Theoretical Investigations of the Oxygen Reduction Reaction on Pt(111)
Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and co...
Saved in:
Published in | Chemphyschem Vol. 11; no. 13; pp. 2779 - 2794 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
10.09.2010
WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions.
Modeling an elusive system: A current review on the mechanism of the oxygen reduction reaction (ORR) on Pt(111) (see figure) is presented. Beginning with an abridged introduction to fundamental computational chemistry methods, the authors investigate the multiple‐pathway ORR and the influences of solvation, thermal energy (e.g. entropy), and electrode potential on each step. |
---|---|
AbstractList | Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions. Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions. Modeling an elusive system: A current review on the mechanism of the oxygen reduction reaction (ORR) on Pt(111) (see figure) is presented. Beginning with an abridged introduction to fundamental computational chemistry methods, the authors investigate the multiple‐pathway ORR and the influences of solvation, thermal energy (e.g. entropy), and electrode potential on each step. Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions.Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions. |
Author | Keith, John A. Jacob, Timo Jerkiewicz, Gregory |
Author_xml | – sequence: 1 givenname: John A. surname: Keith fullname: Keith, John A. organization: Institut für Elektrochemie, Universität Ulm, Albert-Einstein-Allee 47, Ulm D-89081 (Germany), Fax: (+49) 731-50-25409 – sequence: 2 givenname: Gregory surname: Jerkiewicz fullname: Jerkiewicz, Gregory organization: Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada) – sequence: 3 givenname: Timo surname: Jacob fullname: Jacob, Timo email: timo.jacob@uni-ulm.de organization: Institut für Elektrochemie, Universität Ulm, Albert-Einstein-Allee 47, Ulm D-89081 (Germany), Fax: (+49) 731-50-25409 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23238460$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20726030$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gyhHlgiiHLOOPtZ0jRDSttKIVKoKb5TiTriGbLHaWdv89XrItCAkhWfJr-XlGHs8xOeiHHgl5TmFGAdgbt166GYOUgWn5iBxRwYtcSUEP9lkwPj8kxzF-TYwGRZ-QQwaKSeBwRM6ulzgEHL2zXXbR_8A4-hs7-qGP2dBm4xKzy7vtDfbZR2w2bneRkp1CWlfjKaX09VPyuLVdxGf7_YR8Ont_XZ7ni8vqony7yJ1QWuasRqBFwRyVlkkLttbIGnBNq5Ro6nSyAHVdUC2A1kJQ1E5qLhxSkNTV_IS8muquw_B9kx5rVj467Drb47CJRs0FANd6nsgXe3JTr7Ax6-BXNmzNfesJeLkHbEzNt8H2zsffHGdcC7njxMS5MMQYsDXOj79-aAzWd4aC2U3C7CZhHiaRtNlf2n3lfwrFJNz6Drf_oU15dV7-6eaT6-OIdw-uDd-MVFzNzecPlVl8qUoo3lWm4j8ByfOoPA |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_5b04764 crossref_primary_10_1021_acs_jpcc_5b12706 crossref_primary_10_1007_s11708_023_0907_3 crossref_primary_10_1016_j_apsusc_2015_06_042 crossref_primary_10_1021_jp406751n crossref_primary_10_1088_1361_648X_ab3350 crossref_primary_10_1021_jp400388v crossref_primary_10_1021_jp209645t crossref_primary_10_1039_c2cp44252c crossref_primary_10_1021_acs_jpcc_1c07044 crossref_primary_10_1002_smll_202405008 crossref_primary_10_1039_C2CS35267B crossref_primary_10_1016_j_jallcom_2023_172518 crossref_primary_10_1016_j_nanoen_2016_06_004 crossref_primary_10_3390_nano10091805 crossref_primary_10_1002_ange_201004794 crossref_primary_10_1016_j_jelechem_2017_11_038 crossref_primary_10_1007_s12678_014_0187_0 crossref_primary_10_1063_1_4896604 crossref_primary_10_1039_c4ra03387f crossref_primary_10_1039_C6CP08466D crossref_primary_10_1016_j_jechem_2022_02_017 crossref_primary_10_1246_cl_140663 crossref_primary_10_1039_C6CP05869H crossref_primary_10_1016_j_electacta_2012_03_134 crossref_primary_10_1039_D0RE00197J crossref_primary_10_1557_mrc_2018_13 crossref_primary_10_1016_j_coelec_2018_03_025 crossref_primary_10_1021_acs_jpcc_1c09207 crossref_primary_10_1016_j_jcat_2014_07_024 crossref_primary_10_1039_C6TA03245A crossref_primary_10_1002_cctc_202101472 crossref_primary_10_1016_j_ccr_2021_214244 crossref_primary_10_1016_j_electacta_2013_05_133 crossref_primary_10_1021_acs_jpcc_3c07237 crossref_primary_10_1016_j_ijhydene_2024_09_279 crossref_primary_10_1002_cssc_201900298 crossref_primary_10_1149_2_0951508jes crossref_primary_10_1002_cphc_201500187 crossref_primary_10_1016_j_cplett_2020_137994 crossref_primary_10_1002_smm2_1023 crossref_primary_10_1016_j_ijhydene_2024_03_107 crossref_primary_10_1021_acs_jpcc_0c08513 crossref_primary_10_1021_acs_jpcc_0c06691 crossref_primary_10_1039_c3cp50649e crossref_primary_10_1039_c2cp42907a crossref_primary_10_1016_j_jelechem_2013_09_018 crossref_primary_10_1002_anie_201004794 crossref_primary_10_1039_D3QI01797D crossref_primary_10_1016_S1872_2067_23_64538_3 crossref_primary_10_1002_anie_202312747 crossref_primary_10_1016_j_ccr_2021_214389 crossref_primary_10_1016_j_nanoen_2015_12_014 crossref_primary_10_1021_acs_jpcc_7b11842 crossref_primary_10_1016_j_coelec_2018_09_005 crossref_primary_10_1016_j_jpowsour_2015_11_041 crossref_primary_10_1002_er_6969 crossref_primary_10_1039_C4CP03755C crossref_primary_10_1016_j_watres_2024_121993 crossref_primary_10_1016_j_cplett_2015_10_067 crossref_primary_10_1039_C8TA02985G crossref_primary_10_1016_j_cattod_2018_07_036 crossref_primary_10_1016_j_chempr_2019_03_002 crossref_primary_10_1021_acscatal_2c05222 crossref_primary_10_1039_D0EE01714K crossref_primary_10_1002_tcr_201600035 crossref_primary_10_1021_acs_jpclett_4c02164 crossref_primary_10_1039_C5CP00946D crossref_primary_10_1039_D3YA00002H crossref_primary_10_1016_j_cplett_2019_136813 crossref_primary_10_1039_C6CP08055C crossref_primary_10_1007_s10008_011_1582_6 crossref_primary_10_1039_C8CP06756B crossref_primary_10_1016_j_comptc_2013_06_033 crossref_primary_10_1016_j_jpowsour_2015_09_014 crossref_primary_10_1007_s12274_018_2029_5 crossref_primary_10_1002_adfm_202212442 crossref_primary_10_1021_acscatal_8b01953 crossref_primary_10_3762_bjnano_6_102 crossref_primary_10_1021_acs_jpcc_8b02465 crossref_primary_10_1039_D3CS00669G crossref_primary_10_1016_j_jpowsour_2017_05_073 crossref_primary_10_1016_j_apsusc_2016_11_171 crossref_primary_10_1002_chem_201402737 crossref_primary_10_1039_C8QI00416A crossref_primary_10_1007_s12274_023_5767_y crossref_primary_10_1039_D1TC00668A crossref_primary_10_1039_C7TA00685C crossref_primary_10_1016_j_jelechem_2017_10_063 crossref_primary_10_1016_j_jechem_2022_01_035 crossref_primary_10_1080_08927022_2016_1273525 crossref_primary_10_1021_jacs_5b10669 crossref_primary_10_1016_j_cattod_2011_08_052 crossref_primary_10_1002_qua_25095 crossref_primary_10_1007_s00894_015_2830_y crossref_primary_10_1016_j_jcat_2014_01_013 crossref_primary_10_1039_C4CP02167C crossref_primary_10_1021_cs5012525 crossref_primary_10_1021_acs_jpcc_5b09148 crossref_primary_10_1021_jp511598e crossref_primary_10_1039_C6TA08580F crossref_primary_10_1016_j_electacta_2017_03_123 crossref_primary_10_1016_j_cplett_2014_11_057 crossref_primary_10_1039_c2ee02689a crossref_primary_10_1038_s41560_018_0292_z crossref_primary_10_1002_ange_201406112 crossref_primary_10_1039_C7NR03002A crossref_primary_10_1016_j_coelec_2020_100684 crossref_primary_10_1021_acsami_1c18191 crossref_primary_10_1021_cs501020a crossref_primary_10_1002_fuce_201800164 crossref_primary_10_1016_j_jelechem_2014_11_014 crossref_primary_10_1007_s11244_012_9800_8 crossref_primary_10_1039_D0CP04211K crossref_primary_10_1039_D1EE00142F crossref_primary_10_1002_ange_202312747 crossref_primary_10_1016_j_jpowsour_2014_11_058 crossref_primary_10_3389_fchem_2019_00610 crossref_primary_10_1016_j_electacta_2012_12_099 crossref_primary_10_1002_cctc_202201222 crossref_primary_10_1016_j_comptc_2019_112607 crossref_primary_10_1016_j_electacta_2014_05_144 crossref_primary_10_1039_C2CP43909C crossref_primary_10_1039_C9CY00895K crossref_primary_10_1039_D0CP01052A crossref_primary_10_1039_D2CP00934J crossref_primary_10_3390_nano12142480 crossref_primary_10_1016_j_apcata_2017_09_002 crossref_primary_10_1021_la2006343 crossref_primary_10_1016_j_mcat_2025_114861 crossref_primary_10_1002_qua_25203 crossref_primary_10_1021_acscatal_5c00321 crossref_primary_10_1016_j_apsusc_2024_159828 crossref_primary_10_1021_acs_energyfuels_3c01265 crossref_primary_10_1021_cr200247n crossref_primary_10_1002_cphc_201700162 crossref_primary_10_1021_acscatal_5b01154 crossref_primary_10_1021_acs_jpcc_7b01082 crossref_primary_10_1021_acs_jpclett_1c01800 crossref_primary_10_1039_C4CP02147A crossref_primary_10_1039_D1CY01087E crossref_primary_10_1021_jp210805z crossref_primary_10_1016_j_nanoen_2024_109966 crossref_primary_10_3390_ijms232314768 crossref_primary_10_1016_j_coelec_2023_101284 crossref_primary_10_1016_j_ijhydene_2018_08_035 crossref_primary_10_1039_c2cp42675g crossref_primary_10_1039_C6CP01066K crossref_primary_10_1039_c2cp40087a crossref_primary_10_1039_C4CP01591F crossref_primary_10_1016_j_electacta_2010_10_057 crossref_primary_10_1039_D4CP00269E crossref_primary_10_1016_j_jpowsour_2015_04_094 crossref_primary_10_1016_j_electacta_2012_04_062 crossref_primary_10_1016_j_apcata_2022_118487 crossref_primary_10_20517_jmi_2023_29 crossref_primary_10_1016_j_fuel_2021_121562 crossref_primary_10_1021_acsami_1c12054 crossref_primary_10_1016_j_apcatb_2019_05_045 crossref_primary_10_1021_ja1083317 crossref_primary_10_1039_D4QI02179G crossref_primary_10_1021_acs_jpcc_4c04924 crossref_primary_10_1016_j_jnucmat_2014_05_023 crossref_primary_10_1021_acsphyschemau_2c00054 crossref_primary_10_1007_s00894_019_4071_y crossref_primary_10_1021_acscatal_7b04186 crossref_primary_10_1021_acssuschemeng_7b04608 crossref_primary_10_1063_1_4994873 crossref_primary_10_1021_acs_jpcc_0c09548 crossref_primary_10_1021_acs_jpcc_6b05126 crossref_primary_10_3390_ijms24032768 crossref_primary_10_1002_anie_201406112 crossref_primary_10_1039_c0cp01662d crossref_primary_10_1016_j_commatsci_2015_02_028 crossref_primary_10_1021_ja301567f crossref_primary_10_1039_C8CP01294F crossref_primary_10_1039_C3TA13608F crossref_primary_10_1021_acsenergylett_6b00385 crossref_primary_10_1038_srep05205 crossref_primary_10_1016_j_cattod_2018_04_013 crossref_primary_10_1149_2_123306jes crossref_primary_10_1016_j_apsusc_2016_02_035 crossref_primary_10_1038_srep03821 crossref_primary_10_1016_j_matt_2022_04_010 crossref_primary_10_1016_j_electacta_2018_08_141 crossref_primary_10_1039_D2RA00914E crossref_primary_10_1007_s10562_014_1448_5 crossref_primary_10_1039_c2cs35050e crossref_primary_10_1021_acs_jpcc_7b04375 crossref_primary_10_1103_PhysRevB_86_045450 crossref_primary_10_1016_j_nanoen_2020_104525 crossref_primary_10_1007_s12678_017_0395_5 crossref_primary_10_1021_acscatal_6b00931 crossref_primary_10_1039_c3cp51545a |
Cites_doi | 10.1149/1.1394046 10.1103/PhysRevB.59.15437 10.1021/jp0118219 10.1126/science.279.5358.1907 10.1063/1.1413515 10.1016/S0039-6028(01)01046-9 10.1021/cr940408c 10.1002/fuce.200500201 10.1139/p80-159 10.1021/ja031701 10.1021/cr00031a013 10.1103/PhysRevA.38.3098 10.1103/PhysRevB.46.6671 10.1021/cr960149m 10.1002/andp.19273892002 10.1007/BF01340294 10.1103/PhysRevLett.77.3865 10.1016/j.cplett.2005.02.018 10.1016/S0039-6028(02)01908-8 10.1021/jz9003153 10.1021/ar9501784 10.1149/1.2266294 10.1103/PhysRevLett.89.176104 10.1016/S0013-4686(00)00578-8 10.1021/jp061813y 10.1002/cphc.200600128 10.1063/1.1737365 10.1103/PhysRevLett.91.146401 10.1039/b803157f 10.1103/PhysRevB.72.125401 10.1021/ja00172a038 10.1016/S0022-0728(02)00851-3 10.1021/jp9059505 10.1038/319199a0 10.1103/PhysRevB.62.4744 10.1016/S0375-9601(02)00788-0 10.1063/1.1329672 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y 10.1016/0039-6028(89)90443-3 10.1021/jp013909s 10.1016/0039-6028(80)90278-2 10.1103/PhysRevLett.78.4410 10.1016/j.jelechem.2008.10.015 10.1016/j.electacta.2006.03.113 10.1016/j.jelechem.2007.03.023 10.1007/978-0-387-76426-9 10.1103/PhysRevB.37.785 10.1021/ja049920y 10.1103/PhysRev.136.B864 10.1149/1.1809586 10.1002/cphc.200500613 10.1016/S0039-6028(02)02453-6 10.1021/jp0631735 10.1021/jp961992r 10.1103/RevModPhys.64.1045 10.1039/pc095117 10.1017/S0305004100011920 10.1063/1.2841941 10.1002/(SICI)1096-987X(19960115)17:1<57::AID-JCC6>3.0.CO;2-# 10.1103/PhysRevB.73.165402 10.1016/0167-5729(87)90001-X 10.1063/1.471922 10.1021/jp7114127 10.1103/PhysRev.140.A1133 10.1103/PhysRevB.13.5188 10.1103/PhysRevLett.102.076101 10.1103/PhysRevLett.89.276102 10.1017/S0305004100011683 10.1016/j.jelechem.2006.01.022 10.1016/j.jcis.2003.12.053 10.1016/0022-0728(92)80448-D 10.1115/1.1867972 10.1016/j.electacta.2006.03.114 10.1103/PhysRevB.77.245417 10.1016/0022-0728(91)80039-S 10.1103/PhysRevLett.79.4481 10.1063/1.1904565 10.1063/1.1323224 10.1039/b914570b 10.1021/la00038a059 10.1017/S0305004100011919 10.1016/0039-6028(82)90124-8 10.1063/1.2227388 10.1016/0013-4686(96)00053-9 10.1016/0022-0728(91)80042-O 10.1021/jp035729j |
ContentType | Journal Article |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/cphc.201000286 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1439-7641 |
EndPage | 2794 |
ExternalDocumentID | 20726030 23238460 10_1002_cphc_201000286 CPHC201000286 ark_67375_WNG_LXGC09BG_G |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft – fundername: Alexander von Humboldt Foundation – fundername: DFG – fundername: European Union |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ QRW R.K RNS ROL RWI RX1 SUPJJ UPT V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION .GJ 31~ 53G AAMMB AEFGJ AGHNM AGXDD AI. AIDQK AIDYY EBD EMOBN HF~ IQODW SV3 VH1 XSW ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4786-2be01992c16a26a0ab8e2d0cdf774dbb8ea00bb918401b441e8c6834ce1061cb3 |
IEDL.DBID | DR2 |
ISSN | 1439-4235 1439-7641 |
IngestDate | Fri Jul 11 10:46:45 EDT 2025 Mon Jul 21 05:52:55 EDT 2025 Mon Jul 21 09:17:33 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Tue Jul 01 03:16:54 EDT 2025 Wed Jan 22 16:27:16 EST 2025 Wed Oct 30 09:51:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Oxygen electrode potentials Crystal face Transition metal Review oxygen reduction Chemical reduction Computational chemistry density functional calculations Platinum computer chemistry Electrochemistry Density functional method Electrode potential |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4786-2be01992c16a26a0ab8e2d0cdf774dbb8ea00bb918401b441e8c6834ce1061cb3 |
Notes | ark:/67375/WNG-LXGC09BG-G Alexander von Humboldt Foundation istex:33C96471732EEE68BDB5DF3557CD9F139F985B75 Deutsche Forschungsgemeinschaft DFG European Union ArticleID:CPHC201000286 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 20726030 |
PQID | 754003885 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_754003885 pubmed_primary_20726030 pascalfrancis_primary_23238460 crossref_citationtrail_10_1002_cphc_201000286 crossref_primary_10_1002_cphc_201000286 wiley_primary_10_1002_cphc_201000286_CPHC201000286 istex_primary_ark_67375_WNG_LXGC09BG_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 10, 2010 |
PublicationDateYYYYMMDD | 2010-09-10 |
PublicationDate_xml | – month: 09 year: 2010 text: September 10, 2010 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Chemphyschem |
PublicationTitleAlternate | ChemPhysChem |
PublicationYear | 2010 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley |
References | M. T. M. Koper in Modern Aspects of Electrochemistry 36 (Eds.: C. G. Vayenas, B. E. Conway, R. E. White), Springer, New York, 2002, pp. 51-130 W. C. Still, A. Tempczyk, R. C. Hawley, T. Hendrickson, J. Am. Chem. Soc. 1990, 112, 6127-6129. M. T. M. Koper, R. A. van Santen, M. Neurock in Catalysis and Electrocatalysis at Nanoparticle Surfaces (Eds.: A. Wieckowski, E. R. Savinova, C. G. Vayenas), Marcel Dekker, Inc. New York, 2003, pp. 1-34 S. Venkatachalam, T. Jacob in Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics, and Durability, Vol. 5 (Eds.: W. Vielstich, H. A. Gasteiger, H. Yokokawa), Wiley, New York, 2009, pp. 133-151. P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864. T. Jacob, Electrochim. Acta 2007, 52, 2229-2235 S. Meng, L. F. Xu, E. G. Wang, S. Gao, Phys. Rev. Lett. 2002, 89, 176104 A. Roudgar, M. Eikerling, R. A. van Santen, Phys. Chem. Chem. Phys. 2010, 12, 614-620. R. A. Sidik, A. B. Anderson, J. Electroanal. Chem. 2002, 528, 69-76. J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4, McGraw-Hill, New York, 1974. D. H. Parker, M. E. Bartram, B. E. Koel, Surf. Sci. 1989, 217, 489-510. W. Ho, Acc. Chem. Res. 1998, 31, 567-573. T. Pang, An Introduction to Computational Physics, Cambridge University Press, Cambridge, 1997 J. Roques, A. B. Anderson, J. Fuel Cell Sci. Technol. 2005, 2, 86-93. G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901 D. Eisenberg, A. D. McLachlan, Nature 1986, 319, 199-203. A. Eichler, F. Mittendorfer, J. Hafner, Phys. Rev. B 2000, 62, 4744. Y. Okamoto, Chem. Phys. Lett. 2005, 405, 79-83. J. Rossmeisl, J. K. Nørskov, C. D. Taylor, M. J. Janik, M. Neurock, J. Phys. Chem. B 2006, 110, 21833-21839 C. J. Roberts, P. G. Debenedetti, J. Chem. Phys. 1996, 105, 658. R. Jinnouchi, A. B. Anderson, Phys. Rev. B 2008, 77, 245417. M. I. Haftel, M. Rosen, Surf. Sci. 2003, 523, 118-124 M. F. Sanner, A. J. Olson, J. Spehner, Biopolymers 1996, 38, 305-320. A. Panchenko, M. T. M. Koper, T. E. Shubina, S. J. Mitchell, E. Roduner, J. Electrochem. Soc. 2004, 151, A2016-A2027. A. D. Becke, Phys. Rev. A 1988, 38, 3098. C. J. Cramer, D. G. Truhlar, Chem. Rev. 1999, 99, 2161-2200 B. E. Conway, G. Tremiliosi-Filho, G. Jerkiewicz, J. Electroanal. Chem. 1991, 297, 435-443 F. Jensen, Introduction to Computational Chemistry, Wiley, New York, 2006 W. Schmickler, Annu. Rep. Prog. Chem. Sect. C 1999, 95, 117-162. E. Fermi, Rend. Accad. Naz. Lincei 1927, 6, 602-607 C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. T. Jacob, Fuel Cells 2006, 6, 159-181. Ž. Šljivančanin, B. Hammer, Surf. Sci. 2002, 515, 235-244. J. W. Halley, P. Schelling, Y. Duan, Electrochim. Acta 2000, 46, 239-245 T. Jacob, D. Geschke, S. Fritzsche, W.-D. Sepp, B. Fricke, J. Anton, S. Varga, Surf. Sci. 2001, 486, 194-202. A. B. Anderson, T. V. Albu, J. Electrochem. Soc. 2000, 147, 4229-4238. W. Schmickler, Chem. Rev. 1996, 96, 3177-3200 D. R. Hartree, Proc. Cambridge Philos. Soc. 1928, 24, 111-132. B. E. Conway, G. Jerkiewicz, J. Electroanal. Chem. 1992, 339, 123-146 D. Qiu, P. S. Shenkin, F. P. Hollinger, W. C. Still, J. Phys. Chem. A 1997, 101, 3005-3014 L. Ou, F. Yang, Y. Liu, S. Chen, J. Phys. Chem. C 2009, 113, 20657-20665. M. Gunnarsson, Z. Abbas, E. Ahlberg, S. Nordholm, J. Colloid Interface Sci. 2004, 274, 563-578 A. Eichler, J. Hafner, Phys. Rev. Lett. 1997, 79, 4481. R. B. Getman, W. F. Schneider, A. D. Smeltz, W. N. Delgass, F. H. Ribeiro, Phys. Rev. Lett. 2009, 102, 076101. G. Tremiliosi-Filho, G. Jerkiewicz, B. E. Conway, Langmuir 1992, 8, 658-667 J. L. Gland, Surf. Sci. 1980, 93, 487-514. M. Alsabet, M. Grden, G. Jerkiewicz, J. Electroanal. Chem. 2006, 589, 120-127 S. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211. J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, G. I. Csonka, J. Chem. Phys. 2005, 123, 062201. C. D. Taylor, S. A. Wasileski, J. Filhol, M. Neurock, Phys. Rev. B 2006, 73, 165402 T. Jacob, S. Fritzsche, W. Sepp, B. Fricke, J. Anton, Phys. Lett. A 2002, 300, 71-75. T. Jacob, W. A. Goddard, J. Am. Chem. Soc. 2004, 126, 9360-9368 C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, Wiley, New York, 2004 T. Jacob, J. Electroanal. Chem. 2007, 607, 158-166. H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188. D. Sheppard, R. Terrell, G. Henkelman, J. Chem. Phys. 2008, 128, 134106. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671. V. Fock, Z. Phys. A 1930, 61, 126-148. K. C. Neyerlin, W. Gu, J. Jorne, H. A. Gasteiger, J. Electrochem. Soc. 2006, 153, A1955. Y. J. Feng, K. P. Bohnen, C. T. Chan, Phys. Rev. B 2005, 72, 125401 M. Bocquet, J. Cerdà, P. Sautet, Phys. Rev. B 1999, 59, 15437. D. R. Hartree, Proc. Cambridge Philos. Soc. 1928, 24, 89-110 M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 1992, 64, 1045. J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027-2094. M. Farebrother, M. Goledzinowski, V. I. Birss, J. Electroanal. Chem. 1991, 297, 469-488 M. Cossi, B. Mennucci, R. Cammi, J. Comput. Chem. 1996, 17, 57-73. J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401 S. Walch, A. Dhanda, M. Aryanpour, H. Pitsch, J. Phys. Chem. C 2008, 112, 8464-8475. M. P. Hyman, J. W. Medlin, J. Phys. Chem. B 2006, 110, 15338-15344. P. Ross, Jr. in Handbook of Fuel Cells: Fundamentals, Technology, Applications (Eds.: W. Vielstich, A. Lamm, H. A. Gasteiger), Wiley-VCH, Weinheim, 2003, pp. 465-480. N. Marković, P. Ross, Jr. in Interfacial Electrochemistry: Theory, Experiments and Applications (Ed.: A. Wieckowski), CRC Press, New York, 1999, pp. 821-841 M. Born, R. Oppenheimer, Ann. Phys. 1927, 389, 457-484. H. Steininger, S. Lehwald, H. Ibach, Surf. Sci. 1982, 123, 1-17. P. A. Thiel, T. E. Madey, Surf. Sci. Rep. 1987, 7, 211-385. G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978 D. Marx, ChemPhysChem 2006, 7, 1848-1870. A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover, Mineola, 1996. G. Jerkiewicz, M. Alsabet, M. Grden, H. Varela, G. Tremiliosi-Filho, J. Electroanal. Chem. 2009, 625, 172-174. B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, B. I. Lundqvist, Phys. Rev. Lett. 1997, 78, 4410. H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, A. Nilsson, Phys. Rev. Lett. 2002, 89, 276102 B. C. Stipe, M. A. Rezaei, W. Ho, Science 1998, 279, 1907-1909 J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, J. Chem. Phys. 2004, 120, 10240 W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 90, Vol. 2, Cambridge University Press, Cambridge, 1996. R. R. Nazmutdinov, M. S. Shapnik, Electrochim. Acta 1996, 41, 2253-2265 L. Qi, J. Yu, J. Li, J. Chem. Phys. 2006, 125, 054701. T. Li, P. B. Balbuena, J. Phys. Chem. B 2001, 105, 9943-9952. P. B. Balbuena, D. Altomare, L. Agapito, J. M. Seminario, J. Phys. Chem. B 2003, 107, 13671-13680. Y. Xu, A. V. Ruban, M. Mavrikakis, J. Am. Chem. Soc. 2004, 126, 4717-4725. P. Vassilev, C. Hartnig, M. T. M. Koper, F. Frechard, R. A. van Santen, J. Chem. Phys. 2001, 115, 9815 Y. Sha, T. H. Yu, Y. Liu, B. V. Merinov, W. A. Goddard, J. Phys. Chem. Lett. 2010, 1, 856-861. S. A. Wasileski, M. J. Janik, Phys. Chem. Chem. Phys. 2008, 10, 3613-3627. D. Frenkel, B. Smit, Understanding Molecular Simulation, Second Edition: From Algorithms to Applications, Academic Press, San Diego, 2001 M. J. Buehler, Atomistic Modeling of Materials Failure, Springer, New York, 2008 G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, Y.-S. Park, Electrochim. Acta 2004, 49, 1451-1459 T. Jacob, W. A. Goddard III, ChemPhysChem 2006, 7, 992-1005. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. M. Lischka, C. Mosch, A. Groß, Electrochim. Acta 2007, 52, 2219-2228. L. H. Thomas, Proc. Cambridge Philos. Soc. 1927, 23, 542-548. R. Adzic in Electrocatalysis (Eds.: J. Lipkowski, P. Ross, Jr.), Wiley-VCH, Weinheim, 1998, pp. 197-242 B. Ruscic, A. F. Wagner, L. B. Harding, R. L. Asher, D. Feller, D. A. Dixon, K. A. Peterson, Y. Song, X. Qian, C. Ng, J. Phys. Chem. A 2002, 106, 2727-2747. 2010; 12 2004; 120 2004; 126 2006; 73 2000; 46 1965; 140 1988; 37 1988; 38 1987; 7 1974 2009; 113 1980; 93 2008; 77 1998; 279 2002; 515 1996; 38 1964; 136 1927; 389 1996; 77 1996; 105 2001; 105 1992; 8 2003; 91 2010; 1 2003; 523 2001 2002; 300 2002; 89 1999; 59 1997; 101 2002; 106 2000; 62 1999; 99 1927; 6 1992; 46 1999; 95 2005; 72 2008; 112 2006; 125 1991; 297 2001; 486 1996; 17 1989; 217 2000; 113 2004; 49 1998 2006; 7 2009 2008 1997 1982; 123 1996 2006; 110 1996; 96 2006 2008; 128 2006; 6 2006; 153 2008; 10 2004 2003 2007; 52 2002 2007; 607 1986; 319 1999 1927; 23 1980; 58 2004; 274 1976; 13 2003; 107 1930; 61 2000; 147 1928; 24 2005; 123 2004; 151 1997; 79 1997; 78 2005; 405 1996; 41 2009; 102 1992; 339 2002; 528 2005; 2 1990; 112 1992; 64 2006; 589 2009; 625 1994; 94 1998; 31 2001; 115 e_1_2_7_108_2 e_1_2_7_104_2 e_1_2_7_19_2 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 Szabo A. (e_1_2_7_7_2) 1996 e_1_2_7_90_2 e_1_2_7_112_2 e_1_2_7_71_2 e_1_2_7_94_2 Frenkel D. (e_1_2_7_4_2) 2001 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 Slater J. C. (e_1_2_7_28_2) 1974 e_1_2_7_37_2 e_1_2_7_105_2 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_109_2 Ross P. (e_1_2_7_11_2) 2003 e_1_2_7_113_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 Jensen F. (e_1_2_7_5_2) 2006 e_1_2_7_106_2 Fermi E. (e_1_2_7_20_2) 1927; 6 Koper M. T. M. (e_1_2_7_60_2) 2003 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_81_2 e_1_2_7_1_2 e_1_2_7_13_2 e_1_2_7_62_2 Marković N. (e_1_2_7_10_2) 1999 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 Venkatachalam S. (e_1_2_7_99_2) 2009 e_1_2_7_110_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_21_2 Press W. H. (e_1_2_7_31_2) 1996 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_2_2 e_1_2_7_103_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 Jerkiewicz G. (e_1_2_7_107_2) 2004; 49 e_1_2_7_27_2 Cramer C. J. (e_1_2_7_3_2) 2004 Adzic R. (e_1_2_7_9_2) 1998 Pang T. (e_1_2_7_6_2) 1997 e_1_2_7_111_2 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_38_2 Koper M. T. M. (e_1_2_7_59_2) 2002 |
References_xml | – reference: H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188. – reference: P. Ross, Jr. in Handbook of Fuel Cells: Fundamentals, Technology, Applications (Eds.: W. Vielstich, A. Lamm, H. A. Gasteiger), Wiley-VCH, Weinheim, 2003, pp. 465-480. – reference: A. Roudgar, M. Eikerling, R. A. van Santen, Phys. Chem. Chem. Phys. 2010, 12, 614-620. – reference: G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, Y.-S. Park, Electrochim. Acta 2004, 49, 1451-1459; – reference: T. Jacob, S. Fritzsche, W. Sepp, B. Fricke, J. Anton, Phys. Lett. A 2002, 300, 71-75. – reference: B. C. Stipe, M. A. Rezaei, W. Ho, Science 1998, 279, 1907-1909; – reference: B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, B. I. Lundqvist, Phys. Rev. Lett. 1997, 78, 4410. – reference: M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 1992, 64, 1045. – reference: L. H. Thomas, Proc. Cambridge Philos. Soc. 1927, 23, 542-548. – reference: A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover, Mineola, 1996. – reference: J. Rossmeisl, J. K. Nørskov, C. D. Taylor, M. J. Janik, M. Neurock, J. Phys. Chem. B 2006, 110, 21833-21839; – reference: M. T. M. Koper in Modern Aspects of Electrochemistry 36 (Eds.: C. G. Vayenas, B. E. Conway, R. E. White), Springer, New York, 2002, pp. 51-130; – reference: C. J. Cramer, D. G. Truhlar, Chem. Rev. 1999, 99, 2161-2200; – reference: M. F. Sanner, A. J. Olson, J. Spehner, Biopolymers 1996, 38, 305-320. – reference: D. Sheppard, R. Terrell, G. Henkelman, J. Chem. Phys. 2008, 128, 134106. – reference: J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671. – reference: W. Schmickler, Annu. Rep. Prog. Chem. Sect. C 1999, 95, 117-162. – reference: M. P. Hyman, J. W. Medlin, J. Phys. Chem. B 2006, 110, 15338-15344. – reference: W. Ho, Acc. Chem. Res. 1998, 31, 567-573. – reference: P. Vassilev, C. Hartnig, M. T. M. Koper, F. Frechard, R. A. van Santen, J. Chem. Phys. 2001, 115, 9815; – reference: J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401; – reference: T. Jacob, Electrochim. Acta 2007, 52, 2229-2235; – reference: R. B. Getman, W. F. Schneider, A. D. Smeltz, W. N. Delgass, F. H. Ribeiro, Phys. Rev. Lett. 2009, 102, 076101. – reference: J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4, McGraw-Hill, New York, 1974. – reference: W. C. Still, A. Tempczyk, R. C. Hawley, T. Hendrickson, J. Am. Chem. Soc. 1990, 112, 6127-6129. – reference: C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, Wiley, New York, 2004; – reference: J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027-2094. – reference: D. Eisenberg, A. D. McLachlan, Nature 1986, 319, 199-203. – reference: S. Walch, A. Dhanda, M. Aryanpour, H. Pitsch, J. Phys. Chem. C 2008, 112, 8464-8475. – reference: T. Jacob, Fuel Cells 2006, 6, 159-181. – reference: S. A. Wasileski, M. J. Janik, Phys. Chem. Chem. Phys. 2008, 10, 3613-3627. – reference: G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978; – reference: N. Marković, P. Ross, Jr. in Interfacial Electrochemistry: Theory, Experiments and Applications (Ed.: A. Wieckowski), CRC Press, New York, 1999, pp. 821-841; – reference: K. C. Neyerlin, W. Gu, J. Jorne, H. A. Gasteiger, J. Electrochem. Soc. 2006, 153, A1955. – reference: J. L. Gland, Surf. Sci. 1980, 93, 487-514. – reference: L. Qi, J. Yu, J. Li, J. Chem. Phys. 2006, 125, 054701. – reference: M. Cossi, B. Mennucci, R. Cammi, J. Comput. Chem. 1996, 17, 57-73. – reference: T. Li, P. B. Balbuena, J. Phys. Chem. B 2001, 105, 9943-9952. – reference: J. Roques, A. B. Anderson, J. Fuel Cell Sci. Technol. 2005, 2, 86-93. – reference: C. D. Taylor, S. A. Wasileski, J. Filhol, M. Neurock, Phys. Rev. B 2006, 73, 165402; – reference: F. Jensen, Introduction to Computational Chemistry, Wiley, New York, 2006; – reference: B. E. Conway, G. Tremiliosi-Filho, G. Jerkiewicz, J. Electroanal. Chem. 1991, 297, 435-443; – reference: T. Jacob, W. A. Goddard III, ChemPhysChem 2006, 7, 992-1005. – reference: B. E. Conway, G. Jerkiewicz, J. Electroanal. Chem. 1992, 339, 123-146; – reference: W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 90, Vol. 2, Cambridge University Press, Cambridge, 1996. – reference: R. R. Nazmutdinov, M. S. Shapnik, Electrochim. Acta 1996, 41, 2253-2265; – reference: D. Marx, ChemPhysChem 2006, 7, 1848-1870. – reference: M. J. Buehler, Atomistic Modeling of Materials Failure, Springer, New York, 2008; – reference: C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. – reference: J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, J. Chem. Phys. 2004, 120, 10240; – reference: S. Venkatachalam, T. Jacob in Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics, and Durability, Vol. 5 (Eds.: W. Vielstich, H. A. Gasteiger, H. Yokokawa), Wiley, New York, 2009, pp. 133-151. – reference: R. Adzic in Electrocatalysis (Eds.: J. Lipkowski, P. Ross, Jr.), Wiley-VCH, Weinheim, 1998, pp. 197-242; – reference: P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864. – reference: G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901; – reference: D. R. Hartree, Proc. Cambridge Philos. Soc. 1928, 24, 111-132. – reference: D. H. Parker, M. E. Bartram, B. E. Koel, Surf. Sci. 1989, 217, 489-510. – reference: D. Frenkel, B. Smit, Understanding Molecular Simulation, Second Edition: From Algorithms to Applications, Academic Press, San Diego, 2001; – reference: P. B. Balbuena, D. Altomare, L. Agapito, J. M. Seminario, J. Phys. Chem. B 2003, 107, 13671-13680. – reference: E. Fermi, Rend. Accad. Naz. Lincei 1927, 6, 602-607; – reference: G. Jerkiewicz, M. Alsabet, M. Grden, H. Varela, G. Tremiliosi-Filho, J. Electroanal. Chem. 2009, 625, 172-174. – reference: T. Jacob, D. Geschke, S. Fritzsche, W.-D. Sepp, B. Fricke, J. Anton, S. Varga, Surf. Sci. 2001, 486, 194-202. – reference: V. Fock, Z. Phys. A 1930, 61, 126-148. – reference: D. Qiu, P. S. Shenkin, F. P. Hollinger, W. C. Still, J. Phys. Chem. A 1997, 101, 3005-3014; – reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. – reference: T. Pang, An Introduction to Computational Physics, Cambridge University Press, Cambridge, 1997; – reference: H. Steininger, S. Lehwald, H. Ibach, Surf. Sci. 1982, 123, 1-17. – reference: H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, A. Nilsson, Phys. Rev. Lett. 2002, 89, 276102; – reference: M. T. M. Koper, R. A. van Santen, M. Neurock in Catalysis and Electrocatalysis at Nanoparticle Surfaces (Eds.: A. Wieckowski, E. R. Savinova, C. G. Vayenas), Marcel Dekker, Inc. New York, 2003, pp. 1-34; – reference: J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, G. I. Csonka, J. Chem. Phys. 2005, 123, 062201. – reference: M. Gunnarsson, Z. Abbas, E. Ahlberg, S. Nordholm, J. Colloid Interface Sci. 2004, 274, 563-578; – reference: Ž. Šljivančanin, B. Hammer, Surf. Sci. 2002, 515, 235-244. – reference: P. A. Thiel, T. E. Madey, Surf. Sci. Rep. 1987, 7, 211-385. – reference: Y. Sha, T. H. Yu, Y. Liu, B. V. Merinov, W. A. Goddard, J. Phys. Chem. Lett. 2010, 1, 856-861. – reference: M. Alsabet, M. Grden, G. Jerkiewicz, J. Electroanal. Chem. 2006, 589, 120-127; – reference: S. Meng, L. F. Xu, E. G. Wang, S. Gao, Phys. Rev. Lett. 2002, 89, 176104; – reference: A. Eichler, F. Mittendorfer, J. Hafner, Phys. Rev. B 2000, 62, 4744. – reference: M. Farebrother, M. Goledzinowski, V. I. Birss, J. Electroanal. Chem. 1991, 297, 469-488; – reference: S. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211. – reference: R. Jinnouchi, A. B. Anderson, Phys. Rev. B 2008, 77, 245417. – reference: T. Jacob, W. A. Goddard, J. Am. Chem. Soc. 2004, 126, 9360-9368; – reference: T. Jacob, J. Electroanal. Chem. 2007, 607, 158-166. – reference: L. Ou, F. Yang, Y. Liu, S. Chen, J. Phys. Chem. C 2009, 113, 20657-20665. – reference: Y. Okamoto, Chem. Phys. Lett. 2005, 405, 79-83. – reference: W. Schmickler, Chem. Rev. 1996, 96, 3177-3200; – reference: C. J. Roberts, P. G. Debenedetti, J. Chem. Phys. 1996, 105, 658. – reference: A. D. Becke, Phys. Rev. A 1988, 38, 3098. – reference: B. Ruscic, A. F. Wagner, L. B. Harding, R. L. Asher, D. Feller, D. A. Dixon, K. A. Peterson, Y. Song, X. Qian, C. Ng, J. Phys. Chem. A 2002, 106, 2727-2747. – reference: J. W. Halley, P. Schelling, Y. Duan, Electrochim. Acta 2000, 46, 239-245; – reference: R. A. Sidik, A. B. Anderson, J. Electroanal. Chem. 2002, 528, 69-76. – reference: M. Born, R. Oppenheimer, Ann. Phys. 1927, 389, 457-484. – reference: A. B. Anderson, T. V. Albu, J. Electrochem. Soc. 2000, 147, 4229-4238. – reference: A. Eichler, J. Hafner, Phys. Rev. Lett. 1997, 79, 4481. – reference: D. R. Hartree, Proc. Cambridge Philos. Soc. 1928, 24, 89-110; – reference: Y. Xu, A. V. Ruban, M. Mavrikakis, J. Am. Chem. Soc. 2004, 126, 4717-4725. – reference: W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133. – reference: M. Lischka, C. Mosch, A. Groß, Electrochim. Acta 2007, 52, 2219-2228. – reference: M. I. Haftel, M. Rosen, Surf. Sci. 2003, 523, 118-124; – reference: G. Tremiliosi-Filho, G. Jerkiewicz, B. E. Conway, Langmuir 1992, 8, 658-667; – reference: Y. J. Feng, K. P. Bohnen, C. T. Chan, Phys. Rev. B 2005, 72, 125401; – reference: A. Panchenko, M. T. M. Koper, T. E. Shubina, S. J. Mitchell, E. Roduner, J. Electrochem. Soc. 2004, 151, A2016-A2027. – reference: M. Bocquet, J. Cerdà, P. Sautet, Phys. Rev. B 1999, 59, 15437. – volume: 319 start-page: 199 year: 1986 end-page: 203 publication-title: Nature – volume: 46 start-page: 239 year: 2000 end-page: 245 publication-title: Electrochim. Acta – start-page: 465 year: 2003 end-page: 480 – volume: 625 start-page: 172 year: 2009 end-page: 174 publication-title: J. Electroanal. Chem. – volume: 274 start-page: 563 year: 2004 end-page: 578 publication-title: J. Colloid Interface Sci. – start-page: 51 year: 2002 end-page: 130 – volume: 91 start-page: 146401 year: 2003 publication-title: Phys. Rev. Lett. – start-page: 133 year: 2009 end-page: 151 – volume: 102 start-page: 076101 year: 2009 publication-title: Phys. Rev. Lett. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 147 start-page: 4229 year: 2000 end-page: 4238 publication-title: J. Electrochem. Soc. – volume: 17 start-page: 57 year: 1996 end-page: 73 publication-title: J. Comput. Chem. – volume: 105 start-page: 9943 year: 2001 end-page: 9952 publication-title: J. Phys. Chem. B – volume: 140 start-page: 1133 year: 1965 publication-title: Phys. Rev. – volume: 113 start-page: 9978 year: 2000 publication-title: J. Chem. Phys. – year: 2008 – volume: 523 start-page: 118 year: 2003 end-page: 124 publication-title: Surf. Sci. – volume: 107 start-page: 13671 year: 2003 end-page: 13680 publication-title: J. Phys. Chem. B – volume: 113 start-page: 9901 year: 2000 publication-title: J. Chem. Phys. – volume: 128 start-page: 134106 year: 2008 publication-title: J. Chem. Phys. – start-page: 1 year: 2003 end-page: 34 – volume: 62 start-page: 4744 year: 2000 publication-title: Phys. Rev. B – volume: 95 start-page: 117 year: 1999 end-page: 162 publication-title: Annu. Rep. Prog. Chem. Sect. C – volume: 405 start-page: 79 year: 2005 end-page: 83 publication-title: Chem. Phys. Lett. – volume: 37 start-page: 785 year: 1988 publication-title: Phys. Rev. B – volume: 64 start-page: 1045 year: 1992 publication-title: Rev. Mod. Phys. – volume: 126 start-page: 4717 year: 2004 end-page: 4725 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 111 year: 1928 end-page: 132 publication-title: Proc. Cambridge Philos. Soc. – volume: 110 start-page: 15338 year: 2006 end-page: 15344 publication-title: J. Phys. Chem. B – volume: 279 start-page: 1907 year: 1998 end-page: 1909 publication-title: Science – volume: 486 start-page: 194 year: 2001 end-page: 202 publication-title: Surf. Sci. – volume: 79 start-page: 4481 year: 1997 publication-title: Phys. Rev. Lett. – volume: 297 start-page: 435 year: 1991 end-page: 443 publication-title: J. Electroanal. Chem. – volume: 7 start-page: 1848 year: 2006 end-page: 1870 publication-title: ChemPhysChem – volume: 38 start-page: 3098 year: 1988 publication-title: Phys. Rev. A – volume: 1 start-page: 856 year: 2010 end-page: 861 publication-title: J. Phys. Chem. Lett. – volume: 113 start-page: 20657 year: 2009 end-page: 20665 publication-title: J. Phys. Chem. C – volume: 589 start-page: 120 year: 2006 end-page: 127 publication-title: J. Electroanal. Chem. – volume: 99 start-page: 2161 year: 1999 end-page: 2200 publication-title: Chem. Rev. – volume: 41 start-page: 2253 year: 1996 end-page: 2265 publication-title: Electrochim. Acta – volume: 6 start-page: 602 year: 1927 end-page: 607 publication-title: Rend. Accad. Naz. Lincei – volume: 52 start-page: 2229 year: 2007 end-page: 2235 publication-title: Electrochim. Acta – volume: 528 start-page: 69 year: 2002 end-page: 76 publication-title: J. Electroanal. Chem. – volume: 515 start-page: 235 year: 2002 end-page: 244 publication-title: Surf. Sci. – volume: 12 start-page: 614 year: 2010 end-page: 620 publication-title: Phys. Chem. Chem. Phys. – volume: 106 start-page: 2727 year: 2002 end-page: 2747 publication-title: J. Phys. Chem. A – volume: 123 start-page: 062201 year: 2005 publication-title: J. Chem. Phys. – volume: 136 start-page: 864 year: 1964 publication-title: Phys. Rev. – volume: 123 start-page: 1 year: 1982 end-page: 17 publication-title: Surf. Sci. – volume: 389 start-page: 457 year: 1927 end-page: 484 publication-title: Ann. Phys. – volume: 96 start-page: 3177 year: 1996 end-page: 3200 publication-title: Chem. Rev. – volume: 6 start-page: 159 year: 2006 end-page: 181 publication-title: Fuel Cells – volume: 125 start-page: 054701 year: 2006 publication-title: J. Chem. Phys. – start-page: 197 year: 1998 end-page: 242 – volume: 7 start-page: 992 year: 2006 end-page: 1005 publication-title: ChemPhysChem – volume: 126 start-page: 9360 year: 2004 end-page: 9368 publication-title: J. Am. Chem. Soc. – volume: 72 start-page: 125401 year: 2005 publication-title: Phys. Rev. B – year: 2001 – volume: 151 start-page: 2016 year: 2004 end-page: 2027 publication-title: J. Electrochem. Soc. – volume: 89 start-page: 276102 year: 2002 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 3613 year: 2008 end-page: 3627 publication-title: Phys. Chem. Chem. Phys. – volume: 153 start-page: 1955 year: 2006 publication-title: J. Electrochem. Soc. – volume: 77 start-page: 245417 year: 2008 publication-title: Phys. Rev. B – volume: 31 start-page: 567 year: 1998 end-page: 573 publication-title: Acc. Chem. Res. – volume: 217 start-page: 489 year: 1989 end-page: 510 publication-title: Surf. Sci. – volume: 23 start-page: 542 year: 1927 end-page: 548 publication-title: Proc. Cambridge Philos. Soc. – volume: 112 start-page: 6127 year: 1990 end-page: 6129 publication-title: J. Am. Chem. Soc. – start-page: 821 year: 1999 end-page: 841 – volume: 93 start-page: 487 year: 1980 end-page: 514 publication-title: Surf. Sci. – volume: 73 start-page: 165402 year: 2006 publication-title: Phys. Rev. B – volume: 300 start-page: 71 year: 2002 end-page: 75 publication-title: Phys. Lett. A – volume: 59 start-page: 15437 year: 1999 publication-title: Phys. Rev. B – volume: 89 start-page: 176104 year: 2002 publication-title: Phys. Rev. Lett. – year: 2004 – volume: 101 start-page: 3005 year: 1997 end-page: 3014 publication-title: J. Phys. Chem. A – year: 1997 – volume: 297 start-page: 469 year: 1991 end-page: 488 publication-title: J. Electroanal. Chem. – volume: 2 start-page: 86 year: 2005 end-page: 93 publication-title: J. Fuel Cell Sci. Technol. – volume: 24 start-page: 89 year: 1928 end-page: 110 publication-title: Proc. Cambridge Philos. Soc. – volume: 58 start-page: 1200 year: 1980 end-page: 1211 publication-title: Can. J. Phys. – volume: 94 start-page: 2027 year: 1994 end-page: 2094 publication-title: Chem. Rev. – volume: 38 start-page: 305 year: 1996 end-page: 320 publication-title: Biopolymers – volume: 7 start-page: 211 year: 1987 end-page: 385 publication-title: Surf. Sci. Rep. – volume: 607 start-page: 158 year: 2007 end-page: 166 publication-title: J. Electroanal. Chem. – volume: 115 start-page: 9815 year: 2001 publication-title: J. Chem. Phys. – volume: 120 start-page: 10240 year: 2004 publication-title: J. Chem. Phys. – year: 1996 – volume: 78 start-page: 4410 year: 1997 publication-title: Phys. Rev. Lett. – volume: 61 start-page: 126 year: 1930 end-page: 148 publication-title: Z. Phys. A – volume: 339 start-page: 123 year: 1992 end-page: 146 publication-title: J. Electroanal. Chem. – volume: 46 start-page: 6671 year: 1992 publication-title: Phys. Rev. B – volume: 8 start-page: 658 year: 1992 end-page: 667 publication-title: Langmuir – volume: 110 start-page: 21833 year: 2006 end-page: 21839 publication-title: J. Phys. Chem. B – volume: 105 start-page: 658 year: 1996 publication-title: J. Chem. Phys. – year: 2006 – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 49 start-page: 1451 year: 2004 end-page: 1459 publication-title: Electrochim. Acta – year: 1974 – volume: 52 start-page: 2219 year: 2007 end-page: 2228 publication-title: Electrochim. Acta – volume: 112 start-page: 8464 year: 2008 end-page: 8475 publication-title: J. Phys. Chem. C – ident: e_1_2_7_75_2 doi: 10.1149/1.1394046 – ident: e_1_2_7_74_2 doi: 10.1103/PhysRevB.59.15437 – ident: e_1_2_7_76_2 doi: 10.1021/jp0118219 – ident: e_1_2_7_97_2 doi: 10.1126/science.279.5358.1907 – ident: e_1_2_7_49_2 doi: 10.1063/1.1413515 – ident: e_1_2_7_68_2 doi: 10.1016/S0039-6028(01)01046-9 – ident: e_1_2_7_61_2 doi: 10.1021/cr940408c – ident: e_1_2_7_85_2 doi: 10.1002/fuce.200500201 – ident: e_1_2_7_32_2 – ident: e_1_2_7_29_2 doi: 10.1139/p80-159 – ident: e_1_2_7_81_2 doi: 10.1021/ja031701 – ident: e_1_2_7_38_2 doi: 10.1021/cr00031a013 – volume: 49 start-page: 1451 year: 2004 ident: e_1_2_7_107_2 publication-title: Electrochim. Acta – ident: e_1_2_7_26_2 doi: 10.1103/PhysRevA.38.3098 – ident: e_1_2_7_46_2 – volume: 6 start-page: 602 year: 1927 ident: e_1_2_7_20_2 publication-title: Rend. Accad. Naz. Lincei – ident: e_1_2_7_27_2 doi: 10.1103/PhysRevB.46.6671 – ident: e_1_2_7_37_2 doi: 10.1021/cr960149m – volume-title: Introduction to Computational Chemistry year: 2006 ident: e_1_2_7_5_2 – ident: e_1_2_7_12_2 doi: 10.1002/andp.19273892002 – ident: e_1_2_7_102_2 – ident: e_1_2_7_16_2 doi: 10.1007/BF01340294 – ident: e_1_2_7_25_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_7_82_2 doi: 10.1016/j.cplett.2005.02.018 – ident: e_1_2_7_78_2 doi: 10.1016/S0039-6028(02)01908-8 – ident: e_1_2_7_94_2 doi: 10.1021/jz9003153 – ident: e_1_2_7_98_2 doi: 10.1021/ar9501784 – ident: e_1_2_7_1_2 – ident: e_1_2_7_101_2 doi: 10.1149/1.2266294 – ident: e_1_2_7_104_2 doi: 10.1103/PhysRevLett.89.176104 – ident: e_1_2_7_48_2 doi: 10.1016/S0013-4686(00)00578-8 – ident: e_1_2_7_84_2 doi: 10.1021/jp061813y – volume-title: Essentials of Computational Chemistry: Theories and Models year: 2004 ident: e_1_2_7_3_2 – ident: e_1_2_7_63_2 doi: 10.1002/cphc.200600128 – ident: e_1_2_7_13_2 – ident: e_1_2_7_52_2 doi: 10.1063/1.1737365 – ident: e_1_2_7_23_2 doi: 10.1103/PhysRevLett.91.146401 – ident: e_1_2_7_19_2 – ident: e_1_2_7_90_2 doi: 10.1039/b803157f – ident: e_1_2_7_51_2 doi: 10.1103/PhysRevB.72.125401 – volume-title: Quantum Theory of Molecules and Solids, Vol. 4 year: 1974 ident: e_1_2_7_28_2 – ident: e_1_2_7_44_2 doi: 10.1021/ja00172a038 – ident: e_1_2_7_77_2 doi: 10.1016/S0022-0728(02)00851-3 – ident: e_1_2_7_92_2 doi: 10.1021/jp9059505 – ident: e_1_2_7_40_2 doi: 10.1038/319199a0 – ident: e_1_2_7_73_2 doi: 10.1103/PhysRevB.62.4744 – ident: e_1_2_7_67_2 doi: 10.1016/S0375-9601(02)00788-0 – ident: e_1_2_7_34_2 doi: 10.1063/1.1329672 – volume-title: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory year: 1996 ident: e_1_2_7_7_2 – ident: e_1_2_7_39_2 doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y – ident: e_1_2_7_71_2 doi: 10.1016/0039-6028(89)90443-3 – ident: e_1_2_7_106_2 doi: 10.1021/jp013909s – ident: e_1_2_7_69_2 doi: 10.1016/0039-6028(80)90278-2 – ident: e_1_2_7_95_2 doi: 10.1103/PhysRevLett.78.4410 – ident: e_1_2_7_113_2 doi: 10.1016/j.jelechem.2008.10.015 – ident: e_1_2_7_86_2 doi: 10.1016/j.electacta.2006.03.113 – ident: e_1_2_7_22_2 – ident: e_1_2_7_57_2 doi: 10.1016/j.jelechem.2007.03.023 – start-page: 1 volume-title: Catalysis and Electrocatalysis at Nanoparticle Surfaces year: 2003 ident: e_1_2_7_60_2 – ident: e_1_2_7_2_2 doi: 10.1007/978-0-387-76426-9 – ident: e_1_2_7_30_2 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_7_103_2 doi: 10.1021/ja049920y – ident: e_1_2_7_17_2 doi: 10.1103/PhysRev.136.B864 – ident: e_1_2_7_80_2 doi: 10.1149/1.1809586 – ident: e_1_2_7_66_2 doi: 10.1002/cphc.200500613 – ident: e_1_2_7_50_2 doi: 10.1016/S0039-6028(02)02453-6 – ident: e_1_2_7_8_2 – ident: e_1_2_7_56_2 doi: 10.1021/jp0631735 – ident: e_1_2_7_43_2 doi: 10.1021/jp961992r – ident: e_1_2_7_64_2 doi: 10.1103/RevModPhys.64.1045 – ident: e_1_2_7_62_2 doi: 10.1039/pc095117 – ident: e_1_2_7_15_2 doi: 10.1017/S0305004100011920 – ident: e_1_2_7_35_2 doi: 10.1063/1.2841941 – ident: e_1_2_7_41_2 doi: 10.1002/(SICI)1096-987X(19960115)17:1<57::AID-JCC6>3.0.CO;2-# – ident: e_1_2_7_54_2 doi: 10.1103/PhysRevB.73.165402 – ident: e_1_2_7_42_2 – start-page: 821 volume-title: Interfacial Electrochemistry: Theory, Experiments and Applications year: 1999 ident: e_1_2_7_10_2 – ident: e_1_2_7_100_2 doi: 10.1016/0167-5729(87)90001-X – ident: e_1_2_7_45_2 doi: 10.1063/1.471922 – volume-title: Numerical Recipes in Fortran 90, Vol. 2 year: 1996 ident: e_1_2_7_31_2 – ident: e_1_2_7_89_2 doi: 10.1021/jp7114127 – volume-title: Understanding Molecular Simulation, Second Edition: From Algorithms to Applications year: 2001 ident: e_1_2_7_4_2 – ident: e_1_2_7_18_2 doi: 10.1103/PhysRev.140.A1133 – ident: e_1_2_7_65_2 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_7_91_2 doi: 10.1103/PhysRevLett.102.076101 – ident: e_1_2_7_58_2 – ident: e_1_2_7_105_2 doi: 10.1103/PhysRevLett.89.276102 – ident: e_1_2_7_21_2 doi: 10.1017/S0305004100011683 – ident: e_1_2_7_112_2 doi: 10.1016/j.jelechem.2006.01.022 – ident: e_1_2_7_53_2 doi: 10.1016/j.jcis.2003.12.053 – ident: e_1_2_7_108_2 doi: 10.1016/0022-0728(92)80448-D – ident: e_1_2_7_83_2 doi: 10.1115/1.1867972 – ident: e_1_2_7_55_2 doi: 10.1016/j.electacta.2006.03.114 – ident: e_1_2_7_88_2 doi: 10.1103/PhysRevB.77.245417 – start-page: 465 volume-title: Handbook of Fuel Cells: Fundamentals, Technology, Applications year: 2003 ident: e_1_2_7_11_2 – ident: e_1_2_7_110_2 doi: 10.1016/0022-0728(91)80039-S – ident: e_1_2_7_72_2 doi: 10.1103/PhysRevLett.79.4481 – ident: e_1_2_7_24_2 doi: 10.1063/1.1904565 – ident: e_1_2_7_33_2 doi: 10.1063/1.1323224 – volume-title: An Introduction to Computational Physics year: 1997 ident: e_1_2_7_6_2 – ident: e_1_2_7_96_2 – ident: e_1_2_7_93_2 doi: 10.1039/b914570b – ident: e_1_2_7_109_2 doi: 10.1021/la00038a059 – ident: e_1_2_7_14_2 doi: 10.1017/S0305004100011919 – start-page: 51 volume-title: Modern Aspects of Electrochemistry 36 year: 2002 ident: e_1_2_7_59_2 – ident: e_1_2_7_70_2 doi: 10.1016/0039-6028(82)90124-8 – ident: e_1_2_7_87_2 doi: 10.1063/1.2227388 – ident: e_1_2_7_47_2 doi: 10.1016/0013-4686(96)00053-9 – ident: e_1_2_7_111_2 doi: 10.1016/0022-0728(91)80042-O – start-page: 197 volume-title: Electrocatalysis year: 1998 ident: e_1_2_7_9_2 – ident: e_1_2_7_79_2 doi: 10.1021/jp035729j – ident: e_1_2_7_36_2 – start-page: 133 volume-title: Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics, and Durability, Vol. 5 year: 2009 ident: e_1_2_7_99_2 |
SSID | ssj0008071 |
Score | 2.4118004 |
SecondaryResourceType | review_article |
Snippet | Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2779 |
SubjectTerms | Chemistry computer chemistry Computer Simulation density functional calculations Electrochemistry electrode potentials Electrodes Exact sciences and technology General and physical chemistry Oxidation-Reduction Oxygen - chemistry oxygen reduction Platinum - chemistry Quantum Theory Surface Properties |
Title | Theoretical Investigations of the Oxygen Reduction Reaction on Pt(111) |
URI | https://api.istex.fr/ark:/67375/WNG-LXGC09BG-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201000286 https://www.ncbi.nlm.nih.gov/pubmed/20726030 https://www.proquest.com/docview/754003885 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VcGgvlFfBFNAeENCDYeO3j63VJEK8hEDNbbUvCylVEpFEgv56ZryxQyqqSiD5YMs7knd2dvcb77ffAhyYvOSlJCqOjEI_KlvKl8TMwZlS5XFqW6ZS27-4TLp30Vkv7r3Yxe_0IZofbtQzqvGaOrhU49O5aKge3euKmkVpA2luE2GLUNHNXD8q4y7jimi5MwjjWrWRB6eL5guz0jI5-JFYknKMjirdCRevQdBFRFtNSe3PIOvKOCZK_2Q6USf6z186j--p7SqszPAq--4CbA0-2ME6fCzqY-I2oH073wrJXqh2YDSzYckQX7KrxycMU3ZDKrH0Au_cdgqG1_XkGAfCb5tw1_55W3T92eEMvo7SLPEDZTlRV3UrkUEiuVSZDQzXpkRAaRQ-Sc6VyimDbCkEXTbTSRZG2lISqlX4BZYGw4HdBhbiqJlIE2FhHZWBUdXioMm4KXWexNoDv24coWfK5XSAxm_hNJcDQd4RjXc8OGrKj5xmxz9LHlZt3RSTD31iuqWx-HXZEee9TsHzHx3R8WB_IRgaAwSkIUI47gGro0NgA9CqixzY4XQsUsTEJLkTe7DlomZuzFNMJ0M0Dqq2_8_XiuK6WzRPO28x-gqfHP0hx_l3F5YmD1O7h6hqovarnvMMp7AVsA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONBLW_qAlEJ9qPo4BLx55whRd7ewbBFaVG6WXxES1S6CXYn21zNjb7Js1apSK-WQKB4pscf2N_bnbwDembLmtSQqjkziMKk7KpTEzMGZUpVpbjvGqe2fDLP-eXJ0kTZsQjoL4_Uh2gU36hluvKYOTgvS-wvVUH19qR03i-KG7BGsUVpvF1WdLRSkCu5jroQ2PKM4bXQbebS_bL80L61RFd8RT1LeYlXVPsfF70DoMqZ1k1L3KajmdzwX5WpvNlV7-ucvSo__9b_P4MkcsrID72MbsGLHz2G9ajLFvYDuaHEakj0Q7kCHZpOaIcRkX-9-oKeyMxKKpRd4509UMLxOpx9xLPz0Es67n0dVP5znZwh1khdZGCnLib2qO5mMMsmlKmxkuDY1Ykqj8ElyrlRJQWRHIe6yhc6KONGW4lCt4lewOp6M7RawGAfOTJoEC-ukjoxy-4Om4KbWZZbqAMKmdYSei5dTDo3vwssuR4JqR7S1E8CHtvy1l-34Y8n3rrHbYvLmishueSq-DXticNGreHnYE70Adpe8oTVATBojiuMBsMY9BDYAbbzIsZ3MbkWOsJhUd9IANr3bLIx5jhFljMaRa_y_fK2oTvtV-_T6X4zewnp_dDIQgy_D42147NkQJU7Hb2B1ejOzOwiypmrXdaN7AysZyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKwEX3g_zKD4gHge3G3u9to_gkgQoIapaNbfVPoVUlERtIhV-PTPe2GkQCAkkH2x5R_LOzO584539FuCFrTzzikpxFM8S7ns6UVSZg5FSV3nherZh2_88EsNj_nGSTy7t4g_8EN0PNxoZzXxNA3xu_d6aNNTMv5qmNIvSBnEVtrlgJfn1_uGaQKpkIeXitN6ZZnlL28jSvU35jbC0TRq-oDJJdY6a8uGIi99h0E1I28Sk_i1QbW9CKcrp7nKhd82PX4ge_6e7t-HmCrDGb4OH3YErbnoXrtftOXH3oH-03gsZX6LtQHeOZz5GgBl_ufiOfhofEk0svcC7sJ8ixmu8eI0z4Zv7cNx_f1QPk9XpDInhRSmSVDtGtaumJ1QqFFO6dKllxnpElFbjk2JM64pSyJ5G1OVKI8qMG0dZqNHZA9iazqbuEcQZTptCWY6NDfep1c3qoC2Z9aYSuYkgaY0jzYq6nE7Q-CYD6XIqSTuy004Er7r280Da8ceWLxtbd83U2SmVuhW5PBkN5MFkULPq3UAOItjZcIZOABFphhiORRC33iHRALTsoqZutjyXBYJi4tzJI3gYvGYtzArMJzMUThvb_-VrZT0e1t3T438Reg7Xxvt9efBh9OkJ3AilEBXG4qewtThbumeIsBZ6pxlEPwGy0xiD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Investigations+of+the+Oxygen+Reduction+Reaction+on+Pt%28111%29&rft.jtitle=Chemphyschem&rft.au=Keith%2C+John+A.&rft.au=Jerkiewicz%2C+Gregory&rft.au=Jacob%2C+Timo&rft.date=2010-09-10&rft.pub=WILEY-VCH+Verlag&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=11&rft.issue=13&rft.spage=2779&rft.epage=2794&rft_id=info:doi/10.1002%2Fcphc.201000286&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_LXGC09BG_G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |