Nanocomposite Materials for the Sodium–Ion Battery: A Review
Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery‐related energy storage facilities is an urgent su...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 5 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery‐related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium‐based batteries, sodium–ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium–ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium–ion batteries is summarized, and the existing challenges and the potential solutions are presented.
To explore electrode materials with long cycle life and high energy density, a wide range of nanocomposites have been applied to the anodes and cathodes of sodium batteries. Due to the advantages of nanoscale composites, there have been great improvements in the electrical performance of sodium–ion batteries. The development of nanocomposite materials for sodium–ion batteries is reviewed here. |
---|---|
AbstractList | Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented. Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery‐related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium‐based batteries, sodium–ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium–ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium–ion batteries is summarized, and the existing challenges and the potential solutions are presented. To explore electrode materials with long cycle life and high energy density, a wide range of nanocomposites have been applied to the anodes and cathodes of sodium batteries. Due to the advantages of nanoscale composites, there have been great improvements in the electrical performance of sodium–ion batteries. The development of nanocomposite materials for sodium–ion batteries is reviewed here. Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented.Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na+ ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented. Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery-related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium-based batteries, sodium-ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium-ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium-ion batteries is summarized, and the existing challenges and the potential solutions are presented. Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental contamination, and the intermittence of the traditional energy sources. Creating new battery‐related energy storage facilities is an urgent subject for human beings to address and for solutions for the future. Compared with lithium‐based batteries, sodium–ion batteries have become the new focal point in the competition for clean energy solutions and have more potential for commercialization due to the huge natural abundance of sodium. Nevertheless, sodium–ion batteries still exhibit some challenges, like inferior electrochemical performance caused by the bigger ionic size of Na + ions, the detrimental volume expansion, and the low conductivity of the active materials. To solve these issues, nanocomposites have recently been applied as a new class of electrodes to enhance the electrochemical performance in sodium batteries based on advantages that include the size effect, high stability, and excellent conductivity. In this Review, the recent development of nanocomposite materials applied in sodium–ion batteries is summarized, and the existing challenges and the potential solutions are presented. |
Author | Miao, Zongcheng Lai, Wei‐Hong Chou, Shu‐Lei Liang, Yaru |
Author_xml | – sequence: 1 givenname: Yaru surname: Liang fullname: Liang, Yaru organization: Central South University – sequence: 2 givenname: Wei‐Hong surname: Lai fullname: Lai, Wei‐Hong organization: University of Wollongong Innovation Campus – sequence: 3 givenname: Zongcheng surname: Miao fullname: Miao, Zongcheng email: miaozongcheng@xijing.edu.cn organization: University of Wollongong Innovation Campus – sequence: 4 givenname: Shu‐Lei orcidid: 0000-0003-1155-6082 surname: Chou fullname: Chou, Shu‐Lei email: shulei@uow.edu.au organization: University of Wollongong Innovation Campus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29266708$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKxDAUhoMoXka3LqXgxs2MJ2naNC6EUbzBqODoOqRpipG2GZNWmZ3v4Bv6JGYYZ4QBcZUD-b5zTvLvoPXGNhqhfQwDDECOfV1VAwKYAUkwXUPbOMVxP80IX1_WGLbQjvcvADEmlG2iLcJJmjLIttHpnWyssvXEetPq6Fa22hlZ-ai0LmqfdTS2henqr4_PG9tEZ7IN99OTaBg96Dej33fRRhlovfdz9tDT5cXj-XV_dH91cz4c9RVlGe2XJMmAE1aqjOasyGebKCXjJI9zqSArJOM5pSXXQEtc0pQmINOYY1VgFh4Q99DRvO_E2ddO-1bUxitdVbLRtvMCc8YTyJIkDujhCvpiO9eE7QLFYyAEwvgeOvihurzWhZg4U0s3FYufCQCdA8pZ750uhTKtbI1tWidNJTCIWQBiFoBYBhC0wYq26PynwOfCu6n09B9ajG9Ho1_3GyHHlxI |
CitedBy_id | crossref_primary_10_1002_smll_202204375 crossref_primary_10_1002_smtd_201900763 crossref_primary_10_1016_j_jcis_2020_01_023 crossref_primary_10_3390_app11041483 crossref_primary_10_1016_j_apsusc_2023_159023 crossref_primary_10_1016_j_ceramint_2024_06_020 crossref_primary_10_1007_s11581_019_03140_z crossref_primary_10_1016_j_jpowsour_2018_05_089 crossref_primary_10_1039_D4CE00712C crossref_primary_10_1016_j_electacta_2021_138561 crossref_primary_10_1002_aenm_201803342 crossref_primary_10_1016_j_jcis_2021_12_195 crossref_primary_10_1016_j_cej_2021_132755 crossref_primary_10_1021_acsami_0c09666 crossref_primary_10_1021_acsnano_1c00849 crossref_primary_10_1016_j_cej_2021_128813 crossref_primary_10_1016_j_commatsci_2022_111292 crossref_primary_10_1016_j_jpowsour_2020_227796 crossref_primary_10_1080_10667857_2018_1470959 crossref_primary_10_1016_j_jpowsour_2019_05_015 crossref_primary_10_1016_j_electacta_2022_141572 crossref_primary_10_1021_acs_energyfuels_4c00212 crossref_primary_10_1016_j_electacta_2023_143019 crossref_primary_10_1016_j_vacuum_2025_114186 crossref_primary_10_1016_j_ceramint_2019_06_235 crossref_primary_10_3390_molecules28165953 crossref_primary_10_1002_asia_201900751 crossref_primary_10_1016_j_coco_2021_100635 crossref_primary_10_1002_adfm_202006761 crossref_primary_10_1002_cssc_201903589 crossref_primary_10_1016_j_matdes_2019_108440 crossref_primary_10_1039_D2DT02087D crossref_primary_10_3390_jcs9030105 crossref_primary_10_3390_nano12020203 crossref_primary_10_3365_KJMM_2022_60_6_448 crossref_primary_10_1039_D1TA06747H crossref_primary_10_1002_aenm_202000564 crossref_primary_10_1002_cssc_201900719 crossref_primary_10_1088_2399_1984_abc103 crossref_primary_10_1021_acsami_3c04341 crossref_primary_10_1016_j_ccr_2021_214115 crossref_primary_10_1002_cnma_202200068 crossref_primary_10_1016_j_jallcom_2021_160182 crossref_primary_10_1016_j_ssi_2023_116325 crossref_primary_10_1002_smll_201902767 crossref_primary_10_1016_j_jallcom_2021_162483 crossref_primary_10_1016_j_jelechem_2022_117092 crossref_primary_10_1002_smll_202004108 crossref_primary_10_1007_s11581_023_05092_x crossref_primary_10_3390_batteries11010028 crossref_primary_10_1016_j_mtener_2020_100470 crossref_primary_10_1007_s11356_020_09400_0 crossref_primary_10_1002_cey2_137 crossref_primary_10_1016_j_apsusc_2022_154864 crossref_primary_10_1016_j_cej_2019_123952 crossref_primary_10_1007_s12209_019_00209_8 crossref_primary_10_1016_j_est_2023_107700 crossref_primary_10_1002_aenm_202002077 crossref_primary_10_1002_adfm_201900778 crossref_primary_10_1002_aenm_202001764 crossref_primary_10_1016_j_ensm_2023_102950 crossref_primary_10_1039_C9NR00146H crossref_primary_10_1021_acsaem_0c00110 crossref_primary_10_1002_ente_201901080 crossref_primary_10_1016_j_ensm_2021_06_004 crossref_primary_10_1021_acs_jpcc_8b06742 crossref_primary_10_1002_bte2_20230001 crossref_primary_10_1016_j_ensm_2020_02_004 crossref_primary_10_1016_j_jaap_2021_105215 crossref_primary_10_1016_j_jpowsour_2020_228194 crossref_primary_10_1016_j_solidstatesciences_2019_04_014 crossref_primary_10_1016_j_cej_2019_121998 crossref_primary_10_1002_eom2_12479 crossref_primary_10_1039_D1TA01626A crossref_primary_10_1016_j_jcis_2021_12_157 crossref_primary_10_1016_j_mtphys_2021_100486 crossref_primary_10_1016_j_mtener_2022_101184 crossref_primary_10_1002_chem_201902899 crossref_primary_10_1016_j_nanoen_2018_12_024 crossref_primary_10_1016_j_cej_2020_125054 crossref_primary_10_1039_D4TC01332H crossref_primary_10_54227_mlab_20220037 crossref_primary_10_1016_j_jechem_2020_11_007 crossref_primary_10_2139_ssrn_3985329 crossref_primary_10_3390_ma11102032 crossref_primary_10_1002_smll_201803482 crossref_primary_10_1016_j_ensm_2019_09_036 crossref_primary_10_1016_j_matchemphys_2021_125584 crossref_primary_10_1016_j_jelechem_2021_115275 crossref_primary_10_1002_smll_201901724 crossref_primary_10_1016_j_compositesb_2019_107400 crossref_primary_10_1016_j_cis_2022_102732 crossref_primary_10_1039_D3NJ02267F crossref_primary_10_1021_acsanm_0c03155 crossref_primary_10_1039_C9NR03574E crossref_primary_10_1016_j_colsurfa_2020_124561 crossref_primary_10_1021_acs_energyfuels_2c00569 crossref_primary_10_1039_D2RA06449A crossref_primary_10_1039_C8EE01373J crossref_primary_10_1016_j_carbon_2020_03_028 crossref_primary_10_1021_acs_jpcc_2c06531 crossref_primary_10_1021_acsami_8b21213 crossref_primary_10_1021_acs_energyfuels_1c02292 crossref_primary_10_1016_j_ceramint_2022_03_279 crossref_primary_10_1016_j_apsusc_2021_150394 crossref_primary_10_1016_j_coco_2021_100988 crossref_primary_10_1021_acsami_1c17117 crossref_primary_10_1016_j_jallcom_2023_172769 crossref_primary_10_1021_acsami_9b08929 crossref_primary_10_1021_acsenergylett_8b00762 crossref_primary_10_1021_acsaem_1c01223 crossref_primary_10_1021_acsaem_2c03537 crossref_primary_10_1002_advs_202102859 crossref_primary_10_1039_D0CS00156B crossref_primary_10_1016_j_xcrp_2020_100082 crossref_primary_10_1021_acs_energyfuels_3c02047 crossref_primary_10_1016_j_clay_2019_05_006 crossref_primary_10_1021_acsaem_4c01310 crossref_primary_10_1016_j_jallcom_2019_153624 crossref_primary_10_1039_C9TA02966D crossref_primary_10_1016_j_cjche_2021_09_011 crossref_primary_10_1016_j_enchem_2022_100095 crossref_primary_10_1002_cnl2_171 crossref_primary_10_1002_celc_202200800 crossref_primary_10_1021_acsami_1c16035 crossref_primary_10_1039_C9TA04274A crossref_primary_10_1016_j_est_2023_108781 crossref_primary_10_1088_1361_6528_ac1ebc crossref_primary_10_1016_j_eurpolymj_2024_113187 crossref_primary_10_1002_chem_201902400 crossref_primary_10_1039_D0CS00021C crossref_primary_10_1002_smll_201907365 crossref_primary_10_1021_acsaem_8b01885 crossref_primary_10_1007_s00419_023_02427_y crossref_primary_10_1016_j_cej_2021_134091 crossref_primary_10_1002_smtd_202100888 crossref_primary_10_1063_5_0096098 crossref_primary_10_1016_j_jallcom_2020_156939 crossref_primary_10_1088_2053_1583_abf233 crossref_primary_10_1039_D1QM01360B crossref_primary_10_1002_smll_201902466 crossref_primary_10_1002_tcr_202400176 crossref_primary_10_1002_celc_202300607 crossref_primary_10_1016_j_jpowsour_2021_229510 crossref_primary_10_1016_j_jallcom_2018_08_272 crossref_primary_10_1039_C9NR05594K crossref_primary_10_1002_est2_70048 crossref_primary_10_1021_acsanm_1c04122 crossref_primary_10_1039_C9CP04349G crossref_primary_10_1016_j_electacta_2019_135393 crossref_primary_10_1007_s12598_022_02002_4 crossref_primary_10_1039_D0RA02596H crossref_primary_10_1016_j_apsusc_2021_152000 crossref_primary_10_1016_j_jallcom_2020_153686 crossref_primary_10_1002_adfm_201908209 crossref_primary_10_1016_j_matdes_2019_108287 crossref_primary_10_2339_politeknik_825365 crossref_primary_10_1016_j_est_2019_101113 crossref_primary_10_3390_nano11020538 crossref_primary_10_3390_ma15238574 crossref_primary_10_1002_celc_202200332 crossref_primary_10_1016_j_ceramint_2021_03_072 crossref_primary_10_1039_D3NA00271C crossref_primary_10_1016_j_jallcom_2021_160588 crossref_primary_10_1016_j_nanoen_2022_107083 crossref_primary_10_1016_j_apsusc_2020_147735 crossref_primary_10_1039_D1SE00341K crossref_primary_10_1016_j_adna_2024_03_002 crossref_primary_10_1021_acsami_1c17554 crossref_primary_10_1002_adfm_201801765 crossref_primary_10_1021_acsnano_2c11699 crossref_primary_10_1002_admi_202100188 crossref_primary_10_1016_j_nanoen_2018_11_091 crossref_primary_10_1002_adfm_202000473 crossref_primary_10_1039_D0TA02767G crossref_primary_10_1016_j_jcis_2022_07_033 crossref_primary_10_1016_j_jpowsour_2021_230729 crossref_primary_10_1002_celc_202101449 crossref_primary_10_1039_C8NR10444A crossref_primary_10_1002_batt_202400352 crossref_primary_10_1021_acs_iecr_9b02029 crossref_primary_10_1007_s10854_025_14239_7 crossref_primary_10_1039_D1MA00490E crossref_primary_10_1016_j_jallcom_2022_168111 crossref_primary_10_1016_j_matlet_2021_130507 crossref_primary_10_3390_su141610014 crossref_primary_10_1016_j_jcis_2024_06_163 crossref_primary_10_1016_j_jallcom_2022_168350 crossref_primary_10_1021_acs_inorgchem_9b00971 crossref_primary_10_3390_nano14241989 crossref_primary_10_1002_adfm_202301974 crossref_primary_10_1016_j_jssc_2019_03_032 crossref_primary_10_1016_j_ces_2022_117951 crossref_primary_10_1016_j_jpowsour_2021_230722 crossref_primary_10_1002_adma_202101576 crossref_primary_10_1016_j_jechem_2020_05_065 crossref_primary_10_1007_s40843_023_2550_2 crossref_primary_10_1002_aenm_202002205 crossref_primary_10_1002_adsu_202400307 crossref_primary_10_1002_adfm_202100505 crossref_primary_10_1002_adfm_202106047 crossref_primary_10_1016_j_carbon_2019_05_030 crossref_primary_10_1002_adma_201805430 crossref_primary_10_1016_j_ensm_2021_04_009 crossref_primary_10_1016_j_ensm_2020_04_004 crossref_primary_10_1039_D4TA00252K crossref_primary_10_1016_j_electacta_2021_137835 crossref_primary_10_1002_wene_461 crossref_primary_10_1021_acsami_1c06168 crossref_primary_10_1039_D1QM00179E crossref_primary_10_1016_j_ceramint_2021_07_022 crossref_primary_10_1002_smll_202100514 crossref_primary_10_1007_s10008_023_05416_x crossref_primary_10_1021_acsanm_3c05944 crossref_primary_10_1007_s12274_021_3320_4 crossref_primary_10_1002_smll_201900233 crossref_primary_10_1016_j_ensm_2021_06_025 crossref_primary_10_1002_celc_202001323 crossref_primary_10_1002_adfm_202112179 crossref_primary_10_1016_j_ensm_2020_10_003 crossref_primary_10_1149_1945_7111_ac4843 crossref_primary_10_1016_j_jallcom_2020_157686 crossref_primary_10_1016_j_jechem_2022_07_030 crossref_primary_10_1016_j_cej_2021_132705 crossref_primary_10_1002_admi_201900460 crossref_primary_10_1016_j_cej_2020_127776 crossref_primary_10_1016_j_mseb_2020_115024 crossref_primary_10_1016_j_xcrp_2022_101240 crossref_primary_10_1016_j_jallcom_2019_152703 crossref_primary_10_1016_j_jallcom_2023_170866 crossref_primary_10_1016_j_est_2024_111968 crossref_primary_10_1016_j_cej_2024_155370 crossref_primary_10_1016_j_jcis_2020_04_096 crossref_primary_10_1016_j_jpowsour_2022_232210 crossref_primary_10_1149_1945_7111_ab971e crossref_primary_10_1016_j_jechem_2020_08_039 crossref_primary_10_1002_smll_202000504 crossref_primary_10_1016_j_ensm_2019_07_010 crossref_primary_10_1039_C9NJ05986E crossref_primary_10_1021_acsami_2c13016 crossref_primary_10_1039_C8TA08774A crossref_primary_10_1016_j_cej_2020_127402 crossref_primary_10_1002_eom2_12043 crossref_primary_10_1016_j_cej_2021_130557 crossref_primary_10_1016_j_ensm_2019_03_030 crossref_primary_10_1021_acsaem_3c03106 crossref_primary_10_1002_eom2_12283 crossref_primary_10_1039_C9QM00674E crossref_primary_10_1016_j_jcis_2024_06_080 crossref_primary_10_1016_j_diamond_2023_110290 crossref_primary_10_1016_j_jelechem_2024_118212 crossref_primary_10_1002_smll_201901584 crossref_primary_10_1016_j_electacta_2019_02_067 crossref_primary_10_1002_er_6557 crossref_primary_10_1016_j_jechem_2020_07_011 |
Cites_doi | 10.1002/anie.201510978 10.1039/C6TA09754E 10.1039/c3ta10920h 10.1016/j.jpowsour.2016.06.011 10.1016/j.jpowsour.2017.04.075 10.1021/jp507116t 10.1039/C5RA02834E 10.1002/adfm.201600747 10.1039/C4NR05106H 10.1039/C4TA00239C 10.1016/j.electacta.2014.09.080 10.1002/adma.201605535 10.1016/j.jpowsour.2011.06.061 10.1039/C5TA03181H 10.1016/j.nanoen.2016.06.026 10.1039/c3ta13438e 10.1002/smtd.201700219 10.1016/j.jpowsour.2015.03.042 10.1002/aenm.201401123 10.1002/aenm.201500716 10.1039/C3EE42944J 10.1016/j.matlet.2016.07.128 10.1016/j.jallcom.2017.02.075 10.1016/j.elecom.2012.06.001 10.1002/smll.201500783 10.1038/srep09254 10.1016/j.nanoen.2014.12.012 10.1021/nl4035626 10.1039/C5TA03192C 10.1016/j.electacta.2015.03.115 10.1002/adma.201400794 10.1016/j.electacta.2015.08.051 10.1002/adma.200800627 10.1039/C4TA06825D 10.1016/j.electacta.2016.10.160 10.1021/acs.chemmater.5b00616 10.1038/srep07231 10.1002/adma.201605694 10.1039/C5TA03893F 10.1016/j.nanoen.2015.05.012 10.1021/acsami.5b06385 10.1016/j.carbon.2015.10.054 10.1016/j.nanoen.2015.04.032 10.1021/acsami.5b06590 10.1039/C6TA05069G 10.1021/cm400805q 10.1021/acsnano.5b06538 10.1007/s12274-015-0838-3 10.1002/wene.136 10.1039/C5TA05758B 10.1002/cplu.201402394 10.1039/C4TA06708H 10.1021/acs.inorgchem.6b01515 10.1021/acsami.5b05509 10.1039/c2ee02781j 10.1039/C5NR03335G 10.1021/acsami.5b08274 10.1021/nl403053v 10.1016/j.nanoen.2014.10.004 10.1002/anie.201411917 10.1002/advs.201600275 10.1002/smll.201603318 10.1039/C5TA07696J 10.1039/C5TA00643K 10.1039/c2cc17129e 10.1002/advs.201700072 10.1002/adma.201502864 10.1007/s11581-015-1574-0 10.1039/C4TA03365E 10.1021/nl302819f 10.1007/s10008-015-3063-9 10.1016/j.jpowsour.2015.06.076 10.1021/acsnano.5b00376 10.1016/j.ensm.2016.07.001 10.1039/C5EE02074C 10.1007/s12274-014-0506-z 10.1038/nnano.2015.194 10.1016/j.elecom.2012.06.014 10.1021/acs.chemmater.5b00633 10.1016/j.jpowsour.2015.10.033 10.1016/j.jallcom.2016.02.176 10.1021/nn505536t 10.1016/j.elecom.2014.07.005 10.1002/aenm.201100655 10.1021/acsnano.5b04474 10.1021/acsami.5b02413 10.1016/j.ensm.2017.01.002 10.1002/cssc.200900182 10.1002/smtd.201600020 10.1002/adfm.201402943 10.1002/smtd.201700098 10.1021/am405970s 10.1021/acsami.6b00179 10.1038/srep08418 10.1039/C7TA00153C 10.1039/c3cp52408f 10.1016/j.jpowsour.2015.06.015 10.1039/C4TA06476C 10.1016/S1452-3981(23)11280-6 10.1016/j.jallcom.2015.10.212 10.1016/j.jpowsour.2014.07.081 10.1039/C3CC47977C 10.1021/nl501152f 10.1021/cr500192f 10.1016/j.electacta.2015.12.136 10.1002/adma.201306314 10.1021/acsami.5b11954 10.1021/am508547g 10.1002/aenm.201600389 10.1016/j.carbon.2015.09.091 10.1039/C4NR06432A 10.1021/acs.nanolett.6b00942 10.1016/j.ensm.2016.07.007 10.1002/anie.201209689 10.1021/am5061036 10.1002/admi.201500740 10.1016/j.carbon.2013.01.064 10.1016/j.electacta.2012.08.103 10.1021/acsami.5b04338 10.1021/acsami.6b03969 10.1039/C3TA13592F 10.1038/ncomms9689 10.1039/c4cc00840e 10.1002/aenm.201200803 10.1039/C4NR07054B 10.1021/nn4025674 10.1016/j.electacta.2016.01.116 10.1016/j.electacta.2015.01.186 10.1039/C5TA03188E 10.1039/C4CC10203G 10.1002/adfm.201404078 10.1039/C5RA12478F 10.1002/smtd.201600063 10.1039/C5EE03262H 10.1039/c3ce41545g 10.1021/nl502759z 10.1038/ncomms3922 10.1021/nl504676v 10.1016/j.electacta.2015.05.055 10.1002/smtd.201700094 10.1021/acsami.6b00641 10.1002/smll.201402246 10.1016/j.electacta.2015.07.140 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201702514 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 29266708 10_1002_smll_201702514 SMLL201702514 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Science Research Foundation of Xijing University funderid: XJ16T02 – fundername: China Scholarship Council – fundername: Australian Renewable Energy Agency funderid: G00849 – fundername: Australian Research Council funderid: LP120200432 – fundername: National Natural Science Foundation of China funderid: 51673157 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4784-f2580927fc84b7db0031cca35b3bac08da79b44f9e04f1f46450a6391cd176813 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 15:14:31 EDT 2025 Fri Jul 25 12:14:56 EDT 2025 Thu Apr 03 07:00:41 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Tue Jul 01 02:10:32 EDT 2025 Wed Jan 22 16:42:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | anodes sodium-ion batteries cathodes nanocomposites |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4784-f2580927fc84b7db0031cca35b3bac08da79b44f9e04f1f46450a6391cd176813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1155-6082 |
PMID | 29266708 |
PQID | 1993022000 |
PQPubID | 1046358 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1979508553 proquest_journals_1993022000 pubmed_primary_29266708 crossref_citationtrail_10_1002_smll_201702514 crossref_primary_10_1002_smll_201702514 wiley_primary_10_1002_smll_201702514_SMLL201702514 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 1, 2018 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 1, 2018 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 1 2013; 3 2013; 4 2013; 25 2013; 1 2017; 4 2014; 26 2016; 220 2015; 80 2016; 302 2013; 7 2011; 196 2012; 12 2017; 357 2016; 183 2015; 173 2015; 294 2015; 293 2013; 15 2014; 4 2014; 2 2013; 13 2013; 57 2015; 177 2015; 178 2013; 52 2015; 176 2016; 672 2014; 14 2008; 20 2010; 3 2014; 8 2014; 7 2014; 50 2016; 191 2016; 190 2014; 6 2012; 22 2014; 10 2014; 118 2015; 284 2015; 12 2015; 15 2015; 160 2015; 6 2015; 5 2015; 4 2015; 3 2013; 87 2015; 51 2015; 11 2015; 10 2015; 54 2016; 98 2016; 10 2016; 96 2014; 46 2017; 29 2016; 324 2015; 9 2016; 16 2015; 8 2015; 7 2014; 114 2016; 55 2016; 4 2016; 5 2016; 6 2017; 704 2015; 25 2012; 2 2015; 27 2016; 3 2016; 658 2015; 20 2015; 22 2017; 13 2012; 48 2016; 27 2012; 5 2016; 26 2016; 8 2016; 9 2014; 269 2014; 146 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_135_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_136_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_144_1 Nguyen V. (e_1_2_7_130_1) 2015; 10 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_138_1 |
References_xml | – volume: 177 start-page: 304 year: 2015 publication-title: Electrochim. Acta – volume: 46 start-page: 124 year: 2014 publication-title: Electrochem. Commun. – volume: 26 start-page: 3854 year: 2014 publication-title: Adv. Mater. – volume: 7 start-page: 24895 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 6452 year: 2015 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 4 start-page: 1600275 year: 2017 publication-title: Adv. Sci. – volume: 5 start-page: 9254 year: 2015 publication-title: Sci. Rep. – volume: 118 start-page: 23527 year: 2014 publication-title: J. Phys. Chem. C – volume: 4 start-page: 2922 year: 2013 publication-title: Nat. Commun. – volume: 29 start-page: 1605535 year: 2017 publication-title: Adv. Mater. – volume: 48 start-page: 3321 year: 2012 publication-title: Chem. Commun. – volume: 3 start-page: 16971 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 start-page: 7231 year: 2014 publication-title: Sci. Rep. – volume: 5 start-page: 1401123 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 start-page: 7147 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 11824 year: 2014 publication-title: ACS Nano – volume: 176 start-page: 1296 year: 2015 publication-title: Electrochim. Acta – volume: 3 start-page: 136 year: 2010 publication-title: ChemSusChem – volume: 3 start-page: 10258 year: 2015 publication-title: J. Mater. Chem. A – volume: 27 start-page: 6670 year: 2015 publication-title: Adv. Mater. – volume: 10 start-page: 295 year: 2014 publication-title: Nano Energy – volume: 26 start-page: 5315 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 18387 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 21880 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 3408 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 4633 year: 2013 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 5 start-page: 5884 year: 2012 publication-title: Energy Environ. Sci. – volume: 3 start-page: 20487 year: 2015 publication-title: J. Mater. Chem. A – volume: 50 start-page: 4192 year: 2014 publication-title: Chem. Commun. – volume: 269 start-page: 848 year: 2014 publication-title: J. Power Sources – volume: 27 start-page: 3096 year: 2015 publication-title: Chem. Mater. – volume: 5 start-page: 198 year: 2016 publication-title: Energy Storage Mater. – volume: 4 start-page: 1700072 year: 2017 publication-title: Adv. Sci. – volume: 5 start-page: 2710 year: 2017 publication-title: J. Mater. Chem. A – volume: 5 start-page: 8418 year: 2015 publication-title: Sci. Rep. – volume: 3 start-page: 17899 year: 2015 publication-title: J. Mater. Chem. A – volume: 357 start-page: 164 year: 2017 publication-title: J. Power Sources – volume: 1 start-page: 1700094 year: 2017 publication-title: Small Methods – volume: 183 start-page: 346 year: 2016 publication-title: Mater. Lett. – volume: 658 start-page: 234 year: 2016 publication-title: J. Alloys Compd. – volume: 22 start-page: 555 year: 2015 publication-title: Ionics – volume: 1 start-page: 13727 year: 2013 publication-title: J. Mater. Chem. A – volume: 5 start-page: 31465 year: 2015 publication-title: RSC Adv. – volume: 284 start-page: 287 year: 2015 publication-title: J. Power Sources – volume: 7 start-page: 2770 year: 2015 publication-title: Nanoscale – volume: 29 start-page: 1605694 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 7221 year: 2014 publication-title: J. Mater. Chem. A – volume: 324 start-page: 780 year: 2016 publication-title: J. Power Sources – volume: 22 start-page: 85 year: 2012 publication-title: Electrochem. Commun. – volume: 15 start-page: 2917 year: 2015 publication-title: Nano Lett. – volume: 3 start-page: 444 year: 2013 publication-title: Adv. Energy Mater. – volume: 1 start-page: 7181 year: 2013 publication-title: J. Mater. Chem. A – volume: 3 start-page: 2971 year: 2015 publication-title: J. Mater. Chem. A – volume: 14 start-page: 3539 year: 2014 publication-title: Nano Lett. – volume: 11 start-page: 3822 year: 2015 publication-title: Small – volume: 9 start-page: 1430 year: 2016 publication-title: Energy Environ. Sci. – volume: 7 start-page: 13088 year: 2015 publication-title: Nanoscale – volume: 1 start-page: 1600020 year: 2017 publication-title: Small Methods – volume: 2 start-page: 410 year: 2012 publication-title: Adv. Energy Mater. – volume: 87 start-page: 41 year: 2013 publication-title: Electrochim. Acta – volume: 146 start-page: 328 year: 2014 publication-title: Electrochim. Acta – volume: 15 start-page: 9080 year: 2013 publication-title: CrystEngComm – volume: 20 start-page: 2878 year: 2008 publication-title: Adv. Mater. – volume: 4 start-page: 1624 year: 2016 publication-title: J. Mater. Chem. A – volume: 14 start-page: 139 year: 2014 publication-title: Nano Lett. – volume: 20 start-page: 479 year: 2015 publication-title: J. Solid State Electrochem. – volume: 13 start-page: 5480 year: 2013 publication-title: Nano Lett. – volume: 8 start-page: 3384 year: 2015 publication-title: Nano Res. – volume: 178 start-page: 871 year: 2015 publication-title: Electrochim. Acta – volume: 294 start-page: 193 year: 2015 publication-title: J. Power Sources – volume: 12 start-page: 88 year: 2015 publication-title: Nano Energy – volume: 7 start-page: 3164 year: 2015 publication-title: Nanoscale – volume: 3 start-page: 5820 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 71644 year: 2015 publication-title: RSC Adv. – volume: 220 start-page: 683 year: 2016 publication-title: Electrochim. Acta – volume: 4 start-page: 253 year: 2015 publication-title: Wiley Interdiscip. Rev.: Energy Environ. – volume: 196 start-page: 9612 year: 2011 publication-title: J. Power Sources – volume: 5 start-page: 9833 year: 2017 publication-title: J. Mater. Chem. A – volume: 27 start-page: 4274 year: 2015 publication-title: Chem. Mater. – volume: 22 start-page: 149 year: 2012 publication-title: Electrochem. Commun. – volume: 96 start-page: 1028 year: 2016 publication-title: Carbon – volume: 5 start-page: 1500716 year: 2015 publication-title: Adv. Energy Mater. – volume: 16 start-page: 3321 year: 2016 publication-title: Nano Lett. – volume: 7 start-page: 20957 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 4242 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 8689 year: 2015 publication-title: Nat. Commun. – volume: 2 start-page: 16424 year: 2014 publication-title: J. Mater. Chem. A – volume: 55 start-page: 9033 year: 2016 publication-title: Inorg. Chem. – volume: 3 start-page: 1500740 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 180 year: 2016 publication-title: Energy Storage Mater. – volume: 114 start-page: 11636 year: 2014 publication-title: Chem. Rev. – volume: 302 start-page: 61 year: 2016 publication-title: J. Power Sources – volume: 14 start-page: 6329 year: 2014 publication-title: Nano Lett. – volume: 10 start-page: 3257 year: 2016 publication-title: ACS Nano – volume: 7 start-page: 323 year: 2014 publication-title: Energy Environ. Sci. – volume: 1 start-page: 1700219 year: 2017 publication-title: Small Methods – volume: 80 start-page: 1000 year: 2015 publication-title: ChemPlusChem – volume: 25 start-page: 1393 year: 2015 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 11207 year: 2016 publication-title: J. Mater. Chem. A – volume: 1 start-page: 1700098 year: 2017 publication-title: Small Methods – volume: 8 start-page: 17233 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 173 start-page: 193 year: 2015 publication-title: Electrochim. Acta – volume: 2 start-page: 529 year: 2014 publication-title: J. Mater. Chem. A – volume: 50 start-page: 1215 year: 2014 publication-title: Chem. Commun. – volume: 293 start-page: 784 year: 2015 publication-title: J. Power Sources – volume: 6 start-page: 1600389 year: 2016 publication-title: Adv. Energy Mater. – volume: 10 start-page: 10565 year: 2015 publication-title: Int. J. Electrochem. Sci. – volume: 26 start-page: 4037 year: 2014 publication-title: Adv. Mater. – volume: 672 start-page: 72 year: 2016 publication-title: J. Alloys Compd. – volume: 9 start-page: 3254 year: 2015 publication-title: ACS Nano – volume: 10 start-page: 980 year: 2015 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 19362 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 3531 year: 2015 publication-title: Energy Environ. Sci. – volume: 8 start-page: 7811 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1466 year: 2014 publication-title: Nano Res. – volume: 1 start-page: 1600063 year: 2017 publication-title: Small Methods – volume: 704 start-page: 631 year: 2017 publication-title: J. Alloys Compd. – volume: 7 start-page: 7912 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 130 year: 2017 publication-title: Energy Storage Mater. – volume: 3 start-page: 13193 year: 2015 publication-title: J. Mater. Chem. A – volume: 51 start-page: 3545 year: 2015 publication-title: Chem. Commun. – volume: 160 start-page: 330 year: 2015 publication-title: Electrochim. Acta – volume: 27 start-page: 27 year: 2016 publication-title: Nano Energy – volume: 190 start-page: 402 year: 2016 publication-title: Electrochim. Acta – volume: 13 start-page: 01603318 year: 2017 publication-title: Small – volume: 191 start-page: 435 year: 2016 publication-title: Electrochim. Acta – volume: 15 start-page: 13032 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 14750 year: 2015 publication-title: J. Mater. Chem. A – volume: 11 start-page: 2170 year: 2015 publication-title: Small – volume: 7 start-page: 11476 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 4793 year: 2015 publication-title: J. Mater. Chem. A – volume: 8 start-page: 6032 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 453 year: 2015 publication-title: Nano Energy – volume: 7 start-page: 20902 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 5664 year: 2012 publication-title: Nano Lett. – volume: 9 start-page: 11933 year: 2015 publication-title: ACS Nano – volume: 25 start-page: 2777 year: 2013 publication-title: Chem. Mater. – volume: 7 start-page: 6378 year: 2013 publication-title: ACS Nano – volume: 15 start-page: 379 year: 2015 publication-title: Nano Energy – volume: 57 start-page: 202 year: 2013 publication-title: Carbon – volume: 7 start-page: 1325 year: 2015 publication-title: Nanoscale – volume: 98 start-page: 162 year: 2016 publication-title: Carbon – volume: 25 start-page: 214 year: 2015 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_44_1 doi: 10.1002/anie.201510978 – ident: e_1_2_7_127_1 doi: 10.1039/C6TA09754E – ident: e_1_2_7_62_1 doi: 10.1039/c3ta10920h – ident: e_1_2_7_76_1 doi: 10.1016/j.jpowsour.2016.06.011 – ident: e_1_2_7_117_1 doi: 10.1016/j.jpowsour.2017.04.075 – ident: e_1_2_7_37_1 doi: 10.1021/jp507116t – ident: e_1_2_7_53_1 doi: 10.1039/C5RA02834E – ident: e_1_2_7_126_1 doi: 10.1002/adfm.201600747 – ident: e_1_2_7_40_1 doi: 10.1039/C4NR05106H – ident: e_1_2_7_133_1 doi: 10.1039/C4TA00239C – ident: e_1_2_7_60_1 doi: 10.1016/j.electacta.2014.09.080 – ident: e_1_2_7_118_1 doi: 10.1002/adma.201605535 – ident: e_1_2_7_108_1 doi: 10.1016/j.jpowsour.2011.06.061 – ident: e_1_2_7_1_1 doi: 10.1039/C5TA03181H – ident: e_1_2_7_103_1 doi: 10.1016/j.nanoen.2016.06.026 – ident: e_1_2_7_17_1 doi: 10.1039/c3ta13438e – ident: e_1_2_7_5_1 doi: 10.1002/smtd.201700219 – ident: e_1_2_7_74_1 doi: 10.1016/j.jpowsour.2015.03.042 – ident: e_1_2_7_48_1 doi: 10.1002/aenm.201401123 – ident: e_1_2_7_116_1 doi: 10.1002/aenm.201500716 – ident: e_1_2_7_13_1 doi: 10.1039/C3EE42944J – ident: e_1_2_7_104_1 doi: 10.1016/j.matlet.2016.07.128 – ident: e_1_2_7_120_1 doi: 10.1016/j.jallcom.2017.02.075 – ident: e_1_2_7_101_1 doi: 10.1016/j.elecom.2012.06.001 – ident: e_1_2_7_35_1 doi: 10.1002/smll.201500783 – ident: e_1_2_7_11_1 doi: 10.1038/srep09254 – ident: e_1_2_7_24_1 doi: 10.1016/j.nanoen.2014.12.012 – ident: e_1_2_7_51_1 doi: 10.1021/nl4035626 – ident: e_1_2_7_96_1 doi: 10.1039/C5TA03192C – ident: e_1_2_7_58_1 doi: 10.1016/j.electacta.2015.03.115 – ident: e_1_2_7_94_1 doi: 10.1002/adma.201400794 – ident: e_1_2_7_81_1 doi: 10.1016/j.electacta.2015.08.051 – ident: e_1_2_7_8_1 doi: 10.1002/adma.200800627 – ident: e_1_2_7_78_1 doi: 10.1039/C4TA06825D – ident: e_1_2_7_124_1 doi: 10.1016/j.electacta.2016.10.160 – ident: e_1_2_7_71_1 doi: 10.1021/acs.chemmater.5b00616 – ident: e_1_2_7_144_1 doi: 10.1038/srep07231 – ident: e_1_2_7_137_1 doi: 10.1002/adma.201605694 – ident: e_1_2_7_30_1 doi: 10.1039/C5TA03893F – ident: e_1_2_7_54_1 doi: 10.1016/j.nanoen.2015.05.012 – ident: e_1_2_7_92_1 doi: 10.1021/acsami.5b06385 – ident: e_1_2_7_131_1 doi: 10.1016/j.carbon.2015.10.054 – ident: e_1_2_7_23_1 doi: 10.1016/j.nanoen.2015.04.032 – ident: e_1_2_7_91_1 doi: 10.1021/acsami.5b06590 – ident: e_1_2_7_102_1 doi: 10.1039/C6TA05069G – ident: e_1_2_7_123_1 doi: 10.1021/cm400805q – ident: e_1_2_7_52_1 doi: 10.1021/acsnano.5b06538 – ident: e_1_2_7_55_1 doi: 10.1007/s12274-015-0838-3 – ident: e_1_2_7_4_1 doi: 10.1002/wene.136 – ident: e_1_2_7_88_1 doi: 10.1039/C5TA05758B – ident: e_1_2_7_28_1 doi: 10.1002/cplu.201402394 – ident: e_1_2_7_38_1 doi: 10.1039/C4TA06708H – ident: e_1_2_7_99_1 doi: 10.1021/acs.inorgchem.6b01515 – ident: e_1_2_7_87_1 doi: 10.1021/acsami.5b05509 – ident: e_1_2_7_3_1 doi: 10.1039/c2ee02781j – ident: e_1_2_7_21_1 doi: 10.1039/C5NR03335G – ident: e_1_2_7_68_1 doi: 10.1021/acsami.5b08274 – ident: e_1_2_7_18_1 doi: 10.1021/nl403053v – ident: e_1_2_7_140_1 doi: 10.1016/j.nanoen.2014.10.004 – ident: e_1_2_7_121_1 doi: 10.1002/anie.201411917 – ident: e_1_2_7_105_1 doi: 10.1002/advs.201600275 – ident: e_1_2_7_114_1 doi: 10.1002/smll.201603318 – ident: e_1_2_7_122_1 doi: 10.1039/C5TA07696J – ident: e_1_2_7_139_1 doi: 10.1039/C5TA00643K – ident: e_1_2_7_66_1 doi: 10.1039/c2cc17129e – ident: e_1_2_7_2_1 doi: 10.1002/advs.201700072 – ident: e_1_2_7_113_1 doi: 10.1002/adma.201502864 – ident: e_1_2_7_82_1 doi: 10.1007/s11581-015-1574-0 – ident: e_1_2_7_86_1 doi: 10.1039/C4TA03365E – ident: e_1_2_7_134_1 doi: 10.1021/nl302819f – ident: e_1_2_7_136_1 doi: 10.1007/s10008-015-3063-9 – ident: e_1_2_7_15_1 doi: 10.1016/j.jpowsour.2015.06.076 – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.5b00376 – ident: e_1_2_7_61_1 doi: 10.1016/j.ensm.2016.07.001 – ident: e_1_2_7_46_1 doi: 10.1039/C5EE02074C – ident: e_1_2_7_69_1 doi: 10.1007/s12274-014-0506-z – ident: e_1_2_7_36_1 doi: 10.1038/nnano.2015.194 – ident: e_1_2_7_109_1 doi: 10.1016/j.elecom.2012.06.014 – ident: e_1_2_7_83_1 doi: 10.1021/acs.chemmater.5b00633 – ident: e_1_2_7_119_1 doi: 10.1016/j.jpowsour.2015.10.033 – ident: e_1_2_7_25_1 doi: 10.1016/j.jallcom.2016.02.176 – ident: e_1_2_7_63_1 doi: 10.1021/nn505536t – ident: e_1_2_7_72_1 doi: 10.1016/j.elecom.2014.07.005 – ident: e_1_2_7_125_1 doi: 10.1002/aenm.201100655 – ident: e_1_2_7_19_1 doi: 10.1021/acsnano.5b04474 – ident: e_1_2_7_84_1 doi: 10.1021/acsami.5b02413 – ident: e_1_2_7_106_1 doi: 10.1016/j.ensm.2017.01.002 – ident: e_1_2_7_7_1 doi: 10.1002/cssc.200900182 – ident: e_1_2_7_45_1 doi: 10.1002/smtd.201600020 – ident: e_1_2_7_47_1 doi: 10.1002/adfm.201402943 – ident: e_1_2_7_6_1 doi: 10.1002/smtd.201700098 – ident: e_1_2_7_129_1 doi: 10.1021/am405970s – ident: e_1_2_7_33_1 doi: 10.1021/acsami.6b00179 – ident: e_1_2_7_50_1 doi: 10.1038/srep08418 – ident: e_1_2_7_111_1 doi: 10.1039/C7TA00153C – ident: e_1_2_7_142_1 doi: 10.1039/c3cp52408f – ident: e_1_2_7_31_1 doi: 10.1016/j.jpowsour.2015.06.015 – ident: e_1_2_7_56_1 doi: 10.1039/C4TA06476C – volume: 10 start-page: 10565 year: 2015 ident: e_1_2_7_130_1 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)11280-6 – ident: e_1_2_7_75_1 doi: 10.1016/j.jallcom.2015.10.212 – ident: e_1_2_7_67_1 doi: 10.1016/j.jpowsour.2014.07.081 – ident: e_1_2_7_79_1 doi: 10.1039/C3CC47977C – ident: e_1_2_7_132_1 doi: 10.1021/nl501152f – ident: e_1_2_7_100_1 doi: 10.1021/cr500192f – ident: e_1_2_7_57_1 doi: 10.1016/j.electacta.2015.12.136 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201306314 – ident: e_1_2_7_128_1 doi: 10.1021/acsami.5b11954 – ident: e_1_2_7_73_1 doi: 10.1021/am508547g – ident: e_1_2_7_115_1 doi: 10.1002/aenm.201600389 – ident: e_1_2_7_10_1 doi: 10.1016/j.carbon.2015.09.091 – ident: e_1_2_7_80_1 doi: 10.1039/C4NR06432A – ident: e_1_2_7_16_1 doi: 10.1021/acs.nanolett.6b00942 – ident: e_1_2_7_143_1 doi: 10.1016/j.ensm.2016.07.007 – ident: e_1_2_7_64_1 doi: 10.1002/anie.201209689 – ident: e_1_2_7_89_1 doi: 10.1021/am5061036 – ident: e_1_2_7_97_1 doi: 10.1002/admi.201500740 – ident: e_1_2_7_22_1 doi: 10.1016/j.carbon.2013.01.064 – ident: e_1_2_7_59_1 doi: 10.1016/j.electacta.2012.08.103 – ident: e_1_2_7_14_1 doi: 10.1021/acsami.5b04338 – ident: e_1_2_7_138_1 doi: 10.1021/acsami.6b03969 – ident: e_1_2_7_77_1 doi: 10.1039/C3TA13592F – ident: e_1_2_7_49_1 doi: 10.1038/ncomms9689 – ident: e_1_2_7_39_1 doi: 10.1039/c4cc00840e – ident: e_1_2_7_112_1 doi: 10.1002/aenm.201200803 – ident: e_1_2_7_26_1 doi: 10.1039/C4NR07054B – ident: e_1_2_7_12_1 doi: 10.1021/nn4025674 – ident: e_1_2_7_90_1 doi: 10.1016/j.electacta.2016.01.116 – ident: e_1_2_7_141_1 doi: 10.1016/j.electacta.2015.01.186 – ident: e_1_2_7_29_1 doi: 10.1039/C5TA03188E – ident: e_1_2_7_95_1 doi: 10.1039/C4CC10203G – ident: e_1_2_7_32_1 doi: 10.1002/adfm.201404078 – ident: e_1_2_7_34_1 doi: 10.1039/C5RA12478F – ident: e_1_2_7_98_1 doi: 10.1002/smtd.201600063 – ident: e_1_2_7_41_1 doi: 10.1039/C5EE03262H – ident: e_1_2_7_85_1 doi: 10.1039/C5EE03262H – ident: e_1_2_7_107_1 doi: 10.1039/c3ce41545g – ident: e_1_2_7_65_1 doi: 10.1021/nl502759z – ident: e_1_2_7_43_1 doi: 10.1038/ncomms3922 – ident: e_1_2_7_135_1 doi: 10.1021/nl504676v – ident: e_1_2_7_27_1 doi: 10.1016/j.electacta.2015.05.055 – ident: e_1_2_7_9_1 doi: 10.1002/smtd.201700094 – ident: e_1_2_7_93_1 doi: 10.1021/acsami.6b00641 – ident: e_1_2_7_110_1 doi: 10.1002/smll.201402246 – ident: e_1_2_7_70_1 doi: 10.1016/j.electacta.2015.07.140 |
SSID | ssj0031247 |
Score | 2.621487 |
SecondaryResourceType | review_article |
Snippet | Clean energy has become an important topic in recent decades because of the serious global issues related to the development of energy, such as environmental... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | anodes cathodes Clean energy Clean technology Commercialization Electrochemical analysis Energy storage Lithium batteries Low conductivity Nanocomposites Nanotechnology Rechargeable batteries Size effects Sodium Sodium-ion batteries Storage facilities |
Title | Nanocomposite Materials for the Sodium–Ion Battery: A Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201702514 https://www.ncbi.nlm.nih.gov/pubmed/29266708 https://www.proquest.com/docview/1993022000 https://www.proquest.com/docview/1979508553 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VPcGBQvlLKZUrIXFy6zjJxuGAVKFWS9XlwLLS3iLbsSXUblJ1Nwc49R36hjwJM_Fu2i1CSPSWKE7ieGY8nzPjbwDeqczjssdbLlzleYpC59o7y10hpdW5zFxOG4VHXwbDSXo6zaZ3dvEHfoj-hxtZRjdfk4FrMz-8JQ2dzy4odBDnhJKJEJQStggVfe35oxJ0Xl11FfRZnIi3VqyNQh6u377ulf6AmuvItXM9J1ugV50OGSfnB-3CHNif9_gcH_JVT-HJEpeyo6BIz2DD1dvw-A5b4XP4iDNxQynolOfl2EgvgvYyxL0McSQbN9X3dvbr-uZzU7NA3PnjAztiIf7wAiYnx98-Dfmy_AK3aa5S7mWmRCFRkCo1edXZP8o7yUxitBWq0nlh0tQXTqQ-9hQiFRoBT2yrGBcxcfISNuumdq-BDRziPG9E5nH154wolLIJQlWX4INwto2Ar4a_tEtuciqRcVEGVmVZ0riU_bhE8L5vfxlYOf7acnclzXJpnfOSkhZph7EQEez3l9GuKFiia9e01CanArlZlkTwKmhB_ypZIKzJhYpAdrL8Rx_K8ejsrD_b-Z-b3sAjPFYhXXwXNhdXrXuLaGhh9jqN_w2cZP_Z |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619EB7oL_QFNq6EhIns47jEIdDJVQVLWWXAz9Sb1Hs2BICkqrsHuDEO_QN-ySdiTcpC6oqtcckduJ4Zuxv7PE3AOs69ej2eMuFqzxXKHReeme5y6W0ZSZTl9FB4fHB1vBEffmadtGEdBYm8EP0C25kGe14TQZOC9KD36yhlxfntHcQZwST1UN4RGm9W6_qsGeQSnD6avOr4KzFiXqr420UcjBff35eugc257FrO_nsPgXTNTvEnJxtTidm017fYXT8r_96BkszaMp2gi49hweufgFPbhEWvoSPOBg3FIVOoV6OjctJUGCG0JchlGRHTXU6vfh582OvqVng7rzaZjssbEG8gpPdz8efhnyWgYFblWnFvUy1yCXKUiuTVe0QgCJPUpOY0gpdlVlulPK5E8rHnnZJRYmYJ7ZVjH5MnCzDQt3U7jWwLYdQzxuRenQAnRG51jZBtOoSfBEOuBHwrv8LO6MnpywZ50UgVpYF9UvR90sEG335b4GY448l1zpxFjMDvSwobpEOGQsRwYf-MZoW7ZeUtWumVCajHLlpmkSwEtSg_5TMEdlkQkcgW2H-pQ3F0Xg06q_e_Eul97A4PB6PitHewf4qPMb7OkSPr8HC5PvUvUVwNDHvWvX_BaMsBAM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkFB7KI-WNhSKkZB6MjiOs3F6QELAiscuqkqRuEWJY0sISFDZPbSn_gf-YX9JZ-LdwBahSuWYxEkcz-tzPP4GYEPHDqc9znBhS8cVCp3nzhpuUylNnsjYJrRRuH_SOThTR-fx-YNd_J4fov3hRpbR-Gsy8JvSbd2Tht5eX9HSQZgQSlYvYEZ1hCa93vvaEkhFGL2a8ioYtDgxb41pG4Xcmrx_Miw9wpqT0LWJPd05yMe99iknl5vDQbFpfv5F6Picz5qH1yNgyna8Ji3AlK0W4dUDusI3sI2uuKYcdEr0sqyfD7z6MgS-DIEkO63Li-H17193h3XFPHPnj89sh_kFiLdw1t3_tnvAR_UXuFGJVtzJWItUoiS1KpKycQAo8CguoiI3Qpd5khZKudQK5UJHa6QiR8QTmjLEWUwYLcF0VVf2PbCORaDnChE7nP7ZQqRamwixqo3wQehuA-Dj4c_MiJycamRcZZ5WWWY0Llk7LgF8atvfeFqOJ1uujKWZjczzNqOsRdpiLEQA6-1lNCxaLckrWw-pTUIVcuM4CuCd14L2VTJFXJMIHYBsZPmPPmSn_V6vPVr-n5vWYPbLXjfrHZ4cf4CXeFr71PEVmB58H9pVREaD4mOj_H8ApaMCuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocomposite+Materials+for+the+Sodium-Ion+Battery%3A+A+Review&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liang%2C+Yaru&rft.au=Lai%2C+Wei-Hong&rft.au=Miao%2C+Zongcheng&rft.au=Chou%2C+Shu-Lei&rft.date=2018-02-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=14&rft.issue=5&rft_id=info:doi/10.1002%2Fsmll.201702514&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |