Globularity‐Selected Large Molecules for a New Generation of Multication Perovskites

Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high‐efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammoniu...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 38
Main Authors Gholipour, Somayeh, Ali, Abdollah Morteza, Correa‐Baena, Juan‐Pablo, Turren‐Cruz, Silver‐Hamill, Tajabadi, Fariba, Tress, Wolfgang, Taghavinia, Nima, Grätzel, Michael, Abate, Antonio, De Angelis, Filippo, Gaggioli, Carlo Alberto, Mosconi, Edoardo, Hagfeldt, Anders, Saliba, Michael
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high‐efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive “black”‐phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a “globularity factor”, i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as “additives”. MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue‐shifted PSCs reported to date. Furthermore, one of the compositions, MA0.5EA0.5PbBr3, shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture. Tolerance factors based on novel molecular descriptors are introduced and subsequently implemented experimentally in multication methylammonium/ethylammonium (EA) perovskite solar cells. It is shown that surprisingly large quantities of EA can be incorporated into the perovskite structure, which results in one of the highest reported open‐circuit voltages for perovskite solar cells.
AbstractList Perovskite solar cells (PSCs) use perovskites with an APbX 3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high‐efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive “black”‐phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a “globularity factor”, i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as “additives”. MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue‐shifted PSCs reported to date. Furthermore, one of the compositions, MA 0.5 EA 0.5 PbBr 3 , shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture.
Perovskite solar cells (PSCs) use perovskites with an APbX structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high-efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive "black"-phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a "globularity factor", i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as "additives". MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue-shifted PSCs reported to date. Furthermore, one of the compositions, MA EA PbBr , shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture.
Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high‐efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive “black”‐phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a “globularity factor”, i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as “additives”. MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue‐shifted PSCs reported to date. Furthermore, one of the compositions, MA0.5EA0.5PbBr3, shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture. Tolerance factors based on novel molecular descriptors are introduced and subsequently implemented experimentally in multication methylammonium/ethylammonium (EA) perovskite solar cells. It is shown that surprisingly large quantities of EA can be incorporated into the perovskite structure, which results in one of the highest reported open‐circuit voltages for perovskite solar cells.
Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high-efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive "black"-phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a "globularity factor", i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as "additives". MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue-shifted PSCs reported to date. Furthermore, one of the compositions, MA0.5EA0.5PbBr3, shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture.
Author Mosconi, Edoardo
Saliba, Michael
Grätzel, Michael
Gholipour, Somayeh
Correa‐Baena, Juan‐Pablo
Abate, Antonio
Tajabadi, Fariba
Taghavinia, Nima
Ali, Abdollah Morteza
Turren‐Cruz, Silver‐Hamill
Hagfeldt, Anders
De Angelis, Filippo
Tress, Wolfgang
Gaggioli, Carlo Alberto
Author_xml – sequence: 1
  givenname: Somayeh
  surname: Gholipour
  fullname: Gholipour, Somayeh
  organization: Alzahra University
– sequence: 2
  givenname: Abdollah Morteza
  surname: Ali
  fullname: Ali, Abdollah Morteza
  email: mortezaali@alzahra.ac.ir
  organization: Alzahra University
– sequence: 3
  givenname: Juan‐Pablo
  surname: Correa‐Baena
  fullname: Correa‐Baena, Juan‐Pablo
  organization: Laboratory of Photomolecular Science
– sequence: 4
  givenname: Silver‐Hamill
  surname: Turren‐Cruz
  fullname: Turren‐Cruz, Silver‐Hamill
  organization: Ciudad Universitaria
– sequence: 5
  givenname: Fariba
  surname: Tajabadi
  fullname: Tajabadi, Fariba
  organization: Materials and Energy Research Centre
– sequence: 6
  givenname: Wolfgang
  surname: Tress
  fullname: Tress, Wolfgang
  organization: Laboratory for Photonics and Interfaces
– sequence: 7
  givenname: Nima
  surname: Taghavinia
  fullname: Taghavinia, Nima
  organization: Sharif University of Technology
– sequence: 8
  givenname: Michael
  surname: Grätzel
  fullname: Grätzel, Michael
  organization: Laboratory for Photonics and Interfaces
– sequence: 9
  givenname: Antonio
  surname: Abate
  fullname: Abate, Antonio
  organization: University of Fribourg Ch. du. Musée 3
– sequence: 10
  givenname: Filippo
  surname: De Angelis
  fullname: De Angelis, Filippo
  organization: Istituto Italiano di Tecnologia
– sequence: 11
  givenname: Carlo Alberto
  surname: Gaggioli
  fullname: Gaggioli, Carlo Alberto
  organization: Istituto Italiano di Tecnologia
– sequence: 12
  givenname: Edoardo
  surname: Mosconi
  fullname: Mosconi, Edoardo
  organization: Istituto Italiano di Tecnologia
– sequence: 13
  givenname: Anders
  surname: Hagfeldt
  fullname: Hagfeldt, Anders
  email: anders.hagfeldt@epfl.ch
  organization: Laboratory of Photomolecular Science
– sequence: 14
  givenname: Michael
  orcidid: 0000-0002-6818-9781
  surname: Saliba
  fullname: Saliba, Michael
  email: michael.saliba@epfl.ch
  organization: Laboratory for Photonics and Interfaces
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28833614$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFO3DAQQC0EgoX2yrGK1AuXbMd27MTHFS3bSrsFqdBrNLFnUcAbUzsB7Y1P6DfyJQ1aSiUuPY1GevM0eodstwsdMXbMYcoBxCd0a5wK4CUIALXDJlwJnhdg1C6bgJEqN7qoDthhSjcAYDTofXYgqkpKzYsJ-zn3oRk8xrbfPD3-_kGebE8uW2C8pmwZxnXwlLJViBlm3-khm1NHEfs2dFlYZcvB963drhcUw326bXtK79jeCn2i9y_ziF2dfbk8_ZovzuffTmeL3BZlpXJnZGWAI6KkSprSOGvKBhpeuoa0qiQiVyRQOAcFl8KCkwhoAZx2Qll5xE623rsYfg2U-nrdJkveY0dhSDU3UnBdCqlH9OMb9CYMsRu_G6miVNIYXY3UdEvZGFKKtKrvYrvGuKk51M_F6-fi9Wvx8eDDi3Zo1uRe8b-JR8BsgYfW0-Y_unr2eTn7J_8DhsGPKg
CitedBy_id crossref_primary_10_1002_smll_201802385
crossref_primary_10_1016_j_joule_2018_05_008
crossref_primary_10_1002_aenm_201903221
crossref_primary_10_1016_j_chempr_2021_07_011
crossref_primary_10_1021_acsaem_7b00065
crossref_primary_10_1002_anie_201911518
crossref_primary_10_1021_jacs_3c01531
crossref_primary_10_1038_s41560_017_0054_3
crossref_primary_10_1016_j_ccr_2021_214337
crossref_primary_10_1016_j_cej_2023_141788
crossref_primary_10_1038_s41598_020_79348_1
crossref_primary_10_1126_science_adf0194
crossref_primary_10_1039_C8TA07836J
crossref_primary_10_1002_apxr_202200079
crossref_primary_10_1021_acsami_9b09564
crossref_primary_10_1021_acs_jpclett_9b02020
crossref_primary_10_1021_acs_chemmater_9b05342
crossref_primary_10_1002_adom_202102566
crossref_primary_10_1016_j_mtener_2018_12_009
crossref_primary_10_1016_j_commatsci_2020_109619
crossref_primary_10_1002_cssc_201900106
crossref_primary_10_1021_acsenergylett_9b01735
crossref_primary_10_1002_cssc_201803043
crossref_primary_10_1002_ente_201900743
crossref_primary_10_1039_D1TA08964A
crossref_primary_10_1038_s41598_018_36218_1
crossref_primary_10_1016_j_jssc_2024_124639
crossref_primary_10_1002_crat_202300046
crossref_primary_10_1021_acsenergylett_8b00615
crossref_primary_10_1038_s41467_020_17943_6
crossref_primary_10_1021_acsenergylett_9b02450
crossref_primary_10_1016_j_joule_2017_09_017
crossref_primary_10_1002_ejic_202200671
crossref_primary_10_1002_inf2_12104
crossref_primary_10_1039_D3QI01615C
crossref_primary_10_1021_acs_chemrev_0c01006
crossref_primary_10_1021_acs_jpclett_0c00018
crossref_primary_10_3390_nano13081417
crossref_primary_10_1021_acs_chemmater_1c01641
crossref_primary_10_1021_acs_jpcc_8b00980
crossref_primary_10_1016_j_jiec_2021_10_016
crossref_primary_10_1039_C8TA05794J
crossref_primary_10_1039_D1EE02131A
crossref_primary_10_1002_aenm_201703120
crossref_primary_10_1002_sstr_202000133
crossref_primary_10_1016_j_orgel_2019_105546
crossref_primary_10_1021_acs_jpclett_1c03095
crossref_primary_10_1007_s11433_020_1634_4
crossref_primary_10_1002_eem2_12044
crossref_primary_10_1021_acsnano_0c08903
crossref_primary_10_1038_s41560_020_0653_2
crossref_primary_10_1021_acs_chemmater_3c03121
crossref_primary_10_1021_acsenergylett_0c00801
crossref_primary_10_1126_science_abj1186
crossref_primary_10_1016_j_matt_2020_11_011
crossref_primary_10_1016_j_solmat_2021_111096
crossref_primary_10_1039_C8EE02730G
crossref_primary_10_1002_ange_201911518
crossref_primary_10_1039_C7TA06816F
crossref_primary_10_1021_acs_chemmater_0c00613
crossref_primary_10_1021_acs_jpca_9b06208
crossref_primary_10_4236_msa_2024_156010
crossref_primary_10_1002_ente_201900961
crossref_primary_10_1002_ente_201900991
crossref_primary_10_1039_D3TC02723F
crossref_primary_10_1039_D3DT01581E
crossref_primary_10_3390_en14175431
crossref_primary_10_1002_solr_202201080
crossref_primary_10_1002_adfm_201905190
crossref_primary_10_1016_j_rinp_2020_103707
crossref_primary_10_1021_acs_chemrev_3c00532
crossref_primary_10_3390_molecules28010372
crossref_primary_10_1002_adfm_201806479
crossref_primary_10_1039_C8ME00036K
crossref_primary_10_1002_advs_202105085
crossref_primary_10_1002_aenm_202202802
crossref_primary_10_1016_j_cej_2022_136622
crossref_primary_10_1021_acsenergylett_9b01100
crossref_primary_10_1364_OME_9_002006
crossref_primary_10_1016_j_matpr_2022_04_031
Cites_doi 10.1149/2.0541610jes
10.1002/anie.201604880
10.1021/nl5048779
10.1038/ncomms10379
10.1007/BF01507527
10.1039/c3ee43822h
10.1021/acs.nanolett.5b04060
10.1021/acs.chemmater.6b00847
10.1126/science.aah5557
10.1039/C5EE03874J
10.1021/acs.chemmater.7b00126
10.1002/aenm.201501310
10.1021/acs.jpclett.6b00002
10.1007/s12274-016-1401-6
10.1038/nphoton.2014.134
10.1021/cm5032046
10.1021/jacs.6b06320
10.1039/C4EE01076K
10.1021/acs.jpclett.6b01406
10.1039/C4EE03664F
10.1021/jz4020162
10.1039/C5TA06398A
10.1038/ncomms6757
10.1039/C6EE00030D
10.1021/acsami.6b12637
10.1039/C4SC02211D
10.1002/pip.1147
10.1002/aenm.201400812
10.1021/jz402706q
10.1021/jacs.5b11740
10.1021/jz501237m
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201702005
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201702005
28833614
ADMA201702005
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4785-d938901aaa3e83979dc97b0b17dbe6583aa15e2a2dd04132c0d3a0ac00d6d25c3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 10:52:19 EDT 2024
Thu Oct 10 19:11:40 EDT 2024
Thu Sep 26 15:56:57 EDT 2024
Sat Sep 28 08:47:27 EDT 2024
Sat Aug 24 00:58:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords light-emitting devices
quasi-3D cations
perovskite solar cells
wide band-gap semiconductors
Language English
License 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4785-d938901aaa3e83979dc97b0b17dbe6583aa15e2a2dd04132c0d3a0ac00d6d25c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6818-9781
PMID 28833614
PQID 1947539968
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_1932167236
proquest_journals_1947539968
crossref_primary_10_1002_adma_201702005
pubmed_primary_28833614
wiley_primary_10_1002_adma_201702005_ADMA201702005
PublicationCentury 2000
PublicationDate 2017-Oct
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2016; 7
2014; 5
2015; 5
2013; 4
2015; 3
2017; 10
2016; 354
2014; 26
2016; 138
2017; 29
1926; 14
2014; 8
2016; 28
2014; 7
2016; 16
2015; 8
2016; 8
2016; 9
2012; 20
2016; 163
2016; 55
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 14
  start-page: 477
  year: 1926
  publication-title: Naturwissenschaften
– volume: 29
  start-page: 3589
  year: 2017
  publication-title: Chem. Mater.
– volume: 4
  start-page: 3623
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 1501310
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 472
  year: 2012
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 16
  start-page: 1009
  year: 2016
  publication-title: Nano Lett.
– volume: 28
  start-page: 2852
  year: 2016
  publication-title: Chem. Mater.
– volume: 8
  start-page: 34446
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 429
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 15
  start-page: 3692
  year: 2015
  publication-title: Nano Lett.
– volume: 9
  start-page: 1706
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 10379
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 506
  year: 2014
  publication-title: Nat. Photonics
– volume: 5
  start-page: 1400812
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1989
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 6557
  year: 2014
  publication-title: Chem. Mater.
– volume: 7
  start-page: 3061
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 2117
  year: 2017
  publication-title: Nano Res.
– volume: 8
  start-page: 995
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 354
  start-page: 206
  year: 2016
  publication-title: Science
– volume: 138
  start-page: 2649
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 746
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 4712
  year: 2014
  publication-title: Chem. Sci.
– volume: 7
  start-page: 3270
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 5757
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  start-page: 19688
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 10686
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 163
  start-page: F1177
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 138
  start-page: 10331
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2791
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– ident: e_1_2_5_28_1
  doi: 10.1149/2.0541610jes
– ident: e_1_2_5_17_1
  doi: 10.1002/anie.201604880
– ident: e_1_2_5_6_1
  doi: 10.1021/nl5048779
– ident: e_1_2_5_31_1
  doi: 10.1038/ncomms10379
– ident: e_1_2_5_8_1
  doi: 10.1007/BF01507527
– ident: e_1_2_5_15_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_5_11_1
  doi: 10.1021/acs.nanolett.5b04060
– ident: e_1_2_5_23_1
  doi: 10.1021/acs.chemmater.6b00847
– ident: e_1_2_5_2_1
  doi: 10.1126/science.aah5557
– ident: e_1_2_5_4_1
  doi: 10.1039/C5EE03874J
– ident: e_1_2_5_25_1
  doi: 10.1021/acs.chemmater.7b00126
– ident: e_1_2_5_13_1
  doi: 10.1002/aenm.201501310
– ident: e_1_2_5_1_1
  doi: 10.1021/acs.jpclett.6b00002
– ident: e_1_2_5_19_1
  doi: 10.1007/s12274-016-1401-6
– ident: e_1_2_5_22_1
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_5_12_1
  doi: 10.1021/cm5032046
– ident: e_1_2_5_24_1
  doi: 10.1021/jacs.6b06320
– ident: e_1_2_5_3_1
  doi: 10.1039/C4EE01076K
– ident: e_1_2_5_21_1
  doi: 10.1021/acs.jpclett.6b01406
– ident: e_1_2_5_29_1
  doi: 10.1039/C4EE03664F
– ident: e_1_2_5_27_1
  doi: 10.1021/jz4020162
– ident: e_1_2_5_10_1
  doi: 10.1039/C5TA06398A
– ident: e_1_2_5_9_1
  doi: 10.1038/ncomms6757
– ident: e_1_2_5_18_1
  doi: 10.1039/C6EE00030D
– ident: e_1_2_5_20_1
  doi: 10.1021/acsami.6b12637
– ident: e_1_2_5_5_1
  doi: 10.1039/C4SC02211D
– ident: e_1_2_5_26_1
  doi: 10.1002/pip.1147
– ident: e_1_2_5_30_1
  doi: 10.1002/aenm.201400812
– ident: e_1_2_5_7_1
  doi: 10.1021/jz402706q
– ident: e_1_2_5_14_1
  doi: 10.1021/jacs.5b11740
– ident: e_1_2_5_16_1
  doi: 10.1021/jz501237m
SSID ssj0009606
Score 2.562727
Snippet Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently,...
Perovskite solar cells (PSCs) use perovskites with an APbX structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the...
Perovskite solar cells (PSCs) use perovskites with an APbX 3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently,...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Additives
Cations
light‐emitting devices
Materials science
Open circuit voltage
perovskite solar cells
Perovskites
Photovoltaic cells
quasi‐3D cations
Solar cells
wide band‐gap semiconductors
Title Globularity‐Selected Large Molecules for a New Generation of Multication Perovskites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201702005
https://www.ncbi.nlm.nih.gov/pubmed/28833614
https://www.proquest.com/docview/1947539968
https://search.proquest.com/docview/1932167236
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hTnBgX8ImIyFxCnhJ4uRYARVCFCE2cYu85YLUoqblwIlP4Bv5Ery0oYUDEtwSJVYcz4z9PJ55A3BQVZpLVai4smg8TrgxsUywjAUvDC6UZrl2ucOdq-z8Prl4TB8nsvgDP0TjcHOW4edrZ-BC1sdfpKFCe94gwvGIxJQw7mK6Tm---KMcPPdkeyyNiyzJx6yNmB5PN59elX5AzWnk6pee9iKIcadDxMnT0XAgj9TrNz7H__zVEiyMcClqBUVahhnTXYH5CbbCVXhwkRkuatUC94-391tfQcdodOmCyVEn1Nk1NbIwGAlkZ08UOK2d6FGvQj7XN3gI0bXp915q5zmu1-C-fXZ3ch6PyjLEKuF5GuvCghxMhBDM5O5YUKuCSywJ19JYQMOEIKmhgmqN7RJJFdZMYKEw1pmmqWLrMNvtdc0moMrqRaWJkbgyiSKZ3a4yrewOSwmZ5tREcDgWS_kc2DfKwLNMSzdSZTNSEeyMpVaOrLAuSZFwx7yb5RHsN4-t_bhDEdE1vaF7h1GSccqyCDaCtJtP-UrMFr9EQL3MfulD2TrttJq7rb802oY5dx2iBXdgdtAfml2LegZyz2v2J6NM-oE
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hONAeCrSFhqcrVeIUcOwkTo4rHlpgF1XlIW6RX7kg7SJ2t4ee-An8Rn4JHnsTunCoRI95WHE8M_bn8cw3AD_q2gilSx3XDo3HqbA2VilVsRSlpaU2vDCYO9w_z7tX6elN1kQTYi5M4IdoHW5oGX6-RgNHh_T-C2uoNJ44KBE0sJguOJvnWL3h8NcLgxQCdE-3x7O4zNOi4W2kbH-2_ey69AZszmJXv_gcL4Fquh1iTm73JmO1p_-8YnT8r_9ahk9TaEo6QZdWYM4OPsPHvwgLv8A1Bmdg4KrD7k8Pjxe-iI41pIfx5KQfSu3aEXFImEjiJlASaK1R-mRYE5_uG5yE5Ke9H_4eofN49BWujo8uD7rxtDJDrFNRZLEpHc6hiZSS2wJPBo0uhaIqEUZZh2m4lElmmWTGULdKMk0Nl1RqSk1uWKb5KswPhgP7DUjtVKM2iVW0tqlOcrdj5Ua7TZaWKiuYjWC3kUt1Fwg4qkC1zCocqaodqQg2G7FVU0McVUmZCiTfzYsIvrePnQnhuYgc2OEE3-EsyQXjeQRrQdztp3wxZgdhImBeaP_oQ9U57Hfaq_X3NNqBxe5lv1f1Ts7PNuAD3g_Bg5swP76f2C0HgsZq26v5M0WJ_pk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hkBAc2JewGgmJU8Cxkzg5VpSKrQixiVvkLRektqItB058At_Il-ClTSkckOCYxYrjmbGfxzNvAPbLUjEhcxmWBo2HMdM6FDEWIWe5xrlUNFM2d7h5lZ7ex-ePyeOXLH7PD1E53KxluPnaGnhHlUcj0lCuHG9QxLAnMZ2KUwN_LSy6GRFIWXzu2PZoEuZpnA1pGzE5Gm8_viz9wJrj0NWtPY154MNe-5CTp8N-TxzK12-Ejv_5rQWYGwBTVPOatAgTurUEs1_oCpfhwYZm2LBVg9w_3t5vXQkdrdCljSZHTV9oV3eRwcGIIzN9Ik9qbWWP2iVyyb7eRYiu9XP7pWtdx90VuG-c3B2fhoO6DKGMWZaEKjcoB0ecc6ozey6oZM4EFhFTQhtEQzmPEk04UQqbNZJIrCjHXGKsUkUSSVdhstVu6XVApVGMUkVa4FLHMkrNfpUqabZYkoskIzqAg6FYio6n3yg80TIp7EgV1UgFsDWUWjEww24R5TGz1LtpFsBe9dgYkD0V4S3d7tt3KIlSRmgawJqXdvUpV4rZAJgAiJPZL30oavVmrbra-EujXZi-rjeKy7Ori02Ysbd95OAWTPae-3rbIKCe2HFK_glIjv1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Globularity%E2%80%90Selected+Large+Molecules+for+a+New+Generation+of+Multication+Perovskites&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gholipour%2C+Somayeh&rft.au=Ali%2C+Abdollah+Morteza&rft.au=Correa%E2%80%90Baena%2C+Juan%E2%80%90Pablo&rft.au=Turren%E2%80%90Cruz%2C+Silver%E2%80%90Hamill&rft.date=2017-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=38&rft_id=info:doi/10.1002%2Fadma.201702005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201702005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon