Nonaqueous Sodium‐Ion Full Cells: Status, Strategies, and Prospects

With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique bridging technology between sodium‐ion half‐cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promot...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 32; pp. e1900233 - n/a
Main Authors Niu, Yu‐Bin, Yin, Ya‐Xia, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique bridging technology between sodium‐ion half‐cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi‐solid‐state electrolytes, and all‐solid‐state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided. Sodium‐ion full cells with low cost and abundant resource are promising to satisfy the urgent demand of large‐scale energy storage, yet their developments suffer from challenges of interfacial characteristics. Here, their recent advances in various electrolytes are summarized, and diverse strategies including tailoring interface, matching capacity, optimizing electrolyte as well as compensating sodium to drive the development of the whole industry are addressed.
AbstractList With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique bridging technology between sodium‐ion half‐cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi‐solid‐state electrolytes, and all‐solid‐state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided.
With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique bridging technology between sodium‐ion half‐cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi‐solid‐state electrolytes, and all‐solid‐state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided. Sodium‐ion full cells with low cost and abundant resource are promising to satisfy the urgent demand of large‐scale energy storage, yet their developments suffer from challenges of interfacial characteristics. Here, their recent advances in various electrolytes are summarized, and diverse strategies including tailoring interface, matching capacity, optimizing electrolyte as well as compensating sodium to drive the development of the whole industry are addressed.
With ever-increasing efforts focused on basic research of sodium-ion batteries (SIBs) and growing energy demand, sodium-ion full cells (SIFCs), as unique bridging technology between sodium-ion half-cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi-solid-state electrolytes, and all-solid-state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided.With ever-increasing efforts focused on basic research of sodium-ion batteries (SIBs) and growing energy demand, sodium-ion full cells (SIFCs), as unique bridging technology between sodium-ion half-cells (SIHCs) and commercial batteries, have attracted more and more interest and attention. To promote the development of SIFCs in a better way, it is essential to gain a systematic and profound insight into their key issues and research status. This Review mainly focuses on the interface issues, major challenges, and recent progresses in SIFCs based on diversified electrolytes (i.e., nonaqueous liquid electrolytes, quasi-solid-state electrolytes, and all-solid-state electrolytes) and summarizes the modification strategies to improve their electrochemical performance, including interface modification, cathode/anode matching, capacity ratio, electrolyte optimization, and sodium compensation. Outlooks and perspectives on the future research directions to build better SIFCs are also provided.
Author Yin, Ya‐Xia
Niu, Yu‐Bin
Guo, Yu‐Guo
Author_xml – sequence: 1
  givenname: Yu‐Bin
  surname: Niu
  fullname: Niu, Yu‐Bin
  organization: Chinese Academy of Sciences (CAS)
– sequence: 2
  givenname: Ya‐Xia
  surname: Yin
  fullname: Yin, Ya‐Xia
  email: yxyin@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30908817$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEUhoNUbL1sXcqAGxe2JpmZXNxJ8VKoF6iuQyaTkSmZSZ3MIO58BJ_RJ_GUaoWCuDon8P0n__nPLurVvrYIHRI8IhjTs1A5N6KYSHjE8RYaEEbiIRNU9tY9wX20G8Ic45jQhO-gfowlFoLwAbq887V-6azvQjTzedlVn-8fE19HV51z0dg6F86jWavbLpxCbXRrn0sLva7z6KHxYWFNG_bRdqFdsAffdQ89XV0-jm-G0_vryfhiOjQJF2ClyLKY5SK1mhe5IUXBuE5xmmqZaCjGMlpInWmKWZwYg1mawQpMp9xwK0i8h05WcxeNB9OhVVUZDJjU9XIDRYnkQgjMOaDHG-jcd00N7hSlTArJIAugjr6pLqtsrhZNWenmTf0EBMBoBRjYNTS2WCMEq-UF1PICan0BECQbAlNCfKWvIbzS_S2TK9lr6ezbP5-o2e10-qv9AruzmkA
CitedBy_id crossref_primary_10_1016_j_jechem_2024_01_033
crossref_primary_10_1002_idm2_12213
crossref_primary_10_1016_j_matpr_2020_03_704
crossref_primary_10_1016_j_nanoso_2024_101311
crossref_primary_10_1021_acsami_1c06160
crossref_primary_10_1016_j_ensm_2022_10_032
crossref_primary_10_1021_acs_energyfuels_4c00564
crossref_primary_10_1021_acs_jpclett_1c03078
crossref_primary_10_1016_j_enchem_2020_100031
crossref_primary_10_1039_D0QM01124J
crossref_primary_10_3390_batteries9010008
crossref_primary_10_1016_j_inoche_2020_108383
crossref_primary_10_3389_fchem_2023_1253959
crossref_primary_10_1016_j_jallcom_2020_157238
crossref_primary_10_1016_j_jelechem_2023_117432
crossref_primary_10_1039_D0TA08186H
crossref_primary_10_1002_aenm_202101751
crossref_primary_10_1016_j_jmst_2023_05_005
crossref_primary_10_1007_s12274_020_3011_6
crossref_primary_10_1002_adma_202310659
crossref_primary_10_1021_acsami_0c05784
crossref_primary_10_1002_smll_202303259
crossref_primary_10_1002_cnl2_48
crossref_primary_10_1002_aenm_202302514
crossref_primary_10_1002_aenm_202000974
crossref_primary_10_1021_acsenergylett_0c02650
crossref_primary_10_1016_j_esci_2021_10_003
crossref_primary_10_1002_batt_202100131
crossref_primary_10_1016_j_apsusc_2020_147105
crossref_primary_10_1016_j_jechem_2020_10_047
crossref_primary_10_1039_C9NR07545C
crossref_primary_10_1002_nano_202000297
crossref_primary_10_1021_acsami_0c23069
crossref_primary_10_1039_D2NJ04653A
crossref_primary_10_1002_celc_202001527
crossref_primary_10_1021_acs_energyfuels_1c03802
crossref_primary_10_1002_cssc_201901486
crossref_primary_10_1007_s10853_019_04162_8
crossref_primary_10_1021_acsmaterialslett_0c00356
crossref_primary_10_1021_acs_nanolett_3c01890
crossref_primary_10_1016_j_jmst_2020_05_076
crossref_primary_10_1002_aenm_202300149
crossref_primary_10_1039_D1QM00077B
crossref_primary_10_1002_adfm_201909530
crossref_primary_10_1002_smll_202400709
crossref_primary_10_1002_adma_202001419
crossref_primary_10_1002_aenm_202002704
crossref_primary_10_1002_smll_201902246
crossref_primary_10_1016_j_enrev_2024_100068
crossref_primary_10_3390_met14121453
crossref_primary_10_1016_j_ensm_2020_10_015
crossref_primary_10_1021_acsami_1c04647
crossref_primary_10_1016_j_nanoen_2020_104613
crossref_primary_10_1039_D0EE02782K
crossref_primary_10_1039_D0TA08851J
crossref_primary_10_1016_j_cej_2021_133545
crossref_primary_10_1016_j_cej_2024_155536
crossref_primary_10_1016_j_jcis_2021_04_069
crossref_primary_10_1016_j_memsci_2020_118917
crossref_primary_10_1016_j_pmatsci_2024_101401
crossref_primary_10_1002_anie_201915666
crossref_primary_10_1002_cey2_658
crossref_primary_10_1016_j_jmat_2021_03_010
crossref_primary_10_1021_acsami_1c06147
crossref_primary_10_1021_acsnano_1c07476
crossref_primary_10_1016_j_cej_2024_157340
crossref_primary_10_1039_D1CC01292D
crossref_primary_10_1002_idm2_12040
crossref_primary_10_1016_j_est_2025_116038
crossref_primary_10_1039_D1NJ00262G
crossref_primary_10_15625_2525_2518_16040
crossref_primary_10_1021_acsami_9b14381
crossref_primary_10_1021_acsami_3c03386
crossref_primary_10_1002_adfm_202009458
crossref_primary_10_1021_acsenergylett_4c03323
crossref_primary_10_20517_microstructures_2023_102
crossref_primary_10_1038_s41467_022_28052_x
crossref_primary_10_1039_D0NA00729C
crossref_primary_10_1039_D0TA04307A
crossref_primary_10_1016_j_ensm_2023_102821
crossref_primary_10_1021_acsami_0c23165
crossref_primary_10_1002_smtd_202301579
crossref_primary_10_1021_acsami_0c07894
crossref_primary_10_1002_adma_202211461
crossref_primary_10_1016_j_mtener_2024_101775
crossref_primary_10_1093_nsr_nwaa178
crossref_primary_10_1002_advs_202001263
crossref_primary_10_1002_ange_201915666
crossref_primary_10_1002_batt_202200043
crossref_primary_10_1007_s40843_023_2550_2
Cites_doi 10.1016/j.ensm.2017.07.012
10.1021/acs.chemmater.5b02684
10.1039/C5RA06336A
10.1149/2.0701706jes
10.1039/C7TA02515G
10.1039/C5EE00695C
10.1021/jp5105888
10.1007/s12274-018-1985-0
10.1149/2.0851702jes
10.1002/adma.201500196
10.1016/j.jpowsour.2017.10.083
10.1002/adsu.201700153
10.1002/chem.201704131
10.1002/aenm.201502568
10.1021/acsami.7b16580
10.1016/j.carbon.2017.11.054
10.1002/adfm.201402984
10.1021/acsnano.7b02136
10.1039/C8NR00650D
10.1021/acsami.6b12688
10.1002/anie.201712895
10.1002/adfm.201801917
10.1002/advs.201600392
10.1002/adma.201700898
10.1002/aenm.201601602
10.1002/adfm.201805444
10.1016/j.electacta.2014.03.144
10.1080/10667857.2016.1208451
10.1002/admi.201600357
10.1002/smll.201802716
10.1021/acsami.6b11230
10.1039/C6QM00169F
10.1039/C5TA05444C
10.1021/acsami.7b13516
10.1021/acs.jpcc.5b04206
10.1002/aenm.201601973
10.1002/adfm.201705968
10.1002/aenm.201800079
10.1021/acsami.7b16901
10.1002/adma.201700431
10.1002/aenm.201600943
10.1002/cssc.201801662
10.1149/2.0931702jes
10.1002/asia.201800839
10.1016/j.jpowsour.2017.07.002
10.1002/aenm.201801162
10.1002/adma.201700622
10.1016/j.fuproc.2018.05.007
10.1002/adfm.201400773
10.1002/adma.201304126
10.1016/j.nanoen.2016.08.010
10.3390/en11061614
10.1016/j.matlet.2017.02.125
10.1039/C4EE03361B
10.1002/cssc.201801099
10.1002/smll.201601530
10.1002/aenm.201702716
10.1016/j.elecom.2013.10.008
10.1039/C7EE00524E
10.1002/smll.201702514
10.1149/1.1393419
10.1002/aenm.201501785
10.1039/C4RA03473B
10.1016/j.jpowsour.2018.06.067
10.1016/j.jpowsour.2017.02.065
10.1007/s41918-018-0009-9
10.1021/acsami.7b11040
10.1002/aenm.201600377
10.1016/j.electacta.2017.12.061
10.1002/aenm.201700797
10.1016/j.electacta.2015.07.163
10.1016/j.jpowsour.2014.10.143
10.1039/C6EE00794E
10.1016/j.ceramint.2018.04.196
10.1016/j.jpowsour.2017.12.053
10.1002/adma.201603212
10.1021/ja510347s
10.1149/05812.0059ecst
10.1021/acsami.8b02427
10.1021/acsami.6b13193
10.1039/C3CP53077A
10.1039/C7EE00566K
10.1039/C7TA03434B
10.1016/j.elecom.2010.07.016
10.1016/j.ensm.2018.02.002
10.1016/j.jpowsour.2011.09.008
10.1149/2.0311807jes
10.1039/C5TA09867J
10.1016/j.jpowsour.2015.12.121
10.1149/07522.0013ecst
10.1002/adma.201505918
10.1016/j.electacta.2017.10.173
10.1039/C7TA08443A
10.1002/advs.201700768
10.1021/acs.chemmater.7b01542
10.1002/aenm.201601424
10.1021/acsami.8b02446
10.1021/acsami.8b02768
10.1016/j.elecom.2017.08.012
10.1002/adma.201802745
10.1016/j.electacta.2012.11.038
10.1002/aenm.201801441
10.1002/advs.201600275
10.1002/smll.201604181
10.1039/C5TA00724K
10.1002/aenm.201600736
10.1039/C8TA01627E
10.1021/acsnano.7b07132
10.1021/jz2012066
10.1002/adma.201305522
10.1002/aenm.201701827
10.1039/C6TA05069G
10.1021/acs.nanolett.7b00915
10.1002/aenm.201703252
10.1021/acsami.5b09181
10.1039/C8TA00530C
10.1016/j.jpowsour.2015.10.087
10.1002/aenm.201501294
10.1002/adfm.201601323
10.1039/C7RA13441J
10.1002/aenm.201701610
10.1039/C4TA05451B
10.1016/j.elecom.2015.10.009
10.1021/acsami.6b16000
10.1002/chem.201502050
10.1016/j.jpowsour.2013.08.118
10.1021/acsami.8b03986
10.1002/aenm.201602898
10.1016/j.jpowsour.2013.09.051
10.1002/aenm.201501588
10.1039/C5TA03893F
10.1002/aenm.201800058
10.1016/j.jpowsour.2016.08.066
10.1021/acsami.6b11372
10.1002/aenm.201700463
10.1021/acsami.7b05687
10.1021/acsami.8b12204
10.1149/2.0731802jes
10.1039/c2ee22864e
10.1016/j.jpowsour.2016.10.084
10.1002/adma.201803765
10.1002/anie.201604158
10.1021/ja512383b
10.1016/j.jpowsour.2016.05.096
10.1016/j.nanoen.2017.05.012
10.1039/C7RA01047H
10.1038/ncomms10308
10.1039/c3ee41379a
10.1039/C8TA01392F
10.1016/j.nanoen.2018.01.046
10.1016/j.jpowsour.2017.11.084
10.1002/admi.201600942
10.1016/j.nanoen.2016.07.030
10.1016/j.jpowsour.2016.07.109
10.1021/acsnano.5b05229
10.1039/c2ee22258b
10.1002/anie.201505215
10.1002/adma.201701968
10.1039/C7NR09674G
10.1039/C8DT01068D
10.1039/C7TA00139H
10.1039/C6TA09809F
10.1039/C7TA01701D
10.1016/j.jpowsour.2017.01.079
10.1002/adma.201806092
10.1002/adma.201706317
10.1039/C5EE01941A
10.1002/celc.201500437
10.1007/s10008-016-3365-6
10.1002/aenm.201601329
10.1016/j.elecom.2014.05.003
10.1002/aenm.201702869
10.1039/C7TA08104A
10.1039/C5TA02043C
10.1002/aenm.201702403
10.1039/C6CC04625H
10.1002/smll.201700767
10.1039/C8TA03967D
10.1039/C5EE00878F
10.1016/j.jpowsour.2014.02.054
10.1021/acsami.5b09835
10.1002/aenm.201600467
10.1039/C4RA14733B
10.1016/j.ijhydene.2015.12.090
10.1021/acsami.5b12242
10.1007/s41918-018-0008-x
10.1016/j.nanoen.2018.02.053
10.1039/C5RA21235A
10.1039/C8TA00901E
10.1021/acs.nanolett.6b00942
10.1039/C6EE03367A
10.1016/j.electacta.2015.10.003
10.1149/2.0711514jes
10.1038/natrevmats.2018.13
10.1039/C8NR01685B
10.1016/j.jpowsour.2014.10.193
10.1002/cssc.201701664
10.1021/acsami.8b06706
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201900233
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30908817
10_1002_smll_201900233
SMLL201900233
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51788104; 51772301; 21773264
– fundername: China Postdoctoral Science Foundation
  funderid: 2017M620914
– fundername: Chinese Academy of Sciences
  funderid: XDA 21070300
– fundername: National Key R&D Program of China
  funderid: 2016YFA0202500
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4783-6fbb36d85ea7fdc1ff67a5055a94a055ce62f9aba20634cc065b6136a57c7e813
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 01:51:38 EDT 2025
Fri Jul 25 12:02:07 EDT 2025
Mon Jul 21 06:01:45 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Tue Jul 01 02:10:41 EDT 2025
Wed Jan 22 16:39:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords liquid electrolytes
solid-state electrolytes
gel electrolytes
sodium-ion batteries
full cells
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4783-6fbb36d85ea7fdc1ff67a5055a94a055ce62f9aba20634cc065b6136a57c7e813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0322-8476
PMID 30908817
PQID 2269896124
PQPubID 1046358
PageCount 27
ParticipantIDs proquest_miscellaneous_2197888077
proquest_journals_2269896124
pubmed_primary_30908817
crossref_primary_10_1002_smll_201900233
crossref_citationtrail_10_1002_smll_201900233
wiley_primary_10_1002_smll_201900233_SMLL201900233
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2017; 83
2018; 165
2016; 307
2014; 26
2016; 31
2014; 24
2016; 304
2014; 132
2018; 44
2013; 6
2014; 258
2018; 47
2018; 6
2017; 75
2018; 177
2018; 8
2018; 3
2018; 2
2018; 5
2015; 137
2013; 2013
2018; 1
2014; 16
2016; 41
2018; 30
2017; 164
2014; 247
2018; 28
2011; 2
2019; 31
2016; 329
2016; 327
2015; 54
2013; 101
2017; 372
2016; 324
2016; 16
2014; 44
2018; 24
2016; 4
2016; 6
2012; 197
2016; 7
2016; 3
2015; 61
2015; 119
2018; 11
2016; 28
2018; 10
2016; 27
2016; 26
2016; 8
2016; 9
2018; 14
2018; 13
2017; 5
2017; 7
2015; 182
2017; 1
2017; 4
2018; 127
2017; 195
2017; 9
2014; 4
2017; 37
2018; 259
2018; 377
2015; 178
2018; 378
2014; 58
2017; 361
2015; 162
2015; 5
2015; 3
2018; 260
2017; 21
2016; 52
2017; 29
2015; 9
2015; 8
2015; 7
2017; 337
2016; 55
2015; 25
2018; 396
2013; 37
2015; 27
2000; 147
2017; 17
2017; 11
2017; 10
2017; 13
2015; 275
2015; 274
2015; 21
2017; 343
2012; 5
2017; 347
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_162_1
Kuze S. (e_1_2_8_40_1) 2013; 2013
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 378
  start-page: 268
  year: 2018
  publication-title: J. Power Sources
– volume: 58
  start-page: 59
  year: 2014
  publication-title: ECS Trans.
– volume: 165
  start-page: A1222
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 1600275
  year: 2017
  publication-title: Adv. Sci.
– volume: 7
  start-page: 1700797
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 307
  start-page: 173
  year: 2016
  publication-title: J. Power Sources
– volume: 8
  start-page: 1801162
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1702403
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 247
  start-page: 377
  year: 2014
  publication-title: J. Power Sources
– volume: 9
  start-page: 1471
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 216
  year: 2016
  publication-title: Nano Energy
– volume: 5
  start-page: 10398
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3377
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 10453
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 329
  start-page: 1
  year: 2016
  publication-title: J. Power Sources
– volume: 27
  start-page: 3305
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 48928
  year: 2015
  publication-title: RSC Adv.
– volume: 101
  start-page: 59
  year: 2013
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 1501294
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 21
  start-page: 14879
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 5
  start-page: 24929
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1600943
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 377
  start-page: 1
  year: 2018
  publication-title: J. Power Sources
– volume: 11
  start-page: 1614
  year: 2018
  publication-title: Energies
– volume: 8
  start-page: 1701610
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 396
  start-page: 476
  year: 2018
  publication-title: J. Power Sources
– volume: 162
  start-page: A2723
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 4126
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 11371
  year: 2015
  publication-title: ACS Nano
– volume: 178
  start-page: 55
  year: 2015
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 10308
  year: 2016
  publication-title: Nat. Commun.
– volume: 324
  start-page: 421
  year: 2016
  publication-title: J. Power Sources
– volume: 21
  start-page: 223
  year: 2017
  publication-title: J. Solid State Electrochem.
– volume: 26
  start-page: 5019
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 327
  start-page: 653
  year: 2016
  publication-title: J. Power Sources
– volume: 13
  start-page: 1604181
  year: 2017
  publication-title: Small
– volume: 6
  start-page: 1501785
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1600377
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 7177
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 22012
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 8572
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1754
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 200
  year: 2018
  publication-title: Electrochem. Energy Rev.
– volume: 10
  start-page: 3581
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1601602
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 664
  year: 2016
  publication-title: Nano Energy
– volume: 164
  start-page: A321
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 13335
  year: 2018
  publication-title: Nanoscale
– volume: 75
  start-page: 13
  year: 2017
  publication-title: ECS Trans.
– volume: 8
  start-page: 1801441
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 9632
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 1051
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 1700767
  year: 2017
  publication-title: Small
– volume: 7
  start-page: 1700463
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 25369
  year: 2014
  publication-title: RSC Adv.
– volume: 16
  start-page: 3321
  year: 2016
  publication-title: Nano Lett.
– volume: 6
  start-page: 1501588
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 1705968
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2954
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 27838
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 1344
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 9
  start-page: 40187
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 13609
  year: 2018
  publication-title: Ceram. Int.
– volume: 8
  start-page: 1702869
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 447
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 11701
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 2630
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 106519
  year: 2015
  publication-title: RSC Adv.
– volume: 8
  start-page: 2019
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 8815
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 182
  start-page: 1029
  year: 2015
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1703252
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1803765
  year: 2018
  publication-title: Adv. Mater.
– volume: 119
  start-page: 166
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 11207
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1700431
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1601329
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 584
  year: 2017
  publication-title: Mater. Chem. Front.
– volume: 6
  start-page: 15797
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 37
  start-page: 61
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 47
  start-page: 340
  year: 2018
  publication-title: Nano Energy
– volume: 247
  start-page: 975
  year: 2014
  publication-title: J. Power Sources
– volume: 7
  start-page: 21820
  year: 2017
  publication-title: RSC Adv.
– volume: 275
  start-page: 284
  year: 2015
  publication-title: J. Power Sources
– volume: 10
  start-page: 502
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 6867
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 1801917
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 32324
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 9634
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  start-page: 84
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 8
  start-page: 1800079
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 4137
  year: 2017
  publication-title: Nano Lett.
– volume: 4
  start-page: 1600942
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 24
  start-page: 5380
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 5948
  year: 2017
  publication-title: Chem. Mater.
– volume: 5
  start-page: 13411
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 6559
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 15270
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 5120
  year: 2017
  publication-title: ACS Nano
– volume: 14
  start-page: 1702514
  year: 2018
  publication-title: Small
– volume: 28
  start-page: 9824
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 294
  year: 2018
  publication-title: Electrochem. Energy Rev.
– volume: 2013
  start-page: 1
  year: 2013
  publication-title: Sumitomo Kagaku
– volume: 8
  start-page: 2958
  year: 2018
  publication-title: RSC Adv.
– volume: 10
  start-page: 34272
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1237
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 119
  start-page: 18046
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 164
  start-page: A226
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 31709
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 370
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 16971
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 165
  start-page: A175
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 31
  start-page: 1806092
  year: 2019
  publication-title: Adv. Mater.
– volume: 132
  start-page: 448
  year: 2014
  publication-title: Electrochim. Acta
– volume: 137
  start-page: 2658
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1867
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 8793
  year: 2015
  publication-title: RSC Adv.
– volume: 304
  start-page: 1
  year: 2016
  publication-title: J. Power Sources
– volume: 26
  start-page: 1261
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3376
  year: 2018
  publication-title: ChemSusChem
– volume: 5
  start-page: 4413
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 9528
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1802716
  year: 2018
  publication-title: Small
– volume: 7
  start-page: 1601973
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1600392
  year: 2017
  publication-title: Adv. Sci.
– volume: 7
  start-page: 1602898
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 2770
  year: 2018
  publication-title: Chem. ‐ Asian J.
– volume: 47
  start-page: 325
  year: 2018
  publication-title: Nano Energy
– volume: 41
  start-page: 2829
  year: 2016
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  start-page: 12658
  year: 2017
  publication-title: ACS Nano
– volume: 3
  start-page: 8332
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 258
  start-page: 420
  year: 2014
  publication-title: J. Power Sources
– volume: 10
  start-page: 9218
  year: 2018
  publication-title: Nanoscale
– volume: 197
  start-page: 314
  year: 2012
  publication-title: J. Power Sources
– volume: 147
  start-page: 1688
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 44
  start-page: 74
  year: 2014
  publication-title: Electrochem. Commun.
– volume: 195
  start-page: 127
  year: 2017
  publication-title: Mater. Lett.
– volume: 337
  start-page: 197
  year: 2017
  publication-title: J. Power Sources
– volume: 5
  start-page: 1700768
  year: 2018
  publication-title: Adv. Sci.
– volume: 26
  start-page: 3545
  year: 2014
  publication-title: Adv. Mater.
– volume: 47
  start-page: 10752
  year: 2018
  publication-title: Dalton Trans.
– volume: 11
  start-page: 3286
  year: 2018
  publication-title: ChemSusChem
– volume: 3
  start-page: 292
  year: 2016
  publication-title: ChemElectroChem
– volume: 10
  start-page: 10022
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1600357
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 347
  start-page: 127
  year: 2017
  publication-title: J. Power Sources
– volume: 29
  start-page: 1700898
  year: 2017
  publication-title: Adv. Mater.
– volume: 260
  start-page: 882
  year: 2018
  publication-title: Electrochim. Acta
– volume: 137
  start-page: 2548
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 6682
  year: 2015
  publication-title: Chem. Mater.
– volume: 13
  start-page: 274
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 1800058
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 343
  start-page: 424
  year: 2017
  publication-title: J. Power Sources
– volume: 28
  start-page: 1805444
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 2361
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1701968
  year: 2017
  publication-title: Adv. Mater.
– volume: 164
  start-page: A1098
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 1601530
  year: 2017
  publication-title: Small
– volume: 11
  start-page: 506
  year: 2018
  publication-title: ChemSusChem
– volume: 10
  start-page: 19605
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1600467
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1601424
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 10890
  year: 2016
  publication-title: Chem. Commun.
– volume: 361
  start-page: 285
  year: 2017
  publication-title: J. Power Sources
– volume: 16
  start-page: 1987
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 3399
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1700622
  year: 2017
  publication-title: Adv. Mater.
– volume: 31
  start-page: 646
  year: 2016
  publication-title: Mater. Technol.
– volume: 10
  start-page: 17903
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 372
  start-page: 270
  year: 2017
  publication-title: J. Power Sources
– volume: 24
  start-page: 2913
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 177
  start-page: 328
  year: 2018
  publication-title: Fuel Process. Technol.
– volume: 11
  start-page: 4026
  year: 2018
  publication-title: Nano Res.
– volume: 9
  start-page: 23766
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1701827
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 83
  start-page: 20
  year: 2017
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 7997
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1600736
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 127
  start-page: 658
  year: 2018
  publication-title: Carbon
– volume: 274
  start-page: 1016
  year: 2015
  publication-title: J. Power Sources
– volume: 10
  start-page: 1075
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 23671
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 2560
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 30
  start-page: 1706317
  year: 2018
  publication-title: Adv. Mater.
– volume: 25
  start-page: 534
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 1702716
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1502568
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 37
  start-page: 81
  year: 2017
  publication-title: Nano Energy
– volume: 259
  start-page: 100
  year: 2018
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 170
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 1700153
  year: 2018
  publication-title: Adv. Sustainable Syst.
– volume: 10
  start-page: 23883
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 6671
  year: 2018
  publication-title: Nanoscale
– volume: 3
  start-page: 71
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 16581
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 7790
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 3589
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 18013
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 30
  start-page: 1802745
  year: 2018
  publication-title: Adv. Mater.
– ident: e_1_2_8_108_1
  doi: 10.1016/j.ensm.2017.07.012
– ident: e_1_2_8_188_1
  doi: 10.1021/acs.chemmater.5b02684
– ident: e_1_2_8_76_1
  doi: 10.1039/C5RA06336A
– ident: e_1_2_8_71_1
  doi: 10.1149/2.0701706jes
– ident: e_1_2_8_33_1
  doi: 10.1039/C7TA02515G
– ident: e_1_2_8_81_1
  doi: 10.1039/C5EE00695C
– ident: e_1_2_8_189_1
  doi: 10.1021/jp5105888
– ident: e_1_2_8_121_1
  doi: 10.1007/s12274-018-1985-0
– ident: e_1_2_8_193_1
  doi: 10.1149/2.0851702jes
– ident: e_1_2_8_132_1
  doi: 10.1002/adma.201500196
– ident: e_1_2_8_180_1
  doi: 10.1016/j.jpowsour.2017.10.083
– ident: e_1_2_8_7_1
  doi: 10.1002/adsu.201700153
– ident: e_1_2_8_53_1
  doi: 10.1002/chem.201704131
– ident: e_1_2_8_116_1
  doi: 10.1002/aenm.201502568
– ident: e_1_2_8_106_1
  doi: 10.1021/acsami.7b16580
– ident: e_1_2_8_114_1
  doi: 10.1016/j.carbon.2017.11.054
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.201402984
– ident: e_1_2_8_122_1
  doi: 10.1021/acsnano.7b02136
– ident: e_1_2_8_84_1
  doi: 10.1039/C8NR00650D
– ident: e_1_2_8_173_1
  doi: 10.1021/acsami.6b12688
– ident: e_1_2_8_162_1
  doi: 10.1002/anie.201712895
– ident: e_1_2_8_98_1
  doi: 10.1002/adfm.201801917
– ident: e_1_2_8_11_1
  doi: 10.1002/advs.201600392
– ident: e_1_2_8_153_1
  doi: 10.1002/adma.201700898
– ident: e_1_2_8_131_1
  doi: 10.1002/aenm.201601602
– ident: e_1_2_8_135_1
  doi: 10.1002/adfm.201805444
– ident: e_1_2_8_196_1
  doi: 10.1016/j.electacta.2014.03.144
– ident: e_1_2_8_126_1
  doi: 10.1080/10667857.2016.1208451
– ident: e_1_2_8_194_1
  doi: 10.1002/admi.201600357
– ident: e_1_2_8_128_1
  doi: 10.1002/smll.201802716
– ident: e_1_2_8_136_1
  doi: 10.1021/acsami.6b11230
– ident: e_1_2_8_38_1
  doi: 10.1039/C6QM00169F
– ident: e_1_2_8_95_1
  doi: 10.1039/C5TA05444C
– ident: e_1_2_8_75_1
  doi: 10.1021/acsami.7b13516
– ident: e_1_2_8_176_1
  doi: 10.1021/acs.jpcc.5b04206
– ident: e_1_2_8_109_1
  doi: 10.1002/aenm.201601973
– ident: e_1_2_8_172_1
  doi: 10.1002/adfm.201705968
– ident: e_1_2_8_1_1
  doi: 10.1002/aenm.201800079
– ident: e_1_2_8_52_1
  doi: 10.1021/acsami.7b16901
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201700431
– ident: e_1_2_8_14_1
  doi: 10.1002/aenm.201600943
– ident: e_1_2_8_70_1
  doi: 10.1002/cssc.201801662
– ident: e_1_2_8_93_1
  doi: 10.1149/2.0931702jes
– ident: e_1_2_8_174_1
  doi: 10.1002/asia.201800839
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jpowsour.2017.07.002
– ident: e_1_2_8_96_1
  doi: 10.1002/aenm.201801162
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201700622
– ident: e_1_2_8_115_1
  doi: 10.1016/j.fuproc.2018.05.007
– ident: e_1_2_8_155_1
  doi: 10.1002/adfm.201400773
– ident: e_1_2_8_154_1
  doi: 10.1002/adma.201304126
– ident: e_1_2_8_49_1
  doi: 10.1016/j.nanoen.2016.08.010
– ident: e_1_2_8_146_1
  doi: 10.3390/en11061614
– ident: e_1_2_8_123_1
  doi: 10.1016/j.matlet.2017.02.125
– ident: e_1_2_8_117_1
  doi: 10.1039/C4EE03361B
– ident: e_1_2_8_58_1
  doi: 10.1002/cssc.201801099
– ident: e_1_2_8_152_1
  doi: 10.1002/smll.201601530
– ident: e_1_2_8_159_1
  doi: 10.1002/aenm.201702716
– ident: e_1_2_8_183_1
  doi: 10.1016/j.elecom.2013.10.008
– ident: e_1_2_8_26_1
  doi: 10.1039/C7EE00524E
– ident: e_1_2_8_4_1
  doi: 10.1002/smll.201702514
– ident: e_1_2_8_175_1
  doi: 10.1149/1.1393419
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.201501785
– ident: e_1_2_8_147_1
  doi: 10.1039/C4RA03473B
– ident: e_1_2_8_182_1
  doi: 10.1016/j.jpowsour.2018.06.067
– ident: e_1_2_8_100_1
  doi: 10.1016/j.jpowsour.2017.02.065
– ident: e_1_2_8_5_1
  doi: 10.1007/s41918-018-0009-9
– ident: e_1_2_8_101_1
  doi: 10.1021/acsami.7b11040
– ident: e_1_2_8_103_1
  doi: 10.1002/aenm.201600377
– ident: e_1_2_8_72_1
  doi: 10.1016/j.electacta.2017.12.061
– ident: e_1_2_8_48_1
  doi: 10.1002/aenm.201700797
– ident: e_1_2_8_168_1
  doi: 10.1016/j.electacta.2015.07.163
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jpowsour.2014.10.143
– ident: e_1_2_8_104_1
  doi: 10.1039/C6EE00794E
– ident: e_1_2_8_78_1
  doi: 10.1016/j.ceramint.2018.04.196
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jpowsour.2017.12.053
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.201603212
– ident: e_1_2_8_41_1
  doi: 10.1021/ja510347s
– ident: e_1_2_8_91_1
  doi: 10.1149/05812.0059ecst
– ident: e_1_2_8_166_1
  doi: 10.1021/acsami.8b02427
– ident: e_1_2_8_195_1
  doi: 10.1021/acsami.6b13193
– ident: e_1_2_8_39_1
  doi: 10.1039/C3CP53077A
– ident: e_1_2_8_9_1
  doi: 10.1039/C7EE00566K
– ident: e_1_2_8_138_1
  doi: 10.1039/C7TA03434B
– ident: e_1_2_8_187_1
  doi: 10.1016/j.elecom.2010.07.016
– ident: e_1_2_8_30_1
  doi: 10.1016/j.ensm.2018.02.002
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jpowsour.2011.09.008
– ident: e_1_2_8_37_1
  doi: 10.1149/2.0311807jes
– ident: e_1_2_8_105_1
  doi: 10.1039/C5TA09867J
– ident: e_1_2_8_145_1
  doi: 10.1016/j.jpowsour.2015.12.121
– ident: e_1_2_8_42_1
  doi: 10.1149/07522.0013ecst
– ident: e_1_2_8_140_1
  doi: 10.1002/adma.201505918
– ident: e_1_2_8_158_1
  doi: 10.1016/j.electacta.2017.10.173
– ident: e_1_2_8_80_1
  doi: 10.1039/C7TA08443A
– ident: e_1_2_8_197_1
  doi: 10.1002/advs.201700768
– ident: e_1_2_8_184_1
  doi: 10.1021/acs.chemmater.7b01542
– ident: e_1_2_8_15_1
  doi: 10.1002/aenm.201601424
– ident: e_1_2_8_177_1
  doi: 10.1021/acsami.8b02446
– ident: e_1_2_8_151_1
  doi: 10.1021/acsami.8b02768
– ident: e_1_2_8_178_1
  doi: 10.1016/j.elecom.2017.08.012
– ident: e_1_2_8_134_1
  doi: 10.1002/adma.201802745
– ident: e_1_2_8_157_1
  doi: 10.1016/j.electacta.2012.11.038
– ident: e_1_2_8_190_1
  doi: 10.1002/aenm.201801441
– ident: e_1_2_8_13_1
  doi: 10.1002/advs.201600275
– ident: e_1_2_8_3_1
  doi: 10.1002/smll.201604181
– ident: e_1_2_8_32_1
  doi: 10.1039/C5TA00724K
– ident: e_1_2_8_181_1
  doi: 10.1002/aenm.201600736
– ident: e_1_2_8_6_1
  doi: 10.1039/C8TA01627E
– ident: e_1_2_8_127_1
  doi: 10.1021/acsnano.7b07132
– ident: e_1_2_8_192_1
  doi: 10.1021/jz2012066
– ident: e_1_2_8_68_1
  doi: 10.1002/adma.201305522
– ident: e_1_2_8_54_1
  doi: 10.1002/aenm.201701827
– ident: e_1_2_8_82_1
  doi: 10.1039/C6TA05069G
– ident: e_1_2_8_133_1
  doi: 10.1021/acs.nanolett.7b00915
– ident: e_1_2_8_64_1
  doi: 10.1002/aenm.201703252
– ident: e_1_2_8_141_1
  doi: 10.1021/acsami.5b09181
– ident: e_1_2_8_150_1
  doi: 10.1039/C8TA00530C
– ident: e_1_2_8_142_1
  doi: 10.1016/j.jpowsour.2015.10.087
– ident: e_1_2_8_179_1
  doi: 10.1002/aenm.201501294
– ident: e_1_2_8_143_1
  doi: 10.1002/adfm.201601323
– ident: e_1_2_8_56_1
  doi: 10.1039/C7RA13441J
– ident: e_1_2_8_113_1
  doi: 10.1002/aenm.201701610
– ident: e_1_2_8_110_1
  doi: 10.1039/C4TA05451B
– ident: e_1_2_8_99_1
  doi: 10.1016/j.elecom.2015.10.009
– ident: e_1_2_8_50_1
  doi: 10.1021/acsami.6b16000
– ident: e_1_2_8_102_1
  doi: 10.1002/chem.201502050
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jpowsour.2013.08.118
– ident: e_1_2_8_59_1
  doi: 10.1021/acsami.8b03986
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201602898
– ident: e_1_2_8_156_1
  doi: 10.1016/j.jpowsour.2013.09.051
– ident: e_1_2_8_73_1
  doi: 10.1002/aenm.201501588
– ident: e_1_2_8_124_1
  doi: 10.1039/C5TA03893F
– ident: e_1_2_8_60_1
  doi: 10.1002/aenm.201800058
– ident: e_1_2_8_83_1
  doi: 10.1016/j.jpowsour.2016.08.066
– ident: e_1_2_8_55_1
  doi: 10.1021/acsami.6b11372
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.201700463
– ident: e_1_2_8_112_1
  doi: 10.1021/acsami.7b05687
– ident: e_1_2_8_77_1
  doi: 10.1021/acsami.8b12204
– ident: e_1_2_8_67_1
  doi: 10.1149/2.0731802jes
– ident: e_1_2_8_198_1
  doi: 10.1039/c2ee22864e
– ident: e_1_2_8_186_1
  doi: 10.1016/j.jpowsour.2016.10.084
– ident: e_1_2_8_46_1
  doi: 10.1002/adma.201803765
– ident: e_1_2_8_161_1
  doi: 10.1002/anie.201604158
– volume: 2013
  start-page: 1
  year: 2013
  ident: e_1_2_8_40_1
  publication-title: Sumitomo Kagaku
– ident: e_1_2_8_86_1
  doi: 10.1021/ja512383b
– ident: e_1_2_8_65_1
  doi: 10.1016/j.jpowsour.2016.05.096
– ident: e_1_2_8_129_1
  doi: 10.1016/j.nanoen.2017.05.012
– ident: e_1_2_8_66_1
  doi: 10.1039/C7RA01047H
– ident: e_1_2_8_185_1
  doi: 10.1038/ncomms10308
– ident: e_1_2_8_27_1
  doi: 10.1039/c3ee41379a
– ident: e_1_2_8_199_1
  doi: 10.1039/C8TA01392F
– ident: e_1_2_8_167_1
  doi: 10.1016/j.nanoen.2018.01.046
– ident: e_1_2_8_79_1
  doi: 10.1016/j.jpowsour.2017.11.084
– ident: e_1_2_8_165_1
  doi: 10.1002/admi.201600942
– ident: e_1_2_8_171_1
  doi: 10.1016/j.nanoen.2016.07.030
– ident: e_1_2_8_92_1
  doi: 10.1016/j.jpowsour.2016.07.109
– ident: e_1_2_8_125_1
  doi: 10.1021/acsnano.5b05229
– ident: e_1_2_8_28_1
  doi: 10.1039/c2ee22258b
– ident: e_1_2_8_118_1
  doi: 10.1002/anie.201505215
– ident: e_1_2_8_63_1
  doi: 10.1002/adma.201701968
– ident: e_1_2_8_107_1
  doi: 10.1039/C7NR09674G
– ident: e_1_2_8_24_1
  doi: 10.1039/C8DT01068D
– ident: e_1_2_8_144_1
  doi: 10.1039/C7TA00139H
– ident: e_1_2_8_160_1
  doi: 10.1039/C6TA09809F
– ident: e_1_2_8_130_1
  doi: 10.1039/C7TA01701D
– ident: e_1_2_8_89_1
  doi: 10.1016/j.jpowsour.2017.01.079
– ident: e_1_2_8_90_1
  doi: 10.1002/adma.201806092
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.201706317
– ident: e_1_2_8_148_1
  doi: 10.1039/C5EE01941A
– ident: e_1_2_8_111_1
  doi: 10.1002/celc.201500437
– ident: e_1_2_8_47_1
  doi: 10.1007/s10008-016-3365-6
– ident: e_1_2_8_17_1
  doi: 10.1002/aenm.201601329
– ident: e_1_2_8_25_1
  doi: 10.1016/j.elecom.2014.05.003
– ident: e_1_2_8_45_1
  doi: 10.1002/aenm.201702869
– ident: e_1_2_8_170_1
  doi: 10.1039/C7TA08104A
– ident: e_1_2_8_88_1
  doi: 10.1039/C5TA02043C
– ident: e_1_2_8_44_1
  doi: 10.1002/aenm.201702403
– ident: e_1_2_8_23_1
  doi: 10.1039/C6CC04625H
– ident: e_1_2_8_69_1
  doi: 10.1002/smll.201700767
– ident: e_1_2_8_61_1
  doi: 10.1039/C8TA03967D
– ident: e_1_2_8_137_1
  doi: 10.1039/C5EE00878F
– ident: e_1_2_8_163_1
  doi: 10.1016/j.jpowsour.2014.02.054
– ident: e_1_2_8_169_1
  doi: 10.1021/acsami.5b09835
– ident: e_1_2_8_149_1
  doi: 10.1002/aenm.201600467
– ident: e_1_2_8_74_1
  doi: 10.1039/C4RA14733B
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ijhydene.2015.12.090
– ident: e_1_2_8_139_1
  doi: 10.1021/acsami.5b12242
– ident: e_1_2_8_8_1
  doi: 10.1007/s41918-018-0008-x
– ident: e_1_2_8_57_1
  doi: 10.1016/j.nanoen.2018.02.053
– ident: e_1_2_8_94_1
  doi: 10.1039/C5RA21235A
– ident: e_1_2_8_97_1
  doi: 10.1039/C8TA00901E
– ident: e_1_2_8_120_1
  doi: 10.1021/acs.nanolett.6b00942
– ident: e_1_2_8_29_1
  doi: 10.1039/C6EE03367A
– ident: e_1_2_8_85_1
  doi: 10.1016/j.electacta.2015.10.003
– ident: e_1_2_8_119_1
  doi: 10.1149/2.0711514jes
– ident: e_1_2_8_2_1
  doi: 10.1038/natrevmats.2018.13
– ident: e_1_2_8_87_1
  doi: 10.1039/C8NR01685B
– ident: e_1_2_8_164_1
  doi: 10.1016/j.jpowsour.2014.10.193
– ident: e_1_2_8_20_1
  doi: 10.1002/cssc.201701664
– ident: e_1_2_8_191_1
  doi: 10.1021/acsami.8b06706
SSID ssj0031247
Score 2.574544
SecondaryResourceType review_article
Snippet With ever‐increasing efforts focused on basic research of sodium‐ion batteries (SIBs) and growing energy demand, sodium‐ion full cells (SIFCs), as unique...
With ever-increasing efforts focused on basic research of sodium-ion batteries (SIBs) and growing energy demand, sodium-ion full cells (SIFCs), as unique...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1900233
SubjectTerms Electrochemical analysis
Electrolytes
Electrolytic cells
full cells
gel electrolytes
liquid electrolytes
Molten salt electrolytes
Nanotechnology
Nonaqueous electrolytes
Optimization
Rechargeable batteries
Sodium
Sodium-ion batteries
Solid electrolytes
solid‐state electrolytes
Title Nonaqueous Sodium‐Ion Full Cells: Status, Strategies, and Prospects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201900233
https://www.ncbi.nlm.nih.gov/pubmed/30908817
https://www.proquest.com/docview/2269896124
https://www.proquest.com/docview/2197888077
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfplOqSD4Yrem9_omY2PKNsQ52FtJ0wTErZV1ffHJn-Bv9Jd4Tm86RQSFQluS0PQkJ-dLcvIdQs441XVqCqranFmqyQxDdaklVItrTA-4C1YdTyMPhnZvbN5MrMmnU_w5P0S14IaakY3XqOAsSFofpKHJbIpbB2DQwOwg3Sc6bCEquqv4owwwXll0FbBZKhJvlayNmt5aLr5slb5BzWXkmpme7gZhZaVzj5PHZroImvz5C5_jf_5qk6wXuFS5yjvSFlkR0TZZ-8RWuEM6Q0DtUOM4TZRRHD6ks7eX1-s4UnAaq7TFdJpcKghe0-RCKVlvBTyzKFRu53F2qDPZJeNu577dU4soDCo3HRfkJoPAsEPXEsyRIadS2g4D3GQxz2Rw48LWpccCpgPaMTkHTBOAvG1mOdwRLjX2SC2KI3FAFEqlCZcbSoyOJGFiblArhBmmsKXwuKwTtWwFnxcU5RgpY-rn5Mq6j-LxK_HUyXmV_ykn5_gxZ6NsVL9Q0sQH5Om5HkA8s05Oq2RQL9wzYRGK04cBHRcJNMepk_28M1SfMjR0EqOQomdN-ksd_NGg36_eDv9S6Iis4nPugNggtcU8FccAihbBSdbx3wEAiQKO
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS-xAEC5cDurBfRm3lweCFzNOZ483EWV8b2YQF_DWdDrdII6JmMnFkz_B3-gvsSqZREcRQSGQpdOkU93V9VUvXwHsSGZZzFHM9KRwTUfYthkwV5mubAkrkgFaddqN3O157Svn37VbrSakvTAlP0Q94EaaUfTXpOA0IL3_xhqa3fVp7gAtGtodexwmKax34VWd1wxSNpqvIr4KWi2TqLcq3saWtT-af9QufQKbo9i1MD4ncxBVxS7XnNw280HUlI8fGB1_9V_zMDuEpsZh2ZYWYEwlizDzjrBwCY57CNyxyGmeGRdpfJPfvTw9n6aJQZ6scaT6_ezAIPyaZ3tGRXyr8FoksXH2kBb7OrNluDo5vjxqm8NADKZ0_AAFp6PI9uLAVcLXsWRae75A6OSK0BF4ksqzdCgiYSHgcaREWBOhwD3h-tJXAbNXYCJJE7UGBmPawSOINQVI0uib28yN0clUnlah1A0wq2rgcshSTsEy-rzkV7Y4iYfX4mnAbv3-fcnP8eWbm1Wt8qGeZhzBZxiEiPKcBvytk1HDaNpEJCROjn06jRO0fL8Bq2VrqD9lt2idGMMUq6jTb8rAL7qdTn23_pNMf2Cqfdnt8M5p7_8GTNPzcj3iJkwMHnK1hRhpEG0XWvAKLHkGqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64gOjBfRnXCoIXOzZtunkTdXAZB3EBbyFNExDHVuz04smf4G_0l_jSTqujiKBQ6JKEpC95eV-27wFsCWLbhEpieoK7JuWOYwbElaYrLG5HIkCrrk8jn3e84xt6euvefjrFX_JD1BNuWjOK_lor-GOsdj9IQ7OHrl46QIOGZscZhlHqWYFu14eXNYGUg9arcK-CRsvUzFsVbaNl7w6mHzRL37DmIHQtbE9rCnhV6nLLyX0z70VN8fyF0PE_vzUNk31gauyXLWkGhmQyCxOf6Arn4KiDsB1LnOaZcZXGd_nD28vrSZoYehxrHMhuN9szNHrNsx2jor2V-MyT2Lh4SotTndk83LSOrg-Ozb4bBlNQP0C5qShyvDhwJfdVLIhSns8ROLk8pBxvQnq2CnnEbYQ7VAgENRHK2-OuL3wZEGcBRpI0kUtgEKIoXkGstHskhSNzh7gxDjGlp2QoVAPMqhaY6HOUa1cZXVayK9tMi4fV4mnAdh3_sWTn-DHmalWprK-lGUPoGQYhYjzagM06GPVLL5rwRIuTYY-uZwks32_AYtkY6qwcS-8SIxhiF1X6SxnY1Xm7Xb8t_yXRBoxdHLZY-6RztgLj-nO5GXEVRnpPuVxDgNSL1gsdeAcnnwVh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonaqueous+Sodium-Ion+Full+Cells%3A+Status%2C+Strategies%2C+and+Prospects&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Niu%2C+Yu-Bin&rft.au=Yin%2C+Ya-Xia&rft.au=Guo%2C+Yu-Guo&rft.date=2019-08-01&rft.eissn=1613-6829&rft.volume=15&rft.issue=32&rft.spage=e1900233&rft_id=info:doi/10.1002%2Fsmll.201900233&rft_id=info%3Apmid%2F30908817&rft.externalDocID=30908817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon