImlRZGUqFFxipu08RahCdCc621cqnRvMoQcbgEJVA7qkpzl92D7XpeuwdAjLSJxR9IQaucpaXRxlBpPWehJw4UaQQve2UVpqMw95U0vhct-TIt_KgVYdQieD7ILlrijj9K7fY6LzrnXRYIMjMqORcsgmfDY3Q7f5aiazdfoQylCI2ZynkE91sTGV6DiJl7aBaB3DCeQcBTem8-qc-_BGpv6amac-zWq2Abf-l5cYgqCVcP_0X4Kex8HE-KDwdH7x_BNeo3D8J-0i5sNxcr9xgRVlM-CY70E4ZWIu0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+enables+automatic+detection+and+segmentation+of+brain+metastases+on+multisequence+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Gr%C3%B8vik%2C+Endre&rft.au=Yi%2C+Darvin&rft.au=Iv%2C+Michael&rft.au=Tong%2C+Elizabeth&rft.date=2020-01-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=51&rft.issue=1&rft.spage=175&rft.epage=182&rft_id=info:doi/10.1002%2Fjmri.26766&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_26766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon