Weakly Humidity‐Dependent Proton‐Conducting COF Membranes
State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the ab...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 52; pp. e2005565 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the above challenge. However, fabricating defect‐free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom‐up approach is developed to synthesize intrinsic proton‐conducting COF (IPC‐COF) nanosheets (NUS‐9) in aqueous solutions via diffusion and solvent co‐mediated modulation, enabling a controlled nucleation and in‐plane‐dominated IPC‐COF growth. These nanosheets allow the facile fabrication of IPC‐COF membranes. IPC‐COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity‐dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm−2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism‐dominated proton conduction.
A bottom‐up approach based on the diffusion and solvent co‐mediated growth of covalent organic frameworks (COFs) is proposed to synthesize nanosheets of a highly crystalline, intrinsically proton‐conducting COF (IPC‐COF) in aqueous solution. The high‐quality IPC‐COF nanosheets allow the fabrication of defect‐free and robust IPC‐COF membranes that exhibit a weakly humidity‐dependent proton conduction and a prominent fuel‐cell performance. |
---|---|
AbstractList | State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the above challenge. However, fabricating defect‐free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom‐up approach is developed to synthesize intrinsic proton‐conducting COF (IPC‐COF) nanosheets (NUS‐9) in aqueous solutions via diffusion and solvent co‐mediated modulation, enabling a controlled nucleation and in‐plane‐dominated IPC‐COF growth. These nanosheets allow the facile fabrication of IPC‐COF membranes. IPC‐COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity‐dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm−2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism‐dominated proton conduction. State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the above challenge. However, fabricating defect‐free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom‐up approach is developed to synthesize intrinsic proton‐conducting COF (IPC‐COF) nanosheets (NUS‐9) in aqueous solutions via diffusion and solvent co‐mediated modulation, enabling a controlled nucleation and in‐plane‐dominated IPC‐COF growth. These nanosheets allow the facile fabrication of IPC‐COF membranes. IPC‐COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity‐dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm−2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism‐dominated proton conduction. A bottom‐up approach based on the diffusion and solvent co‐mediated growth of covalent organic frameworks (COFs) is proposed to synthesize nanosheets of a highly crystalline, intrinsically proton‐conducting COF (IPC‐COF) in aqueous solution. The high‐quality IPC‐COF nanosheets allow the fabrication of defect‐free and robust IPC‐COF membranes that exhibit a weakly humidity‐dependent proton conduction and a prominent fuel‐cell performance. State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre‐designable and well‐defined structures hold promise to cope with the above challenge. However, fabricating defect‐free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom‐up approach is developed to synthesize intrinsic proton‐conducting COF (IPC‐COF) nanosheets (NUS‐9) in aqueous solutions via diffusion and solvent co‐mediated modulation, enabling a controlled nucleation and in‐plane‐dominated IPC‐COF growth. These nanosheets allow the facile fabrication of IPC‐COF membranes. IPC‐COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity‐dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm −2 at 35% RH and 80 ° C arising from superior water retention and Grotthuss mechanism‐dominated proton conduction. State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre-designable and well-defined structures hold promise to cope with the above challenge. However, fabricating defect-free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom-up approach is developed to synthesize intrinsic proton-conducting COF (IPC-COF) nanosheets (NUS-9) in aqueous solutions via diffusion and solvent co-mediated modulation, enabling a controlled nucleation and in-plane-dominated IPC-COF growth. These nanosheets allow the facile fabrication of IPC-COF membranes. IPC-COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity-dependent conductivity over a wide range of humidity (30-98%), 1-2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism-dominated proton conduction. State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre-designable and well-defined structures hold promise to cope with the above challenge. However, fabricating defect-free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom-up approach is developed to synthesize intrinsic proton-conducting COF (IPC-COF) nanosheets (NUS-9) in aqueous solutions via diffusion and solvent co-mediated modulation, enabling a controlled nucleation and in-plane-dominated IPC-COF growth. These nanosheets allow the facile fabrication of IPC-COF membranes. IPC-COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity-dependent conductivity over a wide range of humidity (30-98%), 1-2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm-2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism-dominated proton conduction.State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre-designable and well-defined structures hold promise to cope with the above challenge. However, fabricating defect-free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom-up approach is developed to synthesize intrinsic proton-conducting COF (IPC-COF) nanosheets (NUS-9) in aqueous solutions via diffusion and solvent co-mediated modulation, enabling a controlled nucleation and in-plane-dominated IPC-COF growth. These nanosheets allow the facile fabrication of IPC-COF membranes. IPC-COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity-dependent conductivity over a wide range of humidity (30-98%), 1-2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm-2 at 35% RH and 80 °C arising from superior water retention and Grotthuss mechanism-dominated proton conduction. |
Author | You, Xinda He, Xueyi Yang, Pengfei Jiang, Zhongyi Cao, Yu Shi, Benbing Cao, Li Wu, Hong Zhao, Rui Fan, Chunyang |
Author_xml | – sequence: 1 givenname: Li surname: Cao fullname: Cao, Li organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 2 givenname: Hong surname: Wu fullname: Wu, Hong email: wuhong@tju.edu.cn organization: Tianjin University – sequence: 3 givenname: Yu surname: Cao fullname: Cao, Yu organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 4 givenname: Chunyang surname: Fan fullname: Fan, Chunyang organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 5 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 6 givenname: Xueyi surname: He fullname: He, Xueyi organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 7 givenname: Pengfei surname: Yang fullname: Yang, Pengfei organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 8 givenname: Benbing surname: Shi fullname: Shi, Benbing organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 9 givenname: Xinda surname: You fullname: You, Xinda organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 10 givenname: Zhongyi orcidid: 0000-0001-5311-4253 surname: Jiang fullname: Jiang, Zhongyi email: zhyjiang@tju.edu.cn organization: International Campus of Tianjin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33179394$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKxDAUhoMoOo5uXcqAGzcdT5qkbRYuhvEKii4UlyVJz0i0TcakRWbnI_iMPomV8QKCuDpw-L5z-TfJqvMOCdmhMKYA6YGqGjVOIQUQIhMrZEBFShMOUqySAUgmEpnxYoNsxvgAADKDbJ1sMEZzySQfkMM7VI_1YnTWNbay7eLt5fUI5-gqdO3oOvjWu7419a7qTGvd_Wh6dTK6xEYH5TBukbWZqiNuf9YhuT05vpmeJRdXp-fTyUVieF6IRGhj0BQqq4QyTCMIw4XGiknDMKUmnRVKSpMjp0WeV1ojM1IDh0KDRp6xIdlfzp0H_9RhbMvGRoN13R_hu1imPAMoUiFoj-79Qh98F1x_XU_lDCjI_vUh2f2kOt1gVc6DbVRYlF_B9MB4CZjgYww4-0YolB_Jlx_Jl9_J9wL_JRjbqtZ61wZl6781udSebY2Lf5aUk6PLyY_7DgssmO4 |
CitedBy_id | crossref_primary_10_1002_adma_202414659 crossref_primary_10_1016_j_jechem_2023_04_002 crossref_primary_10_1021_acssuschemeng_2c07568 crossref_primary_10_1007_s12274_022_4073_4 crossref_primary_10_1002_adma_202208640 crossref_primary_10_1016_j_memsci_2021_120186 crossref_primary_10_1002_ange_202209306 crossref_primary_10_1016_j_ensm_2024_103293 crossref_primary_10_1016_j_jpowsour_2022_231143 crossref_primary_10_1007_s10853_024_09849_1 crossref_primary_10_1016_j_snb_2023_134917 crossref_primary_10_1016_j_jece_2022_107300 crossref_primary_10_1016_j_seppur_2024_126881 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1016_j_snb_2024_137224 crossref_primary_10_1021_acsapm_3c01460 crossref_primary_10_1039_D1TA10210A crossref_primary_10_1002_cjoc_202100831 crossref_primary_10_1016_j_memsci_2021_119404 crossref_primary_10_1007_s40242_022_1434_1 crossref_primary_10_1016_j_ssi_2022_115969 crossref_primary_10_1016_j_desal_2024_118351 crossref_primary_10_1016_j_memsci_2024_123606 crossref_primary_10_1002_adfm_202300386 crossref_primary_10_1016_j_memsci_2022_120451 crossref_primary_10_1016_j_memsci_2024_122755 crossref_primary_10_1039_D5EE00494B crossref_primary_10_1007_s12274_022_5149_x crossref_primary_10_1016_j_memsci_2024_122760 crossref_primary_10_1021_acsmaterialslett_4c01672 crossref_primary_10_1002_adma_202211004 crossref_primary_10_1039_D1TA10516G crossref_primary_10_3390_inorganics11070283 crossref_primary_10_1016_j_desal_2022_115753 crossref_primary_10_1021_acsnano_2c04767 crossref_primary_10_3390_en15093405 crossref_primary_10_1002_ange_202214449 crossref_primary_10_1016_j_ijhydene_2024_10_199 crossref_primary_10_1002_cssc_202201298 crossref_primary_10_1038_s41467_023_41555_5 crossref_primary_10_1002_adfm_202300138 crossref_primary_10_1002_adma_202203605 crossref_primary_10_1021_acs_chemmater_4c01351 crossref_primary_10_1016_j_memsci_2023_122103 crossref_primary_10_1039_D1NJ06090B crossref_primary_10_1021_acsaem_1c03721 crossref_primary_10_1002_adma_202208625 crossref_primary_10_1039_D1CS00889G crossref_primary_10_1016_j_dyepig_2022_110464 crossref_primary_10_1016_j_memsci_2025_123914 crossref_primary_10_1021_acsami_1c01134 crossref_primary_10_1002_anie_202112271 crossref_primary_10_1038_s41893_024_01364_0 crossref_primary_10_1002_ange_202501472 crossref_primary_10_1039_D3TA04377K crossref_primary_10_1016_j_polymer_2024_127504 crossref_primary_10_1016_j_memsci_2022_120431 crossref_primary_10_1126_science_abm6304 crossref_primary_10_1002_anie_202408296 crossref_primary_10_1016_j_memsci_2024_123621 crossref_primary_10_3390_molecules30051004 crossref_primary_10_1016_j_memsci_2023_122120 crossref_primary_10_1002_advs_202305149 crossref_primary_10_1016_j_memsci_2023_122123 crossref_primary_10_1021_acs_nanolett_1c00163 crossref_primary_10_1016_j_desal_2022_115976 crossref_primary_10_1021_acs_langmuir_3c01205 crossref_primary_10_1039_D3CC04368A crossref_primary_10_1021_jacs_2c00584 crossref_primary_10_1002_anie_202501472 crossref_primary_10_1039_D2TA08802A crossref_primary_10_1002_app_56666 crossref_primary_10_1002_anie_202216675 crossref_primary_10_1021_acsnano_2c07813 crossref_primary_10_1039_D3RA07094H crossref_primary_10_1016_j_chroma_2023_464020 crossref_primary_10_1016_j_progpolymsci_2021_101450 crossref_primary_10_1021_acsanm_5c00840 crossref_primary_10_1016_j_desal_2024_118025 crossref_primary_10_1002_smll_202303131 crossref_primary_10_1002_anie_202411535 crossref_primary_10_1016_j_memsci_2022_121118 crossref_primary_10_1021_acs_nanolett_4c01228 crossref_primary_10_1016_j_advmem_2022_100028 crossref_primary_10_1021_acs_analchem_4c02369 crossref_primary_10_1038_s41467_024_53625_3 crossref_primary_10_1002_anie_202416550 crossref_primary_10_1021_acsami_1c09157 crossref_primary_10_1002_anie_202419946 crossref_primary_10_1021_acs_chemmater_3c02421 crossref_primary_10_1002_smll_202308499 crossref_primary_10_1016_j_memsci_2022_120818 crossref_primary_10_1016_j_apsusc_2022_155496 crossref_primary_10_1016_j_memsci_2023_121767 crossref_primary_10_1021_acsanm_2c04941 crossref_primary_10_1002_smll_202403300 crossref_primary_10_1002_anie_202315456 crossref_primary_10_1016_j_memsci_2024_123402 crossref_primary_10_1016_j_memsci_2025_123942 crossref_primary_10_1021_acs_langmuir_2c01273 crossref_primary_10_1007_s10118_023_3061_9 crossref_primary_10_1002_aenm_202200057 crossref_primary_10_1021_acsami_3c12106 crossref_primary_10_1039_D4EE03104K crossref_primary_10_1016_j_seppur_2023_123463 crossref_primary_10_1002_adfm_202312203 crossref_primary_10_1002_smll_202304575 crossref_primary_10_1016_j_seppur_2024_129669 crossref_primary_10_1021_jacs_4c07091 crossref_primary_10_1002_ange_202416550 crossref_primary_10_1016_j_apsusc_2023_158357 crossref_primary_10_1016_j_jmrt_2022_12_118 crossref_primary_10_1016_j_desal_2024_118046 crossref_primary_10_1021_acs_jpclett_3c02069 crossref_primary_10_1021_acsmaterialslett_2c00432 crossref_primary_10_1002_ange_202419946 crossref_primary_10_1016_j_seppur_2025_132671 crossref_primary_10_1002_adfm_202409359 crossref_primary_10_1002_adfm_202213642 crossref_primary_10_1002_adfm_202308620 crossref_primary_10_1016_j_memsci_2023_121610 crossref_primary_10_1002_smll_202310566 crossref_primary_10_1016_j_micromeso_2021_111348 crossref_primary_10_1021_prechem_4c00102 crossref_primary_10_1039_D3TA01907A crossref_primary_10_1002_ange_202411535 crossref_primary_10_1002_adma_202108457 crossref_primary_10_1021_jacs_3c11709 crossref_primary_10_1002_slct_202405242 crossref_primary_10_1039_D2SC02100E crossref_primary_10_1021_acssuschemeng_2c02722 crossref_primary_10_1016_j_ccr_2024_215910 crossref_primary_10_1021_acsami_1c15748 crossref_primary_10_1016_j_cej_2023_145310 crossref_primary_10_1016_j_matt_2024_01_028 crossref_primary_10_1021_acs_iecr_3c02384 crossref_primary_10_1016_j_ccr_2021_213873 crossref_primary_10_1021_acssuschemeng_2c01071 crossref_primary_10_1016_j_memsci_2023_121863 crossref_primary_10_1002_advs_202417259 crossref_primary_10_1016_j_memsci_2022_120361 crossref_primary_10_1021_acsaem_1c02200 crossref_primary_10_1016_j_ijhydene_2022_06_255 crossref_primary_10_1016_j_jpowsour_2023_232906 crossref_primary_10_1021_jacsau_2c00214 crossref_primary_10_1002_advs_202103814 crossref_primary_10_1038_s41467_022_28643_8 crossref_primary_10_1016_j_eehl_2023_07_001 crossref_primary_10_1002_ange_202418435 crossref_primary_10_1039_D2SM00451H crossref_primary_10_1016_j_cej_2024_150971 crossref_primary_10_1016_j_ijhydene_2024_02_343 crossref_primary_10_1016_j_memsci_2023_122402 crossref_primary_10_1016_j_memsci_2025_123863 crossref_primary_10_1016_j_memsci_2022_121041 crossref_primary_10_1007_s11426_022_1379_y crossref_primary_10_1039_D4TA04614E crossref_primary_10_1038_s41467_022_33868_8 crossref_primary_10_1016_j_ijhydene_2024_10_229 crossref_primary_10_1016_j_jpowsour_2022_231542 crossref_primary_10_1016_j_memsci_2023_122091 crossref_primary_10_1016_j_nanoen_2023_108799 crossref_primary_10_1002_ange_202305985 crossref_primary_10_1002_ange_202302355 crossref_primary_10_1016_j_memsci_2021_119800 crossref_primary_10_1016_j_jhazmat_2022_128705 crossref_primary_10_1021_jacs_4c01113 crossref_primary_10_1016_j_apsusc_2022_154363 crossref_primary_10_1021_jacs_4c07699 crossref_primary_10_1002_aenm_202102300 crossref_primary_10_1007_s12274_021_3925_7 crossref_primary_10_1016_j_memsci_2022_121147 crossref_primary_10_1016_j_memsci_2022_121268 crossref_primary_10_1002_anie_202104106 crossref_primary_10_1016_j_desal_2023_116824 crossref_primary_10_1016_j_jcis_2021_04_130 crossref_primary_10_1021_jacs_2c12186 crossref_primary_10_1021_acs_macromol_1c02053 crossref_primary_10_1002_adma_202101312 crossref_primary_10_1002_aic_17731 crossref_primary_10_1002_anie_202102965 crossref_primary_10_1002_adma_202409202 crossref_primary_10_1002_smll_202302060 crossref_primary_10_1016_j_memsci_2021_119818 crossref_primary_10_1021_acsmaterialslett_2c00236 crossref_primary_10_1016_j_saa_2024_124357 crossref_primary_10_1002_ange_202408296 crossref_primary_10_1016_j_cej_2024_151368 crossref_primary_10_1002_adma_202413949 crossref_primary_10_1002_sstr_202100061 crossref_primary_10_1016_j_memsci_2024_123479 crossref_primary_10_1002_adma_202204894 crossref_primary_10_1002_ange_202315456 crossref_primary_10_1002_smll_202401172 crossref_primary_10_1016_j_memsci_2023_121780 crossref_primary_10_1002_adfm_202314935 crossref_primary_10_1016_j_cej_2022_141008 crossref_primary_10_1016_j_memsci_2024_123363 crossref_primary_10_1016_j_memsci_2024_123483 crossref_primary_10_1016_j_ensm_2024_103427 crossref_primary_10_1021_acsnano_2c08614 crossref_primary_10_1039_D2TA06228C crossref_primary_10_1002_marc_202200678 crossref_primary_10_1021_jacs_3c08220 crossref_primary_10_1002_aic_17964 crossref_primary_10_1016_j_desal_2025_118797 crossref_primary_10_1016_j_xcrp_2023_101477 crossref_primary_10_1016_j_memsci_2023_121424 crossref_primary_10_1007_s11426_022_1391_0 crossref_primary_10_1002_admt_202001171 crossref_primary_10_1021_acsmaterialslett_4c01140 crossref_primary_10_1021_acs_chemmater_1c00699 crossref_primary_10_3390_en17122954 crossref_primary_10_1016_j_snb_2023_134867 crossref_primary_10_1016_j_jchromb_2025_124461 crossref_primary_10_1016_j_ijhydene_2021_05_119 crossref_primary_10_1021_acs_cgd_3c01102 crossref_primary_10_1002_ange_202112271 crossref_primary_10_1002_smll_202401635 crossref_primary_10_1016_j_ccr_2024_215748 crossref_primary_10_1021_jacs_3c07958 crossref_primary_10_1002_ange_202313571 crossref_primary_10_1007_s40242_022_1448_8 crossref_primary_10_3390_molecules29153508 crossref_primary_10_1002_ange_202216675 crossref_primary_10_1021_acsanm_2c03205 crossref_primary_10_1007_s40820_022_00968_5 crossref_primary_10_1016_j_electacta_2023_142080 crossref_primary_10_1021_acsapm_1c00934 crossref_primary_10_1002_smll_202300023 crossref_primary_10_1016_j_watres_2024_123073 crossref_primary_10_1126_sciadv_adp1450 crossref_primary_10_1002_chem_202302201 crossref_primary_10_1039_D1CC03219D crossref_primary_10_1039_D1MA00008J crossref_primary_10_1002_cssc_202202279 crossref_primary_10_1021_accountsmr_1c00083 crossref_primary_10_1021_acscentsci_3c00146 crossref_primary_10_1002_adfm_202414081 crossref_primary_10_1016_j_nanoen_2024_109959 crossref_primary_10_1016_j_memsci_2024_123491 crossref_primary_10_1002_anie_202305985 crossref_primary_10_1039_D1TA10431D crossref_primary_10_1002_ange_202113141 crossref_primary_10_1002_anie_202302355 crossref_primary_10_1016_j_apmt_2023_101866 crossref_primary_10_1007_s40843_023_2685_5 crossref_primary_10_1002_advs_202104643 crossref_primary_10_1002_adfm_202106507 crossref_primary_10_1039_D0CS01347A crossref_primary_10_3390_molecules27134110 crossref_primary_10_1002_ejic_202400435 crossref_primary_10_1002_smll_202303757 crossref_primary_10_1038_s41467_023_43829_4 crossref_primary_10_1002_anie_202214449 crossref_primary_10_1016_j_jpowsour_2022_232332 crossref_primary_10_1002_anie_202313571 crossref_primary_10_1016_j_cej_2021_133024 crossref_primary_10_1016_j_isci_2021_102369 crossref_primary_10_1021_acssuschemeng_3c04167 crossref_primary_10_1002_ange_202104106 crossref_primary_10_1039_D3CS01163A crossref_primary_10_1039_D3NR05196J crossref_primary_10_1016_j_seppur_2024_127755 crossref_primary_10_1002_ange_202102965 crossref_primary_10_1038_s41893_022_00870_3 crossref_primary_10_1002_anie_202113141 crossref_primary_10_1002_anie_202418435 crossref_primary_10_1039_D2EE02449G crossref_primary_10_1016_j_cherd_2022_02_003 crossref_primary_10_1016_j_memsci_2023_121349 crossref_primary_10_1002_anie_202209306 crossref_primary_10_1021_jacs_3c10691 crossref_primary_10_1016_j_memsci_2023_122321 crossref_primary_10_1016_j_seppur_2025_131857 crossref_primary_10_1016_j_ijhydene_2021_10_074 crossref_primary_10_1039_D3QM00803G crossref_primary_10_1021_jacs_2c00429 crossref_primary_10_1039_D3CS00782K crossref_primary_10_1021_jacs_2c04223 |
Cites_doi | 10.1039/C9EE03301G 10.1126/science.aat7679 10.1038/nature17634 10.1038/nnano.2010.13 10.1002/anie.201804753 10.1002/adma.201802733 10.1002/anie.198202082 10.1021/cr020711a 10.1016/0009-2614(95)00905-J 10.1021/acs.macromol.8b02013 10.1021/acsami.6b06189 10.1021/cr5002589 10.1021/ma400889t 10.1039/C5TA07998E 10.1016/j.eurpolymj.2009.12.012 10.1002/adma.201605898 10.1038/natrevmats.2016.68 10.1016/j.ijhydene.2011.06.139 10.1021/cr200035s 10.1016/j.ijhydene.2015.02.078 10.1126/sciadv.aao0476 10.1021/ja502212v 10.1021/acs.chemrev.6b00159 10.1002/anie.201913802 10.1021/acs.chemmater.5b04947 10.1002/adfm.201001793 10.1126/science.1120411 10.1021/jacs.7b05182 10.1038/525447a 10.1039/C1EE02556B 10.1038/nmat4611 10.1021/jacs.0c06474 10.1039/c2ee21992a 10.1038/nenergy.2016.120 10.1038/s41467-020-15918-1 10.1021/cr020715f 10.1038/s41565-020-0673-x 10.1038/s41467-018-04733-4 10.1021/ja500330a 10.1038/s41563-018-0097-2 10.1016/j.memsci.2016.01.023 10.1126/science.aam8743 10.1038/s41467-019-08622-2 10.1002/anie.201703916 10.1002/adma.201001164 10.1021/acs.chemrev.6b00586 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202005565 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33179394 10_1002_adma_202005565 ADMA202005565 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2016YFB0600503; 2017YFB0603400 – fundername: National Natural Science Foundation of China funderid: 21621004; 21878215; 21576189; 21490583 – fundername: Natural Science Foundation of Tianjin funderid: 18JCZDJC36900 – fundername: National Science Fund for Distinguished Young Scholars funderid: 21125627 – fundername: National Natural Science Foundation of China grantid: 21878215 – fundername: National Key R&D Program of China grantid: 2017YFB0603400 – fundername: National Key R&D Program of China grantid: 2016YFB0600503 – fundername: Natural Science Foundation of Tianjin grantid: 18JCZDJC36900 – fundername: National Natural Science Foundation of China grantid: 21621004 – fundername: National Science Fund for Distinguished Young Scholars grantid: 21125627 – fundername: National Natural Science Foundation of China grantid: 21576189 – fundername: National Natural Science Foundation of China grantid: 21490583 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4785-5bccec8a6d5ac3be05c45bed39c3e21c2f8a99c7e41877dbbe3c9b0408b0be463 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 01:31:01 EDT 2025 Mon Jul 14 10:28:13 EDT 2025 Thu Apr 03 06:57:16 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Tue Jul 01 02:32:55 EDT 2025 Wed Jan 22 16:59:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | humidity dependence nanochannels, proton conduction bottom-up synthesis covalent organic framework ion membranes |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4785-5bccec8a6d5ac3be05c45bed39c3e21c2f8a99c7e41877dbbe3c9b0408b0be463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5311-4253 |
PMID | 33179394 |
PQID | 2473010979 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2460082551 proquest_journals_2473010979 pubmed_primary_33179394 crossref_primary_10_1002_adma_202005565 crossref_citationtrail_10_1002_adma_202005565 wiley_primary_10_1002_adma_202005565_ADMA202005565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2004; 104 2017; 3 2015; 3 2019; 52 2016; 504 2005; 310 2020; 142 2013; 46 2019; 10 2020; 15 2020; 59 2020; 13 2017; 29 2015; 525 2020; 11 2012; 37 2017; 356 2016; 15 2014; 114 2014; 136 2017; 117 2017; 139 2010; 22 2018; 9 2018; 17 2016; 1 2012; 112 2010; 46 2015; 40 1982; 21 2017; 56 2011; 21 2018; 30 1995; 244 2016; 532 2016; 28 2010; 5 2012; 5 2016; 8 2018; 57 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 21 start-page: 971 year: 2011 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 6570 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 310 start-page: 1166 year: 2005 publication-title: Science – volume: 40 year: 2015 publication-title: Int. J. Hydrogen Energy – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 532 start-page: 480 year: 2016 publication-title: Nature – volume: 15 start-page: 348 year: 2020 publication-title: Nat. Nanotechnol. – volume: 104 start-page: 4587 year: 2004 publication-title: Chem. Rev. – volume: 5 start-page: 5346 year: 2012 publication-title: Energy Environ. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 59 start-page: 3678 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 4667 year: 2010 publication-title: Adv. Mater. – volume: 21 start-page: 208 year: 1982 publication-title: Angew. Chem., Int. Ed. – volume: 244 start-page: 456 year: 1995 publication-title: Chem. Phys. Lett. – volume: 56 start-page: 9058 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 525 start-page: 447 year: 2015 publication-title: Nature – volume: 13 start-page: 297 year: 2020 publication-title: Energy Environ. Sci. – volume: 361 start-page: 48 year: 2018 publication-title: Science – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 11 start-page: 1981 year: 2020 publication-title: Nat. Commun. – volume: 356 start-page: 430 year: 2017 publication-title: Science – volume: 9 start-page: 2297 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 230 year: 2010 publication-title: Nat. Nanotechnol. – volume: 104 start-page: 4637 year: 2004 publication-title: Chem. Rev. – volume: 28 start-page: 1489 year: 2016 publication-title: Chem. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 722 year: 2016 publication-title: Nat. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 10 start-page: 842 year: 2019 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 117 start-page: 4759 year: 2017 publication-title: Chem. Rev. – volume: 46 start-page: 7797 year: 2013 publication-title: Macromolecules – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 504 start-page: 206 year: 2016 publication-title: J. Membr. Sci. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 52 start-page: 857 year: 2019 publication-title: Macromolecules – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 136 start-page: 4369 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 2780 year: 2012 publication-title: Chem. Rev. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 450 year: 2010 publication-title: Eur. Polym. J. – volume: 37 start-page: 6132 year: 2012 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 9795 year: 2012 publication-title: Energy Environ. Sci. – volume: 17 start-page: 725 year: 2018 publication-title: Nat. Mater. – volume: 117 start-page: 987 year: 2017 publication-title: Chem. Rev. – ident: e_1_2_5_4_1 doi: 10.1039/C9EE03301G – ident: e_1_2_5_22_1 doi: 10.1126/science.aat7679 – ident: e_1_2_5_2_1 doi: 10.1038/nature17634 – ident: e_1_2_5_15_1 doi: 10.1038/nnano.2010.13 – ident: e_1_2_5_26_1 doi: 10.1002/anie.201804753 – ident: e_1_2_5_34_1 doi: 10.1002/adma.201802733 – ident: e_1_2_5_45_1 doi: 10.1002/anie.198202082 – ident: e_1_2_5_35_1 doi: 10.1021/cr020711a – ident: e_1_2_5_46_1 doi: 10.1016/0009-2614(95)00905-J – ident: e_1_2_5_38_1 doi: 10.1021/acs.macromol.8b02013 – ident: e_1_2_5_31_1 doi: 10.1021/acsami.6b06189 – ident: e_1_2_5_19_1 doi: 10.1021/cr5002589 – ident: e_1_2_5_41_1 doi: 10.1021/ma400889t – ident: e_1_2_5_18_1 doi: 10.1039/C5TA07998E – ident: e_1_2_5_44_1 doi: 10.1016/j.eurpolymj.2009.12.012 – ident: e_1_2_5_33_1 doi: 10.1002/adma.201605898 – ident: e_1_2_5_23_1 doi: 10.1038/natrevmats.2016.68 – ident: e_1_2_5_40_1 doi: 10.1016/j.ijhydene.2011.06.139 – ident: e_1_2_5_7_1 doi: 10.1021/cr200035s – ident: e_1_2_5_14_1 doi: 10.1016/j.ijhydene.2015.02.078 – ident: e_1_2_5_9_1 doi: 10.1126/sciadv.aao0476 – ident: e_1_2_5_25_1 doi: 10.1021/ja502212v – ident: e_1_2_5_6_1 doi: 10.1021/acs.chemrev.6b00159 – ident: e_1_2_5_27_1 doi: 10.1002/anie.201913802 – ident: e_1_2_5_32_1 doi: 10.1021/acs.chemmater.5b04947 – ident: e_1_2_5_13_1 doi: 10.1002/adfm.201001793 – ident: e_1_2_5_21_1 doi: 10.1126/science.1120411 – ident: e_1_2_5_28_1 doi: 10.1021/jacs.7b05182 – ident: e_1_2_5_1_1 doi: 10.1038/525447a – ident: e_1_2_5_39_1 doi: 10.1039/C1EE02556B – ident: e_1_2_5_24_1 doi: 10.1038/nmat4611 – ident: e_1_2_5_30_1 doi: 10.1021/jacs.0c06474 – ident: e_1_2_5_42_1 doi: 10.1039/c2ee21992a – ident: e_1_2_5_3_1 doi: 10.1038/nenergy.2016.120 – ident: e_1_2_5_29_1 doi: 10.1038/s41467-020-15918-1 – ident: e_1_2_5_8_1 doi: 10.1021/cr020715f – ident: e_1_2_5_17_1 doi: 10.1038/s41565-020-0673-x – ident: e_1_2_5_10_1 doi: 10.1038/s41467-018-04733-4 – ident: e_1_2_5_20_1 doi: 10.1021/ja500330a – ident: e_1_2_5_5_1 doi: 10.1038/s41563-018-0097-2 – ident: e_1_2_5_12_1 doi: 10.1016/j.memsci.2016.01.023 – ident: e_1_2_5_16_1 doi: 10.1126/science.aam8743 – ident: e_1_2_5_37_1 doi: 10.1038/s41467-019-08622-2 – ident: e_1_2_5_43_1 doi: 10.1002/anie.201703916 – ident: e_1_2_5_36_1 doi: 10.1002/adma.201001164 – ident: e_1_2_5_11_1 doi: 10.1021/acs.chemrev.6b00586 |
SSID | ssj0009606 |
Score | 2.6931708 |
Snippet | State‐of‐the‐art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient... State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2005565 |
SubjectTerms | Aqueous solutions bottom‐up synthesis covalent organic framework Fuel cells Humidity humidity dependence ion membranes Materials science Membranes Nanochannels nanochannels, proton conduction Nanostructure Nucleation Proton conduction Relative humidity |
Title | Weakly Humidity‐Dependent Proton‐Conducting COF Membranes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202005565 https://www.ncbi.nlm.nih.gov/pubmed/33179394 https://www.proquest.com/docview/2473010979 https://www.proquest.com/docview/2460082551 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P6qrVBA8VdsmaZODh2XXZRFWRRS9lSRNQdRd2cdBT_4Ef6O_xEnbrbuKCHrrY0Knk3l8SdMvAPtUs9SPFPGwfHOPBlngiYhLT5MwUxlWBJpz6XXOovY1Pb1ltxN_8Rf8ENWEm42MPF_bAJdqcPRJGirTnDfIzoogKMEkbBdsWVR0-ckfZeF5TrZHGKpA-Zi10Q-PpptPV6VvUHMauealp7UIcqx0seLk_nA0VIf65Quf43_eagkWSlzq1gtHWoYZ012B-Qm2wlU4vjHy_uHZRQ-4SxG8v7--NcstdIfuRb-HKBIvNXpdSyGLLdzGecvtmEdUB_PpGly3Tq4aba_cfcHTNObMY0pro7mMUiY1UcZnmjJlUiI0MWGgw4xLIXRsaMDjOFXKEC0U5gSufGVoRNZhttvrmk1wTaAQBXETsDRDwJaKkGdSRyo2GY6QY-KAN7Z-oktqcrtDxkNSkCqHiTVLUpnFgYNK_qkg5fhRsjbuzKQMzkESUpvWfBELB_aq2xhW9lsJWqQ3sjJRPnpmgQMbhRNUjyLEZjVBHQjzrvxFh6Te7NSrs62_NNqGOXtcLKOpweywPzI7CIaGajd3-A8d3gCz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2idEFZtIUWCOWRSlRdBRI_EnvBYjTDaCgMoApUdiF2HAkBMxXMCMGKT-iv9Ff4BL6E67xgQFWlSiy6jGMntu_r-MY5Blhhmqd-qKiH4Vt4LMgCT4Yi8TQlmcowIrCcS6-7E3YO2LdDfjgGv6t_YQp-iDrhZi0j99fWwG1Ceu2BNTRJc-IgmxZBVFLuq9wyV5e4artY32yhiL8Q0t7Yb3a88mABT7NIcI8rrY0WSZjyRFNlfK4ZVyalUlNDAk0ykUipI8MCEUWpUoZqqVDdhfKVYSHF576C1_YYcUvX3_r-wFhlFwQ5vR_lOGgmKp5In6yN9nc0Dj4Dt6NYOQ927XdwW01TscflZHU4UKv6-gmD5H81j-_hbQm93UZhK1MwZnrTMPmIkPEDrP8wycnplYtKfpzi-uTu5lerPCV44O6d9xEoY1Gz37MsudjCbe623a45w_FjyPgIBy_S_xkY7_V7Zg5cEygEesIEPM0Qk6aSiCzRoYpMRqmIqANeJe5Yl-zr9hCQ07jgjSaxFUNci8GBr3X9nwXvyB9rLlTaE5f-5yImzHpuX0bSgc_1bfQc9nMQzkh_aOuEeYKABw7MFlpXv4pS67glc4DkuvOXPsSNVrdRX83_S6NlmOjsd7fj7c2drU_wxpYXu4YWYHxwPjSLiP0Gaim3NheOXlot7wFJFWHj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bTtRAGP4DmBi8AA-oBcSaSLwqtHNoZy642GzdgLhIiETuSufQxIC7BHZD4MpH8FF4FV7BJ_GfnmA1xsSECy47nWln5j99M51-P8BbprkJY0UDDN8iYFERBTIWeaApKVSBEYGVXHr9nXhzn3044AdTcNX8C1PxQ7Qbbs4ySn_tDPzEFOs3pKG5KXmD3K4IgpL6WOW2vTjHRdvZxlaKEl4lpPf-c3czqPMKBJolggdcaW21yGPDc02VDblmXFlDpaaWRJoUIpdSJ5ZFIkmMUpZqqVDbhQqVZTHF507DAxaH0iWLSPduCKvceqBk96Mcx8xEQxMZkvXJ_k6GwT-w7SRULmNdbx6um1mqjrgcrY1Hak1f_kYgeZ-m8THM1cDb71SW8gSm7OApPLpFx_gMNr7Y_Oj4wkcV_2pwdfLz-4-0zhE88ndPhwiTsag7HDiOXGzhdz_1_L79hsPHgLEA-3fS_-cwMxgO7EvwbaQQ5gkbcVMgIjWSiCLXsUpsQalIqAdBI-1M19zrLgXIcVaxRpPMiSFrxeDBu7b-ScU68teay43yZLX3OcsIc347lIn04E17G_2G-xiEMzIcuzpxuT3AIw9eVErXvopS57Yl84CUqvOPPmSdtN9prxb_p9FreLib9rKPWzvbSzDriqsjQ8swMzod21cI_EZqpbQ1Hw7vWit_AavEYJI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+Humidity%E2%80%90Dependent+Proton%E2%80%90Conducting+COF+Membranes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cao%2C+Li&rft.au=Wu%2C+Hong&rft.au=Cao%2C+Yu&rft.au=Fan%2C+Chunyang&rft.date=2020-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=52&rft_id=info:doi/10.1002%2Fadma.202005565&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |