Globularity‐Selected Large Molecules for a New Generation of Multication Perovskites
Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high‐efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammoniu...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 38 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high‐efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive “black”‐phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a “globularity factor”, i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as “additives”. MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue‐shifted PSCs reported to date. Furthermore, one of the compositions, MA0.5EA0.5PbBr3, shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture.
Tolerance factors based on novel molecular descriptors are introduced and subsequently implemented experimentally in multication methylammonium/ethylammonium (EA) perovskite solar cells. It is shown that surprisingly large quantities of EA can be incorporated into the perovskite structure, which results in one of the highest reported open‐circuit voltages for perovskite solar cells. |
---|---|
AbstractList | Perovskite solar cells (PSCs) use perovskites with an APbX
3
structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high‐efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive “black”‐phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a “globularity factor”, i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as “additives”. MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue‐shifted PSCs reported to date. Furthermore, one of the compositions, MA
0.5
EA
0.5
PbBr
3
, shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture. Perovskite solar cells (PSCs) use perovskites with an APbX structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high-efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive "black"-phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a "globularity factor", i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as "additives". MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue-shifted PSCs reported to date. Furthermore, one of the compositions, MA EA PbBr , shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture. Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high‐efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive “black”‐phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a “globularity factor”, i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as “additives”. MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue‐shifted PSCs reported to date. Furthermore, one of the compositions, MA0.5EA0.5PbBr3, shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture. Tolerance factors based on novel molecular descriptors are introduced and subsequently implemented experimentally in multication methylammonium/ethylammonium (EA) perovskite solar cells. It is shown that surprisingly large quantities of EA can be incorporated into the perovskite structure, which results in one of the highest reported open‐circuit voltages for perovskite solar cells. Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high-efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive "black"-phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a "globularity factor", i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as "additives". MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue-shifted PSCs reported to date. Furthermore, one of the compositions, MA0.5EA0.5PbBr3, shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture. |
Author | Mosconi, Edoardo Saliba, Michael Grätzel, Michael Gholipour, Somayeh Correa‐Baena, Juan‐Pablo Abate, Antonio Tajabadi, Fariba Taghavinia, Nima Ali, Abdollah Morteza Turren‐Cruz, Silver‐Hamill Hagfeldt, Anders De Angelis, Filippo Tress, Wolfgang Gaggioli, Carlo Alberto |
Author_xml | – sequence: 1 givenname: Somayeh surname: Gholipour fullname: Gholipour, Somayeh organization: Alzahra University – sequence: 2 givenname: Abdollah Morteza surname: Ali fullname: Ali, Abdollah Morteza email: mortezaali@alzahra.ac.ir organization: Alzahra University – sequence: 3 givenname: Juan‐Pablo surname: Correa‐Baena fullname: Correa‐Baena, Juan‐Pablo organization: Laboratory of Photomolecular Science – sequence: 4 givenname: Silver‐Hamill surname: Turren‐Cruz fullname: Turren‐Cruz, Silver‐Hamill organization: Ciudad Universitaria – sequence: 5 givenname: Fariba surname: Tajabadi fullname: Tajabadi, Fariba organization: Materials and Energy Research Centre – sequence: 6 givenname: Wolfgang surname: Tress fullname: Tress, Wolfgang organization: Laboratory for Photonics and Interfaces – sequence: 7 givenname: Nima surname: Taghavinia fullname: Taghavinia, Nima organization: Sharif University of Technology – sequence: 8 givenname: Michael surname: Grätzel fullname: Grätzel, Michael organization: Laboratory for Photonics and Interfaces – sequence: 9 givenname: Antonio surname: Abate fullname: Abate, Antonio organization: University of Fribourg Ch. du. Musée 3 – sequence: 10 givenname: Filippo surname: De Angelis fullname: De Angelis, Filippo organization: Istituto Italiano di Tecnologia – sequence: 11 givenname: Carlo Alberto surname: Gaggioli fullname: Gaggioli, Carlo Alberto organization: Istituto Italiano di Tecnologia – sequence: 12 givenname: Edoardo surname: Mosconi fullname: Mosconi, Edoardo organization: Istituto Italiano di Tecnologia – sequence: 13 givenname: Anders surname: Hagfeldt fullname: Hagfeldt, Anders email: anders.hagfeldt@epfl.ch organization: Laboratory of Photomolecular Science – sequence: 14 givenname: Michael orcidid: 0000-0002-6818-9781 surname: Saliba fullname: Saliba, Michael email: michael.saliba@epfl.ch organization: Laboratory for Photonics and Interfaces |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28833614$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFO3DAQQC0EgoX2yrGK1AuXbMd27MTHFS3bSrsFqdBrNLFnUcAbUzsB7Y1P6DfyJQ1aSiUuPY1GevM0eodstwsdMXbMYcoBxCd0a5wK4CUIALXDJlwJnhdg1C6bgJEqN7qoDthhSjcAYDTofXYgqkpKzYsJ-zn3oRk8xrbfPD3-_kGebE8uW2C8pmwZxnXwlLJViBlm3-khm1NHEfs2dFlYZcvB963drhcUw326bXtK79jeCn2i9y_ziF2dfbk8_ZovzuffTmeL3BZlpXJnZGWAI6KkSprSOGvKBhpeuoa0qiQiVyRQOAcFl8KCkwhoAZx2Qll5xE623rsYfg2U-nrdJkveY0dhSDU3UnBdCqlH9OMb9CYMsRu_G6miVNIYXY3UdEvZGFKKtKrvYrvGuKk51M_F6-fi9Wvx8eDDi3Zo1uRe8b-JR8BsgYfW0-Y_unr2eTn7J_8DhsGPKg |
CitedBy_id | crossref_primary_10_1002_smll_201802385 crossref_primary_10_1016_j_joule_2018_05_008 crossref_primary_10_1002_aenm_201903221 crossref_primary_10_1016_j_chempr_2021_07_011 crossref_primary_10_1021_acsaem_7b00065 crossref_primary_10_1002_anie_201911518 crossref_primary_10_1021_jacs_3c01531 crossref_primary_10_1038_s41560_017_0054_3 crossref_primary_10_1016_j_ccr_2021_214337 crossref_primary_10_1016_j_cej_2023_141788 crossref_primary_10_1038_s41598_020_79348_1 crossref_primary_10_1126_science_adf0194 crossref_primary_10_1039_C8TA07836J crossref_primary_10_1002_apxr_202200079 crossref_primary_10_1021_acsami_9b09564 crossref_primary_10_1021_acs_jpclett_9b02020 crossref_primary_10_1021_acs_chemmater_9b05342 crossref_primary_10_1002_adom_202102566 crossref_primary_10_1016_j_mtener_2018_12_009 crossref_primary_10_1016_j_commatsci_2020_109619 crossref_primary_10_1002_cssc_201900106 crossref_primary_10_1021_acsenergylett_9b01735 crossref_primary_10_1002_cssc_201803043 crossref_primary_10_1002_ente_201900743 crossref_primary_10_1039_D1TA08964A crossref_primary_10_1038_s41598_018_36218_1 crossref_primary_10_1016_j_jssc_2024_124639 crossref_primary_10_1002_crat_202300046 crossref_primary_10_1021_acsenergylett_8b00615 crossref_primary_10_1038_s41467_020_17943_6 crossref_primary_10_1021_acsenergylett_9b02450 crossref_primary_10_1016_j_joule_2017_09_017 crossref_primary_10_1002_ejic_202200671 crossref_primary_10_1002_inf2_12104 crossref_primary_10_1039_D3QI01615C crossref_primary_10_1021_acs_chemrev_0c01006 crossref_primary_10_1021_acs_jpclett_0c00018 crossref_primary_10_3390_nano13081417 crossref_primary_10_1021_acs_chemmater_1c01641 crossref_primary_10_1021_acs_jpcc_8b00980 crossref_primary_10_1016_j_jiec_2021_10_016 crossref_primary_10_1039_C8TA05794J crossref_primary_10_1039_D1EE02131A crossref_primary_10_1002_aenm_201703120 crossref_primary_10_1002_sstr_202000133 crossref_primary_10_1016_j_orgel_2019_105546 crossref_primary_10_1021_acs_jpclett_1c03095 crossref_primary_10_1007_s11433_020_1634_4 crossref_primary_10_1002_eem2_12044 crossref_primary_10_1021_acsnano_0c08903 crossref_primary_10_1038_s41560_020_0653_2 crossref_primary_10_1021_acs_chemmater_3c03121 crossref_primary_10_1021_acsenergylett_0c00801 crossref_primary_10_1126_science_abj1186 crossref_primary_10_1016_j_matt_2020_11_011 crossref_primary_10_1016_j_solmat_2021_111096 crossref_primary_10_1039_C8EE02730G crossref_primary_10_1002_ange_201911518 crossref_primary_10_1039_C7TA06816F crossref_primary_10_1021_acs_chemmater_0c00613 crossref_primary_10_1021_acs_jpca_9b06208 crossref_primary_10_4236_msa_2024_156010 crossref_primary_10_1002_ente_201900961 crossref_primary_10_1002_ente_201900991 crossref_primary_10_1039_D3TC02723F crossref_primary_10_1039_D3DT01581E crossref_primary_10_3390_en14175431 crossref_primary_10_1002_solr_202201080 crossref_primary_10_1002_adfm_201905190 crossref_primary_10_1016_j_rinp_2020_103707 crossref_primary_10_1021_acs_chemrev_3c00532 crossref_primary_10_3390_molecules28010372 crossref_primary_10_1002_adfm_201806479 crossref_primary_10_1039_C8ME00036K crossref_primary_10_1002_advs_202105085 crossref_primary_10_1002_aenm_202202802 crossref_primary_10_1016_j_cej_2022_136622 crossref_primary_10_1021_acsenergylett_9b01100 crossref_primary_10_1364_OME_9_002006 crossref_primary_10_1016_j_matpr_2022_04_031 |
Cites_doi | 10.1149/2.0541610jes 10.1002/anie.201604880 10.1021/nl5048779 10.1038/ncomms10379 10.1007/BF01507527 10.1039/c3ee43822h 10.1021/acs.nanolett.5b04060 10.1021/acs.chemmater.6b00847 10.1126/science.aah5557 10.1039/C5EE03874J 10.1021/acs.chemmater.7b00126 10.1002/aenm.201501310 10.1021/acs.jpclett.6b00002 10.1007/s12274-016-1401-6 10.1038/nphoton.2014.134 10.1021/cm5032046 10.1021/jacs.6b06320 10.1039/C4EE01076K 10.1021/acs.jpclett.6b01406 10.1039/C4EE03664F 10.1021/jz4020162 10.1039/C5TA06398A 10.1038/ncomms6757 10.1039/C6EE00030D 10.1021/acsami.6b12637 10.1039/C4SC02211D 10.1002/pip.1147 10.1002/aenm.201400812 10.1021/jz402706q 10.1021/jacs.5b11740 10.1021/jz501237m |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201702005 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_201702005 28833614 ADMA201702005 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN FEDTE FOJGT HF~ HVGLF M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4785-d938901aaa3e83979dc97b0b17dbe6583aa15e2a2dd04132c0d3a0ac00d6d25c3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 10:52:19 EDT 2024 Thu Oct 10 19:11:40 EDT 2024 Thu Sep 26 15:56:57 EDT 2024 Sat Sep 28 08:47:27 EDT 2024 Sat Aug 24 00:58:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | light-emitting devices quasi-3D cations perovskite solar cells wide band-gap semiconductors |
Language | English |
License | 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4785-d938901aaa3e83979dc97b0b17dbe6583aa15e2a2dd04132c0d3a0ac00d6d25c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6818-9781 |
PMID | 28833614 |
PQID | 1947539968 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1932167236 proquest_journals_1947539968 crossref_primary_10_1002_adma_201702005 pubmed_primary_28833614 wiley_primary_10_1002_adma_201702005_ADMA201702005 |
PublicationCentury | 2000 |
PublicationDate | 2017-Oct |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2016; 7 2014; 5 2015; 5 2013; 4 2015; 3 2017; 10 2016; 354 2014; 26 2016; 138 2017; 29 1926; 14 2014; 8 2016; 28 2014; 7 2016; 16 2015; 8 2016; 8 2016; 9 2012; 20 2016; 163 2016; 55 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 14 start-page: 477 year: 1926 publication-title: Naturwissenschaften – volume: 29 start-page: 3589 year: 2017 publication-title: Chem. Mater. – volume: 4 start-page: 3623 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 1501310 year: 2015 publication-title: Adv. Energy Mater. – volume: 20 start-page: 472 year: 2012 publication-title: Prog. Photovoltaics Res. Appl. – volume: 16 start-page: 1009 year: 2016 publication-title: Nano Lett. – volume: 28 start-page: 2852 year: 2016 publication-title: Chem. Mater. – volume: 8 start-page: 34446 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 429 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 15 start-page: 3692 year: 2015 publication-title: Nano Lett. – volume: 9 start-page: 1706 year: 2016 publication-title: Energy Environ. Sci. – volume: 7 start-page: 10379 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 506 year: 2014 publication-title: Nat. Photonics – volume: 5 start-page: 1400812 year: 2015 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1989 year: 2016 publication-title: Energy Environ. Sci. – volume: 26 start-page: 6557 year: 2014 publication-title: Chem. Mater. – volume: 7 start-page: 3061 year: 2014 publication-title: Energy Environ. Sci. – volume: 10 start-page: 2117 year: 2017 publication-title: Nano Res. – volume: 8 start-page: 995 year: 2015 publication-title: Energy Environ. Sci. – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 138 start-page: 2649 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 746 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 4712 year: 2014 publication-title: Chem. Sci. – volume: 7 start-page: 3270 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 5757 year: 2014 publication-title: Nat. Commun. – volume: 3 start-page: 19688 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 start-page: 982 year: 2014 publication-title: Energy Environ. Sci. – volume: 55 start-page: 10686 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 163 start-page: F1177 year: 2016 publication-title: J. Electrochem. Soc. – volume: 138 start-page: 10331 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2791 year: 2014 publication-title: J. Phys. Chem. Lett. – ident: e_1_2_5_28_1 doi: 10.1149/2.0541610jes – ident: e_1_2_5_17_1 doi: 10.1002/anie.201604880 – ident: e_1_2_5_6_1 doi: 10.1021/nl5048779 – ident: e_1_2_5_31_1 doi: 10.1038/ncomms10379 – ident: e_1_2_5_8_1 doi: 10.1007/BF01507527 – ident: e_1_2_5_15_1 doi: 10.1039/c3ee43822h – ident: e_1_2_5_11_1 doi: 10.1021/acs.nanolett.5b04060 – ident: e_1_2_5_23_1 doi: 10.1021/acs.chemmater.6b00847 – ident: e_1_2_5_2_1 doi: 10.1126/science.aah5557 – ident: e_1_2_5_4_1 doi: 10.1039/C5EE03874J – ident: e_1_2_5_25_1 doi: 10.1021/acs.chemmater.7b00126 – ident: e_1_2_5_13_1 doi: 10.1002/aenm.201501310 – ident: e_1_2_5_1_1 doi: 10.1021/acs.jpclett.6b00002 – ident: e_1_2_5_19_1 doi: 10.1007/s12274-016-1401-6 – ident: e_1_2_5_22_1 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_5_12_1 doi: 10.1021/cm5032046 – ident: e_1_2_5_24_1 doi: 10.1021/jacs.6b06320 – ident: e_1_2_5_3_1 doi: 10.1039/C4EE01076K – ident: e_1_2_5_21_1 doi: 10.1021/acs.jpclett.6b01406 – ident: e_1_2_5_29_1 doi: 10.1039/C4EE03664F – ident: e_1_2_5_27_1 doi: 10.1021/jz4020162 – ident: e_1_2_5_10_1 doi: 10.1039/C5TA06398A – ident: e_1_2_5_9_1 doi: 10.1038/ncomms6757 – ident: e_1_2_5_18_1 doi: 10.1039/C6EE00030D – ident: e_1_2_5_20_1 doi: 10.1021/acsami.6b12637 – ident: e_1_2_5_5_1 doi: 10.1039/C4SC02211D – ident: e_1_2_5_26_1 doi: 10.1002/pip.1147 – ident: e_1_2_5_30_1 doi: 10.1002/aenm.201400812 – ident: e_1_2_5_7_1 doi: 10.1021/jz402706q – ident: e_1_2_5_14_1 doi: 10.1021/jacs.5b11740 – ident: e_1_2_5_16_1 doi: 10.1021/jz501237m |
SSID | ssj0009606 |
Score | 2.562727 |
Snippet | Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently,... Perovskite solar cells (PSCs) use perovskites with an APbX structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the... Perovskite solar cells (PSCs) use perovskites with an APbX 3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently,... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Additives Cations light‐emitting devices Materials science Open circuit voltage perovskite solar cells Perovskites Photovoltaic cells quasi‐3D cations Solar cells wide band‐gap semiconductors |
Title | Globularity‐Selected Large Molecules for a New Generation of Multication Perovskites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201702005 https://www.ncbi.nlm.nih.gov/pubmed/28833614 https://www.proquest.com/docview/1947539968 https://search.proquest.com/docview/1932167236 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hTnBgX8ImIyFxCnhJ4uRYARVCFCE2cYu85YLUoqblwIlP4Bv5Ery0oYUDEtwSJVYcz4z9PJ55A3BQVZpLVai4smg8TrgxsUywjAUvDC6UZrl2ucOdq-z8Prl4TB8nsvgDP0TjcHOW4edrZ-BC1sdfpKFCe94gwvGIxJQw7mK6Tm---KMcPPdkeyyNiyzJx6yNmB5PN59elX5AzWnk6pee9iKIcadDxMnT0XAgj9TrNz7H__zVEiyMcClqBUVahhnTXYH5CbbCVXhwkRkuatUC94-391tfQcdodOmCyVEn1Nk1NbIwGAlkZ08UOK2d6FGvQj7XN3gI0bXp915q5zmu1-C-fXZ3ch6PyjLEKuF5GuvCghxMhBDM5O5YUKuCSywJ19JYQMOEIKmhgmqN7RJJFdZMYKEw1pmmqWLrMNvtdc0moMrqRaWJkbgyiSKZ3a4yrewOSwmZ5tREcDgWS_kc2DfKwLNMSzdSZTNSEeyMpVaOrLAuSZFwx7yb5RHsN4-t_bhDEdE1vaF7h1GSccqyCDaCtJtP-UrMFr9EQL3MfulD2TrttJq7rb802oY5dx2iBXdgdtAfml2LegZyz2v2J6NM-oE |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hONAeCrSFhqcrVeIUcOwkTo4rHlpgF1XlIW6RX7kg7SJ2t4ee-An8Rn4JHnsTunCoRI95WHE8M_bn8cw3AD_q2gilSx3XDo3HqbA2VilVsRSlpaU2vDCYO9w_z7tX6elN1kQTYi5M4IdoHW5oGX6-RgNHh_T-C2uoNJ44KBE0sJguOJvnWL3h8NcLgxQCdE-3x7O4zNOi4W2kbH-2_ey69AZszmJXv_gcL4Fquh1iTm73JmO1p_-8YnT8r_9ahk9TaEo6QZdWYM4OPsPHvwgLv8A1Bmdg4KrD7k8Pjxe-iI41pIfx5KQfSu3aEXFImEjiJlASaK1R-mRYE5_uG5yE5Ke9H_4eofN49BWujo8uD7rxtDJDrFNRZLEpHc6hiZSS2wJPBo0uhaIqEUZZh2m4lElmmWTGULdKMk0Nl1RqSk1uWKb5KswPhgP7DUjtVKM2iVW0tqlOcrdj5Ua7TZaWKiuYjWC3kUt1Fwg4qkC1zCocqaodqQg2G7FVU0McVUmZCiTfzYsIvrePnQnhuYgc2OEE3-EsyQXjeQRrQdztp3wxZgdhImBeaP_oQ9U57Hfaq_X3NNqBxe5lv1f1Ts7PNuAD3g_Bg5swP76f2C0HgsZq26v5M0WJ_pk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hkBAc2JewGgmJU8Cxkzg5VpSKrQixiVvkLRektqItB058At_Il-ClTSkckOCYxYrjmbGfxzNvAPbLUjEhcxmWBo2HMdM6FDEWIWe5xrlUNFM2d7h5lZ7ex-ePyeOXLH7PD1E53KxluPnaGnhHlUcj0lCuHG9QxLAnMZ2KUwN_LSy6GRFIWXzu2PZoEuZpnA1pGzE5Gm8_viz9wJrj0NWtPY154MNe-5CTp8N-TxzK12-Ejv_5rQWYGwBTVPOatAgTurUEs1_oCpfhwYZm2LBVg9w_3t5vXQkdrdCljSZHTV9oV3eRwcGIIzN9Ik9qbWWP2iVyyb7eRYiu9XP7pWtdx90VuG-c3B2fhoO6DKGMWZaEKjcoB0ecc6ozey6oZM4EFhFTQhtEQzmPEk04UQqbNZJIrCjHXGKsUkUSSVdhstVu6XVApVGMUkVa4FLHMkrNfpUqabZYkoskIzqAg6FYio6n3yg80TIp7EgV1UgFsDWUWjEww24R5TGz1LtpFsBe9dgYkD0V4S3d7tt3KIlSRmgawJqXdvUpV4rZAJgAiJPZL30oavVmrbra-EujXZi-rjeKy7Ori02Ysbd95OAWTPae-3rbIKCe2HFK_glIjv1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Globularity%E2%80%90Selected+Large+Molecules+for+a+New+Generation+of+Multication+Perovskites&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gholipour%2C+Somayeh&rft.au=Ali%2C+Abdollah+Morteza&rft.au=Correa%E2%80%90Baena%2C+Juan%E2%80%90Pablo&rft.au=Turren%E2%80%90Cruz%2C+Silver%E2%80%90Hamill&rft.date=2017-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=38&rft_id=info:doi/10.1002%2Fadma.201702005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201702005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |