Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium–Sulfur Batteries
Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first tw...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 43; pp. e1903813 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self‐templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic‐cobalt‐decorated mesoporous carbon host, a high capacity of 1130 mAh gS−1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li–S batteries and broad applications.
Atomic cobalt implantation to mesoporous carbon enhances the sulfur kinetics in Li–S batteries. Atomic cobalt dopants with high polarity endow the mesoporous carbon (represented by the apes) with high affinity with polysulfides (represented by the bananas). Therefore, the shuttle effect is eliminated and the sulfur kinetics is improved, facilitating highly stable Li–S batteries. |
---|---|
AbstractList | Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self‐templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic‐cobalt‐decorated mesoporous carbon host, a high capacity of 1130 mAh g
S
−1
at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li–S batteries and broad applications. Lithium-sulfur (Li-S) batteries hold great promise to serve as next-generation energy storage devices. However, the practical performances of Li-S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self-templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic-cobalt-decorated mesoporous carbon host, a high capacity of 1130 mAh g at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li-S batteries and broad applications. Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self‐templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic‐cobalt‐decorated mesoporous carbon host, a high capacity of 1130 mAh gS−1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li–S batteries and broad applications. Atomic cobalt implantation to mesoporous carbon enhances the sulfur kinetics in Li–S batteries. Atomic cobalt dopants with high polarity endow the mesoporous carbon (represented by the apes) with high affinity with polysulfides (represented by the bananas). Therefore, the shuttle effect is eliminated and the sulfur kinetics is improved, facilitating highly stable Li–S batteries. Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self‐templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic‐cobalt‐decorated mesoporous carbon host, a high capacity of 1130 mAh gS−1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li–S batteries and broad applications. Lithium-sulfur (Li-S) batteries hold great promise to serve as next-generation energy storage devices. However, the practical performances of Li-S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self-templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic-cobalt-decorated mesoporous carbon host, a high capacity of 1130 mAh gS -1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li-S batteries and broad applications.Lithium-sulfur (Li-S) batteries hold great promise to serve as next-generation energy storage devices. However, the practical performances of Li-S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self-templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic-cobalt-decorated mesoporous carbon host, a high capacity of 1130 mAh gS -1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li-S batteries and broad applications. |
Author | Zhao, Meng Huang, Jia‐Qi Zhang, Qiang Li, Bo‐Quan Chen, Xiao Song, Yun‐Wei Peng, Hong‐Jie Xie, Jin |
Author_xml | – sequence: 1 givenname: Jin orcidid: 0000-0002-4235-7441 surname: Xie fullname: Xie, Jin organization: Beijing Institute of Technology – sequence: 2 givenname: Bo‐Quan orcidid: 0000-0002-9544-5795 surname: Li fullname: Li, Bo‐Quan organization: Tsinghua University – sequence: 3 givenname: Hong‐Jie orcidid: 0000-0002-4183-703X surname: Peng fullname: Peng, Hong‐Jie organization: Tsinghua University – sequence: 4 givenname: Yun‐Wei surname: Song fullname: Song, Yun‐Wei organization: Tsinghua University – sequence: 5 givenname: Meng orcidid: 0000-0001-8402-7697 surname: Zhao fullname: Zhao, Meng organization: Beijing Institute of Technology – sequence: 6 givenname: Xiao orcidid: 0000-0003-1104-6146 surname: Chen fullname: Chen, Xiao organization: Tsinghua University – sequence: 7 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang organization: Tsinghua University – sequence: 8 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31497898$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbFuFDEQhi0URC6BlhJZoqHZw_Z613Z5XIBEuogiUFvjXTtx5F0ftlen63gH3pAnYU-XgBQJUc0U3zeamf8MnYxxtAi9pmRJCWHvoR9gyQhVpJa0foYWtGG04kQ1J2hBVN1UquXyFJ3lfE8IUS1pX6DTmnIlpJILBFfDNsBY_HiLVyUOvsPraCAUvPPlzo_42ua4jSlOGa8hmTjiEneQenzpb-_CHt8UMMHizYGehl8_ft5MwU0Jf4BSbPI2v0TPHYRsXz3Uc_Tt08ev68tq8-Xz1Xq1qTouZF1x17UNt7TnoKRpHaOOgemsEMQ4Kw2tTS8EY67rgdqG1-Ds3PGGN0wB2PocvTvO3ab4fbK56MHnzob5OjtvrxmToqFcinZG3z5B7-OUxnk7zWoiOJONlDP15oGazGB7vU1-gLTXj8-bAX4EuhRzTtbpzhcoPo4lgQ-aEn3ISB8y0n8ymrXlE-1x8j8FdRR2Ptj9f2i9urhe_XV_A56apfU |
CitedBy_id | crossref_primary_10_1016_j_ensm_2020_05_002 crossref_primary_10_1021_acsomega_3c04166 crossref_primary_10_1016_j_cej_2023_144972 crossref_primary_10_26599_NRE_2023_9120049 crossref_primary_10_1007_s11771_022_5134_2 crossref_primary_10_1016_j_ensm_2021_12_040 crossref_primary_10_1021_acs_nanolett_0c04322 crossref_primary_10_1021_acsenergylett_2c01132 crossref_primary_10_1021_acssuschemeng_1c08568 crossref_primary_10_1016_j_jcis_2021_08_096 crossref_primary_10_1002_smll_202302249 crossref_primary_10_1002_adfm_202200302 crossref_primary_10_1002_smll_202300868 crossref_primary_10_1039_D2TA06876A crossref_primary_10_1016_j_ensm_2022_06_055 crossref_primary_10_1021_acsmaterialslett_1c00512 crossref_primary_10_1002_aenm_202002893 crossref_primary_10_1016_j_cej_2023_147315 crossref_primary_10_1039_D2TA06231C crossref_primary_10_1016_j_electacta_2022_141570 crossref_primary_10_1016_j_apsusc_2023_159156 crossref_primary_10_1021_acsaem_4c00087 crossref_primary_10_1039_D0TA10607K crossref_primary_10_1016_j_jechem_2020_10_007 crossref_primary_10_1002_anie_202003917 crossref_primary_10_1002_celc_202101182 crossref_primary_10_1002_smll_202305508 crossref_primary_10_1016_j_cej_2021_134242 crossref_primary_10_1016_j_ensm_2020_06_043 crossref_primary_10_1016_j_jpowsour_2024_234645 crossref_primary_10_1007_s42864_020_00047_5 crossref_primary_10_1007_s12598_021_01750_z crossref_primary_10_1515_nanoph_2021_0782 crossref_primary_10_1021_acsnano_3c05483 crossref_primary_10_1016_j_cej_2020_128079 crossref_primary_10_1016_j_jcis_2021_07_044 crossref_primary_10_1021_acs_jpclett_1c00927 crossref_primary_10_1002_advs_202103517 crossref_primary_10_1016_j_jcis_2023_03_016 crossref_primary_10_1021_acsaem_2c03181 crossref_primary_10_1002_admi_202002159 crossref_primary_10_1002_anie_202008911 crossref_primary_10_1002_adfm_202405358 crossref_primary_10_1016_j_apsusc_2023_157068 crossref_primary_10_1021_acsami_4c17510 crossref_primary_10_1002_smll_202107380 crossref_primary_10_1002_adfm_201910331 crossref_primary_10_1016_j_cej_2020_125959 crossref_primary_10_1039_D1TA00772F crossref_primary_10_1016_j_ensm_2020_05_022 crossref_primary_10_1002_smll_202106970 crossref_primary_10_1016_j_jmat_2020_12_016 crossref_primary_10_1002_cssc_202000702 crossref_primary_10_1002_anie_202404019 crossref_primary_10_1016_j_jallcom_2020_156443 crossref_primary_10_1016_j_carbon_2023_118066 crossref_primary_10_1016_j_matt_2020_07_032 crossref_primary_10_1021_acsmaterialslett_1c00414 crossref_primary_10_1021_acsnano_3c11903 crossref_primary_10_1002_sus2_112 crossref_primary_10_1016_j_jechem_2022_12_050 crossref_primary_10_1002_nano_202100177 crossref_primary_10_1016_j_commatsci_2024_112946 crossref_primary_10_1002_adma_202200102 crossref_primary_10_1021_acsnano_1c06067 crossref_primary_10_1039_D2EE03970B crossref_primary_10_1021_acs_langmuir_3c01442 crossref_primary_10_1002_advs_202002037 crossref_primary_10_1016_j_jechem_2020_06_018 crossref_primary_10_1016_j_micromeso_2020_110705 crossref_primary_10_1039_C9TA11680J crossref_primary_10_1002_aenm_202202094 crossref_primary_10_1016_j_jechem_2020_07_057 crossref_primary_10_1007_s11581_020_03767_3 crossref_primary_10_1002_tcr_202200124 crossref_primary_10_1039_D1MA00875G crossref_primary_10_3390_catal11020273 crossref_primary_10_1088_1361_6528_ac3703 crossref_primary_10_1016_j_jallcom_2024_177280 crossref_primary_10_1038_s41467_021_27551_7 crossref_primary_10_1007_s12598_021_01865_3 crossref_primary_10_1002_smll_201906634 crossref_primary_10_1002_smll_202404983 crossref_primary_10_1016_j_jechem_2020_06_054 crossref_primary_10_1007_s12598_021_01839_5 crossref_primary_10_1016_j_cej_2022_140338 crossref_primary_10_1002_adfm_202002471 crossref_primary_10_1002_ange_202108882 crossref_primary_10_1016_j_mtphys_2024_101571 crossref_primary_10_1021_acsaem_2c02306 crossref_primary_10_1016_j_jelechem_2024_118164 crossref_primary_10_1016_j_nanoen_2020_105009 crossref_primary_10_1002_ange_202008911 crossref_primary_10_1007_s12274_023_5557_6 crossref_primary_10_1016_j_mtener_2023_101344 crossref_primary_10_1021_acs_langmuir_2c03446 crossref_primary_10_1039_D0EE02651D crossref_primary_10_1002_adfm_202407162 crossref_primary_10_1016_j_nanoen_2021_105761 crossref_primary_10_1021_acsami_1c03054 crossref_primary_10_1016_j_carbon_2020_08_032 crossref_primary_10_1039_D0SE01061H crossref_primary_10_1557_s43579_021_00048_6 crossref_primary_10_3390_en14092649 crossref_primary_10_1016_j_cej_2020_125723 crossref_primary_10_1021_acsenergylett_0c01564 crossref_primary_10_1016_j_cej_2022_137294 crossref_primary_10_1016_j_carbon_2021_11_031 crossref_primary_10_1016_j_electacta_2024_145613 crossref_primary_10_1021_acsaem_1c00293 crossref_primary_10_1002_smll_202106640 crossref_primary_10_1039_D1RA02704B crossref_primary_10_3389_fenrg_2021_626596 crossref_primary_10_1016_j_micromeso_2021_111558 crossref_primary_10_1002_adma_202211168 crossref_primary_10_1016_j_cej_2021_129388 crossref_primary_10_1016_j_indcrop_2021_113801 crossref_primary_10_1021_acsaem_2c00111 crossref_primary_10_1360_nso_20220032 crossref_primary_10_1007_s12598_024_02708_7 crossref_primary_10_1039_D0NR04189K crossref_primary_10_1002_adma_202100171 crossref_primary_10_1021_acsami_1c15975 crossref_primary_10_1002_bkcs_12833 crossref_primary_10_1039_D3QI00617D crossref_primary_10_1002_anie_202108882 crossref_primary_10_1002_adma_201907444 crossref_primary_10_1002_adfm_202102546 crossref_primary_10_1007_s40820_021_00676_6 crossref_primary_10_1016_j_cej_2023_143706 crossref_primary_10_1016_j_compositesb_2023_110886 crossref_primary_10_1002_cey2_450 crossref_primary_10_1007_s40843_020_1542_8 crossref_primary_10_1039_D4TA06750A crossref_primary_10_1016_j_nanoen_2023_108813 crossref_primary_10_1039_D0EE03316B crossref_primary_10_1002_aenm_202002152 crossref_primary_10_1002_smll_202004142 crossref_primary_10_1002_aenm_202002271 crossref_primary_10_1016_j_cej_2021_133549 crossref_primary_10_1016_j_cej_2020_125197 crossref_primary_10_1016_j_carbon_2020_10_022 crossref_primary_10_1039_D0TA12110J crossref_primary_10_1016_j_nantod_2024_102393 crossref_primary_10_1021_acssuschemeng_0c08049 crossref_primary_10_1039_D2NJ05748D crossref_primary_10_1007_s10008_021_05031_8 crossref_primary_10_3390_ijms24087291 crossref_primary_10_1021_acsnano_1c04642 crossref_primary_10_1016_j_cej_2022_138287 crossref_primary_10_1016_j_materresbull_2024_112785 crossref_primary_10_1002_anie_202104053 crossref_primary_10_1016_j_jechem_2022_08_014 crossref_primary_10_1021_acsnano_4c03744 crossref_primary_10_1021_acssuschemeng_0c02869 crossref_primary_10_1007_s40097_022_00517_x crossref_primary_10_1016_j_compositesb_2023_111050 crossref_primary_10_1002_ange_202104053 crossref_primary_10_1039_D3NR04298G crossref_primary_10_26599_NR_2025_94907114 crossref_primary_10_1039_D3EE03168C crossref_primary_10_1002_cey2_101 crossref_primary_10_1016_j_jelechem_2022_117046 crossref_primary_10_1016_j_jcis_2021_11_102 crossref_primary_10_1016_j_cej_2021_131911 crossref_primary_10_1039_D2TA05273C crossref_primary_10_1016_j_ensm_2021_05_009 crossref_primary_10_1021_acsmaterialslett_0c00396 crossref_primary_10_1021_acsomega_3c01851 crossref_primary_10_1039_D0TA02692A crossref_primary_10_1016_j_jcis_2025_01_028 crossref_primary_10_1007_s12274_020_2827_4 crossref_primary_10_1039_D1TC05694H crossref_primary_10_1039_D4TA08712G crossref_primary_10_1016_j_electacta_2021_139380 crossref_primary_10_1002_smsc_202100042 crossref_primary_10_1016_j_ccr_2022_214577 crossref_primary_10_1002_adfm_202008652 crossref_primary_10_1002_smtd_202100649 crossref_primary_10_1007_s12274_021_3319_x crossref_primary_10_1021_acsnano_3c09333 crossref_primary_10_1016_j_cej_2024_149500 crossref_primary_10_1002_adfm_202208666 crossref_primary_10_1002_adfm_202303705 crossref_primary_10_1016_j_jallcom_2024_174136 crossref_primary_10_1016_j_trechm_2020_09_001 crossref_primary_10_1002_advs_202307995 crossref_primary_10_1007_s11426_020_9845_5 crossref_primary_10_1002_batt_202200494 crossref_primary_10_1002_tcr_202200278 crossref_primary_10_1007_s10853_025_10622_1 crossref_primary_10_1002_ange_202007063 crossref_primary_10_1002_celc_202001081 crossref_primary_10_1007_s12274_022_4453_9 crossref_primary_10_1002_anie_202108397 crossref_primary_10_1016_j_cej_2022_137656 crossref_primary_10_1002_ange_202003136 crossref_primary_10_1021_acs_nanolett_9b04719 crossref_primary_10_1016_j_ceramint_2022_12_152 crossref_primary_10_1016_j_jpcs_2024_111994 crossref_primary_10_1002_aenm_202003690 crossref_primary_10_1039_D0QI00678E crossref_primary_10_1039_D0TA00800A crossref_primary_10_1002_smtd_202100066 crossref_primary_10_1002_smtd_201900701 crossref_primary_10_1016_j_cej_2023_144553 crossref_primary_10_1002_aesr_202100157 crossref_primary_10_1016_j_ensm_2020_11_011 crossref_primary_10_1002_anie_202015049 crossref_primary_10_1021_acsnano_0c07332 crossref_primary_10_1016_j_esci_2021_08_001 crossref_primary_10_3389_fchem_2021_703354 crossref_primary_10_1002_adma_202105947 crossref_primary_10_1016_j_jechem_2022_05_034 crossref_primary_10_1016_j_apcatb_2020_119780 crossref_primary_10_1021_acssuschemeng_1c04708 crossref_primary_10_3390_nano11112882 crossref_primary_10_1002_adfm_202314379 crossref_primary_10_1021_acsami_0c21136 crossref_primary_10_1021_acsaem_0c00090 crossref_primary_10_1039_D0TA04910G crossref_primary_10_1016_j_jallcom_2021_163608 crossref_primary_10_1016_j_apsusc_2020_146092 crossref_primary_10_1039_D1CE01170G crossref_primary_10_1016_j_jallcom_2022_164799 crossref_primary_10_1007_s40843_021_1688_7 crossref_primary_10_1002_smll_202100414 crossref_primary_10_1007_s12274_022_5215_4 crossref_primary_10_1002_adma_202003666 crossref_primary_10_1002_ange_202015049 crossref_primary_10_1021_acsnano_1c03876 crossref_primary_10_1002_smll_202102710 crossref_primary_10_1021_acs_nanolett_0c04938 crossref_primary_10_1021_acsaem_0c01842 crossref_primary_10_1039_D0TA05964A crossref_primary_10_1016_j_ccr_2023_215493 crossref_primary_10_1039_D1TA01948A crossref_primary_10_1002_adfm_202106679 crossref_primary_10_1002_ange_202003917 crossref_primary_10_1021_acs_est_0c07794 crossref_primary_10_1002_adfm_202003870 crossref_primary_10_1016_j_cej_2022_137438 crossref_primary_10_1016_j_electacta_2021_139264 crossref_primary_10_1002_ange_202404019 crossref_primary_10_1002_cey2_422 crossref_primary_10_1002_adfm_202111586 crossref_primary_10_1002_adma_202105812 crossref_primary_10_1039_D1NR04506G crossref_primary_10_1007_s11581_022_04520_8 crossref_primary_10_1021_acsami_0c05910 crossref_primary_10_1039_D4DT02429J crossref_primary_10_1016_j_cej_2020_126076 crossref_primary_10_1002_idm2_12178 crossref_primary_10_1039_D0TA04019C crossref_primary_10_1039_D2TA04095F crossref_primary_10_1039_D2TA05929K crossref_primary_10_1115_1_4050869 crossref_primary_10_1016_j_electacta_2021_138371 crossref_primary_10_1002_celc_202100462 crossref_primary_10_1021_acsami_1c17971 crossref_primary_10_1016_j_jechem_2023_03_008 crossref_primary_10_1002_adfm_202006798 crossref_primary_10_1002_smll_202006504 crossref_primary_10_1016_j_cej_2022_135820 crossref_primary_10_1002_adma_202108835 crossref_primary_10_1016_j_cej_2022_140178 crossref_primary_10_1016_j_cej_2020_128284 crossref_primary_10_1016_j_jelechem_2022_116025 crossref_primary_10_1016_j_nanoen_2020_105085 crossref_primary_10_1016_j_nanoen_2021_106331 crossref_primary_10_1016_j_nanoen_2023_108756 crossref_primary_10_1016_j_jallcom_2020_155498 crossref_primary_10_1002_adfm_202315563 crossref_primary_10_1039_D2TA09232H crossref_primary_10_1016_j_cej_2024_148747 crossref_primary_10_1016_j_jcis_2024_05_199 crossref_primary_10_1021_acsnano_0c02294 crossref_primary_10_1360_TB_2022_0050 crossref_primary_10_1002_slct_202000366 crossref_primary_10_1002_eom2_12182 crossref_primary_10_1016_j_cej_2021_131622 crossref_primary_10_1016_j_ensm_2023_103026 crossref_primary_10_1016_j_rser_2021_111783 crossref_primary_10_1039_D0NJ00787K crossref_primary_10_1021_acs_accounts_3c00698 crossref_primary_10_1016_j_cej_2022_135031 crossref_primary_10_1002_sstr_202200205 crossref_primary_10_1149_1945_7111_ad6b46 crossref_primary_10_1007_s12598_022_01989_0 crossref_primary_10_1016_j_matlet_2021_130215 crossref_primary_10_1021_acsami_1c01600 crossref_primary_10_1016_j_ensm_2020_11_042 crossref_primary_10_1016_j_jechem_2021_05_023 crossref_primary_10_1002_adfm_202107838 crossref_primary_10_1002_smtd_201900864 crossref_primary_10_1039_D0TA11880J crossref_primary_10_1021_acsami_2c02713 crossref_primary_10_1002_adfm_202200529 crossref_primary_10_1016_j_jechem_2022_01_016 crossref_primary_10_1002_ange_202108397 crossref_primary_10_1002_adma_202204214 crossref_primary_10_1016_j_matlet_2023_134939 crossref_primary_10_1016_j_ensm_2021_09_003 crossref_primary_10_1002_adma_202205674 crossref_primary_10_1039_D1MA00441G crossref_primary_10_1016_j_nantod_2021_101246 crossref_primary_10_1002_adma_202103846 crossref_primary_10_1016_j_cej_2022_138677 crossref_primary_10_1021_acs_jpcc_1c10197 crossref_primary_10_1002_anie_202003136 crossref_primary_10_1002_er_5236 crossref_primary_10_1021_acs_nanolett_1c04838 crossref_primary_10_1039_D1TA04870H crossref_primary_10_1016_j_cej_2020_124377 crossref_primary_10_1021_acsami_0c10341 crossref_primary_10_1016_j_cej_2020_127769 crossref_primary_10_1016_j_cej_2024_151337 crossref_primary_10_1002_aenm_202003507 crossref_primary_10_1021_acsnano_0c08056 crossref_primary_10_1002_adfm_202203902 crossref_primary_10_1002_smll_202402074 crossref_primary_10_1016_j_jcis_2023_02_127 crossref_primary_10_1007_s40843_022_2303_0 crossref_primary_10_1002_aenm_202100332 crossref_primary_10_1016_j_jallcom_2021_161459 crossref_primary_10_1002_anie_202007063 crossref_primary_10_1016_j_cej_2021_131997 crossref_primary_10_1016_j_ensm_2021_06_040 crossref_primary_10_1016_j_jcis_2023_07_145 crossref_primary_10_1021_acsnano_1c00556 crossref_primary_10_1007_s11581_023_05155_z crossref_primary_10_1016_j_carbon_2022_06_073 crossref_primary_10_1021_acsnano_2c01992 |
Cites_doi | 10.1002/aenm.201602380 10.1002/adma.201502467 10.1016/j.jpowsour.2010.12.052 10.1016/j.ensm.2017.05.009 10.1039/C6SC02105K 10.1016/j.electacta.2019.04.062 10.1038/nenergy.2016.94 10.1016/j.apsusc.2018.05.200 10.1039/c1ee01219c 10.1002/aenm.201800595 10.1039/C5TA03062E 10.1002/adma.201501559 10.1002/anie.201304762 10.1016/j.ensm.2018.09.006 10.1016/j.jpowsour.2016.04.139 10.1021/ja206955k 10.1016/j.jpowsour.2012.12.102 10.1039/c2cs35256g 10.1038/ncomms11203 10.1039/C8CC09973A 10.1016/j.electacta.2019.05.062 10.1021/acs.nanolett.5b01919 10.1039/C6EE00104A 10.1039/C6TA07620C 10.1002/anie.201805972 10.1002/adma.201405637 10.1021/acs.nanolett.5b03217 10.1002/chem.201702387 10.1002/anie.201107817 10.1002/smll.201702853 10.1016/j.apsusc.2019.01.145 10.1038/ncomms8760 10.1002/adfm.201702524 10.1002/admi.201802088 10.1021/acsami.6b03642 10.1021/nl5020475 10.1016/j.jechem.2018.02.010 10.1002/anie.201605676 10.1021/cr500062v 10.1038/ncomms3798 10.1039/C6TA08742F 10.1021/jz1015422 10.1002/smtd.201700134 10.1002/adfm.201302631 10.1021/acsnano.7b03227 10.1039/C5NR00166H 10.1002/adfm.201502251 10.1021/acsnano.9b02374 10.1039/c2cp43394j 10.1002/adma.201601759 10.1021/jacs.8b12973 10.1002/ange.201814605 10.1038/nmat2460 10.1039/C7EE01430A 10.1002/aenm.201700260 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201903813 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31497898 10_1002_adma_201903813 ADMA201903813 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Tsinghua National Laboratory for Information Science and Technology – fundername: Tsinghua University Initiative Scientific Research Program – fundername: National Natural Science Foundation of China funderid: 21776019; 21825501; U1801257 – fundername: National Key Research and Development Program funderid: 2016YFA0202500; 2016YFA0200102 – fundername: National Key Research and Development Program grantid: 2016YFA0202500 – fundername: National Natural Science Foundation of China grantid: 21776019 – fundername: National Natural Science Foundation of China grantid: 21825501 – fundername: National Key Research and Development Program grantid: 2016YFA0200102 – fundername: National Natural Science Foundation of China grantid: U1801257 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4783-4fc654e1d4a98b6f21f2abce770bfe8b13bd7722fcda1e543afeda1454529aae3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:38:38 EDT 2025 Fri Jul 25 01:26:06 EDT 2025 Wed Feb 19 02:31:35 EST 2025 Tue Jul 01 02:32:41 EDT 2025 Thu Apr 24 23:06:05 EDT 2025 Wed Jan 22 16:38:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | shuttle effect polysulfide electrocatalysis mesoporous carbon lithium-sulfur batteries atomic doping |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4783-4fc654e1d4a98b6f21f2abce770bfe8b13bd7722fcda1e543afeda1454529aae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4235-7441 0000-0002-4183-703X 0000-0002-9544-5795 0000-0002-3929-1541 0000-0001-8402-7697 0000-0003-1104-6146 0000-0001-7394-9186 |
PMID | 31497898 |
PQID | 2307428588 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2287514876 proquest_journals_2307428588 pubmed_primary_31497898 crossref_citationtrail_10_1002_adma_201903813 crossref_primary_10_1002_adma_201903813 wiley_primary_10_1002_adma_201903813_ADMA201903813 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2013; 114 52 2011 2013; 196 4 2017; 5 2017; 7 2016 2017 2019 2018; 8 5 309 27 2015 2016; 27 55 2016; 7 2017; 1 2011 2013; 2 231 2015 2012; 25 51 2017 2017; 29 27 2017 2015 2017; 7 15 10 2015 2014 2014 2016 2015 2016; 27 14 24 16 6 9 2017 2018 2019; 23 455 6 2018 2019 2013 2019 2017 2016 2015 2019 2019 2016; 14 55 15 315 8 1 27 13 478 325 2017 2015 2018; 11 7 8 2016 2019; 7 18 2009; 8 2011; 4 2015 2018; 3 57 2019; 141 2011 2013; 133 42 2019; 131 e_1_2_4_21_1 e_1_2_4_23_1 e_1_2_4_21_2 e_1_2_4_23_3 e_1_2_4_23_2 e_1_2_4_23_5 e_1_2_4_23_4 e_1_2_4_23_7 e_1_2_4_23_6 e_1_2_4_23_9 e_1_2_4_23_8 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_5_1 e_1_2_4_3_2 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_9_2 e_1_2_4_10_1 e_1_2_4_10_2 e_1_2_4_10_3 e_1_2_4_12_1 e_1_2_4_10_4 e_1_2_4_12_2 e_1_2_4_10_5 e_1_2_4_12_3 e_1_2_4_14_1 e_1_2_4_10_6 e_1_2_4_14_2 e_1_2_4_16_1 e_1_2_4_14_3 e_1_2_4_16_3 e_1_2_4_18_1 e_1_2_4_16_2 e_1_2_4_16_4 e_1_2_4_20_1 e_1_2_4_23_10 e_1_2_4_22_1 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_11_1 e_1_2_4_11_2 e_1_2_4_13_1 e_1_2_4_13_2 e_1_2_4_15_1 e_1_2_4_15_2 e_1_2_4_15_3 e_1_2_4_17_1 e_1_2_4_19_2 e_1_2_4_19_1 |
References_xml | – volume: 4 start-page: 2878 year: 2011 publication-title: Energy Environ. Sci. – volume: 133 42 start-page: 3018 year: 2011 2013 publication-title: J. Am. Chem. Soc. Chem. Soc. Rev. – volume: 25 51 start-page: 5285 3591 year: 2015 2012 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 7 18 start-page: 5758 246 year: 2016 2019 publication-title: Chem. Sci. Energy Storage Mater. – volume: 2 231 start-page: 176 153 year: 2011 2013 publication-title: J. Phys. Chem. Lett. J. Power Sources – volume: 5 start-page: 2411 year: 2017 publication-title: J. Mater. Chem. A – volume: 27 14 24 16 6 9 start-page: 6021 4821 1243 864 7760 1998 year: 2015 2014 2014 2016 2015 2016 publication-title: Adv. Mater. Nano Lett. Adv. Funct. Mater. Nano Lett. Nat. Commun. Energy Environ. Sci. – volume: 3 57 year: 2015 2018 publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 141 start-page: 3977 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 29 27 year: 2017 2017 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 11 7 8 start-page: 7274 5292 year: 2017 2015 2018 publication-title: ACS Nano Nanoscale Adv. Energy Mater. – volume: 7 15 10 start-page: 5137 1694 year: 2017 2015 2017 publication-title: Adv. Energy Mater. Nano Lett. Energy Environ. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 23 455 6 start-page: 522 year: 2017 2018 2019 publication-title: Chem. ‐ Eur. J. Appl. Surf. Sci. Adv. Mater. Interfaces – volume: 131 start-page: 5017 year: 2019 publication-title: Angew. Chem. – volume: 27 55 start-page: 5203 year: 2015 2016 publication-title: Adv. Mater. Angew. Chem., Int. Ed. – volume: 114 52 year: 2014 2013 publication-title: Chem. Rev. Angew. Chem., Int. Ed. – volume: 8 5 309 27 start-page: 632 402 1661 year: 2016 2017 2019 2018 publication-title: ACS Appl. Mater. Interfaces J. Mater. Chem. A Electrochim. Acta J. Energy Chem. – volume: 1 year: 2017 publication-title: Small Methods – volume: 14 55 15 315 8 1 27 13 478 325 start-page: 2289 2291 33 153 2891 7073 341 71 year: 2018 2019 2013 2019 2017 2016 2015 2019 2019 2016 publication-title: Small Chem. Commun. Phys. Chem. Chem. Phys. Electrochim. Acta Energy Storage Mater. Nat. Energy Adv. Mater. ACS Nano Appl. Surf. Sci. J. Power Sources – volume: 196 4 start-page: 3655 2798 year: 2011 2013 publication-title: J. Power Sources Nat. Commun. – ident: e_1_2_4_14_1 doi: 10.1002/aenm.201602380 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201502467 – ident: e_1_2_4_7_1 doi: 10.1016/j.jpowsour.2010.12.052 – ident: e_1_2_4_23_5 doi: 10.1016/j.ensm.2017.05.009 – ident: e_1_2_4_19_1 doi: 10.1039/C6SC02105K – ident: e_1_2_4_16_3 doi: 10.1016/j.electacta.2019.04.062 – ident: e_1_2_4_23_6 doi: 10.1038/nenergy.2016.94 – ident: e_1_2_4_15_2 doi: 10.1016/j.apsusc.2018.05.200 – ident: e_1_2_4_6_1 doi: 10.1039/c1ee01219c – ident: e_1_2_4_12_3 doi: 10.1002/aenm.201800595 – ident: e_1_2_4_13_1 doi: 10.1039/C5TA03062E – ident: e_1_2_4_21_1 doi: 10.1002/adma.201501559 – ident: e_1_2_4_1_2 doi: 10.1002/anie.201304762 – ident: e_1_2_4_19_2 doi: 10.1016/j.ensm.2018.09.006 – ident: e_1_2_4_23_10 doi: 10.1016/j.jpowsour.2016.04.139 – ident: e_1_2_4_4_1 doi: 10.1021/ja206955k – ident: e_1_2_4_3_2 doi: 10.1016/j.jpowsour.2012.12.102 – ident: e_1_2_4_4_2 doi: 10.1039/c2cs35256g – ident: e_1_2_4_20_1 doi: 10.1038/ncomms11203 – ident: e_1_2_4_23_2 doi: 10.1039/C8CC09973A – ident: e_1_2_4_23_4 doi: 10.1016/j.electacta.2019.05.062 – ident: e_1_2_4_14_2 doi: 10.1021/acs.nanolett.5b01919 – ident: e_1_2_4_10_6 doi: 10.1039/C6EE00104A – ident: e_1_2_4_16_2 doi: 10.1039/C6TA07620C – ident: e_1_2_4_13_2 doi: 10.1002/anie.201805972 – ident: e_1_2_4_23_7 doi: 10.1002/adma.201405637 – ident: e_1_2_4_10_4 doi: 10.1021/acs.nanolett.5b03217 – ident: e_1_2_4_15_1 doi: 10.1002/chem.201702387 – ident: e_1_2_4_9_2 doi: 10.1002/anie.201107817 – ident: e_1_2_4_23_1 doi: 10.1002/smll.201702853 – ident: e_1_2_4_23_9 doi: 10.1016/j.apsusc.2019.01.145 – ident: e_1_2_4_10_5 doi: 10.1038/ncomms8760 – ident: e_1_2_4_11_2 doi: 10.1002/adfm.201702524 – ident: e_1_2_4_15_3 doi: 10.1002/admi.201802088 – ident: e_1_2_4_16_1 doi: 10.1021/acsami.6b03642 – ident: e_1_2_4_10_2 doi: 10.1021/nl5020475 – ident: e_1_2_4_16_4 doi: 10.1016/j.jechem.2018.02.010 – ident: e_1_2_4_21_2 doi: 10.1002/anie.201605676 – ident: e_1_2_4_1_1 doi: 10.1021/cr500062v – ident: e_1_2_4_7_2 doi: 10.1038/ncomms3798 – ident: e_1_2_4_8_1 doi: 10.1039/C6TA08742F – ident: e_1_2_4_3_1 doi: 10.1021/jz1015422 – ident: e_1_2_4_22_1 doi: 10.1002/smtd.201700134 – ident: e_1_2_4_10_3 doi: 10.1002/adfm.201302631 – ident: e_1_2_4_12_1 doi: 10.1021/acsnano.7b03227 – ident: e_1_2_4_12_2 doi: 10.1039/C5NR00166H – ident: e_1_2_4_9_1 doi: 10.1002/adfm.201502251 – ident: e_1_2_4_23_8 doi: 10.1021/acsnano.9b02374 – ident: e_1_2_4_23_3 doi: 10.1039/c2cp43394j – ident: e_1_2_4_11_1 doi: 10.1002/adma.201601759 – ident: e_1_2_4_17_1 doi: 10.1021/jacs.8b12973 – ident: e_1_2_4_18_1 doi: 10.1002/ange.201814605 – ident: e_1_2_4_5_1 doi: 10.1038/nmat2460 – ident: e_1_2_4_14_3 doi: 10.1039/C7EE01430A – ident: e_1_2_4_2_1 doi: 10.1002/aenm.201700260 |
SSID | ssj0009606 |
Score | 2.685318 |
Snippet | Lithium–sulfur (Li–S) batteries hold great promise to serve as next‐generation energy storage devices. However, the practical performances of Li–S batteries... Lithium-sulfur (Li-S) batteries hold great promise to serve as next-generation energy storage devices. However, the practical performances of Li-S batteries... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1903813 |
SubjectTerms | atomic doping Atomic structure Carbon Cathodes Cobalt Energy storage Lithium sulfur batteries Low conductivity mesoporous carbon Nanomaterials polysulfide electrocatalysis Polysulfides Reaction kinetics Redox reactions shuttle effect Storage batteries |
Title | Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201903813 https://www.ncbi.nlm.nih.gov/pubmed/31497898 https://www.proquest.com/docview/2307428588 https://www.proquest.com/docview/2287514876 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KQHf_-YTokgeMq2tumv45iOIc6DOtitJGkC4uxkaw968n_wP_Qv8b126zZFBD21pQlNk76-b9qXzyPkTAnux75ymae9mIGHaDIoaZhGNokMY8tRuDi5d-N1-_xq4A4WVvEXfIjygxtaRv6-RgMXctKYQ0NFnHODwKGB00HcJwZsoSq6nfOjUJ7nsD3HZaHHgxm1sWk3lqsve6VvUnNZueaup7NBxKzRRcTJYz1LZV29fuE5_ueuNsn6VJfSVvEgbZEVnWyTtQVa4Q4RSBIWeWYJ2kpxNTNtI00kpfgx9yGhPT0ZgZwfZRPaFmM5SmiaB-VSDCYZvlAQtnKo6TWWzp4-3t7vsqHJxrRgfMKUfZf0O5f37S6bZmhgivuBw7hRnsu1FXMRBtIztmVsIZX2_aY0OpCWI2OQ77ZRsbC0yx1hNOxxTGweCqGdPVJJRok-INSPYfIJHtXI0OEGEUSKC-Fr37Vho0yVsNkIRWqKL8csGsOoAC_bEXZdVHZdlZyX5Z8LcMePJWuzAY-mBjyJMD4eZmZuEFTJaXkaTA__p4hEQ1dGNsw2QW-CP6mS_eJBKS_lWJi6L4Tadj7cv7Qhal30WuXR4V8qHZFV3C8CDWukko4zfQyCKZUnuVF8ArGODq8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHpRyAA_8_SwsYCcQp7cZx_g4cVrtUW7rbA7RSb8Z2bKliyaJNIlROvEOfpK_SR-BJmEk2KQtCSEg9cMqfkzj22DPj2N8AvDBKxFlsQi-yUeahhuh7mNJ5ltgkOs38wNDi5Ol-ND4Ub4_CozU4a9fCNHyIbsCNWkbdX1MDpwHp7QtqqMpqcBBqNNQ6bfzqPXvyBb224vXuCKv4Jec7bw6GY28ZWMAzIk4CTzgThcL6mVBpoiPHfceVNjaO-9rZRPuBztDq5M5kyrehCJSzuCcoHneqlA3wuVfgKoURJ1z_6N0FsYocghrvF4ReGomk5UT2-fZqflf14G_G7aqtXCu7nVtw3hZTM8fl41ZV6i3z9ReC5H9Vjrfh5tL0ZoOmrdyBNZvfhRs_ARnvgSJYsqqDZ7BBSQu22ZCAKSWj8erjnE1tMUePZV4VbKgWep6zsp53zGi-zOyEoe2uZ5ZNKHX16fu30_fVzFUL1mBMj21xHw4v5RsfwHo-z-0jYHGG_jUaDU6ngXBEWTJCqdjGIceNcT3wWpGQZklop0AhM9mwpbmkqpJdVfXgVZf-c8Mm-WPKzVbC5LKPKiQtAUDnM0ySHjzvLmPvQr-MVG6xKCVHhxqFHFVmDx42ktm9KvApOmGKd_Navv6SBzkYTQfd0eN_uekZXBsfTCdysru_twHX6Xwzr3IT1stFZZ-gfVjqp3WLZPDhskX3B9wgb8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIiE48H4ECiwSiJPbeL1-HThESaOWNhUCKvXm7lOqCE4V20Ll1P_QP8Jf4S_wS5ixY7cBISSkHjj5NbbXuzM7M-uZbwBeailiE-vQi2xkPNQQfQ8pnWcJm0Slxg80JSdP9qKtffH2IDxYgW9tLkyDD9EtuJFk1PM1CfixcRvnoKHS1LhBqNBQ6bTlq3fsyRd02oo32yMc4Vecjzc_Dre8RV0BT4s4CTzhdBQK6xsh00RFjvuOS6VtHPeVs4nyA2XQ6OROG-nbUATSWdwTVI47ldIG-NwrcFVE_ZSKRYzenwNWkT9Qo_sFoZdGImlhIvt8Y7m9y2rwN9t22VSudd34Fnxve6kJcfm0XpVqXX_9BUDyf-rG23BzYXizQSMpd2DF5nfhxgU4xnsgCSpZ1qUz2KCkdG02JLiUktFq9VHOJraYob8yqwo2lHM1y1lZRx0zipaZnjC03NXUsl2irj7_OD37UE1dNWcNiOmRLe7D_qV84wNYzWe5fQQsNuhdo8ngVBoIRxhLWkgZ2zjkuNGuB17LEZle4LNTmZBp1iBL84yGKuuGqgevO_rjBpnkj5RrLYNlixmqyCgBAF3PMEl68KK7jHML_TCSucWuzDi602hQo8LswcOGMbtXBT7VJkzxbl6z11_akA1Gk0F39PhfbnoO196Nxtnu9t7OE7hOp5ugyjVYLeeVfYrGYame1fLI4PCyOfcnDGducw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implanting+Atomic+Cobalt+within+Mesoporous+Carbon+toward+Highly+Stable+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xie%2C+Jin&rft.au=Li%2C+Bo%E2%80%90Quan&rft.au=Peng%2C+Hong%E2%80%90Jie&rft.au=Song%2C+Yun%E2%80%90Wei&rft.date=2019-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201903813&rft.externalDBID=10.1002%252Fadma.201903813&rft.externalDocID=ADMA201903813 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |