Perovskite Solar Cells for Space Applications: Progress and Challenges
Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 21; pp. e2006545 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next‐generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III‐V multi‐junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments.
Perovskite solar cells (PSCs) are considered as promising candidates for next‐generation space photovoltaic technology. Key space environments and specific requirements for space photovoltaics are outlined. Some recent advances in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments are summarized. Progress and challenges associated with space applications of PSCs are highlighted. |
---|---|
AbstractList | Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next‐generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III‐V multi‐junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments. Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next‐generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III‐V multi‐junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments. Perovskite solar cells (PSCs) are considered as promising candidates for next‐generation space photovoltaic technology. Key space environments and specific requirements for space photovoltaics are outlined. Some recent advances in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments are summarized. Progress and challenges associated with space applications of PSCs are highlighted. Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next-generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III-V multi-junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments.Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next-generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III-V multi-junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments. |
Author | Tu, Yongguang Wu, Jiang Huang, Wei Xu, Guoning Yang, Xiaoyu Cai, Rong Gong, Qihuang Zhu, Rui |
Author_xml | – sequence: 1 givenname: Yongguang surname: Tu fullname: Tu, Yongguang email: iamygtu@nwpu.edu.cn organization: Northwestern Polytechnical University – sequence: 2 givenname: Jiang surname: Wu fullname: Wu, Jiang organization: Peking University – sequence: 3 givenname: Guoning surname: Xu fullname: Xu, Guoning organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Xiaoyu surname: Yang fullname: Yang, Xiaoyu organization: Peking University – sequence: 5 givenname: Rong surname: Cai fullname: Cai, Rong organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Qihuang surname: Gong fullname: Gong, Qihuang email: qhgong@pku.edu.cn organization: Shanxi University – sequence: 7 givenname: Rui surname: Zhu fullname: Zhu, Rui email: zhurui3@pku.edu.cn organization: Shanxi University – sequence: 8 givenname: Wei orcidid: 0000-0001-7004-6408 surname: Huang fullname: Huang, Wei email: iamwhuang@nwpu.edu.cn organization: Nanjing University of Posts and Telecommunications |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33861877$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFP2zAUhy3EBAV25ThF2oVLumcnduzdqrICEohK3c7RI3mBMDfO7JSp_z2GdkVCmji9y_fZv_d-R2y_cx0xdsphzAHEN6yXOBYgAJTM5R4bcSl4moOR-2wEJpOpUbk-ZEchPAKAUaAO2GGWacV1UYzYbE7ePYXf7UDJwln0yZSsDUnjfLLosaJk0ve2rXBoXRe-J3Pv7j2FkGBXJ9MHtJa6ewon7FODNtDn7Txmv2Y_fk4v0-vbi6vp5Dqt8kLLtCJT1wpjVmigMYoyI2UtUZsiJ9lIKvDOEBcotRSShAFlmqLRqKHQGNc5Zmebd3vv_qwoDOWyDVVMjB25VSiF5Lk0ihciol_foY9u5buYLlKZiFwGeaS-bKnV3ZLqsvftEv26_HehCIw3QOVdCJ6aHcKhfKmgfKmg3FUQhfydULXD6_kGj639v2Y22t_W0vqDT8rJ-c3kzX0GOYGYtQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_145024 crossref_primary_10_1021_acsami_2c13309 crossref_primary_10_1021_acs_chemrev_3c00667 crossref_primary_10_1002_adma_202108357 crossref_primary_10_1021_acsaelm_1c00251 crossref_primary_10_1002_adom_202201598 crossref_primary_10_1016_j_energy_2024_131825 crossref_primary_10_1016_j_cej_2022_139308 crossref_primary_10_1021_acsami_4c01071 crossref_primary_10_1140_epjp_s13360_024_05391_w crossref_primary_10_1016_j_cej_2024_152522 crossref_primary_10_1039_D3QI01749D crossref_primary_10_1002_admi_202202159 crossref_primary_10_1016_j_cej_2022_137806 crossref_primary_10_1021_jacs_4c14824 crossref_primary_10_1016_j_joule_2022_03_004 crossref_primary_10_1016_j_jpowsour_2021_230906 crossref_primary_10_1002_aenm_202405370 crossref_primary_10_1016_j_cjsc_2024_100240 crossref_primary_10_1002_aenm_202200125 crossref_primary_10_1016_j_measen_2022_100640 crossref_primary_10_1021_acsaem_3c01988 crossref_primary_10_1016_j_nimb_2022_06_012 crossref_primary_10_1007_s00707_022_03444_8 crossref_primary_10_1021_acsami_1c24349 crossref_primary_10_1002_adfm_202409497 crossref_primary_10_1021_acsanm_3c04924 crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1002_aenm_202300506 crossref_primary_10_1021_acsanm_2c02560 crossref_primary_10_1126_sciadv_adp0790 crossref_primary_10_1002_adma_202305314 crossref_primary_10_1021_acsaem_1c03842 crossref_primary_10_1002_adfm_202304730 crossref_primary_10_1016_j_cej_2021_133744 crossref_primary_10_1021_acsaem_2c03972 crossref_primary_10_1088_2752_5724_ad37cf crossref_primary_10_1002_admi_202201403 crossref_primary_10_1016_j_mtener_2024_101687 crossref_primary_10_1063_5_0100183 crossref_primary_10_1021_acs_chemmater_3c02200 crossref_primary_10_3390_nano12193352 crossref_primary_10_1109_ACCESS_2025_3532163 crossref_primary_10_1021_acsenergylett_2c02378 crossref_primary_10_1002_aenm_202202887 crossref_primary_10_1021_acs_langmuir_4c01672 crossref_primary_10_1002_aenm_202202643 crossref_primary_10_1016_j_cej_2023_142407 crossref_primary_10_1016_j_molstruc_2024_141142 crossref_primary_10_1016_j_cej_2022_136622 crossref_primary_10_1002_solr_202200987 crossref_primary_10_1063_5_0156988 crossref_primary_10_1038_s41566_023_01373_z crossref_primary_10_1002_adma_202204380 crossref_primary_10_1002_solr_202300200 crossref_primary_10_1021_acs_jpclett_2c02955 crossref_primary_10_1093_ce_zkac076 crossref_primary_10_1016_j_inoche_2023_111419 crossref_primary_10_1039_D4DT00406J crossref_primary_10_1016_j_net_2022_11_025 crossref_primary_10_1021_acs_jpclett_2c03763 crossref_primary_10_1016_j_jcis_2022_01_103 crossref_primary_10_1021_acsaem_3c02761 crossref_primary_10_1021_acsaem_2c00370 crossref_primary_10_1016_j_ceramint_2023_12_057 crossref_primary_10_1002_admt_202101059 crossref_primary_10_1002_aenm_202200713 crossref_primary_10_1039_D2CP01450E crossref_primary_10_1038_s43246_022_00325_4 crossref_primary_10_3390_en17184755 crossref_primary_10_1002_aenm_202400204 crossref_primary_10_1021_acsami_4c11355 crossref_primary_10_1039_D2TA09434G crossref_primary_10_1016_j_nanoen_2022_107781 crossref_primary_10_1016_j_heliyon_2023_e16775 crossref_primary_10_1016_j_mtener_2024_101629 crossref_primary_10_1002_aisy_202200071 crossref_primary_10_1021_acs_chemrev_2c00382 crossref_primary_10_1021_acsenergylett_1c01193 crossref_primary_10_1016_j_sintl_2021_100133 crossref_primary_10_1002_smll_202310455 crossref_primary_10_1016_j_optmat_2022_112250 crossref_primary_10_1002_adma_202207345 crossref_primary_10_1021_acs_jpcc_4c03554 crossref_primary_10_1016_j_cej_2022_137851 crossref_primary_10_7498_aps_72_20222100 crossref_primary_10_1038_s41560_024_01651_2 crossref_primary_10_1002_admt_202200539 crossref_primary_10_1002_adts_202301015 crossref_primary_10_1016_j_rineng_2023_101314 crossref_primary_10_1039_D2YA00218C crossref_primary_10_1007_s10904_025_03634_6 crossref_primary_10_3390_s23104930 crossref_primary_10_1002_admt_202101638 crossref_primary_10_1039_D3TA06953B crossref_primary_10_1093_nsr_nwac285 crossref_primary_10_1063_5_0169185 crossref_primary_10_1021_acsenergylett_3c00551 crossref_primary_10_1016_j_saa_2023_122768 crossref_primary_10_1109_TNS_2022_3190200 crossref_primary_10_1039_D3TC02723F crossref_primary_10_1016_j_tsf_2023_140057 crossref_primary_10_1016_j_jechem_2022_10_024 crossref_primary_10_1021_acsami_2c09058 crossref_primary_10_1109_LED_2022_3184285 crossref_primary_10_1088_1402_4896_acce81 crossref_primary_10_1002_smtd_202101348 crossref_primary_10_1016_j_ast_2024_109726 crossref_primary_10_1002_adma_202311473 crossref_primary_10_1016_j_applthermaleng_2024_124685 crossref_primary_10_1016_j_cej_2024_158118 crossref_primary_10_1002_adma_202200383 crossref_primary_10_1002_aelm_202400107 crossref_primary_10_1016_j_ccr_2023_215171 crossref_primary_10_1002_cptc_202400337 crossref_primary_10_1016_j_cej_2023_148143 crossref_primary_10_1002_solr_202400736 crossref_primary_10_1016_j_electacta_2022_140905 crossref_primary_10_1016_j_ceramint_2024_03_196 crossref_primary_10_1142_S0217979225501589 crossref_primary_10_1002_aenm_202301696 crossref_primary_10_1002_solr_202100710 crossref_primary_10_1016_j_egyr_2023_04_229 crossref_primary_10_1016_j_gee_2022_04_004 crossref_primary_10_1016_j_isci_2024_111586 crossref_primary_10_1021_acsanm_2c01738 crossref_primary_10_1021_acsenergylett_2c01099 crossref_primary_10_3390_mi14081562 crossref_primary_10_1002_smsc_202400470 crossref_primary_10_1039_D2SE01766K crossref_primary_10_1038_s41578_022_00522_0 crossref_primary_10_1016_j_joule_2025_101852 crossref_primary_10_1016_j_ceramint_2024_12_263 crossref_primary_10_1021_acsmaterialslett_4c00874 crossref_primary_10_1002_smtd_202300428 crossref_primary_10_1002_solr_202300618 crossref_primary_10_1016_j_heliyon_2023_e16462 crossref_primary_10_1021_acsaem_3c01343 crossref_primary_10_1021_acsami_2c08224 crossref_primary_10_1016_j_compstruct_2024_118791 crossref_primary_10_1002_smtd_202300421 crossref_primary_10_1021_acsenergylett_1c02768 crossref_primary_10_1016_j_cej_2023_141737 crossref_primary_10_1038_s41377_024_01461_x crossref_primary_10_1002_smll_202407015 crossref_primary_10_1002_aenm_202400638 crossref_primary_10_1021_acs_nanolett_3c00641 crossref_primary_10_1002_smll_202307645 crossref_primary_10_1007_s12274_022_4322_6 crossref_primary_10_1007_s11664_022_10181_0 crossref_primary_10_1002_eom2_12495 crossref_primary_10_1007_s11426_022_1426_x crossref_primary_10_1016_j_cej_2024_151128 crossref_primary_10_1002_solr_202200221 crossref_primary_10_1039_D1TA07121A crossref_primary_10_1021_acs_chemmater_2c01533 crossref_primary_10_1016_j_tws_2025_112946 crossref_primary_10_1021_acsami_4c16818 crossref_primary_10_1016_j_optlastec_2024_111695 crossref_primary_10_1021_acs_jpclett_1c02830 crossref_primary_10_1039_D4MH00723A crossref_primary_10_1038_s41560_022_01189_1 crossref_primary_10_1021_acsaem_2c01035 crossref_primary_10_1021_accountsmr_1c00154 crossref_primary_10_1039_D3TA07598B crossref_primary_10_1002_solr_202400666 crossref_primary_10_1039_D5RA00458F crossref_primary_10_1002_asia_202500056 crossref_primary_10_1088_2058_8585_acdae2 crossref_primary_10_1016_j_seta_2024_104157 crossref_primary_10_1021_acs_jpclett_2c00386 crossref_primary_10_1039_D3TA06388G crossref_primary_10_1002_smll_202401505 crossref_primary_10_1016_j_solidstatesciences_2024_107734 crossref_primary_10_1080_1448837X_2024_2308415 crossref_primary_10_1016_j_optmat_2023_114311 crossref_primary_10_1021_acs_chemmater_4c02394 crossref_primary_10_1002_smll_202407032 crossref_primary_10_1002_inf2_12522 crossref_primary_10_1021_acsaem_3c00727 crossref_primary_10_1039_D1DT03382D crossref_primary_10_1039_D3MH01484C crossref_primary_10_1007_s40843_022_2075_7 crossref_primary_10_1016_j_decarb_2023_100020 crossref_primary_10_1021_acsaem_1c01958 crossref_primary_10_1038_s43586_024_00373_9 crossref_primary_10_1002_solr_202100995 crossref_primary_10_1002_smll_202207445 crossref_primary_10_1038_s41578_025_00781_7 crossref_primary_10_1016_j_ceramint_2023_01_004 crossref_primary_10_1002_solr_202300920 crossref_primary_10_1021_acsami_4c12718 crossref_primary_10_1002_anie_202421063 crossref_primary_10_1063_5_0100362 crossref_primary_10_1016_j_jclepro_2022_133665 crossref_primary_10_1016_j_infrared_2023_104978 crossref_primary_10_1016_j_jallcom_2024_176113 crossref_primary_10_1002_adfm_202406354 crossref_primary_10_1039_D1MA00944C crossref_primary_10_1016_j_isci_2022_105373 crossref_primary_10_1021_acsomega_3c01405 crossref_primary_10_1063_5_0097939 crossref_primary_10_1016_j_nanoen_2022_106973 crossref_primary_10_3390_nano13121848 crossref_primary_10_1016_j_actaastro_2023_02_001 crossref_primary_10_1021_acsaelm_2c00258 crossref_primary_10_1039_D2NA00541G crossref_primary_10_1039_D2TC04657A crossref_primary_10_3390_nano12203665 crossref_primary_10_1002_aenm_202302916 crossref_primary_10_1016_j_solmat_2022_111644 crossref_primary_10_1021_acsaem_1c03160 crossref_primary_10_1016_j_nanoen_2025_110681 crossref_primary_10_1016_j_rser_2022_112614 crossref_primary_10_3390_molecules27227949 crossref_primary_10_1039_D2CS01027E crossref_primary_10_1140_epjp_s13360_023_04407_1 crossref_primary_10_3390_en17040814 crossref_primary_10_1016_j_nimb_2024_165565 crossref_primary_10_1016_j_surfin_2024_104020 crossref_primary_10_1149_2162_8777_ac4d81 crossref_primary_10_1002_solr_202400235 crossref_primary_10_1016_j_rser_2023_113770 crossref_primary_10_1002_solr_202400113 crossref_primary_10_1016_j_nanoen_2024_110259 crossref_primary_10_1002_smll_202103336 crossref_primary_10_1002_solr_202100979 crossref_primary_10_1002_ange_202421063 crossref_primary_10_1002_solr_202300468 crossref_primary_10_1002_aenm_202203920 crossref_primary_10_1021_acs_jpcc_4c01662 crossref_primary_10_1016_j_jsse_2025_02_006 crossref_primary_10_1016_j_cej_2022_138313 crossref_primary_10_1021_acsami_4c08204 crossref_primary_10_1038_s41377_022_01060_8 crossref_primary_10_1016_j_solmat_2023_112388 crossref_primary_10_1002_adom_202102069 crossref_primary_10_1002_adma_202405724 crossref_primary_10_3390_ma17112503 crossref_primary_10_1002_ejic_202400682 crossref_primary_10_1016_j_cej_2023_143656 crossref_primary_10_1088_2515_7655_ad658d crossref_primary_10_1002_adfm_202102713 crossref_primary_10_1002_adma_202401498 crossref_primary_10_1002_ente_202200761 crossref_primary_10_1038_s41467_024_44876_1 crossref_primary_10_1039_D1DT01812D crossref_primary_10_1002_adfm_202209324 |
Cites_doi | 10.1038/s41578-019-0151-y 10.1063/1.3638699 10.1126/science.aaa5760 10.1007/s11433-019-9356-1 10.1002/aenm.201701722 10.1038/s41560-019-0400-8 10.1016/S0927-0248(00)00344-5 10.1002/adma.201505480 10.1021/acsami.0c06412 10.1002/adma.201603326 10.1038/nature12509 10.1039/C7TC02603J 10.1038/nmat4388 10.1002/aenm.201702762 10.1063/1.1492021 10.1002/admi.201801206 10.1016/j.radmeas.2016.09.007 10.1016/j.orgel.2019.05.008 10.1021/acsenergylett.7b00731 10.1016/j.joule.2019.01.007 10.1007/BF00716008 10.1016/j.jpowsour.2011.02.031 10.1016/j.scib.2019.06.006 10.1016/S0927-0248(00)00341-X 10.1039/C9EE00077A 10.1038/nature24032 10.1038/s41560-018-0220-2 10.1016/j.joule.2018.10.011 10.1002/adma.201805085 10.1503/cmaj.081125 10.1021/acs.jpcc.5b07132 10.1016/j.solmat.2018.03.024 10.1007/s40843-019-1287-3 10.1063/1.4964094 10.1016/j.joule.2020.07.004 10.1038/nphoton.2016.41 10.1016/j.elspec.2018.10.007 10.1021/acs.jpclett.6b01207 10.1038/nmat4014 10.1039/C5EE02733K 10.1038/s41467-019-09968-3 10.1002/adma.201902413 10.1126/science.aam6620 10.1016/j.orgel.2018.05.008 10.1021/acsami.6b04760 10.1002/pip.2840 10.1016/j.jechem.2015.10.007 10.1002/solr.202000321 10.1063/1.4891181 10.1016/S0022-2313(97)00012-4 10.1021/acs.jpcc.9b11483 10.1039/C9SE00102F 10.1021/acs.jpclett.9b02665 10.1039/C5NR05563F 10.1002/adom.201800262 10.1016/0379-6787(91)90103-V 10.1002/adma.201800855 10.1016/j.nanoen.2016.08.016 10.1038/ncomms4586 10.1039/C5EE03522H 10.1002/adma.201603573 10.1016/j.isci.2018.03.020 10.1002/aenm.201700491 10.1021/ic401215x 10.1038/nenergy.2016.48 10.1002/solr.201900394 10.1002/aenm.201700758 10.1063/1.4965838 10.1002/aelm.201600438 10.34133/2020/2616345 10.1016/j.joule.2020.07.006 10.1021/acs.jpclett.8b03222 10.1038/s41467-020-17114-7 10.1002/aenm.202002882 10.1002/solr.201900219 10.1002/advs.201901397 10.1021/acs.jpcc.7b00854 10.1002/anie.201503153 10.1002/adfm.201502340 10.1021/acs.accounts.5b00420 10.1002/adma.201805547 10.1002/aenm.201903191 10.1038/nmat4927 10.1126/science.1243982 10.1016/j.solmat.2004.01.035 10.1002/pip.735 10.1038/s41566-020-0678-x 10.1016/j.orgel.2019.01.005 10.1038/s41566-017-0012-4 10.1126/science.aah4046 10.1016/S0273-1177(03)90564-3 10.1039/C5TA02206A 10.1016/S0273-1177(03)90367-X 10.1039/C5EE03255E 10.1016/j.chempr.2019.02.025 10.1016/j.jpowsour.2015.02.105 10.1063/1.4984899 10.1021/acs.jpclett.9b03234 10.1063/1.5041028 10.1016/j.scib.2020.08.041 10.1016/S0168-583X(01)00748-0 10.1016/j.joule.2020.03.017 10.1021/acs.jpcc.6b02858 10.1016/j.nanoen.2020.105019 10.1039/C5TA09165A 10.1039/C7EE02564E 10.1021/acs.jpclett.8b01628 10.1016/j.jallcom.2018.02.240 10.1002/aenm.201701305 10.1016/j.jpowsour.2018.04.026 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202006545 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33861877 10_1002_adma_202006545 ADMA202006545 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Province funderid: 2020JQ‐195 – fundername: Fundamental Research Funds for the Central Universities funderid: 31020190QD031 – fundername: Chinese Academy of Sciences funderid: XDA17020304 – fundername: National Natural Science Foundation of China funderid: 62004165; 61722501 – fundername: China Postdoctoral Science Foundation funderid: BX20190018 – fundername: Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University funderid: 2020GXLH‐Z‐007 – fundername: National Natural Science Foundation of China grantid: 61722501 – fundername: Natural Science Foundation of Shaanxi Province grantid: 2020JQ-195 – fundername: China Postdoctoral Science Foundation grantid: BX20190018 – fundername: National Natural Science Foundation of China grantid: 62004165 – fundername: Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University grantid: 2020GXLH-Z-007 – fundername: Chinese Academy of Sciences grantid: XDA17020304 – fundername: Fundamental Research Funds for the Central Universities grantid: 31020190QD031 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4785-ce9dd6a0650f0f96e3955d5a8974e5f5e7ab9e12a58525e29069f7f8a8078a093 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 15:48:36 EDT 2025 Mon Jul 14 10:17:32 EDT 2025 Wed Feb 19 02:29:07 EST 2025 Tue Jul 01 02:33:01 EDT 2025 Thu Apr 24 23:06:05 EDT 2025 Wed Jan 22 16:30:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | stability of perovskite under strong radiation perovskite solar cells space photovoltaic technologies space solar cells |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4785-ce9dd6a0650f0f96e3955d5a8974e5f5e7ab9e12a58525e29069f7f8a8078a093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7004-6408 |
PMID | 33861877 |
PQID | 2532145304 |
PQPubID | 2045203 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2514596172 proquest_journals_2532145304 pubmed_primary_33861877 crossref_primary_10_1002_adma_202006545 crossref_citationtrail_10_1002_adma_202006545 wiley_primary_10_1002_adma_202006545_ADMA202006545 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 11 2019; 10 2019; 12 2016; 145 2020; 14 2020; 12 2020; 11 2020; 10 2017; 550 2011; 196 2011; 110 2018; 6 2018; 9 2018; 8 2018; 3 2018; 2 2018; 5 2013; 52 2014; 13 2002; 92 2018; 30 2016; 49 2019; 7 2018; 182 2019; 4 2019; 3 2019; 5 2019; 31 2009; 180 2018; 746 2018; 229 2013; 501 2015; 54 2016; 10 2013; 342 1996 2016; 94 2003; 32 2007; 15 2016; 4 1990; 1 2016; 7 2016; 1 2020; 2020 2018; 113 2015; 119 2016; 28 2018; 11 2016; 27 2016; 8 2016; 9 2017; 5 2017; 7 2001; 184 2017; 2 2017; 3 2015; 347 2016; 109 2020; 63 2019; 124 2017; 110 2017; 356 2020; 5 2014; 5 2020; 4 2019; 62 2019; 64 2001 2019; 67 2016; 354 2017; 121 2015; 283 2015; 14 2004; 83 2019; 71 2015; 3 2017; 25 1991; 31 2018; 389 2003 2020; 76 2001; 68 2015; 7 2016; 120 2015; 24 2014; 105 2015; 25 1997; 72 2020 2017; 16 2017; 11 2017 2016 2015 2014 2013 2018; 59 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 71 start-page: 79 year: 2019 publication-title: Org. Electron. – volume: 32 start-page: 35 year: 2003 publication-title: Adv. Space Res. – volume: 105 year: 2014 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 110 year: 2011 publication-title: J. Appl. Phys. – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 354 start-page: 203 year: 2016 publication-title: Science – year: 2020 publication-title: Adv. Energy Mater. – year: 2014 – volume: 54 start-page: 8208 year: 2015 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 389 start-page: 135 year: 2018 publication-title: J. Power Sources – volume: 5 start-page: 44 year: 2020 publication-title: Nat. Rev. Mater. – volume: 59 start-page: 184 year: 2018 publication-title: Org. Electron. – volume: 14 start-page: 612 year: 2020 publication-title: Nat. Photonics – volume: 72 start-page: 287 year: 1997 publication-title: J. Lumin. – volume: 11 start-page: 726 year: 2017 publication-title: Nat. Photonics – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 10 start-page: 813 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 16 start-page: 826 year: 2017 publication-title: Nat. Mater. – volume: 28 start-page: 8726 year: 2016 publication-title: Adv. Mater. – volume: 64 start-page: 1255 year: 2019 publication-title: Sci. Bull. – volume: 31 start-page: 297 year: 1991 publication-title: Sol. Cells – volume: 283 start-page: 195 year: 2015 publication-title: J. Power Sources – volume: 5 start-page: 3586 year: 2014 publication-title: Nat. Commun. – volume: 94 start-page: 65 year: 2016 publication-title: Radiat. Meas. – volume: 9 start-page: 4502 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 1989 year: 2019 publication-title: Nat. Commun. – volume: 113 year: 2018 publication-title: Appl. Phys. Lett. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 229 start-page: 108 year: 2018 publication-title: J. Electron Spectrosc. Relat. Phenom. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – start-page: 1657 year: 2016 end-page: 1660 – volume: 67 start-page: 19 year: 2019 publication-title: Org. Electron. – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 11 start-page: 121 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 191 year: 2019 publication-title: Joule – volume: 4 start-page: 1961 year: 2020 publication-title: Joule – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 52 start-page: 9019 year: 2013 publication-title: Inorg. Chem. – volume: 2 start-page: 2212 year: 2017 publication-title: ACS Energy Lett. – volume: 3 start-page: 855 year: 2018 publication-title: Nat. Energy – volume: 3 year: 2019 publication-title: Sol. RRL – volume: 2 start-page: 148 year: 2018 publication-title: iScience – volume: 49 start-page: 286 year: 2016 publication-title: Acc. Chem. Res. – year: 2013 – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 9 start-page: 656 year: 2016 publication-title: Energy Environ. Sci. – volume: 10 start-page: 6990 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 2020 year: 2020 publication-title: Research – volume: 25 start-page: 6218 year: 2015 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1880 year: 2020 publication-title: Joule – volume: 92 start-page: 1668 year: 2002 publication-title: J. Appl. Phys. – year: 2001 – year: 2020 publication-title: Sci. Bull. – volume: 15 start-page: 163 year: 2007 publication-title: Prog. Photovoltaics – volume: 356 start-page: 167 year: 2017 publication-title: Science – volume: 184 start-page: 255 year: 2001 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 8682 year: 2017 publication-title: J. Mater. Chem. C – volume: 63 start-page: 719 year: 2020 publication-title: Sci. China Mater. – volume: 11 start-page: 3395 year: 2020 publication-title: Nat. Commun. – volume: 11 start-page: 144 year: 2018 publication-title: Energy Environ. Sci. – year: 2015 – volume: 68 start-page: 31 year: 2001 publication-title: Sol. Energy Mater. Sol. Cells – volume: 180 start-page: 1216 year: 2009 publication-title: Can. Med. Assoc. J. – volume: 76 year: 2020 publication-title: Nano Energy – volume: 68 start-page: 1 year: 2001 publication-title: Sol. Energy Mater. Sol. Cells – volume: 9 start-page: 490 year: 2016 publication-title: Energy Environ. Sci. – volume: 4 start-page: 568 year: 2019 publication-title: Nat. Energy – volume: 7 start-page: 3014 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 83 start-page: 435 year: 2004 publication-title: Sol. Energy Mater. Sol. Cells – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 4 start-page: 1087 year: 2020 publication-title: Joule – volume: 27 start-page: 569 year: 2016 publication-title: Nano Energy – volume: 12 start-page: 1634 year: 2019 publication-title: Energy Environ. Sci. – volume: 3 start-page: 2561 year: 2019 publication-title: Sustainable Energy Fuels – volume: 14 start-page: 1032 year: 2015 publication-title: Nat. Mater. – volume: 10 start-page: 333 year: 2016 publication-title: Nat. Photonics – year: 2003 – volume: 5 start-page: 995 year: 2019 publication-title: Chem – volume: 9 start-page: 323 year: 2016 publication-title: Energy Environ. Sci. – year: 1996 – volume: 746 start-page: 391 year: 2018 publication-title: J. Alloys Compd. – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 32 start-page: 2349 year: 2003 publication-title: Adv. Space Res. – volume: 24 start-page: 729 year: 2015 publication-title: J. Energy Chem. – volume: 124 start-page: 1330 year: 2019 publication-title: J. Phys. Chem. C – volume: 25 start-page: 161 year: 2017 publication-title: Prog. Photovoltaics – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 550 start-page: 87 year: 2017 publication-title: Nature – volume: 196 start-page: 5792 year: 2011 publication-title: J. Power Sources – volume: 1 start-page: 1 year: 1990 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 145 year: 2016 publication-title: J. Chem. Phys. – volume: 7 year: 2019 publication-title: Adv. Sci. – volume: 3 start-page: 387 year: 2019 publication-title: Joule – volume: 182 start-page: 121 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 7 year: 2015 publication-title: Nanoscale – year: 2017 – volume: 62 year: 2019 publication-title: Sci. China: Phys., Mech. Astron. – volume: 501 start-page: 395 year: 2013 publication-title: Nature – volume: 28 start-page: 2439 year: 2016 publication-title: Adv. Mater. – ident: e_1_2_10_6_1 doi: 10.1038/s41578-019-0151-y – ident: e_1_2_10_30_1 – ident: e_1_2_10_108_1 doi: 10.1063/1.3638699 – ident: e_1_2_10_2_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_10_23_1 doi: 10.1007/s11433-019-9356-1 – ident: e_1_2_10_63_1 doi: 10.1002/aenm.201701722 – ident: e_1_2_10_87_1 doi: 10.1038/s41560-019-0400-8 – ident: e_1_2_10_20_1 doi: 10.1016/S0927-0248(00)00344-5 – ident: e_1_2_10_109_1 doi: 10.1002/adma.201505480 – ident: e_1_2_10_8_1 doi: 10.1021/acsami.0c06412 – ident: e_1_2_10_42_1 doi: 10.1002/adma.201603326 – ident: e_1_2_10_27_1 – ident: e_1_2_10_1_1 doi: 10.1038/nature12509 – ident: e_1_2_10_65_1 doi: 10.1039/C7TC02603J – ident: e_1_2_10_17_1 doi: 10.1038/nmat4388 – ident: e_1_2_10_64_1 doi: 10.1002/aenm.201702762 – ident: e_1_2_10_51_1 doi: 10.1063/1.1492021 – ident: e_1_2_10_86_1 doi: 10.1002/admi.201801206 – ident: e_1_2_10_24_1 doi: 10.1016/j.radmeas.2016.09.007 – ident: e_1_2_10_78_1 doi: 10.1016/j.orgel.2019.05.008 – ident: e_1_2_10_95_1 doi: 10.1021/acsenergylett.7b00731 – ident: e_1_2_10_11_1 doi: 10.1016/j.joule.2019.01.007 – ident: e_1_2_10_43_1 doi: 10.1007/BF00716008 – ident: e_1_2_10_55_1 doi: 10.1016/j.jpowsour.2011.02.031 – ident: e_1_2_10_18_1 doi: 10.1016/j.scib.2019.06.006 – ident: e_1_2_10_32_1 doi: 10.1016/S0927-0248(00)00341-X – ident: e_1_2_10_44_1 doi: 10.1039/C9EE00077A – ident: e_1_2_10_83_1 doi: 10.1038/nature24032 – ident: e_1_2_10_75_1 doi: 10.1038/s41560-018-0220-2 – ident: e_1_2_10_70_1 doi: 10.1016/j.joule.2018.10.011 – ident: e_1_2_10_57_1 doi: 10.1002/adma.201805085 – ident: e_1_2_10_29_1 doi: 10.1503/cmaj.081125 – ident: e_1_2_10_100_1 doi: 10.1021/acs.jpcc.5b07132 – ident: e_1_2_10_22_1 doi: 10.1016/j.solmat.2018.03.024 – ident: e_1_2_10_71_1 doi: 10.1007/s40843-019-1287-3 – ident: e_1_2_10_102_1 doi: 10.1063/1.4964094 – ident: e_1_2_10_118_1 doi: 10.1016/j.joule.2020.07.004 – ident: e_1_2_10_79_1 doi: 10.1038/nphoton.2016.41 – ident: e_1_2_10_84_1 – ident: e_1_2_10_93_1 doi: 10.1016/j.elspec.2018.10.007 – ident: e_1_2_10_103_1 doi: 10.1021/acs.jpclett.6b01207 – ident: e_1_2_10_7_1 doi: 10.1038/nmat4014 – ident: e_1_2_10_48_1 doi: 10.1039/C5EE02733K – ident: e_1_2_10_81_1 doi: 10.1038/s41467-019-09968-3 – ident: e_1_2_10_88_1 doi: 10.1002/adma.201902413 – ident: e_1_2_10_61_1 doi: 10.1126/science.aam6620 – ident: e_1_2_10_62_1 doi: 10.1016/j.orgel.2018.05.008 – ident: e_1_2_10_54_1 doi: 10.1021/acsami.6b04760 – ident: e_1_2_10_38_1 doi: 10.1002/pip.2840 – ident: e_1_2_10_110_1 doi: 10.1016/j.jechem.2015.10.007 – ident: e_1_2_10_72_1 doi: 10.1002/solr.202000321 – ident: e_1_2_10_56_1 doi: 10.1063/1.4891181 – ident: e_1_2_10_59_1 doi: 10.1016/S0022-2313(97)00012-4 – ident: e_1_2_10_36_1 doi: 10.1021/acs.jpcc.9b11483 – ident: e_1_2_10_46_1 doi: 10.1039/C9SE00102F – ident: e_1_2_10_47_1 doi: 10.1021/acs.jpclett.9b02665 – ident: e_1_2_10_10_1 doi: 10.1039/C5NR05563F – ident: e_1_2_10_89_1 doi: 10.1002/adom.201800262 – ident: e_1_2_10_21_1 – ident: e_1_2_10_28_1 doi: 10.1016/0379-6787(91)90103-V – ident: e_1_2_10_69_1 doi: 10.1002/adma.201800855 – ident: e_1_2_10_116_1 doi: 10.1016/j.nanoen.2016.08.016 – ident: e_1_2_10_19_1 – ident: e_1_2_10_4_1 doi: 10.1038/ncomms4586 – ident: e_1_2_10_67_1 doi: 10.1039/C5EE03522H – ident: e_1_2_10_3_1 doi: 10.1002/adma.201603573 – ident: e_1_2_10_35_1 doi: 10.1016/j.isci.2018.03.020 – ident: e_1_2_10_90_1 doi: 10.1002/aenm.201700491 – ident: e_1_2_10_98_1 doi: 10.1021/ic401215x – ident: e_1_2_10_9_1 doi: 10.1038/nenergy.2016.48 – ident: e_1_2_10_34_1 – ident: e_1_2_10_96_1 doi: 10.1002/solr.201900394 – ident: e_1_2_10_58_1 doi: 10.1002/aenm.201700758 – ident: e_1_2_10_52_1 doi: 10.1063/1.4965838 – ident: e_1_2_10_45_1 doi: 10.1002/aelm.201600438 – ident: e_1_2_10_94_1 doi: 10.34133/2020/2616345 – ident: e_1_2_10_117_1 doi: 10.1016/j.joule.2020.07.006 – ident: e_1_2_10_77_1 doi: 10.1021/acs.jpclett.8b03222 – ident: e_1_2_10_25_1 doi: 10.1038/s41467-020-17114-7 – ident: e_1_2_10_74_1 doi: 10.1002/aenm.202002882 – ident: e_1_2_10_33_1 doi: 10.1002/solr.201900219 – ident: e_1_2_10_5_1 doi: 10.1002/advs.201901397 – ident: e_1_2_10_105_1 doi: 10.1021/acs.jpcc.7b00854 – ident: e_1_2_10_16_1 doi: 10.1002/anie.201503153 – ident: e_1_2_10_41_1 – ident: e_1_2_10_99_1 doi: 10.1002/adfm.201502340 – ident: e_1_2_10_107_1 doi: 10.1021/acs.accounts.5b00420 – ident: e_1_2_10_13_1 doi: 10.1002/adma.201805547 – ident: e_1_2_10_37_1 doi: 10.1002/aenm.201903191 – ident: e_1_2_10_73_1 doi: 10.1038/nmat4927 – ident: e_1_2_10_12_1 doi: 10.1126/science.1243982 – ident: e_1_2_10_40_1 doi: 10.1016/j.solmat.2004.01.035 – ident: e_1_2_10_31_1 doi: 10.1002/pip.735 – ident: e_1_2_10_82_1 doi: 10.1038/s41566-020-0678-x – ident: e_1_2_10_92_1 doi: 10.1016/j.orgel.2019.01.005 – ident: e_1_2_10_80_1 doi: 10.1038/s41566-017-0012-4 – ident: e_1_2_10_53_1 doi: 10.1126/science.aah4046 – ident: e_1_2_10_39_1 doi: 10.1016/S0273-1177(03)90564-3 – ident: e_1_2_10_101_1 doi: 10.1039/C5TA02206A – ident: e_1_2_10_85_1 doi: 10.1016/S0273-1177(03)90367-X – ident: e_1_2_10_91_1 doi: 10.1039/C5EE03255E – ident: e_1_2_10_14_1 doi: 10.1016/j.chempr.2019.02.025 – ident: e_1_2_10_50_1 doi: 10.1016/j.jpowsour.2015.02.105 – ident: e_1_2_10_104_1 doi: 10.1063/1.4984899 – ident: e_1_2_10_115_1 doi: 10.1021/acs.jpclett.9b03234 – ident: e_1_2_10_114_1 doi: 10.1063/1.5041028 – ident: e_1_2_10_15_1 doi: 10.1016/j.scib.2020.08.041 – ident: e_1_2_10_26_1 doi: 10.1016/S0168-583X(01)00748-0 – ident: e_1_2_10_97_1 doi: 10.1016/j.joule.2020.03.017 – ident: e_1_2_10_111_1 doi: 10.1021/acs.jpcc.6b02858 – ident: e_1_2_10_49_1 doi: 10.1016/j.nanoen.2020.105019 – ident: e_1_2_10_66_1 doi: 10.1039/C5TA09165A – ident: e_1_2_10_76_1 – ident: e_1_2_10_112_1 doi: 10.1039/C7EE02564E – ident: e_1_2_10_106_1 doi: 10.1021/acs.jpclett.8b01628 – ident: e_1_2_10_68_1 doi: 10.1016/j.jallcom.2018.02.240 – ident: e_1_2_10_113_1 doi: 10.1002/aenm.201701305 – ident: e_1_2_10_60_1 doi: 10.1016/j.jpowsour.2018.04.026 |
SSID | ssj0009606 |
Score | 2.6958668 |
SecondaryResourceType | review_article |
Snippet | Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2006545 |
SubjectTerms | Energy conversion efficiency Extreme environments Materials science Metal halides Optoelectronics perovskite solar cells Perovskites Photovoltaic cells Radiation tolerance Solar cells Space applications space photovoltaic technologies space solar cells stability of perovskite under strong radiation Substrates |
Title | Perovskite Solar Cells for Space Applications: Progress and Challenges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006545 https://www.ncbi.nlm.nih.gov/pubmed/33861877 https://www.proquest.com/docview/2532145304 https://www.proquest.com/docview/2514596172 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEB_Ekx6en0_rFxEET9HdNElbb8vqIoIifoC3kqaTi0tX7K4H_3oz7bbuKo8Heiyd0DSTSX6TzPwG4Eham1uDOReJQy67Xc1jqSz3cD9zzukEu5QofH2jLx_l1ZN6msnir_kh2gM3soxqvSYDN1l5-kkaavKKN0hU6ZGUZU4BW4SK7j75owieV2R7oeKJlnHD2tgRp_PN53elb1BzHrlWW89gBUzT6Tri5PlkMs5O7PsXPsff_NUq_JniUtarJ9IaLGCxDsszbIUbMLjF19FbSce97J48YtbH4bBkHvaye-96I-vN3IafsVsK_fILKTNFzvpN0ZZyEx4HFw_9Sz4tw8CtjGLFLSZ5rg1hOddxicYwUSpXJvauCCqnMDKZV6kw3vMQCok_PnGRiw1R2Rs_9n9hsRgVuA3MhRq9g2M9KFUyJL4nv6BoIS16J12aPADeqCG1U45yKpUxTGt2ZZHS-KTt-ARw3Mq_1Owc_5Tca7SaTq20TIWiMk0q7MgADtvX3r7o0sQUOJqQjJdICOcFsFXPhvZT3r3X3TiKAhCVTv_Th7R3ft1rn3Z-0mgXlgQF1VQRl3uwOH6d4L5HRePsoJr5Hz9uAMQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CcYAd-LUNAgM8aRInr61jOwm3qlAVtk7VukncIsd5vlClU39w4K_Hz2myFTQhjWMUW3H8_Ozvs5-_B3AsrS2twZKLzCGXvZ7mqVSWe7hfOOd0hj26KDw-16Mr-e27aqIJ6S5MrQ_RbriRZ4T5mhycNqQ7N6qhpgzCQSLcj1QP4RGl9Q6s6uJGQYoAepDbixXPtEwb3cau6GzX316X_gKb29g1LD7DZ1A0za5jTn6crFfFif31h6Ljf_3Xc3i6gaasX4-lF_AAq5ewe0uwcA-GE1zMfy5px5dNiRSzAc5mS-aRL5t69o2sf-tA_BObUPSXn0uZqUo2aPK2LPfhavjlcjDim0wM3MokVdxiVpbaEJxzXZdpjDOlSmVSz0ZQOYWJKbxVhfHkQygkCfnMJS41pGZvfOcfwE41r_A1MBdr9BzHelyqZEyST35O0UJa9DxdmjIC3tghtxuZcsqWMctrgWWRU__kbf9E8LEtf10LdNxZ8rAxa75x1GUuFGVqUnFXRnDUvvYuRucmpsL5msr4EhlBvQhe1cOh_ZRn-LqXJkkEIhj1H23I-5_H_fbpzX0qfYDHo8vxWX729fz0LTwRFGMTAjAPYWe1WOM7D5JWxfvgBr8BWm8E3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NJk3wAPsCwtjmSZN4Mm0d20n2VrVU7ANUDZB4i1z7_EKVItrywF-PL2lCy4QmbY9Rzopz57N_Z59_B_BVWuusQcdF5pHLTkfzVCrLA9wfee91hh26KHx6pk8u5Y8rdbV0i7_ih2g23MgzyvmaHPzG-dYjaahxJW-QKK9HqjV4KXU7pXHd__1IIEX4vGTbixXPtExr2sa2aK22X12W_sCaq9C1XHsG22DqXlcpJ9dH89noyN4_IXT8n996DVsLYMq61Uh6Ay-weAubS3SF72AwxNvJ3ZT2e9k5hcSsh-PxlAXcy85D7I2su3Qc_o0NKfcrzKTMFI716qot0_dwOTi-6J3wRR0GbmWSKm4xc04bAnO-7TONcaaUUyYNsQgqrzAxo2BTYULoIRQSgXzmE58a4rI3Qfc7sF5MCtwD5mONIcKxAZUqGRPhU5hRtJAWQ5QujYuA12bI7YKknGpljPOKXlnkpJ-80U8Eh438TUXP8azkQW3VfOGm01woqtOk4raM4EvzOjgYnZqYAidzkgkSGQG9CHar0dB8KsT3upMmSQSitOlf-pB3-6fd5mn_Xxp9hlfD_iD_9f3s5wfYEJRgU2ZfHsD67HaOHwNCmo0-lU7wAFR3A5c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+Solar+Cells+for+Space+Applications%3A+Progress+and+Challenges&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tu%2C+Yongguang&rft.au=Wu%2C+Jiang&rft.au=Xu%2C+Guoning&rft.au=Yang%2C+Xiaoyu&rft.date=2021-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202006545&rft.externalDBID=10.1002%252Fadma.202006545&rft.externalDocID=ADMA202006545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |