Weakly Humidity‐Dependent Proton‐Conducting COF Membranes

State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the ab...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 52; pp. e2005565 - n/a
Main Authors Cao, Li, Wu, Hong, Cao, Yu, Fan, Chunyang, Zhao, Rui, He, Xueyi, Yang, Pengfei, Shi, Benbing, You, Xinda, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the above challenge. However, fabricating defect‐free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom‐up approach is developed to synthesize intrinsic proton‐conducting COF (IPC‐COF) nanosheets (NUS‐9) in aqueous solutions via diffusion and solvent co‐mediated modulation, enabling a controlled nucleation and in‐plane‐dominated IPC‐COF growth. These nanosheets allow the facile fabrication of IPC‐COF membranes. IPC‐COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity‐dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm−2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism‐dominated proton conduction. A bottom‐up approach based on the diffusion and solvent co‐mediated growth of covalent organic frameworks (COFs) is proposed to synthesize nanosheets of a highly crystalline, intrinsically proton‐conducting COF (IPC‐COF) in aqueous solution. The high‐quality IPC‐COF nanosheets allow the fabrication of defect‐free and robust IPC‐COF membranes that exhibit a weakly humidity‐dependent proton conduction and a prominent fuel‐cell performance.
AbstractList State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the above challenge. However, fabricating defect‐free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom‐up approach is developed to synthesize intrinsic proton‐conducting COF (IPC‐COF) nanosheets (NUS‐9) in aqueous solutions via diffusion and solvent co‐mediated modulation, enabling a controlled nucleation and in‐plane‐dominated IPC‐COF growth. These nanosheets allow the facile fabrication of IPC‐COF membranes. IPC‐COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity‐dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm−2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism‐dominated proton conduction.
State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the above challenge. However, fabricating defect‐free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom‐up approach is developed to synthesize intrinsic proton‐conducting COF (IPC‐COF) nanosheets (NUS‐9) in aqueous solutions via diffusion and solvent co‐mediated modulation, enabling a controlled nucleation and in‐plane‐dominated IPC‐COF growth. These nanosheets allow the facile fabrication of IPC‐COF membranes. IPC‐COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity‐dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm−2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism‐dominated proton conduction. A bottom‐up approach based on the diffusion and solvent co‐mediated growth of covalent organic frameworks (COFs) is proposed to synthesize nanosheets of a highly crystalline, intrinsically proton‐conducting COF (IPC‐COF) in aqueous solution. The high‐quality IPC‐COF nanosheets allow the fabrication of defect‐free and robust IPC‐COF membranes that exhibit a weakly humidity‐dependent proton conduction and a prominent fuel‐cell performance.
State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the above challenge. However, fabricating defect‐free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom‐up approach is developed to synthesize intrinsic proton‐conducting COF (IPC‐COF) nanosheets (NUS‐9) in aqueous solutions via diffusion and solvent co‐mediated modulation, enabling a controlled nucleation and in‐plane‐dominated IPC‐COF growth. These nanosheets allow the facile fabrication of IPC‐COF membranes. IPC‐COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity‐dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm −2 at 35% RH and 80  ° C arising from superior water retention and Grotthuss mechanism‐dominated proton conduction.
State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre-designable and well-defined structures hold promise to cope with the above challenge. However, fabricating defect-free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom-up approach is developed to synthesize intrinsic proton-conducting COF (IPC-COF) nanosheets (NUS-9) in aqueous solutions via diffusion and solvent co-mediated modulation, enabling a controlled nucleation and in-plane-dominated IPC-COF growth. These nanosheets allow the facile fabrication of IPC-COF membranes. IPC-COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity-dependent conductivity over a wide range of humidity (30-98%), 1-2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism-dominated proton conduction.
State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre-designable and well-defined structures hold promise to cope with the above challenge. However, fabricating defect-free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom-up approach is developed to synthesize intrinsic proton-conducting COF (IPC-COF) nanosheets (NUS-9) in aqueous solutions via diffusion and solvent co-mediated modulation, enabling a controlled nucleation and in-plane-dominated IPC-COF growth. These nanosheets allow the facile fabrication of IPC-COF membranes. IPC-COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity-dependent conductivity over a wide range of humidity (30-98%), 1-2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm-2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism-dominated proton conduction.State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre-designable and well-defined structures hold promise to cope with the above challenge. However, fabricating defect-free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom-up approach is developed to synthesize intrinsic proton-conducting COF (IPC-COF) nanosheets (NUS-9) in aqueous solutions via diffusion and solvent co-mediated modulation, enabling a controlled nucleation and in-plane-dominated IPC-COF growth. These nanosheets allow the facile fabrication of IPC-COF membranes. IPC-COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity-dependent conductivity over a wide range of humidity (30-98%), 1-2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm-2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism-dominated proton conduction.
Author You, Xinda
He, Xueyi
Yang, Pengfei
Jiang, Zhongyi
Cao, Yu
Shi, Benbing
Cao, Li
Wu, Hong
Zhao, Rui
Fan, Chunyang
Author_xml – sequence: 1
  givenname: Li
  surname: Cao
  fullname: Cao, Li
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 2
  givenname: Hong
  surname: Wu
  fullname: Wu, Hong
  email: wuhong@tju.edu.cn
  organization: Tianjin University
– sequence: 3
  givenname: Yu
  surname: Cao
  fullname: Cao, Yu
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 4
  givenname: Chunyang
  surname: Fan
  fullname: Fan, Chunyang
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 5
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 6
  givenname: Xueyi
  surname: He
  fullname: He, Xueyi
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 7
  givenname: Pengfei
  surname: Yang
  fullname: Yang, Pengfei
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 8
  givenname: Benbing
  surname: Shi
  fullname: Shi, Benbing
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 9
  givenname: Xinda
  surname: You
  fullname: You, Xinda
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 10
  givenname: Zhongyi
  orcidid: 0000-0001-5311-4253
  surname: Jiang
  fullname: Jiang, Zhongyi
  email: zhyjiang@tju.edu.cn
  organization: International Campus of Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33179394$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKxDAUhoMoOo5uXcqAGzcdT5qkbRYuhvEKii4UlyVJz0i0TcakRWbnI_iMPomV8QKCuDpw-L5z-TfJqvMOCdmhMKYA6YGqGjVOIQUQIhMrZEBFShMOUqySAUgmEpnxYoNsxvgAADKDbJ1sMEZzySQfkMM7VI_1YnTWNbay7eLt5fUI5-gqdO3oOvjWu7419a7qTGvd_Wh6dTK6xEYH5TBukbWZqiNuf9YhuT05vpmeJRdXp-fTyUVieF6IRGhj0BQqq4QyTCMIw4XGiknDMKUmnRVKSpMjp0WeV1ojM1IDh0KDRp6xIdlfzp0H_9RhbMvGRoN13R_hu1imPAMoUiFoj-79Qh98F1x_XU_lDCjI_vUh2f2kOt1gVc6DbVRYlF_B9MB4CZjgYww4-0YolB_Jlx_Jl9_J9wL_JRjbqtZ61wZl6781udSebY2Lf5aUk6PLyY_7DgssmO4
CitedBy_id crossref_primary_10_1002_adma_202414659
crossref_primary_10_1016_j_jechem_2023_04_002
crossref_primary_10_1021_acssuschemeng_2c07568
crossref_primary_10_1007_s12274_022_4073_4
crossref_primary_10_1002_adma_202208640
crossref_primary_10_1016_j_memsci_2021_120186
crossref_primary_10_1002_ange_202209306
crossref_primary_10_1016_j_ensm_2024_103293
crossref_primary_10_1016_j_jpowsour_2022_231143
crossref_primary_10_1007_s10853_024_09849_1
crossref_primary_10_1016_j_snb_2023_134917
crossref_primary_10_1016_j_jece_2022_107300
crossref_primary_10_1016_j_seppur_2024_126881
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1016_j_snb_2024_137224
crossref_primary_10_1021_acsapm_3c01460
crossref_primary_10_1039_D1TA10210A
crossref_primary_10_1002_cjoc_202100831
crossref_primary_10_1016_j_memsci_2021_119404
crossref_primary_10_1007_s40242_022_1434_1
crossref_primary_10_1016_j_ssi_2022_115969
crossref_primary_10_1016_j_desal_2024_118351
crossref_primary_10_1016_j_memsci_2024_123606
crossref_primary_10_1002_adfm_202300386
crossref_primary_10_1016_j_memsci_2022_120451
crossref_primary_10_1016_j_memsci_2024_122755
crossref_primary_10_1039_D5EE00494B
crossref_primary_10_1007_s12274_022_5149_x
crossref_primary_10_1016_j_memsci_2024_122760
crossref_primary_10_1021_acsmaterialslett_4c01672
crossref_primary_10_1002_adma_202211004
crossref_primary_10_1039_D1TA10516G
crossref_primary_10_3390_inorganics11070283
crossref_primary_10_1016_j_desal_2022_115753
crossref_primary_10_1021_acsnano_2c04767
crossref_primary_10_3390_en15093405
crossref_primary_10_1002_ange_202214449
crossref_primary_10_1016_j_ijhydene_2024_10_199
crossref_primary_10_1002_cssc_202201298
crossref_primary_10_1038_s41467_023_41555_5
crossref_primary_10_1002_adfm_202300138
crossref_primary_10_1002_adma_202203605
crossref_primary_10_1021_acs_chemmater_4c01351
crossref_primary_10_1016_j_memsci_2023_122103
crossref_primary_10_1039_D1NJ06090B
crossref_primary_10_1021_acsaem_1c03721
crossref_primary_10_1002_adma_202208625
crossref_primary_10_1039_D1CS00889G
crossref_primary_10_1016_j_dyepig_2022_110464
crossref_primary_10_1016_j_memsci_2025_123914
crossref_primary_10_1021_acsami_1c01134
crossref_primary_10_1002_anie_202112271
crossref_primary_10_1038_s41893_024_01364_0
crossref_primary_10_1002_ange_202501472
crossref_primary_10_1039_D3TA04377K
crossref_primary_10_1016_j_polymer_2024_127504
crossref_primary_10_1016_j_memsci_2022_120431
crossref_primary_10_1126_science_abm6304
crossref_primary_10_1002_anie_202408296
crossref_primary_10_1016_j_memsci_2024_123621
crossref_primary_10_3390_molecules30051004
crossref_primary_10_1016_j_memsci_2023_122120
crossref_primary_10_1002_advs_202305149
crossref_primary_10_1016_j_memsci_2023_122123
crossref_primary_10_1021_acs_nanolett_1c00163
crossref_primary_10_1016_j_desal_2022_115976
crossref_primary_10_1021_acs_langmuir_3c01205
crossref_primary_10_1039_D3CC04368A
crossref_primary_10_1021_jacs_2c00584
crossref_primary_10_1002_anie_202501472
crossref_primary_10_1039_D2TA08802A
crossref_primary_10_1002_app_56666
crossref_primary_10_1002_anie_202216675
crossref_primary_10_1021_acsnano_2c07813
crossref_primary_10_1039_D3RA07094H
crossref_primary_10_1016_j_chroma_2023_464020
crossref_primary_10_1016_j_progpolymsci_2021_101450
crossref_primary_10_1021_acsanm_5c00840
crossref_primary_10_1016_j_desal_2024_118025
crossref_primary_10_1002_smll_202303131
crossref_primary_10_1002_anie_202411535
crossref_primary_10_1016_j_memsci_2022_121118
crossref_primary_10_1021_acs_nanolett_4c01228
crossref_primary_10_1016_j_advmem_2022_100028
crossref_primary_10_1021_acs_analchem_4c02369
crossref_primary_10_1038_s41467_024_53625_3
crossref_primary_10_1002_anie_202416550
crossref_primary_10_1021_acsami_1c09157
crossref_primary_10_1002_anie_202419946
crossref_primary_10_1021_acs_chemmater_3c02421
crossref_primary_10_1002_smll_202308499
crossref_primary_10_1016_j_memsci_2022_120818
crossref_primary_10_1016_j_apsusc_2022_155496
crossref_primary_10_1016_j_memsci_2023_121767
crossref_primary_10_1021_acsanm_2c04941
crossref_primary_10_1002_smll_202403300
crossref_primary_10_1002_anie_202315456
crossref_primary_10_1016_j_memsci_2024_123402
crossref_primary_10_1016_j_memsci_2025_123942
crossref_primary_10_1021_acs_langmuir_2c01273
crossref_primary_10_1007_s10118_023_3061_9
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_1021_acsami_3c12106
crossref_primary_10_1039_D4EE03104K
crossref_primary_10_1016_j_seppur_2023_123463
crossref_primary_10_1002_adfm_202312203
crossref_primary_10_1002_smll_202304575
crossref_primary_10_1016_j_seppur_2024_129669
crossref_primary_10_1021_jacs_4c07091
crossref_primary_10_1002_ange_202416550
crossref_primary_10_1016_j_apsusc_2023_158357
crossref_primary_10_1016_j_jmrt_2022_12_118
crossref_primary_10_1016_j_desal_2024_118046
crossref_primary_10_1021_acs_jpclett_3c02069
crossref_primary_10_1021_acsmaterialslett_2c00432
crossref_primary_10_1002_ange_202419946
crossref_primary_10_1016_j_seppur_2025_132671
crossref_primary_10_1002_adfm_202409359
crossref_primary_10_1002_adfm_202213642
crossref_primary_10_1002_adfm_202308620
crossref_primary_10_1016_j_memsci_2023_121610
crossref_primary_10_1002_smll_202310566
crossref_primary_10_1016_j_micromeso_2021_111348
crossref_primary_10_1021_prechem_4c00102
crossref_primary_10_1039_D3TA01907A
crossref_primary_10_1002_ange_202411535
crossref_primary_10_1002_adma_202108457
crossref_primary_10_1021_jacs_3c11709
crossref_primary_10_1002_slct_202405242
crossref_primary_10_1039_D2SC02100E
crossref_primary_10_1021_acssuschemeng_2c02722
crossref_primary_10_1016_j_ccr_2024_215910
crossref_primary_10_1021_acsami_1c15748
crossref_primary_10_1016_j_cej_2023_145310
crossref_primary_10_1016_j_matt_2024_01_028
crossref_primary_10_1021_acs_iecr_3c02384
crossref_primary_10_1016_j_ccr_2021_213873
crossref_primary_10_1021_acssuschemeng_2c01071
crossref_primary_10_1016_j_memsci_2023_121863
crossref_primary_10_1002_advs_202417259
crossref_primary_10_1016_j_memsci_2022_120361
crossref_primary_10_1021_acsaem_1c02200
crossref_primary_10_1016_j_ijhydene_2022_06_255
crossref_primary_10_1016_j_jpowsour_2023_232906
crossref_primary_10_1021_jacsau_2c00214
crossref_primary_10_1002_advs_202103814
crossref_primary_10_1038_s41467_022_28643_8
crossref_primary_10_1016_j_eehl_2023_07_001
crossref_primary_10_1002_ange_202418435
crossref_primary_10_1039_D2SM00451H
crossref_primary_10_1016_j_cej_2024_150971
crossref_primary_10_1016_j_ijhydene_2024_02_343
crossref_primary_10_1016_j_memsci_2023_122402
crossref_primary_10_1016_j_memsci_2025_123863
crossref_primary_10_1016_j_memsci_2022_121041
crossref_primary_10_1007_s11426_022_1379_y
crossref_primary_10_1039_D4TA04614E
crossref_primary_10_1038_s41467_022_33868_8
crossref_primary_10_1016_j_ijhydene_2024_10_229
crossref_primary_10_1016_j_jpowsour_2022_231542
crossref_primary_10_1016_j_memsci_2023_122091
crossref_primary_10_1016_j_nanoen_2023_108799
crossref_primary_10_1002_ange_202305985
crossref_primary_10_1002_ange_202302355
crossref_primary_10_1016_j_memsci_2021_119800
crossref_primary_10_1016_j_jhazmat_2022_128705
crossref_primary_10_1021_jacs_4c01113
crossref_primary_10_1016_j_apsusc_2022_154363
crossref_primary_10_1021_jacs_4c07699
crossref_primary_10_1002_aenm_202102300
crossref_primary_10_1007_s12274_021_3925_7
crossref_primary_10_1016_j_memsci_2022_121147
crossref_primary_10_1016_j_memsci_2022_121268
crossref_primary_10_1002_anie_202104106
crossref_primary_10_1016_j_desal_2023_116824
crossref_primary_10_1016_j_jcis_2021_04_130
crossref_primary_10_1021_jacs_2c12186
crossref_primary_10_1021_acs_macromol_1c02053
crossref_primary_10_1002_adma_202101312
crossref_primary_10_1002_aic_17731
crossref_primary_10_1002_anie_202102965
crossref_primary_10_1002_adma_202409202
crossref_primary_10_1002_smll_202302060
crossref_primary_10_1016_j_memsci_2021_119818
crossref_primary_10_1021_acsmaterialslett_2c00236
crossref_primary_10_1016_j_saa_2024_124357
crossref_primary_10_1002_ange_202408296
crossref_primary_10_1016_j_cej_2024_151368
crossref_primary_10_1002_adma_202413949
crossref_primary_10_1002_sstr_202100061
crossref_primary_10_1016_j_memsci_2024_123479
crossref_primary_10_1002_adma_202204894
crossref_primary_10_1002_ange_202315456
crossref_primary_10_1002_smll_202401172
crossref_primary_10_1016_j_memsci_2023_121780
crossref_primary_10_1002_adfm_202314935
crossref_primary_10_1016_j_cej_2022_141008
crossref_primary_10_1016_j_memsci_2024_123363
crossref_primary_10_1016_j_memsci_2024_123483
crossref_primary_10_1016_j_ensm_2024_103427
crossref_primary_10_1021_acsnano_2c08614
crossref_primary_10_1039_D2TA06228C
crossref_primary_10_1002_marc_202200678
crossref_primary_10_1021_jacs_3c08220
crossref_primary_10_1002_aic_17964
crossref_primary_10_1016_j_desal_2025_118797
crossref_primary_10_1016_j_xcrp_2023_101477
crossref_primary_10_1016_j_memsci_2023_121424
crossref_primary_10_1007_s11426_022_1391_0
crossref_primary_10_1002_admt_202001171
crossref_primary_10_1021_acsmaterialslett_4c01140
crossref_primary_10_1021_acs_chemmater_1c00699
crossref_primary_10_3390_en17122954
crossref_primary_10_1016_j_snb_2023_134867
crossref_primary_10_1016_j_jchromb_2025_124461
crossref_primary_10_1016_j_ijhydene_2021_05_119
crossref_primary_10_1021_acs_cgd_3c01102
crossref_primary_10_1002_ange_202112271
crossref_primary_10_1002_smll_202401635
crossref_primary_10_1016_j_ccr_2024_215748
crossref_primary_10_1021_jacs_3c07958
crossref_primary_10_1002_ange_202313571
crossref_primary_10_1007_s40242_022_1448_8
crossref_primary_10_3390_molecules29153508
crossref_primary_10_1002_ange_202216675
crossref_primary_10_1021_acsanm_2c03205
crossref_primary_10_1007_s40820_022_00968_5
crossref_primary_10_1016_j_electacta_2023_142080
crossref_primary_10_1021_acsapm_1c00934
crossref_primary_10_1002_smll_202300023
crossref_primary_10_1016_j_watres_2024_123073
crossref_primary_10_1126_sciadv_adp1450
crossref_primary_10_1002_chem_202302201
crossref_primary_10_1039_D1CC03219D
crossref_primary_10_1039_D1MA00008J
crossref_primary_10_1002_cssc_202202279
crossref_primary_10_1021_accountsmr_1c00083
crossref_primary_10_1021_acscentsci_3c00146
crossref_primary_10_1002_adfm_202414081
crossref_primary_10_1016_j_nanoen_2024_109959
crossref_primary_10_1016_j_memsci_2024_123491
crossref_primary_10_1002_anie_202305985
crossref_primary_10_1039_D1TA10431D
crossref_primary_10_1002_ange_202113141
crossref_primary_10_1002_anie_202302355
crossref_primary_10_1016_j_apmt_2023_101866
crossref_primary_10_1007_s40843_023_2685_5
crossref_primary_10_1002_advs_202104643
crossref_primary_10_1002_adfm_202106507
crossref_primary_10_1039_D0CS01347A
crossref_primary_10_3390_molecules27134110
crossref_primary_10_1002_ejic_202400435
crossref_primary_10_1002_smll_202303757
crossref_primary_10_1038_s41467_023_43829_4
crossref_primary_10_1002_anie_202214449
crossref_primary_10_1016_j_jpowsour_2022_232332
crossref_primary_10_1002_anie_202313571
crossref_primary_10_1016_j_cej_2021_133024
crossref_primary_10_1016_j_isci_2021_102369
crossref_primary_10_1021_acssuschemeng_3c04167
crossref_primary_10_1002_ange_202104106
crossref_primary_10_1039_D3CS01163A
crossref_primary_10_1039_D3NR05196J
crossref_primary_10_1016_j_seppur_2024_127755
crossref_primary_10_1002_ange_202102965
crossref_primary_10_1038_s41893_022_00870_3
crossref_primary_10_1002_anie_202113141
crossref_primary_10_1002_anie_202418435
crossref_primary_10_1039_D2EE02449G
crossref_primary_10_1016_j_cherd_2022_02_003
crossref_primary_10_1016_j_memsci_2023_121349
crossref_primary_10_1002_anie_202209306
crossref_primary_10_1021_jacs_3c10691
crossref_primary_10_1016_j_memsci_2023_122321
crossref_primary_10_1016_j_seppur_2025_131857
crossref_primary_10_1016_j_ijhydene_2021_10_074
crossref_primary_10_1039_D3QM00803G
crossref_primary_10_1021_jacs_2c00429
crossref_primary_10_1039_D3CS00782K
crossref_primary_10_1021_jacs_2c04223
Cites_doi 10.1039/C9EE03301G
10.1126/science.aat7679
10.1038/nature17634
10.1038/nnano.2010.13
10.1002/anie.201804753
10.1002/adma.201802733
10.1002/anie.198202082
10.1021/cr020711a
10.1016/0009-2614(95)00905-J
10.1021/acs.macromol.8b02013
10.1021/acsami.6b06189
10.1021/cr5002589
10.1021/ma400889t
10.1039/C5TA07998E
10.1016/j.eurpolymj.2009.12.012
10.1002/adma.201605898
10.1038/natrevmats.2016.68
10.1016/j.ijhydene.2011.06.139
10.1021/cr200035s
10.1016/j.ijhydene.2015.02.078
10.1126/sciadv.aao0476
10.1021/ja502212v
10.1021/acs.chemrev.6b00159
10.1002/anie.201913802
10.1021/acs.chemmater.5b04947
10.1002/adfm.201001793
10.1126/science.1120411
10.1021/jacs.7b05182
10.1038/525447a
10.1039/C1EE02556B
10.1038/nmat4611
10.1021/jacs.0c06474
10.1039/c2ee21992a
10.1038/nenergy.2016.120
10.1038/s41467-020-15918-1
10.1021/cr020715f
10.1038/s41565-020-0673-x
10.1038/s41467-018-04733-4
10.1021/ja500330a
10.1038/s41563-018-0097-2
10.1016/j.memsci.2016.01.023
10.1126/science.aam8743
10.1038/s41467-019-08622-2
10.1002/anie.201703916
10.1002/adma.201001164
10.1021/acs.chemrev.6b00586
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202005565
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33179394
10_1002_adma_202005565
ADMA202005565
Genre article
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2016YFB0600503; 2017YFB0603400
– fundername: National Natural Science Foundation of China
  funderid: 21621004; 21878215; 21576189; 21490583
– fundername: Natural Science Foundation of Tianjin
  funderid: 18JCZDJC36900
– fundername: National Science Fund for Distinguished Young Scholars
  funderid: 21125627
– fundername: National Natural Science Foundation of China
  grantid: 21878215
– fundername: National Key R&D Program of China
  grantid: 2017YFB0603400
– fundername: National Key R&D Program of China
  grantid: 2016YFB0600503
– fundername: Natural Science Foundation of Tianjin
  grantid: 18JCZDJC36900
– fundername: National Natural Science Foundation of China
  grantid: 21621004
– fundername: National Science Fund for Distinguished Young Scholars
  grantid: 21125627
– fundername: National Natural Science Foundation of China
  grantid: 21576189
– fundername: National Natural Science Foundation of China
  grantid: 21490583
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4785-5bccec8a6d5ac3be05c45bed39c3e21c2f8a99c7e41877dbbe3c9b0408b0be463
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 01:31:01 EDT 2025
Mon Jul 14 10:28:13 EDT 2025
Thu Apr 03 06:57:16 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Tue Jul 01 02:32:55 EDT 2025
Wed Jan 22 16:59:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords humidity dependence
nanochannels, proton conduction
bottom-up synthesis
covalent organic framework
ion membranes
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4785-5bccec8a6d5ac3be05c45bed39c3e21c2f8a99c7e41877dbbe3c9b0408b0be463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5311-4253
PMID 33179394
PQID 2473010979
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2460082551
proquest_journals_2473010979
pubmed_primary_33179394
crossref_primary_10_1002_adma_202005565
crossref_citationtrail_10_1002_adma_202005565
wiley_primary_10_1002_adma_202005565_ADMA202005565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2004; 104
2017; 3
2015; 3
2019; 52
2016; 504
2005; 310
2020; 142
2013; 46
2019; 10
2020; 15
2020; 59
2020; 13
2017; 29
2015; 525
2020; 11
2012; 37
2017; 356
2016; 15
2014; 114
2014; 136
2017; 117
2017; 139
2010; 22
2018; 9
2018; 17
2016; 1
2012; 112
2010; 46
2015; 40
1982; 21
2017; 56
2011; 21
2018; 30
1995; 244
2016; 532
2016; 28
2010; 5
2012; 5
2016; 8
2018; 57
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 21
  start-page: 971
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 6570
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 40
  year: 2015
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 532
  start-page: 480
  year: 2016
  publication-title: Nature
– volume: 15
  start-page: 348
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 104
  start-page: 4587
  year: 2004
  publication-title: Chem. Rev.
– volume: 5
  start-page: 5346
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 59
  start-page: 3678
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 4667
  year: 2010
  publication-title: Adv. Mater.
– volume: 21
  start-page: 208
  year: 1982
  publication-title: Angew. Chem., Int. Ed.
– volume: 244
  start-page: 456
  year: 1995
  publication-title: Chem. Phys. Lett.
– volume: 56
  start-page: 9058
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 525
  start-page: 447
  year: 2015
  publication-title: Nature
– volume: 13
  start-page: 297
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 361
  start-page: 48
  year: 2018
  publication-title: Science
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 11
  start-page: 1981
  year: 2020
  publication-title: Nat. Commun.
– volume: 356
  start-page: 430
  year: 2017
  publication-title: Science
– volume: 9
  start-page: 2297
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 230
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 104
  start-page: 4637
  year: 2004
  publication-title: Chem. Rev.
– volume: 28
  start-page: 1489
  year: 2016
  publication-title: Chem. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 722
  year: 2016
  publication-title: Nat. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 10
  start-page: 842
  year: 2019
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 117
  start-page: 4759
  year: 2017
  publication-title: Chem. Rev.
– volume: 46
  start-page: 7797
  year: 2013
  publication-title: Macromolecules
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 504
  start-page: 206
  year: 2016
  publication-title: J. Membr. Sci.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 52
  start-page: 857
  year: 2019
  publication-title: Macromolecules
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 136
  start-page: 4369
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 2780
  year: 2012
  publication-title: Chem. Rev.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 450
  year: 2010
  publication-title: Eur. Polym. J.
– volume: 37
  start-page: 6132
  year: 2012
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 9795
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 725
  year: 2018
  publication-title: Nat. Mater.
– volume: 117
  start-page: 987
  year: 2017
  publication-title: Chem. Rev.
– ident: e_1_2_5_4_1
  doi: 10.1039/C9EE03301G
– ident: e_1_2_5_22_1
  doi: 10.1126/science.aat7679
– ident: e_1_2_5_2_1
  doi: 10.1038/nature17634
– ident: e_1_2_5_15_1
  doi: 10.1038/nnano.2010.13
– ident: e_1_2_5_26_1
  doi: 10.1002/anie.201804753
– ident: e_1_2_5_34_1
  doi: 10.1002/adma.201802733
– ident: e_1_2_5_45_1
  doi: 10.1002/anie.198202082
– ident: e_1_2_5_35_1
  doi: 10.1021/cr020711a
– ident: e_1_2_5_46_1
  doi: 10.1016/0009-2614(95)00905-J
– ident: e_1_2_5_38_1
  doi: 10.1021/acs.macromol.8b02013
– ident: e_1_2_5_31_1
  doi: 10.1021/acsami.6b06189
– ident: e_1_2_5_19_1
  doi: 10.1021/cr5002589
– ident: e_1_2_5_41_1
  doi: 10.1021/ma400889t
– ident: e_1_2_5_18_1
  doi: 10.1039/C5TA07998E
– ident: e_1_2_5_44_1
  doi: 10.1016/j.eurpolymj.2009.12.012
– ident: e_1_2_5_33_1
  doi: 10.1002/adma.201605898
– ident: e_1_2_5_23_1
  doi: 10.1038/natrevmats.2016.68
– ident: e_1_2_5_40_1
  doi: 10.1016/j.ijhydene.2011.06.139
– ident: e_1_2_5_7_1
  doi: 10.1021/cr200035s
– ident: e_1_2_5_14_1
  doi: 10.1016/j.ijhydene.2015.02.078
– ident: e_1_2_5_9_1
  doi: 10.1126/sciadv.aao0476
– ident: e_1_2_5_25_1
  doi: 10.1021/ja502212v
– ident: e_1_2_5_6_1
  doi: 10.1021/acs.chemrev.6b00159
– ident: e_1_2_5_27_1
  doi: 10.1002/anie.201913802
– ident: e_1_2_5_32_1
  doi: 10.1021/acs.chemmater.5b04947
– ident: e_1_2_5_13_1
  doi: 10.1002/adfm.201001793
– ident: e_1_2_5_21_1
  doi: 10.1126/science.1120411
– ident: e_1_2_5_28_1
  doi: 10.1021/jacs.7b05182
– ident: e_1_2_5_1_1
  doi: 10.1038/525447a
– ident: e_1_2_5_39_1
  doi: 10.1039/C1EE02556B
– ident: e_1_2_5_24_1
  doi: 10.1038/nmat4611
– ident: e_1_2_5_30_1
  doi: 10.1021/jacs.0c06474
– ident: e_1_2_5_42_1
  doi: 10.1039/c2ee21992a
– ident: e_1_2_5_3_1
  doi: 10.1038/nenergy.2016.120
– ident: e_1_2_5_29_1
  doi: 10.1038/s41467-020-15918-1
– ident: e_1_2_5_8_1
  doi: 10.1021/cr020715f
– ident: e_1_2_5_17_1
  doi: 10.1038/s41565-020-0673-x
– ident: e_1_2_5_10_1
  doi: 10.1038/s41467-018-04733-4
– ident: e_1_2_5_20_1
  doi: 10.1021/ja500330a
– ident: e_1_2_5_5_1
  doi: 10.1038/s41563-018-0097-2
– ident: e_1_2_5_12_1
  doi: 10.1016/j.memsci.2016.01.023
– ident: e_1_2_5_16_1
  doi: 10.1126/science.aam8743
– ident: e_1_2_5_37_1
  doi: 10.1038/s41467-019-08622-2
– ident: e_1_2_5_43_1
  doi: 10.1002/anie.201703916
– ident: e_1_2_5_36_1
  doi: 10.1002/adma.201001164
– ident: e_1_2_5_11_1
  doi: 10.1021/acs.chemrev.6b00586
SSID ssj0009606
Score 2.6931708
Snippet State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient...
State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2005565
SubjectTerms Aqueous solutions
bottom‐up synthesis
covalent organic framework
Fuel cells
Humidity
humidity dependence
ion membranes
Materials science
Membranes
Nanochannels
nanochannels, proton conduction
Nanostructure
Nucleation
Proton conduction
Relative humidity
Title Weakly Humidity‐Dependent Proton‐Conducting COF Membranes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202005565
https://www.ncbi.nlm.nih.gov/pubmed/33179394
https://www.proquest.com/docview/2473010979
https://www.proquest.com/docview/2460082551
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P6qrVBA8VdsmaZODh2XXZRFWRRS9lSRNQdRd2cdBT_4Ef6O_xEnbrbuKCHrrY0Knk3l8SdMvAPtUs9SPFPGwfHOPBlngiYhLT5MwUxlWBJpz6XXOovY1Pb1ltxN_8Rf8ENWEm42MPF_bAJdqcPRJGirTnDfIzoogKMEkbBdsWVR0-ckfZeF5TrZHGKpA-Zi10Q-PpptPV6VvUHMauealp7UIcqx0seLk_nA0VIf65Quf43_eagkWSlzq1gtHWoYZ012B-Qm2wlU4vjHy_uHZRQ-4SxG8v7--NcstdIfuRb-HKBIvNXpdSyGLLdzGecvtmEdUB_PpGly3Tq4aba_cfcHTNObMY0pro7mMUiY1UcZnmjJlUiI0MWGgw4xLIXRsaMDjOFXKEC0U5gSufGVoRNZhttvrmk1wTaAQBXETsDRDwJaKkGdSRyo2GY6QY-KAN7Z-oktqcrtDxkNSkCqHiTVLUpnFgYNK_qkg5fhRsjbuzKQMzkESUpvWfBELB_aq2xhW9lsJWqQ3sjJRPnpmgQMbhRNUjyLEZjVBHQjzrvxFh6Te7NSrs62_NNqGOXtcLKOpweywPzI7CIaGajd3-A8d3gCz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2idEFZtIUWCOWRSlRdBRI_EnvBYjTDaCgMoApUdiF2HAkBMxXMCMGKT-iv9Ff4BL6E67xgQFWlSiy6jGMntu_r-MY5Blhhmqd-qKiH4Vt4LMgCT4Yi8TQlmcowIrCcS6-7E3YO2LdDfjgGv6t_YQp-iDrhZi0j99fWwG1Ceu2BNTRJc-IgmxZBVFLuq9wyV5e4artY32yhiL8Q0t7Yb3a88mABT7NIcI8rrY0WSZjyRFNlfK4ZVyalUlNDAk0ykUipI8MCEUWpUoZqqVDdhfKVYSHF576C1_YYcUvX3_r-wFhlFwQ5vR_lOGgmKp5In6yN9nc0Dj4Dt6NYOQ927XdwW01TscflZHU4UKv6-gmD5H81j-_hbQm93UZhK1MwZnrTMPmIkPEDrP8wycnplYtKfpzi-uTu5lerPCV44O6d9xEoY1Gz37MsudjCbe623a45w_FjyPgIBy_S_xkY7_V7Zg5cEygEesIEPM0Qk6aSiCzRoYpMRqmIqANeJe5Yl-zr9hCQ07jgjSaxFUNci8GBr3X9nwXvyB9rLlTaE5f-5yImzHpuX0bSgc_1bfQc9nMQzkh_aOuEeYKABw7MFlpXv4pS67glc4DkuvOXPsSNVrdRX83_S6NlmOjsd7fj7c2drU_wxpYXu4YWYHxwPjSLiP0Gaim3NheOXlot7wFJFWHj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bTtRAGP4DmBi8AA-oBcSaSLwqtHNoZy642GzdgLhIiETuSufQxIC7BHZD4MpH8FF4FV7BJ_GfnmA1xsSECy47nWln5j99M51-P8BbprkJY0UDDN8iYFERBTIWeaApKVSBEYGVXHr9nXhzn3044AdTcNX8C1PxQ7Qbbs4ySn_tDPzEFOs3pKG5KXmD3K4IgpL6WOW2vTjHRdvZxlaKEl4lpPf-c3czqPMKBJolggdcaW21yGPDc02VDblmXFlDpaaWRJoUIpdSJ5ZFIkmMUpZqqVDbhQqVZTHF507DAxaH0iWLSPduCKvceqBk96Mcx8xEQxMZkvXJ_k6GwT-w7SRULmNdbx6um1mqjrgcrY1Hak1f_kYgeZ-m8THM1cDb71SW8gSm7OApPLpFx_gMNr7Y_Oj4wkcV_2pwdfLz-4-0zhE88ndPhwiTsag7HDiOXGzhdz_1_L79hsPHgLEA-3fS_-cwMxgO7EvwbaQQ5gkbcVMgIjWSiCLXsUpsQalIqAdBI-1M19zrLgXIcVaxRpPMiSFrxeDBu7b-ScU68teay43yZLX3OcsIc347lIn04E17G_2G-xiEMzIcuzpxuT3AIw9eVErXvopS57Yl84CUqvOPPmSdtN9prxb_p9FreLib9rKPWzvbSzDriqsjQ8swMzod21cI_EZqpbQ1Hw7vWit_AavEYJI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+Humidity%E2%80%90Dependent+Proton%E2%80%90Conducting+COF+Membranes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cao%2C+Li&rft.au=Wu%2C+Hong&rft.au=Cao%2C+Yu&rft.au=Fan%2C+Chunyang&rft.date=2020-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=52&rft_id=info:doi/10.1002%2Fadma.202005565&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon