Co‐culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells
Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentia...
Saved in:
Published in | Journal of cellular and molecular medicine Vol. 14; no. 1‐2; pp. 337 - 350 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2010
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N‐succinimidyl ester (CFSE). Co‐culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34+CD38− fraction. Without co‐culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up‐regulated after some cell divisions and then diminished in fast proliferating cells. Co‐culture with MSC maintained a primitive immunophenotype (CD34+, CD133+ and CD38−) for more population doublings, whereas up‐regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen‐activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long‐term culture initiating cells. siRNA knockdown of N‐cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self‐renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC–MSC interaction might further enhance cord blood expansion on MSC. |
---|---|
AbstractList | Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34...CD38... fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Coculture with MSC maintained a primitive immunophenotype (CD34..., CD133... and CD38-) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of Ncadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC. (ProQuest: ... denotes formulae/symbols omitted.) Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34(+)CD38(-) fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34(+), CD133(+) and CD38(-)) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC. Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34(+)CD38(-) fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34(+), CD133(+) and CD38(-)) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC.Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34(+)CD38(-) fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34(+), CD133(+) and CD38(-)) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC. Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34+CD38− fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34+, CD133+ and CD38−) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC–MSC interaction might further enhance cord blood expansion on MSC. Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N ‐succinimidyl ester (CFSE). Co‐culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34 + CD38 − fraction. Without co‐culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up‐regulated after some cell divisions and then diminished in fast proliferating cells. Co‐culture with MSC maintained a primitive immunophenotype (CD34 + , CD133 + and CD38 − ) for more population doublings, whereas up‐regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen‐activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long‐term culture initiating cells. siRNA knockdown of N‐cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self‐renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC–MSC interaction might further enhance cord blood expansion on MSC. |
Author | Eckstein, Volker Ho, Anthony D. Saffrich, Rainer Diehlmann, Anke Wein, Frederik Bork, Simone Walenda, Thomas Horn, Patrick Wagner, Wolfgang |
Author_xml | – sequence: 1 givenname: Thomas surname: Walenda fullname: Walenda, Thomas – sequence: 2 givenname: Simone surname: Bork fullname: Bork, Simone – sequence: 3 givenname: Patrick surname: Horn fullname: Horn, Patrick – sequence: 4 givenname: Frederik surname: Wein fullname: Wein, Frederik – sequence: 5 givenname: Rainer surname: Saffrich fullname: Saffrich, Rainer – sequence: 6 givenname: Anke surname: Diehlmann fullname: Diehlmann, Anke – sequence: 7 givenname: Volker surname: Eckstein fullname: Eckstein, Volker – sequence: 8 givenname: Anthony D. surname: Ho fullname: Ho, Anthony D. – sequence: 9 givenname: Wolfgang surname: Wagner fullname: Wagner, Wolfgang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19432817$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAQxy1URNuFV0ARHDht8NfazgEktKJ8qBUXOFuOM-l6ldiL7bTdG4_QZ-RJSLrLApUQ-DIjzX9-ntH8T9GRDx4QKgguyfherkuyUHTOK8ZLinFVYiylKG8eoJND4WifE8XUMTpNaY0xE4RVj9AxqTijisgTdLUM37_d2qHLQ4Ti2uVV0UMCb1fb3nRFyjFM0ULXpcJ5G8EkSMUmhs61EE12wRfGN0VvnM_gjbdQhLZYGehNDpvgIDs76S_BuxziDvUYPWxNl-DJPs7Ql7O3n5fv5-ef3n1YvjmfWy6VmBODqSAVa0QtFCdWklpCwxU1QIUUVLU1MN5Q0lpllFTYKD7WuSFc1AoMm6HXO-5mqHtoLPgcTac30fUmbnUwTv9Z8W6lL8OVZoqNfDoCXuwBMXwdIGXduzStYDyEIWnJ2KIivJKj8vk95ToM0Y_baYblohKUjQeYoWd_U1EiiZKCT6inv099GPfn2X6tZWNIKUKrrct3txiXcJ0mWE8-0Ws9WUBPdtCTT_SdT_TNCFD3AIc__t36atd67TrY_nef_ri8uBgz9gPdXdg6 |
CitedBy_id | crossref_primary_10_1111_resp_12112 crossref_primary_10_1016_j_fct_2023_114030 crossref_primary_10_1016_j_intimp_2020_107292 crossref_primary_10_1089_ten_tec_2011_0541 crossref_primary_10_1155_2012_175979 crossref_primary_10_1016_j_exphem_2016_02_004 crossref_primary_10_1002_cyto_a_23506 crossref_primary_10_1016_j_snb_2018_08_037 crossref_primary_10_1016_j_gene_2012_03_028 crossref_primary_10_3390_ijms25052771 crossref_primary_10_3892_ol_2018_9681 crossref_primary_10_3390_ijms20081985 crossref_primary_10_1007_s12288_022_01576_4 crossref_primary_10_1016_j_exphem_2012_12_002 crossref_primary_10_1371_journal_pone_0128231 crossref_primary_10_1186_s13287_023_03497_z crossref_primary_10_3389_fimmu_2016_00502 crossref_primary_10_1016_j_exphem_2011_02_011 crossref_primary_10_2217_rme_15_13 crossref_primary_10_1002_biot_201400758 crossref_primary_10_1002_biot_201100350 crossref_primary_10_1179_1607845412Y_0000000030 crossref_primary_10_1002_path_4122 crossref_primary_10_1016_j_vetimm_2017_08_002 crossref_primary_10_1007_s00109_012_0915_y crossref_primary_10_1089_scd_2010_0456 crossref_primary_10_1186_s13287_015_0194_y crossref_primary_10_26508_lsa_201800153 crossref_primary_10_1038_srep03372 crossref_primary_10_1371_journal_pone_0018012 crossref_primary_10_3389_fcell_2021_730804 crossref_primary_10_1002_term_1486 crossref_primary_10_1155_2023_1068405 crossref_primary_10_1016_j_brainres_2017_07_005 crossref_primary_10_1016_j_jcyt_2013_07_007 crossref_primary_10_1016_j_biomaterials_2011_11_034 crossref_primary_10_1002_biot_201700088 crossref_primary_10_1038_s44222_023_00077_x crossref_primary_10_1007_s12519_013_0425_1 crossref_primary_10_1134_S1607672918020047 crossref_primary_10_3390_ijms17071009 crossref_primary_10_1016_j_coi_2011_05_007 crossref_primary_10_1002_term_1885 crossref_primary_10_1007_s12015_016_9702_4 crossref_primary_10_1007_s10517_017_3843_6 crossref_primary_10_1007_s00441_015_2348_8 crossref_primary_10_13005_bbra_2526 crossref_primary_10_1016_j_scr_2013_07_010 crossref_primary_10_2174_1566523221666210519111933 crossref_primary_10_1089_scd_2015_0182 crossref_primary_10_3390_cells8121628 crossref_primary_10_1016_j_actbio_2018_04_024 crossref_primary_10_15406_atroa_2017_02_00042 crossref_primary_10_1016_j_biomaterials_2012_06_029 crossref_primary_10_1089_ten_tec_2016_0404 crossref_primary_10_1186_1756_8722_7_29 crossref_primary_10_1016_j_ijpharm_2016_07_079 crossref_primary_10_1016_j_yexcr_2017_11_007 crossref_primary_10_23868_gc120484 crossref_primary_10_1007_s10517_017_3662_9 crossref_primary_10_1038_srep15680 crossref_primary_10_1002_mabi_201700054 crossref_primary_10_1002_ijc_26318 crossref_primary_10_1039_C5RA13332G crossref_primary_10_1186_s13287_020_02048_0 crossref_primary_10_3390_ani11071883 crossref_primary_10_1016_j_jcyt_2015_12_005 crossref_primary_10_1016_j_yexcr_2011_11_001 crossref_primary_10_1016_j_jcyt_2015_03_607 crossref_primary_10_1155_2017_6720594 crossref_primary_10_1016_j_cdev_2023_203845 crossref_primary_10_1186_s13287_018_0982_2 crossref_primary_10_1002_stem_627 crossref_primary_10_1016_j_canlet_2012_07_014 crossref_primary_10_1007_s00277_015_2550_5 crossref_primary_10_1083_jcb_202005085 crossref_primary_10_1016_j_biomaterials_2024_122882 crossref_primary_10_4252_wjsc_v13_i10_1360 crossref_primary_10_3390_ma13245609 crossref_primary_10_1371_journal_pcbi_1003599 crossref_primary_10_1002_jcb_28797 crossref_primary_10_1016_j_jbiosc_2018_10_017 crossref_primary_10_1038_cmi_2015_40 crossref_primary_10_1016_j_genrep_2019_100490 crossref_primary_10_1155_2018_4527929 crossref_primary_10_1016_j_exphem_2024_104686 crossref_primary_10_1186_s13287_022_02875_3 crossref_primary_10_1039_C5TB02575C crossref_primary_10_1002_jcp_23019 crossref_primary_10_3390_cells12020250 crossref_primary_10_1002_adhm_202100016 crossref_primary_10_1021_acsbiomaterials_7b00644 crossref_primary_10_1007_s11033_023_09041_9 crossref_primary_10_3390_jcm3010088 crossref_primary_10_2478_s11658_012_0036_1 crossref_primary_10_3389_fbioe_2022_1049965 crossref_primary_10_1371_journal_pone_0197233 crossref_primary_10_1186_s13045_016_0273_2 crossref_primary_10_1007_s00441_013_1759_7 crossref_primary_10_1016_j_exphem_2010_10_010 crossref_primary_10_1039_C6BM00191B crossref_primary_10_1186_s13148_019_0617_1 crossref_primary_10_1002_cbin_11885 crossref_primary_10_3389_fbioe_2022_892661 crossref_primary_10_1186_1479_5876_10_23 crossref_primary_10_18632_oncotarget_7690 crossref_primary_10_1016_j_jceh_2021_03_010 crossref_primary_10_1016_j_biomaterials_2022_121568 crossref_primary_10_1038_srep09370 crossref_primary_10_1016_j_addr_2019_04_003 crossref_primary_10_1016_j_reth_2023_04_004 crossref_primary_10_1016_j_msec_2018_11_077 crossref_primary_10_15171_apb_2017_065 crossref_primary_10_1016_j_stem_2021_05_008 crossref_primary_10_1089_ten_tec_2016_0329 |
Cites_doi | 10.1182/blood-2006-05-025098 10.1159/000128956 10.1182/blood.V98.9.2615 10.1016/j.exphem.2006.10.003 10.1196/annals.1392.005 10.1182/blood.V74.5.1563.1563 10.1182/blood-2005-08-3139 10.1182/blood.V92.4.1142.416k42_1142_1149 10.1016/j.exphem.2005.07.003 10.1089/scd.2006.15.815 10.1182/blood.V90.2.641 10.1634/stemcells.2006-0513 10.1080/14653240600855905 10.1038/sj.leu.2404777 10.1182/blood-2006-11-060632 10.1084/jem.188.6.1117 10.1182/blood-2007-02-071761 10.1182/blood.V64.2.393.393 10.1002/jcp.1041570318 10.1038/sj.bmt.1705258 10.1016/0022-1759(94)90236-4 10.1182/blood.V97.7.1975 10.1016/j.exphem.2007.05.016 10.1084/jem.171.2.477 10.1182/blood-2003-10-3423 10.1371/journal.pone.0005846 10.1038/nri1779 10.1152/ajplung.00472.2006 10.1083/jcb.200702080 10.1073/pnas.90.20.9374 10.1182/blood.V91.1.111 10.1038/sj.bmt.1705538 10.1002/jlb.60.5.579 10.1016/S0301-472X(03)00024-9 10.1182/blood-2006-06-026427 10.1182/blood-2005-05-2023 10.1016/S0301-472X(98)00082-4 10.1089/ten.tec.2008.0060 10.1002/cyto.a.20437 10.1089/ten.2006.12.2161 10.1016/j.exphem.2006.10.015 10.1007/s12015-007-9001-1 10.1073/pnas.0703082104 10.1634/stemcells.2007-0280 10.1089/scd.2007.0273 10.1016/j.exger.2005.07.006 10.1159/000112821 10.1074/jbc.272.37.23366 10.1084/jem.173.3.599 10.1182/blood.V94.8.2595.420k37_2595_2604 10.1182/blood-2004-02-0511 10.1182/blood-2002-12-3647 10.1016/j.exphem.2005.03.017 10.1111/j.1582-4934.2008.00457.x 10.1634/stemcells.2004-0361 10.1038/nature02041 10.1089/scd.2008.0143 10.1002/stem.170019 10.1182/blood.V99.2.719 10.1038/sj.onc.1203461 10.1073/pnas.86.10.3828 10.1182/blood-2003-10-3611 10.1182/blood-2007-11-122119 10.1182/blood.V95.3.855.003k41_855_862 10.1016/j.stem.2008.01.017 10.1371/journal.pone.0002213 10.1182/blood.V66.2.327.327 10.1634/stemcells.20-6-573 10.1097/MOH.0b013e3281900f12 |
ContentType | Journal Article |
Copyright | 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd Copyright Blackwell Publishing Ltd. Jan/Feb 2010 2010. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009 |
Copyright_xml | – notice: 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd – notice: Copyright Blackwell Publishing Ltd. Jan/Feb 2010 – notice: 2010. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 3V. 7QP 7TK 7X7 7XB 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ LK8 M0S M1P M2P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1111/j.1582-4934.2009.00776.x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Proquest Medical Database Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1582-4934 |
EndPage | 350 |
ExternalDocumentID | PMC3837622 2013817031 19432817 10_1111_j_1582_4934_2009_00776_x JCMM776 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US Germany |
GeographicLocations_xml | – name: United States--US – name: Germany |
GroupedDBID | --- 0R~ 1OC 24P 29K 31~ 36B 3V. 4.4 53G 5GY 5VS 7X7 8-0 8-1 88E 88I 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AAHHS AAZKR ABUWG ACCFJ ACCMX ACGFS ACGOD ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AFZJQ AHMBA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 D-9 D-I DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN F5P FYUFA GNUQQ GODZA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ IAO IHR ITC KQ8 LH4 LK8 LW6 M1P M2P M48 M7P O9- OIG OK1 OVD OVEED PIMPY PQQKQ PROAC PSQYO Q2X RNS ROL RPM SV3 TEORI UKHRP WIN AAYXX ABJNI CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB K9. 7QP 7TK 7XB 8FD 8FK FR3 P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4786-1a026193d6b6841c71b7ed482ae267628fbe34d21fc8a8780a84ed44a146b8ea3 |
IEDL.DBID | M48 |
ISSN | 1582-1838 1582-4934 |
IngestDate | Thu Aug 21 13:15:46 EDT 2025 Fri Jul 11 10:23:55 EDT 2025 Wed Aug 13 07:13:36 EDT 2025 Fri Jul 25 03:10:21 EDT 2025 Mon Jul 21 05:38:20 EDT 2025 Tue Jul 01 01:34:47 EDT 2025 Thu Apr 24 22:54:46 EDT 2025 Wed Jan 22 16:15:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1‐2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4786-1a026193d6b6841c71b7ed482ae267628fbe34d21fc8a8780a84ed44a146b8ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3075962300?pq-origsite=%requestingapplication% |
PMID | 19432817 |
PQID | 3075962300 |
PQPubID | 27880 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3837622 proquest_miscellaneous_733591497 proquest_journals_3075962300 proquest_journals_217187647 pubmed_primary_19432817 crossref_citationtrail_10_1111_j_1582_4934_2009_00776_x crossref_primary_10_1111_j_1582_4934_2009_00776_x wiley_primary_10_1111_j_1582_4934_2009_00776_x_JCMM776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January‐February 2010 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: January‐February 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Bucharest – name: Chichester |
PublicationTitle | Journal of cellular and molecular medicine |
PublicationTitleAlternate | J Cell Mol Med |
PublicationYear | 2010 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | 2007; 39 2007; 104 1984; 64 1989; 86 1994; 171 1997; 272 2007; 188 2002; 99 2006; 37 2000; 95 2008; 35 2007; 1106 2008; 5 2007; 71 1985; 66 2008; 2 2007; 109 2007; 35 2005; 23 1989; 74 1997; 90 2000; 19 2007; 292 1999; 17 2007; 177 1996; 60 1990; 171 1998; 92 1998; 91 2007; 3 1999; 94 2008; 111 2007; 21 2005; 33 2007; 25 2001; 97 2001; 98 1998; 26 1991; 173 2004; 104 2004; 103 2006; 12 2008; 18 1999; 27 2006; 15 2008; 14 2005; 40 2006; 8 2008; 12 2006; 6 1993; 90 2007; 10 2003; 31 2007; 14 2006; 108 2003; 425 2002; 20 2007; 110 2009; 4 1998; 188 1993; 157 2006; 107 2003; 101 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_70_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 Gan OI (e_1_2_6_71_2) 1997; 90 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_40_2 Thiemann FT (e_1_2_6_31_2) 1998; 26 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_67_2 e_1_2_6_25_2 e_1_2_6_46_2 18074246 - Stem Cell Rev. 2007 Dec;3(4):239-48 10734309 - Oncogene. 2000 Mar 16;19(12):1500-8 11264161 - Blood. 2001 Apr 1;97(7):1975-81 15090461 - Blood. 2004 Aug 1;104(3):675-86 18202223 - Blood. 2008 Apr 1;111(7):3415-23 9657136 - Exp Hematol. 1998 Jul;26(7):612-9 12691922 - Exp Hematol. 2003 Apr;31(4):339-47 1997648 - J Exp Med. 1991 Mar 1;173(3):599-607 7504678 - J Cell Physiol. 1993 Dec;157(3):579-86 17615262 - Stem Cells. 2007 Oct;25(10):2638-47 17322278 - Am J Physiol Lung Cell Mol Physiol. 2007 Jun;292(6):L1385-95 11675329 - Blood. 2001 Nov 1;98(9):2615-25 9694701 - Blood. 1998 Aug 15;92(4):1142-9 2406365 - J Exp Med. 1990 Feb 1;171(2):477-88 16923606 - Cytotherapy. 2006;8(4):315-7 6743824 - Blood. 1984 Aug;64(2):393-9 14574412 - Nature. 2003 Oct 23;425(6960):836-41 18471070 - Stem Cells Dev. 2009 Jan-Feb;18(1):173-86 9743530 - J Exp Med. 1998 Sep 21;188(6):1117-24 12456965 - Stem Cells. 2002;20(6):573-82 9226164 - Blood. 1997 Jul 15;90(2):641-50 2566997 - Proc Natl Acad Sci U S A. 1989 May;86(10):3828-32 17536016 - Blood. 2007 Sep 1;110(5):1420-8 16931623 - Blood. 2007 Jan 1;109(1):109-11 8929548 - J Leukoc Biol. 1996 Nov;60(5):579-92 18397756 - Cell Stem Cell. 2008 Apr 10;2(4):367-79 19513108 - PLoS One. 2009 Jun 09;4(6):e5846 16125890 - Exp Gerontol. 2005 Dec;40(12):926-30 18493317 - PLoS One. 2008 May 21;3(5):e2213 18684237 - J Cell Mol Med. 2008 Oct;12(5B):1795-810 10648396 - Blood. 2000 Feb 1;95(3):855-62 16263424 - Exp Hematol. 2005 Nov;33(11):1402-16 17332071 - Ann N Y Acad Sci. 2007 Jun;1106:41-53 15070674 - Blood. 2004 Apr 15;103(8):2981-9 16400333 - Bone Marrow Transplant. 2006 Feb;37(4):359-66 9414274 - Blood. 1998 Jan 1;91(1):111-7 15955826 - Stem Cells. 2005 Sep;23(8):1180-91 11781263 - Blood. 2002 Jan 15;99(2):719-21 17110618 - Stem Cells. 2007 Mar;25(3):798-806 16141352 - Blood. 2006 Jan 1;107(1):79-86 18160820 - Cells Tissues Organs. 2008;188(1-2):160-9 17940039 - Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16952-7 17548514 - J Cell Biol. 2007 Jun 4;177(5):871-80 16491134 - Nat Rev Immunol. 2006 Feb;6(2):93-106 16896152 - Blood. 2006 Dec 1;108(12):3938-44 17164824 - Bone Marrow Transplant. 2007 Jan;39(1):11-23 17656010 - Exp Hematol. 2007 Sep;35(9):1408-14 17258080 - Exp Hematol. 2007 Feb;35(2):314-25 10210328 - Exp Hematol. 1999 Apr;27(4):698-711 16968157 - Tissue Eng. 2006 Aug;12(8):2161-70 8176234 - J Immunol Methods. 1994 May 2;171(1):131-7 17654653 - Cytometry A. 2007 Oct;71(10):773-82 16249381 - Blood. 2006 Mar 1;107(5):2146-52 18620484 - Tissue Eng Part C Methods. 2008 Sep;14(3):185-96 17541394 - Leukemia. 2007 Aug;21(8):1733-8 15231568 - Blood. 2004 Oct 15;104(8):2332-8 17253945 - Stem Cells Dev. 2006 Dec;15(6):815-29 4016276 - Blood. 1985 Aug;66(2):327-32 17898317 - Blood. 2008 Jan 1;111(1):359-68 10515863 - Blood. 1999 Oct 15;94(8):2595-604 7692447 - Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9374-8 9287350 - J Biol Chem. 1997 Sep 12;272(37):23366-70 17534157 - Curr Opin Hematol. 2007 Jul;14(4):330-6 18752377 - Stem Cells Dev. 2009 Apr;18(3):377-85 2790186 - Blood. 1989 Oct;74(5):1563-70 21547116 - Transfus Med Hemother. 2008;35(3):185-193 12623839 - Blood. 2003 Jun 15;101(12):4667-79 17309831 - Exp Hematol. 2007 Mar;35(3):507-15 15963859 - Exp Hematol. 2005 Jul;33(7):828-35 10215397 - Stem Cells. 1999;17(1):19-24 |
References_xml | – volume: 37 start-page: 359 year: 2006 end-page: 66 article-title: Superior cord blood expansion following co‐culture with bone marrow‐derived mesenchymal stem cells publication-title: Bone Marrow Transplant. – volume: 98 start-page: 2615 year: 2001 end-page: 25 article-title: Purification and expansion of postnatal human marrow mesodermal progenitor cells publication-title: Blood. – volume: 173 start-page: 599 year: 1991 end-page: 607 article-title: Evidence for a role of the integrin VLA‐4 in lympho‐hemopoiesis publication-title: J Exp Med. – volume: 23 start-page: 1180 year: 2005 end-page: 91 article-title: Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction publication-title: Stem Cells. – volume: 95 start-page: 855 year: 2000 end-page: 62 article-title: High‐resolution tracking of cell division suggests similar cell cycle kinetics of hematopoietic stem cells stimulated and publication-title: Blood. – volume: 107 start-page: 2146 year: 2006 end-page: 52 article-title: Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division publication-title: Blood. – volume: 64 start-page: 393 year: 1984 end-page: 9 article-title: Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors publication-title: Blood. – volume: 90 start-page: 641 year: 1997 end-page: 50 article-title: Differential maintenance of primitive human SCID‐repopulating cells, clonogenic progenitors, and long‐term culture‐initiating cells after incubation on human bone marrow stromal cells publication-title: Blood. – volume: 110 start-page: 1420 year: 2007 end-page: 8 article-title: Activation of mitogen‐activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway is involved in myeloid lineage commitment publication-title: Blood. – volume: 111 start-page: 3415 year: 2008 end-page: 23 article-title: Angiopoietin‐like 5 and IGFBP2 stimulate expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation publication-title: Blood. – volume: 60 start-page: 579 year: 1996 end-page: 92 article-title: Requirement for CD44 in proliferation and homing of hematopoietic precursor cells publication-title: J Leukoc Biol. – volume: 86 start-page: 3828 year: 1989 end-page: 32 article-title: Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells publication-title: Proc Natl Acad Sci USA. – volume: 171 start-page: 477 year: 1990 end-page: 88 article-title: Monoclonal antibodies to Pgp‐1/CD44 block lympho‐hemopoiesis in long‐term bone marrow cultures publication-title: J Exp Med. – volume: 99 start-page: 719 year: 2002 end-page: 21 article-title: Human hematopoiesis in murine embryos after injecting human cord blood‐derived hematopoietic stem cells into murine blastocysts publication-title: Blood. – volume: 35 start-page: 507 year: 2007 end-page: 15 article-title: Human mesenchymal stem cells improve expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity publication-title: Exp Hematol. – volume: 18 start-page: 173 year: 2008 end-page: 86 article-title: Primary cells as feeder cells for coculture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study publication-title: Stem Cells Dev. – volume: 14 start-page: 185 year: 2008 end-page: 96 article-title: Rapid large‐scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum publication-title: Tissue Eng Part C Methods. – volume: 17 start-page: 19 year: 1999 end-page: 24 article-title: Defining optimum conditions for the expansion of human umbilical cord blood cells. Influences of progenitor enrichment, interference with feeder layers, early‐acting cytokines and agitation of culture vessels publication-title: Stem Cells. – volume: 104 start-page: 2332 year: 2004 end-page: 8 article-title: Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells publication-title: Blood. – volume: 109 start-page: 109 year: 2007 end-page: 11 article-title: Sustained alterations in biodistribution of stem/progenitor cells in Tie2Cre+ alpha4(f/f) mice are hematopoietic cell autonomous publication-title: Blood. – volume: 2 start-page: 367 year: 2008 end-page: 79 article-title: N‐cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells publication-title: Cell Stem Cell. – volume: 1106 start-page: 41 year: 2007 end-page: 53 article-title: Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche publication-title: Ann N Y Acad Sci. – volume: 35 start-page: 1408 year: 2007 end-page: 14 article-title: CD133‐enriched CD34(‐) (CD33/ CD38/CD71)(‐) cord blood cells acquire CD34 prior to cell division and hematopoietic activity is exclusively associated with CD34 expression publication-title: Exp Hematol. – volume: 35 start-page: 314 year: 2007 end-page: 25 article-title: Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell‐cell interaction publication-title: Exp Hematol. – volume: 25 start-page: 798 year: 2007 end-page: 806 article-title: Human mesenchymal stroma cells regulate initial self‐renewing divisions of hematopoietic progenitor cells by a beta1‐integrin‐dependent mechanism publication-title: Stem Cells. – volume: 4 start-page: e5846 year: 2009 article-title: Aging and replicative senescence have related effects on human stem and progenitor cells publication-title: PLoS ONE. – volume: 97 start-page: 1975 year: 2001 end-page: 81 article-title: Cross‐talk between alpha(4)beta(1)/alpha(5)beta(1) and c‐Kit results in opposing effect on growth and survival of hematopoietic cells the activation of focal adhesion kinase, mitogen‐activated protein kinase, and Akt signaling pathways publication-title: Blood. – volume: 40 start-page: 926 year: 2005 end-page: 30 article-title: Mesenchymal stem cell aging publication-title: Exp Gerontol. – volume: 5 start-page: e2213 year: 2008 article-title: Replicative senescence of mesenchymal stem cells – a continuous and organized process publication-title: PLoS ONE. – volume: 104 start-page: 16952 year: 2007 end-page: 7 article-title: HOXB4’s road map to stem cell expansion publication-title: Proc Natl Acad Sci USA. – volume: 92 start-page: 1142 year: 1998 end-page: 9 article-title: Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis publication-title: Blood. – volume: 20 start-page: 573 year: 2002 end-page: 82 article-title: Expansion of LTC‐ICs and maintenance of p21 and BCL‐2 expression in cord blood CD34(+)/CD38(‐) early progenitors cultured over human MSCs as a feeder layer publication-title: Stem Cells. – volume: 171 start-page: 131 year: 1994 end-page: 7 article-title: Determination of lymphocyte division by flow cytometry publication-title: J Immunol Methods. – volume: 111 start-page: 359 year: 2008 end-page: 68 article-title: Reduced activation of protein kinase B, Rac, and F‐actin polymerization contributes to an impairment of stromal cell derived factor‐1 induced migration of CD34+ cells from patients with myelodysplasia publication-title: Blood. – volume: 12 start-page: 1795 year: 2008 end-page: 810 article-title: Mesenchymal stem cells and cardiac repair publication-title: J Cell Mol Med. – volume: 21 start-page: 1733 year: 2007 end-page: 8 article-title: Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells publication-title: Leukemia. – volume: 157 start-page: 579 year: 1993 end-page: 86 article-title: Lineage commitment in human hemopoiesis involves asymmetric cell division of multipotent progenitors and does not appear to be influenced by cytokines publication-title: J Cell Physiol. – volume: 27 start-page: 698 year: 1999 end-page: 711 article-title: Involvement of CD44 variant isoform v10 in progenitor cell adhesion and maturation publication-title: Exp Hematol. – volume: 272 start-page: 23366 year: 1997 end-page: 70 article-title: Sustained activation of the extracellular signal‐regulated kinase/mitogen‐activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells publication-title: J Biol Chem. – volume: 91 start-page: 111 year: 1998 end-page: 7 article-title: Stroma‐contact prevents loss of hematopoietic stem cell quality during expansion of CD34+ mobilized peripheral blood stem cells publication-title: Blood. – volume: 33 start-page: 1402 year: 2005 end-page: 16 article-title: Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood publication-title: Exp Hematol. – volume: 107 start-page: 79 year: 2006 end-page: 86 article-title: Hierarchy of molecular‐pathway usage in bone marrow homing and its shift by cytokines publication-title: Blood. – volume: 94 start-page: 2595 year: 1999 end-page: 604 article-title: Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules publication-title: Blood. – volume: 6 start-page: 93 year: 2006 end-page: 106 article-title: Bone‐marrow haematopoietic‐stem‐cell niches publication-title: Nat Rev Immunol. – volume: 8 start-page: 315 year: 2006 end-page: 7 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement publication-title: Cytotherapy. – volume: 19 start-page: 1500 year: 2000 end-page: 8 article-title: Induction of erythroid differentiation by inhibition of Ras/ERK pathway in a friend murine leukemia cell line publication-title: Oncogene. – volume: 292 start-page: L1385 year: 2007 end-page: 95 article-title: TNF‐alpha induced CD38 expression in human airway smooth muscle cells: role of MAP kinases and transcription factors NF‐kappaB and AP‐1 publication-title: Am J Physiol Lung Cell Mol Physiol. – volume: 18 start-page: 377 year: 2008 end-page: 85 article-title: Modeling of asymmetric cell division in hematopoietic stem cells – regulation of self‐renewal is essential for efficient repopulation publication-title: Stem Cells Dev. – volume: 33 start-page: 828 year: 2005 end-page: 35 article-title: A human stromal‐based serum‐free culture system supports the expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells publication-title: Exp Hematol. – volume: 10 start-page: 2638 year: 2007 end-page: 57 article-title: Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors publication-title: Stem Cells. – volume: 188 start-page: 1117 year: 1998 end-page: 24 article-title: Asymmetric cell divisions sustain long‐term hematopoiesis from single‐sorted human fetal liver cells publication-title: J Exp Med. – volume: 31 start-page: 339 year: 2003 end-page: 47 article-title: The symmetry of initial divisions of human hematopoietic progenitors is altered only by the cellular microenvironment publication-title: Exp Hematol. – volume: 103 start-page: 2981 year: 2004 end-page: 9 article-title: CD44 and hyaluronic acid cooperate with SDF‐1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow publication-title: Blood. – volume: 15 start-page: 815 year: 2006 end-page: 29 article-title: Polarization of human hematopoietic progenitors during contact with multipotent mesenchymal stromal cells: effects on proliferation and clonogenicity publication-title: Stem Cells Dev. – volume: 177 start-page: 871 year: 2007 end-page: 80 article-title: Alpha4beta1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development publication-title: J Cell Biol. – volume: 26 start-page: 612 year: 1998 end-page: 9 article-title: The murine stromal cell line AFT024 acts specifically on human CD34+CD38‐ progenitors to maintain primitive function and immunophenotype publication-title: Exp Hematol. – volume: 12 start-page: 2161 year: 2006 end-page: 70 article-title: Co‐culture of umbilical cord blood CD34(+) cells with human mesenchymal stem cells publication-title: Tissue Eng. – volume: 90 start-page: 9374 year: 1993 end-page: 8 article-title: Peripheralization of hemopoietic progenitors in primates treated with anti‐VLA4 integrin publication-title: Proc Natl Acad Sci USA. – volume: 188 start-page: 160 year: 2007 end-page: 9 article-title: Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44 publication-title: Cells Tissues Organs. – volume: 101 start-page: 4667 year: 2003 end-page: 79 article-title: Map kinase signaling pathways and hematologic malignancies publication-title: Blood. – volume: 66 start-page: 327 year: 1985 end-page: 32 article-title: Disparate differentiation in hemopoietic colonies derived from human paired progenitors publication-title: Blood. – volume: 14 start-page: 330 year: 2007 end-page: 6 article-title: The beauty of asymmetry – asymmetric divisions and self‐renewal in the hematopoietic system publication-title: Curr Opin Hematol. – volume: 35 start-page: 185 year: 2008 end-page: 93 article-title: The stromal function of mesenchymal stromal cells publication-title: Transfus Med Hemother. – volume: 39 start-page: 11 year: 2007 end-page: 23 article-title: expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche publication-title: Bone Marrow Transplant. – volume: 425 start-page: 836 year: 2003 end-page: 41 article-title: Identification of the haematopoietic stem cell niche and control of the niche size publication-title: Nature. – volume: 3 start-page: 239 year: 2007 end-page: 48 article-title: Mesenchymal stem cell preparations‐comparing apples and oranges publication-title: Stem Cell Rev. – volume: 104 start-page: 675 year: 2004 end-page: 86 article-title: Molecular evidence for stem cell function of the slow‐dividing fraction among human hematopoietic progenitor cells by genome‐wide analysis publication-title: Blood. – volume: 108 start-page: 3938 year: 2006 end-page: 44 article-title: Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells publication-title: Blood. – volume: 71 start-page: 773 year: 2007 end-page: 82 article-title: Analysis of cell differentiation by division tracking cytometry publication-title: Cytometry A. – volume: 74 start-page: 1563 year: 1989 end-page: 70 article-title: Characterization and partial purification of human marrow cells capable of initiating long‐term hematopoiesis publication-title: Blood. – ident: e_1_2_6_22_2 doi: 10.1182/blood-2006-05-025098 – ident: e_1_2_6_47_2 doi: 10.1159/000128956 – ident: e_1_2_6_30_2 doi: 10.1182/blood.V98.9.2615 – ident: e_1_2_6_45_2 doi: 10.1016/j.exphem.2006.10.003 – ident: e_1_2_6_61_2 doi: 10.1196/annals.1392.005 – ident: e_1_2_6_32_2 doi: 10.1182/blood.V74.5.1563.1563 – ident: e_1_2_6_41_2 doi: 10.1182/blood-2005-08-3139 – ident: e_1_2_6_54_2 doi: 10.1182/blood.V92.4.1142.416k42_1142_1149 – ident: e_1_2_6_28_2 doi: 10.1016/j.exphem.2005.07.003 – ident: e_1_2_6_34_2 doi: 10.1089/scd.2006.15.815 – volume: 90 start-page: 641 year: 1997 ident: e_1_2_6_71_2 article-title: Differential maintenance of primitive human SCID‐repopulating cells, clonogenic progenitors, and long‐term culture‐initiating cells after incubation on human bone marrow stromal cells publication-title: Blood. doi: 10.1182/blood.V90.2.641 – ident: e_1_2_6_64_2 doi: 10.1634/stemcells.2006-0513 – ident: e_1_2_6_17_2 doi: 10.1080/14653240600855905 – ident: e_1_2_6_20_2 doi: 10.1038/sj.leu.2404777 – ident: e_1_2_6_53_2 doi: 10.1182/blood-2006-11-060632 – ident: e_1_2_6_39_2 doi: 10.1084/jem.188.6.1117 – ident: e_1_2_6_36_2 doi: 10.1182/blood-2007-02-071761 – ident: e_1_2_6_37_2 doi: 10.1182/blood.V64.2.393.393 – ident: e_1_2_6_40_2 doi: 10.1002/jcp.1041570318 – ident: e_1_2_6_12_2 doi: 10.1038/sj.bmt.1705258 – ident: e_1_2_6_26_2 doi: 10.1016/0022-1759(94)90236-4 – ident: e_1_2_6_70_2 doi: 10.1182/blood.V97.7.1975 – ident: e_1_2_6_27_2 doi: 10.1016/j.exphem.2007.05.016 – ident: e_1_2_6_66_2 doi: 10.1084/jem.171.2.477 – ident: e_1_2_6_42_2 doi: 10.1182/blood-2003-10-3423 – ident: e_1_2_6_49_2 doi: 10.1371/journal.pone.0005846 – ident: e_1_2_6_9_2 doi: 10.1038/nri1779 – ident: e_1_2_6_55_2 doi: 10.1152/ajplung.00472.2006 – ident: e_1_2_6_68_2 doi: 10.1083/jcb.200702080 – ident: e_1_2_6_62_2 doi: 10.1073/pnas.90.20.9374 – ident: e_1_2_6_16_2 doi: 10.1182/blood.V91.1.111 – ident: e_1_2_6_4_2 doi: 10.1038/sj.bmt.1705538 – ident: e_1_2_6_65_2 doi: 10.1002/jlb.60.5.579 – ident: e_1_2_6_43_2 doi: 10.1016/S0301-472X(03)00024-9 – ident: e_1_2_6_58_2 doi: 10.1182/blood-2006-06-026427 – ident: e_1_2_6_57_2 doi: 10.1182/blood-2005-05-2023 – volume: 26 start-page: 612 year: 1998 ident: e_1_2_6_31_2 article-title: The murine stromal cell line AFT024 acts specifically on human CD34+CD38‐ progenitors to maintain primitive function and immunophenotype in vitro publication-title: Exp Hematol. – ident: e_1_2_6_67_2 doi: 10.1016/S0301-472X(98)00082-4 – ident: e_1_2_6_23_2 doi: 10.1089/ten.tec.2008.0060 – ident: e_1_2_6_46_2 doi: 10.1002/cyto.a.20437 – ident: e_1_2_6_11_2 doi: 10.1089/ten.2006.12.2161 – ident: e_1_2_6_13_2 doi: 10.1016/j.exphem.2006.10.015 – ident: e_1_2_6_18_2 doi: 10.1007/s12015-007-9001-1 – ident: e_1_2_6_7_2 doi: 10.1073/pnas.0703082104 – ident: e_1_2_6_21_2 doi: 10.1634/stemcells.2007-0280 – ident: e_1_2_6_15_2 doi: 10.1089/scd.2007.0273 – ident: e_1_2_6_48_2 doi: 10.1016/j.exger.2005.07.006 – ident: e_1_2_6_63_2 doi: 10.1159/000112821 – ident: e_1_2_6_51_2 doi: 10.1074/jbc.272.37.23366 – ident: e_1_2_6_69_2 doi: 10.1084/jem.173.3.599 – ident: e_1_2_6_35_2 doi: 10.1182/blood.V94.8.2595.420k37_2595_2604 – ident: e_1_2_6_33_2 doi: 10.1182/blood-2004-02-0511 – ident: e_1_2_6_50_2 doi: 10.1182/blood-2002-12-3647 – ident: e_1_2_6_3_2 doi: 10.1016/j.exphem.2005.03.017 – ident: e_1_2_6_19_2 doi: 10.1111/j.1582-4934.2008.00457.x – ident: e_1_2_6_44_2 doi: 10.1634/stemcells.2004-0361 – ident: e_1_2_6_56_2 doi: 10.1038/nature02041 – ident: e_1_2_6_24_2 doi: 10.1089/scd.2008.0143 – ident: e_1_2_6_5_2 doi: 10.1002/stem.170019 – ident: e_1_2_6_10_2 doi: 10.1182/blood.V99.2.719 – ident: e_1_2_6_52_2 doi: 10.1038/sj.onc.1203461 – ident: e_1_2_6_2_2 doi: 10.1073/pnas.86.10.3828 – ident: e_1_2_6_59_2 doi: 10.1182/blood-2003-10-3611 – ident: e_1_2_6_6_2 doi: 10.1182/blood-2007-11-122119 – ident: e_1_2_6_25_2 doi: 10.1182/blood.V95.3.855.003k41_855_862 – ident: e_1_2_6_60_2 doi: 10.1016/j.stem.2008.01.017 – ident: e_1_2_6_29_2 doi: 10.1371/journal.pone.0002213 – ident: e_1_2_6_38_2 doi: 10.1182/blood.V66.2.327.327 – ident: e_1_2_6_14_2 doi: 10.1634/stemcells.20-6-573 – ident: e_1_2_6_8_2 doi: 10.1097/MOH.0b013e3281900f12 – reference: 16125890 - Exp Gerontol. 2005 Dec;40(12):926-30 – reference: 18074246 - Stem Cell Rev. 2007 Dec;3(4):239-48 – reference: 10515863 - Blood. 1999 Oct 15;94(8):2595-604 – reference: 16968157 - Tissue Eng. 2006 Aug;12(8):2161-70 – reference: 9287350 - J Biol Chem. 1997 Sep 12;272(37):23366-70 – reference: 18620484 - Tissue Eng Part C Methods. 2008 Sep;14(3):185-96 – reference: 16491134 - Nat Rev Immunol. 2006 Feb;6(2):93-106 – reference: 7692447 - Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9374-8 – reference: 8929548 - J Leukoc Biol. 1996 Nov;60(5):579-92 – reference: 16263424 - Exp Hematol. 2005 Nov;33(11):1402-16 – reference: 9657136 - Exp Hematol. 1998 Jul;26(7):612-9 – reference: 9743530 - J Exp Med. 1998 Sep 21;188(6):1117-24 – reference: 16931623 - Blood. 2007 Jan 1;109(1):109-11 – reference: 14574412 - Nature. 2003 Oct 23;425(6960):836-41 – reference: 21547116 - Transfus Med Hemother. 2008;35(3):185-193 – reference: 2406365 - J Exp Med. 1990 Feb 1;171(2):477-88 – reference: 9694701 - Blood. 1998 Aug 15;92(4):1142-9 – reference: 16141352 - Blood. 2006 Jan 1;107(1):79-86 – reference: 7504678 - J Cell Physiol. 1993 Dec;157(3):579-86 – reference: 15963859 - Exp Hematol. 2005 Jul;33(7):828-35 – reference: 17548514 - J Cell Biol. 2007 Jun 4;177(5):871-80 – reference: 16923606 - Cytotherapy. 2006;8(4):315-7 – reference: 17534157 - Curr Opin Hematol. 2007 Jul;14(4):330-6 – reference: 18493317 - PLoS One. 2008 May 21;3(5):e2213 – reference: 11781263 - Blood. 2002 Jan 15;99(2):719-21 – reference: 11675329 - Blood. 2001 Nov 1;98(9):2615-25 – reference: 12456965 - Stem Cells. 2002;20(6):573-82 – reference: 12623839 - Blood. 2003 Jun 15;101(12):4667-79 – reference: 18684237 - J Cell Mol Med. 2008 Oct;12(5B):1795-810 – reference: 18752377 - Stem Cells Dev. 2009 Apr;18(3):377-85 – reference: 9226164 - Blood. 1997 Jul 15;90(2):641-50 – reference: 15231568 - Blood. 2004 Oct 15;104(8):2332-8 – reference: 15090461 - Blood. 2004 Aug 1;104(3):675-86 – reference: 12691922 - Exp Hematol. 2003 Apr;31(4):339-47 – reference: 1997648 - J Exp Med. 1991 Mar 1;173(3):599-607 – reference: 17541394 - Leukemia. 2007 Aug;21(8):1733-8 – reference: 17615262 - Stem Cells. 2007 Oct;25(10):2638-47 – reference: 18471070 - Stem Cells Dev. 2009 Jan-Feb;18(1):173-86 – reference: 17940039 - Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16952-7 – reference: 8176234 - J Immunol Methods. 1994 May 2;171(1):131-7 – reference: 17332071 - Ann N Y Acad Sci. 2007 Jun;1106:41-53 – reference: 10648396 - Blood. 2000 Feb 1;95(3):855-62 – reference: 17322278 - Am J Physiol Lung Cell Mol Physiol. 2007 Jun;292(6):L1385-95 – reference: 17110618 - Stem Cells. 2007 Mar;25(3):798-806 – reference: 19513108 - PLoS One. 2009 Jun 09;4(6):e5846 – reference: 11264161 - Blood. 2001 Apr 1;97(7):1975-81 – reference: 18397756 - Cell Stem Cell. 2008 Apr 10;2(4):367-79 – reference: 2566997 - Proc Natl Acad Sci U S A. 1989 May;86(10):3828-32 – reference: 10210328 - Exp Hematol. 1999 Apr;27(4):698-711 – reference: 16896152 - Blood. 2006 Dec 1;108(12):3938-44 – reference: 10215397 - Stem Cells. 1999;17(1):19-24 – reference: 10734309 - Oncogene. 2000 Mar 16;19(12):1500-8 – reference: 2790186 - Blood. 1989 Oct;74(5):1563-70 – reference: 15070674 - Blood. 2004 Apr 15;103(8):2981-9 – reference: 17258080 - Exp Hematol. 2007 Feb;35(2):314-25 – reference: 17309831 - Exp Hematol. 2007 Mar;35(3):507-15 – reference: 17656010 - Exp Hematol. 2007 Sep;35(9):1408-14 – reference: 17164824 - Bone Marrow Transplant. 2007 Jan;39(1):11-23 – reference: 16400333 - Bone Marrow Transplant. 2006 Feb;37(4):359-66 – reference: 18202223 - Blood. 2008 Apr 1;111(7):3415-23 – reference: 17898317 - Blood. 2008 Jan 1;111(1):359-68 – reference: 4016276 - Blood. 1985 Aug;66(2):327-32 – reference: 17654653 - Cytometry A. 2007 Oct;71(10):773-82 – reference: 17253945 - Stem Cells Dev. 2006 Dec;15(6):815-29 – reference: 16249381 - Blood. 2006 Mar 1;107(5):2146-52 – reference: 15955826 - Stem Cells. 2005 Sep;23(8):1180-91 – reference: 6743824 - Blood. 1984 Aug;64(2):393-9 – reference: 17536016 - Blood. 2007 Sep 1;110(5):1420-8 – reference: 18160820 - Cells Tissues Organs. 2008;188(1-2):160-9 – reference: 9414274 - Blood. 1998 Jan 1;91(1):111-7 |
SSID | ssj0036139 |
Score | 2.3303208 |
Snippet | Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor... Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 337 |
SubjectTerms | adhesion proteins ADP-ribosyl Cyclase 1 - metabolism Antibodies Antigens, CD34 - metabolism Biotechnology Carboxyfluorescein diacetate CD13 antigen CD34 antigen CD38 antigen CD44 antigen CD45 antigen CD56 antigen Cell Adhesion Molecules - genetics Cell Adhesion Molecules - metabolism Cell culture Cell Culture Techniques Cell differentiation Cell Differentiation - physiology Cell division Cell Proliferation Cell self-renewal Cells, Cultured Cellular Senescence - physiology Cloning Coculture Techniques Cord blood co‐culture Fetal Blood - cytology Flow cytometry Genetics Genotype & phenotype haematopoietic stem cells Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - physiology Hemopoiesis Human subjects Humans immunophenotype Immunophenotyping Kinases Laboratories MAP kinase Mesenchymal stem cells mesenchymal stromal cells Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - physiology Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors Mitogen-Activated Protein Kinase 1 - genetics Mitogen-Activated Protein Kinase 1 - metabolism N-Cadherin Progenitor cells proliferation Proteins replicative senescence RNA, Small Interfering - genetics RNA, Small Interfering - metabolism siRNA stem cell niche Stem cells Stromal cells Stromal Cells - cytology Stromal Cells - physiology Studies Umbilical cord |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZtSqGXkj7jJik69GoqS7Iep1KWhBBITw3sTciyxC507e16A82_74wfmywLIScbRhKWZjSaGY--IeSbsZwzH1guOa9yaZOGLWVYrlUd6-SB5XWP9vlLXd3K63k5HwNu3ZhWOenEXlHXbcAY-XeQRSwUIxj7sf6bY9Uo_Ls6ltB4SV4hdBlKtZ7vHC4BR5Xdz94pwZ6UVsgJqFJrNYEeTUfSgZ15mC752Iztz6HLY_J2NCDpz4Hj78iL2Lwnr4eSkvcfyHbW5gOaRqQYY6UrvF4UFvcr6NRtNy0-MVrf0WWDFmMXO7rG0j0pDsJAfVPTlUccCQTjiLRNdOER2rVdt0u884jtQe5AF2yGoT6S28uL37OrfKyskAepjcoL37tewIdKGVkEXVQ61tJwH7kC9WhSFYWseZGC8UYb5o0EuvSgVysTvfhEjpq2iSeEigp8HlsxlUIpeWBWBKt0UsmGUjATMqKnxXVhhB3H6hd_3CP3A9jikC1YFNO6ni3uX0aKXc_1AL3xjD6nE__cuBk7B15XAUpf6oycHVIfBCsjdEeGTYYL6JvY3nVOC1Fa8CVhhM-DLDx8kZWCmwIoek9Kdg0Qv3uf0iwXPY43BgcU5xlRvTw9e5LuenZzA29fnp7OKXkzpDpgvOiMHG03d_EcLKht9bXfJv8B2F4YAA priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlodBL6btukqJDry62JOtxLEtDCKT00EBuQpZldqFrL-tNaG79Cf2N_SWdkbybmM0h9OSF8Qiv5qGZYfQNIZ-0YaxwvsgFY3UuTKvApHSRK9mEpnUg8iaifX6TZ5fi_Kq6Gvuf8C5MwofYFdzQMqK_RgN39TA18gqiQ2G42MJOKiU_Qzx5iDdtsb2Pie9br8zh2DIROxV4QI31tKvnwZWmR9Ve_LnfRnk_vI3n0-kL8nwMLOmXpAkvyZPQvSJP06jJ29fkZtb__f0n4WwEitVXusSLR35-uwS2YbPu8Yl1_IEuOowlhzDQFQ71aUNSE-q6hi4dIkwgTEegfUvnDkFf-1W_wNuQ-D5oJHiJdVrqDbk8_fpjdpaPMxdyL5SWeeliUgYSqqUWpVdlrUIjNHOBSXCcuq0DFw0rW6-dVrpwWgBdONjyWgfH35KDru_Ce0J5DdmQqQvZ-kowXxjujVStbI2veKF9RtR2e60fAclxLsZPey8xAcFYFAyOyzQ2Csb-yki541wlUI5H8BxtJWhHMx0s5GMlHAdCZeR4nwruD2cT8aLICN2RwfxwA10X-uvBKs4rA1kmrPAuacPdFxnBmS6BoiZ6snsBkb2nlG4xjwjfWDaQjGVERo169J-057OLC_j14X8Zj8iz1B6BNaZjcrBZX4cTiLo29cdoTv8AcQEiIA priority: 102 providerName: Wiley-Blackwell |
Title | Co‐culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2009.00776.x https://www.ncbi.nlm.nih.gov/pubmed/19432817 https://www.proquest.com/docview/217187647 https://www.proquest.com/docview/3075962300 https://www.proquest.com/docview/733591497 https://pubmed.ncbi.nlm.nih.gov/PMC3837622 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddy2AvY99z2wU97NXFlmR9PIzRhZZSSCljGWEvRpZlEmjsLE6h-e97548sIR30xTJIMpLupLuTpd-PkK_aMBZZF4WCsSwUplAwpXQUKpn7vLAg8rxB-7yRV2NxPUkmB6S_rtgNYP1kaId8UuPl3dnD3_V3mPDftk7lJOAnCsNFD0CplDwDz_II7JNCXoOR2Pxb4GDAzO6ZnidrN3CigjPdcJlt2aw9R3T_POW2n9sYqss35HXnYdLzViXekgNfviMvW87J9XuyGlZhC7fhKW7C0jneP3LT9Rwq1atlhSlu59d0VqJLWfuaLpDbp_CttlBb5nRuEWgC0To8rQo6tYj9Wi2qGV6KxPKgmLBYLNtPfSDjy4tfw6uwo14InVBahrFtYjMQVCa1iJ2KM-VzoZn1TML6qYvMc5GzuHDaaqUjqwXkCwsLb6a95R_JYVmV_jOhPIOgyGSRLFwimIsMd0aqQhbGJTzSLiCqH9zUdbjkSI9xl27FJyChFCWErJkmbSSUPgQk3tRctNgcz6hz0ssv7ZUthbAsBqsgVEBO93NhFUSKIh5FAaGbbJiFOIC29NV9nSrOEwPBJnzhU6sL_1rUKRH0c0dLNgUQ4Hs3p5xNG6Bv3D2QjAVENvr07E6m18PRCN6O_9uYE_KqPQaBe0mn5HC1vPdfwLtaZQPygolbeKqJGpCj89_jP2NIf1zc3P4cNBPpERVBIZE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxJ2wAX6Ax4jEdnx5QAgVpu7SPW1S34zjOGolmpSmE_RP8Rs5J2m6VZXQXvaUSCe2Yp-7L98h5IM2jCXOJ7FgLI-FKRWolE5iJYtQlA5YXrRon-dyeClOxtl4j_zt78LgscreJraGuqg9rpF_AlnEQjE8Sb7Mf8VYNQp3V_sSGp1YnIbVb0jZms_H34C_Hxk7-n4xGMbrqgKxF0rLOHVt2gH_kEstUq_SXIVCaOYCk2AadJkHLgqWll47rXTitAC6cGBTch0ch37vkfvgeBNM9tR4k-BxcI1m-7RQBvGrMFz0wJhKyR5kqXeBO3Ht7vHMm2Fz6_eOnpDH64CVfu0k7CnZC9Uz8qArYbl6TpaDOu7QOwLFNV06w-tMfrKaQaNmuajxibsDDZ1WGKE2oaFzLBVUhk74qKsKOnOIW4HgH4HWJZ04hJKt5_UU71ji9yDnYHsWXVcvyOWdzPlLsl_VVXhNKM8hxzJ5IkufCeYTw72RqpSl8RlPtI-I6ifX-jXMOVbb-GlvpDvAFotswSKcxrZssX8ikm5azjuoj1u0Oej5Z9fK31jI8lJwMkJF5HCXei3IEaEbMig1TqCrQn3VWMV5ZiB3hR5edbJw_UdGcKZToKgtKdl8gHjh25RqOmlxw3ExQjIWEdnK060HaU8GoxG8vfn_cN6Th8OL0Zk9Oz4_PSCPumMWuFZ1SPaXi6vwFqK3Zf6uVRlKfty1jv4DkLBTzw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDvdBvgBHqMltuPLA0LQrdqFVRNi0t6C4zhqJZp0TSfoX-PXcU4u3apKaC97SqQTW4nP3Tn-DiEftGEstC4MBGNpIEyuQKV0GCiZ-Sy3wPKsRvscyaMLcXIZX26Rv91ZGCyr7Gxibaiz0uEe-T7IIjaK4WG4n7dlEecHw8-zqwA7SOGf1q6dRiMip375G9K36tPxAfD6I2PDwx-Do6DtMBA4obQMIlunIPA-qdQicipKlc-EZtYzCWZC56nnImNR7rTVSodWC6ALC_Yl1d5ymPcB2VaYFfXI9tfD0fn3zg9wcJRmvXYohmhWGC46mEylZAe51DnEjSh3s1jzdhBde8HhU_KkDV_pl0benpEtXzwnD5uGlssXZDEogwbLw1Pc4aVTPNzkxsspDKoW8xKv-K-gopMC49XKV3SGjYNy34gitUVGpxZRLBAKxNMyp2OLwLLlrJzgiUt8HqQeLNG8meolubiXVX9FekVZ-DeE8hQyLpOGMnexYC403BmpcpkbF_NQuz5R3eImrgU9x94bv5JbyQ-wJUG2YEtOk9RsSf70SbQaOWuAP-4wZrfjX9KagiqBnC8ClyNUn-xtUm_Euk_oigwqjgtoC19eV4niPDaQycIMrxtZuHkjIzjTEVDUmpSsHkD08HVKMRnXKOK4NSEZ6xNZy9OdPzI5GZydwd3O_z_nPXkE-pl8Ox6d7pLHTc0Fblztkd5ifu3fQii3SN-1OkPJz_tW039gAFlq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-culture+with+mesenchymal+stromal+cells+increases+proliferation+and+maintenance+of+haematopoietic+progenitor+cells&rft.jtitle=Journal+of+cellular+and+molecular+medicine&rft.au=Walenda%2C+Thomas&rft.au=Bork%2C+Simone&rft.au=Horn%2C+Patrick&rft.au=Wein%2C+Frederik&rft.date=2010-01-01&rft.eissn=1582-4934&rft.volume=14&rft.issue=1-2&rft.spage=337&rft_id=info:doi/10.1111%2Fj.1582-4934.2009.00776.x&rft_id=info%3Apmid%2F19432817&rft.externalDocID=19432817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-1838&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-1838&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-1838&client=summon |