Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells

Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The el...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 37; pp. e1902785 - n/a
Main Authors Shi, Peng, Cheng, Xin‐Bing, Li, Tao, Zhang, Rui, Liu, He, Yan, Chong, Zhang, Xue‐Qiang, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm−2/1.0 mAh cm−2 (28.0 mA/28.0 mAh) to 10.0 mA cm−2/10.0 mAh cm−2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short‐circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short‐circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety. The failure mechanisms of ultrathin lithium in pouch cells can be divided into three categories: polarization, transition, and short‐circuit. A clear working pattern for ultrathin Li metal in pouch cells is established, which can potentially assist in designing a promising strategy for an advanced Li metal anodes.
AbstractList Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm−2/1.0 mAh cm−2 (28.0 mA/28.0 mAh) to 10.0 mA cm−2/10.0 mAh cm−2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short‐circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short‐circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety. The failure mechanisms of ultrathin lithium in pouch cells can be divided into three categories: polarization, transition, and short‐circuit. A clear working pattern for ultrathin Li metal in pouch cells is established, which can potentially assist in designing a promising strategy for an advanced Li metal anodes.
Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm −2 /1.0 mAh cm −2 (28.0 mA/28.0 mAh) to 10.0 mA cm −2 /10.0 mAh cm −2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short‐circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short‐circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety.
Lithium (Li) metal is regarded as a "Holy Grail" electrode for next-generation high-energy-density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm /1.0 mAh cm (28.0 mA/28.0 mAh) to 10.0 mA cm /10.0 mAh cm (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short-circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short-circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety.
Lithium (Li) metal is regarded as a "Holy Grail" electrode for next-generation high-energy-density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm-2 /1.0 mAh cm-2 (28.0 mA/28.0 mAh) to 10.0 mA cm-2 /10.0 mAh cm-2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short-circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short-circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety.Lithium (Li) metal is regarded as a "Holy Grail" electrode for next-generation high-energy-density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm-2 /1.0 mAh cm-2 (28.0 mA/28.0 mAh) to 10.0 mA cm-2 /10.0 mAh cm-2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short-circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short-circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety.
Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated. The working mode of the Li metal anode ranging from 1.0 mA cm−2/1.0 mAh cm−2 (28.0 mA/28.0 mAh) to 10.0 mA cm−2/10.0 mAh cm−2 (280.0 mA/280.0 mAh) is investigated and divided into three categories: polarization, transition, and short‐circuit zones. Powdering and the induced polarization are the main reasons for the failure of the Li electrode at small current density and capacity, while short‐circuit occurs with the damage of the separator leading to safety concerns being dominant at large current and capacity. The electrochemical diagram is attributed from the distinctive plating/stripping behaviors of Li metal, accompanied by dendrites thickening and/or lengthening, and heterogeneous distribution of dendrites. A clear understanding in the electrochemical diagram of ultrathin Li is the primary step to rationally design an effective Li electrode and render a Li metal battery with high energy density, long lifespan, and enhanced safety.
Author Shi, Peng
Huang, Jia‐Qi
Liu, He
Li, Tao
Zhang, Qiang
Cheng, Xin‐Bing
Zhang, Rui
Zhang, Xue‐Qiang
Yan, Chong
Author_xml – sequence: 1
  givenname: Peng
  surname: Shi
  fullname: Shi, Peng
  organization: Tsinghua University
– sequence: 2
  givenname: Xin‐Bing
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  organization: Tsinghua University
– sequence: 3
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  organization: Tsinghua University
– sequence: 4
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Tsinghua University
– sequence: 5
  givenname: He
  surname: Liu
  fullname: Liu, He
  organization: Tsinghua University
– sequence: 6
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Xue‐Qiang
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Tsinghua University
– sequence: 8
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31379042$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVISTZprj0WQy-5eDv6sCwdl918tGxoD81ZjGW5q2BbqWQT8u-jsEkKgdLTwPA8w8u8J-RwDKMj5BOFJQVgX7EdcMmAamC1qg7IglaMlgJ0dUgWoHlVainUMTlJ6Q4AtAR5RI455bUGwRbk-0Xv7BSD3bnBW-yLjcffEYcidAWOxW0_RZx2fiy2Po95KG7clKnVGFpX5PXPMNtdsXZ9nz6SDx32yZ29zFNye3nxa31dbn9cfVuvtqUVOWJJXQsd522jOkYlxVYjWsGkboDb2mJrhaiaTjVKIOUMXCskMiEb3igHNfBTcr6_ex_Dn9mlyQw-2ZwARxfmZBiTqqpFJVVGv7xD78Icx5wuU6oWQmnOMvX5hZqbwbXmPvoB46N5_VIGxB6wMaQUXWesn3DyYczf8b2hYJ7LMM9lmLcysrZ8p71e_qeg98KD793jf2iz2tys_rpPLtOadA
CitedBy_id crossref_primary_10_1016_j_carbon_2020_01_077
crossref_primary_10_1016_j_ensm_2021_02_033
crossref_primary_10_1016_j_cej_2021_130326
crossref_primary_10_1038_s41467_023_41514_0
crossref_primary_10_1002_adma_202006323
crossref_primary_10_1002_anie_202110589
crossref_primary_10_1016_j_enchem_2022_100082
crossref_primary_10_1038_s41560_021_00833_6
crossref_primary_10_1002_adma_202202256
crossref_primary_10_1021_acsaem_1c01174
crossref_primary_10_1002_eem2_12618
crossref_primary_10_1002_metm_16
crossref_primary_10_1002_adfm_202107584
crossref_primary_10_1002_aenm_202201056
crossref_primary_10_1002_adfm_202303427
crossref_primary_10_1002_ange_202307802
crossref_primary_10_1016_j_nanoen_2020_104471
crossref_primary_10_1016_j_ensm_2020_04_043
crossref_primary_10_1002_adma_202103050
crossref_primary_10_1002_smll_202311740
crossref_primary_10_1039_D0NR03833D
crossref_primary_10_1002_smtd_202301081
crossref_primary_10_1002_admi_202102428
crossref_primary_10_1016_j_jechem_2020_08_034
crossref_primary_10_1039_D1EE00551K
crossref_primary_10_7498_aps_69_20200906
crossref_primary_10_1002_adma_202420255
crossref_primary_10_1016_j_enchem_2021_100063
crossref_primary_10_1021_acsaem_0c00020
crossref_primary_10_1016_j_jechem_2020_11_034
crossref_primary_10_1039_D2CS00606E
crossref_primary_10_1002_adfm_202004189
crossref_primary_10_1002_cey2_128
crossref_primary_10_1039_D1TA02615A
crossref_primary_10_1021_acsaem_2c00277
crossref_primary_10_1039_D1TA01150B
crossref_primary_10_1021_acsaem_2c00037
crossref_primary_10_1002_adma_202006702
crossref_primary_10_1016_j_matchemphys_2024_130349
crossref_primary_10_1039_D2TA06636J
crossref_primary_10_1002_adma_202004128
crossref_primary_10_1002_anie_202307802
crossref_primary_10_1016_j_jechem_2021_12_020
crossref_primary_10_1016_j_jallcom_2023_168703
crossref_primary_10_1016_j_matt_2022_01_017
crossref_primary_10_1021_acs_energyfuels_0c01198
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1039_D0QM01134G
crossref_primary_10_1016_j_ensm_2020_05_020
crossref_primary_10_1002_adfm_202108449
crossref_primary_10_1002_aesr_202000110
crossref_primary_10_1016_j_est_2025_116307
crossref_primary_10_1039_D0TA01044H
crossref_primary_10_1002_adma_202312773
crossref_primary_10_1016_j_mattod_2020_06_011
crossref_primary_10_1002_adma_202210826
crossref_primary_10_1039_D1DT03630K
crossref_primary_10_1002_adma_202102034
crossref_primary_10_1002_eem2_12598
crossref_primary_10_1039_D0TA01060J
crossref_primary_10_1002_adma_202307732
crossref_primary_10_1002_anie_202210567
crossref_primary_10_1002_aenm_202402609
crossref_primary_10_1002_batt_202000145
crossref_primary_10_1002_smll_202205355
crossref_primary_10_1002_chem_202002822
crossref_primary_10_1002_ente_202000700
crossref_primary_10_1016_j_electacta_2021_139270
crossref_primary_10_1039_D4TA05556J
crossref_primary_10_1016_j_est_2024_113559
crossref_primary_10_1002_adfm_202303111
crossref_primary_10_1038_s41560_021_00852_3
crossref_primary_10_1002_cssc_202200504
crossref_primary_10_1016_j_cej_2020_126470
crossref_primary_10_1021_acs_nanolett_0c00618
crossref_primary_10_1002_batt_202000016
crossref_primary_10_1002_batt_202000258
crossref_primary_10_1002_aenm_202404890
crossref_primary_10_1016_j_elecom_2022_107395
crossref_primary_10_1002_adma_202002325
crossref_primary_10_1016_j_jechem_2021_04_045
crossref_primary_10_1016_j_jcis_2023_03_110
crossref_primary_10_1021_acsami_0c05385
crossref_primary_10_1016_j_surfin_2025_105863
crossref_primary_10_1038_s41524_023_01039_y
crossref_primary_10_1002_admt_201900806
crossref_primary_10_1016_j_jechem_2021_12_049
crossref_primary_10_1039_D0TA11030B
crossref_primary_10_1016_j_electacta_2022_141424
crossref_primary_10_1039_D4TA08756A
crossref_primary_10_1016_j_cej_2024_158268
crossref_primary_10_1007_s11581_020_03689_0
crossref_primary_10_1002_aenm_202201130
crossref_primary_10_1002_cssc_202300671
crossref_primary_10_1016_j_ensm_2021_04_002
crossref_primary_10_1039_D0CC00171F
crossref_primary_10_1039_D2DT03864A
crossref_primary_10_1039_D3TA04060G
crossref_primary_10_1021_acsami_4c09718
crossref_primary_10_1016_j_electacta_2024_143793
crossref_primary_10_1002_adma_202301540
crossref_primary_10_1016_j_nanoen_2025_110840
crossref_primary_10_1002_elt2_8
crossref_primary_10_1016_j_isci_2020_101869
crossref_primary_10_23919_CHAIN_2024_000011
crossref_primary_10_1002_adfm_202214523
crossref_primary_10_1039_D4CP01967A
crossref_primary_10_1002_ange_202104671
crossref_primary_10_1002_sus2_37
crossref_primary_10_1002_adfm_202405890
crossref_primary_10_1021_acs_nanolett_2c00338
crossref_primary_10_1002_ange_202210567
crossref_primary_10_1016_j_ensm_2020_04_010
crossref_primary_10_1021_acsami_0c17302
crossref_primary_10_1016_j_joule_2024_07_013
crossref_primary_10_1016_j_jechem_2022_01_019
crossref_primary_10_1016_j_ssi_2021_115636
crossref_primary_10_1039_D4CS00557K
crossref_primary_10_1002_batt_202100416
crossref_primary_10_1016_j_est_2024_115247
crossref_primary_10_1002_ange_202110589
crossref_primary_10_1021_acsami_3c14119
crossref_primary_10_1002_anie_202104671
crossref_primary_10_1021_jacsau_3c00035
crossref_primary_10_1002_adfm_202307404
crossref_primary_10_1007_s11705_022_2286_4
crossref_primary_10_1002_admi_202102283
crossref_primary_10_1021_acsnano_9b06653
crossref_primary_10_1002_adma_202305470
crossref_primary_10_20517_energymater_2023_93
crossref_primary_10_1016_j_cej_2020_124256
crossref_primary_10_1002_smll_202007142
crossref_primary_10_1007_s11426_022_1397_2
crossref_primary_10_1016_j_jechem_2020_07_009
crossref_primary_10_1021_acsenergylett_3c00826
crossref_primary_10_1016_j_nanoen_2020_104914
crossref_primary_10_1002_smsc_202100110
crossref_primary_10_1007_s41918_024_00221_0
crossref_primary_10_1016_j_carbon_2020_09_061
crossref_primary_10_1002_adfm_202406080
crossref_primary_10_1021_acsaem_1c04108
crossref_primary_10_1016_j_est_2024_113592
crossref_primary_10_1016_j_nanoen_2022_107677
Cites_doi 10.1016/j.joule.2017.10.007
10.1016/S0167-2738(02)00080-2
10.1002/anie.201801513
10.1002/anie.201712702
10.1016/j.ensm.2018.02.014
10.1002/anie.201807034
10.1002/cssc.201801445
10.1038/nenergy.2016.30
10.1016/j.joule.2019.03.028
10.1021/acs.nanolett.8b04106
10.1002/aenm.201402290
10.1002/adma.201800884
10.1002/adma.201805334
10.1002/anie.201710806
10.1002/adma.201805654
10.1016/j.joule.2019.02.004
10.1002/adma.201802068
10.1002/smll.201401837
10.1021/acscentsci.6b00260
10.1002/aenm.201702657
10.1002/adfm.201605989
10.1126/science.1253292
10.1021/jacs.6b08730
10.1002/adma.201805574
10.1002/anie.201813905
10.1038/nnano.2017.16
10.1002/adma.201706102
10.1002/adma.201707629
10.1038/nenergy.2017.119
10.1002/adma.201803270
10.1002/adma.201804684
10.1002/anie.201702099
10.1016/j.joule.2018.02.001
10.1038/s41560-018-0237-6
10.1002/adma.201803869
10.1016/j.chempr.2018.12.002
10.1016/j.joule.2018.03.008
10.1039/C7TA00371D
10.1002/adma.201706216
10.1002/adma.201706375
10.1021/acs.chemrev.7b00115
10.1016/j.ensm.2016.09.003
10.1021/acs.chemmater.8b02623
10.1002/anie.201805456
10.1038/nenergy.2017.12
10.1002/adma.201705711
10.1039/C3EE40795K
10.1002/adma.201801213
10.1021/acs.jpcc.8b06650
10.1038/s41560-019-0338-x
10.1016/j.eng.2018.10.008
10.1038/s41560-018-0198-9
10.1002/adma.201804461
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201902785
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31379042
10_1002_adma_201902785
ADMA201902785
Genre article
Journal Article
GrantInformation_xml – fundername: Tsinghua National Laboratory for Information Science and Technology
– fundername: National Natural Science Foundation of China
  funderid: 21676160; 21825501; 21805161; U1801257
– fundername: National Basic Research Program of China (973 Program)
  funderid: 2016YFA0202500; 2015CB932500
– fundername: China Postdoctoral Science Foundation
  funderid: 2018M631480
– fundername: Tsinghua University Initiative Scientific Research Program
– fundername: National Key Research and Development Program
  grantid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  grantid: 21676160
– fundername: National Natural Science Foundation of China
  grantid: 21825501
– fundername: National Natural Science Foundation of China
  grantid: 21805161
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M631480
– fundername: National Key Research and Development Program
  grantid: 2015CB932500
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2016YFA0202500
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2015CB932500
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4785-1ed0f33db8f2161ad9aac4269b03c7cadc445bf8b84a1320ed46a246b3b8e0703
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 15:50:36 EDT 2025
Fri Jul 25 05:55:59 EDT 2025
Wed Feb 19 02:31:29 EST 2025
Tue Jul 01 00:44:54 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Wed Jan 22 16:41:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords short circuit
polarization
lithium metal anodes
failure mechanism
pouch cell
“dead” Li
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4785-1ed0f33db8f2161ad9aac4269b03c7cadc445bf8b84a1320ed46a246b3b8e0703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PMID 31379042
PQID 2287448932
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2268574568
proquest_journals_2287448932
pubmed_primary_31379042
crossref_citationtrail_10_1002_adma_201902785
crossref_primary_10_1002_adma_201902785
wiley_primary_10_1002_adma_201902785_ADMA201902785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017 2018; 2 30
2019 2018; 3 3
2017; 5
2016 2018 2019 2018; 1 3 31 30
2014 2018 2018 2018; 7 8 30 57
2002 2017 2018 2018; 148 6 122 11
2019; 4
2019 2019 2019 2018 2014 2018 2018 2017 2018; 19 31 31 2 10 30 30 56 30
2015; 5
2018; 2
2019; 3
2016; 2
2018 2018 2019 2018 2018 2018; 57 57 58 30 30 30
2017 2019 2018 2018 2018; 12 5 14 4 2
2017 2018; 117 30
2018 2016; 30 138
2018; 30
2017 2018 2017 2018 2018; 2 57 27 57 30
2016; 351
e_1_2_5_9_4
e_1_2_5_15_1
e_1_2_5_9_3
e_1_2_5_11_4
e_1_2_5_9_2
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_3_5
e_1_2_5_7_1
e_1_2_5_3_4
e_1_2_5_5_2
e_1_2_5_11_3
e_1_2_5_13_1
e_1_2_5_3_3
e_1_2_5_5_1
e_1_2_5_11_2
e_1_2_5_3_2
e_1_2_5_3_1
e_1_2_5_1_2
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_19_2
e_1_2_5_8_5
e_1_2_5_10_6
e_1_2_5_8_4
e_1_2_5_10_5
e_1_2_5_14_1
e_1_2_5_6_5
e_1_2_5_8_3
e_1_2_5_10_8
e_1_2_5_16_2
e_1_2_5_6_4
e_1_2_5_8_2
e_1_2_5_10_7
e_1_2_5_16_1
e_1_2_5_6_3
e_1_2_5_8_1
e_1_2_5_10_2
e_1_2_5_6_2
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_10_4
e_1_2_5_2_4
e_1_2_5_10_3
e_1_2_5_12_1
e_1_2_5_2_3
e_1_2_5_4_1
e_1_2_5_2_2
e_1_2_5_2_1
e_1_2_5_10_9
e_1_2_5_18_1
e_1_2_5_8_6
References_xml – volume: 117 30
  year: 2017 2018
  publication-title: Chem. Rev. Adv. Mater.
– volume: 2 57 27 57 30
  start-page: 5301
  year: 2017 2018 2017 2018 2018
  publication-title: Nat. Energy Angew. Chem., Int. Ed. Adv. Funct. Mater. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 2
  start-page: 790
  year: 2016
  publication-title: ACS Cent. Sci.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 57 57 58 30 30 30
  start-page: 1505 9795 2093
  year: 2018 2018 2019 2018 2018 2018
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater. Adv. Mater. Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3 3
  start-page: 1094 889
  year: 2019 2018
  publication-title: Joule Nat. Energy
– volume: 351
  year: 2016
  publication-title: Science
– volume: 30 138
  start-page: 6769
  year: 2018 2016
  publication-title: Chem. Mater. J. Am. Chem. Soc.
– volume: 3
  start-page: 911
  year: 2019
  publication-title: Joule
– volume: 12 5 14 4 2
  start-page: 194 74 22 831 833
  year: 2017 2019 2018 2018 2018
  publication-title: Nat. Nanotechnol. Chem Energy Storage Mater. Engineering Joule
– volume: 1 3 31 30
  start-page: 732
  year: 2016 2018 2019 2018
  publication-title: Nat. Energy Nat. Energy Adv. Mater. Adv. Mater.
– volume: 19 31 31 2 10 30 30 56 30
  start-page: 1504 764 4257 7764
  year: 2019 2019 2019 2018 2014 2018 2018 2017 2018
  publication-title: Nano Lett. Adv. Mater. Adv. Mater. Joule Small Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 7 8 30 57
  start-page: 513
  year: 2014 2018 2018 2018
  publication-title: Energy Environ. Sci. Adv. Energy Mater. Adv. Mater. Angew. Chem., Int. Ed.
– volume: 2
  start-page: 110
  year: 2018
  publication-title: Joule
– volume: 2 30
  year: 2017 2018
  publication-title: Nat. Energy Adv. Mater.
– volume: 148 6 122 11
  start-page: 405 18 3821
  year: 2002 2017 2018 2018
  publication-title: Solid State Ionics Energy Storage Mater. J. Phys. Chem. C ChemSusChem
– ident: e_1_2_5_14_1
  doi: 10.1016/j.joule.2017.10.007
– ident: e_1_2_5_11_1
  doi: 10.1016/S0167-2738(02)00080-2
– ident: e_1_2_5_6_4
  doi: 10.1002/anie.201801513
– ident: e_1_2_5_2_4
  doi: 10.1002/anie.201712702
– ident: e_1_2_5_3_3
  doi: 10.1016/j.ensm.2018.02.014
– ident: e_1_2_5_6_2
  doi: 10.1002/anie.201807034
– ident: e_1_2_5_11_4
  doi: 10.1002/cssc.201801445
– ident: e_1_2_5_9_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_5_15_1
  doi: 10.1016/j.joule.2019.03.028
– ident: e_1_2_5_10_1
  doi: 10.1021/acs.nanolett.8b04106
– ident: e_1_2_5_13_1
  doi: 10.1002/aenm.201402290
– ident: e_1_2_5_10_9
  doi: 10.1002/adma.201800884
– ident: e_1_2_5_10_3
  doi: 10.1002/adma.201805334
– ident: e_1_2_5_8_1
  doi: 10.1002/anie.201710806
– ident: e_1_2_5_10_2
  doi: 10.1002/adma.201805654
– ident: e_1_2_5_16_1
  doi: 10.1016/j.joule.2019.02.004
– ident: e_1_2_5_2_3
  doi: 10.1002/adma.201802068
– ident: e_1_2_5_10_5
  doi: 10.1002/smll.201401837
– ident: e_1_2_5_12_1
  doi: 10.1021/acscentsci.6b00260
– ident: e_1_2_5_2_2
  doi: 10.1002/aenm.201702657
– ident: e_1_2_5_6_3
  doi: 10.1002/adfm.201605989
– ident: e_1_2_5_4_1
  doi: 10.1126/science.1253292
– ident: e_1_2_5_19_2
  doi: 10.1021/jacs.6b08730
– ident: e_1_2_5_9_3
  doi: 10.1002/adma.201805574
– ident: e_1_2_5_8_3
  doi: 10.1002/anie.201813905
– ident: e_1_2_5_3_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_5_7_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_5_8_5
  doi: 10.1002/adma.201707629
– ident: e_1_2_5_5_1
  doi: 10.1038/nenergy.2017.119
– ident: e_1_2_5_6_5
  doi: 10.1002/adma.201803270
– ident: e_1_2_5_9_4
  doi: 10.1002/adma.201804684
– ident: e_1_2_5_10_8
  doi: 10.1002/anie.201702099
– ident: e_1_2_5_10_4
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_5_16_2
  doi: 10.1038/s41560-018-0237-6
– ident: e_1_2_5_5_2
  doi: 10.1002/adma.201803869
– ident: e_1_2_5_3_2
  doi: 10.1016/j.chempr.2018.12.002
– ident: e_1_2_5_3_5
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_5_18_1
  doi: 10.1039/C7TA00371D
– ident: e_1_2_5_10_7
  doi: 10.1002/adma.201706216
– ident: e_1_2_5_1_2
  doi: 10.1002/adma.201706375
– ident: e_1_2_5_1_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_5_11_2
  doi: 10.1016/j.ensm.2016.09.003
– ident: e_1_2_5_19_1
  doi: 10.1021/acs.chemmater.8b02623
– ident: e_1_2_5_8_2
  doi: 10.1002/anie.201805456
– ident: e_1_2_5_6_1
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_5_8_4
  doi: 10.1002/adma.201705711
– ident: e_1_2_5_2_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_5_10_6
  doi: 10.1002/adma.201801213
– ident: e_1_2_5_11_3
  doi: 10.1021/acs.jpcc.8b06650
– ident: e_1_2_5_17_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_5_3_4
  doi: 10.1016/j.eng.2018.10.008
– ident: e_1_2_5_9_2
  doi: 10.1038/s41560-018-0198-9
– ident: e_1_2_5_8_6
  doi: 10.1002/adma.201804461
SSID ssj0009606
Score 2.6271498
Snippet Lithium (Li) metal is regarded as a “Holy Grail” electrode for next‐generation high‐energy‐density batteries. However, the electrochemical behavior of the Li...
Lithium (Li) metal is regarded as a "Holy Grail" electrode for next-generation high-energy-density batteries. However, the electrochemical behavior of the Li...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1902785
SubjectTerms Anodes
Circuits
Electrochemical analysis
Electrode polarization
Electrodes
failure mechanism
Failure mechanisms
Flux density
Induced polarization
Lithium
lithium metal anodes
Materials science
polarization
pouch cell
Powdering
Product safety
Separators
short circuit
Thickening
“dead” Li
Title Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201902785
https://www.ncbi.nlm.nih.gov/pubmed/31379042
https://www.proquest.com/docview/2287448932
https://www.proquest.com/docview/2268574568
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P6qrRBA8Vdc0bdPj4gMRFREXvJXJo7i4tuJuL_56M223uooIeuor06aZmeSjnfkGYJ_HcehgN8XhJIEvMkx8qa3wE60yqYVxqKOK8r2JLvri8iF8-JTFX_NDtB_cyDOq-ZocHNXo6IM0FE3FG-QWNB5LyjKngC1CRXcf_FEEzyuyvSD0k0jICWtjlx9Ni0-vSt-g5jRyrZae80XASafriJOnw3KsDvXbFz7H_7zVEiw0uJT1akNahhmbr8D8J7bCVbg8q0vm6IZjgJ0OkGK7WJExzFl_SES3j4OcXQ3cpnxm13ZMt8wLY5k7fVuU-pGd2OFwtAb987P7kwu_KcXga-H64R9b082CwCiZcYcR0SSImrJgVTfQsUajhQiddpUUSEnZ1ogIuYhUoKSlWWUdZvMit5vANGIms0hLSmqNnFRXxeh0YzIRC7ShB_5EFalueMqpXMYwrRmWeUpjlLZj5MFB2_6lZuj4sWVnotm08dRRyqsCAA61cQ_22svOx-jHCea2KKlNJMPYQU3pwUZtEe2jguMgTtzM5wGv9PpLH9Le6XWvPdr6i9A2zNF-HejWgdnxa2l3HDIaq93K-t8BfZwCow
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VegAOtOUZum2NhNRT2MVxEue4WkBbuosQYiVukV8RK5YEwebCr8fjPGBBVaX2FMWxE8fj8XxxZr4BOKBxHFrYjX44SeCzTCQ-V4b5iZIZV0xb1OG8fM-j4YSdXYeNNyHGwlT8EO2GG2qGW69RwXFDuvvCGiq0Iw6yFo3GPFyCj5jW231VXb4wSCFAd3R7QegnEeMNb2OPdhfbL9qld2BzEbs643P6CWTT7crn5PawnMtD9fSG0fG_3uszrNfQlPSrufQFPph8A9ZeERZuwtlJlTVH1TQD5Hgq0L2LFBkROZnMkOv2ZpqT0dQeyjsyNnO8ZV5oQ2zxRVGqGzIws9njFkxOT64GQ7_OxuArZvvhHxndy4JAS55RCxOFToRQGAgre4GKldCKsdAKWHImMC7baBYJyiIZSG5wYdmG5bzIzS4QJUTGs0hxjGuNbKuejIUVjs5YzIQJPfAbWaSqpirHjBmztCJZpimOUdqOkQc_2_r3FUnHH2t2GtGmtbI-ptTlALDAjXqw3162aob_TkRuihLrRDyMLdrkHuxUU6J9VHAUxIld_DygTrB_6UPaPx7327O9f2n0A1aGV-NROvp1_vsrrGJ55ffWgeX5Q2m-WaA0l9-dKjwDr68Gvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC58wKIHH-srPnZbEPYUjZ1O0jkOjoPrqog44C30EwfHRHRy8dfblWSio8iCnkI63Umlq6r7I6n6CmCPJknkYDfG4aShz6xIfa4M81MlLVdMO9RRRflexCd9dnoT3bzJ4q_5IdoPbugZ1XqNDv6g7cEraajQFW-Q29BowqNpmGVxwNGuu1evBFKIzyu2vTDy05jxMW1jQA8mx09uSx-w5iR0rfae3iKIsdR1yMndfjmS--r5HaHjd15rCRYaYEo6tSUtw5TJf8L8G7rCFTg9rmvmqIZkgHQHAoO7SGGJyEl_iEy3t4OcnA3cobwn52aEt8wLbYhrvixKdUuOzHD4tAr93vH10Ynf1GLwFXNy-IdGBzYMteSWOpAodCqEwjRYGYQqUUIrxiKnXsmZwKxso1ksKItlKLnBZWUNZvIiNxtAlBCW21hxzGqN3ahAJsLpRluWMGEiD_yxKjLVEJVjvYxhVlMs0wznKGvnyIM_bf-HmqLj057bY81mjas-ZbSqAOBgG_Vgt73snAz_nIjcFCX2iXmUOKzJPVivLaJ9VHgYJqlb-jyglV7_I0PW6Z532rPNrwz6DT8uu73s7O_Fvy2Yw-Y66G0bZkaPpdlxKGkkf1WO8AKmnwV2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Diagram+of+an+Ultrathin+Lithium+Metal+Anode+in+Pouch+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Peng&rft.au=Cheng%2C+Xin-Bing&rft.au=Li%2C+Tao&rft.au=Zhang%2C+Rui&rft.date=2019-09-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=37&rft.spage=e1902785&rft_id=info:doi/10.1002%2Fadma.201902785&rft_id=info%3Apmid%2F31379042&rft.externalDocID=31379042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon