Theoretical Investigations of the Oxygen Reduction Reaction on Pt(111)

Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and co...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 11; no. 13; pp. 2779 - 2794
Main Authors Keith, John A., Jerkiewicz, Gregory, Jacob, Timo
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 10.09.2010
WILEY‐VCH Verlag
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions. Modeling an elusive system: A current review on the mechanism of the oxygen reduction reaction (ORR) on Pt(111) (see figure) is presented. Beginning with an abridged introduction to fundamental computational chemistry methods, the authors investigate the multiple‐pathway ORR and the influences of solvation, thermal energy (e.g. entropy), and electrode potential on each step.
AbstractList Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions.
Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions. Modeling an elusive system: A current review on the mechanism of the oxygen reduction reaction (ORR) on Pt(111) (see figure) is presented. Beginning with an abridged introduction to fundamental computational chemistry methods, the authors investigate the multiple‐pathway ORR and the influences of solvation, thermal energy (e.g. entropy), and electrode potential on each step.
Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions.Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions.
Author Keith, John A.
Jacob, Timo
Jerkiewicz, Gregory
Author_xml – sequence: 1
  givenname: John A.
  surname: Keith
  fullname: Keith, John A.
  organization: Institut für Elektrochemie, Universität Ulm, Albert-Einstein-Allee 47, Ulm D-89081 (Germany), Fax: (+49) 731-50-25409
– sequence: 2
  givenname: Gregory
  surname: Jerkiewicz
  fullname: Jerkiewicz, Gregory
  organization: Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada)
– sequence: 3
  givenname: Timo
  surname: Jacob
  fullname: Jacob, Timo
  email: timo.jacob@uni-ulm.de
  organization: Institut für Elektrochemie, Universität Ulm, Albert-Einstein-Allee 47, Ulm D-89081 (Germany), Fax: (+49) 731-50-25409
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23238460$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20726030$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhHlgiiHLOOPtZ0jRDSttKIVKoKb5TiTriGbLHaWdv89XrItCAkhWfJr-XlGHs8xOeiHHgl5TmFGAdgbt166GYOUgWn5iBxRwYtcSUEP9lkwPj8kxzF-TYwGRZ-QQwaKSeBwRM6ulzgEHL2zXXbR_8A4-hs7-qGP2dBm4xKzy7vtDfbZR2w2bneRkp1CWlfjKaX09VPyuLVdxGf7_YR8Ont_XZ7ni8vqony7yJ1QWuasRqBFwRyVlkkLttbIGnBNq5Ro6nSyAHVdUC2A1kJQ1E5qLhxSkNTV_IS8muquw_B9kx5rVj467Drb47CJRs0FANd6nsgXe3JTr7Ax6-BXNmzNfesJeLkHbEzNt8H2zsffHGdcC7njxMS5MMQYsDXOj79-aAzWd4aC2U3C7CZhHiaRtNlf2n3lfwrFJNz6Drf_oU15dV7-6eaT6-OIdw-uDd-MVFzNzecPlVl8qUoo3lWm4j8ByfOoPA
CitedBy_id crossref_primary_10_1021_acs_jpcc_5b04764
crossref_primary_10_1021_acs_jpcc_5b12706
crossref_primary_10_1007_s11708_023_0907_3
crossref_primary_10_1016_j_apsusc_2015_06_042
crossref_primary_10_1021_jp406751n
crossref_primary_10_1088_1361_648X_ab3350
crossref_primary_10_1021_jp400388v
crossref_primary_10_1021_jp209645t
crossref_primary_10_1039_c2cp44252c
crossref_primary_10_1021_acs_jpcc_1c07044
crossref_primary_10_1002_smll_202405008
crossref_primary_10_1039_C2CS35267B
crossref_primary_10_1016_j_jallcom_2023_172518
crossref_primary_10_1016_j_nanoen_2016_06_004
crossref_primary_10_3390_nano10091805
crossref_primary_10_1002_ange_201004794
crossref_primary_10_1016_j_jelechem_2017_11_038
crossref_primary_10_1007_s12678_014_0187_0
crossref_primary_10_1063_1_4896604
crossref_primary_10_1039_c4ra03387f
crossref_primary_10_1039_C6CP08466D
crossref_primary_10_1016_j_jechem_2022_02_017
crossref_primary_10_1246_cl_140663
crossref_primary_10_1039_C6CP05869H
crossref_primary_10_1016_j_electacta_2012_03_134
crossref_primary_10_1039_D0RE00197J
crossref_primary_10_1557_mrc_2018_13
crossref_primary_10_1016_j_coelec_2018_03_025
crossref_primary_10_1021_acs_jpcc_1c09207
crossref_primary_10_1016_j_jcat_2014_07_024
crossref_primary_10_1039_C6TA03245A
crossref_primary_10_1002_cctc_202101472
crossref_primary_10_1016_j_ccr_2021_214244
crossref_primary_10_1016_j_electacta_2013_05_133
crossref_primary_10_1021_acs_jpcc_3c07237
crossref_primary_10_1016_j_ijhydene_2024_09_279
crossref_primary_10_1002_cssc_201900298
crossref_primary_10_1149_2_0951508jes
crossref_primary_10_1002_cphc_201500187
crossref_primary_10_1016_j_cplett_2020_137994
crossref_primary_10_1002_smm2_1023
crossref_primary_10_1016_j_ijhydene_2024_03_107
crossref_primary_10_1021_acs_jpcc_0c08513
crossref_primary_10_1021_acs_jpcc_0c06691
crossref_primary_10_1039_c3cp50649e
crossref_primary_10_1039_c2cp42907a
crossref_primary_10_1016_j_jelechem_2013_09_018
crossref_primary_10_1002_anie_201004794
crossref_primary_10_1039_D3QI01797D
crossref_primary_10_1016_S1872_2067_23_64538_3
crossref_primary_10_1002_anie_202312747
crossref_primary_10_1016_j_ccr_2021_214389
crossref_primary_10_1016_j_nanoen_2015_12_014
crossref_primary_10_1021_acs_jpcc_7b11842
crossref_primary_10_1016_j_coelec_2018_09_005
crossref_primary_10_1016_j_jpowsour_2015_11_041
crossref_primary_10_1002_er_6969
crossref_primary_10_1039_C4CP03755C
crossref_primary_10_1016_j_watres_2024_121993
crossref_primary_10_1016_j_cplett_2015_10_067
crossref_primary_10_1039_C8TA02985G
crossref_primary_10_1016_j_cattod_2018_07_036
crossref_primary_10_1016_j_chempr_2019_03_002
crossref_primary_10_1021_acscatal_2c05222
crossref_primary_10_1039_D0EE01714K
crossref_primary_10_1002_tcr_201600035
crossref_primary_10_1021_acs_jpclett_4c02164
crossref_primary_10_1039_C5CP00946D
crossref_primary_10_1039_D3YA00002H
crossref_primary_10_1016_j_cplett_2019_136813
crossref_primary_10_1039_C6CP08055C
crossref_primary_10_1007_s10008_011_1582_6
crossref_primary_10_1039_C8CP06756B
crossref_primary_10_1016_j_comptc_2013_06_033
crossref_primary_10_1016_j_jpowsour_2015_09_014
crossref_primary_10_1007_s12274_018_2029_5
crossref_primary_10_1002_adfm_202212442
crossref_primary_10_1021_acscatal_8b01953
crossref_primary_10_3762_bjnano_6_102
crossref_primary_10_1021_acs_jpcc_8b02465
crossref_primary_10_1039_D3CS00669G
crossref_primary_10_1016_j_jpowsour_2017_05_073
crossref_primary_10_1016_j_apsusc_2016_11_171
crossref_primary_10_1002_chem_201402737
crossref_primary_10_1039_C8QI00416A
crossref_primary_10_1007_s12274_023_5767_y
crossref_primary_10_1039_D1TC00668A
crossref_primary_10_1039_C7TA00685C
crossref_primary_10_1016_j_jelechem_2017_10_063
crossref_primary_10_1016_j_jechem_2022_01_035
crossref_primary_10_1080_08927022_2016_1273525
crossref_primary_10_1021_jacs_5b10669
crossref_primary_10_1016_j_cattod_2011_08_052
crossref_primary_10_1002_qua_25095
crossref_primary_10_1007_s00894_015_2830_y
crossref_primary_10_1016_j_jcat_2014_01_013
crossref_primary_10_1039_C4CP02167C
crossref_primary_10_1021_cs5012525
crossref_primary_10_1021_acs_jpcc_5b09148
crossref_primary_10_1021_jp511598e
crossref_primary_10_1039_C6TA08580F
crossref_primary_10_1016_j_electacta_2017_03_123
crossref_primary_10_1016_j_cplett_2014_11_057
crossref_primary_10_1039_c2ee02689a
crossref_primary_10_1038_s41560_018_0292_z
crossref_primary_10_1002_ange_201406112
crossref_primary_10_1039_C7NR03002A
crossref_primary_10_1016_j_coelec_2020_100684
crossref_primary_10_1021_acsami_1c18191
crossref_primary_10_1021_cs501020a
crossref_primary_10_1002_fuce_201800164
crossref_primary_10_1016_j_jelechem_2014_11_014
crossref_primary_10_1007_s11244_012_9800_8
crossref_primary_10_1039_D0CP04211K
crossref_primary_10_1039_D1EE00142F
crossref_primary_10_1002_ange_202312747
crossref_primary_10_1016_j_jpowsour_2014_11_058
crossref_primary_10_3389_fchem_2019_00610
crossref_primary_10_1016_j_electacta_2012_12_099
crossref_primary_10_1002_cctc_202201222
crossref_primary_10_1016_j_comptc_2019_112607
crossref_primary_10_1016_j_electacta_2014_05_144
crossref_primary_10_1039_C2CP43909C
crossref_primary_10_1039_C9CY00895K
crossref_primary_10_1039_D0CP01052A
crossref_primary_10_1039_D2CP00934J
crossref_primary_10_3390_nano12142480
crossref_primary_10_1016_j_apcata_2017_09_002
crossref_primary_10_1021_la2006343
crossref_primary_10_1016_j_mcat_2025_114861
crossref_primary_10_1002_qua_25203
crossref_primary_10_1021_acscatal_5c00321
crossref_primary_10_1016_j_apsusc_2024_159828
crossref_primary_10_1021_acs_energyfuels_3c01265
crossref_primary_10_1021_cr200247n
crossref_primary_10_1002_cphc_201700162
crossref_primary_10_1021_acscatal_5b01154
crossref_primary_10_1021_acs_jpcc_7b01082
crossref_primary_10_1021_acs_jpclett_1c01800
crossref_primary_10_1039_C4CP02147A
crossref_primary_10_1039_D1CY01087E
crossref_primary_10_1021_jp210805z
crossref_primary_10_1016_j_nanoen_2024_109966
crossref_primary_10_3390_ijms232314768
crossref_primary_10_1016_j_coelec_2023_101284
crossref_primary_10_1016_j_ijhydene_2018_08_035
crossref_primary_10_1039_c2cp42675g
crossref_primary_10_1039_C6CP01066K
crossref_primary_10_1039_c2cp40087a
crossref_primary_10_1039_C4CP01591F
crossref_primary_10_1016_j_electacta_2010_10_057
crossref_primary_10_1039_D4CP00269E
crossref_primary_10_1016_j_jpowsour_2015_04_094
crossref_primary_10_1016_j_electacta_2012_04_062
crossref_primary_10_1016_j_apcata_2022_118487
crossref_primary_10_20517_jmi_2023_29
crossref_primary_10_1016_j_fuel_2021_121562
crossref_primary_10_1021_acsami_1c12054
crossref_primary_10_1016_j_apcatb_2019_05_045
crossref_primary_10_1021_ja1083317
crossref_primary_10_1039_D4QI02179G
crossref_primary_10_1021_acs_jpcc_4c04924
crossref_primary_10_1016_j_jnucmat_2014_05_023
crossref_primary_10_1021_acsphyschemau_2c00054
crossref_primary_10_1007_s00894_019_4071_y
crossref_primary_10_1021_acscatal_7b04186
crossref_primary_10_1021_acssuschemeng_7b04608
crossref_primary_10_1063_1_4994873
crossref_primary_10_1021_acs_jpcc_0c09548
crossref_primary_10_1021_acs_jpcc_6b05126
crossref_primary_10_3390_ijms24032768
crossref_primary_10_1002_anie_201406112
crossref_primary_10_1039_c0cp01662d
crossref_primary_10_1016_j_commatsci_2015_02_028
crossref_primary_10_1021_ja301567f
crossref_primary_10_1039_C8CP01294F
crossref_primary_10_1039_C3TA13608F
crossref_primary_10_1021_acsenergylett_6b00385
crossref_primary_10_1038_srep05205
crossref_primary_10_1016_j_cattod_2018_04_013
crossref_primary_10_1149_2_123306jes
crossref_primary_10_1016_j_apsusc_2016_02_035
crossref_primary_10_1038_srep03821
crossref_primary_10_1016_j_matt_2022_04_010
crossref_primary_10_1016_j_electacta_2018_08_141
crossref_primary_10_1039_D2RA00914E
crossref_primary_10_1007_s10562_014_1448_5
crossref_primary_10_1039_c2cs35050e
crossref_primary_10_1021_acs_jpcc_7b04375
crossref_primary_10_1103_PhysRevB_86_045450
crossref_primary_10_1016_j_nanoen_2020_104525
crossref_primary_10_1007_s12678_017_0395_5
crossref_primary_10_1021_acscatal_6b00931
crossref_primary_10_1039_c3cp51545a
Cites_doi 10.1149/1.1394046
10.1103/PhysRevB.59.15437
10.1021/jp0118219
10.1126/science.279.5358.1907
10.1063/1.1413515
10.1016/S0039-6028(01)01046-9
10.1021/cr940408c
10.1002/fuce.200500201
10.1139/p80-159
10.1021/ja031701
10.1021/cr00031a013
10.1103/PhysRevA.38.3098
10.1103/PhysRevB.46.6671
10.1021/cr960149m
10.1002/andp.19273892002
10.1007/BF01340294
10.1103/PhysRevLett.77.3865
10.1016/j.cplett.2005.02.018
10.1016/S0039-6028(02)01908-8
10.1021/jz9003153
10.1021/ar9501784
10.1149/1.2266294
10.1103/PhysRevLett.89.176104
10.1016/S0013-4686(00)00578-8
10.1021/jp061813y
10.1002/cphc.200600128
10.1063/1.1737365
10.1103/PhysRevLett.91.146401
10.1039/b803157f
10.1103/PhysRevB.72.125401
10.1021/ja00172a038
10.1016/S0022-0728(02)00851-3
10.1021/jp9059505
10.1038/319199a0
10.1103/PhysRevB.62.4744
10.1016/S0375-9601(02)00788-0
10.1063/1.1329672
10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
10.1016/0039-6028(89)90443-3
10.1021/jp013909s
10.1016/0039-6028(80)90278-2
10.1103/PhysRevLett.78.4410
10.1016/j.jelechem.2008.10.015
10.1016/j.electacta.2006.03.113
10.1016/j.jelechem.2007.03.023
10.1007/978-0-387-76426-9
10.1103/PhysRevB.37.785
10.1021/ja049920y
10.1103/PhysRev.136.B864
10.1149/1.1809586
10.1002/cphc.200500613
10.1016/S0039-6028(02)02453-6
10.1021/jp0631735
10.1021/jp961992r
10.1103/RevModPhys.64.1045
10.1039/pc095117
10.1017/S0305004100011920
10.1063/1.2841941
10.1002/(SICI)1096-987X(19960115)17:1<57::AID-JCC6>3.0.CO;2-#
10.1103/PhysRevB.73.165402
10.1016/0167-5729(87)90001-X
10.1063/1.471922
10.1021/jp7114127
10.1103/PhysRev.140.A1133
10.1103/PhysRevB.13.5188
10.1103/PhysRevLett.102.076101
10.1103/PhysRevLett.89.276102
10.1017/S0305004100011683
10.1016/j.jelechem.2006.01.022
10.1016/j.jcis.2003.12.053
10.1016/0022-0728(92)80448-D
10.1115/1.1867972
10.1016/j.electacta.2006.03.114
10.1103/PhysRevB.77.245417
10.1016/0022-0728(91)80039-S
10.1103/PhysRevLett.79.4481
10.1063/1.1904565
10.1063/1.1323224
10.1039/b914570b
10.1021/la00038a059
10.1017/S0305004100011919
10.1016/0039-6028(82)90124-8
10.1063/1.2227388
10.1016/0013-4686(96)00053-9
10.1016/0022-0728(91)80042-O
10.1021/jp035729j
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/cphc.201000286
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage 2794
ExternalDocumentID 20726030
23238460
10_1002_cphc_201000286
CPHC201000286
ark_67375_WNG_LXGC09BG_G
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
– fundername: Alexander von Humboldt Foundation
– fundername: DFG
– fundername: European Union
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
.GJ
31~
53G
AAMMB
AEFGJ
AGHNM
AGXDD
AI.
AIDQK
AIDYY
EBD
EMOBN
HF~
IQODW
SV3
VH1
XSW
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4786-2be01992c16a26a0ab8e2d0cdf774dbb8ea00bb918401b441e8c6834ce1061cb3
IEDL.DBID DR2
ISSN 1439-4235
1439-7641
IngestDate Fri Jul 11 10:46:45 EDT 2025
Mon Jul 21 05:52:55 EDT 2025
Mon Jul 21 09:17:33 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Tue Jul 01 03:16:54 EDT 2025
Wed Jan 22 16:27:16 EST 2025
Wed Oct 30 09:51:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Oxygen
electrode potentials
Crystal face
Transition metal
Review
oxygen reduction
Chemical reduction
Computational chemistry
density functional calculations
Platinum
computer chemistry
Electrochemistry
Density functional method
Electrode potential
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4786-2be01992c16a26a0ab8e2d0cdf774dbb8ea00bb918401b441e8c6834ce1061cb3
Notes ark:/67375/WNG-LXGC09BG-G
Alexander von Humboldt Foundation
istex:33C96471732EEE68BDB5DF3557CD9F139F985B75
Deutsche Forschungsgemeinschaft
DFG
European Union
ArticleID:CPHC201000286
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 20726030
PQID 754003885
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_754003885
pubmed_primary_20726030
pascalfrancis_primary_23238460
crossref_citationtrail_10_1002_cphc_201000286
crossref_primary_10_1002_cphc_201000286
wiley_primary_10_1002_cphc_201000286_CPHC201000286
istex_primary_ark_67375_WNG_LXGC09BG_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 10, 2010
PublicationDateYYYYMMDD 2010-09-10
PublicationDate_xml – month: 09
  year: 2010
  text: September 10, 2010
  day: 10
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemphyschem
PublicationTitleAlternate ChemPhysChem
PublicationYear 2010
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
References M. T. M. Koper in Modern Aspects of Electrochemistry 36 (Eds.: C. G. Vayenas, B. E. Conway, R. E. White), Springer, New York, 2002, pp. 51-130
W. C. Still, A. Tempczyk, R. C. Hawley, T. Hendrickson, J. Am. Chem. Soc. 1990, 112, 6127-6129.
M. T. M. Koper, R. A. van Santen, M. Neurock in Catalysis and Electrocatalysis at Nanoparticle Surfaces (Eds.: A. Wieckowski, E. R. Savinova, C. G. Vayenas), Marcel Dekker, Inc. New York, 2003, pp. 1-34
S. Venkatachalam, T. Jacob in Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics, and Durability, Vol. 5 (Eds.: W. Vielstich, H. A. Gasteiger, H. Yokokawa), Wiley, New York, 2009, pp. 133-151.
P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
T. Jacob, Electrochim. Acta 2007, 52, 2229-2235
S. Meng, L. F. Xu, E. G. Wang, S. Gao, Phys. Rev. Lett. 2002, 89, 176104
A. Roudgar, M. Eikerling, R. A. van Santen, Phys. Chem. Chem. Phys. 2010, 12, 614-620.
R. A. Sidik, A. B. Anderson, J. Electroanal. Chem. 2002, 528, 69-76.
J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4, McGraw-Hill, New York, 1974.
D. H. Parker, M. E. Bartram, B. E. Koel, Surf. Sci. 1989, 217, 489-510.
W. Ho, Acc. Chem. Res. 1998, 31, 567-573.
T. Pang, An Introduction to Computational Physics, Cambridge University Press, Cambridge, 1997
J. Roques, A. B. Anderson, J. Fuel Cell Sci. Technol. 2005, 2, 86-93.
G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901
D. Eisenberg, A. D. McLachlan, Nature 1986, 319, 199-203.
A. Eichler, F. Mittendorfer, J. Hafner, Phys. Rev. B 2000, 62, 4744.
Y. Okamoto, Chem. Phys. Lett. 2005, 405, 79-83.
J. Rossmeisl, J. K. Nørskov, C. D. Taylor, M. J. Janik, M. Neurock, J. Phys. Chem. B 2006, 110, 21833-21839
C. J. Roberts, P. G. Debenedetti, J. Chem. Phys. 1996, 105, 658.
R. Jinnouchi, A. B. Anderson, Phys. Rev. B 2008, 77, 245417.
M. I. Haftel, M. Rosen, Surf. Sci. 2003, 523, 118-124
M. F. Sanner, A. J. Olson, J. Spehner, Biopolymers 1996, 38, 305-320.
A. Panchenko, M. T. M. Koper, T. E. Shubina, S. J. Mitchell, E. Roduner, J. Electrochem. Soc. 2004, 151, A2016-A2027.
A. D. Becke, Phys. Rev. A 1988, 38, 3098.
C. J. Cramer, D. G. Truhlar, Chem. Rev. 1999, 99, 2161-2200
B. E. Conway, G. Tremiliosi-Filho, G. Jerkiewicz, J. Electroanal. Chem. 1991, 297, 435-443
F. Jensen, Introduction to Computational Chemistry, Wiley, New York, 2006
W. Schmickler, Annu. Rep. Prog. Chem. Sect. C 1999, 95, 117-162.
E. Fermi, Rend. Accad. Naz. Lincei 1927, 6, 602-607
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
T. Jacob, Fuel Cells 2006, 6, 159-181.
Ž. Šljivančanin, B. Hammer, Surf. Sci. 2002, 515, 235-244.
J. W. Halley, P. Schelling, Y. Duan, Electrochim. Acta 2000, 46, 239-245
T. Jacob, D. Geschke, S. Fritzsche, W.-D. Sepp, B. Fricke, J. Anton, S. Varga, Surf. Sci. 2001, 486, 194-202.
A. B. Anderson, T. V. Albu, J. Electrochem. Soc. 2000, 147, 4229-4238.
W. Schmickler, Chem. Rev. 1996, 96, 3177-3200
D. R. Hartree, Proc. Cambridge Philos. Soc. 1928, 24, 111-132.
B. E. Conway, G. Jerkiewicz, J. Electroanal. Chem. 1992, 339, 123-146
D. Qiu, P. S. Shenkin, F. P. Hollinger, W. C. Still, J. Phys. Chem. A 1997, 101, 3005-3014
L. Ou, F. Yang, Y. Liu, S. Chen, J. Phys. Chem. C 2009, 113, 20657-20665.
M. Gunnarsson, Z. Abbas, E. Ahlberg, S. Nordholm, J. Colloid Interface Sci. 2004, 274, 563-578
A. Eichler, J. Hafner, Phys. Rev. Lett. 1997, 79, 4481.
R. B. Getman, W. F. Schneider, A. D. Smeltz, W. N. Delgass, F. H. Ribeiro, Phys. Rev. Lett. 2009, 102, 076101.
G. Tremiliosi-Filho, G. Jerkiewicz, B. E. Conway, Langmuir 1992, 8, 658-667
J. L. Gland, Surf. Sci. 1980, 93, 487-514.
M. Alsabet, M. Grden, G. Jerkiewicz, J. Electroanal. Chem. 2006, 589, 120-127
S. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211.
J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, G. I. Csonka, J. Chem. Phys. 2005, 123, 062201.
C. D. Taylor, S. A. Wasileski, J. Filhol, M. Neurock, Phys. Rev. B 2006, 73, 165402
T. Jacob, S. Fritzsche, W. Sepp, B. Fricke, J. Anton, Phys. Lett. A 2002, 300, 71-75.
T. Jacob, W. A. Goddard, J. Am. Chem. Soc. 2004, 126, 9360-9368
C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, Wiley, New York, 2004
T. Jacob, J. Electroanal. Chem. 2007, 607, 158-166.
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
D. Sheppard, R. Terrell, G. Henkelman, J. Chem. Phys. 2008, 128, 134106.
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671.
V. Fock, Z. Phys. A 1930, 61, 126-148.
K. C. Neyerlin, W. Gu, J. Jorne, H. A. Gasteiger, J. Electrochem. Soc. 2006, 153, A1955.
Y. J. Feng, K. P. Bohnen, C. T. Chan, Phys. Rev. B 2005, 72, 125401
M. Bocquet, J. Cerdà, P. Sautet, Phys. Rev. B 1999, 59, 15437.
D. R. Hartree, Proc. Cambridge Philos. Soc. 1928, 24, 89-110
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 1992, 64, 1045.
J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027-2094.
M. Farebrother, M. Goledzinowski, V. I. Birss, J. Electroanal. Chem. 1991, 297, 469-488
M. Cossi, B. Mennucci, R. Cammi, J. Comput. Chem. 1996, 17, 57-73.
J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401
S. Walch, A. Dhanda, M. Aryanpour, H. Pitsch, J. Phys. Chem. C 2008, 112, 8464-8475.
M. P. Hyman, J. W. Medlin, J. Phys. Chem. B 2006, 110, 15338-15344.
P. Ross, Jr. in Handbook of Fuel Cells: Fundamentals, Technology, Applications (Eds.: W. Vielstich, A. Lamm, H. A. Gasteiger), Wiley-VCH, Weinheim, 2003, pp. 465-480.
N. Marković, P. Ross, Jr. in Interfacial Electrochemistry: Theory, Experiments and Applications (Ed.: A. Wieckowski), CRC Press, New York, 1999, pp. 821-841
M. Born, R. Oppenheimer, Ann. Phys. 1927, 389, 457-484.
H. Steininger, S. Lehwald, H. Ibach, Surf. Sci. 1982, 123, 1-17.
P. A. Thiel, T. E. Madey, Surf. Sci. Rep. 1987, 7, 211-385.
G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978
D. Marx, ChemPhysChem 2006, 7, 1848-1870.
A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover, Mineola, 1996.
G. Jerkiewicz, M. Alsabet, M. Grden, H. Varela, G. Tremiliosi-Filho, J. Electroanal. Chem. 2009, 625, 172-174.
B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, B. I. Lundqvist, Phys. Rev. Lett. 1997, 78, 4410.
H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, A. Nilsson, Phys. Rev. Lett. 2002, 89, 276102
B. C. Stipe, M. A. Rezaei, W. Ho, Science 1998, 279, 1907-1909
J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, J. Chem. Phys. 2004, 120, 10240
W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 90, Vol. 2, Cambridge University Press, Cambridge, 1996.
R. R. Nazmutdinov, M. S. Shapnik, Electrochim. Acta 1996, 41, 2253-2265
L. Qi, J. Yu, J. Li, J. Chem. Phys. 2006, 125, 054701.
T. Li, P. B. Balbuena, J. Phys. Chem. B 2001, 105, 9943-9952.
P. B. Balbuena, D. Altomare, L. Agapito, J. M. Seminario, J. Phys. Chem. B 2003, 107, 13671-13680.
Y. Xu, A. V. Ruban, M. Mavrikakis, J. Am. Chem. Soc. 2004, 126, 4717-4725.
P. Vassilev, C. Hartnig, M. T. M. Koper, F. Frechard, R. A. van Santen, J. Chem. Phys. 2001, 115, 9815
Y. Sha, T. H. Yu, Y. Liu, B. V. Merinov, W. A. Goddard, J. Phys. Chem. Lett. 2010, 1, 856-861.
S. A. Wasileski, M. J. Janik, Phys. Chem. Chem. Phys. 2008, 10, 3613-3627.
D. Frenkel, B. Smit, Understanding Molecular Simulation, Second Edition: From Algorithms to Applications, Academic Press, San Diego, 2001
M. J. Buehler, Atomistic Modeling of Materials Failure, Springer, New York, 2008
G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, Y.-S. Park, Electrochim. Acta 2004, 49, 1451-1459
T. Jacob, W. A. Goddard III, ChemPhysChem 2006, 7, 992-1005.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
M. Lischka, C. Mosch, A. Groß, Electrochim. Acta 2007, 52, 2219-2228.
L. H. Thomas, Proc. Cambridge Philos. Soc. 1927, 23, 542-548.
R. Adzic in Electrocatalysis (Eds.: J. Lipkowski, P. Ross, Jr.), Wiley-VCH, Weinheim, 1998, pp. 197-242
B. Ruscic, A. F. Wagner, L. B. Harding, R. L. Asher, D. Feller, D. A. Dixon, K. A. Peterson, Y. Song, X. Qian, C. Ng, J. Phys. Chem. A 2002, 106, 2727-2747.
2010; 12
2004; 120
2004; 126
2006; 73
2000; 46
1965; 140
1988; 37
1988; 38
1987; 7
1974
2009; 113
1980; 93
2008; 77
1998; 279
2002; 515
1996; 38
1964; 136
1927; 389
1996; 77
1996; 105
2001; 105
1992; 8
2003; 91
2010; 1
2003; 523
2001
2002; 300
2002; 89
1999; 59
1997; 101
2002; 106
2000; 62
1999; 99
1927; 6
1992; 46
1999; 95
2005; 72
2008; 112
2006; 125
1991; 297
2001; 486
1996; 17
1989; 217
2000; 113
2004; 49
1998
2006; 7
2009
2008
1997
1982; 123
1996
2006; 110
1996; 96
2006
2008; 128
2006; 6
2006; 153
2008; 10
2004
2003
2007; 52
2002
2007; 607
1986; 319
1999
1927; 23
1980; 58
2004; 274
1976; 13
2003; 107
1930; 61
2000; 147
1928; 24
2005; 123
2004; 151
1997; 79
1997; 78
2005; 405
1996; 41
2009; 102
1992; 339
2002; 528
2005; 2
1990; 112
1992; 64
2006; 589
2009; 625
1994; 94
1998; 31
2001; 115
e_1_2_7_108_2
e_1_2_7_104_2
e_1_2_7_19_2
e_1_2_7_83_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
Szabo A. (e_1_2_7_7_2) 1996
e_1_2_7_90_2
e_1_2_7_112_2
e_1_2_7_71_2
e_1_2_7_94_2
Frenkel D. (e_1_2_7_4_2) 2001
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
Slater J. C. (e_1_2_7_28_2) 1974
e_1_2_7_37_2
e_1_2_7_105_2
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_2
e_1_2_7_29_2
e_1_2_7_109_2
Ross P. (e_1_2_7_11_2) 2003
e_1_2_7_113_2
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_78_2
Jensen F. (e_1_2_7_5_2) 2006
e_1_2_7_106_2
Fermi E. (e_1_2_7_20_2) 1927; 6
Koper M. T. M. (e_1_2_7_60_2) 2003
e_1_2_7_102_2
e_1_2_7_17_2
e_1_2_7_81_2
e_1_2_7_1_2
e_1_2_7_13_2
e_1_2_7_62_2
Marković N. (e_1_2_7_10_2) 1999
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_89_2
Venkatachalam S. (e_1_2_7_99_2) 2009
e_1_2_7_110_2
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_25_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_21_2
Press W. H. (e_1_2_7_31_2) 1996
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_39_2
e_1_2_7_2_2
e_1_2_7_103_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
Jerkiewicz G. (e_1_2_7_107_2) 2004; 49
e_1_2_7_27_2
Cramer C. J. (e_1_2_7_3_2) 2004
Adzic R. (e_1_2_7_9_2) 1998
Pang T. (e_1_2_7_6_2) 1997
e_1_2_7_111_2
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_38_2
Koper M. T. M. (e_1_2_7_59_2) 2002
References_xml – reference: H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
– reference: P. Ross, Jr. in Handbook of Fuel Cells: Fundamentals, Technology, Applications (Eds.: W. Vielstich, A. Lamm, H. A. Gasteiger), Wiley-VCH, Weinheim, 2003, pp. 465-480.
– reference: A. Roudgar, M. Eikerling, R. A. van Santen, Phys. Chem. Chem. Phys. 2010, 12, 614-620.
– reference: G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, Y.-S. Park, Electrochim. Acta 2004, 49, 1451-1459;
– reference: T. Jacob, S. Fritzsche, W. Sepp, B. Fricke, J. Anton, Phys. Lett. A 2002, 300, 71-75.
– reference: B. C. Stipe, M. A. Rezaei, W. Ho, Science 1998, 279, 1907-1909;
– reference: B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, B. I. Lundqvist, Phys. Rev. Lett. 1997, 78, 4410.
– reference: M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 1992, 64, 1045.
– reference: L. H. Thomas, Proc. Cambridge Philos. Soc. 1927, 23, 542-548.
– reference: A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover, Mineola, 1996.
– reference: J. Rossmeisl, J. K. Nørskov, C. D. Taylor, M. J. Janik, M. Neurock, J. Phys. Chem. B 2006, 110, 21833-21839;
– reference: M. T. M. Koper in Modern Aspects of Electrochemistry 36 (Eds.: C. G. Vayenas, B. E. Conway, R. E. White), Springer, New York, 2002, pp. 51-130;
– reference: C. J. Cramer, D. G. Truhlar, Chem. Rev. 1999, 99, 2161-2200;
– reference: M. F. Sanner, A. J. Olson, J. Spehner, Biopolymers 1996, 38, 305-320.
– reference: D. Sheppard, R. Terrell, G. Henkelman, J. Chem. Phys. 2008, 128, 134106.
– reference: J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671.
– reference: W. Schmickler, Annu. Rep. Prog. Chem. Sect. C 1999, 95, 117-162.
– reference: M. P. Hyman, J. W. Medlin, J. Phys. Chem. B 2006, 110, 15338-15344.
– reference: W. Ho, Acc. Chem. Res. 1998, 31, 567-573.
– reference: P. Vassilev, C. Hartnig, M. T. M. Koper, F. Frechard, R. A. van Santen, J. Chem. Phys. 2001, 115, 9815;
– reference: J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401;
– reference: T. Jacob, Electrochim. Acta 2007, 52, 2229-2235;
– reference: R. B. Getman, W. F. Schneider, A. D. Smeltz, W. N. Delgass, F. H. Ribeiro, Phys. Rev. Lett. 2009, 102, 076101.
– reference: J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4, McGraw-Hill, New York, 1974.
– reference: W. C. Still, A. Tempczyk, R. C. Hawley, T. Hendrickson, J. Am. Chem. Soc. 1990, 112, 6127-6129.
– reference: C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, Wiley, New York, 2004;
– reference: J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027-2094.
– reference: D. Eisenberg, A. D. McLachlan, Nature 1986, 319, 199-203.
– reference: S. Walch, A. Dhanda, M. Aryanpour, H. Pitsch, J. Phys. Chem. C 2008, 112, 8464-8475.
– reference: T. Jacob, Fuel Cells 2006, 6, 159-181.
– reference: S. A. Wasileski, M. J. Janik, Phys. Chem. Chem. Phys. 2008, 10, 3613-3627.
– reference: G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978;
– reference: N. Marković, P. Ross, Jr. in Interfacial Electrochemistry: Theory, Experiments and Applications (Ed.: A. Wieckowski), CRC Press, New York, 1999, pp. 821-841;
– reference: K. C. Neyerlin, W. Gu, J. Jorne, H. A. Gasteiger, J. Electrochem. Soc. 2006, 153, A1955.
– reference: J. L. Gland, Surf. Sci. 1980, 93, 487-514.
– reference: L. Qi, J. Yu, J. Li, J. Chem. Phys. 2006, 125, 054701.
– reference: M. Cossi, B. Mennucci, R. Cammi, J. Comput. Chem. 1996, 17, 57-73.
– reference: T. Li, P. B. Balbuena, J. Phys. Chem. B 2001, 105, 9943-9952.
– reference: J. Roques, A. B. Anderson, J. Fuel Cell Sci. Technol. 2005, 2, 86-93.
– reference: C. D. Taylor, S. A. Wasileski, J. Filhol, M. Neurock, Phys. Rev. B 2006, 73, 165402;
– reference: F. Jensen, Introduction to Computational Chemistry, Wiley, New York, 2006;
– reference: B. E. Conway, G. Tremiliosi-Filho, G. Jerkiewicz, J. Electroanal. Chem. 1991, 297, 435-443;
– reference: T. Jacob, W. A. Goddard III, ChemPhysChem 2006, 7, 992-1005.
– reference: B. E. Conway, G. Jerkiewicz, J. Electroanal. Chem. 1992, 339, 123-146;
– reference: W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 90, Vol. 2, Cambridge University Press, Cambridge, 1996.
– reference: R. R. Nazmutdinov, M. S. Shapnik, Electrochim. Acta 1996, 41, 2253-2265;
– reference: D. Marx, ChemPhysChem 2006, 7, 1848-1870.
– reference: M. J. Buehler, Atomistic Modeling of Materials Failure, Springer, New York, 2008;
– reference: C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
– reference: J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, J. Chem. Phys. 2004, 120, 10240;
– reference: S. Venkatachalam, T. Jacob in Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics, and Durability, Vol. 5 (Eds.: W. Vielstich, H. A. Gasteiger, H. Yokokawa), Wiley, New York, 2009, pp. 133-151.
– reference: R. Adzic in Electrocatalysis (Eds.: J. Lipkowski, P. Ross, Jr.), Wiley-VCH, Weinheim, 1998, pp. 197-242;
– reference: P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
– reference: G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901;
– reference: D. R. Hartree, Proc. Cambridge Philos. Soc. 1928, 24, 111-132.
– reference: D. H. Parker, M. E. Bartram, B. E. Koel, Surf. Sci. 1989, 217, 489-510.
– reference: D. Frenkel, B. Smit, Understanding Molecular Simulation, Second Edition: From Algorithms to Applications, Academic Press, San Diego, 2001;
– reference: P. B. Balbuena, D. Altomare, L. Agapito, J. M. Seminario, J. Phys. Chem. B 2003, 107, 13671-13680.
– reference: E. Fermi, Rend. Accad. Naz. Lincei 1927, 6, 602-607;
– reference: G. Jerkiewicz, M. Alsabet, M. Grden, H. Varela, G. Tremiliosi-Filho, J. Electroanal. Chem. 2009, 625, 172-174.
– reference: T. Jacob, D. Geschke, S. Fritzsche, W.-D. Sepp, B. Fricke, J. Anton, S. Varga, Surf. Sci. 2001, 486, 194-202.
– reference: V. Fock, Z. Phys. A 1930, 61, 126-148.
– reference: D. Qiu, P. S. Shenkin, F. P. Hollinger, W. C. Still, J. Phys. Chem. A 1997, 101, 3005-3014;
– reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
– reference: T. Pang, An Introduction to Computational Physics, Cambridge University Press, Cambridge, 1997;
– reference: H. Steininger, S. Lehwald, H. Ibach, Surf. Sci. 1982, 123, 1-17.
– reference: H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, A. Nilsson, Phys. Rev. Lett. 2002, 89, 276102;
– reference: M. T. M. Koper, R. A. van Santen, M. Neurock in Catalysis and Electrocatalysis at Nanoparticle Surfaces (Eds.: A. Wieckowski, E. R. Savinova, C. G. Vayenas), Marcel Dekker, Inc. New York, 2003, pp. 1-34;
– reference: J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, G. I. Csonka, J. Chem. Phys. 2005, 123, 062201.
– reference: M. Gunnarsson, Z. Abbas, E. Ahlberg, S. Nordholm, J. Colloid Interface Sci. 2004, 274, 563-578;
– reference: Ž. Šljivančanin, B. Hammer, Surf. Sci. 2002, 515, 235-244.
– reference: P. A. Thiel, T. E. Madey, Surf. Sci. Rep. 1987, 7, 211-385.
– reference: Y. Sha, T. H. Yu, Y. Liu, B. V. Merinov, W. A. Goddard, J. Phys. Chem. Lett. 2010, 1, 856-861.
– reference: M. Alsabet, M. Grden, G. Jerkiewicz, J. Electroanal. Chem. 2006, 589, 120-127;
– reference: S. Meng, L. F. Xu, E. G. Wang, S. Gao, Phys. Rev. Lett. 2002, 89, 176104;
– reference: A. Eichler, F. Mittendorfer, J. Hafner, Phys. Rev. B 2000, 62, 4744.
– reference: M. Farebrother, M. Goledzinowski, V. I. Birss, J. Electroanal. Chem. 1991, 297, 469-488;
– reference: S. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211.
– reference: R. Jinnouchi, A. B. Anderson, Phys. Rev. B 2008, 77, 245417.
– reference: T. Jacob, W. A. Goddard, J. Am. Chem. Soc. 2004, 126, 9360-9368;
– reference: T. Jacob, J. Electroanal. Chem. 2007, 607, 158-166.
– reference: L. Ou, F. Yang, Y. Liu, S. Chen, J. Phys. Chem. C 2009, 113, 20657-20665.
– reference: Y. Okamoto, Chem. Phys. Lett. 2005, 405, 79-83.
– reference: W. Schmickler, Chem. Rev. 1996, 96, 3177-3200;
– reference: C. J. Roberts, P. G. Debenedetti, J. Chem. Phys. 1996, 105, 658.
– reference: A. D. Becke, Phys. Rev. A 1988, 38, 3098.
– reference: B. Ruscic, A. F. Wagner, L. B. Harding, R. L. Asher, D. Feller, D. A. Dixon, K. A. Peterson, Y. Song, X. Qian, C. Ng, J. Phys. Chem. A 2002, 106, 2727-2747.
– reference: J. W. Halley, P. Schelling, Y. Duan, Electrochim. Acta 2000, 46, 239-245;
– reference: R. A. Sidik, A. B. Anderson, J. Electroanal. Chem. 2002, 528, 69-76.
– reference: M. Born, R. Oppenheimer, Ann. Phys. 1927, 389, 457-484.
– reference: A. B. Anderson, T. V. Albu, J. Electrochem. Soc. 2000, 147, 4229-4238.
– reference: A. Eichler, J. Hafner, Phys. Rev. Lett. 1997, 79, 4481.
– reference: D. R. Hartree, Proc. Cambridge Philos. Soc. 1928, 24, 89-110;
– reference: Y. Xu, A. V. Ruban, M. Mavrikakis, J. Am. Chem. Soc. 2004, 126, 4717-4725.
– reference: W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
– reference: M. Lischka, C. Mosch, A. Groß, Electrochim. Acta 2007, 52, 2219-2228.
– reference: M. I. Haftel, M. Rosen, Surf. Sci. 2003, 523, 118-124;
– reference: G. Tremiliosi-Filho, G. Jerkiewicz, B. E. Conway, Langmuir 1992, 8, 658-667;
– reference: Y. J. Feng, K. P. Bohnen, C. T. Chan, Phys. Rev. B 2005, 72, 125401;
– reference: A. Panchenko, M. T. M. Koper, T. E. Shubina, S. J. Mitchell, E. Roduner, J. Electrochem. Soc. 2004, 151, A2016-A2027.
– reference: M. Bocquet, J. Cerdà, P. Sautet, Phys. Rev. B 1999, 59, 15437.
– volume: 319
  start-page: 199
  year: 1986
  end-page: 203
  publication-title: Nature
– volume: 46
  start-page: 239
  year: 2000
  end-page: 245
  publication-title: Electrochim. Acta
– start-page: 465
  year: 2003
  end-page: 480
– volume: 625
  start-page: 172
  year: 2009
  end-page: 174
  publication-title: J. Electroanal. Chem.
– volume: 274
  start-page: 563
  year: 2004
  end-page: 578
  publication-title: J. Colloid Interface Sci.
– start-page: 51
  year: 2002
  end-page: 130
– volume: 91
  start-page: 146401
  year: 2003
  publication-title: Phys. Rev. Lett.
– start-page: 133
  year: 2009
  end-page: 151
– volume: 102
  start-page: 076101
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 147
  start-page: 4229
  year: 2000
  end-page: 4238
  publication-title: J. Electrochem. Soc.
– volume: 17
  start-page: 57
  year: 1996
  end-page: 73
  publication-title: J. Comput. Chem.
– volume: 105
  start-page: 9943
  year: 2001
  end-page: 9952
  publication-title: J. Phys. Chem. B
– volume: 140
  start-page: 1133
  year: 1965
  publication-title: Phys. Rev.
– volume: 113
  start-page: 9978
  year: 2000
  publication-title: J. Chem. Phys.
– year: 2008
– volume: 523
  start-page: 118
  year: 2003
  end-page: 124
  publication-title: Surf. Sci.
– volume: 107
  start-page: 13671
  year: 2003
  end-page: 13680
  publication-title: J. Phys. Chem. B
– volume: 113
  start-page: 9901
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 128
  start-page: 134106
  year: 2008
  publication-title: J. Chem. Phys.
– start-page: 1
  year: 2003
  end-page: 34
– volume: 62
  start-page: 4744
  year: 2000
  publication-title: Phys. Rev. B
– volume: 95
  start-page: 117
  year: 1999
  end-page: 162
  publication-title: Annu. Rep. Prog. Chem. Sect. C
– volume: 405
  start-page: 79
  year: 2005
  end-page: 83
  publication-title: Chem. Phys. Lett.
– volume: 37
  start-page: 785
  year: 1988
  publication-title: Phys. Rev. B
– volume: 64
  start-page: 1045
  year: 1992
  publication-title: Rev. Mod. Phys.
– volume: 126
  start-page: 4717
  year: 2004
  end-page: 4725
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 111
  year: 1928
  end-page: 132
  publication-title: Proc. Cambridge Philos. Soc.
– volume: 110
  start-page: 15338
  year: 2006
  end-page: 15344
  publication-title: J. Phys. Chem. B
– volume: 279
  start-page: 1907
  year: 1998
  end-page: 1909
  publication-title: Science
– volume: 486
  start-page: 194
  year: 2001
  end-page: 202
  publication-title: Surf. Sci.
– volume: 79
  start-page: 4481
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 297
  start-page: 435
  year: 1991
  end-page: 443
  publication-title: J. Electroanal. Chem.
– volume: 7
  start-page: 1848
  year: 2006
  end-page: 1870
  publication-title: ChemPhysChem
– volume: 38
  start-page: 3098
  year: 1988
  publication-title: Phys. Rev. A
– volume: 1
  start-page: 856
  year: 2010
  end-page: 861
  publication-title: J. Phys. Chem. Lett.
– volume: 113
  start-page: 20657
  year: 2009
  end-page: 20665
  publication-title: J. Phys. Chem. C
– volume: 589
  start-page: 120
  year: 2006
  end-page: 127
  publication-title: J. Electroanal. Chem.
– volume: 99
  start-page: 2161
  year: 1999
  end-page: 2200
  publication-title: Chem. Rev.
– volume: 41
  start-page: 2253
  year: 1996
  end-page: 2265
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 602
  year: 1927
  end-page: 607
  publication-title: Rend. Accad. Naz. Lincei
– volume: 52
  start-page: 2229
  year: 2007
  end-page: 2235
  publication-title: Electrochim. Acta
– volume: 528
  start-page: 69
  year: 2002
  end-page: 76
  publication-title: J. Electroanal. Chem.
– volume: 515
  start-page: 235
  year: 2002
  end-page: 244
  publication-title: Surf. Sci.
– volume: 12
  start-page: 614
  year: 2010
  end-page: 620
  publication-title: Phys. Chem. Chem. Phys.
– volume: 106
  start-page: 2727
  year: 2002
  end-page: 2747
  publication-title: J. Phys. Chem. A
– volume: 123
  start-page: 062201
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: 864
  year: 1964
  publication-title: Phys. Rev.
– volume: 123
  start-page: 1
  year: 1982
  end-page: 17
  publication-title: Surf. Sci.
– volume: 389
  start-page: 457
  year: 1927
  end-page: 484
  publication-title: Ann. Phys.
– volume: 96
  start-page: 3177
  year: 1996
  end-page: 3200
  publication-title: Chem. Rev.
– volume: 6
  start-page: 159
  year: 2006
  end-page: 181
  publication-title: Fuel Cells
– volume: 125
  start-page: 054701
  year: 2006
  publication-title: J. Chem. Phys.
– start-page: 197
  year: 1998
  end-page: 242
– volume: 7
  start-page: 992
  year: 2006
  end-page: 1005
  publication-title: ChemPhysChem
– volume: 126
  start-page: 9360
  year: 2004
  end-page: 9368
  publication-title: J. Am. Chem. Soc.
– volume: 72
  start-page: 125401
  year: 2005
  publication-title: Phys. Rev. B
– year: 2001
– volume: 151
  start-page: 2016
  year: 2004
  end-page: 2027
  publication-title: J. Electrochem. Soc.
– volume: 89
  start-page: 276102
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 3613
  year: 2008
  end-page: 3627
  publication-title: Phys. Chem. Chem. Phys.
– volume: 153
  start-page: 1955
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 77
  start-page: 245417
  year: 2008
  publication-title: Phys. Rev. B
– volume: 31
  start-page: 567
  year: 1998
  end-page: 573
  publication-title: Acc. Chem. Res.
– volume: 217
  start-page: 489
  year: 1989
  end-page: 510
  publication-title: Surf. Sci.
– volume: 23
  start-page: 542
  year: 1927
  end-page: 548
  publication-title: Proc. Cambridge Philos. Soc.
– volume: 112
  start-page: 6127
  year: 1990
  end-page: 6129
  publication-title: J. Am. Chem. Soc.
– start-page: 821
  year: 1999
  end-page: 841
– volume: 93
  start-page: 487
  year: 1980
  end-page: 514
  publication-title: Surf. Sci.
– volume: 73
  start-page: 165402
  year: 2006
  publication-title: Phys. Rev. B
– volume: 300
  start-page: 71
  year: 2002
  end-page: 75
  publication-title: Phys. Lett. A
– volume: 59
  start-page: 15437
  year: 1999
  publication-title: Phys. Rev. B
– volume: 89
  start-page: 176104
  year: 2002
  publication-title: Phys. Rev. Lett.
– year: 2004
– volume: 101
  start-page: 3005
  year: 1997
  end-page: 3014
  publication-title: J. Phys. Chem. A
– year: 1997
– volume: 297
  start-page: 469
  year: 1991
  end-page: 488
  publication-title: J. Electroanal. Chem.
– volume: 2
  start-page: 86
  year: 2005
  end-page: 93
  publication-title: J. Fuel Cell Sci. Technol.
– volume: 24
  start-page: 89
  year: 1928
  end-page: 110
  publication-title: Proc. Cambridge Philos. Soc.
– volume: 58
  start-page: 1200
  year: 1980
  end-page: 1211
  publication-title: Can. J. Phys.
– volume: 94
  start-page: 2027
  year: 1994
  end-page: 2094
  publication-title: Chem. Rev.
– volume: 38
  start-page: 305
  year: 1996
  end-page: 320
  publication-title: Biopolymers
– volume: 7
  start-page: 211
  year: 1987
  end-page: 385
  publication-title: Surf. Sci. Rep.
– volume: 607
  start-page: 158
  year: 2007
  end-page: 166
  publication-title: J. Electroanal. Chem.
– volume: 115
  start-page: 9815
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 120
  start-page: 10240
  year: 2004
  publication-title: J. Chem. Phys.
– year: 1996
– volume: 78
  start-page: 4410
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 61
  start-page: 126
  year: 1930
  end-page: 148
  publication-title: Z. Phys. A
– volume: 339
  start-page: 123
  year: 1992
  end-page: 146
  publication-title: J. Electroanal. Chem.
– volume: 46
  start-page: 6671
  year: 1992
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 658
  year: 1992
  end-page: 667
  publication-title: Langmuir
– volume: 110
  start-page: 21833
  year: 2006
  end-page: 21839
  publication-title: J. Phys. Chem. B
– volume: 105
  start-page: 658
  year: 1996
  publication-title: J. Chem. Phys.
– year: 2006
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 1451
  year: 2004
  end-page: 1459
  publication-title: Electrochim. Acta
– year: 1974
– volume: 52
  start-page: 2219
  year: 2007
  end-page: 2228
  publication-title: Electrochim. Acta
– volume: 112
  start-page: 8464
  year: 2008
  end-page: 8475
  publication-title: J. Phys. Chem. C
– ident: e_1_2_7_75_2
  doi: 10.1149/1.1394046
– ident: e_1_2_7_74_2
  doi: 10.1103/PhysRevB.59.15437
– ident: e_1_2_7_76_2
  doi: 10.1021/jp0118219
– ident: e_1_2_7_97_2
  doi: 10.1126/science.279.5358.1907
– ident: e_1_2_7_49_2
  doi: 10.1063/1.1413515
– ident: e_1_2_7_68_2
  doi: 10.1016/S0039-6028(01)01046-9
– ident: e_1_2_7_61_2
  doi: 10.1021/cr940408c
– ident: e_1_2_7_85_2
  doi: 10.1002/fuce.200500201
– ident: e_1_2_7_32_2
– ident: e_1_2_7_29_2
  doi: 10.1139/p80-159
– ident: e_1_2_7_81_2
  doi: 10.1021/ja031701
– ident: e_1_2_7_38_2
  doi: 10.1021/cr00031a013
– volume: 49
  start-page: 1451
  year: 2004
  ident: e_1_2_7_107_2
  publication-title: Electrochim. Acta
– ident: e_1_2_7_26_2
  doi: 10.1103/PhysRevA.38.3098
– ident: e_1_2_7_46_2
– volume: 6
  start-page: 602
  year: 1927
  ident: e_1_2_7_20_2
  publication-title: Rend. Accad. Naz. Lincei
– ident: e_1_2_7_27_2
  doi: 10.1103/PhysRevB.46.6671
– ident: e_1_2_7_37_2
  doi: 10.1021/cr960149m
– volume-title: Introduction to Computational Chemistry
  year: 2006
  ident: e_1_2_7_5_2
– ident: e_1_2_7_12_2
  doi: 10.1002/andp.19273892002
– ident: e_1_2_7_102_2
– ident: e_1_2_7_16_2
  doi: 10.1007/BF01340294
– ident: e_1_2_7_25_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_82_2
  doi: 10.1016/j.cplett.2005.02.018
– ident: e_1_2_7_78_2
  doi: 10.1016/S0039-6028(02)01908-8
– ident: e_1_2_7_94_2
  doi: 10.1021/jz9003153
– ident: e_1_2_7_98_2
  doi: 10.1021/ar9501784
– ident: e_1_2_7_1_2
– ident: e_1_2_7_101_2
  doi: 10.1149/1.2266294
– ident: e_1_2_7_104_2
  doi: 10.1103/PhysRevLett.89.176104
– ident: e_1_2_7_48_2
  doi: 10.1016/S0013-4686(00)00578-8
– ident: e_1_2_7_84_2
  doi: 10.1021/jp061813y
– volume-title: Essentials of Computational Chemistry: Theories and Models
  year: 2004
  ident: e_1_2_7_3_2
– ident: e_1_2_7_63_2
  doi: 10.1002/cphc.200600128
– ident: e_1_2_7_13_2
– ident: e_1_2_7_52_2
  doi: 10.1063/1.1737365
– ident: e_1_2_7_23_2
  doi: 10.1103/PhysRevLett.91.146401
– ident: e_1_2_7_19_2
– ident: e_1_2_7_90_2
  doi: 10.1039/b803157f
– ident: e_1_2_7_51_2
  doi: 10.1103/PhysRevB.72.125401
– volume-title: Quantum Theory of Molecules and Solids, Vol. 4
  year: 1974
  ident: e_1_2_7_28_2
– ident: e_1_2_7_44_2
  doi: 10.1021/ja00172a038
– ident: e_1_2_7_77_2
  doi: 10.1016/S0022-0728(02)00851-3
– ident: e_1_2_7_92_2
  doi: 10.1021/jp9059505
– ident: e_1_2_7_40_2
  doi: 10.1038/319199a0
– ident: e_1_2_7_73_2
  doi: 10.1103/PhysRevB.62.4744
– ident: e_1_2_7_67_2
  doi: 10.1016/S0375-9601(02)00788-0
– ident: e_1_2_7_34_2
  doi: 10.1063/1.1329672
– volume-title: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
  year: 1996
  ident: e_1_2_7_7_2
– ident: e_1_2_7_39_2
  doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
– ident: e_1_2_7_71_2
  doi: 10.1016/0039-6028(89)90443-3
– ident: e_1_2_7_106_2
  doi: 10.1021/jp013909s
– ident: e_1_2_7_69_2
  doi: 10.1016/0039-6028(80)90278-2
– ident: e_1_2_7_95_2
  doi: 10.1103/PhysRevLett.78.4410
– ident: e_1_2_7_113_2
  doi: 10.1016/j.jelechem.2008.10.015
– ident: e_1_2_7_86_2
  doi: 10.1016/j.electacta.2006.03.113
– ident: e_1_2_7_22_2
– ident: e_1_2_7_57_2
  doi: 10.1016/j.jelechem.2007.03.023
– start-page: 1
  volume-title: Catalysis and Electrocatalysis at Nanoparticle Surfaces
  year: 2003
  ident: e_1_2_7_60_2
– ident: e_1_2_7_2_2
  doi: 10.1007/978-0-387-76426-9
– ident: e_1_2_7_30_2
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_7_103_2
  doi: 10.1021/ja049920y
– ident: e_1_2_7_17_2
  doi: 10.1103/PhysRev.136.B864
– ident: e_1_2_7_80_2
  doi: 10.1149/1.1809586
– ident: e_1_2_7_66_2
  doi: 10.1002/cphc.200500613
– ident: e_1_2_7_50_2
  doi: 10.1016/S0039-6028(02)02453-6
– ident: e_1_2_7_8_2
– ident: e_1_2_7_56_2
  doi: 10.1021/jp0631735
– ident: e_1_2_7_43_2
  doi: 10.1021/jp961992r
– ident: e_1_2_7_64_2
  doi: 10.1103/RevModPhys.64.1045
– ident: e_1_2_7_62_2
  doi: 10.1039/pc095117
– ident: e_1_2_7_15_2
  doi: 10.1017/S0305004100011920
– ident: e_1_2_7_35_2
  doi: 10.1063/1.2841941
– ident: e_1_2_7_41_2
  doi: 10.1002/(SICI)1096-987X(19960115)17:1<57::AID-JCC6>3.0.CO;2-#
– ident: e_1_2_7_54_2
  doi: 10.1103/PhysRevB.73.165402
– ident: e_1_2_7_42_2
– start-page: 821
  volume-title: Interfacial Electrochemistry: Theory, Experiments and Applications
  year: 1999
  ident: e_1_2_7_10_2
– ident: e_1_2_7_100_2
  doi: 10.1016/0167-5729(87)90001-X
– ident: e_1_2_7_45_2
  doi: 10.1063/1.471922
– volume-title: Numerical Recipes in Fortran 90, Vol. 2
  year: 1996
  ident: e_1_2_7_31_2
– ident: e_1_2_7_89_2
  doi: 10.1021/jp7114127
– volume-title: Understanding Molecular Simulation, Second Edition: From Algorithms to Applications
  year: 2001
  ident: e_1_2_7_4_2
– ident: e_1_2_7_18_2
  doi: 10.1103/PhysRev.140.A1133
– ident: e_1_2_7_65_2
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_7_91_2
  doi: 10.1103/PhysRevLett.102.076101
– ident: e_1_2_7_58_2
– ident: e_1_2_7_105_2
  doi: 10.1103/PhysRevLett.89.276102
– ident: e_1_2_7_21_2
  doi: 10.1017/S0305004100011683
– ident: e_1_2_7_112_2
  doi: 10.1016/j.jelechem.2006.01.022
– ident: e_1_2_7_53_2
  doi: 10.1016/j.jcis.2003.12.053
– ident: e_1_2_7_108_2
  doi: 10.1016/0022-0728(92)80448-D
– ident: e_1_2_7_83_2
  doi: 10.1115/1.1867972
– ident: e_1_2_7_55_2
  doi: 10.1016/j.electacta.2006.03.114
– ident: e_1_2_7_88_2
  doi: 10.1103/PhysRevB.77.245417
– start-page: 465
  volume-title: Handbook of Fuel Cells: Fundamentals, Technology, Applications
  year: 2003
  ident: e_1_2_7_11_2
– ident: e_1_2_7_110_2
  doi: 10.1016/0022-0728(91)80039-S
– ident: e_1_2_7_72_2
  doi: 10.1103/PhysRevLett.79.4481
– ident: e_1_2_7_24_2
  doi: 10.1063/1.1904565
– ident: e_1_2_7_33_2
  doi: 10.1063/1.1323224
– volume-title: An Introduction to Computational Physics
  year: 1997
  ident: e_1_2_7_6_2
– ident: e_1_2_7_96_2
– ident: e_1_2_7_93_2
  doi: 10.1039/b914570b
– ident: e_1_2_7_109_2
  doi: 10.1021/la00038a059
– ident: e_1_2_7_14_2
  doi: 10.1017/S0305004100011919
– start-page: 51
  volume-title: Modern Aspects of Electrochemistry 36
  year: 2002
  ident: e_1_2_7_59_2
– ident: e_1_2_7_70_2
  doi: 10.1016/0039-6028(82)90124-8
– ident: e_1_2_7_87_2
  doi: 10.1063/1.2227388
– ident: e_1_2_7_47_2
  doi: 10.1016/0013-4686(96)00053-9
– ident: e_1_2_7_111_2
  doi: 10.1016/0022-0728(91)80042-O
– start-page: 197
  volume-title: Electrocatalysis
  year: 1998
  ident: e_1_2_7_9_2
– ident: e_1_2_7_79_2
  doi: 10.1021/jp035729j
– ident: e_1_2_7_36_2
– start-page: 133
  volume-title: Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics, and Durability, Vol. 5
  year: 2009
  ident: e_1_2_7_99_2
SSID ssj0008071
Score 2.4118004
SecondaryResourceType review_article
Snippet Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2779
SubjectTerms Chemistry
computer chemistry
Computer Simulation
density functional calculations
Electrochemistry
electrode potentials
Electrodes
Exact sciences and technology
General and physical chemistry
Oxidation-Reduction
Oxygen - chemistry
oxygen reduction
Platinum - chemistry
Quantum Theory
Surface Properties
Title Theoretical Investigations of the Oxygen Reduction Reaction on Pt(111)
URI https://api.istex.fr/ark:/67375/WNG-LXGC09BG-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201000286
https://www.ncbi.nlm.nih.gov/pubmed/20726030
https://www.proquest.com/docview/754003885
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VcGgvlFfBFNAeENCDYeO3j63VJEK8hEDNbbUvCylVEpFEgv56ZryxQyqqSiD5YMs7knd2dvcb77ffAhyYvOSlJCqOjEI_KlvKl8TMwZlS5XFqW6ZS27-4TLp30Vkv7r3Yxe_0IZofbtQzqvGaOrhU49O5aKge3euKmkVpA2luE2GLUNHNXD8q4y7jimi5MwjjWrWRB6eL5guz0jI5-JFYknKMjirdCRevQdBFRFtNSe3PIOvKOCZK_2Q6USf6z186j--p7SqszPAq--4CbA0-2ME6fCzqY-I2oH073wrJXqh2YDSzYckQX7KrxycMU3ZDKrH0Au_cdgqG1_XkGAfCb5tw1_55W3T92eEMvo7SLPEDZTlRV3UrkUEiuVSZDQzXpkRAaRQ-Sc6VyimDbCkEXTbTSRZG2lISqlX4BZYGw4HdBhbiqJlIE2FhHZWBUdXioMm4KXWexNoDv24coWfK5XSAxm_hNJcDQd4RjXc8OGrKj5xmxz9LHlZt3RSTD31iuqWx-HXZEee9TsHzHx3R8WB_IRgaAwSkIUI47gGro0NgA9CqixzY4XQsUsTEJLkTe7DlomZuzFNMJ0M0Dqq2_8_XiuK6WzRPO28x-gqfHP0hx_l3F5YmD1O7h6hqovarnvMMp7AVsA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONBLW_qAlEJ9qPo4BLx55whRd7ewbBFaVG6WXxES1S6CXYn21zNjb7Js1apSK-WQKB4pscf2N_bnbwDembLmtSQqjkziMKk7KpTEzMGZUpVpbjvGqe2fDLP-eXJ0kTZsQjoL4_Uh2gU36hluvKYOTgvS-wvVUH19qR03i-KG7BGsUVpvF1WdLRSkCu5jroQ2PKM4bXQbebS_bL80L61RFd8RT1LeYlXVPsfF70DoMqZ1k1L3KajmdzwX5WpvNlV7-ucvSo__9b_P4MkcsrID72MbsGLHz2G9ajLFvYDuaHEakj0Q7kCHZpOaIcRkX-9-oKeyMxKKpRd4509UMLxOpx9xLPz0Es67n0dVP5znZwh1khdZGCnLib2qO5mMMsmlKmxkuDY1Ykqj8ElyrlRJQWRHIe6yhc6KONGW4lCt4lewOp6M7RawGAfOTJoEC-ukjoxy-4Om4KbWZZbqAMKmdYSei5dTDo3vwssuR4JqR7S1E8CHtvy1l-34Y8n3rrHbYvLmishueSq-DXticNGreHnYE70Adpe8oTVATBojiuMBsMY9BDYAbbzIsZ3MbkWOsJhUd9IANr3bLIx5jhFljMaRa_y_fK2oTvtV-_T6X4zewnp_dDIQgy_D42147NkQJU7Hb2B1ejOzOwiypmrXdaN7AysZyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKwEX3g_zKD4gHge3G3u9to_gkgQoIapaNbfVPoVUlERtIhV-PTPe2GkQCAkkH2x5R_LOzO584539FuCFrTzzikpxFM8S7ns6UVSZg5FSV3nherZh2_88EsNj_nGSTy7t4g_8EN0PNxoZzXxNA3xu_d6aNNTMv5qmNIvSBnEVtrlgJfn1_uGaQKpkIeXitN6ZZnlL28jSvU35jbC0TRq-oDJJdY6a8uGIi99h0E1I28Sk_i1QbW9CKcrp7nKhd82PX4ge_6e7t-HmCrDGb4OH3YErbnoXrtftOXH3oH-03gsZX6LtQHeOZz5GgBl_ufiOfhofEk0svcC7sJ8ixmu8eI0z4Zv7cNx_f1QPk9XpDInhRSmSVDtGtaumJ1QqFFO6dKllxnpElFbjk2JM64pSyJ5G1OVKI8qMG0dZqNHZA9iazqbuEcQZTptCWY6NDfep1c3qoC2Z9aYSuYkgaY0jzYq6nE7Q-CYD6XIqSTuy004Er7r280Da8ceWLxtbd83U2SmVuhW5PBkN5MFkULPq3UAOItjZcIZOABFphhiORRC33iHRALTsoqZutjyXBYJi4tzJI3gYvGYtzArMJzMUThvb_-VrZT0e1t3T438Reg7Xxvt9efBh9OkJ3AilEBXG4qewtThbumeIsBZ6pxlEPwGy0xiD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Investigations+of+the+Oxygen+Reduction+Reaction+on+Pt%28111%29&rft.jtitle=Chemphyschem&rft.au=Keith%2C+John+A.&rft.au=Jerkiewicz%2C+Gregory&rft.au=Jacob%2C+Timo&rft.date=2010-09-10&rft.pub=WILEY-VCH+Verlag&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=11&rft.issue=13&rft.spage=2779&rft.epage=2794&rft_id=info:doi/10.1002%2Fcphc.201000286&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_LXGC09BG_G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon