Co‐culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells

Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentia...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular and molecular medicine Vol. 14; no. 1‐2; pp. 337 - 350
Main Authors Walenda, Thomas, Bork, Simone, Horn, Patrick, Wein, Frederik, Saffrich, Rainer, Diehlmann, Anke, Eckstein, Volker, Ho, Anthony D., Wagner, Wolfgang
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2010
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N‐succinimidyl ester (CFSE). Co‐culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34+CD38− fraction. Without co‐culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up‐regulated after some cell divisions and then diminished in fast proliferating cells. Co‐culture with MSC maintained a primitive immunophenotype (CD34+, CD133+ and CD38−) for more population doublings, whereas up‐regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen‐activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long‐term culture initiating cells. siRNA knockdown of N‐cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self‐renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC–MSC interaction might further enhance cord blood expansion on MSC.
AbstractList Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34...CD38... fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Coculture with MSC maintained a primitive immunophenotype (CD34..., CD133... and CD38-) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of Ncadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC. (ProQuest: ... denotes formulae/symbols omitted.)
Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34(+)CD38(-) fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34(+), CD133(+) and CD38(-)) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC.
Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34(+)CD38(-) fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34(+), CD133(+) and CD38(-)) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC.Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34(+)CD38(-) fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34(+), CD133(+) and CD38(-)) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC.
Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34+CD38− fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34+, CD133+ and CD38−) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC–MSC interaction might further enhance cord blood expansion on MSC.
Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N ‐succinimidyl ester (CFSE). Co‐culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34 + CD38 − fraction. Without co‐culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up‐regulated after some cell divisions and then diminished in fast proliferating cells. Co‐culture with MSC maintained a primitive immunophenotype (CD34 + , CD133 + and CD38 − ) for more population doublings, whereas up‐regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen‐activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long‐term culture initiating cells. siRNA knockdown of N‐cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self‐renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC–MSC interaction might further enhance cord blood expansion on MSC.
Author Eckstein, Volker
Ho, Anthony D.
Saffrich, Rainer
Diehlmann, Anke
Wein, Frederik
Bork, Simone
Walenda, Thomas
Horn, Patrick
Wagner, Wolfgang
Author_xml – sequence: 1
  givenname: Thomas
  surname: Walenda
  fullname: Walenda, Thomas
– sequence: 2
  givenname: Simone
  surname: Bork
  fullname: Bork, Simone
– sequence: 3
  givenname: Patrick
  surname: Horn
  fullname: Horn, Patrick
– sequence: 4
  givenname: Frederik
  surname: Wein
  fullname: Wein, Frederik
– sequence: 5
  givenname: Rainer
  surname: Saffrich
  fullname: Saffrich, Rainer
– sequence: 6
  givenname: Anke
  surname: Diehlmann
  fullname: Diehlmann, Anke
– sequence: 7
  givenname: Volker
  surname: Eckstein
  fullname: Eckstein, Volker
– sequence: 8
  givenname: Anthony D.
  surname: Ho
  fullname: Ho, Anthony D.
– sequence: 9
  givenname: Wolfgang
  surname: Wagner
  fullname: Wagner, Wolfgang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19432817$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAQxy1URNuFV0ARHDht8NfazgEktKJ8qBUXOFuOM-l6ldiL7bTdG4_QZ-RJSLrLApUQ-DIjzX9-ntH8T9GRDx4QKgguyfherkuyUHTOK8ZLinFVYiylKG8eoJND4WifE8XUMTpNaY0xE4RVj9AxqTijisgTdLUM37_d2qHLQ4Ti2uVV0UMCb1fb3nRFyjFM0ULXpcJ5G8EkSMUmhs61EE12wRfGN0VvnM_gjbdQhLZYGehNDpvgIDs76S_BuxziDvUYPWxNl-DJPs7Ql7O3n5fv5-ef3n1YvjmfWy6VmBODqSAVa0QtFCdWklpCwxU1QIUUVLU1MN5Q0lpllFTYKD7WuSFc1AoMm6HXO-5mqHtoLPgcTac30fUmbnUwTv9Z8W6lL8OVZoqNfDoCXuwBMXwdIGXduzStYDyEIWnJ2KIivJKj8vk95ToM0Y_baYblohKUjQeYoWd_U1EiiZKCT6inv099GPfn2X6tZWNIKUKrrct3txiXcJ0mWE8-0Ws9WUBPdtCTT_SdT_TNCFD3AIc__t36atd67TrY_nef_ri8uBgz9gPdXdg6
CitedBy_id crossref_primary_10_1111_resp_12112
crossref_primary_10_1016_j_fct_2023_114030
crossref_primary_10_1016_j_intimp_2020_107292
crossref_primary_10_1089_ten_tec_2011_0541
crossref_primary_10_1155_2012_175979
crossref_primary_10_1016_j_exphem_2016_02_004
crossref_primary_10_1002_cyto_a_23506
crossref_primary_10_1016_j_snb_2018_08_037
crossref_primary_10_1016_j_gene_2012_03_028
crossref_primary_10_3390_ijms25052771
crossref_primary_10_3892_ol_2018_9681
crossref_primary_10_3390_ijms20081985
crossref_primary_10_1007_s12288_022_01576_4
crossref_primary_10_1016_j_exphem_2012_12_002
crossref_primary_10_1371_journal_pone_0128231
crossref_primary_10_1186_s13287_023_03497_z
crossref_primary_10_3389_fimmu_2016_00502
crossref_primary_10_1016_j_exphem_2011_02_011
crossref_primary_10_2217_rme_15_13
crossref_primary_10_1002_biot_201400758
crossref_primary_10_1002_biot_201100350
crossref_primary_10_1179_1607845412Y_0000000030
crossref_primary_10_1002_path_4122
crossref_primary_10_1016_j_vetimm_2017_08_002
crossref_primary_10_1007_s00109_012_0915_y
crossref_primary_10_1089_scd_2010_0456
crossref_primary_10_1186_s13287_015_0194_y
crossref_primary_10_26508_lsa_201800153
crossref_primary_10_1038_srep03372
crossref_primary_10_1371_journal_pone_0018012
crossref_primary_10_3389_fcell_2021_730804
crossref_primary_10_1002_term_1486
crossref_primary_10_1155_2023_1068405
crossref_primary_10_1016_j_brainres_2017_07_005
crossref_primary_10_1016_j_jcyt_2013_07_007
crossref_primary_10_1016_j_biomaterials_2011_11_034
crossref_primary_10_1002_biot_201700088
crossref_primary_10_1038_s44222_023_00077_x
crossref_primary_10_1007_s12519_013_0425_1
crossref_primary_10_1134_S1607672918020047
crossref_primary_10_3390_ijms17071009
crossref_primary_10_1016_j_coi_2011_05_007
crossref_primary_10_1002_term_1885
crossref_primary_10_1007_s12015_016_9702_4
crossref_primary_10_1007_s10517_017_3843_6
crossref_primary_10_1007_s00441_015_2348_8
crossref_primary_10_13005_bbra_2526
crossref_primary_10_1016_j_scr_2013_07_010
crossref_primary_10_2174_1566523221666210519111933
crossref_primary_10_1089_scd_2015_0182
crossref_primary_10_3390_cells8121628
crossref_primary_10_1016_j_actbio_2018_04_024
crossref_primary_10_15406_atroa_2017_02_00042
crossref_primary_10_1016_j_biomaterials_2012_06_029
crossref_primary_10_1089_ten_tec_2016_0404
crossref_primary_10_1186_1756_8722_7_29
crossref_primary_10_1016_j_ijpharm_2016_07_079
crossref_primary_10_1016_j_yexcr_2017_11_007
crossref_primary_10_23868_gc120484
crossref_primary_10_1007_s10517_017_3662_9
crossref_primary_10_1038_srep15680
crossref_primary_10_1002_mabi_201700054
crossref_primary_10_1002_ijc_26318
crossref_primary_10_1039_C5RA13332G
crossref_primary_10_1186_s13287_020_02048_0
crossref_primary_10_3390_ani11071883
crossref_primary_10_1016_j_jcyt_2015_12_005
crossref_primary_10_1016_j_yexcr_2011_11_001
crossref_primary_10_1016_j_jcyt_2015_03_607
crossref_primary_10_1155_2017_6720594
crossref_primary_10_1016_j_cdev_2023_203845
crossref_primary_10_1186_s13287_018_0982_2
crossref_primary_10_1002_stem_627
crossref_primary_10_1016_j_canlet_2012_07_014
crossref_primary_10_1007_s00277_015_2550_5
crossref_primary_10_1083_jcb_202005085
crossref_primary_10_1016_j_biomaterials_2024_122882
crossref_primary_10_4252_wjsc_v13_i10_1360
crossref_primary_10_3390_ma13245609
crossref_primary_10_1371_journal_pcbi_1003599
crossref_primary_10_1002_jcb_28797
crossref_primary_10_1016_j_jbiosc_2018_10_017
crossref_primary_10_1038_cmi_2015_40
crossref_primary_10_1016_j_genrep_2019_100490
crossref_primary_10_1155_2018_4527929
crossref_primary_10_1016_j_exphem_2024_104686
crossref_primary_10_1186_s13287_022_02875_3
crossref_primary_10_1039_C5TB02575C
crossref_primary_10_1002_jcp_23019
crossref_primary_10_3390_cells12020250
crossref_primary_10_1002_adhm_202100016
crossref_primary_10_1021_acsbiomaterials_7b00644
crossref_primary_10_1007_s11033_023_09041_9
crossref_primary_10_3390_jcm3010088
crossref_primary_10_2478_s11658_012_0036_1
crossref_primary_10_3389_fbioe_2022_1049965
crossref_primary_10_1371_journal_pone_0197233
crossref_primary_10_1186_s13045_016_0273_2
crossref_primary_10_1007_s00441_013_1759_7
crossref_primary_10_1016_j_exphem_2010_10_010
crossref_primary_10_1039_C6BM00191B
crossref_primary_10_1186_s13148_019_0617_1
crossref_primary_10_1002_cbin_11885
crossref_primary_10_3389_fbioe_2022_892661
crossref_primary_10_1186_1479_5876_10_23
crossref_primary_10_18632_oncotarget_7690
crossref_primary_10_1016_j_jceh_2021_03_010
crossref_primary_10_1016_j_biomaterials_2022_121568
crossref_primary_10_1038_srep09370
crossref_primary_10_1016_j_addr_2019_04_003
crossref_primary_10_1016_j_reth_2023_04_004
crossref_primary_10_1016_j_msec_2018_11_077
crossref_primary_10_15171_apb_2017_065
crossref_primary_10_1016_j_stem_2021_05_008
crossref_primary_10_1089_ten_tec_2016_0329
Cites_doi 10.1182/blood-2006-05-025098
10.1159/000128956
10.1182/blood.V98.9.2615
10.1016/j.exphem.2006.10.003
10.1196/annals.1392.005
10.1182/blood.V74.5.1563.1563
10.1182/blood-2005-08-3139
10.1182/blood.V92.4.1142.416k42_1142_1149
10.1016/j.exphem.2005.07.003
10.1089/scd.2006.15.815
10.1182/blood.V90.2.641
10.1634/stemcells.2006-0513
10.1080/14653240600855905
10.1038/sj.leu.2404777
10.1182/blood-2006-11-060632
10.1084/jem.188.6.1117
10.1182/blood-2007-02-071761
10.1182/blood.V64.2.393.393
10.1002/jcp.1041570318
10.1038/sj.bmt.1705258
10.1016/0022-1759(94)90236-4
10.1182/blood.V97.7.1975
10.1016/j.exphem.2007.05.016
10.1084/jem.171.2.477
10.1182/blood-2003-10-3423
10.1371/journal.pone.0005846
10.1038/nri1779
10.1152/ajplung.00472.2006
10.1083/jcb.200702080
10.1073/pnas.90.20.9374
10.1182/blood.V91.1.111
10.1038/sj.bmt.1705538
10.1002/jlb.60.5.579
10.1016/S0301-472X(03)00024-9
10.1182/blood-2006-06-026427
10.1182/blood-2005-05-2023
10.1016/S0301-472X(98)00082-4
10.1089/ten.tec.2008.0060
10.1002/cyto.a.20437
10.1089/ten.2006.12.2161
10.1016/j.exphem.2006.10.015
10.1007/s12015-007-9001-1
10.1073/pnas.0703082104
10.1634/stemcells.2007-0280
10.1089/scd.2007.0273
10.1016/j.exger.2005.07.006
10.1159/000112821
10.1074/jbc.272.37.23366
10.1084/jem.173.3.599
10.1182/blood.V94.8.2595.420k37_2595_2604
10.1182/blood-2004-02-0511
10.1182/blood-2002-12-3647
10.1016/j.exphem.2005.03.017
10.1111/j.1582-4934.2008.00457.x
10.1634/stemcells.2004-0361
10.1038/nature02041
10.1089/scd.2008.0143
10.1002/stem.170019
10.1182/blood.V99.2.719
10.1038/sj.onc.1203461
10.1073/pnas.86.10.3828
10.1182/blood-2003-10-3611
10.1182/blood-2007-11-122119
10.1182/blood.V95.3.855.003k41_855_862
10.1016/j.stem.2008.01.017
10.1371/journal.pone.0002213
10.1182/blood.V66.2.327.327
10.1634/stemcells.20-6-573
10.1097/MOH.0b013e3281900f12
ContentType Journal Article
Copyright 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
Copyright Blackwell Publishing Ltd. Jan/Feb 2010
2010. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009
Copyright_xml – notice: 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
– notice: Copyright Blackwell Publishing Ltd. Jan/Feb 2010
– notice: 2010. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
3V.
7QP
7TK
7X7
7XB
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
LK8
M0S
M1P
M2P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1111/j.1582-4934.2009.00776.x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Proquest Medical Database
Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1582-4934
EndPage 350
ExternalDocumentID PMC3837622
2013817031
19432817
10_1111_j_1582_4934_2009_00776_x
JCMM776
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
Germany
GeographicLocations_xml – name: United States--US
– name: Germany
GroupedDBID ---
0R~
1OC
24P
29K
31~
36B
3V.
4.4
53G
5GY
5VS
7X7
8-0
8-1
88E
88I
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AAHHS
AAZKR
ABUWG
ACCFJ
ACCMX
ACGFS
ACGOD
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AFZJQ
AHMBA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-9
D-I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GNUQQ
GODZA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LH4
LK8
LW6
M1P
M2P
M48
M7P
O9-
OIG
OK1
OVD
OVEED
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
AAYXX
ABJNI
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
K9.
7QP
7TK
7XB
8FD
8FK
FR3
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c4786-1a026193d6b6841c71b7ed482ae267628fbe34d21fc8a8780a84ed44a146b8ea3
IEDL.DBID M48
ISSN 1582-1838
1582-4934
IngestDate Thu Aug 21 13:15:46 EDT 2025
Fri Jul 11 10:23:55 EDT 2025
Wed Aug 13 07:13:36 EDT 2025
Fri Jul 25 03:10:21 EDT 2025
Mon Jul 21 05:38:20 EDT 2025
Tue Jul 01 01:34:47 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
Wed Jan 22 16:15:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1‐2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4786-1a026193d6b6841c71b7ed482ae267628fbe34d21fc8a8780a84ed44a146b8ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3075962300?pq-origsite=%requestingapplication%
PMID 19432817
PQID 3075962300
PQPubID 27880
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3837622
proquest_miscellaneous_733591497
proquest_journals_3075962300
proquest_journals_217187647
pubmed_primary_19432817
crossref_citationtrail_10_1111_j_1582_4934_2009_00776_x
crossref_primary_10_1111_j_1582_4934_2009_00776_x
wiley_primary_10_1111_j_1582_4934_2009_00776_x_JCMM776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January‐February 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: January‐February 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Bucharest
– name: Chichester
PublicationTitle Journal of cellular and molecular medicine
PublicationTitleAlternate J Cell Mol Med
PublicationYear 2010
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References 2007; 39
2007; 104
1984; 64
1989; 86
1994; 171
1997; 272
2007; 188
2002; 99
2006; 37
2000; 95
2008; 35
2007; 1106
2008; 5
2007; 71
1985; 66
2008; 2
2007; 109
2007; 35
2005; 23
1989; 74
1997; 90
2000; 19
2007; 292
1999; 17
2007; 177
1996; 60
1990; 171
1998; 92
1998; 91
2007; 3
1999; 94
2008; 111
2007; 21
2005; 33
2007; 25
2001; 97
2001; 98
1998; 26
1991; 173
2004; 104
2004; 103
2006; 12
2008; 18
1999; 27
2006; 15
2008; 14
2005; 40
2006; 8
2008; 12
2006; 6
1993; 90
2007; 10
2003; 31
2007; 14
2006; 108
2003; 425
2002; 20
2007; 110
2009; 4
1998; 188
1993; 157
2006; 107
2003; 101
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_70_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
Gan OI (e_1_2_6_71_2) 1997; 90
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_2
Thiemann FT (e_1_2_6_31_2) 1998; 26
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_46_2
18074246 - Stem Cell Rev. 2007 Dec;3(4):239-48
10734309 - Oncogene. 2000 Mar 16;19(12):1500-8
11264161 - Blood. 2001 Apr 1;97(7):1975-81
15090461 - Blood. 2004 Aug 1;104(3):675-86
18202223 - Blood. 2008 Apr 1;111(7):3415-23
9657136 - Exp Hematol. 1998 Jul;26(7):612-9
12691922 - Exp Hematol. 2003 Apr;31(4):339-47
1997648 - J Exp Med. 1991 Mar 1;173(3):599-607
7504678 - J Cell Physiol. 1993 Dec;157(3):579-86
17615262 - Stem Cells. 2007 Oct;25(10):2638-47
17322278 - Am J Physiol Lung Cell Mol Physiol. 2007 Jun;292(6):L1385-95
11675329 - Blood. 2001 Nov 1;98(9):2615-25
9694701 - Blood. 1998 Aug 15;92(4):1142-9
2406365 - J Exp Med. 1990 Feb 1;171(2):477-88
16923606 - Cytotherapy. 2006;8(4):315-7
6743824 - Blood. 1984 Aug;64(2):393-9
14574412 - Nature. 2003 Oct 23;425(6960):836-41
18471070 - Stem Cells Dev. 2009 Jan-Feb;18(1):173-86
9743530 - J Exp Med. 1998 Sep 21;188(6):1117-24
12456965 - Stem Cells. 2002;20(6):573-82
9226164 - Blood. 1997 Jul 15;90(2):641-50
2566997 - Proc Natl Acad Sci U S A. 1989 May;86(10):3828-32
17536016 - Blood. 2007 Sep 1;110(5):1420-8
16931623 - Blood. 2007 Jan 1;109(1):109-11
8929548 - J Leukoc Biol. 1996 Nov;60(5):579-92
18397756 - Cell Stem Cell. 2008 Apr 10;2(4):367-79
19513108 - PLoS One. 2009 Jun 09;4(6):e5846
16125890 - Exp Gerontol. 2005 Dec;40(12):926-30
18493317 - PLoS One. 2008 May 21;3(5):e2213
18684237 - J Cell Mol Med. 2008 Oct;12(5B):1795-810
10648396 - Blood. 2000 Feb 1;95(3):855-62
16263424 - Exp Hematol. 2005 Nov;33(11):1402-16
17332071 - Ann N Y Acad Sci. 2007 Jun;1106:41-53
15070674 - Blood. 2004 Apr 15;103(8):2981-9
16400333 - Bone Marrow Transplant. 2006 Feb;37(4):359-66
9414274 - Blood. 1998 Jan 1;91(1):111-7
15955826 - Stem Cells. 2005 Sep;23(8):1180-91
11781263 - Blood. 2002 Jan 15;99(2):719-21
17110618 - Stem Cells. 2007 Mar;25(3):798-806
16141352 - Blood. 2006 Jan 1;107(1):79-86
18160820 - Cells Tissues Organs. 2008;188(1-2):160-9
17940039 - Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16952-7
17548514 - J Cell Biol. 2007 Jun 4;177(5):871-80
16491134 - Nat Rev Immunol. 2006 Feb;6(2):93-106
16896152 - Blood. 2006 Dec 1;108(12):3938-44
17164824 - Bone Marrow Transplant. 2007 Jan;39(1):11-23
17656010 - Exp Hematol. 2007 Sep;35(9):1408-14
17258080 - Exp Hematol. 2007 Feb;35(2):314-25
10210328 - Exp Hematol. 1999 Apr;27(4):698-711
16968157 - Tissue Eng. 2006 Aug;12(8):2161-70
8176234 - J Immunol Methods. 1994 May 2;171(1):131-7
17654653 - Cytometry A. 2007 Oct;71(10):773-82
16249381 - Blood. 2006 Mar 1;107(5):2146-52
18620484 - Tissue Eng Part C Methods. 2008 Sep;14(3):185-96
17541394 - Leukemia. 2007 Aug;21(8):1733-8
15231568 - Blood. 2004 Oct 15;104(8):2332-8
17253945 - Stem Cells Dev. 2006 Dec;15(6):815-29
4016276 - Blood. 1985 Aug;66(2):327-32
17898317 - Blood. 2008 Jan 1;111(1):359-68
10515863 - Blood. 1999 Oct 15;94(8):2595-604
7692447 - Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9374-8
9287350 - J Biol Chem. 1997 Sep 12;272(37):23366-70
17534157 - Curr Opin Hematol. 2007 Jul;14(4):330-6
18752377 - Stem Cells Dev. 2009 Apr;18(3):377-85
2790186 - Blood. 1989 Oct;74(5):1563-70
21547116 - Transfus Med Hemother. 2008;35(3):185-193
12623839 - Blood. 2003 Jun 15;101(12):4667-79
17309831 - Exp Hematol. 2007 Mar;35(3):507-15
15963859 - Exp Hematol. 2005 Jul;33(7):828-35
10215397 - Stem Cells. 1999;17(1):19-24
References_xml – volume: 37
  start-page: 359
  year: 2006
  end-page: 66
  article-title: Superior cord blood expansion following co‐culture with bone marrow‐derived mesenchymal stem cells
  publication-title: Bone Marrow Transplant.
– volume: 98
  start-page: 2615
  year: 2001
  end-page: 25
  article-title: Purification and expansion of postnatal human marrow mesodermal progenitor cells
  publication-title: Blood.
– volume: 173
  start-page: 599
  year: 1991
  end-page: 607
  article-title: Evidence for a role of the integrin VLA‐4 in lympho‐hemopoiesis
  publication-title: J Exp Med.
– volume: 23
  start-page: 1180
  year: 2005
  end-page: 91
  article-title: Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction
  publication-title: Stem Cells.
– volume: 95
  start-page: 855
  year: 2000
  end-page: 62
  article-title: High‐resolution tracking of cell division suggests similar cell cycle kinetics of hematopoietic stem cells stimulated and
  publication-title: Blood.
– volume: 107
  start-page: 2146
  year: 2006
  end-page: 52
  article-title: Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division
  publication-title: Blood.
– volume: 64
  start-page: 393
  year: 1984
  end-page: 9
  article-title: Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors
  publication-title: Blood.
– volume: 90
  start-page: 641
  year: 1997
  end-page: 50
  article-title: Differential maintenance of primitive human SCID‐repopulating cells, clonogenic progenitors, and long‐term culture‐initiating cells after incubation on human bone marrow stromal cells
  publication-title: Blood.
– volume: 110
  start-page: 1420
  year: 2007
  end-page: 8
  article-title: Activation of mitogen‐activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway is involved in myeloid lineage commitment
  publication-title: Blood.
– volume: 111
  start-page: 3415
  year: 2008
  end-page: 23
  article-title: Angiopoietin‐like 5 and IGFBP2 stimulate expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation
  publication-title: Blood.
– volume: 60
  start-page: 579
  year: 1996
  end-page: 92
  article-title: Requirement for CD44 in proliferation and homing of hematopoietic precursor cells
  publication-title: J Leukoc Biol.
– volume: 86
  start-page: 3828
  year: 1989
  end-page: 32
  article-title: Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells
  publication-title: Proc Natl Acad Sci USA.
– volume: 171
  start-page: 477
  year: 1990
  end-page: 88
  article-title: Monoclonal antibodies to Pgp‐1/CD44 block lympho‐hemopoiesis in long‐term bone marrow cultures
  publication-title: J Exp Med.
– volume: 99
  start-page: 719
  year: 2002
  end-page: 21
  article-title: Human hematopoiesis in murine embryos after injecting human cord blood‐derived hematopoietic stem cells into murine blastocysts
  publication-title: Blood.
– volume: 35
  start-page: 507
  year: 2007
  end-page: 15
  article-title: Human mesenchymal stem cells improve expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity
  publication-title: Exp Hematol.
– volume: 18
  start-page: 173
  year: 2008
  end-page: 86
  article-title: Primary cells as feeder cells for coculture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study
  publication-title: Stem Cells Dev.
– volume: 14
  start-page: 185
  year: 2008
  end-page: 96
  article-title: Rapid large‐scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum
  publication-title: Tissue Eng Part C Methods.
– volume: 17
  start-page: 19
  year: 1999
  end-page: 24
  article-title: Defining optimum conditions for the expansion of human umbilical cord blood cells. Influences of progenitor enrichment, interference with feeder layers, early‐acting cytokines and agitation of culture vessels
  publication-title: Stem Cells.
– volume: 104
  start-page: 2332
  year: 2004
  end-page: 8
  article-title: Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells
  publication-title: Blood.
– volume: 109
  start-page: 109
  year: 2007
  end-page: 11
  article-title: Sustained alterations in biodistribution of stem/progenitor cells in Tie2Cre+ alpha4(f/f) mice are hematopoietic cell autonomous
  publication-title: Blood.
– volume: 2
  start-page: 367
  year: 2008
  end-page: 79
  article-title: N‐cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells
  publication-title: Cell Stem Cell.
– volume: 1106
  start-page: 41
  year: 2007
  end-page: 53
  article-title: Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche
  publication-title: Ann N Y Acad Sci.
– volume: 35
  start-page: 1408
  year: 2007
  end-page: 14
  article-title: CD133‐enriched CD34(‐) (CD33/ CD38/CD71)(‐) cord blood cells acquire CD34 prior to cell division and hematopoietic activity is exclusively associated with CD34 expression
  publication-title: Exp Hematol.
– volume: 35
  start-page: 314
  year: 2007
  end-page: 25
  article-title: Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell‐cell interaction
  publication-title: Exp Hematol.
– volume: 25
  start-page: 798
  year: 2007
  end-page: 806
  article-title: Human mesenchymal stroma cells regulate initial self‐renewing divisions of hematopoietic progenitor cells by a beta1‐integrin‐dependent mechanism
  publication-title: Stem Cells.
– volume: 4
  start-page: e5846
  year: 2009
  article-title: Aging and replicative senescence have related effects on human stem and progenitor cells
  publication-title: PLoS ONE.
– volume: 97
  start-page: 1975
  year: 2001
  end-page: 81
  article-title: Cross‐talk between alpha(4)beta(1)/alpha(5)beta(1) and c‐Kit results in opposing effect on growth and survival of hematopoietic cells the activation of focal adhesion kinase, mitogen‐activated protein kinase, and Akt signaling pathways
  publication-title: Blood.
– volume: 40
  start-page: 926
  year: 2005
  end-page: 30
  article-title: Mesenchymal stem cell aging
  publication-title: Exp Gerontol.
– volume: 5
  start-page: e2213
  year: 2008
  article-title: Replicative senescence of mesenchymal stem cells – a continuous and organized process
  publication-title: PLoS ONE.
– volume: 104
  start-page: 16952
  year: 2007
  end-page: 7
  article-title: HOXB4’s road map to stem cell expansion
  publication-title: Proc Natl Acad Sci USA.
– volume: 92
  start-page: 1142
  year: 1998
  end-page: 9
  article-title: Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis
  publication-title: Blood.
– volume: 20
  start-page: 573
  year: 2002
  end-page: 82
  article-title: Expansion of LTC‐ICs and maintenance of p21 and BCL‐2 expression in cord blood CD34(+)/CD38(‐) early progenitors cultured over human MSCs as a feeder layer
  publication-title: Stem Cells.
– volume: 171
  start-page: 131
  year: 1994
  end-page: 7
  article-title: Determination of lymphocyte division by flow cytometry
  publication-title: J Immunol Methods.
– volume: 111
  start-page: 359
  year: 2008
  end-page: 68
  article-title: Reduced activation of protein kinase B, Rac, and F‐actin polymerization contributes to an impairment of stromal cell derived factor‐1 induced migration of CD34+ cells from patients with myelodysplasia
  publication-title: Blood.
– volume: 12
  start-page: 1795
  year: 2008
  end-page: 810
  article-title: Mesenchymal stem cells and cardiac repair
  publication-title: J Cell Mol Med.
– volume: 21
  start-page: 1733
  year: 2007
  end-page: 8
  article-title: Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells
  publication-title: Leukemia.
– volume: 157
  start-page: 579
  year: 1993
  end-page: 86
  article-title: Lineage commitment in human hemopoiesis involves asymmetric cell division of multipotent progenitors and does not appear to be influenced by cytokines
  publication-title: J Cell Physiol.
– volume: 27
  start-page: 698
  year: 1999
  end-page: 711
  article-title: Involvement of CD44 variant isoform v10 in progenitor cell adhesion and maturation
  publication-title: Exp Hematol.
– volume: 272
  start-page: 23366
  year: 1997
  end-page: 70
  article-title: Sustained activation of the extracellular signal‐regulated kinase/mitogen‐activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells
  publication-title: J Biol Chem.
– volume: 91
  start-page: 111
  year: 1998
  end-page: 7
  article-title: Stroma‐contact prevents loss of hematopoietic stem cell quality during expansion of CD34+ mobilized peripheral blood stem cells
  publication-title: Blood.
– volume: 33
  start-page: 1402
  year: 2005
  end-page: 16
  article-title: Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood
  publication-title: Exp Hematol.
– volume: 107
  start-page: 79
  year: 2006
  end-page: 86
  article-title: Hierarchy of molecular‐pathway usage in bone marrow homing and its shift by cytokines
  publication-title: Blood.
– volume: 94
  start-page: 2595
  year: 1999
  end-page: 604
  article-title: Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules
  publication-title: Blood.
– volume: 6
  start-page: 93
  year: 2006
  end-page: 106
  article-title: Bone‐marrow haematopoietic‐stem‐cell niches
  publication-title: Nat Rev Immunol.
– volume: 8
  start-page: 315
  year: 2006
  end-page: 7
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy.
– volume: 19
  start-page: 1500
  year: 2000
  end-page: 8
  article-title: Induction of erythroid differentiation by inhibition of Ras/ERK pathway in a friend murine leukemia cell line
  publication-title: Oncogene.
– volume: 292
  start-page: L1385
  year: 2007
  end-page: 95
  article-title: TNF‐alpha induced CD38 expression in human airway smooth muscle cells: role of MAP kinases and transcription factors NF‐kappaB and AP‐1
  publication-title: Am J Physiol Lung Cell Mol Physiol.
– volume: 18
  start-page: 377
  year: 2008
  end-page: 85
  article-title: Modeling of asymmetric cell division in hematopoietic stem cells – regulation of self‐renewal is essential for efficient repopulation
  publication-title: Stem Cells Dev.
– volume: 33
  start-page: 828
  year: 2005
  end-page: 35
  article-title: A human stromal‐based serum‐free culture system supports the expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells
  publication-title: Exp Hematol.
– volume: 10
  start-page: 2638
  year: 2007
  end-page: 57
  article-title: Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors
  publication-title: Stem Cells.
– volume: 188
  start-page: 1117
  year: 1998
  end-page: 24
  article-title: Asymmetric cell divisions sustain long‐term hematopoiesis from single‐sorted human fetal liver cells
  publication-title: J Exp Med.
– volume: 31
  start-page: 339
  year: 2003
  end-page: 47
  article-title: The symmetry of initial divisions of human hematopoietic progenitors is altered only by the cellular microenvironment
  publication-title: Exp Hematol.
– volume: 103
  start-page: 2981
  year: 2004
  end-page: 9
  article-title: CD44 and hyaluronic acid cooperate with SDF‐1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow
  publication-title: Blood.
– volume: 15
  start-page: 815
  year: 2006
  end-page: 29
  article-title: Polarization of human hematopoietic progenitors during contact with multipotent mesenchymal stromal cells: effects on proliferation and clonogenicity
  publication-title: Stem Cells Dev.
– volume: 177
  start-page: 871
  year: 2007
  end-page: 80
  article-title: Alpha4beta1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development
  publication-title: J Cell Biol.
– volume: 26
  start-page: 612
  year: 1998
  end-page: 9
  article-title: The murine stromal cell line AFT024 acts specifically on human CD34+CD38‐ progenitors to maintain primitive function and immunophenotype
  publication-title: Exp Hematol.
– volume: 12
  start-page: 2161
  year: 2006
  end-page: 70
  article-title: Co‐culture of umbilical cord blood CD34(+) cells with human mesenchymal stem cells
  publication-title: Tissue Eng.
– volume: 90
  start-page: 9374
  year: 1993
  end-page: 8
  article-title: Peripheralization of hemopoietic progenitors in primates treated with anti‐VLA4 integrin
  publication-title: Proc Natl Acad Sci USA.
– volume: 188
  start-page: 160
  year: 2007
  end-page: 9
  article-title: Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44
  publication-title: Cells Tissues Organs.
– volume: 101
  start-page: 4667
  year: 2003
  end-page: 79
  article-title: Map kinase signaling pathways and hematologic malignancies
  publication-title: Blood.
– volume: 66
  start-page: 327
  year: 1985
  end-page: 32
  article-title: Disparate differentiation in hemopoietic colonies derived from human paired progenitors
  publication-title: Blood.
– volume: 14
  start-page: 330
  year: 2007
  end-page: 6
  article-title: The beauty of asymmetry – asymmetric divisions and self‐renewal in the hematopoietic system
  publication-title: Curr Opin Hematol.
– volume: 35
  start-page: 185
  year: 2008
  end-page: 93
  article-title: The stromal function of mesenchymal stromal cells
  publication-title: Transfus Med Hemother.
– volume: 39
  start-page: 11
  year: 2007
  end-page: 23
  article-title: expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche
  publication-title: Bone Marrow Transplant.
– volume: 425
  start-page: 836
  year: 2003
  end-page: 41
  article-title: Identification of the haematopoietic stem cell niche and control of the niche size
  publication-title: Nature.
– volume: 3
  start-page: 239
  year: 2007
  end-page: 48
  article-title: Mesenchymal stem cell preparations‐comparing apples and oranges
  publication-title: Stem Cell Rev.
– volume: 104
  start-page: 675
  year: 2004
  end-page: 86
  article-title: Molecular evidence for stem cell function of the slow‐dividing fraction among human hematopoietic progenitor cells by genome‐wide analysis
  publication-title: Blood.
– volume: 108
  start-page: 3938
  year: 2006
  end-page: 44
  article-title: Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells
  publication-title: Blood.
– volume: 71
  start-page: 773
  year: 2007
  end-page: 82
  article-title: Analysis of cell differentiation by division tracking cytometry
  publication-title: Cytometry A.
– volume: 74
  start-page: 1563
  year: 1989
  end-page: 70
  article-title: Characterization and partial purification of human marrow cells capable of initiating long‐term hematopoiesis
  publication-title: Blood.
– ident: e_1_2_6_22_2
  doi: 10.1182/blood-2006-05-025098
– ident: e_1_2_6_47_2
  doi: 10.1159/000128956
– ident: e_1_2_6_30_2
  doi: 10.1182/blood.V98.9.2615
– ident: e_1_2_6_45_2
  doi: 10.1016/j.exphem.2006.10.003
– ident: e_1_2_6_61_2
  doi: 10.1196/annals.1392.005
– ident: e_1_2_6_32_2
  doi: 10.1182/blood.V74.5.1563.1563
– ident: e_1_2_6_41_2
  doi: 10.1182/blood-2005-08-3139
– ident: e_1_2_6_54_2
  doi: 10.1182/blood.V92.4.1142.416k42_1142_1149
– ident: e_1_2_6_28_2
  doi: 10.1016/j.exphem.2005.07.003
– ident: e_1_2_6_34_2
  doi: 10.1089/scd.2006.15.815
– volume: 90
  start-page: 641
  year: 1997
  ident: e_1_2_6_71_2
  article-title: Differential maintenance of primitive human SCID‐repopulating cells, clonogenic progenitors, and long‐term culture‐initiating cells after incubation on human bone marrow stromal cells
  publication-title: Blood.
  doi: 10.1182/blood.V90.2.641
– ident: e_1_2_6_64_2
  doi: 10.1634/stemcells.2006-0513
– ident: e_1_2_6_17_2
  doi: 10.1080/14653240600855905
– ident: e_1_2_6_20_2
  doi: 10.1038/sj.leu.2404777
– ident: e_1_2_6_53_2
  doi: 10.1182/blood-2006-11-060632
– ident: e_1_2_6_39_2
  doi: 10.1084/jem.188.6.1117
– ident: e_1_2_6_36_2
  doi: 10.1182/blood-2007-02-071761
– ident: e_1_2_6_37_2
  doi: 10.1182/blood.V64.2.393.393
– ident: e_1_2_6_40_2
  doi: 10.1002/jcp.1041570318
– ident: e_1_2_6_12_2
  doi: 10.1038/sj.bmt.1705258
– ident: e_1_2_6_26_2
  doi: 10.1016/0022-1759(94)90236-4
– ident: e_1_2_6_70_2
  doi: 10.1182/blood.V97.7.1975
– ident: e_1_2_6_27_2
  doi: 10.1016/j.exphem.2007.05.016
– ident: e_1_2_6_66_2
  doi: 10.1084/jem.171.2.477
– ident: e_1_2_6_42_2
  doi: 10.1182/blood-2003-10-3423
– ident: e_1_2_6_49_2
  doi: 10.1371/journal.pone.0005846
– ident: e_1_2_6_9_2
  doi: 10.1038/nri1779
– ident: e_1_2_6_55_2
  doi: 10.1152/ajplung.00472.2006
– ident: e_1_2_6_68_2
  doi: 10.1083/jcb.200702080
– ident: e_1_2_6_62_2
  doi: 10.1073/pnas.90.20.9374
– ident: e_1_2_6_16_2
  doi: 10.1182/blood.V91.1.111
– ident: e_1_2_6_4_2
  doi: 10.1038/sj.bmt.1705538
– ident: e_1_2_6_65_2
  doi: 10.1002/jlb.60.5.579
– ident: e_1_2_6_43_2
  doi: 10.1016/S0301-472X(03)00024-9
– ident: e_1_2_6_58_2
  doi: 10.1182/blood-2006-06-026427
– ident: e_1_2_6_57_2
  doi: 10.1182/blood-2005-05-2023
– volume: 26
  start-page: 612
  year: 1998
  ident: e_1_2_6_31_2
  article-title: The murine stromal cell line AFT024 acts specifically on human CD34+CD38‐ progenitors to maintain primitive function and immunophenotype in vitro
  publication-title: Exp Hematol.
– ident: e_1_2_6_67_2
  doi: 10.1016/S0301-472X(98)00082-4
– ident: e_1_2_6_23_2
  doi: 10.1089/ten.tec.2008.0060
– ident: e_1_2_6_46_2
  doi: 10.1002/cyto.a.20437
– ident: e_1_2_6_11_2
  doi: 10.1089/ten.2006.12.2161
– ident: e_1_2_6_13_2
  doi: 10.1016/j.exphem.2006.10.015
– ident: e_1_2_6_18_2
  doi: 10.1007/s12015-007-9001-1
– ident: e_1_2_6_7_2
  doi: 10.1073/pnas.0703082104
– ident: e_1_2_6_21_2
  doi: 10.1634/stemcells.2007-0280
– ident: e_1_2_6_15_2
  doi: 10.1089/scd.2007.0273
– ident: e_1_2_6_48_2
  doi: 10.1016/j.exger.2005.07.006
– ident: e_1_2_6_63_2
  doi: 10.1159/000112821
– ident: e_1_2_6_51_2
  doi: 10.1074/jbc.272.37.23366
– ident: e_1_2_6_69_2
  doi: 10.1084/jem.173.3.599
– ident: e_1_2_6_35_2
  doi: 10.1182/blood.V94.8.2595.420k37_2595_2604
– ident: e_1_2_6_33_2
  doi: 10.1182/blood-2004-02-0511
– ident: e_1_2_6_50_2
  doi: 10.1182/blood-2002-12-3647
– ident: e_1_2_6_3_2
  doi: 10.1016/j.exphem.2005.03.017
– ident: e_1_2_6_19_2
  doi: 10.1111/j.1582-4934.2008.00457.x
– ident: e_1_2_6_44_2
  doi: 10.1634/stemcells.2004-0361
– ident: e_1_2_6_56_2
  doi: 10.1038/nature02041
– ident: e_1_2_6_24_2
  doi: 10.1089/scd.2008.0143
– ident: e_1_2_6_5_2
  doi: 10.1002/stem.170019
– ident: e_1_2_6_10_2
  doi: 10.1182/blood.V99.2.719
– ident: e_1_2_6_52_2
  doi: 10.1038/sj.onc.1203461
– ident: e_1_2_6_2_2
  doi: 10.1073/pnas.86.10.3828
– ident: e_1_2_6_59_2
  doi: 10.1182/blood-2003-10-3611
– ident: e_1_2_6_6_2
  doi: 10.1182/blood-2007-11-122119
– ident: e_1_2_6_25_2
  doi: 10.1182/blood.V95.3.855.003k41_855_862
– ident: e_1_2_6_60_2
  doi: 10.1016/j.stem.2008.01.017
– ident: e_1_2_6_29_2
  doi: 10.1371/journal.pone.0002213
– ident: e_1_2_6_38_2
  doi: 10.1182/blood.V66.2.327.327
– ident: e_1_2_6_14_2
  doi: 10.1634/stemcells.20-6-573
– ident: e_1_2_6_8_2
  doi: 10.1097/MOH.0b013e3281900f12
– reference: 16125890 - Exp Gerontol. 2005 Dec;40(12):926-30
– reference: 18074246 - Stem Cell Rev. 2007 Dec;3(4):239-48
– reference: 10515863 - Blood. 1999 Oct 15;94(8):2595-604
– reference: 16968157 - Tissue Eng. 2006 Aug;12(8):2161-70
– reference: 9287350 - J Biol Chem. 1997 Sep 12;272(37):23366-70
– reference: 18620484 - Tissue Eng Part C Methods. 2008 Sep;14(3):185-96
– reference: 16491134 - Nat Rev Immunol. 2006 Feb;6(2):93-106
– reference: 7692447 - Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9374-8
– reference: 8929548 - J Leukoc Biol. 1996 Nov;60(5):579-92
– reference: 16263424 - Exp Hematol. 2005 Nov;33(11):1402-16
– reference: 9657136 - Exp Hematol. 1998 Jul;26(7):612-9
– reference: 9743530 - J Exp Med. 1998 Sep 21;188(6):1117-24
– reference: 16931623 - Blood. 2007 Jan 1;109(1):109-11
– reference: 14574412 - Nature. 2003 Oct 23;425(6960):836-41
– reference: 21547116 - Transfus Med Hemother. 2008;35(3):185-193
– reference: 2406365 - J Exp Med. 1990 Feb 1;171(2):477-88
– reference: 9694701 - Blood. 1998 Aug 15;92(4):1142-9
– reference: 16141352 - Blood. 2006 Jan 1;107(1):79-86
– reference: 7504678 - J Cell Physiol. 1993 Dec;157(3):579-86
– reference: 15963859 - Exp Hematol. 2005 Jul;33(7):828-35
– reference: 17548514 - J Cell Biol. 2007 Jun 4;177(5):871-80
– reference: 16923606 - Cytotherapy. 2006;8(4):315-7
– reference: 17534157 - Curr Opin Hematol. 2007 Jul;14(4):330-6
– reference: 18493317 - PLoS One. 2008 May 21;3(5):e2213
– reference: 11781263 - Blood. 2002 Jan 15;99(2):719-21
– reference: 11675329 - Blood. 2001 Nov 1;98(9):2615-25
– reference: 12456965 - Stem Cells. 2002;20(6):573-82
– reference: 12623839 - Blood. 2003 Jun 15;101(12):4667-79
– reference: 18684237 - J Cell Mol Med. 2008 Oct;12(5B):1795-810
– reference: 18752377 - Stem Cells Dev. 2009 Apr;18(3):377-85
– reference: 9226164 - Blood. 1997 Jul 15;90(2):641-50
– reference: 15231568 - Blood. 2004 Oct 15;104(8):2332-8
– reference: 15090461 - Blood. 2004 Aug 1;104(3):675-86
– reference: 12691922 - Exp Hematol. 2003 Apr;31(4):339-47
– reference: 1997648 - J Exp Med. 1991 Mar 1;173(3):599-607
– reference: 17541394 - Leukemia. 2007 Aug;21(8):1733-8
– reference: 17615262 - Stem Cells. 2007 Oct;25(10):2638-47
– reference: 18471070 - Stem Cells Dev. 2009 Jan-Feb;18(1):173-86
– reference: 17940039 - Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16952-7
– reference: 8176234 - J Immunol Methods. 1994 May 2;171(1):131-7
– reference: 17332071 - Ann N Y Acad Sci. 2007 Jun;1106:41-53
– reference: 10648396 - Blood. 2000 Feb 1;95(3):855-62
– reference: 17322278 - Am J Physiol Lung Cell Mol Physiol. 2007 Jun;292(6):L1385-95
– reference: 17110618 - Stem Cells. 2007 Mar;25(3):798-806
– reference: 19513108 - PLoS One. 2009 Jun 09;4(6):e5846
– reference: 11264161 - Blood. 2001 Apr 1;97(7):1975-81
– reference: 18397756 - Cell Stem Cell. 2008 Apr 10;2(4):367-79
– reference: 2566997 - Proc Natl Acad Sci U S A. 1989 May;86(10):3828-32
– reference: 10210328 - Exp Hematol. 1999 Apr;27(4):698-711
– reference: 16896152 - Blood. 2006 Dec 1;108(12):3938-44
– reference: 10215397 - Stem Cells. 1999;17(1):19-24
– reference: 10734309 - Oncogene. 2000 Mar 16;19(12):1500-8
– reference: 2790186 - Blood. 1989 Oct;74(5):1563-70
– reference: 15070674 - Blood. 2004 Apr 15;103(8):2981-9
– reference: 17258080 - Exp Hematol. 2007 Feb;35(2):314-25
– reference: 17309831 - Exp Hematol. 2007 Mar;35(3):507-15
– reference: 17656010 - Exp Hematol. 2007 Sep;35(9):1408-14
– reference: 17164824 - Bone Marrow Transplant. 2007 Jan;39(1):11-23
– reference: 16400333 - Bone Marrow Transplant. 2006 Feb;37(4):359-66
– reference: 18202223 - Blood. 2008 Apr 1;111(7):3415-23
– reference: 17898317 - Blood. 2008 Jan 1;111(1):359-68
– reference: 4016276 - Blood. 1985 Aug;66(2):327-32
– reference: 17654653 - Cytometry A. 2007 Oct;71(10):773-82
– reference: 17253945 - Stem Cells Dev. 2006 Dec;15(6):815-29
– reference: 16249381 - Blood. 2006 Mar 1;107(5):2146-52
– reference: 15955826 - Stem Cells. 2005 Sep;23(8):1180-91
– reference: 6743824 - Blood. 1984 Aug;64(2):393-9
– reference: 17536016 - Blood. 2007 Sep 1;110(5):1420-8
– reference: 18160820 - Cells Tissues Organs. 2008;188(1-2):160-9
– reference: 9414274 - Blood. 1998 Jan 1;91(1):111-7
SSID ssj0036139
Score 2.3303208
Snippet Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor...
Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 337
SubjectTerms adhesion proteins
ADP-ribosyl Cyclase 1 - metabolism
Antibodies
Antigens, CD34 - metabolism
Biotechnology
Carboxyfluorescein diacetate
CD13 antigen
CD34 antigen
CD38 antigen
CD44 antigen
CD45 antigen
CD56 antigen
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cell culture
Cell Culture Techniques
Cell differentiation
Cell Differentiation - physiology
Cell division
Cell Proliferation
Cell self-renewal
Cells, Cultured
Cellular Senescence - physiology
Cloning
Coculture Techniques
Cord blood
co‐culture
Fetal Blood - cytology
Flow cytometry
Genetics
Genotype & phenotype
haematopoietic stem cells
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - physiology
Hemopoiesis
Human subjects
Humans
immunophenotype
Immunophenotyping
Kinases
Laboratories
MAP kinase
Mesenchymal stem cells
mesenchymal stromal cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - physiology
Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors
Mitogen-Activated Protein Kinase 1 - genetics
Mitogen-Activated Protein Kinase 1 - metabolism
N-Cadherin
Progenitor cells
proliferation
Proteins
replicative senescence
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
siRNA
stem cell niche
Stem cells
Stromal cells
Stromal Cells - cytology
Stromal Cells - physiology
Studies
Umbilical cord
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZtSqGXkj7jJik69GoqS7Iep1KWhBBITw3sTciyxC507e16A82_74wfmywLIScbRhKWZjSaGY--IeSbsZwzH1guOa9yaZOGLWVYrlUd6-SB5XWP9vlLXd3K63k5HwNu3ZhWOenEXlHXbcAY-XeQRSwUIxj7sf6bY9Uo_Ls6ltB4SV4hdBlKtZ7vHC4BR5Xdz94pwZ6UVsgJqFJrNYEeTUfSgZ15mC752Iztz6HLY_J2NCDpz4Hj78iL2Lwnr4eSkvcfyHbW5gOaRqQYY6UrvF4UFvcr6NRtNy0-MVrf0WWDFmMXO7rG0j0pDsJAfVPTlUccCQTjiLRNdOER2rVdt0u884jtQe5AF2yGoT6S28uL37OrfKyskAepjcoL37tewIdKGVkEXVQ61tJwH7kC9WhSFYWseZGC8UYb5o0EuvSgVysTvfhEjpq2iSeEigp8HlsxlUIpeWBWBKt0UsmGUjATMqKnxXVhhB3H6hd_3CP3A9jikC1YFNO6ni3uX0aKXc_1AL3xjD6nE__cuBk7B15XAUpf6oycHVIfBCsjdEeGTYYL6JvY3nVOC1Fa8CVhhM-DLDx8kZWCmwIoek9Kdg0Qv3uf0iwXPY43BgcU5xlRvTw9e5LuenZzA29fnp7OKXkzpDpgvOiMHG03d_EcLKht9bXfJv8B2F4YAA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlodBL6btukqJDry62JOtxLEtDCKT00EBuQpZldqFrL-tNaG79Cf2N_SWdkbybmM0h9OSF8Qiv5qGZYfQNIZ-0YaxwvsgFY3UuTKvApHSRK9mEpnUg8iaifX6TZ5fi_Kq6Gvuf8C5MwofYFdzQMqK_RgN39TA18gqiQ2G42MJOKiU_Qzx5iDdtsb2Pie9br8zh2DIROxV4QI31tKvnwZWmR9Ve_LnfRnk_vI3n0-kL8nwMLOmXpAkvyZPQvSJP06jJ29fkZtb__f0n4WwEitVXusSLR35-uwS2YbPu8Yl1_IEuOowlhzDQFQ71aUNSE-q6hi4dIkwgTEegfUvnDkFf-1W_wNuQ-D5oJHiJdVrqDbk8_fpjdpaPMxdyL5SWeeliUgYSqqUWpVdlrUIjNHOBSXCcuq0DFw0rW6-dVrpwWgBdONjyWgfH35KDru_Ce0J5DdmQqQvZ-kowXxjujVStbI2veKF9RtR2e60fAclxLsZPey8xAcFYFAyOyzQ2Csb-yki541wlUI5H8BxtJWhHMx0s5GMlHAdCZeR4nwruD2cT8aLICN2RwfxwA10X-uvBKs4rA1kmrPAuacPdFxnBmS6BoiZ6snsBkb2nlG4xjwjfWDaQjGVERo169J-057OLC_j14X8Zj8iz1B6BNaZjcrBZX4cTiLo29cdoTv8AcQEiIA
  priority: 102
  providerName: Wiley-Blackwell
Title Co‐culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2009.00776.x
https://www.ncbi.nlm.nih.gov/pubmed/19432817
https://www.proquest.com/docview/217187647
https://www.proquest.com/docview/3075962300
https://www.proquest.com/docview/733591497
https://pubmed.ncbi.nlm.nih.gov/PMC3837622
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddy2AvY99z2wU97NXFlmR9PIzRhZZSSCljGWEvRpZlEmjsLE6h-e97548sIR30xTJIMpLupLuTpd-PkK_aMBZZF4WCsSwUplAwpXQUKpn7vLAg8rxB-7yRV2NxPUkmB6S_rtgNYP1kaId8UuPl3dnD3_V3mPDftk7lJOAnCsNFD0CplDwDz_II7JNCXoOR2Pxb4GDAzO6ZnidrN3CigjPdcJlt2aw9R3T_POW2n9sYqss35HXnYdLzViXekgNfviMvW87J9XuyGlZhC7fhKW7C0jneP3LT9Rwq1atlhSlu59d0VqJLWfuaLpDbp_CttlBb5nRuEWgC0To8rQo6tYj9Wi2qGV6KxPKgmLBYLNtPfSDjy4tfw6uwo14InVBahrFtYjMQVCa1iJ2KM-VzoZn1TML6qYvMc5GzuHDaaqUjqwXkCwsLb6a95R_JYVmV_jOhPIOgyGSRLFwimIsMd0aqQhbGJTzSLiCqH9zUdbjkSI9xl27FJyChFCWErJkmbSSUPgQk3tRctNgcz6hz0ssv7ZUthbAsBqsgVEBO93NhFUSKIh5FAaGbbJiFOIC29NV9nSrOEwPBJnzhU6sL_1rUKRH0c0dLNgUQ4Hs3p5xNG6Bv3D2QjAVENvr07E6m18PRCN6O_9uYE_KqPQaBe0mn5HC1vPdfwLtaZQPygolbeKqJGpCj89_jP2NIf1zc3P4cNBPpERVBIZE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxJ2wAX6Ax4jEdnx5QAgVpu7SPW1S34zjOGolmpSmE_RP8Rs5J2m6VZXQXvaUSCe2Yp-7L98h5IM2jCXOJ7FgLI-FKRWolE5iJYtQlA5YXrRon-dyeClOxtl4j_zt78LgscreJraGuqg9rpF_AlnEQjE8Sb7Mf8VYNQp3V_sSGp1YnIbVb0jZms_H34C_Hxk7-n4xGMbrqgKxF0rLOHVt2gH_kEstUq_SXIVCaOYCk2AadJkHLgqWll47rXTitAC6cGBTch0ch37vkfvgeBNM9tR4k-BxcI1m-7RQBvGrMFz0wJhKyR5kqXeBO3Ht7vHMm2Fz6_eOnpDH64CVfu0k7CnZC9Uz8qArYbl6TpaDOu7QOwLFNV06w-tMfrKaQaNmuajxibsDDZ1WGKE2oaFzLBVUhk74qKsKOnOIW4HgH4HWJZ04hJKt5_UU71ji9yDnYHsWXVcvyOWdzPlLsl_VVXhNKM8hxzJ5IkufCeYTw72RqpSl8RlPtI-I6ifX-jXMOVbb-GlvpDvAFotswSKcxrZssX8ikm5azjuoj1u0Oej5Z9fK31jI8lJwMkJF5HCXei3IEaEbMig1TqCrQn3VWMV5ZiB3hR5edbJw_UdGcKZToKgtKdl8gHjh25RqOmlxw3ExQjIWEdnK060HaU8GoxG8vfn_cN6Th8OL0Zk9Oz4_PSCPumMWuFZ1SPaXi6vwFqK3Zf6uVRlKfty1jv4DkLBTzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDvdBvgBHqMltuPLA0LQrdqFVRNi0t6C4zhqJZp0TSfoX-PXcU4u3apKaC97SqQTW4nP3Tn-DiEftGEstC4MBGNpIEyuQKV0GCiZ-Sy3wPKsRvscyaMLcXIZX26Rv91ZGCyr7Gxibaiz0uEe-T7IIjaK4WG4n7dlEecHw8-zqwA7SOGf1q6dRiMip375G9K36tPxAfD6I2PDwx-Do6DtMBA4obQMIlunIPA-qdQicipKlc-EZtYzCWZC56nnImNR7rTVSodWC6ALC_Yl1d5ymPcB2VaYFfXI9tfD0fn3zg9wcJRmvXYohmhWGC46mEylZAe51DnEjSh3s1jzdhBde8HhU_KkDV_pl0benpEtXzwnD5uGlssXZDEogwbLw1Pc4aVTPNzkxsspDKoW8xKv-K-gopMC49XKV3SGjYNy34gitUVGpxZRLBAKxNMyp2OLwLLlrJzgiUt8HqQeLNG8meolubiXVX9FekVZ-DeE8hQyLpOGMnexYC403BmpcpkbF_NQuz5R3eImrgU9x94bv5JbyQ-wJUG2YEtOk9RsSf70SbQaOWuAP-4wZrfjX9KagiqBnC8ClyNUn-xtUm_Euk_oigwqjgtoC19eV4niPDaQycIMrxtZuHkjIzjTEVDUmpSsHkD08HVKMRnXKOK4NSEZ6xNZy9OdPzI5GZydwd3O_z_nPXkE-pl8Ox6d7pLHTc0Fblztkd5ifu3fQii3SN-1OkPJz_tW039gAFlq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-culture+with+mesenchymal+stromal+cells+increases+proliferation+and+maintenance+of+haematopoietic+progenitor+cells&rft.jtitle=Journal+of+cellular+and+molecular+medicine&rft.au=Walenda%2C+Thomas&rft.au=Bork%2C+Simone&rft.au=Horn%2C+Patrick&rft.au=Wein%2C+Frederik&rft.date=2010-01-01&rft.eissn=1582-4934&rft.volume=14&rft.issue=1-2&rft.spage=337&rft_id=info:doi/10.1111%2Fj.1582-4934.2009.00776.x&rft_id=info%3Apmid%2F19432817&rft.externalDocID=19432817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-1838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-1838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-1838&client=summon