Perovskite Solar Cells for Space Applications: Progress and Challenges

Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 21; pp. e2006545 - n/a
Main Authors Tu, Yongguang, Wu, Jiang, Xu, Guoning, Yang, Xiaoyu, Cai, Rong, Gong, Qihuang, Zhu, Rui, Huang, Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next‐generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III‐V multi‐junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments. Perovskite solar cells (PSCs) are considered as promising candidates for next‐generation space photovoltaic technology. Key space environments and specific requirements for space photovoltaics are outlined. Some recent advances in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments are summarized. Progress and challenges associated with space applications of PSCs are highlighted.
AbstractList Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next‐generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III‐V multi‐junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments.
Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next‐generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III‐V multi‐junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments. Perovskite solar cells (PSCs) are considered as promising candidates for next‐generation space photovoltaic technology. Key space environments and specific requirements for space photovoltaics are outlined. Some recent advances in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments are summarized. Progress and challenges associated with space applications of PSCs are highlighted.
Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next-generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III-V multi-junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments.Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next-generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III-V multi-junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments.
Author Tu, Yongguang
Wu, Jiang
Huang, Wei
Xu, Guoning
Yang, Xiaoyu
Cai, Rong
Gong, Qihuang
Zhu, Rui
Author_xml – sequence: 1
  givenname: Yongguang
  surname: Tu
  fullname: Tu, Yongguang
  email: iamygtu@nwpu.edu.cn
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: Jiang
  surname: Wu
  fullname: Wu, Jiang
  organization: Peking University
– sequence: 3
  givenname: Guoning
  surname: Xu
  fullname: Xu, Guoning
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Xiaoyu
  surname: Yang
  fullname: Yang, Xiaoyu
  organization: Peking University
– sequence: 5
  givenname: Rong
  surname: Cai
  fullname: Cai, Rong
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Qihuang
  surname: Gong
  fullname: Gong, Qihuang
  email: qhgong@pku.edu.cn
  organization: Shanxi University
– sequence: 7
  givenname: Rui
  surname: Zhu
  fullname: Zhu, Rui
  email: zhurui3@pku.edu.cn
  organization: Shanxi University
– sequence: 8
  givenname: Wei
  orcidid: 0000-0001-7004-6408
  surname: Huang
  fullname: Huang, Wei
  email: iamwhuang@nwpu.edu.cn
  organization: Nanjing University of Posts and Telecommunications
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33861877$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFP2zAUhy3EBAV25ThF2oVLumcnduzdqrICEohK3c7RI3mBMDfO7JSp_z2GdkVCmji9y_fZv_d-R2y_cx0xdsphzAHEN6yXOBYgAJTM5R4bcSl4moOR-2wEJpOpUbk-ZEchPAKAUaAO2GGWacV1UYzYbE7ePYXf7UDJwln0yZSsDUnjfLLosaJk0ve2rXBoXRe-J3Pv7j2FkGBXJ9MHtJa6ewon7FODNtDn7Txmv2Y_fk4v0-vbi6vp5Dqt8kLLtCJT1wpjVmigMYoyI2UtUZsiJ9lIKvDOEBcotRSShAFlmqLRqKHQGNc5Zmebd3vv_qwoDOWyDVVMjB25VSiF5Lk0ihciol_foY9u5buYLlKZiFwGeaS-bKnV3ZLqsvftEv26_HehCIw3QOVdCJ6aHcKhfKmgfKmg3FUQhfydULXD6_kGj639v2Y22t_W0vqDT8rJ-c3kzX0GOYGYtQ
CitedBy_id crossref_primary_10_1016_j_cej_2023_145024
crossref_primary_10_1021_acsami_2c13309
crossref_primary_10_1021_acs_chemrev_3c00667
crossref_primary_10_1002_adma_202108357
crossref_primary_10_1021_acsaelm_1c00251
crossref_primary_10_1002_adom_202201598
crossref_primary_10_1016_j_energy_2024_131825
crossref_primary_10_1016_j_cej_2022_139308
crossref_primary_10_1021_acsami_4c01071
crossref_primary_10_1140_epjp_s13360_024_05391_w
crossref_primary_10_1016_j_cej_2024_152522
crossref_primary_10_1039_D3QI01749D
crossref_primary_10_1002_admi_202202159
crossref_primary_10_1016_j_cej_2022_137806
crossref_primary_10_1021_jacs_4c14824
crossref_primary_10_1016_j_joule_2022_03_004
crossref_primary_10_1016_j_jpowsour_2021_230906
crossref_primary_10_1002_aenm_202405370
crossref_primary_10_1016_j_cjsc_2024_100240
crossref_primary_10_1002_aenm_202200125
crossref_primary_10_1016_j_measen_2022_100640
crossref_primary_10_1021_acsaem_3c01988
crossref_primary_10_1016_j_nimb_2022_06_012
crossref_primary_10_1007_s00707_022_03444_8
crossref_primary_10_1021_acsami_1c24349
crossref_primary_10_1002_adfm_202409497
crossref_primary_10_1021_acsanm_3c04924
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1002_aenm_202300506
crossref_primary_10_1021_acsanm_2c02560
crossref_primary_10_1126_sciadv_adp0790
crossref_primary_10_1002_adma_202305314
crossref_primary_10_1021_acsaem_1c03842
crossref_primary_10_1002_adfm_202304730
crossref_primary_10_1016_j_cej_2021_133744
crossref_primary_10_1021_acsaem_2c03972
crossref_primary_10_1088_2752_5724_ad37cf
crossref_primary_10_1002_admi_202201403
crossref_primary_10_1016_j_mtener_2024_101687
crossref_primary_10_1063_5_0100183
crossref_primary_10_1021_acs_chemmater_3c02200
crossref_primary_10_3390_nano12193352
crossref_primary_10_1109_ACCESS_2025_3532163
crossref_primary_10_1021_acsenergylett_2c02378
crossref_primary_10_1002_aenm_202202887
crossref_primary_10_1021_acs_langmuir_4c01672
crossref_primary_10_1002_aenm_202202643
crossref_primary_10_1016_j_cej_2023_142407
crossref_primary_10_1016_j_molstruc_2024_141142
crossref_primary_10_1016_j_cej_2022_136622
crossref_primary_10_1002_solr_202200987
crossref_primary_10_1063_5_0156988
crossref_primary_10_1038_s41566_023_01373_z
crossref_primary_10_1002_adma_202204380
crossref_primary_10_1002_solr_202300200
crossref_primary_10_1021_acs_jpclett_2c02955
crossref_primary_10_1093_ce_zkac076
crossref_primary_10_1016_j_inoche_2023_111419
crossref_primary_10_1039_D4DT00406J
crossref_primary_10_1016_j_net_2022_11_025
crossref_primary_10_1021_acs_jpclett_2c03763
crossref_primary_10_1016_j_jcis_2022_01_103
crossref_primary_10_1021_acsaem_3c02761
crossref_primary_10_1021_acsaem_2c00370
crossref_primary_10_1016_j_ceramint_2023_12_057
crossref_primary_10_1002_admt_202101059
crossref_primary_10_1002_aenm_202200713
crossref_primary_10_1039_D2CP01450E
crossref_primary_10_1038_s43246_022_00325_4
crossref_primary_10_3390_en17184755
crossref_primary_10_1002_aenm_202400204
crossref_primary_10_1021_acsami_4c11355
crossref_primary_10_1039_D2TA09434G
crossref_primary_10_1016_j_nanoen_2022_107781
crossref_primary_10_1016_j_heliyon_2023_e16775
crossref_primary_10_1016_j_mtener_2024_101629
crossref_primary_10_1002_aisy_202200071
crossref_primary_10_1021_acs_chemrev_2c00382
crossref_primary_10_1021_acsenergylett_1c01193
crossref_primary_10_1016_j_sintl_2021_100133
crossref_primary_10_1002_smll_202310455
crossref_primary_10_1016_j_optmat_2022_112250
crossref_primary_10_1002_adma_202207345
crossref_primary_10_1021_acs_jpcc_4c03554
crossref_primary_10_1016_j_cej_2022_137851
crossref_primary_10_7498_aps_72_20222100
crossref_primary_10_1038_s41560_024_01651_2
crossref_primary_10_1002_admt_202200539
crossref_primary_10_1002_adts_202301015
crossref_primary_10_1016_j_rineng_2023_101314
crossref_primary_10_1039_D2YA00218C
crossref_primary_10_1007_s10904_025_03634_6
crossref_primary_10_3390_s23104930
crossref_primary_10_1002_admt_202101638
crossref_primary_10_1039_D3TA06953B
crossref_primary_10_1093_nsr_nwac285
crossref_primary_10_1063_5_0169185
crossref_primary_10_1021_acsenergylett_3c00551
crossref_primary_10_1016_j_saa_2023_122768
crossref_primary_10_1109_TNS_2022_3190200
crossref_primary_10_1039_D3TC02723F
crossref_primary_10_1016_j_tsf_2023_140057
crossref_primary_10_1016_j_jechem_2022_10_024
crossref_primary_10_1021_acsami_2c09058
crossref_primary_10_1109_LED_2022_3184285
crossref_primary_10_1088_1402_4896_acce81
crossref_primary_10_1002_smtd_202101348
crossref_primary_10_1016_j_ast_2024_109726
crossref_primary_10_1002_adma_202311473
crossref_primary_10_1016_j_applthermaleng_2024_124685
crossref_primary_10_1016_j_cej_2024_158118
crossref_primary_10_1002_adma_202200383
crossref_primary_10_1002_aelm_202400107
crossref_primary_10_1016_j_ccr_2023_215171
crossref_primary_10_1002_cptc_202400337
crossref_primary_10_1016_j_cej_2023_148143
crossref_primary_10_1002_solr_202400736
crossref_primary_10_1016_j_electacta_2022_140905
crossref_primary_10_1016_j_ceramint_2024_03_196
crossref_primary_10_1142_S0217979225501589
crossref_primary_10_1002_aenm_202301696
crossref_primary_10_1002_solr_202100710
crossref_primary_10_1016_j_egyr_2023_04_229
crossref_primary_10_1016_j_gee_2022_04_004
crossref_primary_10_1016_j_isci_2024_111586
crossref_primary_10_1021_acsanm_2c01738
crossref_primary_10_1021_acsenergylett_2c01099
crossref_primary_10_3390_mi14081562
crossref_primary_10_1002_smsc_202400470
crossref_primary_10_1039_D2SE01766K
crossref_primary_10_1038_s41578_022_00522_0
crossref_primary_10_1016_j_joule_2025_101852
crossref_primary_10_1016_j_ceramint_2024_12_263
crossref_primary_10_1021_acsmaterialslett_4c00874
crossref_primary_10_1002_smtd_202300428
crossref_primary_10_1002_solr_202300618
crossref_primary_10_1016_j_heliyon_2023_e16462
crossref_primary_10_1021_acsaem_3c01343
crossref_primary_10_1021_acsami_2c08224
crossref_primary_10_1016_j_compstruct_2024_118791
crossref_primary_10_1002_smtd_202300421
crossref_primary_10_1021_acsenergylett_1c02768
crossref_primary_10_1016_j_cej_2023_141737
crossref_primary_10_1038_s41377_024_01461_x
crossref_primary_10_1002_smll_202407015
crossref_primary_10_1002_aenm_202400638
crossref_primary_10_1021_acs_nanolett_3c00641
crossref_primary_10_1002_smll_202307645
crossref_primary_10_1007_s12274_022_4322_6
crossref_primary_10_1007_s11664_022_10181_0
crossref_primary_10_1002_eom2_12495
crossref_primary_10_1007_s11426_022_1426_x
crossref_primary_10_1016_j_cej_2024_151128
crossref_primary_10_1002_solr_202200221
crossref_primary_10_1039_D1TA07121A
crossref_primary_10_1021_acs_chemmater_2c01533
crossref_primary_10_1016_j_tws_2025_112946
crossref_primary_10_1021_acsami_4c16818
crossref_primary_10_1016_j_optlastec_2024_111695
crossref_primary_10_1021_acs_jpclett_1c02830
crossref_primary_10_1039_D4MH00723A
crossref_primary_10_1038_s41560_022_01189_1
crossref_primary_10_1021_acsaem_2c01035
crossref_primary_10_1021_accountsmr_1c00154
crossref_primary_10_1039_D3TA07598B
crossref_primary_10_1002_solr_202400666
crossref_primary_10_1039_D5RA00458F
crossref_primary_10_1002_asia_202500056
crossref_primary_10_1088_2058_8585_acdae2
crossref_primary_10_1016_j_seta_2024_104157
crossref_primary_10_1021_acs_jpclett_2c00386
crossref_primary_10_1039_D3TA06388G
crossref_primary_10_1002_smll_202401505
crossref_primary_10_1016_j_solidstatesciences_2024_107734
crossref_primary_10_1080_1448837X_2024_2308415
crossref_primary_10_1016_j_optmat_2023_114311
crossref_primary_10_1021_acs_chemmater_4c02394
crossref_primary_10_1002_smll_202407032
crossref_primary_10_1002_inf2_12522
crossref_primary_10_1021_acsaem_3c00727
crossref_primary_10_1039_D1DT03382D
crossref_primary_10_1039_D3MH01484C
crossref_primary_10_1007_s40843_022_2075_7
crossref_primary_10_1016_j_decarb_2023_100020
crossref_primary_10_1021_acsaem_1c01958
crossref_primary_10_1038_s43586_024_00373_9
crossref_primary_10_1002_solr_202100995
crossref_primary_10_1002_smll_202207445
crossref_primary_10_1038_s41578_025_00781_7
crossref_primary_10_1016_j_ceramint_2023_01_004
crossref_primary_10_1002_solr_202300920
crossref_primary_10_1021_acsami_4c12718
crossref_primary_10_1002_anie_202421063
crossref_primary_10_1063_5_0100362
crossref_primary_10_1016_j_jclepro_2022_133665
crossref_primary_10_1016_j_infrared_2023_104978
crossref_primary_10_1016_j_jallcom_2024_176113
crossref_primary_10_1002_adfm_202406354
crossref_primary_10_1039_D1MA00944C
crossref_primary_10_1016_j_isci_2022_105373
crossref_primary_10_1021_acsomega_3c01405
crossref_primary_10_1063_5_0097939
crossref_primary_10_1016_j_nanoen_2022_106973
crossref_primary_10_3390_nano13121848
crossref_primary_10_1016_j_actaastro_2023_02_001
crossref_primary_10_1021_acsaelm_2c00258
crossref_primary_10_1039_D2NA00541G
crossref_primary_10_1039_D2TC04657A
crossref_primary_10_3390_nano12203665
crossref_primary_10_1002_aenm_202302916
crossref_primary_10_1016_j_solmat_2022_111644
crossref_primary_10_1021_acsaem_1c03160
crossref_primary_10_1016_j_nanoen_2025_110681
crossref_primary_10_1016_j_rser_2022_112614
crossref_primary_10_3390_molecules27227949
crossref_primary_10_1039_D2CS01027E
crossref_primary_10_1140_epjp_s13360_023_04407_1
crossref_primary_10_3390_en17040814
crossref_primary_10_1016_j_nimb_2024_165565
crossref_primary_10_1016_j_surfin_2024_104020
crossref_primary_10_1149_2162_8777_ac4d81
crossref_primary_10_1002_solr_202400235
crossref_primary_10_1016_j_rser_2023_113770
crossref_primary_10_1002_solr_202400113
crossref_primary_10_1016_j_nanoen_2024_110259
crossref_primary_10_1002_smll_202103336
crossref_primary_10_1002_solr_202100979
crossref_primary_10_1002_ange_202421063
crossref_primary_10_1002_solr_202300468
crossref_primary_10_1002_aenm_202203920
crossref_primary_10_1021_acs_jpcc_4c01662
crossref_primary_10_1016_j_jsse_2025_02_006
crossref_primary_10_1016_j_cej_2022_138313
crossref_primary_10_1021_acsami_4c08204
crossref_primary_10_1038_s41377_022_01060_8
crossref_primary_10_1016_j_solmat_2023_112388
crossref_primary_10_1002_adom_202102069
crossref_primary_10_1002_adma_202405724
crossref_primary_10_3390_ma17112503
crossref_primary_10_1002_ejic_202400682
crossref_primary_10_1016_j_cej_2023_143656
crossref_primary_10_1088_2515_7655_ad658d
crossref_primary_10_1002_adfm_202102713
crossref_primary_10_1002_adma_202401498
crossref_primary_10_1002_ente_202200761
crossref_primary_10_1038_s41467_024_44876_1
crossref_primary_10_1039_D1DT01812D
crossref_primary_10_1002_adfm_202209324
Cites_doi 10.1038/s41578-019-0151-y
10.1063/1.3638699
10.1126/science.aaa5760
10.1007/s11433-019-9356-1
10.1002/aenm.201701722
10.1038/s41560-019-0400-8
10.1016/S0927-0248(00)00344-5
10.1002/adma.201505480
10.1021/acsami.0c06412
10.1002/adma.201603326
10.1038/nature12509
10.1039/C7TC02603J
10.1038/nmat4388
10.1002/aenm.201702762
10.1063/1.1492021
10.1002/admi.201801206
10.1016/j.radmeas.2016.09.007
10.1016/j.orgel.2019.05.008
10.1021/acsenergylett.7b00731
10.1016/j.joule.2019.01.007
10.1007/BF00716008
10.1016/j.jpowsour.2011.02.031
10.1016/j.scib.2019.06.006
10.1016/S0927-0248(00)00341-X
10.1039/C9EE00077A
10.1038/nature24032
10.1038/s41560-018-0220-2
10.1016/j.joule.2018.10.011
10.1002/adma.201805085
10.1503/cmaj.081125
10.1021/acs.jpcc.5b07132
10.1016/j.solmat.2018.03.024
10.1007/s40843-019-1287-3
10.1063/1.4964094
10.1016/j.joule.2020.07.004
10.1038/nphoton.2016.41
10.1016/j.elspec.2018.10.007
10.1021/acs.jpclett.6b01207
10.1038/nmat4014
10.1039/C5EE02733K
10.1038/s41467-019-09968-3
10.1002/adma.201902413
10.1126/science.aam6620
10.1016/j.orgel.2018.05.008
10.1021/acsami.6b04760
10.1002/pip.2840
10.1016/j.jechem.2015.10.007
10.1002/solr.202000321
10.1063/1.4891181
10.1016/S0022-2313(97)00012-4
10.1021/acs.jpcc.9b11483
10.1039/C9SE00102F
10.1021/acs.jpclett.9b02665
10.1039/C5NR05563F
10.1002/adom.201800262
10.1016/0379-6787(91)90103-V
10.1002/adma.201800855
10.1016/j.nanoen.2016.08.016
10.1038/ncomms4586
10.1039/C5EE03522H
10.1002/adma.201603573
10.1016/j.isci.2018.03.020
10.1002/aenm.201700491
10.1021/ic401215x
10.1038/nenergy.2016.48
10.1002/solr.201900394
10.1002/aenm.201700758
10.1063/1.4965838
10.1002/aelm.201600438
10.34133/2020/2616345
10.1016/j.joule.2020.07.006
10.1021/acs.jpclett.8b03222
10.1038/s41467-020-17114-7
10.1002/aenm.202002882
10.1002/solr.201900219
10.1002/advs.201901397
10.1021/acs.jpcc.7b00854
10.1002/anie.201503153
10.1002/adfm.201502340
10.1021/acs.accounts.5b00420
10.1002/adma.201805547
10.1002/aenm.201903191
10.1038/nmat4927
10.1126/science.1243982
10.1016/j.solmat.2004.01.035
10.1002/pip.735
10.1038/s41566-020-0678-x
10.1016/j.orgel.2019.01.005
10.1038/s41566-017-0012-4
10.1126/science.aah4046
10.1016/S0273-1177(03)90564-3
10.1039/C5TA02206A
10.1016/S0273-1177(03)90367-X
10.1039/C5EE03255E
10.1016/j.chempr.2019.02.025
10.1016/j.jpowsour.2015.02.105
10.1063/1.4984899
10.1021/acs.jpclett.9b03234
10.1063/1.5041028
10.1016/j.scib.2020.08.041
10.1016/S0168-583X(01)00748-0
10.1016/j.joule.2020.03.017
10.1021/acs.jpcc.6b02858
10.1016/j.nanoen.2020.105019
10.1039/C5TA09165A
10.1039/C7EE02564E
10.1021/acs.jpclett.8b01628
10.1016/j.jallcom.2018.02.240
10.1002/aenm.201701305
10.1016/j.jpowsour.2018.04.026
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202006545
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33861877
10_1002_adma_202006545
ADMA202006545
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Natural Science Foundation of Shaanxi Province
  funderid: 2020JQ‐195
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 31020190QD031
– fundername: Chinese Academy of Sciences
  funderid: XDA17020304
– fundername: National Natural Science Foundation of China
  funderid: 62004165; 61722501
– fundername: China Postdoctoral Science Foundation
  funderid: BX20190018
– fundername: Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University
  funderid: 2020GXLH‐Z‐007
– fundername: National Natural Science Foundation of China
  grantid: 61722501
– fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2020JQ-195
– fundername: China Postdoctoral Science Foundation
  grantid: BX20190018
– fundername: National Natural Science Foundation of China
  grantid: 62004165
– fundername: Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University
  grantid: 2020GXLH-Z-007
– fundername: Chinese Academy of Sciences
  grantid: XDA17020304
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 31020190QD031
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4785-ce9dd6a0650f0f96e3955d5a8974e5f5e7ab9e12a58525e29069f7f8a8078a093
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 15:48:36 EDT 2025
Mon Jul 14 10:17:32 EDT 2025
Wed Feb 19 02:29:07 EST 2025
Tue Jul 01 02:33:01 EDT 2025
Thu Apr 24 23:06:05 EDT 2025
Wed Jan 22 16:30:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords stability of perovskite under strong radiation
perovskite solar cells
space photovoltaic technologies
space solar cells
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4785-ce9dd6a0650f0f96e3955d5a8974e5f5e7ab9e12a58525e29069f7f8a8078a093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7004-6408
PMID 33861877
PQID 2532145304
PQPubID 2045203
PageCount 22
ParticipantIDs proquest_miscellaneous_2514596172
proquest_journals_2532145304
pubmed_primary_33861877
crossref_primary_10_1002_adma_202006545
crossref_citationtrail_10_1002_adma_202006545
wiley_primary_10_1002_adma_202006545_ADMA202006545
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 10
2019; 12
2016; 145
2020; 14
2020; 12
2020; 11
2020; 10
2017; 550
2011; 196
2011; 110
2018; 6
2018; 9
2018; 8
2018; 3
2018; 2
2018; 5
2013; 52
2014; 13
2002; 92
2018; 30
2016; 49
2019; 7
2018; 182
2019; 4
2019; 3
2019; 5
2019; 31
2009; 180
2018; 746
2018; 229
2013; 501
2015; 54
2016; 10
2013; 342
1996
2016; 94
2003; 32
2007; 15
2016; 4
1990; 1
2016; 7
2016; 1
2020; 2020
2018; 113
2015; 119
2016; 28
2018; 11
2016; 27
2016; 8
2016; 9
2017; 5
2017; 7
2001; 184
2017; 2
2017; 3
2015; 347
2016; 109
2020; 63
2019; 124
2017; 110
2017; 356
2020; 5
2014; 5
2020; 4
2019; 62
2019; 64
2001
2019; 67
2016; 354
2017; 121
2015; 283
2015; 14
2004; 83
2019; 71
2015; 3
2017; 25
1991; 31
2018; 389
2003
2020; 76
2001; 68
2015; 7
2016; 120
2015; 24
2014; 105
2015; 25
1997; 72
2020
2017; 16
2017; 11
2017
2016
2015
2014
2013
2018; 59
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 71
  start-page: 79
  year: 2019
  publication-title: Org. Electron.
– volume: 32
  start-page: 35
  year: 2003
  publication-title: Adv. Space Res.
– volume: 105
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 110
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 354
  start-page: 203
  year: 2016
  publication-title: Science
– year: 2020
  publication-title: Adv. Energy Mater.
– year: 2014
– volume: 54
  start-page: 8208
  year: 2015
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 389
  start-page: 135
  year: 2018
  publication-title: J. Power Sources
– volume: 5
  start-page: 44
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 59
  start-page: 184
  year: 2018
  publication-title: Org. Electron.
– volume: 14
  start-page: 612
  year: 2020
  publication-title: Nat. Photonics
– volume: 72
  start-page: 287
  year: 1997
  publication-title: J. Lumin.
– volume: 11
  start-page: 726
  year: 2017
  publication-title: Nat. Photonics
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 813
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 16
  start-page: 826
  year: 2017
  publication-title: Nat. Mater.
– volume: 28
  start-page: 8726
  year: 2016
  publication-title: Adv. Mater.
– volume: 64
  start-page: 1255
  year: 2019
  publication-title: Sci. Bull.
– volume: 31
  start-page: 297
  year: 1991
  publication-title: Sol. Cells
– volume: 283
  start-page: 195
  year: 2015
  publication-title: J. Power Sources
– volume: 5
  start-page: 3586
  year: 2014
  publication-title: Nat. Commun.
– volume: 94
  start-page: 65
  year: 2016
  publication-title: Radiat. Meas.
– volume: 9
  start-page: 4502
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 1989
  year: 2019
  publication-title: Nat. Commun.
– volume: 113
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 229
  start-page: 108
  year: 2018
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– start-page: 1657
  year: 2016
  end-page: 1660
– volume: 67
  start-page: 19
  year: 2019
  publication-title: Org. Electron.
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 121
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 191
  year: 2019
  publication-title: Joule
– volume: 4
  start-page: 1961
  year: 2020
  publication-title: Joule
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 2
  start-page: 2212
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 855
  year: 2018
  publication-title: Nat. Energy
– volume: 3
  year: 2019
  publication-title: Sol. RRL
– volume: 2
  start-page: 148
  year: 2018
  publication-title: iScience
– volume: 49
  start-page: 286
  year: 2016
  publication-title: Acc. Chem. Res.
– year: 2013
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 9
  start-page: 656
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 6990
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 2020
  year: 2020
  publication-title: Research
– volume: 25
  start-page: 6218
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1880
  year: 2020
  publication-title: Joule
– volume: 92
  start-page: 1668
  year: 2002
  publication-title: J. Appl. Phys.
– year: 2001
– year: 2020
  publication-title: Sci. Bull.
– volume: 15
  start-page: 163
  year: 2007
  publication-title: Prog. Photovoltaics
– volume: 356
  start-page: 167
  year: 2017
  publication-title: Science
– volume: 184
  start-page: 255
  year: 2001
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 8682
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 63
  start-page: 719
  year: 2020
  publication-title: Sci. China Mater.
– volume: 11
  start-page: 3395
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  start-page: 144
  year: 2018
  publication-title: Energy Environ. Sci.
– year: 2015
– volume: 68
  start-page: 31
  year: 2001
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 180
  start-page: 1216
  year: 2009
  publication-title: Can. Med. Assoc. J.
– volume: 76
  year: 2020
  publication-title: Nano Energy
– volume: 68
  start-page: 1
  year: 2001
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 9
  start-page: 490
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 568
  year: 2019
  publication-title: Nat. Energy
– volume: 7
  start-page: 3014
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 83
  start-page: 435
  year: 2004
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 1087
  year: 2020
  publication-title: Joule
– volume: 27
  start-page: 569
  year: 2016
  publication-title: Nano Energy
– volume: 12
  start-page: 1634
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 2561
  year: 2019
  publication-title: Sustainable Energy Fuels
– volume: 14
  start-page: 1032
  year: 2015
  publication-title: Nat. Mater.
– volume: 10
  start-page: 333
  year: 2016
  publication-title: Nat. Photonics
– year: 2003
– volume: 5
  start-page: 995
  year: 2019
  publication-title: Chem
– volume: 9
  start-page: 323
  year: 2016
  publication-title: Energy Environ. Sci.
– year: 1996
– volume: 746
  start-page: 391
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 32
  start-page: 2349
  year: 2003
  publication-title: Adv. Space Res.
– volume: 24
  start-page: 729
  year: 2015
  publication-title: J. Energy Chem.
– volume: 124
  start-page: 1330
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 25
  start-page: 161
  year: 2017
  publication-title: Prog. Photovoltaics
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 550
  start-page: 87
  year: 2017
  publication-title: Nature
– volume: 196
  start-page: 5792
  year: 2011
  publication-title: J. Power Sources
– volume: 1
  start-page: 1
  year: 1990
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 145
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 7
  year: 2019
  publication-title: Adv. Sci.
– volume: 3
  start-page: 387
  year: 2019
  publication-title: Joule
– volume: 182
  start-page: 121
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 7
  year: 2015
  publication-title: Nanoscale
– year: 2017
– volume: 62
  year: 2019
  publication-title: Sci. China: Phys., Mech. Astron.
– volume: 501
  start-page: 395
  year: 2013
  publication-title: Nature
– volume: 28
  start-page: 2439
  year: 2016
  publication-title: Adv. Mater.
– ident: e_1_2_10_6_1
  doi: 10.1038/s41578-019-0151-y
– ident: e_1_2_10_30_1
– ident: e_1_2_10_108_1
  doi: 10.1063/1.3638699
– ident: e_1_2_10_2_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_10_23_1
  doi: 10.1007/s11433-019-9356-1
– ident: e_1_2_10_63_1
  doi: 10.1002/aenm.201701722
– ident: e_1_2_10_87_1
  doi: 10.1038/s41560-019-0400-8
– ident: e_1_2_10_20_1
  doi: 10.1016/S0927-0248(00)00344-5
– ident: e_1_2_10_109_1
  doi: 10.1002/adma.201505480
– ident: e_1_2_10_8_1
  doi: 10.1021/acsami.0c06412
– ident: e_1_2_10_42_1
  doi: 10.1002/adma.201603326
– ident: e_1_2_10_27_1
– ident: e_1_2_10_1_1
  doi: 10.1038/nature12509
– ident: e_1_2_10_65_1
  doi: 10.1039/C7TC02603J
– ident: e_1_2_10_17_1
  doi: 10.1038/nmat4388
– ident: e_1_2_10_64_1
  doi: 10.1002/aenm.201702762
– ident: e_1_2_10_51_1
  doi: 10.1063/1.1492021
– ident: e_1_2_10_86_1
  doi: 10.1002/admi.201801206
– ident: e_1_2_10_24_1
  doi: 10.1016/j.radmeas.2016.09.007
– ident: e_1_2_10_78_1
  doi: 10.1016/j.orgel.2019.05.008
– ident: e_1_2_10_95_1
  doi: 10.1021/acsenergylett.7b00731
– ident: e_1_2_10_11_1
  doi: 10.1016/j.joule.2019.01.007
– ident: e_1_2_10_43_1
  doi: 10.1007/BF00716008
– ident: e_1_2_10_55_1
  doi: 10.1016/j.jpowsour.2011.02.031
– ident: e_1_2_10_18_1
  doi: 10.1016/j.scib.2019.06.006
– ident: e_1_2_10_32_1
  doi: 10.1016/S0927-0248(00)00341-X
– ident: e_1_2_10_44_1
  doi: 10.1039/C9EE00077A
– ident: e_1_2_10_83_1
  doi: 10.1038/nature24032
– ident: e_1_2_10_75_1
  doi: 10.1038/s41560-018-0220-2
– ident: e_1_2_10_70_1
  doi: 10.1016/j.joule.2018.10.011
– ident: e_1_2_10_57_1
  doi: 10.1002/adma.201805085
– ident: e_1_2_10_29_1
  doi: 10.1503/cmaj.081125
– ident: e_1_2_10_100_1
  doi: 10.1021/acs.jpcc.5b07132
– ident: e_1_2_10_22_1
  doi: 10.1016/j.solmat.2018.03.024
– ident: e_1_2_10_71_1
  doi: 10.1007/s40843-019-1287-3
– ident: e_1_2_10_102_1
  doi: 10.1063/1.4964094
– ident: e_1_2_10_118_1
  doi: 10.1016/j.joule.2020.07.004
– ident: e_1_2_10_79_1
  doi: 10.1038/nphoton.2016.41
– ident: e_1_2_10_84_1
– ident: e_1_2_10_93_1
  doi: 10.1016/j.elspec.2018.10.007
– ident: e_1_2_10_103_1
  doi: 10.1021/acs.jpclett.6b01207
– ident: e_1_2_10_7_1
  doi: 10.1038/nmat4014
– ident: e_1_2_10_48_1
  doi: 10.1039/C5EE02733K
– ident: e_1_2_10_81_1
  doi: 10.1038/s41467-019-09968-3
– ident: e_1_2_10_88_1
  doi: 10.1002/adma.201902413
– ident: e_1_2_10_61_1
  doi: 10.1126/science.aam6620
– ident: e_1_2_10_62_1
  doi: 10.1016/j.orgel.2018.05.008
– ident: e_1_2_10_54_1
  doi: 10.1021/acsami.6b04760
– ident: e_1_2_10_38_1
  doi: 10.1002/pip.2840
– ident: e_1_2_10_110_1
  doi: 10.1016/j.jechem.2015.10.007
– ident: e_1_2_10_72_1
  doi: 10.1002/solr.202000321
– ident: e_1_2_10_56_1
  doi: 10.1063/1.4891181
– ident: e_1_2_10_59_1
  doi: 10.1016/S0022-2313(97)00012-4
– ident: e_1_2_10_36_1
  doi: 10.1021/acs.jpcc.9b11483
– ident: e_1_2_10_46_1
  doi: 10.1039/C9SE00102F
– ident: e_1_2_10_47_1
  doi: 10.1021/acs.jpclett.9b02665
– ident: e_1_2_10_10_1
  doi: 10.1039/C5NR05563F
– ident: e_1_2_10_89_1
  doi: 10.1002/adom.201800262
– ident: e_1_2_10_21_1
– ident: e_1_2_10_28_1
  doi: 10.1016/0379-6787(91)90103-V
– ident: e_1_2_10_69_1
  doi: 10.1002/adma.201800855
– ident: e_1_2_10_116_1
  doi: 10.1016/j.nanoen.2016.08.016
– ident: e_1_2_10_19_1
– ident: e_1_2_10_4_1
  doi: 10.1038/ncomms4586
– ident: e_1_2_10_67_1
  doi: 10.1039/C5EE03522H
– ident: e_1_2_10_3_1
  doi: 10.1002/adma.201603573
– ident: e_1_2_10_35_1
  doi: 10.1016/j.isci.2018.03.020
– ident: e_1_2_10_90_1
  doi: 10.1002/aenm.201700491
– ident: e_1_2_10_98_1
  doi: 10.1021/ic401215x
– ident: e_1_2_10_9_1
  doi: 10.1038/nenergy.2016.48
– ident: e_1_2_10_34_1
– ident: e_1_2_10_96_1
  doi: 10.1002/solr.201900394
– ident: e_1_2_10_58_1
  doi: 10.1002/aenm.201700758
– ident: e_1_2_10_52_1
  doi: 10.1063/1.4965838
– ident: e_1_2_10_45_1
  doi: 10.1002/aelm.201600438
– ident: e_1_2_10_94_1
  doi: 10.34133/2020/2616345
– ident: e_1_2_10_117_1
  doi: 10.1016/j.joule.2020.07.006
– ident: e_1_2_10_77_1
  doi: 10.1021/acs.jpclett.8b03222
– ident: e_1_2_10_25_1
  doi: 10.1038/s41467-020-17114-7
– ident: e_1_2_10_74_1
  doi: 10.1002/aenm.202002882
– ident: e_1_2_10_33_1
  doi: 10.1002/solr.201900219
– ident: e_1_2_10_5_1
  doi: 10.1002/advs.201901397
– ident: e_1_2_10_105_1
  doi: 10.1021/acs.jpcc.7b00854
– ident: e_1_2_10_16_1
  doi: 10.1002/anie.201503153
– ident: e_1_2_10_41_1
– ident: e_1_2_10_99_1
  doi: 10.1002/adfm.201502340
– ident: e_1_2_10_107_1
  doi: 10.1021/acs.accounts.5b00420
– ident: e_1_2_10_13_1
  doi: 10.1002/adma.201805547
– ident: e_1_2_10_37_1
  doi: 10.1002/aenm.201903191
– ident: e_1_2_10_73_1
  doi: 10.1038/nmat4927
– ident: e_1_2_10_12_1
  doi: 10.1126/science.1243982
– ident: e_1_2_10_40_1
  doi: 10.1016/j.solmat.2004.01.035
– ident: e_1_2_10_31_1
  doi: 10.1002/pip.735
– ident: e_1_2_10_82_1
  doi: 10.1038/s41566-020-0678-x
– ident: e_1_2_10_92_1
  doi: 10.1016/j.orgel.2019.01.005
– ident: e_1_2_10_80_1
  doi: 10.1038/s41566-017-0012-4
– ident: e_1_2_10_53_1
  doi: 10.1126/science.aah4046
– ident: e_1_2_10_39_1
  doi: 10.1016/S0273-1177(03)90564-3
– ident: e_1_2_10_101_1
  doi: 10.1039/C5TA02206A
– ident: e_1_2_10_85_1
  doi: 10.1016/S0273-1177(03)90367-X
– ident: e_1_2_10_91_1
  doi: 10.1039/C5EE03255E
– ident: e_1_2_10_14_1
  doi: 10.1016/j.chempr.2019.02.025
– ident: e_1_2_10_50_1
  doi: 10.1016/j.jpowsour.2015.02.105
– ident: e_1_2_10_104_1
  doi: 10.1063/1.4984899
– ident: e_1_2_10_115_1
  doi: 10.1021/acs.jpclett.9b03234
– ident: e_1_2_10_114_1
  doi: 10.1063/1.5041028
– ident: e_1_2_10_15_1
  doi: 10.1016/j.scib.2020.08.041
– ident: e_1_2_10_26_1
  doi: 10.1016/S0168-583X(01)00748-0
– ident: e_1_2_10_97_1
  doi: 10.1016/j.joule.2020.03.017
– ident: e_1_2_10_111_1
  doi: 10.1021/acs.jpcc.6b02858
– ident: e_1_2_10_49_1
  doi: 10.1016/j.nanoen.2020.105019
– ident: e_1_2_10_66_1
  doi: 10.1039/C5TA09165A
– ident: e_1_2_10_76_1
– ident: e_1_2_10_112_1
  doi: 10.1039/C7EE02564E
– ident: e_1_2_10_106_1
  doi: 10.1021/acs.jpclett.8b01628
– ident: e_1_2_10_68_1
  doi: 10.1016/j.jallcom.2018.02.240
– ident: e_1_2_10_113_1
  doi: 10.1002/aenm.201701305
– ident: e_1_2_10_60_1
  doi: 10.1016/j.jpowsour.2018.04.026
SSID ssj0009606
Score 2.6958668
SecondaryResourceType review_article
Snippet Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2006545
SubjectTerms Energy conversion efficiency
Extreme environments
Materials science
Metal halides
Optoelectronics
perovskite solar cells
Perovskites
Photovoltaic cells
Radiation tolerance
Solar cells
Space applications
space photovoltaic technologies
space solar cells
stability of perovskite under strong radiation
Substrates
Title Perovskite Solar Cells for Space Applications: Progress and Challenges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006545
https://www.ncbi.nlm.nih.gov/pubmed/33861877
https://www.proquest.com/docview/2532145304
https://www.proquest.com/docview/2514596172
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEB_Ekx6en0_rFxEET9HdNElbb8vqIoIifoC3kqaTi0tX7K4H_3oz7bbuKo8Heiyd0DSTSX6TzPwG4Eham1uDOReJQy67Xc1jqSz3cD9zzukEu5QofH2jLx_l1ZN6msnir_kh2gM3soxqvSYDN1l5-kkaavKKN0hU6ZGUZU4BW4SK7j75owieV2R7oeKJlnHD2tgRp_PN53elb1BzHrlWW89gBUzT6Tri5PlkMs5O7PsXPsff_NUq_JniUtarJ9IaLGCxDsszbIUbMLjF19FbSce97J48YtbH4bBkHvaye-96I-vN3IafsVsK_fILKTNFzvpN0ZZyEx4HFw_9Sz4tw8CtjGLFLSZ5rg1hOddxicYwUSpXJvauCCqnMDKZV6kw3vMQCok_PnGRiw1R2Rs_9n9hsRgVuA3MhRq9g2M9KFUyJL4nv6BoIS16J12aPADeqCG1U45yKpUxTGt2ZZHS-KTt-ARw3Mq_1Owc_5Tca7SaTq20TIWiMk0q7MgADtvX3r7o0sQUOJqQjJdICOcFsFXPhvZT3r3X3TiKAhCVTv_Th7R3ft1rn3Z-0mgXlgQF1VQRl3uwOH6d4L5HRePsoJr5Hz9uAMQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CcYAd-LUNAgM8aRInr61jOwm3qlAVtk7VukncIsd5vlClU39w4K_Hz2myFTQhjWMUW3H8_Ozvs5-_B3AsrS2twZKLzCGXvZ7mqVSWe7hfOOd0hj26KDw-16Mr-e27aqIJ6S5MrQ_RbriRZ4T5mhycNqQ7N6qhpgzCQSLcj1QP4RGl9Q6s6uJGQYoAepDbixXPtEwb3cau6GzX316X_gKb29g1LD7DZ1A0za5jTn6crFfFif31h6Ljf_3Xc3i6gaasX4-lF_AAq5ewe0uwcA-GE1zMfy5px5dNiRSzAc5mS-aRL5t69o2sf-tA_BObUPSXn0uZqUo2aPK2LPfhavjlcjDim0wM3MokVdxiVpbaEJxzXZdpjDOlSmVSz0ZQOYWJKbxVhfHkQygkCfnMJS41pGZvfOcfwE41r_A1MBdr9BzHelyqZEyST35O0UJa9DxdmjIC3tghtxuZcsqWMctrgWWRU__kbf9E8LEtf10LdNxZ8rAxa75x1GUuFGVqUnFXRnDUvvYuRucmpsL5msr4EhlBvQhe1cOh_ZRn-LqXJkkEIhj1H23I-5_H_fbpzX0qfYDHo8vxWX729fz0LTwRFGMTAjAPYWe1WOM7D5JWxfvgBr8BWm8E3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NJk3wAPsCwtjmSZN4Mm0d20n2VrVU7ANUDZB4i1z7_EKVItrywF-PL2lCy4QmbY9Rzopz57N_Z59_B_BVWuusQcdF5pHLTkfzVCrLA9wfee91hh26KHx6pk8u5Y8rdbV0i7_ih2g23MgzyvmaHPzG-dYjaahxJW-QKK9HqjV4KXU7pXHd__1IIEX4vGTbixXPtExr2sa2aK22X12W_sCaq9C1XHsG22DqXlcpJ9dH89noyN4_IXT8n996DVsLYMq61Uh6Ay-weAubS3SF72AwxNvJ3ZT2e9k5hcSsh-PxlAXcy85D7I2su3Qc_o0NKfcrzKTMFI716qot0_dwOTi-6J3wRR0GbmWSKm4xc04bAnO-7TONcaaUUyYNsQgqrzAxo2BTYULoIRQSgXzmE58a4rI3Qfc7sF5MCtwD5mONIcKxAZUqGRPhU5hRtJAWQ5QujYuA12bI7YKknGpljPOKXlnkpJ-80U8Eh438TUXP8azkQW3VfOGm01woqtOk4raM4EvzOjgYnZqYAidzkgkSGQG9CHar0dB8KsT3upMmSQSitOlf-pB3-6fd5mn_Xxp9hlfD_iD_9f3s5wfYEJRgU2ZfHsD67HaOHwNCmo0-lU7wAFR3A5c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+Solar+Cells+for+Space+Applications%3A+Progress+and+Challenges&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tu%2C+Yongguang&rft.au=Wu%2C+Jiang&rft.au=Xu%2C+Guoning&rft.au=Yang%2C+Xiaoyu&rft.date=2021-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202006545&rft.externalDBID=10.1002%252Fadma.202006545&rft.externalDocID=ADMA202006545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon