Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells
Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The el...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 37; pp. e1902785 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm−2/1.0 mAh cm−2 (28.0 mA/28.0 mAh) to 10.0 mA cm−2/10.0 mAh cm−2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short‐circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short‐circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety.
The failure mechanisms of ultrathin lithium in pouch cells can be divided into three categories: polarization, transition, and short‐circuit. A clear working pattern for ultrathin Li metal in pouch cells is established, which can potentially assist in designing a promising strategy for an advanced Li metal anodes. |
---|---|
AbstractList | Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm−2/1.0 mAh cm−2 (28.0 mA/28.0 mAh) to 10.0 mA cm−2/10.0 mAh cm−2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short‐circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short‐circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety.
The failure mechanisms of ultrathin lithium in pouch cells can be divided into three categories: polarization, transition, and short‐circuit. A clear working pattern for ultrathin Li metal in pouch cells is established, which can potentially assist in designing a promising strategy for an advanced Li metal anodes. Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm −2 /1.0 mAh cm −2 (28.0 mA/28.0 mAh) to 10.0 mA cm −2 /10.0 mAh cm −2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short‐circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short‐circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety. Lithium (Li) metal is regarded as a "Holy Grail" electrode for next-generation high-energy-density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm /1.0 mAh cm (28.0 mA/28.0 mAh) to 10.0 mA cm /10.0 mAh cm (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short-circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short-circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety. Lithium (Li) metal is regarded as a "Holy Grail" electrode for next-generation high-energy-density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm-2 /1.0 mAh cm-2 (28.0 mA/28.0 mAh) to 10.0 mA cm-2 /10.0 mAh cm-2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short-circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short-circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety.Lithium (Li) metal is regarded as a "Holy Grail" electrode for next-generation high-energy-density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm-2 /1.0 mAh cm-2 (28.0 mA/28.0 mAh) to 10.0 mA cm-2 /10.0 mAh cm-2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short-circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short-circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety. Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm−2/1.0 mAh cm−2 (28.0 mA/28.0 mAh) to 10.0 mA cm−2/10.0 mAh cm−2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short‐circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short‐circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety. |
Author | Shi, Peng Huang, Jia‐Qi Liu, He Li, Tao Zhang, Qiang Cheng, Xin‐Bing Zhang, Rui Zhang, Xue‐Qiang Yan, Chong |
Author_xml | – sequence: 1 givenname: Peng surname: Shi fullname: Shi, Peng organization: Tsinghua University – sequence: 2 givenname: Xin‐Bing surname: Cheng fullname: Cheng, Xin‐Bing organization: Tsinghua University – sequence: 3 givenname: Tao surname: Li fullname: Li, Tao organization: Tsinghua University – sequence: 4 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Tsinghua University – sequence: 5 givenname: He surname: Liu fullname: Liu, He organization: Tsinghua University – sequence: 6 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 7 givenname: Xue‐Qiang surname: Zhang fullname: Zhang, Xue‐Qiang organization: Tsinghua University – sequence: 8 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 9 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31379042$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVISTZprj0WQy-5eDv6sCwdl918tGxoD81ZjGW5q2BbqWQT8u-jsEkKgdLTwPA8w8u8J-RwDKMj5BOFJQVgX7EdcMmAamC1qg7IglaMlgJ0dUgWoHlVainUMTlJ6Q4AtAR5RI455bUGwRbk-0Xv7BSD3bnBW-yLjcffEYcidAWOxW0_RZx2fiy2Po95KG7clKnVGFpX5PXPMNtdsXZ9nz6SDx32yZ29zFNye3nxa31dbn9cfVuvtqUVOWJJXQsd522jOkYlxVYjWsGkboDb2mJrhaiaTjVKIOUMXCskMiEb3igHNfBTcr6_ex_Dn9mlyQw-2ZwARxfmZBiTqqpFJVVGv7xD78Icx5wuU6oWQmnOMvX5hZqbwbXmPvoB46N5_VIGxB6wMaQUXWesn3DyYczf8b2hYJ7LMM9lmLcysrZ8p71e_qeg98KD793jf2iz2tys_rpPLtOadA |
CitedBy_id | crossref_primary_10_1016_j_carbon_2020_01_077 crossref_primary_10_1016_j_ensm_2021_02_033 crossref_primary_10_1016_j_cej_2021_130326 crossref_primary_10_1038_s41467_023_41514_0 crossref_primary_10_1002_adma_202006323 crossref_primary_10_1002_anie_202110589 crossref_primary_10_1016_j_enchem_2022_100082 crossref_primary_10_1038_s41560_021_00833_6 crossref_primary_10_1002_adma_202202256 crossref_primary_10_1021_acsaem_1c01174 crossref_primary_10_1002_eem2_12618 crossref_primary_10_1002_metm_16 crossref_primary_10_1002_adfm_202107584 crossref_primary_10_1002_aenm_202201056 crossref_primary_10_1002_adfm_202303427 crossref_primary_10_1002_ange_202307802 crossref_primary_10_1016_j_nanoen_2020_104471 crossref_primary_10_1016_j_ensm_2020_04_043 crossref_primary_10_1002_adma_202103050 crossref_primary_10_1002_smll_202311740 crossref_primary_10_1039_D0NR03833D crossref_primary_10_1002_smtd_202301081 crossref_primary_10_1002_admi_202102428 crossref_primary_10_1016_j_jechem_2020_08_034 crossref_primary_10_1039_D1EE00551K crossref_primary_10_7498_aps_69_20200906 crossref_primary_10_1002_adma_202420255 crossref_primary_10_1016_j_enchem_2021_100063 crossref_primary_10_1021_acsaem_0c00020 crossref_primary_10_1016_j_jechem_2020_11_034 crossref_primary_10_1039_D2CS00606E crossref_primary_10_1002_adfm_202004189 crossref_primary_10_1002_cey2_128 crossref_primary_10_1039_D1TA02615A crossref_primary_10_1021_acsaem_2c00277 crossref_primary_10_1039_D1TA01150B crossref_primary_10_1021_acsaem_2c00037 crossref_primary_10_1002_adma_202006702 crossref_primary_10_1016_j_matchemphys_2024_130349 crossref_primary_10_1039_D2TA06636J crossref_primary_10_1002_adma_202004128 crossref_primary_10_1002_anie_202307802 crossref_primary_10_1016_j_jechem_2021_12_020 crossref_primary_10_1016_j_jallcom_2023_168703 crossref_primary_10_1016_j_matt_2022_01_017 crossref_primary_10_1021_acs_energyfuels_0c01198 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1039_D0QM01134G crossref_primary_10_1016_j_ensm_2020_05_020 crossref_primary_10_1002_adfm_202108449 crossref_primary_10_1002_aesr_202000110 crossref_primary_10_1016_j_est_2025_116307 crossref_primary_10_1039_D0TA01044H crossref_primary_10_1002_adma_202312773 crossref_primary_10_1016_j_mattod_2020_06_011 crossref_primary_10_1002_adma_202210826 crossref_primary_10_1039_D1DT03630K crossref_primary_10_1002_adma_202102034 crossref_primary_10_1002_eem2_12598 crossref_primary_10_1039_D0TA01060J crossref_primary_10_1002_adma_202307732 crossref_primary_10_1002_anie_202210567 crossref_primary_10_1002_aenm_202402609 crossref_primary_10_1002_batt_202000145 crossref_primary_10_1002_smll_202205355 crossref_primary_10_1002_chem_202002822 crossref_primary_10_1002_ente_202000700 crossref_primary_10_1016_j_electacta_2021_139270 crossref_primary_10_1039_D4TA05556J crossref_primary_10_1016_j_est_2024_113559 crossref_primary_10_1002_adfm_202303111 crossref_primary_10_1038_s41560_021_00852_3 crossref_primary_10_1002_cssc_202200504 crossref_primary_10_1016_j_cej_2020_126470 crossref_primary_10_1021_acs_nanolett_0c00618 crossref_primary_10_1002_batt_202000016 crossref_primary_10_1002_batt_202000258 crossref_primary_10_1002_aenm_202404890 crossref_primary_10_1016_j_elecom_2022_107395 crossref_primary_10_1002_adma_202002325 crossref_primary_10_1016_j_jechem_2021_04_045 crossref_primary_10_1016_j_jcis_2023_03_110 crossref_primary_10_1021_acsami_0c05385 crossref_primary_10_1016_j_surfin_2025_105863 crossref_primary_10_1038_s41524_023_01039_y crossref_primary_10_1002_admt_201900806 crossref_primary_10_1016_j_jechem_2021_12_049 crossref_primary_10_1039_D0TA11030B crossref_primary_10_1016_j_electacta_2022_141424 crossref_primary_10_1039_D4TA08756A crossref_primary_10_1016_j_cej_2024_158268 crossref_primary_10_1007_s11581_020_03689_0 crossref_primary_10_1002_aenm_202201130 crossref_primary_10_1002_cssc_202300671 crossref_primary_10_1016_j_ensm_2021_04_002 crossref_primary_10_1039_D0CC00171F crossref_primary_10_1039_D2DT03864A crossref_primary_10_1039_D3TA04060G crossref_primary_10_1021_acsami_4c09718 crossref_primary_10_1016_j_electacta_2024_143793 crossref_primary_10_1002_adma_202301540 crossref_primary_10_1016_j_nanoen_2025_110840 crossref_primary_10_1002_elt2_8 crossref_primary_10_1016_j_isci_2020_101869 crossref_primary_10_23919_CHAIN_2024_000011 crossref_primary_10_1002_adfm_202214523 crossref_primary_10_1039_D4CP01967A crossref_primary_10_1002_ange_202104671 crossref_primary_10_1002_sus2_37 crossref_primary_10_1002_adfm_202405890 crossref_primary_10_1021_acs_nanolett_2c00338 crossref_primary_10_1002_ange_202210567 crossref_primary_10_1016_j_ensm_2020_04_010 crossref_primary_10_1021_acsami_0c17302 crossref_primary_10_1016_j_joule_2024_07_013 crossref_primary_10_1016_j_jechem_2022_01_019 crossref_primary_10_1016_j_ssi_2021_115636 crossref_primary_10_1039_D4CS00557K crossref_primary_10_1002_batt_202100416 crossref_primary_10_1016_j_est_2024_115247 crossref_primary_10_1002_ange_202110589 crossref_primary_10_1021_acsami_3c14119 crossref_primary_10_1002_anie_202104671 crossref_primary_10_1021_jacsau_3c00035 crossref_primary_10_1002_adfm_202307404 crossref_primary_10_1007_s11705_022_2286_4 crossref_primary_10_1002_admi_202102283 crossref_primary_10_1021_acsnano_9b06653 crossref_primary_10_1002_adma_202305470 crossref_primary_10_20517_energymater_2023_93 crossref_primary_10_1016_j_cej_2020_124256 crossref_primary_10_1002_smll_202007142 crossref_primary_10_1007_s11426_022_1397_2 crossref_primary_10_1016_j_jechem_2020_07_009 crossref_primary_10_1021_acsenergylett_3c00826 crossref_primary_10_1016_j_nanoen_2020_104914 crossref_primary_10_1002_smsc_202100110 crossref_primary_10_1007_s41918_024_00221_0 crossref_primary_10_1016_j_carbon_2020_09_061 crossref_primary_10_1002_adfm_202406080 crossref_primary_10_1021_acsaem_1c04108 crossref_primary_10_1016_j_est_2024_113592 crossref_primary_10_1016_j_nanoen_2022_107677 |
Cites_doi | 10.1016/j.joule.2017.10.007 10.1016/S0167-2738(02)00080-2 10.1002/anie.201801513 10.1002/anie.201712702 10.1016/j.ensm.2018.02.014 10.1002/anie.201807034 10.1002/cssc.201801445 10.1038/nenergy.2016.30 10.1016/j.joule.2019.03.028 10.1021/acs.nanolett.8b04106 10.1002/aenm.201402290 10.1002/adma.201800884 10.1002/adma.201805334 10.1002/anie.201710806 10.1002/adma.201805654 10.1016/j.joule.2019.02.004 10.1002/adma.201802068 10.1002/smll.201401837 10.1021/acscentsci.6b00260 10.1002/aenm.201702657 10.1002/adfm.201605989 10.1126/science.1253292 10.1021/jacs.6b08730 10.1002/adma.201805574 10.1002/anie.201813905 10.1038/nnano.2017.16 10.1002/adma.201706102 10.1002/adma.201707629 10.1038/nenergy.2017.119 10.1002/adma.201803270 10.1002/adma.201804684 10.1002/anie.201702099 10.1016/j.joule.2018.02.001 10.1038/s41560-018-0237-6 10.1002/adma.201803869 10.1016/j.chempr.2018.12.002 10.1016/j.joule.2018.03.008 10.1039/C7TA00371D 10.1002/adma.201706216 10.1002/adma.201706375 10.1021/acs.chemrev.7b00115 10.1016/j.ensm.2016.09.003 10.1021/acs.chemmater.8b02623 10.1002/anie.201805456 10.1038/nenergy.2017.12 10.1002/adma.201705711 10.1039/C3EE40795K 10.1002/adma.201801213 10.1021/acs.jpcc.8b06650 10.1038/s41560-019-0338-x 10.1016/j.eng.2018.10.008 10.1038/s41560-018-0198-9 10.1002/adma.201804461 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201902785 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31379042 10_1002_adma_201902785 ADMA201902785 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Tsinghua National Laboratory for Information Science and Technology – fundername: National Natural Science Foundation of China funderid: 21676160; 21825501; 21805161; U1801257 – fundername: National Basic Research Program of China (973 Program) funderid: 2016YFA0202500; 2015CB932500 – fundername: China Postdoctoral Science Foundation funderid: 2018M631480 – fundername: Tsinghua University Initiative Scientific Research Program – fundername: National Key Research and Development Program grantid: 2016YFA0202500 – fundername: National Natural Science Foundation of China grantid: 21676160 – fundername: National Natural Science Foundation of China grantid: 21825501 – fundername: National Natural Science Foundation of China grantid: 21805161 – fundername: China Postdoctoral Science Foundation grantid: 2018M631480 – fundername: National Key Research and Development Program grantid: 2015CB932500 – fundername: National Basic Research Program of China (973 Program) grantid: 2016YFA0202500 – fundername: National Basic Research Program of China (973 Program) grantid: 2015CB932500 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4785-1ed0f33db8f2161ad9aac4269b03c7cadc445bf8b84a1320ed46a246b3b8e0703 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 15:50:36 EDT 2025 Fri Jul 25 05:55:59 EDT 2025 Wed Feb 19 02:31:29 EST 2025 Tue Jul 01 00:44:54 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Wed Jan 22 16:41:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | short circuit polarization lithium metal anodes failure mechanism pouch cell “dead” Li |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4785-1ed0f33db8f2161ad9aac4269b03c7cadc445bf8b84a1320ed46a246b3b8e0703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PMID | 31379042 |
PQID | 2287448932 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2268574568 proquest_journals_2287448932 pubmed_primary_31379042 crossref_citationtrail_10_1002_adma_201902785 crossref_primary_10_1002_adma_201902785 wiley_primary_10_1002_adma_201902785_ADMA201902785 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017 2018; 2 30 2019 2018; 3 3 2017; 5 2016 2018 2019 2018; 1 3 31 30 2014 2018 2018 2018; 7 8 30 57 2002 2017 2018 2018; 148 6 122 11 2019; 4 2019 2019 2019 2018 2014 2018 2018 2017 2018; 19 31 31 2 10 30 30 56 30 2015; 5 2018; 2 2019; 3 2016; 2 2018 2018 2019 2018 2018 2018; 57 57 58 30 30 30 2017 2019 2018 2018 2018; 12 5 14 4 2 2017 2018; 117 30 2018 2016; 30 138 2018; 30 2017 2018 2017 2018 2018; 2 57 27 57 30 2016; 351 e_1_2_5_9_4 e_1_2_5_15_1 e_1_2_5_9_3 e_1_2_5_11_4 e_1_2_5_9_2 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_3_5 e_1_2_5_7_1 e_1_2_5_3_4 e_1_2_5_5_2 e_1_2_5_11_3 e_1_2_5_13_1 e_1_2_5_3_3 e_1_2_5_5_1 e_1_2_5_11_2 e_1_2_5_3_2 e_1_2_5_3_1 e_1_2_5_1_2 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_19_2 e_1_2_5_8_5 e_1_2_5_10_6 e_1_2_5_8_4 e_1_2_5_10_5 e_1_2_5_14_1 e_1_2_5_6_5 e_1_2_5_8_3 e_1_2_5_10_8 e_1_2_5_16_2 e_1_2_5_6_4 e_1_2_5_8_2 e_1_2_5_10_7 e_1_2_5_16_1 e_1_2_5_6_3 e_1_2_5_8_1 e_1_2_5_10_2 e_1_2_5_6_2 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_10_4 e_1_2_5_2_4 e_1_2_5_10_3 e_1_2_5_12_1 e_1_2_5_2_3 e_1_2_5_4_1 e_1_2_5_2_2 e_1_2_5_2_1 e_1_2_5_10_9 e_1_2_5_18_1 e_1_2_5_8_6 |
References_xml | – volume: 117 30 year: 2017 2018 publication-title: Chem. Rev. Adv. Mater. – volume: 2 57 27 57 30 start-page: 5301 year: 2017 2018 2017 2018 2018 publication-title: Nat. Energy Angew. Chem., Int. Ed. Adv. Funct. Mater. Angew. Chem., Int. Ed. Adv. Mater. – volume: 2 start-page: 790 year: 2016 publication-title: ACS Cent. Sci. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 57 57 58 30 30 30 start-page: 1505 9795 2093 year: 2018 2018 2019 2018 2018 2018 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater. Adv. Mater. Adv. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 3 start-page: 1094 889 year: 2019 2018 publication-title: Joule Nat. Energy – volume: 351 year: 2016 publication-title: Science – volume: 30 138 start-page: 6769 year: 2018 2016 publication-title: Chem. Mater. J. Am. Chem. Soc. – volume: 3 start-page: 911 year: 2019 publication-title: Joule – volume: 12 5 14 4 2 start-page: 194 74 22 831 833 year: 2017 2019 2018 2018 2018 publication-title: Nat. Nanotechnol. Chem Energy Storage Mater. Engineering Joule – volume: 1 3 31 30 start-page: 732 year: 2016 2018 2019 2018 publication-title: Nat. Energy Nat. Energy Adv. Mater. Adv. Mater. – volume: 19 31 31 2 10 30 30 56 30 start-page: 1504 764 4257 7764 year: 2019 2019 2019 2018 2014 2018 2018 2017 2018 publication-title: Nano Lett. Adv. Mater. Adv. Mater. Joule Small Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. – volume: 4 start-page: 180 year: 2019 publication-title: Nat. Energy – volume: 7 8 30 57 start-page: 513 year: 2014 2018 2018 2018 publication-title: Energy Environ. Sci. Adv. Energy Mater. Adv. Mater. Angew. Chem., Int. Ed. – volume: 2 start-page: 110 year: 2018 publication-title: Joule – volume: 2 30 year: 2017 2018 publication-title: Nat. Energy Adv. Mater. – volume: 148 6 122 11 start-page: 405 18 3821 year: 2002 2017 2018 2018 publication-title: Solid State Ionics Energy Storage Mater. J. Phys. Chem. C ChemSusChem – ident: e_1_2_5_14_1 doi: 10.1016/j.joule.2017.10.007 – ident: e_1_2_5_11_1 doi: 10.1016/S0167-2738(02)00080-2 – ident: e_1_2_5_6_4 doi: 10.1002/anie.201801513 – ident: e_1_2_5_2_4 doi: 10.1002/anie.201712702 – ident: e_1_2_5_3_3 doi: 10.1016/j.ensm.2018.02.014 – ident: e_1_2_5_6_2 doi: 10.1002/anie.201807034 – ident: e_1_2_5_11_4 doi: 10.1002/cssc.201801445 – ident: e_1_2_5_9_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_5_15_1 doi: 10.1016/j.joule.2019.03.028 – ident: e_1_2_5_10_1 doi: 10.1021/acs.nanolett.8b04106 – ident: e_1_2_5_13_1 doi: 10.1002/aenm.201402290 – ident: e_1_2_5_10_9 doi: 10.1002/adma.201800884 – ident: e_1_2_5_10_3 doi: 10.1002/adma.201805334 – ident: e_1_2_5_8_1 doi: 10.1002/anie.201710806 – ident: e_1_2_5_10_2 doi: 10.1002/adma.201805654 – ident: e_1_2_5_16_1 doi: 10.1016/j.joule.2019.02.004 – ident: e_1_2_5_2_3 doi: 10.1002/adma.201802068 – ident: e_1_2_5_10_5 doi: 10.1002/smll.201401837 – ident: e_1_2_5_12_1 doi: 10.1021/acscentsci.6b00260 – ident: e_1_2_5_2_2 doi: 10.1002/aenm.201702657 – ident: e_1_2_5_6_3 doi: 10.1002/adfm.201605989 – ident: e_1_2_5_4_1 doi: 10.1126/science.1253292 – ident: e_1_2_5_19_2 doi: 10.1021/jacs.6b08730 – ident: e_1_2_5_9_3 doi: 10.1002/adma.201805574 – ident: e_1_2_5_8_3 doi: 10.1002/anie.201813905 – ident: e_1_2_5_3_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_5_7_1 doi: 10.1002/adma.201706102 – ident: e_1_2_5_8_5 doi: 10.1002/adma.201707629 – ident: e_1_2_5_5_1 doi: 10.1038/nenergy.2017.119 – ident: e_1_2_5_6_5 doi: 10.1002/adma.201803270 – ident: e_1_2_5_9_4 doi: 10.1002/adma.201804684 – ident: e_1_2_5_10_8 doi: 10.1002/anie.201702099 – ident: e_1_2_5_10_4 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_5_16_2 doi: 10.1038/s41560-018-0237-6 – ident: e_1_2_5_5_2 doi: 10.1002/adma.201803869 – ident: e_1_2_5_3_2 doi: 10.1016/j.chempr.2018.12.002 – ident: e_1_2_5_3_5 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_5_18_1 doi: 10.1039/C7TA00371D – ident: e_1_2_5_10_7 doi: 10.1002/adma.201706216 – ident: e_1_2_5_1_2 doi: 10.1002/adma.201706375 – ident: e_1_2_5_1_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_5_11_2 doi: 10.1016/j.ensm.2016.09.003 – ident: e_1_2_5_19_1 doi: 10.1021/acs.chemmater.8b02623 – ident: e_1_2_5_8_2 doi: 10.1002/anie.201805456 – ident: e_1_2_5_6_1 doi: 10.1038/nenergy.2017.12 – ident: e_1_2_5_8_4 doi: 10.1002/adma.201705711 – ident: e_1_2_5_2_1 doi: 10.1039/C3EE40795K – ident: e_1_2_5_10_6 doi: 10.1002/adma.201801213 – ident: e_1_2_5_11_3 doi: 10.1021/acs.jpcc.8b06650 – ident: e_1_2_5_17_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_5_3_4 doi: 10.1016/j.eng.2018.10.008 – ident: e_1_2_5_9_2 doi: 10.1038/s41560-018-0198-9 – ident: e_1_2_5_8_6 doi: 10.1002/adma.201804461 |
SSID | ssj0009606 |
Score | 2.6271498 |
Snippet | Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li... Lithium (Li) metal is regarded as a "Holy Grail" electrode for next-generation high-energy-density batteries. However, the electrochemical behavior of the Li... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1902785 |
SubjectTerms | Anodes Circuits Electrochemical analysis Electrode polarization Electrodes failure mechanism Failure mechanisms Flux density Induced polarization Lithium lithium metal anodes Materials science polarization pouch cell Powdering Product safety Separators short circuit Thickening “dead” Li |
Title | Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201902785 https://www.ncbi.nlm.nih.gov/pubmed/31379042 https://www.proquest.com/docview/2287448932 https://www.proquest.com/docview/2268574568 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P6qrRBA8Vdc0bdPj4gMRFREXvJXJo7i4tuJuL_56M223uooIeuor06aZmeSjnfkGYJ_HcehgN8XhJIEvMkx8qa3wE60yqYVxqKOK8r2JLvri8iF8-JTFX_NDtB_cyDOq-ZocHNXo6IM0FE3FG-QWNB5LyjKngC1CRXcf_FEEzyuyvSD0k0jICWtjlx9Ni0-vSt-g5jRyrZae80XASafriJOnw3KsDvXbFz7H_7zVEiw0uJT1akNahhmbr8D8J7bCVbg8q0vm6IZjgJ0OkGK7WJExzFl_SES3j4OcXQ3cpnxm13ZMt8wLY5k7fVuU-pGd2OFwtAb987P7kwu_KcXga-H64R9b082CwCiZcYcR0SSImrJgVTfQsUajhQiddpUUSEnZ1ogIuYhUoKSlWWUdZvMit5vANGIms0hLSmqNnFRXxeh0YzIRC7ShB_5EFalueMqpXMYwrRmWeUpjlLZj5MFB2_6lZuj4sWVnotm08dRRyqsCAA61cQ_22svOx-jHCea2KKlNJMPYQU3pwUZtEe2jguMgTtzM5wGv9PpLH9Le6XWvPdr6i9A2zNF-HejWgdnxa2l3HDIaq93K-t8BfZwCow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VegAOtOUZum2NhNRT2MVxEue4WkBbuosQYiVukV8RK5YEwebCr8fjPGBBVaX2FMWxE8fj8XxxZr4BOKBxHFrYjX44SeCzTCQ-V4b5iZIZV0xb1OG8fM-j4YSdXYeNNyHGwlT8EO2GG2qGW69RwXFDuvvCGiq0Iw6yFo3GPFyCj5jW231VXb4wSCFAd3R7QegnEeMNb2OPdhfbL9qld2BzEbs643P6CWTT7crn5PawnMtD9fSG0fG_3uszrNfQlPSrufQFPph8A9ZeERZuwtlJlTVH1TQD5Hgq0L2LFBkROZnMkOv2ZpqT0dQeyjsyNnO8ZV5oQ2zxRVGqGzIws9njFkxOT64GQ7_OxuArZvvhHxndy4JAS55RCxOFToRQGAgre4GKldCKsdAKWHImMC7baBYJyiIZSG5wYdmG5bzIzS4QJUTGs0hxjGuNbKuejIUVjs5YzIQJPfAbWaSqpirHjBmztCJZpimOUdqOkQc_2_r3FUnHH2t2GtGmtbI-ptTlALDAjXqw3162aob_TkRuihLrRDyMLdrkHuxUU6J9VHAUxIld_DygTrB_6UPaPx7327O9f2n0A1aGV-NROvp1_vsrrGJ55ffWgeX5Q2m-WaA0l9-dKjwDr68Gvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC58wKIHH-srPnZbEPYUjZ1O0jkOjoPrqog44C30EwfHRHRy8dfblWSio8iCnkI63Umlq6r7I6n6CmCPJknkYDfG4aShz6xIfa4M81MlLVdMO9RRRflexCd9dnoT3bzJ4q_5IdoPbugZ1XqNDv6g7cEraajQFW-Q29BowqNpmGVxwNGuu1evBFKIzyu2vTDy05jxMW1jQA8mx09uSx-w5iR0rfae3iKIsdR1yMndfjmS--r5HaHjd15rCRYaYEo6tSUtw5TJf8L8G7rCFTg9rmvmqIZkgHQHAoO7SGGJyEl_iEy3t4OcnA3cobwn52aEt8wLbYhrvixKdUuOzHD4tAr93vH10Ynf1GLwFXNy-IdGBzYMteSWOpAodCqEwjRYGYQqUUIrxiKnXsmZwKxso1ksKItlKLnBZWUNZvIiNxtAlBCW21hxzGqN3ahAJsLpRluWMGEiD_yxKjLVEJVjvYxhVlMs0wznKGvnyIM_bf-HmqLj057bY81mjas-ZbSqAOBgG_Vgt73snAz_nIjcFCX2iXmUOKzJPVivLaJ9VHgYJqlb-jyglV7_I0PW6Z532rPNrwz6DT8uu73s7O_Fvy2Yw-Y66G0bZkaPpdlxKGkkf1WO8AKmnwV2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Diagram+of+an+Ultrathin+Lithium+Metal+Anode+in+Pouch+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Peng&rft.au=Cheng%2C+Xin-Bing&rft.au=Li%2C+Tao&rft.au=Zhang%2C+Rui&rft.date=2019-09-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=37&rft.spage=e1902785&rft_id=info:doi/10.1002%2Fadma.201902785&rft_id=info%3Apmid%2F31379042&rft.externalDocID=31379042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |