Nanocomposite Materials for the Sodium–Ion Battery: A Review

Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery‐related energy storage facilities is an urgent su...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 5
Main Authors Liang, Yaru, Lai, Wei‐Hong, Miao, Zongcheng, Chou, Shu‐Lei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery‐related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium‐based batteries, sodium–ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium–ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium–ion batteries is summarized, and the existing challenges and the potential solutions are presented. To explore electrode materials with long cycle life and high energy density, a wide range of nanocomposites have been applied to the anodes and cathodes of sodium batteries. Due to the advantages of nanoscale composites, there have been great improvements in the electrical performance of sodium–ion batteries. The development of nanocomposite materials for sodium–ion batteries is reviewed here.
AbstractList Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented.
Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery‐related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium‐based batteries, sodium–ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium–ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium–ion batteries is summarized, and the existing challenges and the potential solutions are presented. To explore electrode materials with long cycle life and high energy density, a wide range of nanocomposites have been applied to the anodes and cathodes of sodium batteries. Due to the advantages of nanoscale composites, there have been great improvements in the electrical performance of sodium–ion batteries. The development of nanocomposite materials for sodium–ion batteries is reviewed here.
Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented.Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented.
Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented.
Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery‐related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium‐based batteries, sodium–ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium–ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na + ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium–ion batteries is summarized, and the existing challenges and the potential solutions are presented.
Author Miao, Zongcheng
Lai, Wei‐Hong
Chou, Shu‐Lei
Liang, Yaru
Author_xml – sequence: 1
  givenname: Yaru
  surname: Liang
  fullname: Liang, Yaru
  organization: Central South University
– sequence: 2
  givenname: Wei‐Hong
  surname: Lai
  fullname: Lai, Wei‐Hong
  organization: University of Wollongong Innovation Campus
– sequence: 3
  givenname: Zongcheng
  surname: Miao
  fullname: Miao, Zongcheng
  email: miaozongcheng@xijing.edu.cn
  organization: University of Wollongong Innovation Campus
– sequence: 4
  givenname: Shu‐Lei
  orcidid: 0000-0003-1155-6082
  surname: Chou
  fullname: Chou, Shu‐Lei
  email: shulei@uow.edu.au
  organization: University of Wollongong Innovation Campus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29266708$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKxDAUhoMoXka3LqXgxs2MJ2naNC6EUbzBqODoOqRpipG2GZNWmZ3v4Bv6JGYYZ4QBcZUD-b5zTvLvoPXGNhqhfQwDDECOfV1VAwKYAUkwXUPbOMVxP80IX1_WGLbQjvcvADEmlG2iLcJJmjLIttHpnWyssvXEetPq6Fa22hlZ-ai0LmqfdTS2henqr4_PG9tEZ7IN99OTaBg96Dej33fRRhlovfdz9tDT5cXj-XV_dH91cz4c9RVlGe2XJMmAE1aqjOasyGebKCXjJI9zqSArJOM5pSXXQEtc0pQmINOYY1VgFh4Q99DRvO_E2ddO-1bUxitdVbLRtvMCc8YTyJIkDujhCvpiO9eE7QLFYyAEwvgeOvihurzWhZg4U0s3FYufCQCdA8pZ750uhTKtbI1tWidNJTCIWQBiFoBYBhC0wYq26PynwOfCu6n09B9ajG9Ho1_3GyHHlxI
CitedBy_id crossref_primary_10_1002_smll_202204375
crossref_primary_10_1002_smtd_201900763
crossref_primary_10_1016_j_jcis_2020_01_023
crossref_primary_10_3390_app11041483
crossref_primary_10_1016_j_apsusc_2023_159023
crossref_primary_10_1016_j_ceramint_2024_06_020
crossref_primary_10_1007_s11581_019_03140_z
crossref_primary_10_1016_j_jpowsour_2018_05_089
crossref_primary_10_1039_D4CE00712C
crossref_primary_10_1016_j_electacta_2021_138561
crossref_primary_10_1002_aenm_201803342
crossref_primary_10_1016_j_jcis_2021_12_195
crossref_primary_10_1016_j_cej_2021_132755
crossref_primary_10_1021_acsami_0c09666
crossref_primary_10_1021_acsnano_1c00849
crossref_primary_10_1016_j_cej_2021_128813
crossref_primary_10_1016_j_commatsci_2022_111292
crossref_primary_10_1016_j_jpowsour_2020_227796
crossref_primary_10_1080_10667857_2018_1470959
crossref_primary_10_1016_j_jpowsour_2019_05_015
crossref_primary_10_1016_j_electacta_2022_141572
crossref_primary_10_1021_acs_energyfuels_4c00212
crossref_primary_10_1016_j_electacta_2023_143019
crossref_primary_10_1016_j_vacuum_2025_114186
crossref_primary_10_1016_j_ceramint_2019_06_235
crossref_primary_10_3390_molecules28165953
crossref_primary_10_1002_asia_201900751
crossref_primary_10_1016_j_coco_2021_100635
crossref_primary_10_1002_adfm_202006761
crossref_primary_10_1002_cssc_201903589
crossref_primary_10_1016_j_matdes_2019_108440
crossref_primary_10_1039_D2DT02087D
crossref_primary_10_3390_jcs9030105
crossref_primary_10_3390_nano12020203
crossref_primary_10_3365_KJMM_2022_60_6_448
crossref_primary_10_1039_D1TA06747H
crossref_primary_10_1002_aenm_202000564
crossref_primary_10_1002_cssc_201900719
crossref_primary_10_1088_2399_1984_abc103
crossref_primary_10_1021_acsami_3c04341
crossref_primary_10_1016_j_ccr_2021_214115
crossref_primary_10_1002_cnma_202200068
crossref_primary_10_1016_j_jallcom_2021_160182
crossref_primary_10_1016_j_ssi_2023_116325
crossref_primary_10_1002_smll_201902767
crossref_primary_10_1016_j_jallcom_2021_162483
crossref_primary_10_1016_j_jelechem_2022_117092
crossref_primary_10_1002_smll_202004108
crossref_primary_10_1007_s11581_023_05092_x
crossref_primary_10_3390_batteries11010028
crossref_primary_10_1016_j_mtener_2020_100470
crossref_primary_10_1007_s11356_020_09400_0
crossref_primary_10_1002_cey2_137
crossref_primary_10_1016_j_apsusc_2022_154864
crossref_primary_10_1016_j_cej_2019_123952
crossref_primary_10_1007_s12209_019_00209_8
crossref_primary_10_1016_j_est_2023_107700
crossref_primary_10_1002_aenm_202002077
crossref_primary_10_1002_adfm_201900778
crossref_primary_10_1002_aenm_202001764
crossref_primary_10_1016_j_ensm_2023_102950
crossref_primary_10_1039_C9NR00146H
crossref_primary_10_1021_acsaem_0c00110
crossref_primary_10_1002_ente_201901080
crossref_primary_10_1016_j_ensm_2021_06_004
crossref_primary_10_1021_acs_jpcc_8b06742
crossref_primary_10_1002_bte2_20230001
crossref_primary_10_1016_j_ensm_2020_02_004
crossref_primary_10_1016_j_jaap_2021_105215
crossref_primary_10_1016_j_jpowsour_2020_228194
crossref_primary_10_1016_j_solidstatesciences_2019_04_014
crossref_primary_10_1016_j_cej_2019_121998
crossref_primary_10_1002_eom2_12479
crossref_primary_10_1039_D1TA01626A
crossref_primary_10_1016_j_jcis_2021_12_157
crossref_primary_10_1016_j_mtphys_2021_100486
crossref_primary_10_1016_j_mtener_2022_101184
crossref_primary_10_1002_chem_201902899
crossref_primary_10_1016_j_nanoen_2018_12_024
crossref_primary_10_1016_j_cej_2020_125054
crossref_primary_10_1039_D4TC01332H
crossref_primary_10_54227_mlab_20220037
crossref_primary_10_1016_j_jechem_2020_11_007
crossref_primary_10_2139_ssrn_3985329
crossref_primary_10_3390_ma11102032
crossref_primary_10_1002_smll_201803482
crossref_primary_10_1016_j_ensm_2019_09_036
crossref_primary_10_1016_j_matchemphys_2021_125584
crossref_primary_10_1016_j_jelechem_2021_115275
crossref_primary_10_1002_smll_201901724
crossref_primary_10_1016_j_compositesb_2019_107400
crossref_primary_10_1016_j_cis_2022_102732
crossref_primary_10_1039_D3NJ02267F
crossref_primary_10_1021_acsanm_0c03155
crossref_primary_10_1039_C9NR03574E
crossref_primary_10_1016_j_colsurfa_2020_124561
crossref_primary_10_1021_acs_energyfuels_2c00569
crossref_primary_10_1039_D2RA06449A
crossref_primary_10_1039_C8EE01373J
crossref_primary_10_1016_j_carbon_2020_03_028
crossref_primary_10_1021_acs_jpcc_2c06531
crossref_primary_10_1021_acsami_8b21213
crossref_primary_10_1021_acs_energyfuels_1c02292
crossref_primary_10_1016_j_ceramint_2022_03_279
crossref_primary_10_1016_j_apsusc_2021_150394
crossref_primary_10_1016_j_coco_2021_100988
crossref_primary_10_1021_acsami_1c17117
crossref_primary_10_1016_j_jallcom_2023_172769
crossref_primary_10_1021_acsami_9b08929
crossref_primary_10_1021_acsenergylett_8b00762
crossref_primary_10_1021_acsaem_1c01223
crossref_primary_10_1021_acsaem_2c03537
crossref_primary_10_1002_advs_202102859
crossref_primary_10_1039_D0CS00156B
crossref_primary_10_1016_j_xcrp_2020_100082
crossref_primary_10_1021_acs_energyfuels_3c02047
crossref_primary_10_1016_j_clay_2019_05_006
crossref_primary_10_1021_acsaem_4c01310
crossref_primary_10_1016_j_jallcom_2019_153624
crossref_primary_10_1039_C9TA02966D
crossref_primary_10_1016_j_cjche_2021_09_011
crossref_primary_10_1016_j_enchem_2022_100095
crossref_primary_10_1002_cnl2_171
crossref_primary_10_1002_celc_202200800
crossref_primary_10_1021_acsami_1c16035
crossref_primary_10_1039_C9TA04274A
crossref_primary_10_1016_j_est_2023_108781
crossref_primary_10_1088_1361_6528_ac1ebc
crossref_primary_10_1016_j_eurpolymj_2024_113187
crossref_primary_10_1002_chem_201902400
crossref_primary_10_1039_D0CS00021C
crossref_primary_10_1002_smll_201907365
crossref_primary_10_1021_acsaem_8b01885
crossref_primary_10_1007_s00419_023_02427_y
crossref_primary_10_1016_j_cej_2021_134091
crossref_primary_10_1002_smtd_202100888
crossref_primary_10_1063_5_0096098
crossref_primary_10_1016_j_jallcom_2020_156939
crossref_primary_10_1088_2053_1583_abf233
crossref_primary_10_1039_D1QM01360B
crossref_primary_10_1002_smll_201902466
crossref_primary_10_1002_tcr_202400176
crossref_primary_10_1002_celc_202300607
crossref_primary_10_1016_j_jpowsour_2021_229510
crossref_primary_10_1016_j_jallcom_2018_08_272
crossref_primary_10_1039_C9NR05594K
crossref_primary_10_1002_est2_70048
crossref_primary_10_1021_acsanm_1c04122
crossref_primary_10_1039_C9CP04349G
crossref_primary_10_1016_j_electacta_2019_135393
crossref_primary_10_1007_s12598_022_02002_4
crossref_primary_10_1039_D0RA02596H
crossref_primary_10_1016_j_apsusc_2021_152000
crossref_primary_10_1016_j_jallcom_2020_153686
crossref_primary_10_1002_adfm_201908209
crossref_primary_10_1016_j_matdes_2019_108287
crossref_primary_10_2339_politeknik_825365
crossref_primary_10_1016_j_est_2019_101113
crossref_primary_10_3390_nano11020538
crossref_primary_10_3390_ma15238574
crossref_primary_10_1002_celc_202200332
crossref_primary_10_1016_j_ceramint_2021_03_072
crossref_primary_10_1039_D3NA00271C
crossref_primary_10_1016_j_jallcom_2021_160588
crossref_primary_10_1016_j_nanoen_2022_107083
crossref_primary_10_1016_j_apsusc_2020_147735
crossref_primary_10_1039_D1SE00341K
crossref_primary_10_1016_j_adna_2024_03_002
crossref_primary_10_1021_acsami_1c17554
crossref_primary_10_1002_adfm_201801765
crossref_primary_10_1021_acsnano_2c11699
crossref_primary_10_1002_admi_202100188
crossref_primary_10_1016_j_nanoen_2018_11_091
crossref_primary_10_1002_adfm_202000473
crossref_primary_10_1039_D0TA02767G
crossref_primary_10_1016_j_jcis_2022_07_033
crossref_primary_10_1016_j_jpowsour_2021_230729
crossref_primary_10_1002_celc_202101449
crossref_primary_10_1039_C8NR10444A
crossref_primary_10_1002_batt_202400352
crossref_primary_10_1021_acs_iecr_9b02029
crossref_primary_10_1007_s10854_025_14239_7
crossref_primary_10_1039_D1MA00490E
crossref_primary_10_1016_j_jallcom_2022_168111
crossref_primary_10_1016_j_matlet_2021_130507
crossref_primary_10_3390_su141610014
crossref_primary_10_1016_j_jcis_2024_06_163
crossref_primary_10_1016_j_jallcom_2022_168350
crossref_primary_10_1021_acs_inorgchem_9b00971
crossref_primary_10_3390_nano14241989
crossref_primary_10_1002_adfm_202301974
crossref_primary_10_1016_j_jssc_2019_03_032
crossref_primary_10_1016_j_ces_2022_117951
crossref_primary_10_1016_j_jpowsour_2021_230722
crossref_primary_10_1002_adma_202101576
crossref_primary_10_1016_j_jechem_2020_05_065
crossref_primary_10_1007_s40843_023_2550_2
crossref_primary_10_1002_aenm_202002205
crossref_primary_10_1002_adsu_202400307
crossref_primary_10_1002_adfm_202100505
crossref_primary_10_1002_adfm_202106047
crossref_primary_10_1016_j_carbon_2019_05_030
crossref_primary_10_1002_adma_201805430
crossref_primary_10_1016_j_ensm_2021_04_009
crossref_primary_10_1016_j_ensm_2020_04_004
crossref_primary_10_1039_D4TA00252K
crossref_primary_10_1016_j_electacta_2021_137835
crossref_primary_10_1002_wene_461
crossref_primary_10_1021_acsami_1c06168
crossref_primary_10_1039_D1QM00179E
crossref_primary_10_1016_j_ceramint_2021_07_022
crossref_primary_10_1002_smll_202100514
crossref_primary_10_1007_s10008_023_05416_x
crossref_primary_10_1021_acsanm_3c05944
crossref_primary_10_1007_s12274_021_3320_4
crossref_primary_10_1002_smll_201900233
crossref_primary_10_1016_j_ensm_2021_06_025
crossref_primary_10_1002_celc_202001323
crossref_primary_10_1002_adfm_202112179
crossref_primary_10_1016_j_ensm_2020_10_003
crossref_primary_10_1149_1945_7111_ac4843
crossref_primary_10_1016_j_jallcom_2020_157686
crossref_primary_10_1016_j_jechem_2022_07_030
crossref_primary_10_1016_j_cej_2021_132705
crossref_primary_10_1002_admi_201900460
crossref_primary_10_1016_j_cej_2020_127776
crossref_primary_10_1016_j_mseb_2020_115024
crossref_primary_10_1016_j_xcrp_2022_101240
crossref_primary_10_1016_j_jallcom_2019_152703
crossref_primary_10_1016_j_jallcom_2023_170866
crossref_primary_10_1016_j_est_2024_111968
crossref_primary_10_1016_j_cej_2024_155370
crossref_primary_10_1016_j_jcis_2020_04_096
crossref_primary_10_1016_j_jpowsour_2022_232210
crossref_primary_10_1149_1945_7111_ab971e
crossref_primary_10_1016_j_jechem_2020_08_039
crossref_primary_10_1002_smll_202000504
crossref_primary_10_1016_j_ensm_2019_07_010
crossref_primary_10_1039_C9NJ05986E
crossref_primary_10_1021_acsami_2c13016
crossref_primary_10_1039_C8TA08774A
crossref_primary_10_1016_j_cej_2020_127402
crossref_primary_10_1002_eom2_12043
crossref_primary_10_1016_j_cej_2021_130557
crossref_primary_10_1016_j_ensm_2019_03_030
crossref_primary_10_1021_acsaem_3c03106
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1039_C9QM00674E
crossref_primary_10_1016_j_jcis_2024_06_080
crossref_primary_10_1016_j_diamond_2023_110290
crossref_primary_10_1016_j_jelechem_2024_118212
crossref_primary_10_1002_smll_201901584
crossref_primary_10_1016_j_electacta_2019_02_067
crossref_primary_10_1002_er_6557
crossref_primary_10_1016_j_jechem_2020_07_011
Cites_doi 10.1002/anie.201510978
10.1039/C6TA09754E
10.1039/c3ta10920h
10.1016/j.jpowsour.2016.06.011
10.1016/j.jpowsour.2017.04.075
10.1021/jp507116t
10.1039/C5RA02834E
10.1002/adfm.201600747
10.1039/C4NR05106H
10.1039/C4TA00239C
10.1016/j.electacta.2014.09.080
10.1002/adma.201605535
10.1016/j.jpowsour.2011.06.061
10.1039/C5TA03181H
10.1016/j.nanoen.2016.06.026
10.1039/c3ta13438e
10.1002/smtd.201700219
10.1016/j.jpowsour.2015.03.042
10.1002/aenm.201401123
10.1002/aenm.201500716
10.1039/C3EE42944J
10.1016/j.matlet.2016.07.128
10.1016/j.jallcom.2017.02.075
10.1016/j.elecom.2012.06.001
10.1002/smll.201500783
10.1038/srep09254
10.1016/j.nanoen.2014.12.012
10.1021/nl4035626
10.1039/C5TA03192C
10.1016/j.electacta.2015.03.115
10.1002/adma.201400794
10.1016/j.electacta.2015.08.051
10.1002/adma.200800627
10.1039/C4TA06825D
10.1016/j.electacta.2016.10.160
10.1021/acs.chemmater.5b00616
10.1038/srep07231
10.1002/adma.201605694
10.1039/C5TA03893F
10.1016/j.nanoen.2015.05.012
10.1021/acsami.5b06385
10.1016/j.carbon.2015.10.054
10.1016/j.nanoen.2015.04.032
10.1021/acsami.5b06590
10.1039/C6TA05069G
10.1021/cm400805q
10.1021/acsnano.5b06538
10.1007/s12274-015-0838-3
10.1002/wene.136
10.1039/C5TA05758B
10.1002/cplu.201402394
10.1039/C4TA06708H
10.1021/acs.inorgchem.6b01515
10.1021/acsami.5b05509
10.1039/c2ee02781j
10.1039/C5NR03335G
10.1021/acsami.5b08274
10.1021/nl403053v
10.1016/j.nanoen.2014.10.004
10.1002/anie.201411917
10.1002/advs.201600275
10.1002/smll.201603318
10.1039/C5TA07696J
10.1039/C5TA00643K
10.1039/c2cc17129e
10.1002/advs.201700072
10.1002/adma.201502864
10.1007/s11581-015-1574-0
10.1039/C4TA03365E
10.1021/nl302819f
10.1007/s10008-015-3063-9
10.1016/j.jpowsour.2015.06.076
10.1021/acsnano.5b00376
10.1016/j.ensm.2016.07.001
10.1039/C5EE02074C
10.1007/s12274-014-0506-z
10.1038/nnano.2015.194
10.1016/j.elecom.2012.06.014
10.1021/acs.chemmater.5b00633
10.1016/j.jpowsour.2015.10.033
10.1016/j.jallcom.2016.02.176
10.1021/nn505536t
10.1016/j.elecom.2014.07.005
10.1002/aenm.201100655
10.1021/acsnano.5b04474
10.1021/acsami.5b02413
10.1016/j.ensm.2017.01.002
10.1002/cssc.200900182
10.1002/smtd.201600020
10.1002/adfm.201402943
10.1002/smtd.201700098
10.1021/am405970s
10.1021/acsami.6b00179
10.1038/srep08418
10.1039/C7TA00153C
10.1039/c3cp52408f
10.1016/j.jpowsour.2015.06.015
10.1039/C4TA06476C
10.1016/S1452-3981(23)11280-6
10.1016/j.jallcom.2015.10.212
10.1016/j.jpowsour.2014.07.081
10.1039/C3CC47977C
10.1021/nl501152f
10.1021/cr500192f
10.1016/j.electacta.2015.12.136
10.1002/adma.201306314
10.1021/acsami.5b11954
10.1021/am508547g
10.1002/aenm.201600389
10.1016/j.carbon.2015.09.091
10.1039/C4NR06432A
10.1021/acs.nanolett.6b00942
10.1016/j.ensm.2016.07.007
10.1002/anie.201209689
10.1021/am5061036
10.1002/admi.201500740
10.1016/j.carbon.2013.01.064
10.1016/j.electacta.2012.08.103
10.1021/acsami.5b04338
10.1021/acsami.6b03969
10.1039/C3TA13592F
10.1038/ncomms9689
10.1039/c4cc00840e
10.1002/aenm.201200803
10.1039/C4NR07054B
10.1021/nn4025674
10.1016/j.electacta.2016.01.116
10.1016/j.electacta.2015.01.186
10.1039/C5TA03188E
10.1039/C4CC10203G
10.1002/adfm.201404078
10.1039/C5RA12478F
10.1002/smtd.201600063
10.1039/C5EE03262H
10.1039/c3ce41545g
10.1021/nl502759z
10.1038/ncomms3922
10.1021/nl504676v
10.1016/j.electacta.2015.05.055
10.1002/smtd.201700094
10.1021/acsami.6b00641
10.1002/smll.201402246
10.1016/j.electacta.2015.07.140
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201702514
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 29266708
10_1002_smll_201702514
SMLL201702514
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Science Research Foundation of Xijing University
  funderid: XJ16T02
– fundername: China Scholarship Council
– fundername: Australian Renewable Energy Agency
  funderid: G00849
– fundername: Australian Research Council
  funderid: LP120200432
– fundername: National Natural Science Foundation of China
  funderid: 51673157
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4784-f2580927fc84b7db0031cca35b3bac08da79b44f9e04f1f46450a6391cd176813
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 15:14:31 EDT 2025
Fri Jul 25 12:14:56 EDT 2025
Thu Apr 03 07:00:41 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Tue Jul 01 02:10:32 EDT 2025
Wed Jan 22 16:42:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords anodes
sodium-ion batteries
cathodes
nanocomposites
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4784-f2580927fc84b7db0031cca35b3bac08da79b44f9e04f1f46450a6391cd176813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1155-6082
PMID 29266708
PQID 1993022000
PQPubID 1046358
PageCount 20
ParticipantIDs proquest_miscellaneous_1979508553
proquest_journals_1993022000
pubmed_primary_29266708
crossref_citationtrail_10_1002_smll_201702514
crossref_primary_10_1002_smll_201702514
wiley_primary_10_1002_smll_201702514_SMLL201702514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 1, 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 1, 2018
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 1
2013; 3
2013; 4
2013; 25
2013; 1
2017; 4
2014; 26
2016; 220
2015; 80
2016; 302
2013; 7
2011; 196
2012; 12
2017; 357
2016; 183
2015; 173
2015; 294
2015; 293
2013; 15
2014; 4
2014; 2
2013; 13
2013; 57
2015; 177
2015; 178
2013; 52
2015; 176
2016; 672
2014; 14
2008; 20
2010; 3
2014; 8
2014; 7
2014; 50
2016; 191
2016; 190
2014; 6
2012; 22
2014; 10
2014; 118
2015; 284
2015; 12
2015; 15
2015; 160
2015; 6
2015; 5
2015; 4
2015; 3
2013; 87
2015; 51
2015; 11
2015; 10
2015; 54
2016; 98
2016; 10
2016; 96
2014; 46
2017; 29
2016; 324
2015; 9
2016; 16
2015; 8
2015; 7
2014; 114
2016; 55
2016; 4
2016; 5
2016; 6
2017; 704
2015; 25
2012; 2
2015; 27
2016; 3
2016; 658
2015; 20
2015; 22
2017; 13
2012; 48
2016; 27
2012; 5
2016; 26
2016; 8
2016; 9
2014; 269
2014; 146
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_135_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_136_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_28_1
e_1_2_7_144_1
Nguyen V. (e_1_2_7_130_1) 2015; 10
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_138_1
References_xml – volume: 177
  start-page: 304
  year: 2015
  publication-title: Electrochim. Acta
– volume: 46
  start-page: 124
  year: 2014
  publication-title: Electrochem. Commun.
– volume: 26
  start-page: 3854
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  start-page: 24895
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 6452
  year: 2015
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 4
  start-page: 1600275
  year: 2017
  publication-title: Adv. Sci.
– volume: 5
  start-page: 9254
  year: 2015
  publication-title: Sci. Rep.
– volume: 118
  start-page: 23527
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 2922
  year: 2013
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1605535
  year: 2017
  publication-title: Adv. Mater.
– volume: 48
  start-page: 3321
  year: 2012
  publication-title: Chem. Commun.
– volume: 3
  start-page: 16971
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 7231
  year: 2014
  publication-title: Sci. Rep.
– volume: 5
  start-page: 1401123
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 7147
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 11824
  year: 2014
  publication-title: ACS Nano
– volume: 176
  start-page: 1296
  year: 2015
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 136
  year: 2010
  publication-title: ChemSusChem
– volume: 3
  start-page: 10258
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 6670
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  start-page: 295
  year: 2014
  publication-title: Nano Energy
– volume: 26
  start-page: 5315
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 18387
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 21880
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 3408
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 4633
  year: 2013
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 5
  start-page: 5884
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 20487
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 4192
  year: 2014
  publication-title: Chem. Commun.
– volume: 269
  start-page: 848
  year: 2014
  publication-title: J. Power Sources
– volume: 27
  start-page: 3096
  year: 2015
  publication-title: Chem. Mater.
– volume: 5
  start-page: 198
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 1700072
  year: 2017
  publication-title: Adv. Sci.
– volume: 5
  start-page: 2710
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 8418
  year: 2015
  publication-title: Sci. Rep.
– volume: 3
  start-page: 17899
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 357
  start-page: 164
  year: 2017
  publication-title: J. Power Sources
– volume: 1
  start-page: 1700094
  year: 2017
  publication-title: Small Methods
– volume: 183
  start-page: 346
  year: 2016
  publication-title: Mater. Lett.
– volume: 658
  start-page: 234
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 22
  start-page: 555
  year: 2015
  publication-title: Ionics
– volume: 1
  start-page: 13727
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 31465
  year: 2015
  publication-title: RSC Adv.
– volume: 284
  start-page: 287
  year: 2015
  publication-title: J. Power Sources
– volume: 7
  start-page: 2770
  year: 2015
  publication-title: Nanoscale
– volume: 29
  start-page: 1605694
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 7221
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 324
  start-page: 780
  year: 2016
  publication-title: J. Power Sources
– volume: 22
  start-page: 85
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 15
  start-page: 2917
  year: 2015
  publication-title: Nano Lett.
– volume: 3
  start-page: 444
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 7181
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 2971
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 3539
  year: 2014
  publication-title: Nano Lett.
– volume: 11
  start-page: 3822
  year: 2015
  publication-title: Small
– volume: 9
  start-page: 1430
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 13088
  year: 2015
  publication-title: Nanoscale
– volume: 1
  start-page: 1600020
  year: 2017
  publication-title: Small Methods
– volume: 2
  start-page: 410
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 87
  start-page: 41
  year: 2013
  publication-title: Electrochim. Acta
– volume: 146
  start-page: 328
  year: 2014
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 9080
  year: 2013
  publication-title: CrystEngComm
– volume: 20
  start-page: 2878
  year: 2008
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1624
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 139
  year: 2014
  publication-title: Nano Lett.
– volume: 20
  start-page: 479
  year: 2015
  publication-title: J. Solid State Electrochem.
– volume: 13
  start-page: 5480
  year: 2013
  publication-title: Nano Lett.
– volume: 8
  start-page: 3384
  year: 2015
  publication-title: Nano Res.
– volume: 178
  start-page: 871
  year: 2015
  publication-title: Electrochim. Acta
– volume: 294
  start-page: 193
  year: 2015
  publication-title: J. Power Sources
– volume: 12
  start-page: 88
  year: 2015
  publication-title: Nano Energy
– volume: 7
  start-page: 3164
  year: 2015
  publication-title: Nanoscale
– volume: 3
  start-page: 5820
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 71644
  year: 2015
  publication-title: RSC Adv.
– volume: 220
  start-page: 683
  year: 2016
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 253
  year: 2015
  publication-title: Wiley Interdiscip. Rev.: Energy Environ.
– volume: 196
  start-page: 9612
  year: 2011
  publication-title: J. Power Sources
– volume: 5
  start-page: 9833
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 4274
  year: 2015
  publication-title: Chem. Mater.
– volume: 22
  start-page: 149
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 96
  start-page: 1028
  year: 2016
  publication-title: Carbon
– volume: 5
  start-page: 1500716
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 3321
  year: 2016
  publication-title: Nano Lett.
– volume: 7
  start-page: 20957
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 4242
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 8689
  year: 2015
  publication-title: Nat. Commun.
– volume: 2
  start-page: 16424
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 9033
  year: 2016
  publication-title: Inorg. Chem.
– volume: 3
  start-page: 1500740
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 180
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 114
  start-page: 11636
  year: 2014
  publication-title: Chem. Rev.
– volume: 302
  start-page: 61
  year: 2016
  publication-title: J. Power Sources
– volume: 14
  start-page: 6329
  year: 2014
  publication-title: Nano Lett.
– volume: 10
  start-page: 3257
  year: 2016
  publication-title: ACS Nano
– volume: 7
  start-page: 323
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1700219
  year: 2017
  publication-title: Small Methods
– volume: 80
  start-page: 1000
  year: 2015
  publication-title: ChemPlusChem
– volume: 25
  start-page: 1393
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 11207
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 1700098
  year: 2017
  publication-title: Small Methods
– volume: 8
  start-page: 17233
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 173
  start-page: 193
  year: 2015
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 529
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 1215
  year: 2014
  publication-title: Chem. Commun.
– volume: 293
  start-page: 784
  year: 2015
  publication-title: J. Power Sources
– volume: 6
  start-page: 1600389
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 10565
  year: 2015
  publication-title: Int. J. Electrochem. Sci.
– volume: 26
  start-page: 4037
  year: 2014
  publication-title: Adv. Mater.
– volume: 672
  start-page: 72
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 9
  start-page: 3254
  year: 2015
  publication-title: ACS Nano
– volume: 10
  start-page: 980
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 19362
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 3531
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 7811
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1466
  year: 2014
  publication-title: Nano Res.
– volume: 1
  start-page: 1600063
  year: 2017
  publication-title: Small Methods
– volume: 704
  start-page: 631
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 7912
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 130
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 13193
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 3545
  year: 2015
  publication-title: Chem. Commun.
– volume: 160
  start-page: 330
  year: 2015
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 27
  year: 2016
  publication-title: Nano Energy
– volume: 190
  start-page: 402
  year: 2016
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 01603318
  year: 2017
  publication-title: Small
– volume: 191
  start-page: 435
  year: 2016
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 13032
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 14750
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2170
  year: 2015
  publication-title: Small
– volume: 7
  start-page: 11476
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 4793
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 6032
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 453
  year: 2015
  publication-title: Nano Energy
– volume: 7
  start-page: 20902
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 5664
  year: 2012
  publication-title: Nano Lett.
– volume: 9
  start-page: 11933
  year: 2015
  publication-title: ACS Nano
– volume: 25
  start-page: 2777
  year: 2013
  publication-title: Chem. Mater.
– volume: 7
  start-page: 6378
  year: 2013
  publication-title: ACS Nano
– volume: 15
  start-page: 379
  year: 2015
  publication-title: Nano Energy
– volume: 57
  start-page: 202
  year: 2013
  publication-title: Carbon
– volume: 7
  start-page: 1325
  year: 2015
  publication-title: Nanoscale
– volume: 98
  start-page: 162
  year: 2016
  publication-title: Carbon
– volume: 25
  start-page: 214
  year: 2015
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201510978
– ident: e_1_2_7_127_1
  doi: 10.1039/C6TA09754E
– ident: e_1_2_7_62_1
  doi: 10.1039/c3ta10920h
– ident: e_1_2_7_76_1
  doi: 10.1016/j.jpowsour.2016.06.011
– ident: e_1_2_7_117_1
  doi: 10.1016/j.jpowsour.2017.04.075
– ident: e_1_2_7_37_1
  doi: 10.1021/jp507116t
– ident: e_1_2_7_53_1
  doi: 10.1039/C5RA02834E
– ident: e_1_2_7_126_1
  doi: 10.1002/adfm.201600747
– ident: e_1_2_7_40_1
  doi: 10.1039/C4NR05106H
– ident: e_1_2_7_133_1
  doi: 10.1039/C4TA00239C
– ident: e_1_2_7_60_1
  doi: 10.1016/j.electacta.2014.09.080
– ident: e_1_2_7_118_1
  doi: 10.1002/adma.201605535
– ident: e_1_2_7_108_1
  doi: 10.1016/j.jpowsour.2011.06.061
– ident: e_1_2_7_1_1
  doi: 10.1039/C5TA03181H
– ident: e_1_2_7_103_1
  doi: 10.1016/j.nanoen.2016.06.026
– ident: e_1_2_7_17_1
  doi: 10.1039/c3ta13438e
– ident: e_1_2_7_5_1
  doi: 10.1002/smtd.201700219
– ident: e_1_2_7_74_1
  doi: 10.1016/j.jpowsour.2015.03.042
– ident: e_1_2_7_48_1
  doi: 10.1002/aenm.201401123
– ident: e_1_2_7_116_1
  doi: 10.1002/aenm.201500716
– ident: e_1_2_7_13_1
  doi: 10.1039/C3EE42944J
– ident: e_1_2_7_104_1
  doi: 10.1016/j.matlet.2016.07.128
– ident: e_1_2_7_120_1
  doi: 10.1016/j.jallcom.2017.02.075
– ident: e_1_2_7_101_1
  doi: 10.1016/j.elecom.2012.06.001
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.201500783
– ident: e_1_2_7_11_1
  doi: 10.1038/srep09254
– ident: e_1_2_7_24_1
  doi: 10.1016/j.nanoen.2014.12.012
– ident: e_1_2_7_51_1
  doi: 10.1021/nl4035626
– ident: e_1_2_7_96_1
  doi: 10.1039/C5TA03192C
– ident: e_1_2_7_58_1
  doi: 10.1016/j.electacta.2015.03.115
– ident: e_1_2_7_94_1
  doi: 10.1002/adma.201400794
– ident: e_1_2_7_81_1
  doi: 10.1016/j.electacta.2015.08.051
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.200800627
– ident: e_1_2_7_78_1
  doi: 10.1039/C4TA06825D
– ident: e_1_2_7_124_1
  doi: 10.1016/j.electacta.2016.10.160
– ident: e_1_2_7_71_1
  doi: 10.1021/acs.chemmater.5b00616
– ident: e_1_2_7_144_1
  doi: 10.1038/srep07231
– ident: e_1_2_7_137_1
  doi: 10.1002/adma.201605694
– ident: e_1_2_7_30_1
  doi: 10.1039/C5TA03893F
– ident: e_1_2_7_54_1
  doi: 10.1016/j.nanoen.2015.05.012
– ident: e_1_2_7_92_1
  doi: 10.1021/acsami.5b06385
– ident: e_1_2_7_131_1
  doi: 10.1016/j.carbon.2015.10.054
– ident: e_1_2_7_23_1
  doi: 10.1016/j.nanoen.2015.04.032
– ident: e_1_2_7_91_1
  doi: 10.1021/acsami.5b06590
– ident: e_1_2_7_102_1
  doi: 10.1039/C6TA05069G
– ident: e_1_2_7_123_1
  doi: 10.1021/cm400805q
– ident: e_1_2_7_52_1
  doi: 10.1021/acsnano.5b06538
– ident: e_1_2_7_55_1
  doi: 10.1007/s12274-015-0838-3
– ident: e_1_2_7_4_1
  doi: 10.1002/wene.136
– ident: e_1_2_7_88_1
  doi: 10.1039/C5TA05758B
– ident: e_1_2_7_28_1
  doi: 10.1002/cplu.201402394
– ident: e_1_2_7_38_1
  doi: 10.1039/C4TA06708H
– ident: e_1_2_7_99_1
  doi: 10.1021/acs.inorgchem.6b01515
– ident: e_1_2_7_87_1
  doi: 10.1021/acsami.5b05509
– ident: e_1_2_7_3_1
  doi: 10.1039/c2ee02781j
– ident: e_1_2_7_21_1
  doi: 10.1039/C5NR03335G
– ident: e_1_2_7_68_1
  doi: 10.1021/acsami.5b08274
– ident: e_1_2_7_18_1
  doi: 10.1021/nl403053v
– ident: e_1_2_7_140_1
  doi: 10.1016/j.nanoen.2014.10.004
– ident: e_1_2_7_121_1
  doi: 10.1002/anie.201411917
– ident: e_1_2_7_105_1
  doi: 10.1002/advs.201600275
– ident: e_1_2_7_114_1
  doi: 10.1002/smll.201603318
– ident: e_1_2_7_122_1
  doi: 10.1039/C5TA07696J
– ident: e_1_2_7_139_1
  doi: 10.1039/C5TA00643K
– ident: e_1_2_7_66_1
  doi: 10.1039/c2cc17129e
– ident: e_1_2_7_2_1
  doi: 10.1002/advs.201700072
– ident: e_1_2_7_113_1
  doi: 10.1002/adma.201502864
– ident: e_1_2_7_82_1
  doi: 10.1007/s11581-015-1574-0
– ident: e_1_2_7_86_1
  doi: 10.1039/C4TA03365E
– ident: e_1_2_7_134_1
  doi: 10.1021/nl302819f
– ident: e_1_2_7_136_1
  doi: 10.1007/s10008-015-3063-9
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jpowsour.2015.06.076
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.5b00376
– ident: e_1_2_7_61_1
  doi: 10.1016/j.ensm.2016.07.001
– ident: e_1_2_7_46_1
  doi: 10.1039/C5EE02074C
– ident: e_1_2_7_69_1
  doi: 10.1007/s12274-014-0506-z
– ident: e_1_2_7_36_1
  doi: 10.1038/nnano.2015.194
– ident: e_1_2_7_109_1
  doi: 10.1016/j.elecom.2012.06.014
– ident: e_1_2_7_83_1
  doi: 10.1021/acs.chemmater.5b00633
– ident: e_1_2_7_119_1
  doi: 10.1016/j.jpowsour.2015.10.033
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jallcom.2016.02.176
– ident: e_1_2_7_63_1
  doi: 10.1021/nn505536t
– ident: e_1_2_7_72_1
  doi: 10.1016/j.elecom.2014.07.005
– ident: e_1_2_7_125_1
  doi: 10.1002/aenm.201100655
– ident: e_1_2_7_19_1
  doi: 10.1021/acsnano.5b04474
– ident: e_1_2_7_84_1
  doi: 10.1021/acsami.5b02413
– ident: e_1_2_7_106_1
  doi: 10.1016/j.ensm.2017.01.002
– ident: e_1_2_7_7_1
  doi: 10.1002/cssc.200900182
– ident: e_1_2_7_45_1
  doi: 10.1002/smtd.201600020
– ident: e_1_2_7_47_1
  doi: 10.1002/adfm.201402943
– ident: e_1_2_7_6_1
  doi: 10.1002/smtd.201700098
– ident: e_1_2_7_129_1
  doi: 10.1021/am405970s
– ident: e_1_2_7_33_1
  doi: 10.1021/acsami.6b00179
– ident: e_1_2_7_50_1
  doi: 10.1038/srep08418
– ident: e_1_2_7_111_1
  doi: 10.1039/C7TA00153C
– ident: e_1_2_7_142_1
  doi: 10.1039/c3cp52408f
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jpowsour.2015.06.015
– ident: e_1_2_7_56_1
  doi: 10.1039/C4TA06476C
– volume: 10
  start-page: 10565
  year: 2015
  ident: e_1_2_7_130_1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)11280-6
– ident: e_1_2_7_75_1
  doi: 10.1016/j.jallcom.2015.10.212
– ident: e_1_2_7_67_1
  doi: 10.1016/j.jpowsour.2014.07.081
– ident: e_1_2_7_79_1
  doi: 10.1039/C3CC47977C
– ident: e_1_2_7_132_1
  doi: 10.1021/nl501152f
– ident: e_1_2_7_100_1
  doi: 10.1021/cr500192f
– ident: e_1_2_7_57_1
  doi: 10.1016/j.electacta.2015.12.136
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201306314
– ident: e_1_2_7_128_1
  doi: 10.1021/acsami.5b11954
– ident: e_1_2_7_73_1
  doi: 10.1021/am508547g
– ident: e_1_2_7_115_1
  doi: 10.1002/aenm.201600389
– ident: e_1_2_7_10_1
  doi: 10.1016/j.carbon.2015.09.091
– ident: e_1_2_7_80_1
  doi: 10.1039/C4NR06432A
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.nanolett.6b00942
– ident: e_1_2_7_143_1
  doi: 10.1016/j.ensm.2016.07.007
– ident: e_1_2_7_64_1
  doi: 10.1002/anie.201209689
– ident: e_1_2_7_89_1
  doi: 10.1021/am5061036
– ident: e_1_2_7_97_1
  doi: 10.1002/admi.201500740
– ident: e_1_2_7_22_1
  doi: 10.1016/j.carbon.2013.01.064
– ident: e_1_2_7_59_1
  doi: 10.1016/j.electacta.2012.08.103
– ident: e_1_2_7_14_1
  doi: 10.1021/acsami.5b04338
– ident: e_1_2_7_138_1
  doi: 10.1021/acsami.6b03969
– ident: e_1_2_7_77_1
  doi: 10.1039/C3TA13592F
– ident: e_1_2_7_49_1
  doi: 10.1038/ncomms9689
– ident: e_1_2_7_39_1
  doi: 10.1039/c4cc00840e
– ident: e_1_2_7_112_1
  doi: 10.1002/aenm.201200803
– ident: e_1_2_7_26_1
  doi: 10.1039/C4NR07054B
– ident: e_1_2_7_12_1
  doi: 10.1021/nn4025674
– ident: e_1_2_7_90_1
  doi: 10.1016/j.electacta.2016.01.116
– ident: e_1_2_7_141_1
  doi: 10.1016/j.electacta.2015.01.186
– ident: e_1_2_7_29_1
  doi: 10.1039/C5TA03188E
– ident: e_1_2_7_95_1
  doi: 10.1039/C4CC10203G
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.201404078
– ident: e_1_2_7_34_1
  doi: 10.1039/C5RA12478F
– ident: e_1_2_7_98_1
  doi: 10.1002/smtd.201600063
– ident: e_1_2_7_41_1
  doi: 10.1039/C5EE03262H
– ident: e_1_2_7_85_1
  doi: 10.1039/C5EE03262H
– ident: e_1_2_7_107_1
  doi: 10.1039/c3ce41545g
– ident: e_1_2_7_65_1
  doi: 10.1021/nl502759z
– ident: e_1_2_7_43_1
  doi: 10.1038/ncomms3922
– ident: e_1_2_7_135_1
  doi: 10.1021/nl504676v
– ident: e_1_2_7_27_1
  doi: 10.1016/j.electacta.2015.05.055
– ident: e_1_2_7_9_1
  doi: 10.1002/smtd.201700094
– ident: e_1_2_7_93_1
  doi: 10.1021/acsami.6b00641
– ident: e_1_2_7_110_1
  doi: 10.1002/smll.201402246
– ident: e_1_2_7_70_1
  doi: 10.1016/j.electacta.2015.07.140
SSID ssj0031247
Score 2.621487
SecondaryResourceType review_article
Snippet Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms anodes
cathodes
Clean energy
Clean technology
Commercialization
Electrochemical analysis
Energy storage
Lithium batteries
Low conductivity
Nanocomposites
Nanotechnology
Rechargeable batteries
Size effects
Sodium
Sodium-ion batteries
Storage facilities
Title Nanocomposite Materials for the Sodium–Ion Battery: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201702514
https://www.ncbi.nlm.nih.gov/pubmed/29266708
https://www.proquest.com/docview/1993022000
https://www.proquest.com/docview/1979508553
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VPcGBQvlLKZUrIXFy6zjJxuGAVKFWS9XlwLLS3iLbsSXUblJ1Nwc49R36hjwJM_Fu2i1CSPSWKE7ieGY8nzPjbwDeqczjssdbLlzleYpC59o7y10hpdW5zFxOG4VHXwbDSXo6zaZ3dvEHfoj-hxtZRjdfk4FrMz-8JQ2dzy4odBDnhJKJEJQStggVfe35oxJ0Xl11FfRZnIi3VqyNQh6u377ulf6AmuvItXM9J1ugV50OGSfnB-3CHNif9_gcH_JVT-HJEpeyo6BIz2DD1dvw-A5b4XP4iDNxQynolOfl2EgvgvYyxL0McSQbN9X3dvbr-uZzU7NA3PnjAztiIf7wAiYnx98-Dfmy_AK3aa5S7mWmRCFRkCo1edXZP8o7yUxitBWq0nlh0tQXTqQ-9hQiFRoBT2yrGBcxcfISNuumdq-BDRziPG9E5nH154wolLIJQlWX4INwto2Ar4a_tEtuciqRcVEGVmVZ0riU_bhE8L5vfxlYOf7acnclzXJpnfOSkhZph7EQEez3l9GuKFiia9e01CanArlZlkTwKmhB_ypZIKzJhYpAdrL8Rx_K8ejsrD_b-Z-b3sAjPFYhXXwXNhdXrXuLaGhh9jqN_w2cZP_Z
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619EB7oL_QFNq6EhIns47jEIdDJVQVLWWXAz9Sb1Hs2BICkqrsHuDEO_QN-ySdiTcpC6oqtcckduJ4Zuxv7PE3AOs69ej2eMuFqzxXKHReeme5y6W0ZSZTl9FB4fHB1vBEffmadtGEdBYm8EP0C25kGe14TQZOC9KD36yhlxfntHcQZwST1UN4RGm9W6_qsGeQSnD6avOr4KzFiXqr420UcjBff35eugc257FrO_nsPgXTNTvEnJxtTidm017fYXT8r_96BkszaMp2gi49hweufgFPbhEWvoSPOBg3FIVOoV6OjctJUGCG0JchlGRHTXU6vfh582OvqVng7rzaZjssbEG8gpPdz8efhnyWgYFblWnFvUy1yCXKUiuTVe0QgCJPUpOY0gpdlVlulPK5E8rHnnZJRYmYJ7ZVjH5MnCzDQt3U7jWwLYdQzxuRenQAnRG51jZBtOoSfBEOuBHwrv8LO6MnpywZ50UgVpYF9UvR90sEG335b4GY448l1zpxFjMDvSwobpEOGQsRwYf-MZoW7ZeUtWumVCajHLlpmkSwEtSg_5TMEdlkQkcgW2H-pQ3F0Xg06q_e_Eul97A4PB6PitHewf4qPMb7OkSPr8HC5PvUvUVwNDHvWvX_BaMsBAM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkFB7KI-WNhSKkZB6MjiOs3F6QELAiscuqkqRuEWJY0sISFDZPbSn_gf-YX9JZ-LdwBahSuWYxEkcz-tzPP4GYEPHDqc9znBhS8cVCp3nzhpuUylNnsjYJrRRuH_SOThTR-fx-YNd_J4fov3hRpbR-Gsy8JvSbd2Tht5eX9HSQZgQSlYvYEZ1hCa93vvaEkhFGL2a8ioYtDgxb41pG4Xcmrx_Miw9wpqT0LWJPd05yMe99iknl5vDQbFpfv5F6Picz5qH1yNgyna8Ji3AlK0W4dUDusI3sI2uuKYcdEr0sqyfD7z6MgS-DIEkO63Li-H17193h3XFPHPnj89sh_kFiLdw1t3_tnvAR_UXuFGJVtzJWItUoiS1KpKycQAo8CguoiI3Qpd5khZKudQK5UJHa6QiR8QTmjLEWUwYLcF0VVf2PbCORaDnChE7nP7ZQqRamwixqo3wQehuA-Dj4c_MiJycamRcZZ5WWWY0Llk7LgF8atvfeFqOJ1uujKWZjczzNqOsRdpiLEQA6-1lNCxaLckrWw-pTUIVcuM4CuCd14L2VTJFXJMIHYBsZPmPPmSn_V6vPVr-n5vWYPbLXjfrHZ4cf4CXeFr71PEVmB58H9pVREaD4mOj_H8ApaMCuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocomposite+Materials+for+the+Sodium-Ion+Battery%3A+A+Review&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liang%2C+Yaru&rft.au=Lai%2C+Wei-Hong&rft.au=Miao%2C+Zongcheng&rft.au=Chou%2C+Shu-Lei&rft.date=2018-02-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=14&rft.issue=5&rft_id=info:doi/10.1002%2Fsmll.201702514&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon