Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium–Sulfur Batteries

Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first tw...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 43; pp. e1903813 - n/a
Main Authors Xie, Jin, Li, Bo‐Quan, Peng, Hong‐Jie, Song, Yun‐Wei, Zhao, Meng, Chen, Xiao, Zhang, Qiang, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self‐templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic‐cobalt‐decorated mesoporous carbon host, a high capacity of 1130 mAh gS−1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li–S batteries and broad applications. Atomic cobalt implantation to mesoporous carbon enhances the sulfur kinetics in Li–S batteries. Atomic cobalt dopants with high polarity endow the mesoporous carbon (represented by the apes) with high affinity with polysulfides (represented by the bananas). Therefore, the shuttle effect is eliminated and the sulfur kinetics is improved, facilitating highly stable Li–S batteries.
AbstractList Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self‐templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic‐cobalt‐decorated mesoporous carbon host, a high capacity of 1130 mAh g S −1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li–S batteries and broad applications.
Lithium-sulfur (Li-S) batteries hold great promise to serve as next-generation energy storage devices. However, the practical performances of Li-S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self-templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic-cobalt-decorated mesoporous carbon host, a high capacity of 1130 mAh g at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li-S batteries and broad applications.
Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self‐templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic‐cobalt‐decorated mesoporous carbon host, a high capacity of 1130 mAh gS−1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li–S batteries and broad applications. Atomic cobalt implantation to mesoporous carbon enhances the sulfur kinetics in Li–S batteries. Atomic cobalt dopants with high polarity endow the mesoporous carbon (represented by the apes) with high affinity with polysulfides (represented by the bananas). Therefore, the shuttle effect is eliminated and the sulfur kinetics is improved, facilitating highly stable Li–S batteries.
Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self‐templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic‐cobalt‐decorated mesoporous carbon host, a high capacity of 1130 mAh gS−1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li–S batteries and broad applications.
Lithium-sulfur (Li-S) batteries hold great promise to serve as next-generation energy storage devices. However, the practical performances of Li-S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self-templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic-cobalt-decorated mesoporous carbon host, a high capacity of 1130 mAh gS -1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li-S batteries and broad applications.Lithium-sulfur (Li-S) batteries hold great promise to serve as next-generation energy storage devices. However, the practical performances of Li-S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self-templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic-cobalt-decorated mesoporous carbon host, a high capacity of 1130 mAh gS -1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li-S batteries and broad applications.
Author Zhao, Meng
Huang, Jia‐Qi
Zhang, Qiang
Li, Bo‐Quan
Chen, Xiao
Song, Yun‐Wei
Peng, Hong‐Jie
Xie, Jin
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0002-4235-7441
  surname: Xie
  fullname: Xie, Jin
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Bo‐Quan
  orcidid: 0000-0002-9544-5795
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Tsinghua University
– sequence: 3
  givenname: Hong‐Jie
  orcidid: 0000-0002-4183-703X
  surname: Peng
  fullname: Peng, Hong‐Jie
  organization: Tsinghua University
– sequence: 4
  givenname: Yun‐Wei
  surname: Song
  fullname: Song, Yun‐Wei
  organization: Tsinghua University
– sequence: 5
  givenname: Meng
  orcidid: 0000-0001-8402-7697
  surname: Zhao
  fullname: Zhao, Meng
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Xiao
  orcidid: 0000-0003-1104-6146
  surname: Chen
  fullname: Chen, Xiao
  organization: Tsinghua University
– sequence: 7
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Tsinghua University
– sequence: 8
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31497898$$D View this record in MEDLINE/PubMed
BookMark eNqFkbFuFDEQhi0URC6BlhJZoqHZw_Z613Z5XIBEuogiUFvjXTtx5F0ftlen63gH3pAnYU-XgBQJUc0U3zeamf8MnYxxtAi9pmRJCWHvoR9gyQhVpJa0foYWtGG04kQ1J2hBVN1UquXyFJ3lfE8IUS1pX6DTmnIlpJILBFfDNsBY_HiLVyUOvsPraCAUvPPlzo_42ua4jSlOGa8hmTjiEneQenzpb-_CHt8UMMHizYGehl8_ft5MwU0Jf4BSbPI2v0TPHYRsXz3Uc_Tt08ev68tq8-Xz1Xq1qTouZF1x17UNt7TnoKRpHaOOgemsEMQ4Kw2tTS8EY67rgdqG1-Ds3PGGN0wB2PocvTvO3ab4fbK56MHnzob5OjtvrxmToqFcinZG3z5B7-OUxnk7zWoiOJONlDP15oGazGB7vU1-gLTXj8-bAX4EuhRzTtbpzhcoPo4lgQ-aEn3ISB8y0n8ymrXlE-1x8j8FdRR2Ptj9f2i9urhe_XV_A56apfU
CitedBy_id crossref_primary_10_1016_j_ensm_2020_05_002
crossref_primary_10_1021_acsomega_3c04166
crossref_primary_10_1016_j_cej_2023_144972
crossref_primary_10_26599_NRE_2023_9120049
crossref_primary_10_1007_s11771_022_5134_2
crossref_primary_10_1016_j_ensm_2021_12_040
crossref_primary_10_1021_acs_nanolett_0c04322
crossref_primary_10_1021_acsenergylett_2c01132
crossref_primary_10_1021_acssuschemeng_1c08568
crossref_primary_10_1016_j_jcis_2021_08_096
crossref_primary_10_1002_smll_202302249
crossref_primary_10_1002_adfm_202200302
crossref_primary_10_1002_smll_202300868
crossref_primary_10_1039_D2TA06876A
crossref_primary_10_1016_j_ensm_2022_06_055
crossref_primary_10_1021_acsmaterialslett_1c00512
crossref_primary_10_1002_aenm_202002893
crossref_primary_10_1016_j_cej_2023_147315
crossref_primary_10_1039_D2TA06231C
crossref_primary_10_1016_j_electacta_2022_141570
crossref_primary_10_1016_j_apsusc_2023_159156
crossref_primary_10_1021_acsaem_4c00087
crossref_primary_10_1039_D0TA10607K
crossref_primary_10_1016_j_jechem_2020_10_007
crossref_primary_10_1002_anie_202003917
crossref_primary_10_1002_celc_202101182
crossref_primary_10_1002_smll_202305508
crossref_primary_10_1016_j_cej_2021_134242
crossref_primary_10_1016_j_ensm_2020_06_043
crossref_primary_10_1016_j_jpowsour_2024_234645
crossref_primary_10_1007_s42864_020_00047_5
crossref_primary_10_1007_s12598_021_01750_z
crossref_primary_10_1515_nanoph_2021_0782
crossref_primary_10_1021_acsnano_3c05483
crossref_primary_10_1016_j_cej_2020_128079
crossref_primary_10_1016_j_jcis_2021_07_044
crossref_primary_10_1021_acs_jpclett_1c00927
crossref_primary_10_1002_advs_202103517
crossref_primary_10_1016_j_jcis_2023_03_016
crossref_primary_10_1021_acsaem_2c03181
crossref_primary_10_1002_admi_202002159
crossref_primary_10_1002_anie_202008911
crossref_primary_10_1002_adfm_202405358
crossref_primary_10_1016_j_apsusc_2023_157068
crossref_primary_10_1021_acsami_4c17510
crossref_primary_10_1002_smll_202107380
crossref_primary_10_1002_adfm_201910331
crossref_primary_10_1016_j_cej_2020_125959
crossref_primary_10_1039_D1TA00772F
crossref_primary_10_1016_j_ensm_2020_05_022
crossref_primary_10_1002_smll_202106970
crossref_primary_10_1016_j_jmat_2020_12_016
crossref_primary_10_1002_cssc_202000702
crossref_primary_10_1002_anie_202404019
crossref_primary_10_1016_j_jallcom_2020_156443
crossref_primary_10_1016_j_carbon_2023_118066
crossref_primary_10_1016_j_matt_2020_07_032
crossref_primary_10_1021_acsmaterialslett_1c00414
crossref_primary_10_1021_acsnano_3c11903
crossref_primary_10_1002_sus2_112
crossref_primary_10_1016_j_jechem_2022_12_050
crossref_primary_10_1002_nano_202100177
crossref_primary_10_1016_j_commatsci_2024_112946
crossref_primary_10_1002_adma_202200102
crossref_primary_10_1021_acsnano_1c06067
crossref_primary_10_1039_D2EE03970B
crossref_primary_10_1021_acs_langmuir_3c01442
crossref_primary_10_1002_advs_202002037
crossref_primary_10_1016_j_jechem_2020_06_018
crossref_primary_10_1016_j_micromeso_2020_110705
crossref_primary_10_1039_C9TA11680J
crossref_primary_10_1002_aenm_202202094
crossref_primary_10_1016_j_jechem_2020_07_057
crossref_primary_10_1007_s11581_020_03767_3
crossref_primary_10_1002_tcr_202200124
crossref_primary_10_1039_D1MA00875G
crossref_primary_10_3390_catal11020273
crossref_primary_10_1088_1361_6528_ac3703
crossref_primary_10_1016_j_jallcom_2024_177280
crossref_primary_10_1038_s41467_021_27551_7
crossref_primary_10_1007_s12598_021_01865_3
crossref_primary_10_1002_smll_201906634
crossref_primary_10_1002_smll_202404983
crossref_primary_10_1016_j_jechem_2020_06_054
crossref_primary_10_1007_s12598_021_01839_5
crossref_primary_10_1016_j_cej_2022_140338
crossref_primary_10_1002_adfm_202002471
crossref_primary_10_1002_ange_202108882
crossref_primary_10_1016_j_mtphys_2024_101571
crossref_primary_10_1021_acsaem_2c02306
crossref_primary_10_1016_j_jelechem_2024_118164
crossref_primary_10_1016_j_nanoen_2020_105009
crossref_primary_10_1002_ange_202008911
crossref_primary_10_1007_s12274_023_5557_6
crossref_primary_10_1016_j_mtener_2023_101344
crossref_primary_10_1021_acs_langmuir_2c03446
crossref_primary_10_1039_D0EE02651D
crossref_primary_10_1002_adfm_202407162
crossref_primary_10_1016_j_nanoen_2021_105761
crossref_primary_10_1021_acsami_1c03054
crossref_primary_10_1016_j_carbon_2020_08_032
crossref_primary_10_1039_D0SE01061H
crossref_primary_10_1557_s43579_021_00048_6
crossref_primary_10_3390_en14092649
crossref_primary_10_1016_j_cej_2020_125723
crossref_primary_10_1021_acsenergylett_0c01564
crossref_primary_10_1016_j_cej_2022_137294
crossref_primary_10_1016_j_carbon_2021_11_031
crossref_primary_10_1016_j_electacta_2024_145613
crossref_primary_10_1021_acsaem_1c00293
crossref_primary_10_1002_smll_202106640
crossref_primary_10_1039_D1RA02704B
crossref_primary_10_3389_fenrg_2021_626596
crossref_primary_10_1016_j_micromeso_2021_111558
crossref_primary_10_1002_adma_202211168
crossref_primary_10_1016_j_cej_2021_129388
crossref_primary_10_1016_j_indcrop_2021_113801
crossref_primary_10_1021_acsaem_2c00111
crossref_primary_10_1360_nso_20220032
crossref_primary_10_1007_s12598_024_02708_7
crossref_primary_10_1039_D0NR04189K
crossref_primary_10_1002_adma_202100171
crossref_primary_10_1021_acsami_1c15975
crossref_primary_10_1002_bkcs_12833
crossref_primary_10_1039_D3QI00617D
crossref_primary_10_1002_anie_202108882
crossref_primary_10_1002_adma_201907444
crossref_primary_10_1002_adfm_202102546
crossref_primary_10_1007_s40820_021_00676_6
crossref_primary_10_1016_j_cej_2023_143706
crossref_primary_10_1016_j_compositesb_2023_110886
crossref_primary_10_1002_cey2_450
crossref_primary_10_1007_s40843_020_1542_8
crossref_primary_10_1039_D4TA06750A
crossref_primary_10_1016_j_nanoen_2023_108813
crossref_primary_10_1039_D0EE03316B
crossref_primary_10_1002_aenm_202002152
crossref_primary_10_1002_smll_202004142
crossref_primary_10_1002_aenm_202002271
crossref_primary_10_1016_j_cej_2021_133549
crossref_primary_10_1016_j_cej_2020_125197
crossref_primary_10_1016_j_carbon_2020_10_022
crossref_primary_10_1039_D0TA12110J
crossref_primary_10_1016_j_nantod_2024_102393
crossref_primary_10_1021_acssuschemeng_0c08049
crossref_primary_10_1039_D2NJ05748D
crossref_primary_10_1007_s10008_021_05031_8
crossref_primary_10_3390_ijms24087291
crossref_primary_10_1021_acsnano_1c04642
crossref_primary_10_1016_j_cej_2022_138287
crossref_primary_10_1016_j_materresbull_2024_112785
crossref_primary_10_1002_anie_202104053
crossref_primary_10_1016_j_jechem_2022_08_014
crossref_primary_10_1021_acsnano_4c03744
crossref_primary_10_1021_acssuschemeng_0c02869
crossref_primary_10_1007_s40097_022_00517_x
crossref_primary_10_1016_j_compositesb_2023_111050
crossref_primary_10_1002_ange_202104053
crossref_primary_10_1039_D3NR04298G
crossref_primary_10_26599_NR_2025_94907114
crossref_primary_10_1039_D3EE03168C
crossref_primary_10_1002_cey2_101
crossref_primary_10_1016_j_jelechem_2022_117046
crossref_primary_10_1016_j_jcis_2021_11_102
crossref_primary_10_1016_j_cej_2021_131911
crossref_primary_10_1039_D2TA05273C
crossref_primary_10_1016_j_ensm_2021_05_009
crossref_primary_10_1021_acsmaterialslett_0c00396
crossref_primary_10_1021_acsomega_3c01851
crossref_primary_10_1039_D0TA02692A
crossref_primary_10_1016_j_jcis_2025_01_028
crossref_primary_10_1007_s12274_020_2827_4
crossref_primary_10_1039_D1TC05694H
crossref_primary_10_1039_D4TA08712G
crossref_primary_10_1016_j_electacta_2021_139380
crossref_primary_10_1002_smsc_202100042
crossref_primary_10_1016_j_ccr_2022_214577
crossref_primary_10_1002_adfm_202008652
crossref_primary_10_1002_smtd_202100649
crossref_primary_10_1007_s12274_021_3319_x
crossref_primary_10_1021_acsnano_3c09333
crossref_primary_10_1016_j_cej_2024_149500
crossref_primary_10_1002_adfm_202208666
crossref_primary_10_1002_adfm_202303705
crossref_primary_10_1016_j_jallcom_2024_174136
crossref_primary_10_1016_j_trechm_2020_09_001
crossref_primary_10_1002_advs_202307995
crossref_primary_10_1007_s11426_020_9845_5
crossref_primary_10_1002_batt_202200494
crossref_primary_10_1002_tcr_202200278
crossref_primary_10_1007_s10853_025_10622_1
crossref_primary_10_1002_ange_202007063
crossref_primary_10_1002_celc_202001081
crossref_primary_10_1007_s12274_022_4453_9
crossref_primary_10_1002_anie_202108397
crossref_primary_10_1016_j_cej_2022_137656
crossref_primary_10_1002_ange_202003136
crossref_primary_10_1021_acs_nanolett_9b04719
crossref_primary_10_1016_j_ceramint_2022_12_152
crossref_primary_10_1016_j_jpcs_2024_111994
crossref_primary_10_1002_aenm_202003690
crossref_primary_10_1039_D0QI00678E
crossref_primary_10_1039_D0TA00800A
crossref_primary_10_1002_smtd_202100066
crossref_primary_10_1002_smtd_201900701
crossref_primary_10_1016_j_cej_2023_144553
crossref_primary_10_1002_aesr_202100157
crossref_primary_10_1016_j_ensm_2020_11_011
crossref_primary_10_1002_anie_202015049
crossref_primary_10_1021_acsnano_0c07332
crossref_primary_10_1016_j_esci_2021_08_001
crossref_primary_10_3389_fchem_2021_703354
crossref_primary_10_1002_adma_202105947
crossref_primary_10_1016_j_jechem_2022_05_034
crossref_primary_10_1016_j_apcatb_2020_119780
crossref_primary_10_1021_acssuschemeng_1c04708
crossref_primary_10_3390_nano11112882
crossref_primary_10_1002_adfm_202314379
crossref_primary_10_1021_acsami_0c21136
crossref_primary_10_1021_acsaem_0c00090
crossref_primary_10_1039_D0TA04910G
crossref_primary_10_1016_j_jallcom_2021_163608
crossref_primary_10_1016_j_apsusc_2020_146092
crossref_primary_10_1039_D1CE01170G
crossref_primary_10_1016_j_jallcom_2022_164799
crossref_primary_10_1007_s40843_021_1688_7
crossref_primary_10_1002_smll_202100414
crossref_primary_10_1007_s12274_022_5215_4
crossref_primary_10_1002_adma_202003666
crossref_primary_10_1002_ange_202015049
crossref_primary_10_1021_acsnano_1c03876
crossref_primary_10_1002_smll_202102710
crossref_primary_10_1021_acs_nanolett_0c04938
crossref_primary_10_1021_acsaem_0c01842
crossref_primary_10_1039_D0TA05964A
crossref_primary_10_1016_j_ccr_2023_215493
crossref_primary_10_1039_D1TA01948A
crossref_primary_10_1002_adfm_202106679
crossref_primary_10_1002_ange_202003917
crossref_primary_10_1021_acs_est_0c07794
crossref_primary_10_1002_adfm_202003870
crossref_primary_10_1016_j_cej_2022_137438
crossref_primary_10_1016_j_electacta_2021_139264
crossref_primary_10_1002_ange_202404019
crossref_primary_10_1002_cey2_422
crossref_primary_10_1002_adfm_202111586
crossref_primary_10_1002_adma_202105812
crossref_primary_10_1039_D1NR04506G
crossref_primary_10_1007_s11581_022_04520_8
crossref_primary_10_1021_acsami_0c05910
crossref_primary_10_1039_D4DT02429J
crossref_primary_10_1016_j_cej_2020_126076
crossref_primary_10_1002_idm2_12178
crossref_primary_10_1039_D0TA04019C
crossref_primary_10_1039_D2TA04095F
crossref_primary_10_1039_D2TA05929K
crossref_primary_10_1115_1_4050869
crossref_primary_10_1016_j_electacta_2021_138371
crossref_primary_10_1002_celc_202100462
crossref_primary_10_1021_acsami_1c17971
crossref_primary_10_1016_j_jechem_2023_03_008
crossref_primary_10_1002_adfm_202006798
crossref_primary_10_1002_smll_202006504
crossref_primary_10_1016_j_cej_2022_135820
crossref_primary_10_1002_adma_202108835
crossref_primary_10_1016_j_cej_2022_140178
crossref_primary_10_1016_j_cej_2020_128284
crossref_primary_10_1016_j_jelechem_2022_116025
crossref_primary_10_1016_j_nanoen_2020_105085
crossref_primary_10_1016_j_nanoen_2021_106331
crossref_primary_10_1016_j_nanoen_2023_108756
crossref_primary_10_1016_j_jallcom_2020_155498
crossref_primary_10_1002_adfm_202315563
crossref_primary_10_1039_D2TA09232H
crossref_primary_10_1016_j_cej_2024_148747
crossref_primary_10_1016_j_jcis_2024_05_199
crossref_primary_10_1021_acsnano_0c02294
crossref_primary_10_1360_TB_2022_0050
crossref_primary_10_1002_slct_202000366
crossref_primary_10_1002_eom2_12182
crossref_primary_10_1016_j_cej_2021_131622
crossref_primary_10_1016_j_ensm_2023_103026
crossref_primary_10_1016_j_rser_2021_111783
crossref_primary_10_1039_D0NJ00787K
crossref_primary_10_1021_acs_accounts_3c00698
crossref_primary_10_1016_j_cej_2022_135031
crossref_primary_10_1002_sstr_202200205
crossref_primary_10_1149_1945_7111_ad6b46
crossref_primary_10_1007_s12598_022_01989_0
crossref_primary_10_1016_j_matlet_2021_130215
crossref_primary_10_1021_acsami_1c01600
crossref_primary_10_1016_j_ensm_2020_11_042
crossref_primary_10_1016_j_jechem_2021_05_023
crossref_primary_10_1002_adfm_202107838
crossref_primary_10_1002_smtd_201900864
crossref_primary_10_1039_D0TA11880J
crossref_primary_10_1021_acsami_2c02713
crossref_primary_10_1002_adfm_202200529
crossref_primary_10_1016_j_jechem_2022_01_016
crossref_primary_10_1002_ange_202108397
crossref_primary_10_1002_adma_202204214
crossref_primary_10_1016_j_matlet_2023_134939
crossref_primary_10_1016_j_ensm_2021_09_003
crossref_primary_10_1002_adma_202205674
crossref_primary_10_1039_D1MA00441G
crossref_primary_10_1016_j_nantod_2021_101246
crossref_primary_10_1002_adma_202103846
crossref_primary_10_1016_j_cej_2022_138677
crossref_primary_10_1021_acs_jpcc_1c10197
crossref_primary_10_1002_anie_202003136
crossref_primary_10_1002_er_5236
crossref_primary_10_1021_acs_nanolett_1c04838
crossref_primary_10_1039_D1TA04870H
crossref_primary_10_1016_j_cej_2020_124377
crossref_primary_10_1021_acsami_0c10341
crossref_primary_10_1016_j_cej_2020_127769
crossref_primary_10_1016_j_cej_2024_151337
crossref_primary_10_1002_aenm_202003507
crossref_primary_10_1021_acsnano_0c08056
crossref_primary_10_1002_adfm_202203902
crossref_primary_10_1002_smll_202402074
crossref_primary_10_1016_j_jcis_2023_02_127
crossref_primary_10_1007_s40843_022_2303_0
crossref_primary_10_1002_aenm_202100332
crossref_primary_10_1016_j_jallcom_2021_161459
crossref_primary_10_1002_anie_202007063
crossref_primary_10_1016_j_cej_2021_131997
crossref_primary_10_1016_j_ensm_2021_06_040
crossref_primary_10_1016_j_jcis_2023_07_145
crossref_primary_10_1021_acsnano_1c00556
crossref_primary_10_1007_s11581_023_05155_z
crossref_primary_10_1016_j_carbon_2022_06_073
crossref_primary_10_1021_acsnano_2c01992
Cites_doi 10.1002/aenm.201602380
10.1002/adma.201502467
10.1016/j.jpowsour.2010.12.052
10.1016/j.ensm.2017.05.009
10.1039/C6SC02105K
10.1016/j.electacta.2019.04.062
10.1038/nenergy.2016.94
10.1016/j.apsusc.2018.05.200
10.1039/c1ee01219c
10.1002/aenm.201800595
10.1039/C5TA03062E
10.1002/adma.201501559
10.1002/anie.201304762
10.1016/j.ensm.2018.09.006
10.1016/j.jpowsour.2016.04.139
10.1021/ja206955k
10.1016/j.jpowsour.2012.12.102
10.1039/c2cs35256g
10.1038/ncomms11203
10.1039/C8CC09973A
10.1016/j.electacta.2019.05.062
10.1021/acs.nanolett.5b01919
10.1039/C6EE00104A
10.1039/C6TA07620C
10.1002/anie.201805972
10.1002/adma.201405637
10.1021/acs.nanolett.5b03217
10.1002/chem.201702387
10.1002/anie.201107817
10.1002/smll.201702853
10.1016/j.apsusc.2019.01.145
10.1038/ncomms8760
10.1002/adfm.201702524
10.1002/admi.201802088
10.1021/acsami.6b03642
10.1021/nl5020475
10.1016/j.jechem.2018.02.010
10.1002/anie.201605676
10.1021/cr500062v
10.1038/ncomms3798
10.1039/C6TA08742F
10.1021/jz1015422
10.1002/smtd.201700134
10.1002/adfm.201302631
10.1021/acsnano.7b03227
10.1039/C5NR00166H
10.1002/adfm.201502251
10.1021/acsnano.9b02374
10.1039/c2cp43394j
10.1002/adma.201601759
10.1021/jacs.8b12973
10.1002/ange.201814605
10.1038/nmat2460
10.1039/C7EE01430A
10.1002/aenm.201700260
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201903813
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31497898
10_1002_adma_201903813
ADMA201903813
Genre article
Journal Article
GrantInformation_xml – fundername: Tsinghua National Laboratory for Information Science and Technology
– fundername: Tsinghua University Initiative Scientific Research Program
– fundername: National Natural Science Foundation of China
  funderid: 21776019; 21825501; U1801257
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500; 2016YFA0200102
– fundername: National Key Research and Development Program
  grantid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  grantid: 21776019
– fundername: National Natural Science Foundation of China
  grantid: 21825501
– fundername: National Key Research and Development Program
  grantid: 2016YFA0200102
– fundername: National Natural Science Foundation of China
  grantid: U1801257
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4783-4fc654e1d4a98b6f21f2abce770bfe8b13bd7722fcda1e543afeda1454529aae3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:38:38 EDT 2025
Fri Jul 25 01:26:06 EDT 2025
Wed Feb 19 02:31:35 EST 2025
Tue Jul 01 02:32:41 EDT 2025
Thu Apr 24 23:06:05 EDT 2025
Wed Jan 22 16:38:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords shuttle effect
polysulfide electrocatalysis
mesoporous carbon
lithium-sulfur batteries
atomic doping
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4783-4fc654e1d4a98b6f21f2abce770bfe8b13bd7722fcda1e543afeda1454529aae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4235-7441
0000-0002-4183-703X
0000-0002-9544-5795
0000-0002-3929-1541
0000-0001-8402-7697
0000-0003-1104-6146
0000-0001-7394-9186
PMID 31497898
PQID 2307428588
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2287514876
proquest_journals_2307428588
pubmed_primary_31497898
crossref_citationtrail_10_1002_adma_201903813
crossref_primary_10_1002_adma_201903813
wiley_primary_10_1002_adma_201903813_ADMA201903813
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2013; 114 52
2011 2013; 196 4
2017; 5
2017; 7
2016 2017 2019 2018; 8 5 309 27
2015 2016; 27 55
2016; 7
2017; 1
2011 2013; 2 231
2015 2012; 25 51
2017 2017; 29 27
2017 2015 2017; 7 15 10
2015 2014 2014 2016 2015 2016; 27 14 24 16 6 9
2017 2018 2019; 23 455 6
2018 2019 2013 2019 2017 2016 2015 2019 2019 2016; 14 55 15 315 8 1 27 13 478 325
2017 2015 2018; 11 7 8
2016 2019; 7 18
2009; 8
2011; 4
2015 2018; 3 57
2019; 141
2011 2013; 133 42
2019; 131
e_1_2_4_21_1
e_1_2_4_23_1
e_1_2_4_21_2
e_1_2_4_23_3
e_1_2_4_23_2
e_1_2_4_23_5
e_1_2_4_23_4
e_1_2_4_23_7
e_1_2_4_23_6
e_1_2_4_23_9
e_1_2_4_23_8
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_5_1
e_1_2_4_3_2
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_9_2
e_1_2_4_10_1
e_1_2_4_10_2
e_1_2_4_10_3
e_1_2_4_12_1
e_1_2_4_10_4
e_1_2_4_12_2
e_1_2_4_10_5
e_1_2_4_12_3
e_1_2_4_14_1
e_1_2_4_10_6
e_1_2_4_14_2
e_1_2_4_16_1
e_1_2_4_14_3
e_1_2_4_16_3
e_1_2_4_18_1
e_1_2_4_16_2
e_1_2_4_16_4
e_1_2_4_20_1
e_1_2_4_23_10
e_1_2_4_22_1
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_11_1
e_1_2_4_11_2
e_1_2_4_13_1
e_1_2_4_13_2
e_1_2_4_15_1
e_1_2_4_15_2
e_1_2_4_15_3
e_1_2_4_17_1
e_1_2_4_19_2
e_1_2_4_19_1
References_xml – volume: 4
  start-page: 2878
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 133 42
  start-page: 3018
  year: 2011 2013
  publication-title: J. Am. Chem. Soc. Chem. Soc. Rev.
– volume: 25 51
  start-page: 5285 3591
  year: 2015 2012
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 7 18
  start-page: 5758 246
  year: 2016 2019
  publication-title: Chem. Sci. Energy Storage Mater.
– volume: 2 231
  start-page: 176 153
  year: 2011 2013
  publication-title: J. Phys. Chem. Lett. J. Power Sources
– volume: 5
  start-page: 2411
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 27 14 24 16 6 9
  start-page: 6021 4821 1243 864 7760 1998
  year: 2015 2014 2014 2016 2015 2016
  publication-title: Adv. Mater. Nano Lett. Adv. Funct. Mater. Nano Lett. Nat. Commun. Energy Environ. Sci.
– volume: 3 57
  year: 2015 2018
  publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 141
  start-page: 3977
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 29 27
  year: 2017 2017
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 11 7 8
  start-page: 7274 5292
  year: 2017 2015 2018
  publication-title: ACS Nano Nanoscale Adv. Energy Mater.
– volume: 7 15 10
  start-page: 5137 1694
  year: 2017 2015 2017
  publication-title: Adv. Energy Mater. Nano Lett. Energy Environ. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 23 455 6
  start-page: 522
  year: 2017 2018 2019
  publication-title: Chem. ‐ Eur. J. Appl. Surf. Sci. Adv. Mater. Interfaces
– volume: 131
  start-page: 5017
  year: 2019
  publication-title: Angew. Chem.
– volume: 27 55
  start-page: 5203
  year: 2015 2016
  publication-title: Adv. Mater. Angew. Chem., Int. Ed.
– volume: 114 52
  year: 2014 2013
  publication-title: Chem. Rev. Angew. Chem., Int. Ed.
– volume: 8 5 309 27
  start-page: 632 402 1661
  year: 2016 2017 2019 2018
  publication-title: ACS Appl. Mater. Interfaces J. Mater. Chem. A Electrochim. Acta J. Energy Chem.
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 14 55 15 315 8 1 27 13 478 325
  start-page: 2289 2291 33 153 2891 7073 341 71
  year: 2018 2019 2013 2019 2017 2016 2015 2019 2019 2016
  publication-title: Small Chem. Commun. Phys. Chem. Chem. Phys. Electrochim. Acta Energy Storage Mater. Nat. Energy Adv. Mater. ACS Nano Appl. Surf. Sci. J. Power Sources
– volume: 196 4
  start-page: 3655 2798
  year: 2011 2013
  publication-title: J. Power Sources Nat. Commun.
– ident: e_1_2_4_14_1
  doi: 10.1002/aenm.201602380
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201502467
– ident: e_1_2_4_7_1
  doi: 10.1016/j.jpowsour.2010.12.052
– ident: e_1_2_4_23_5
  doi: 10.1016/j.ensm.2017.05.009
– ident: e_1_2_4_19_1
  doi: 10.1039/C6SC02105K
– ident: e_1_2_4_16_3
  doi: 10.1016/j.electacta.2019.04.062
– ident: e_1_2_4_23_6
  doi: 10.1038/nenergy.2016.94
– ident: e_1_2_4_15_2
  doi: 10.1016/j.apsusc.2018.05.200
– ident: e_1_2_4_6_1
  doi: 10.1039/c1ee01219c
– ident: e_1_2_4_12_3
  doi: 10.1002/aenm.201800595
– ident: e_1_2_4_13_1
  doi: 10.1039/C5TA03062E
– ident: e_1_2_4_21_1
  doi: 10.1002/adma.201501559
– ident: e_1_2_4_1_2
  doi: 10.1002/anie.201304762
– ident: e_1_2_4_19_2
  doi: 10.1016/j.ensm.2018.09.006
– ident: e_1_2_4_23_10
  doi: 10.1016/j.jpowsour.2016.04.139
– ident: e_1_2_4_4_1
  doi: 10.1021/ja206955k
– ident: e_1_2_4_3_2
  doi: 10.1016/j.jpowsour.2012.12.102
– ident: e_1_2_4_4_2
  doi: 10.1039/c2cs35256g
– ident: e_1_2_4_20_1
  doi: 10.1038/ncomms11203
– ident: e_1_2_4_23_2
  doi: 10.1039/C8CC09973A
– ident: e_1_2_4_23_4
  doi: 10.1016/j.electacta.2019.05.062
– ident: e_1_2_4_14_2
  doi: 10.1021/acs.nanolett.5b01919
– ident: e_1_2_4_10_6
  doi: 10.1039/C6EE00104A
– ident: e_1_2_4_16_2
  doi: 10.1039/C6TA07620C
– ident: e_1_2_4_13_2
  doi: 10.1002/anie.201805972
– ident: e_1_2_4_23_7
  doi: 10.1002/adma.201405637
– ident: e_1_2_4_10_4
  doi: 10.1021/acs.nanolett.5b03217
– ident: e_1_2_4_15_1
  doi: 10.1002/chem.201702387
– ident: e_1_2_4_9_2
  doi: 10.1002/anie.201107817
– ident: e_1_2_4_23_1
  doi: 10.1002/smll.201702853
– ident: e_1_2_4_23_9
  doi: 10.1016/j.apsusc.2019.01.145
– ident: e_1_2_4_10_5
  doi: 10.1038/ncomms8760
– ident: e_1_2_4_11_2
  doi: 10.1002/adfm.201702524
– ident: e_1_2_4_15_3
  doi: 10.1002/admi.201802088
– ident: e_1_2_4_16_1
  doi: 10.1021/acsami.6b03642
– ident: e_1_2_4_10_2
  doi: 10.1021/nl5020475
– ident: e_1_2_4_16_4
  doi: 10.1016/j.jechem.2018.02.010
– ident: e_1_2_4_21_2
  doi: 10.1002/anie.201605676
– ident: e_1_2_4_1_1
  doi: 10.1021/cr500062v
– ident: e_1_2_4_7_2
  doi: 10.1038/ncomms3798
– ident: e_1_2_4_8_1
  doi: 10.1039/C6TA08742F
– ident: e_1_2_4_3_1
  doi: 10.1021/jz1015422
– ident: e_1_2_4_22_1
  doi: 10.1002/smtd.201700134
– ident: e_1_2_4_10_3
  doi: 10.1002/adfm.201302631
– ident: e_1_2_4_12_1
  doi: 10.1021/acsnano.7b03227
– ident: e_1_2_4_12_2
  doi: 10.1039/C5NR00166H
– ident: e_1_2_4_9_1
  doi: 10.1002/adfm.201502251
– ident: e_1_2_4_23_8
  doi: 10.1021/acsnano.9b02374
– ident: e_1_2_4_23_3
  doi: 10.1039/c2cp43394j
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201601759
– ident: e_1_2_4_17_1
  doi: 10.1021/jacs.8b12973
– ident: e_1_2_4_18_1
  doi: 10.1002/ange.201814605
– ident: e_1_2_4_5_1
  doi: 10.1038/nmat2460
– ident: e_1_2_4_14_3
  doi: 10.1039/C7EE01430A
– ident: e_1_2_4_2_1
  doi: 10.1002/aenm.201700260
SSID ssj0009606
Score 2.685318
Snippet Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries...
Lithium-sulfur (Li-S) batteries hold great promise to serve as next-generation energy storage devices. However, the practical performances of Li-S batteries...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1903813
SubjectTerms atomic doping
Atomic structure
Carbon
Cathodes
Cobalt
Energy storage
Lithium sulfur batteries
Low conductivity
mesoporous carbon
Nanomaterials
polysulfide electrocatalysis
Polysulfides
Reaction kinetics
Redox reactions
shuttle effect
Storage batteries
Title Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201903813
https://www.ncbi.nlm.nih.gov/pubmed/31497898
https://www.proquest.com/docview/2307428588
https://www.proquest.com/docview/2287514876
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KQHf_-YTokgeMq2tumv45iOIc6DOtitJGkC4uxkaw968n_wP_Qv8b126zZFBD21pQlNk76-b9qXzyPkTAnux75ymae9mIGHaDIoaZhGNokMY8tRuDi5d-N1-_xq4A4WVvEXfIjygxtaRv6-RgMXctKYQ0NFnHODwKGB00HcJwZsoSq6nfOjUJ7nsD3HZaHHgxm1sWk3lqsve6VvUnNZueaup7NBxKzRRcTJYz1LZV29fuE5_ueuNsn6VJfSVvEgbZEVnWyTtQVa4Q4RSBIWeWYJ2kpxNTNtI00kpfgx9yGhPT0ZgZwfZRPaFmM5SmiaB-VSDCYZvlAQtnKo6TWWzp4-3t7vsqHJxrRgfMKUfZf0O5f37S6bZmhgivuBw7hRnsu1FXMRBtIztmVsIZX2_aY0OpCWI2OQ77ZRsbC0yx1hNOxxTGweCqGdPVJJRok-INSPYfIJHtXI0OEGEUSKC-Fr37Vho0yVsNkIRWqKL8csGsOoAC_bEXZdVHZdlZyX5Z8LcMePJWuzAY-mBjyJMD4eZmZuEFTJaXkaTA__p4hEQ1dGNsw2QW-CP6mS_eJBKS_lWJi6L4Tadj7cv7Qhal30WuXR4V8qHZFV3C8CDWukko4zfQyCKZUnuVF8ArGODq8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHpRyAA_8_SwsYCcQp7cZx_g4cVrtUW7rbA7RSb8Z2bKliyaJNIlROvEOfpK_SR-BJmEk2KQtCSEg9cMqfkzj22DPj2N8AvDBKxFlsQi-yUeahhuh7mNJ5ltgkOs38wNDi5Ol-ND4Ub4_CozU4a9fCNHyIbsCNWkbdX1MDpwHp7QtqqMpqcBBqNNQ6bfzqPXvyBb224vXuCKv4Jec7bw6GY28ZWMAzIk4CTzgThcL6mVBpoiPHfceVNjaO-9rZRPuBztDq5M5kyrehCJSzuCcoHneqlA3wuVfgKoURJ1z_6N0FsYocghrvF4ReGomk5UT2-fZqflf14G_G7aqtXCu7nVtw3hZTM8fl41ZV6i3z9ReC5H9Vjrfh5tL0ZoOmrdyBNZvfhRs_ARnvgSJYsqqDZ7BBSQu22ZCAKSWj8erjnE1tMUePZV4VbKgWep6zsp53zGi-zOyEoe2uZ5ZNKHX16fu30_fVzFUL1mBMj21xHw4v5RsfwHo-z-0jYHGG_jUaDU6ngXBEWTJCqdjGIceNcT3wWpGQZklop0AhM9mwpbmkqpJdVfXgVZf-c8Mm-WPKzVbC5LKPKiQtAUDnM0ySHjzvLmPvQr-MVG6xKCVHhxqFHFVmDx42ktm9KvApOmGKd_Navv6SBzkYTQfd0eN_uekZXBsfTCdysru_twHX6Xwzr3IT1stFZZ-gfVjqp3WLZPDhskX3B9wgb8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIiE48H4ECiwSiJPbeL1-HThESaOWNhUCKvXm7lOqCE4V20Ll1P_QP8Jf4S_wS5ixY7cBISSkHjj5NbbXuzM7M-uZbwBeailiE-vQi2xkPNQQfQ8pnWcJm0Slxg80JSdP9qKtffH2IDxYgW9tLkyDD9EtuJFk1PM1CfixcRvnoKHS1LhBqNBQ6bTlq3fsyRd02oo32yMc4Vecjzc_Dre8RV0BT4s4CTzhdBQK6xsh00RFjvuOS6VtHPeVs4nyA2XQ6OROG-nbUATSWdwTVI47ldIG-NwrcFVE_ZSKRYzenwNWkT9Qo_sFoZdGImlhIvt8Y7m9y2rwN9t22VSudd34Fnxve6kJcfm0XpVqXX_9BUDyf-rG23BzYXizQSMpd2DF5nfhxgU4xnsgCSpZ1qUz2KCkdG02JLiUktFq9VHOJraYob8yqwo2lHM1y1lZRx0zipaZnjC03NXUsl2irj7_OD37UE1dNWcNiOmRLe7D_qV84wNYzWe5fQQsNuhdo8ngVBoIRxhLWkgZ2zjkuNGuB17LEZle4LNTmZBp1iBL84yGKuuGqgevO_rjBpnkj5RrLYNlixmqyCgBAF3PMEl68KK7jHML_TCSucWuzDi602hQo8LswcOGMbtXBT7VJkzxbl6z11_akA1Gk0F39PhfbnoO196Nxtnu9t7OE7hOp5ugyjVYLeeVfYrGYame1fLI4PCyOfcnDGducw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implanting+Atomic+Cobalt+within+Mesoporous+Carbon+toward+Highly+Stable+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xie%2C+Jin&rft.au=Li%2C+Bo%E2%80%90Quan&rft.au=Peng%2C+Hong%E2%80%90Jie&rft.au=Song%2C+Yun%E2%80%90Wei&rft.date=2019-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201903813&rft.externalDBID=10.1002%252Fadma.201903813&rft.externalDocID=ADMA201903813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon