Nonaqueous Sodium‐Ion Full Cells: Status, Strategies, and Prospects
With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique bridging technology between sodium‐ion half‐cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promot...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 32; pp. e1900233 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique bridging technology between sodium‐ion half‐cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi‐solid‐state electrolytes, and all‐solid‐state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided.
Sodium‐ion full cells with low cost and abundant resource are promising to satisfy the urgent demand of large‐scale energy storage, yet their developments suffer from challenges of interfacial characteristics. Here, their recent advances in various electrolytes are summarized, and diverse strategies including tailoring interface, matching capacity, optimizing electrolyte as well as compensating sodium to drive the development of the whole industry are addressed. |
---|---|
AbstractList | With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique bridging technology between sodium‐ion half‐cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi‐solid‐state electrolytes, and all‐solid‐state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided. With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique bridging technology between sodium‐ion half‐cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi‐solid‐state electrolytes, and all‐solid‐state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided. Sodium‐ion full cells with low cost and abundant resource are promising to satisfy the urgent demand of large‐scale energy storage, yet their developments suffer from challenges of interfacial characteristics. Here, their recent advances in various electrolytes are summarized, and diverse strategies including tailoring interface, matching capacity, optimizing electrolyte as well as compensating sodium to drive the development of the whole industry are addressed. With ever-increasing efforts focused on basic research of sodium-ion batteries (SIBs) and growing energy demand, sodium-ion full cells (SIFCs), as unique bridging technology between sodium-ion half-cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi-solid-state electrolytes, and all-solid-state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided.With ever-increasing efforts focused on basic research of sodium-ion batteries (SIBs) and growing energy demand, sodium-ion full cells (SIFCs), as unique bridging technology between sodium-ion half-cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi-solid-state electrolytes, and all-solid-state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided. |
Author | Yin, Ya‐Xia Niu, Yu‐Bin Guo, Yu‐Guo |
Author_xml | – sequence: 1 givenname: Yu‐Bin surname: Niu fullname: Niu, Yu‐Bin organization: Chinese Academy of Sciences (CAS) – sequence: 2 givenname: Ya‐Xia surname: Yin fullname: Yin, Ya‐Xia email: yxyin@iccas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30908817$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKAzEUhoNUbL1sXcqAGxe2JpmZXNxJ8VKoF6iuQyaTkSmZSZ3MIO58BJ_RJ_GUaoWCuDon8P0n__nPLurVvrYIHRI8IhjTs1A5N6KYSHjE8RYaEEbiIRNU9tY9wX20G8Ic45jQhO-gfowlFoLwAbq887V-6azvQjTzedlVn-8fE19HV51z0dg6F86jWavbLpxCbXRrn0sLva7z6KHxYWFNG_bRdqFdsAffdQ89XV0-jm-G0_vryfhiOjQJF2ClyLKY5SK1mhe5IUXBuE5xmmqZaCjGMlpInWmKWZwYg1mawQpMp9xwK0i8h05WcxeNB9OhVVUZDJjU9XIDRYnkQgjMOaDHG-jcd00N7hSlTArJIAugjr6pLqtsrhZNWenmTf0EBMBoBRjYNTS2WCMEq-UF1PICan0BECQbAlNCfKWvIbzS_S2TK9lr6ezbP5-o2e10-qv9AruzmkA |
CitedBy_id | crossref_primary_10_1016_j_jechem_2024_01_033 crossref_primary_10_1002_idm2_12213 crossref_primary_10_1016_j_matpr_2020_03_704 crossref_primary_10_1016_j_nanoso_2024_101311 crossref_primary_10_1021_acsami_1c06160 crossref_primary_10_1016_j_ensm_2022_10_032 crossref_primary_10_1021_acs_energyfuels_4c00564 crossref_primary_10_1021_acs_jpclett_1c03078 crossref_primary_10_1016_j_enchem_2020_100031 crossref_primary_10_1039_D0QM01124J crossref_primary_10_3390_batteries9010008 crossref_primary_10_1016_j_inoche_2020_108383 crossref_primary_10_3389_fchem_2023_1253959 crossref_primary_10_1016_j_jallcom_2020_157238 crossref_primary_10_1016_j_jelechem_2023_117432 crossref_primary_10_1039_D0TA08186H crossref_primary_10_1002_aenm_202101751 crossref_primary_10_1016_j_jmst_2023_05_005 crossref_primary_10_1007_s12274_020_3011_6 crossref_primary_10_1002_adma_202310659 crossref_primary_10_1021_acsami_0c05784 crossref_primary_10_1002_smll_202303259 crossref_primary_10_1002_cnl2_48 crossref_primary_10_1002_aenm_202302514 crossref_primary_10_1002_aenm_202000974 crossref_primary_10_1021_acsenergylett_0c02650 crossref_primary_10_1016_j_esci_2021_10_003 crossref_primary_10_1002_batt_202100131 crossref_primary_10_1016_j_apsusc_2020_147105 crossref_primary_10_1016_j_jechem_2020_10_047 crossref_primary_10_1039_C9NR07545C crossref_primary_10_1002_nano_202000297 crossref_primary_10_1021_acsami_0c23069 crossref_primary_10_1039_D2NJ04653A crossref_primary_10_1002_celc_202001527 crossref_primary_10_1021_acs_energyfuels_1c03802 crossref_primary_10_1002_cssc_201901486 crossref_primary_10_1007_s10853_019_04162_8 crossref_primary_10_1021_acsmaterialslett_0c00356 crossref_primary_10_1021_acs_nanolett_3c01890 crossref_primary_10_1016_j_jmst_2020_05_076 crossref_primary_10_1002_aenm_202300149 crossref_primary_10_1039_D1QM00077B crossref_primary_10_1002_adfm_201909530 crossref_primary_10_1002_smll_202400709 crossref_primary_10_1002_adma_202001419 crossref_primary_10_1002_aenm_202002704 crossref_primary_10_1002_smll_201902246 crossref_primary_10_1016_j_enrev_2024_100068 crossref_primary_10_3390_met14121453 crossref_primary_10_1016_j_ensm_2020_10_015 crossref_primary_10_1021_acsami_1c04647 crossref_primary_10_1016_j_nanoen_2020_104613 crossref_primary_10_1039_D0EE02782K crossref_primary_10_1039_D0TA08851J crossref_primary_10_1016_j_cej_2021_133545 crossref_primary_10_1016_j_cej_2024_155536 crossref_primary_10_1016_j_jcis_2021_04_069 crossref_primary_10_1016_j_memsci_2020_118917 crossref_primary_10_1016_j_pmatsci_2024_101401 crossref_primary_10_1002_anie_201915666 crossref_primary_10_1002_cey2_658 crossref_primary_10_1016_j_jmat_2021_03_010 crossref_primary_10_1021_acsami_1c06147 crossref_primary_10_1021_acsnano_1c07476 crossref_primary_10_1016_j_cej_2024_157340 crossref_primary_10_1039_D1CC01292D crossref_primary_10_1002_idm2_12040 crossref_primary_10_1016_j_est_2025_116038 crossref_primary_10_1039_D1NJ00262G crossref_primary_10_15625_2525_2518_16040 crossref_primary_10_1021_acsami_9b14381 crossref_primary_10_1021_acsami_3c03386 crossref_primary_10_1002_adfm_202009458 crossref_primary_10_1021_acsenergylett_4c03323 crossref_primary_10_20517_microstructures_2023_102 crossref_primary_10_1038_s41467_022_28052_x crossref_primary_10_1039_D0NA00729C crossref_primary_10_1039_D0TA04307A crossref_primary_10_1016_j_ensm_2023_102821 crossref_primary_10_1021_acsami_0c23165 crossref_primary_10_1002_smtd_202301579 crossref_primary_10_1021_acsami_0c07894 crossref_primary_10_1002_adma_202211461 crossref_primary_10_1016_j_mtener_2024_101775 crossref_primary_10_1093_nsr_nwaa178 crossref_primary_10_1002_advs_202001263 crossref_primary_10_1002_ange_201915666 crossref_primary_10_1002_batt_202200043 crossref_primary_10_1007_s40843_023_2550_2 |
Cites_doi | 10.1016/j.ensm.2017.07.012 10.1021/acs.chemmater.5b02684 10.1039/C5RA06336A 10.1149/2.0701706jes 10.1039/C7TA02515G 10.1039/C5EE00695C 10.1021/jp5105888 10.1007/s12274-018-1985-0 10.1149/2.0851702jes 10.1002/adma.201500196 10.1016/j.jpowsour.2017.10.083 10.1002/adsu.201700153 10.1002/chem.201704131 10.1002/aenm.201502568 10.1021/acsami.7b16580 10.1016/j.carbon.2017.11.054 10.1002/adfm.201402984 10.1021/acsnano.7b02136 10.1039/C8NR00650D 10.1021/acsami.6b12688 10.1002/anie.201712895 10.1002/adfm.201801917 10.1002/advs.201600392 10.1002/adma.201700898 10.1002/aenm.201601602 10.1002/adfm.201805444 10.1016/j.electacta.2014.03.144 10.1080/10667857.2016.1208451 10.1002/admi.201600357 10.1002/smll.201802716 10.1021/acsami.6b11230 10.1039/C6QM00169F 10.1039/C5TA05444C 10.1021/acsami.7b13516 10.1021/acs.jpcc.5b04206 10.1002/aenm.201601973 10.1002/adfm.201705968 10.1002/aenm.201800079 10.1021/acsami.7b16901 10.1002/adma.201700431 10.1002/aenm.201600943 10.1002/cssc.201801662 10.1149/2.0931702jes 10.1002/asia.201800839 10.1016/j.jpowsour.2017.07.002 10.1002/aenm.201801162 10.1002/adma.201700622 10.1016/j.fuproc.2018.05.007 10.1002/adfm.201400773 10.1002/adma.201304126 10.1016/j.nanoen.2016.08.010 10.3390/en11061614 10.1016/j.matlet.2017.02.125 10.1039/C4EE03361B 10.1002/cssc.201801099 10.1002/smll.201601530 10.1002/aenm.201702716 10.1016/j.elecom.2013.10.008 10.1039/C7EE00524E 10.1002/smll.201702514 10.1149/1.1393419 10.1002/aenm.201501785 10.1039/C4RA03473B 10.1016/j.jpowsour.2018.06.067 10.1016/j.jpowsour.2017.02.065 10.1007/s41918-018-0009-9 10.1021/acsami.7b11040 10.1002/aenm.201600377 10.1016/j.electacta.2017.12.061 10.1002/aenm.201700797 10.1016/j.electacta.2015.07.163 10.1016/j.jpowsour.2014.10.143 10.1039/C6EE00794E 10.1016/j.ceramint.2018.04.196 10.1016/j.jpowsour.2017.12.053 10.1002/adma.201603212 10.1021/ja510347s 10.1149/05812.0059ecst 10.1021/acsami.8b02427 10.1021/acsami.6b13193 10.1039/C3CP53077A 10.1039/C7EE00566K 10.1039/C7TA03434B 10.1016/j.elecom.2010.07.016 10.1016/j.ensm.2018.02.002 10.1016/j.jpowsour.2011.09.008 10.1149/2.0311807jes 10.1039/C5TA09867J 10.1016/j.jpowsour.2015.12.121 10.1149/07522.0013ecst 10.1002/adma.201505918 10.1016/j.electacta.2017.10.173 10.1039/C7TA08443A 10.1002/advs.201700768 10.1021/acs.chemmater.7b01542 10.1002/aenm.201601424 10.1021/acsami.8b02446 10.1021/acsami.8b02768 10.1016/j.elecom.2017.08.012 10.1002/adma.201802745 10.1016/j.electacta.2012.11.038 10.1002/aenm.201801441 10.1002/advs.201600275 10.1002/smll.201604181 10.1039/C5TA00724K 10.1002/aenm.201600736 10.1039/C8TA01627E 10.1021/acsnano.7b07132 10.1021/jz2012066 10.1002/adma.201305522 10.1002/aenm.201701827 10.1039/C6TA05069G 10.1021/acs.nanolett.7b00915 10.1002/aenm.201703252 10.1021/acsami.5b09181 10.1039/C8TA00530C 10.1016/j.jpowsour.2015.10.087 10.1002/aenm.201501294 10.1002/adfm.201601323 10.1039/C7RA13441J 10.1002/aenm.201701610 10.1039/C4TA05451B 10.1016/j.elecom.2015.10.009 10.1021/acsami.6b16000 10.1002/chem.201502050 10.1016/j.jpowsour.2013.08.118 10.1021/acsami.8b03986 10.1002/aenm.201602898 10.1016/j.jpowsour.2013.09.051 10.1002/aenm.201501588 10.1039/C5TA03893F 10.1002/aenm.201800058 10.1016/j.jpowsour.2016.08.066 10.1021/acsami.6b11372 10.1002/aenm.201700463 10.1021/acsami.7b05687 10.1021/acsami.8b12204 10.1149/2.0731802jes 10.1039/c2ee22864e 10.1016/j.jpowsour.2016.10.084 10.1002/adma.201803765 10.1002/anie.201604158 10.1021/ja512383b 10.1016/j.jpowsour.2016.05.096 10.1016/j.nanoen.2017.05.012 10.1039/C7RA01047H 10.1038/ncomms10308 10.1039/c3ee41379a 10.1039/C8TA01392F 10.1016/j.nanoen.2018.01.046 10.1016/j.jpowsour.2017.11.084 10.1002/admi.201600942 10.1016/j.nanoen.2016.07.030 10.1016/j.jpowsour.2016.07.109 10.1021/acsnano.5b05229 10.1039/c2ee22258b 10.1002/anie.201505215 10.1002/adma.201701968 10.1039/C7NR09674G 10.1039/C8DT01068D 10.1039/C7TA00139H 10.1039/C6TA09809F 10.1039/C7TA01701D 10.1016/j.jpowsour.2017.01.079 10.1002/adma.201806092 10.1002/adma.201706317 10.1039/C5EE01941A 10.1002/celc.201500437 10.1007/s10008-016-3365-6 10.1002/aenm.201601329 10.1016/j.elecom.2014.05.003 10.1002/aenm.201702869 10.1039/C7TA08104A 10.1039/C5TA02043C 10.1002/aenm.201702403 10.1039/C6CC04625H 10.1002/smll.201700767 10.1039/C8TA03967D 10.1039/C5EE00878F 10.1016/j.jpowsour.2014.02.054 10.1021/acsami.5b09835 10.1002/aenm.201600467 10.1039/C4RA14733B 10.1016/j.ijhydene.2015.12.090 10.1021/acsami.5b12242 10.1007/s41918-018-0008-x 10.1016/j.nanoen.2018.02.053 10.1039/C5RA21235A 10.1039/C8TA00901E 10.1021/acs.nanolett.6b00942 10.1039/C6EE03367A 10.1016/j.electacta.2015.10.003 10.1149/2.0711514jes 10.1038/natrevmats.2018.13 10.1039/C8NR01685B 10.1016/j.jpowsour.2014.10.193 10.1002/cssc.201701664 10.1021/acsami.8b06706 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201900233 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 30908817 10_1002_smll_201900233 SMLL201900233 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51788104; 51772301; 21773264 – fundername: China Postdoctoral Science Foundation funderid: 2017M620914 – fundername: Chinese Academy of Sciences funderid: XDA 21070300 – fundername: National Key R&D Program of China funderid: 2016YFA0202500 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4783-6fbb36d85ea7fdc1ff67a5055a94a055ce62f9aba20634cc065b6136a57c7e813 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 01:51:38 EDT 2025 Fri Jul 25 12:02:07 EDT 2025 Mon Jul 21 06:01:45 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Tue Jul 01 02:10:41 EDT 2025 Wed Jan 22 16:39:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | liquid electrolytes solid-state electrolytes gel electrolytes sodium-ion batteries full cells |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4783-6fbb36d85ea7fdc1ff67a5055a94a055ce62f9aba20634cc065b6136a57c7e813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0322-8476 |
PMID | 30908817 |
PQID | 2269896124 |
PQPubID | 1046358 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_2197888077 proquest_journals_2269896124 pubmed_primary_30908817 crossref_primary_10_1002_smll_201900233 crossref_citationtrail_10_1002_smll_201900233 wiley_primary_10_1002_smll_201900233_SMLL201900233 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 83 2018; 165 2016; 307 2014; 26 2016; 31 2014; 24 2016; 304 2014; 132 2018; 44 2013; 6 2014; 258 2018; 47 2018; 6 2017; 75 2018; 177 2018; 8 2018; 3 2018; 2 2018; 5 2015; 137 2013; 2013 2018; 1 2014; 16 2016; 41 2018; 30 2017; 164 2014; 247 2018; 28 2011; 2 2019; 31 2016; 329 2016; 327 2015; 54 2013; 101 2017; 372 2016; 324 2016; 16 2014; 44 2018; 24 2016; 4 2016; 6 2012; 197 2016; 7 2016; 3 2015; 61 2015; 119 2018; 11 2016; 28 2018; 10 2016; 27 2016; 26 2016; 8 2016; 9 2018; 14 2018; 13 2017; 5 2017; 7 2015; 182 2017; 1 2017; 4 2018; 127 2017; 195 2017; 9 2014; 4 2017; 37 2018; 259 2018; 377 2015; 178 2018; 378 2014; 58 2017; 361 2015; 162 2015; 5 2015; 3 2018; 260 2017; 21 2016; 52 2017; 29 2015; 9 2015; 8 2015; 7 2017; 337 2016; 55 2015; 25 2018; 396 2013; 37 2015; 27 2000; 147 2017; 17 2017; 11 2017; 10 2017; 13 2015; 275 2015; 274 2015; 21 2017; 343 2012; 5 2017; 347 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_162_1 Kuze S. (e_1_2_8_40_1) 2013; 2013 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 378 start-page: 268 year: 2018 publication-title: J. Power Sources – volume: 58 start-page: 59 year: 2014 publication-title: ECS Trans. – volume: 165 start-page: A1222 year: 2018 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 1600275 year: 2017 publication-title: Adv. Sci. – volume: 7 start-page: 1700797 year: 2017 publication-title: Adv. Energy Mater. – volume: 307 start-page: 173 year: 2016 publication-title: J. Power Sources – volume: 8 start-page: 1801162 year: 2018 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1702403 year: 2018 publication-title: Adv. Energy Mater. – volume: 247 start-page: 377 year: 2014 publication-title: J. Power Sources – volume: 9 start-page: 1471 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 216 year: 2016 publication-title: Nano Energy – volume: 5 start-page: 10398 year: 2017 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3377 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 start-page: 10453 year: 2015 publication-title: J. Mater. Chem. A – volume: 329 start-page: 1 year: 2016 publication-title: J. Power Sources – volume: 27 start-page: 3305 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 48928 year: 2015 publication-title: RSC Adv. – volume: 101 start-page: 59 year: 2013 publication-title: Electrochim. Acta – volume: 5 start-page: 1501294 year: 2015 publication-title: Adv. Energy Mater. – volume: 21 start-page: 14879 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 5 start-page: 24929 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1600943 year: 2016 publication-title: Adv. Energy Mater. – volume: 377 start-page: 1 year: 2018 publication-title: J. Power Sources – volume: 11 start-page: 1614 year: 2018 publication-title: Energies – volume: 8 start-page: 1701610 year: 2018 publication-title: Adv. Energy Mater. – volume: 396 start-page: 476 year: 2018 publication-title: J. Power Sources – volume: 162 start-page: A2723 year: 2015 publication-title: J. Electrochem. Soc. – volume: 28 start-page: 4126 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 11371 year: 2015 publication-title: ACS Nano – volume: 178 start-page: 55 year: 2015 publication-title: Electrochim. Acta – volume: 7 start-page: 10308 year: 2016 publication-title: Nat. Commun. – volume: 324 start-page: 421 year: 2016 publication-title: J. Power Sources – volume: 21 start-page: 223 year: 2017 publication-title: J. Solid State Electrochem. – volume: 26 start-page: 5019 year: 2016 publication-title: Adv. Funct. Mater. – volume: 327 start-page: 653 year: 2016 publication-title: J. Power Sources – volume: 13 start-page: 1604181 year: 2017 publication-title: Small – volume: 6 start-page: 1501785 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1600377 year: 2016 publication-title: Adv. Energy Mater. – volume: 9 start-page: 7177 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 22012 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 8572 year: 2012 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1754 year: 2016 publication-title: J. Mater. Chem. A – volume: 1 start-page: 200 year: 2018 publication-title: Electrochem. Energy Rev. – volume: 10 start-page: 3581 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1601602 year: 2017 publication-title: Adv. Energy Mater. – volume: 27 start-page: 664 year: 2016 publication-title: Nano Energy – volume: 164 start-page: A321 year: 2017 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 13335 year: 2018 publication-title: Nanoscale – volume: 75 start-page: 13 year: 2017 publication-title: ECS Trans. – volume: 8 start-page: 1801441 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 start-page: 9632 year: 2012 publication-title: Energy Environ. Sci. – volume: 10 start-page: 1051 year: 2017 publication-title: Energy Environ. Sci. – volume: 13 start-page: 1700767 year: 2017 publication-title: Small – volume: 7 start-page: 1700463 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 25369 year: 2014 publication-title: RSC Adv. – volume: 16 start-page: 3321 year: 2016 publication-title: Nano Lett. – volume: 6 start-page: 1501588 year: 2016 publication-title: Adv. Energy Mater. – volume: 28 start-page: 1705968 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2954 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 start-page: 27838 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 1344 year: 2010 publication-title: Electrochem. Commun. – volume: 9 start-page: 40187 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 13609 year: 2018 publication-title: Ceram. Int. – volume: 8 start-page: 1702869 year: 2018 publication-title: Adv. Energy Mater. – volume: 9 start-page: 447 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 11701 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 2630 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 106519 year: 2015 publication-title: RSC Adv. – volume: 8 start-page: 2019 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 8815 year: 2018 publication-title: J. Mater. Chem. A – volume: 182 start-page: 1029 year: 2015 publication-title: Electrochim. Acta – volume: 8 start-page: 1703252 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 start-page: 1803765 year: 2018 publication-title: Adv. Mater. – volume: 119 start-page: 166 year: 2015 publication-title: J. Phys. Chem. C – volume: 4 start-page: 11207 year: 2016 publication-title: J. Mater. Chem. A – volume: 29 start-page: 1700431 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 1601329 year: 2017 publication-title: Adv. Energy Mater. – volume: 1 start-page: 584 year: 2017 publication-title: Mater. Chem. Front. – volume: 6 start-page: 15797 year: 2018 publication-title: J. Mater. Chem. A – volume: 37 start-page: 61 year: 2013 publication-title: Electrochem. Commun. – volume: 47 start-page: 340 year: 2018 publication-title: Nano Energy – volume: 247 start-page: 975 year: 2014 publication-title: J. Power Sources – volume: 7 start-page: 21820 year: 2017 publication-title: RSC Adv. – volume: 275 start-page: 284 year: 2015 publication-title: J. Power Sources – volume: 10 start-page: 502 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 6867 year: 2018 publication-title: J. Mater. Chem. A – volume: 28 start-page: 1801917 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 32324 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 9634 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 61 start-page: 84 year: 2015 publication-title: Electrochem. Commun. – volume: 8 start-page: 1800079 year: 2018 publication-title: Adv. Energy Mater. – volume: 17 start-page: 4137 year: 2017 publication-title: Nano Lett. – volume: 4 start-page: 1600942 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 24 start-page: 5380 year: 2014 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 5948 year: 2017 publication-title: Chem. Mater. – volume: 5 start-page: 13411 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 6559 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 start-page: 15270 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 5120 year: 2017 publication-title: ACS Nano – volume: 14 start-page: 1702514 year: 2018 publication-title: Small – volume: 28 start-page: 9824 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 294 year: 2018 publication-title: Electrochem. Energy Rev. – volume: 2013 start-page: 1 year: 2013 publication-title: Sumitomo Kagaku – volume: 8 start-page: 2958 year: 2018 publication-title: RSC Adv. – volume: 10 start-page: 34272 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1237 year: 2015 publication-title: Energy Environ. Sci. – volume: 119 start-page: 18046 year: 2015 publication-title: J. Phys. Chem. C – volume: 164 start-page: A226 year: 2017 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 31709 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 370 year: 2017 publication-title: Energy Environ. Sci. – volume: 3 start-page: 16971 year: 2015 publication-title: J. Mater. Chem. A – volume: 165 start-page: A175 year: 2018 publication-title: J. Electrochem. Soc. – volume: 31 start-page: 1806092 year: 2019 publication-title: Adv. Mater. – volume: 132 start-page: 448 year: 2014 publication-title: Electrochim. Acta – volume: 137 start-page: 2658 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1867 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 8793 year: 2015 publication-title: RSC Adv. – volume: 304 start-page: 1 year: 2016 publication-title: J. Power Sources – volume: 26 start-page: 1261 year: 2014 publication-title: Adv. Mater. – volume: 11 start-page: 3376 year: 2018 publication-title: ChemSusChem – volume: 5 start-page: 4413 year: 2017 publication-title: J. Mater. Chem. A – volume: 5 start-page: 9528 year: 2017 publication-title: J. Mater. Chem. A – volume: 14 start-page: 1802716 year: 2018 publication-title: Small – volume: 7 start-page: 1601973 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1600392 year: 2017 publication-title: Adv. Sci. – volume: 7 start-page: 1602898 year: 2017 publication-title: Adv. Energy Mater. – volume: 13 start-page: 2770 year: 2018 publication-title: Chem. ‐ Asian J. – volume: 47 start-page: 325 year: 2018 publication-title: Nano Energy – volume: 41 start-page: 2829 year: 2016 publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 12658 year: 2017 publication-title: ACS Nano – volume: 3 start-page: 8332 year: 2015 publication-title: J. Mater. Chem. A – volume: 258 start-page: 420 year: 2014 publication-title: J. Power Sources – volume: 10 start-page: 9218 year: 2018 publication-title: Nanoscale – volume: 197 start-page: 314 year: 2012 publication-title: J. Power Sources – volume: 147 start-page: 1688 year: 2000 publication-title: J. Electrochem. Soc. – volume: 44 start-page: 74 year: 2014 publication-title: Electrochem. Commun. – volume: 195 start-page: 127 year: 2017 publication-title: Mater. Lett. – volume: 337 start-page: 197 year: 2017 publication-title: J. Power Sources – volume: 5 start-page: 1700768 year: 2018 publication-title: Adv. Sci. – volume: 26 start-page: 3545 year: 2014 publication-title: Adv. Mater. – volume: 47 start-page: 10752 year: 2018 publication-title: Dalton Trans. – volume: 11 start-page: 3286 year: 2018 publication-title: ChemSusChem – volume: 3 start-page: 292 year: 2016 publication-title: ChemElectroChem – volume: 10 start-page: 10022 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1600357 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 347 start-page: 127 year: 2017 publication-title: J. Power Sources – volume: 29 start-page: 1700898 year: 2017 publication-title: Adv. Mater. – volume: 260 start-page: 882 year: 2018 publication-title: Electrochim. Acta – volume: 137 start-page: 2548 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 6682 year: 2015 publication-title: Chem. Mater. – volume: 13 start-page: 274 year: 2018 publication-title: Energy Storage Mater. – volume: 8 start-page: 1800058 year: 2018 publication-title: Adv. Energy Mater. – volume: 343 start-page: 424 year: 2017 publication-title: J. Power Sources – volume: 28 start-page: 1805444 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 2361 year: 2013 publication-title: Energy Environ. Sci. – volume: 29 start-page: 1701968 year: 2017 publication-title: Adv. Mater. – volume: 164 start-page: A1098 year: 2017 publication-title: J. Electrochem. Soc. – volume: 13 start-page: 1601530 year: 2017 publication-title: Small – volume: 11 start-page: 506 year: 2018 publication-title: ChemSusChem – volume: 10 start-page: 19605 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1600467 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1601424 year: 2017 publication-title: Adv. Energy Mater. – volume: 52 start-page: 10890 year: 2016 publication-title: Chem. Commun. – volume: 361 start-page: 285 year: 2017 publication-title: J. Power Sources – volume: 16 start-page: 1987 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 3399 year: 2016 publication-title: Energy Environ. Sci. – volume: 29 start-page: 1700622 year: 2017 publication-title: Adv. Mater. – volume: 31 start-page: 646 year: 2016 publication-title: Mater. Technol. – volume: 10 start-page: 17903 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 372 start-page: 270 year: 2017 publication-title: J. Power Sources – volume: 24 start-page: 2913 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 177 start-page: 328 year: 2018 publication-title: Fuel Process. Technol. – volume: 11 start-page: 4026 year: 2018 publication-title: Nano Res. – volume: 9 start-page: 23766 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1701827 year: 2018 publication-title: Adv. Energy Mater. – volume: 83 start-page: 20 year: 2017 publication-title: Electrochem. Commun. – volume: 6 start-page: 7997 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1600736 year: 2016 publication-title: Adv. Energy Mater. – volume: 127 start-page: 658 year: 2018 publication-title: Carbon – volume: 274 start-page: 1016 year: 2015 publication-title: J. Power Sources – volume: 10 start-page: 1075 year: 2017 publication-title: Energy Environ. Sci. – volume: 5 start-page: 23671 year: 2017 publication-title: J. Mater. Chem. A – volume: 2 start-page: 2560 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 30 start-page: 1706317 year: 2018 publication-title: Adv. Mater. – volume: 25 start-page: 534 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1702716 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1502568 year: 2016 publication-title: Adv. Energy Mater. – volume: 37 start-page: 81 year: 2017 publication-title: Nano Energy – volume: 259 start-page: 100 year: 2018 publication-title: Electrochim. Acta – volume: 9 start-page: 170 year: 2017 publication-title: Energy Storage Mater. – volume: 2 start-page: 1700153 year: 2018 publication-title: Adv. Sustainable Syst. – volume: 10 start-page: 23883 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 6671 year: 2018 publication-title: Nanoscale – volume: 3 start-page: 71 year: 2015 publication-title: J. Mater. Chem. A – volume: 10 start-page: 16581 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 7790 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 3589 year: 2015 publication-title: Energy Environ. Sci. – volume: 3 start-page: 18013 year: 2018 publication-title: Nat. Rev. Mater. – volume: 30 start-page: 1802745 year: 2018 publication-title: Adv. Mater. – ident: e_1_2_8_108_1 doi: 10.1016/j.ensm.2017.07.012 – ident: e_1_2_8_188_1 doi: 10.1021/acs.chemmater.5b02684 – ident: e_1_2_8_76_1 doi: 10.1039/C5RA06336A – ident: e_1_2_8_71_1 doi: 10.1149/2.0701706jes – ident: e_1_2_8_33_1 doi: 10.1039/C7TA02515G – ident: e_1_2_8_81_1 doi: 10.1039/C5EE00695C – ident: e_1_2_8_189_1 doi: 10.1021/jp5105888 – ident: e_1_2_8_121_1 doi: 10.1007/s12274-018-1985-0 – ident: e_1_2_8_193_1 doi: 10.1149/2.0851702jes – ident: e_1_2_8_132_1 doi: 10.1002/adma.201500196 – ident: e_1_2_8_180_1 doi: 10.1016/j.jpowsour.2017.10.083 – ident: e_1_2_8_7_1 doi: 10.1002/adsu.201700153 – ident: e_1_2_8_53_1 doi: 10.1002/chem.201704131 – ident: e_1_2_8_116_1 doi: 10.1002/aenm.201502568 – ident: e_1_2_8_106_1 doi: 10.1021/acsami.7b16580 – ident: e_1_2_8_114_1 doi: 10.1016/j.carbon.2017.11.054 – ident: e_1_2_8_22_1 doi: 10.1002/adfm.201402984 – ident: e_1_2_8_122_1 doi: 10.1021/acsnano.7b02136 – ident: e_1_2_8_84_1 doi: 10.1039/C8NR00650D – ident: e_1_2_8_173_1 doi: 10.1021/acsami.6b12688 – ident: e_1_2_8_162_1 doi: 10.1002/anie.201712895 – ident: e_1_2_8_98_1 doi: 10.1002/adfm.201801917 – ident: e_1_2_8_11_1 doi: 10.1002/advs.201600392 – ident: e_1_2_8_153_1 doi: 10.1002/adma.201700898 – ident: e_1_2_8_131_1 doi: 10.1002/aenm.201601602 – ident: e_1_2_8_135_1 doi: 10.1002/adfm.201805444 – ident: e_1_2_8_196_1 doi: 10.1016/j.electacta.2014.03.144 – ident: e_1_2_8_126_1 doi: 10.1080/10667857.2016.1208451 – ident: e_1_2_8_194_1 doi: 10.1002/admi.201600357 – ident: e_1_2_8_128_1 doi: 10.1002/smll.201802716 – ident: e_1_2_8_136_1 doi: 10.1021/acsami.6b11230 – ident: e_1_2_8_38_1 doi: 10.1039/C6QM00169F – ident: e_1_2_8_95_1 doi: 10.1039/C5TA05444C – ident: e_1_2_8_75_1 doi: 10.1021/acsami.7b13516 – ident: e_1_2_8_176_1 doi: 10.1021/acs.jpcc.5b04206 – ident: e_1_2_8_109_1 doi: 10.1002/aenm.201601973 – ident: e_1_2_8_172_1 doi: 10.1002/adfm.201705968 – ident: e_1_2_8_1_1 doi: 10.1002/aenm.201800079 – ident: e_1_2_8_52_1 doi: 10.1021/acsami.7b16901 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201700431 – ident: e_1_2_8_14_1 doi: 10.1002/aenm.201600943 – ident: e_1_2_8_70_1 doi: 10.1002/cssc.201801662 – ident: e_1_2_8_93_1 doi: 10.1149/2.0931702jes – ident: e_1_2_8_174_1 doi: 10.1002/asia.201800839 – ident: e_1_2_8_10_1 doi: 10.1016/j.jpowsour.2017.07.002 – ident: e_1_2_8_96_1 doi: 10.1002/aenm.201801162 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201700622 – ident: e_1_2_8_115_1 doi: 10.1016/j.fuproc.2018.05.007 – ident: e_1_2_8_155_1 doi: 10.1002/adfm.201400773 – ident: e_1_2_8_154_1 doi: 10.1002/adma.201304126 – ident: e_1_2_8_49_1 doi: 10.1016/j.nanoen.2016.08.010 – ident: e_1_2_8_146_1 doi: 10.3390/en11061614 – ident: e_1_2_8_123_1 doi: 10.1016/j.matlet.2017.02.125 – ident: e_1_2_8_117_1 doi: 10.1039/C4EE03361B – ident: e_1_2_8_58_1 doi: 10.1002/cssc.201801099 – ident: e_1_2_8_152_1 doi: 10.1002/smll.201601530 – ident: e_1_2_8_159_1 doi: 10.1002/aenm.201702716 – ident: e_1_2_8_183_1 doi: 10.1016/j.elecom.2013.10.008 – ident: e_1_2_8_26_1 doi: 10.1039/C7EE00524E – ident: e_1_2_8_4_1 doi: 10.1002/smll.201702514 – ident: e_1_2_8_175_1 doi: 10.1149/1.1393419 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.201501785 – ident: e_1_2_8_147_1 doi: 10.1039/C4RA03473B – ident: e_1_2_8_182_1 doi: 10.1016/j.jpowsour.2018.06.067 – ident: e_1_2_8_100_1 doi: 10.1016/j.jpowsour.2017.02.065 – ident: e_1_2_8_5_1 doi: 10.1007/s41918-018-0009-9 – ident: e_1_2_8_101_1 doi: 10.1021/acsami.7b11040 – ident: e_1_2_8_103_1 doi: 10.1002/aenm.201600377 – ident: e_1_2_8_72_1 doi: 10.1016/j.electacta.2017.12.061 – ident: e_1_2_8_48_1 doi: 10.1002/aenm.201700797 – ident: e_1_2_8_168_1 doi: 10.1016/j.electacta.2015.07.163 – ident: e_1_2_8_36_1 doi: 10.1016/j.jpowsour.2014.10.143 – ident: e_1_2_8_104_1 doi: 10.1039/C6EE00794E – ident: e_1_2_8_78_1 doi: 10.1016/j.ceramint.2018.04.196 – ident: e_1_2_8_43_1 doi: 10.1016/j.jpowsour.2017.12.053 – ident: e_1_2_8_51_1 doi: 10.1002/adma.201603212 – ident: e_1_2_8_41_1 doi: 10.1021/ja510347s – ident: e_1_2_8_91_1 doi: 10.1149/05812.0059ecst – ident: e_1_2_8_166_1 doi: 10.1021/acsami.8b02427 – ident: e_1_2_8_195_1 doi: 10.1021/acsami.6b13193 – ident: e_1_2_8_39_1 doi: 10.1039/C3CP53077A – ident: e_1_2_8_9_1 doi: 10.1039/C7EE00566K – ident: e_1_2_8_138_1 doi: 10.1039/C7TA03434B – ident: e_1_2_8_187_1 doi: 10.1016/j.elecom.2010.07.016 – ident: e_1_2_8_30_1 doi: 10.1016/j.ensm.2018.02.002 – ident: e_1_2_8_35_1 doi: 10.1016/j.jpowsour.2011.09.008 – ident: e_1_2_8_37_1 doi: 10.1149/2.0311807jes – ident: e_1_2_8_105_1 doi: 10.1039/C5TA09867J – ident: e_1_2_8_145_1 doi: 10.1016/j.jpowsour.2015.12.121 – ident: e_1_2_8_42_1 doi: 10.1149/07522.0013ecst – ident: e_1_2_8_140_1 doi: 10.1002/adma.201505918 – ident: e_1_2_8_158_1 doi: 10.1016/j.electacta.2017.10.173 – ident: e_1_2_8_80_1 doi: 10.1039/C7TA08443A – ident: e_1_2_8_197_1 doi: 10.1002/advs.201700768 – ident: e_1_2_8_184_1 doi: 10.1021/acs.chemmater.7b01542 – ident: e_1_2_8_15_1 doi: 10.1002/aenm.201601424 – ident: e_1_2_8_177_1 doi: 10.1021/acsami.8b02446 – ident: e_1_2_8_151_1 doi: 10.1021/acsami.8b02768 – ident: e_1_2_8_178_1 doi: 10.1016/j.elecom.2017.08.012 – ident: e_1_2_8_134_1 doi: 10.1002/adma.201802745 – ident: e_1_2_8_157_1 doi: 10.1016/j.electacta.2012.11.038 – ident: e_1_2_8_190_1 doi: 10.1002/aenm.201801441 – ident: e_1_2_8_13_1 doi: 10.1002/advs.201600275 – ident: e_1_2_8_3_1 doi: 10.1002/smll.201604181 – ident: e_1_2_8_32_1 doi: 10.1039/C5TA00724K – ident: e_1_2_8_181_1 doi: 10.1002/aenm.201600736 – ident: e_1_2_8_6_1 doi: 10.1039/C8TA01627E – ident: e_1_2_8_127_1 doi: 10.1021/acsnano.7b07132 – ident: e_1_2_8_192_1 doi: 10.1021/jz2012066 – ident: e_1_2_8_68_1 doi: 10.1002/adma.201305522 – ident: e_1_2_8_54_1 doi: 10.1002/aenm.201701827 – ident: e_1_2_8_82_1 doi: 10.1039/C6TA05069G – ident: e_1_2_8_133_1 doi: 10.1021/acs.nanolett.7b00915 – ident: e_1_2_8_64_1 doi: 10.1002/aenm.201703252 – ident: e_1_2_8_141_1 doi: 10.1021/acsami.5b09181 – ident: e_1_2_8_150_1 doi: 10.1039/C8TA00530C – ident: e_1_2_8_142_1 doi: 10.1016/j.jpowsour.2015.10.087 – ident: e_1_2_8_179_1 doi: 10.1002/aenm.201501294 – ident: e_1_2_8_143_1 doi: 10.1002/adfm.201601323 – ident: e_1_2_8_56_1 doi: 10.1039/C7RA13441J – ident: e_1_2_8_113_1 doi: 10.1002/aenm.201701610 – ident: e_1_2_8_110_1 doi: 10.1039/C4TA05451B – ident: e_1_2_8_99_1 doi: 10.1016/j.elecom.2015.10.009 – ident: e_1_2_8_50_1 doi: 10.1021/acsami.6b16000 – ident: e_1_2_8_102_1 doi: 10.1002/chem.201502050 – ident: e_1_2_8_34_1 doi: 10.1016/j.jpowsour.2013.08.118 – ident: e_1_2_8_59_1 doi: 10.1021/acsami.8b03986 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201602898 – ident: e_1_2_8_156_1 doi: 10.1016/j.jpowsour.2013.09.051 – ident: e_1_2_8_73_1 doi: 10.1002/aenm.201501588 – ident: e_1_2_8_124_1 doi: 10.1039/C5TA03893F – ident: e_1_2_8_60_1 doi: 10.1002/aenm.201800058 – ident: e_1_2_8_83_1 doi: 10.1016/j.jpowsour.2016.08.066 – ident: e_1_2_8_55_1 doi: 10.1021/acsami.6b11372 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.201700463 – ident: e_1_2_8_112_1 doi: 10.1021/acsami.7b05687 – ident: e_1_2_8_77_1 doi: 10.1021/acsami.8b12204 – ident: e_1_2_8_67_1 doi: 10.1149/2.0731802jes – ident: e_1_2_8_198_1 doi: 10.1039/c2ee22864e – ident: e_1_2_8_186_1 doi: 10.1016/j.jpowsour.2016.10.084 – ident: e_1_2_8_46_1 doi: 10.1002/adma.201803765 – ident: e_1_2_8_161_1 doi: 10.1002/anie.201604158 – volume: 2013 start-page: 1 year: 2013 ident: e_1_2_8_40_1 publication-title: Sumitomo Kagaku – ident: e_1_2_8_86_1 doi: 10.1021/ja512383b – ident: e_1_2_8_65_1 doi: 10.1016/j.jpowsour.2016.05.096 – ident: e_1_2_8_129_1 doi: 10.1016/j.nanoen.2017.05.012 – ident: e_1_2_8_66_1 doi: 10.1039/C7RA01047H – ident: e_1_2_8_185_1 doi: 10.1038/ncomms10308 – ident: e_1_2_8_27_1 doi: 10.1039/c3ee41379a – ident: e_1_2_8_199_1 doi: 10.1039/C8TA01392F – ident: e_1_2_8_167_1 doi: 10.1016/j.nanoen.2018.01.046 – ident: e_1_2_8_79_1 doi: 10.1016/j.jpowsour.2017.11.084 – ident: e_1_2_8_165_1 doi: 10.1002/admi.201600942 – ident: e_1_2_8_171_1 doi: 10.1016/j.nanoen.2016.07.030 – ident: e_1_2_8_92_1 doi: 10.1016/j.jpowsour.2016.07.109 – ident: e_1_2_8_125_1 doi: 10.1021/acsnano.5b05229 – ident: e_1_2_8_28_1 doi: 10.1039/c2ee22258b – ident: e_1_2_8_118_1 doi: 10.1002/anie.201505215 – ident: e_1_2_8_63_1 doi: 10.1002/adma.201701968 – ident: e_1_2_8_107_1 doi: 10.1039/C7NR09674G – ident: e_1_2_8_24_1 doi: 10.1039/C8DT01068D – ident: e_1_2_8_144_1 doi: 10.1039/C7TA00139H – ident: e_1_2_8_160_1 doi: 10.1039/C6TA09809F – ident: e_1_2_8_130_1 doi: 10.1039/C7TA01701D – ident: e_1_2_8_89_1 doi: 10.1016/j.jpowsour.2017.01.079 – ident: e_1_2_8_90_1 doi: 10.1002/adma.201806092 – ident: e_1_2_8_62_1 doi: 10.1002/adma.201706317 – ident: e_1_2_8_148_1 doi: 10.1039/C5EE01941A – ident: e_1_2_8_111_1 doi: 10.1002/celc.201500437 – ident: e_1_2_8_47_1 doi: 10.1007/s10008-016-3365-6 – ident: e_1_2_8_17_1 doi: 10.1002/aenm.201601329 – ident: e_1_2_8_25_1 doi: 10.1016/j.elecom.2014.05.003 – ident: e_1_2_8_45_1 doi: 10.1002/aenm.201702869 – ident: e_1_2_8_170_1 doi: 10.1039/C7TA08104A – ident: e_1_2_8_88_1 doi: 10.1039/C5TA02043C – ident: e_1_2_8_44_1 doi: 10.1002/aenm.201702403 – ident: e_1_2_8_23_1 doi: 10.1039/C6CC04625H – ident: e_1_2_8_69_1 doi: 10.1002/smll.201700767 – ident: e_1_2_8_61_1 doi: 10.1039/C8TA03967D – ident: e_1_2_8_137_1 doi: 10.1039/C5EE00878F – ident: e_1_2_8_163_1 doi: 10.1016/j.jpowsour.2014.02.054 – ident: e_1_2_8_169_1 doi: 10.1021/acsami.5b09835 – ident: e_1_2_8_149_1 doi: 10.1002/aenm.201600467 – ident: e_1_2_8_74_1 doi: 10.1039/C4RA14733B – ident: e_1_2_8_31_1 doi: 10.1016/j.ijhydene.2015.12.090 – ident: e_1_2_8_139_1 doi: 10.1021/acsami.5b12242 – ident: e_1_2_8_8_1 doi: 10.1007/s41918-018-0008-x – ident: e_1_2_8_57_1 doi: 10.1016/j.nanoen.2018.02.053 – ident: e_1_2_8_94_1 doi: 10.1039/C5RA21235A – ident: e_1_2_8_97_1 doi: 10.1039/C8TA00901E – ident: e_1_2_8_120_1 doi: 10.1021/acs.nanolett.6b00942 – ident: e_1_2_8_29_1 doi: 10.1039/C6EE03367A – ident: e_1_2_8_85_1 doi: 10.1016/j.electacta.2015.10.003 – ident: e_1_2_8_119_1 doi: 10.1149/2.0711514jes – ident: e_1_2_8_2_1 doi: 10.1038/natrevmats.2018.13 – ident: e_1_2_8_87_1 doi: 10.1039/C8NR01685B – ident: e_1_2_8_164_1 doi: 10.1016/j.jpowsour.2014.10.193 – ident: e_1_2_8_20_1 doi: 10.1002/cssc.201701664 – ident: e_1_2_8_191_1 doi: 10.1021/acsami.8b06706 |
SSID | ssj0031247 |
Score | 2.574544 |
SecondaryResourceType | review_article |
Snippet | With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique... With ever-increasing efforts focused on basic research of sodium-ion batteries (SIBs) and growing energy demand, sodium-ion full cells (SIFCs), as unique... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1900233 |
SubjectTerms | Electrochemical analysis Electrolytes Electrolytic cells full cells gel electrolytes liquid electrolytes Molten salt electrolytes Nanotechnology Nonaqueous electrolytes Optimization Rechargeable batteries Sodium Sodium-ion batteries Solid electrolytes solid‐state electrolytes |
Title | Nonaqueous Sodium‐Ion Full Cells: Status, Strategies, and Prospects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201900233 https://www.ncbi.nlm.nih.gov/pubmed/30908817 https://www.proquest.com/docview/2269896124 https://www.proquest.com/docview/2197888077 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfplOqSD4Yrem9_omY2PKNsQ52FtJ0wTErZV1ffHJn-Bv9Jd4Tm86RQSFQluS0PQkJ-dLcvIdQs441XVqCqranFmqyQxDdaklVItrTA-4C1YdTyMPhnZvbN5MrMmnU_w5P0S14IaakY3XqOAsSFofpKHJbIpbB2DQwOwg3Sc6bCEquqv4owwwXll0FbBZKhJvlayNmt5aLr5slb5BzWXkmpme7gZhZaVzj5PHZroImvz5C5_jf_5qk6wXuFS5yjvSFlkR0TZZ-8RWuEM6Q0DtUOM4TZRRHD6ks7eX1-s4UnAaq7TFdJpcKghe0-RCKVlvBTyzKFRu53F2qDPZJeNu577dU4soDCo3HRfkJoPAsEPXEsyRIadS2g4D3GQxz2Rw48LWpccCpgPaMTkHTBOAvG1mOdwRLjX2SC2KI3FAFEqlCZcbSoyOJGFiblArhBmmsKXwuKwTtWwFnxcU5RgpY-rn5Mq6j-LxK_HUyXmV_ykn5_gxZ6NsVL9Q0sQH5Om5HkA8s05Oq2RQL9wzYRGK04cBHRcJNMepk_28M1SfMjR0EqOQomdN-ksd_NGg36_eDv9S6Iis4nPugNggtcU8FccAihbBSdbx3wEAiQKO |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS-xAEC5cDurBfRm3lweCFzNOZ483EWV8b2YQF_DWdDrdII6JmMnFkz_B3-gvsSqZREcRQSGQpdOkU93V9VUvXwHsSGZZzFHM9KRwTUfYthkwV5mubAkrkgFaddqN3O157Svn37VbrSakvTAlP0Q94EaaUfTXpOA0IL3_xhqa3fVp7gAtGtodexwmKax34VWd1wxSNpqvIr4KWi2TqLcq3saWtT-af9QufQKbo9i1MD4ncxBVxS7XnNw280HUlI8fGB1_9V_zMDuEpsZh2ZYWYEwlizDzjrBwCY57CNyxyGmeGRdpfJPfvTw9n6aJQZ6scaT6_ezAIPyaZ3tGRXyr8FoksXH2kBb7OrNluDo5vjxqm8NADKZ0_AAFp6PI9uLAVcLXsWRae75A6OSK0BF4ksqzdCgiYSHgcaREWBOhwD3h-tJXAbNXYCJJE7UGBmPawSOINQVI0uib28yN0clUnlah1A0wq2rgcshSTsEy-rzkV7Y4iYfX4mnAbv3-fcnP8eWbm1Wt8qGeZhzBZxiEiPKcBvytk1HDaNpEJCROjn06jRO0fL8Bq2VrqD9lt2idGMMUq6jTb8rAL7qdTn23_pNMf2Cqfdnt8M5p7_8GTNPzcj3iJkwMHnK1hRhpEG0XWvAKLHkGqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64gOjBfRnXCoIXOzZtunkTdXAZB3EBbyFNExDHVuz04smf4G_0l_jSTqujiKBQ6JKEpC95eV-27wFsCWLbhEpieoK7JuWOYwbElaYrLG5HIkCrrk8jn3e84xt6euvefjrFX_JD1BNuWjOK_lor-GOsdj9IQ7OHrl46QIOGZscZhlHqWYFu14eXNYGUg9arcK-CRsvUzFsVbaNl7w6mHzRL37DmIHQtbE9rCnhV6nLLyX0z70VN8fyF0PE_vzUNk31gauyXLWkGhmQyCxOf6Arn4KiDsB1LnOaZcZXGd_nD28vrSZoYehxrHMhuN9szNHrNsx2jor2V-MyT2Lh4SotTndk83LSOrg-Ozb4bBlNQP0C5qShyvDhwJfdVLIhSns8ROLk8pBxvQnq2CnnEbYQ7VAgENRHK2-OuL3wZEGcBRpI0kUtgEKIoXkGstHskhSNzh7gxDjGlp2QoVAPMqhaY6HOUa1cZXVayK9tMi4fV4mnAdh3_sWTn-DHmalWprK-lGUPoGQYhYjzagM06GPVLL5rwRIuTYY-uZwks32_AYtkY6qwcS-8SIxhiF1X6SxnY1Xm7Xb8t_yXRBoxdHLZY-6RztgLj-nO5GXEVRnpPuVxDgNSL1gsdeAcnnwVh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonaqueous+Sodium-Ion+Full+Cells%3A+Status%2C+Strategies%2C+and+Prospects&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Niu%2C+Yu-Bin&rft.au=Yin%2C+Ya-Xia&rft.au=Guo%2C+Yu-Guo&rft.date=2019-08-01&rft.eissn=1613-6829&rft.volume=15&rft.issue=32&rft.spage=e1900233&rft_id=info:doi/10.1002%2Fsmll.201900233&rft_id=info%3Apmid%2F30908817&rft.externalDocID=30908817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |