Dual‐Phase Single‐Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with si...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 19; pp. e1808392 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery.
A single‐ion‐conducting interface consisting of dual‐layer architecture is proposed to regulate a homogeneous ionic and electric field distribution while achieving a superior mechanical feature at the surface of a lithium‐metal anode simultaneously, synergistically enabling a highly efficient cell performance of working lithium‐metal batteries. |
---|---|
AbstractList | The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery.
A single‐ion‐conducting interface consisting of dual‐layer architecture is proposed to regulate a homogeneous ionic and electric field distribution while achieving a superior mechanical feature at the surface of a lithium‐metal anode simultaneously, synergistically enabling a highly efficient cell performance of working lithium‐metal batteries. The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single-ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long-term working conditions. Herein, a robust dual-phase artificial interface is constructed, where not only the single-ion-conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al-doped Li6.75 La3 Zr1.75 Ta0.25 O12 -based bottom layer and a lithiated Nafion top layer. The as-constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li-ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite-free Li deposition behavior in a working battery.The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single-ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long-term working conditions. Herein, a robust dual-phase artificial interface is constructed, where not only the single-ion-conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al-doped Li6.75 La3 Zr1.75 Ta0.25 O12 -based bottom layer and a lithiated Nafion top layer. The as-constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li-ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite-free Li deposition behavior in a working battery. The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 ‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery. The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single-ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long-term working conditions. Herein, a robust dual-phase artificial interface is constructed, where not only the single-ion-conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al-doped Li La Zr Ta O -based bottom layer and a lithiated Nafion top layer. The as-constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li-ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite-free Li deposition behavior in a working battery. The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery. |
Author | Huang, Jia‐Qi Xu, Rui Xiao, Ye Zhao, Chen‐Zi Zhang, Qiang Cheng, Xin‐Bing Zhang, Rui Zhang, Xue‐Qiang Yan, Chong |
Author_xml | – sequence: 1 givenname: Rui surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 2 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: Beijing Institute of Technology – sequence: 3 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Tsinghua University – sequence: 4 givenname: Xin‐Bing surname: Cheng fullname: Cheng, Xin‐Bing organization: Tsinghua University – sequence: 5 givenname: Chen‐Zi surname: Zhao fullname: Zhao, Chen‐Zi organization: Tsinghua University – sequence: 6 givenname: Xue‐Qiang surname: Zhang fullname: Zhang, Xue‐Qiang organization: Tsinghua University – sequence: 7 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 8 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Tsinghua University – sequence: 9 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30907487$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1q3DAURkVIaSZpt10WQTfdeCpd2bK0nCb9GZjQkCYUshGyLGeU2FIiyYTZ9RH6jH2SOkzSQqBkdblwzsflfvto1wdvEXpDyZwSAh90O-g5ECqIYBJ20IxWQIuSyGoXzYhkVSF5KfbQfkpXhBDJCX-J9hiRpC5FPUMXR6Puf__8dbLWyeLvzl_2dlqXweMTndd3eoOXPtvYaWMT7kLEp6EZU8Yrl9duHPCxzbrHzuMfIV5POv6o88Q7m16hF53uk339MA_Q-edPZ4dfi9W3L8vDxaowZS2g6NqWAdCmrkCWwIhtG2okZaLqgNJKiMYaMFIw0fKWMdPxqjNtXTWG8oY3jB2g99vcmxhuR5uyGlwytu-1t2FMCqisGdSM8Ql99wS9CmP003UKAAiHkrJ6ot4-UGMz2FbdRDfouFGPX5uAcguYGFKKtlPGZZ1d8Dlq1ytK1H056r4c9becSZs_0R6T_yvIrXDnert5hlaLo-PFP_cPIPqiIA |
CitedBy_id | crossref_primary_10_1002_adma_202007416 crossref_primary_10_1007_s42864_021_00102_9 crossref_primary_10_1016_j_mattod_2023_02_011 crossref_primary_10_1002_ange_202422539 crossref_primary_10_1021_acsaem_0c01358 crossref_primary_10_1002_eem2_12181 crossref_primary_10_1016_j_xcrp_2021_100534 crossref_primary_10_1039_D4EE04617J crossref_primary_10_31857_S2218117224040054 crossref_primary_10_1016_j_jechem_2022_06_009 crossref_primary_10_1063_5_0068465 crossref_primary_10_1002_ange_201912701 crossref_primary_10_1021_acsami_9b23395 crossref_primary_10_1021_acs_nanolett_1c03207 crossref_primary_10_1002_er_6303 crossref_primary_10_1002_smll_202309317 crossref_primary_10_1007_s12274_022_4833_1 crossref_primary_10_1016_j_joule_2019_07_025 crossref_primary_10_1021_acsami_9b16186 crossref_primary_10_1021_acsami_9b21993 crossref_primary_10_1038_s41467_023_39673_1 crossref_primary_10_1002_anie_202420973 crossref_primary_10_1002_aenm_202103112 crossref_primary_10_1002_aenm_202101173 crossref_primary_10_1021_acsenergylett_1c02489 crossref_primary_10_1039_D0MA00260G crossref_primary_10_7498_aps_69_20200906 crossref_primary_10_1016_j_jechem_2020_11_034 crossref_primary_10_1002_smtd_202001035 crossref_primary_10_1016_j_jpowsour_2022_231255 crossref_primary_10_1038_s41467_022_32955_0 crossref_primary_10_20517_energymater_2023_130 crossref_primary_10_1002_smll_202205571 crossref_primary_10_1002_asia_202300453 crossref_primary_10_1002_adma_202004128 crossref_primary_10_1002_aenm_202003836 crossref_primary_10_1016_j_cej_2021_129119 crossref_primary_10_1039_D1EE03345J crossref_primary_10_1002_adfm_202009694 crossref_primary_10_1002_aenm_202200337 crossref_primary_10_1002_adfm_202108449 crossref_primary_10_1039_D4EE02896A crossref_primary_10_3390_ma14081979 crossref_primary_10_1002_aenm_202300611 crossref_primary_10_1016_j_cej_2019_123398 crossref_primary_10_1016_j_esci_2022_09_001 crossref_primary_10_1039_D3NR03046F crossref_primary_10_1002_batt_202300389 crossref_primary_10_1007_s11581_019_03356_z crossref_primary_10_1016_j_coelec_2021_100889 crossref_primary_10_1021_acsami_9b16083 crossref_primary_10_1002_adma_201908293 crossref_primary_10_1016_j_cej_2024_152611 crossref_primary_10_1016_j_ensm_2023_03_017 crossref_primary_10_1021_acsami_3c02728 crossref_primary_10_3390_polym15224340 crossref_primary_10_1002_adma_202003021 crossref_primary_10_1039_D3EE00161J crossref_primary_10_1002_ange_202400619 crossref_primary_10_1021_acs_macromol_1c01102 crossref_primary_10_1039_D0TA02098B crossref_primary_10_1039_C9CS00883G crossref_primary_10_1016_j_jechem_2020_06_052 crossref_primary_10_1002_adfm_202001263 crossref_primary_10_1039_D4TA07861F crossref_primary_10_1021_acsami_9b18703 crossref_primary_10_1002_anie_202217458 crossref_primary_10_1002_adfm_202000613 crossref_primary_10_1039_D0CC05084A crossref_primary_10_1016_j_jechem_2020_09_030 crossref_primary_10_1002_adma_201903778 crossref_primary_10_1002_ange_201905251 crossref_primary_10_1016_j_nanoen_2020_104815 crossref_primary_10_1002_adfm_202212466 crossref_primary_10_1557_s43579_023_00392_9 crossref_primary_10_1016_j_ssi_2022_116055 crossref_primary_10_1360_SSC_2024_0082 crossref_primary_10_3390_batteries9080407 crossref_primary_10_3390_inorganics10010005 crossref_primary_10_1002_aenm_202003496 crossref_primary_10_1016_j_cej_2020_124300 crossref_primary_10_1021_acs_nanolett_4c01241 crossref_primary_10_1039_C9TA08795H crossref_primary_10_1021_acsnano_0c05636 crossref_primary_10_1134_S2517751622040102 crossref_primary_10_1038_s41598_019_55865_6 crossref_primary_10_1002_adma_202001854 crossref_primary_10_1021_acsami_4c11328 crossref_primary_10_1039_D4TA01836B crossref_primary_10_1007_s41918_024_00230_z crossref_primary_10_1016_j_pmatsci_2022_100996 crossref_primary_10_1002_aenm_202202683 crossref_primary_10_1016_j_ensm_2019_09_020 crossref_primary_10_1002_ange_202016608 crossref_primary_10_1002_anie_202016608 crossref_primary_10_1016_j_jechem_2020_06_060 crossref_primary_10_1002_anie_202422539 crossref_primary_10_1002_adma_202309726 crossref_primary_10_1002_adma_202415258 crossref_primary_10_1002_advs_202404513 crossref_primary_10_1021_jacs_4c08766 crossref_primary_10_1002_aenm_202102242 crossref_primary_10_1002_ange_202217458 crossref_primary_10_1002_cey2_100 crossref_primary_10_1002_aenm_202103689 crossref_primary_10_1039_D4EE03097D crossref_primary_10_1002_smll_202106427 crossref_primary_10_1016_j_jechem_2020_11_016 crossref_primary_10_1039_D1TA00408E crossref_primary_10_1002_adma_202300350 crossref_primary_10_1002_adfm_202314045 crossref_primary_10_1002_sus2_187 crossref_primary_10_1016_j_cej_2021_130967 crossref_primary_10_1007_s12274_022_5227_0 crossref_primary_10_1016_j_jpowsour_2021_229868 crossref_primary_10_1039_D2PY01208A crossref_primary_10_1002_adfm_201909887 crossref_primary_10_1039_D2CP04787J crossref_primary_10_1021_acs_energyfuels_4c04530 crossref_primary_10_1002_sstr_202200010 crossref_primary_10_1039_D0TA02999H crossref_primary_10_1002_batt_202000225 crossref_primary_10_1016_j_ensm_2020_04_043 crossref_primary_10_1039_C9TA02407G crossref_primary_10_1016_j_jpowsour_2020_228803 crossref_primary_10_1063_5_0008206 crossref_primary_10_1021_acsami_1c07624 crossref_primary_10_1016_j_trechm_2019_10_002 crossref_primary_10_1021_acs_nanolett_0c00352 crossref_primary_10_1016_j_jechem_2020_08_034 crossref_primary_10_1021_acsmaterialslett_9b00118 crossref_primary_10_1016_j_jechem_2020_08_029 crossref_primary_10_1088_1361_6528_ac2093 crossref_primary_10_1002_adfm_202004189 crossref_primary_10_1002_batt_202100407 crossref_primary_10_3389_fmats_2020_00071 crossref_primary_10_3390_molecules29194761 crossref_primary_10_1002_adma_202311938 crossref_primary_10_1002_ange_202420973 crossref_primary_10_1002_batt_202000255 crossref_primary_10_1002_anie_201905251 crossref_primary_10_1002_aenm_202001257 crossref_primary_10_1002_aenm_202000962 crossref_primary_10_1093_pnasnexus_pgad263 crossref_primary_10_1002_advs_202308939 crossref_primary_10_1002_adfm_202107753 crossref_primary_10_1039_D2MA00201A crossref_primary_10_1016_j_ensm_2020_07_039 crossref_primary_10_1039_D0QM01134G crossref_primary_10_1002_ange_202106047 crossref_primary_10_1002_adfm_202008514 crossref_primary_10_1002_nano_202000003 crossref_primary_10_1002_adfm_202009961 crossref_primary_10_1021_acsami_1c02621 crossref_primary_10_1002_smll_202310915 crossref_primary_10_1002_adma_202310756 crossref_primary_10_1002_adma_201905629 crossref_primary_10_1021_acsami_1c10913 crossref_primary_10_1007_s41918_020_00076_1 crossref_primary_10_1002_anie_202400619 crossref_primary_10_1002_batt_202000126 crossref_primary_10_3390_en18020261 crossref_primary_10_1002_adfm_202107769 crossref_primary_10_1002_chem_201904631 crossref_primary_10_1002_smll_201905171 crossref_primary_10_1016_j_jcis_2022_06_017 crossref_primary_10_1002_ente_202000700 crossref_primary_10_1016_j_mtnano_2019_100057 crossref_primary_10_1002_ange_202102593 crossref_primary_10_1039_D1TA02657G crossref_primary_10_1007_s11581_022_04505_7 crossref_primary_10_1002_eem2_12345 crossref_primary_10_1016_j_cis_2024_103249 crossref_primary_10_1016_j_mattod_2021_03_013 crossref_primary_10_1021_acsaem_9b01046 crossref_primary_10_1021_acssuschemeng_3c00057 crossref_primary_10_1021_acsami_2c17547 crossref_primary_10_1002_batt_202000016 crossref_primary_10_1039_D0TA08179E crossref_primary_10_1016_j_matt_2019_05_016 crossref_primary_10_1021_acsmaterialslett_2c00810 crossref_primary_10_1134_S2517751622070010 crossref_primary_10_1002_adma_202002325 crossref_primary_10_1021_acsenergylett_1c00150 crossref_primary_10_1016_j_jechem_2020_07_019 crossref_primary_10_1021_acsaem_3c01159 crossref_primary_10_1002_admt_201900806 crossref_primary_10_1016_j_cej_2022_138772 crossref_primary_10_1039_D2MA00215A crossref_primary_10_1002_adfm_202303590 crossref_primary_10_1016_j_jechem_2021_10_038 crossref_primary_10_1021_acsami_1c19479 crossref_primary_10_1002_smll_202407983 crossref_primary_10_1002_adfm_202010499 crossref_primary_10_1016_j_ssi_2023_116184 crossref_primary_10_1002_anie_202102593 crossref_primary_10_1016_j_mtnano_2019_100049 crossref_primary_10_1016_j_mtener_2021_100770 crossref_primary_10_1002_adfm_201907020 crossref_primary_10_1002_adma_202100793 crossref_primary_10_1021_acsapm_3c00455 crossref_primary_10_1002_tcr_202200088 crossref_primary_10_1016_j_jechem_2022_11_006 crossref_primary_10_1021_acsaem_1c03706 crossref_primary_10_1021_acssuschemeng_3c06922 crossref_primary_10_1039_C9TA13678A crossref_primary_10_1038_s41565_022_01107_2 crossref_primary_10_1016_j_ensm_2020_03_022 crossref_primary_10_1002_aenm_202301708 crossref_primary_10_1002_ange_202104671 crossref_primary_10_1039_D4TA04922E crossref_primary_10_1002_anie_202106047 crossref_primary_10_1016_j_jechem_2020_07_030 crossref_primary_10_1039_D3MH01434G crossref_primary_10_1002_adfm_202206834 crossref_primary_10_1039_D1CC03044B crossref_primary_10_1002_adfm_202009718 crossref_primary_10_1007_s40843_019_1277_3 crossref_primary_10_1002_anie_201912701 crossref_primary_10_1021_acsami_9b20777 crossref_primary_10_1002_aenm_201903362 crossref_primary_10_1021_acssuschemeng_2c01368 crossref_primary_10_1002_adfm_202007198 crossref_primary_10_1016_j_jechem_2024_02_063 crossref_primary_10_1002_aenm_202101654 crossref_primary_10_1002_anie_202104671 crossref_primary_10_1016_j_scib_2019_05_025 crossref_primary_10_1002_ange_201913351 crossref_primary_10_1002_adfm_202009925 crossref_primary_10_1021_acsami_9b14647 crossref_primary_10_1002_adma_202007428 crossref_primary_10_1016_j_cej_2023_143530 crossref_primary_10_1039_D1TA08771A crossref_primary_10_1039_D2TA02162E crossref_primary_10_1002_smll_202102233 crossref_primary_10_1007_s42765_024_00402_y crossref_primary_10_1039_D0MH01030H crossref_primary_10_1016_j_jpowsour_2021_230086 crossref_primary_10_1039_D1EE00308A crossref_primary_10_1021_acs_jpcc_3c07673 crossref_primary_10_1002_adfm_202315777 crossref_primary_10_1039_D1SC06181J crossref_primary_10_1002_anie_201913351 crossref_primary_10_1002_aenm_202300403 crossref_primary_10_1002_chem_201902124 crossref_primary_10_1002_adfm_202202013 crossref_primary_10_1039_C9TA12337G crossref_primary_10_3390_batteries9050283 |
Cites_doi | 10.1002/smll.201801987 10.1002/anie.200701144 10.1002/adfm.201707536 10.1016/j.jpowsour.2018.01.063 10.1016/j.ensm.2018.06.022 10.1126/sciadv.1600320 10.1016/j.joule.2017.06.004 10.1126/science.aam6014 10.1021/cr500003w 10.1016/j.joule.2018.02.001 10.1002/adma.201504526 10.1039/c4cs00020j 10.1073/pnas.1708489114 10.1103/PhysRevA.42.7355 10.1021/acs.accounts.7b00484 10.1016/S0378-7753(98)00242-0 10.1039/C3EE40795K 10.1038/s41565-018-0183-2 10.1002/adma.201605531 10.1016/j.ensm.2018.03.024 10.1016/j.nanoen.2016.12.001 10.1021/cm901452z 10.1002/anie.201710806 10.1073/pnas.1720291115 10.1002/adma.201702714 10.1021/cr020731c 10.1016/j.nanoen.2017.10.065 10.1021/acsenergylett.8b00526 10.1038/nenergy.2016.114 10.1002/adma.201506124 10.1002/adfm.201705838 10.1016/0378-7753(94)02044-4 10.1149/1.2096425 10.1016/j.joule.2017.06.002 10.1038/nmat3602 10.1126/science.1212741 10.1126/sciadv.aar4410 10.1016/j.ensm.2017.12.002 10.1126/sciadv.1601659 10.1039/C7EE02555F 10.1002/anie.201608924 10.1021/acs.accounts.5b00427 10.1002/advs.201600445 10.1002/aenm.201800348 10.1016/j.joule.2017.11.009 10.1016/j.jpowsour.2017.01.006 10.1002/aenm.201402073 10.1002/admi.201701097 10.1149/2.0281903jes 10.1039/C8CC02280A 10.1021/jacs.6b08730 10.1038/nnano.2016.32 10.1002/adma.201800884 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201808392 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30907487 10_1002_adma_201808392 ADMA201808392 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation funderid: L182021 – fundername: National Key Research and Development Program funderid: 2016YFA0202500 – fundername: National Natural Science Foundation of China funderid: 21776019; 21825501; 21805161 – fundername: Beijing Key Research and Development Plan funderid: Z181100004518001 – fundername: National Key Research and Development Program grantid: 2016YFA0202500 – fundername: National Natural Science Foundation of China grantid: 21776019 – fundername: National Natural Science Foundation of China grantid: 21825501 – fundername: Beijing Key Research and Development Plan grantid: Z181100004518001 – fundername: Beijing Natural Science Foundation grantid: L182021 – fundername: National Natural Science Foundation of China grantid: 21805161 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4782-fdd3221b75294230edb1c91385f211588bec2c9838d6d33cf65fcd75bc16b6b33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:02:49 EDT 2025 Fri Jul 25 02:56:28 EDT 2025 Thu Apr 03 07:00:54 EDT 2025 Tue Jul 01 00:44:51 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Wed Jan 22 16:19:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | solid electrolyte interphase single-ion pathways rechargeable batteries lithium-metal anodes |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4782-fdd3221b75294230edb1c91385f211588bec2c9838d6d33cf65fcd75bc16b6b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7394-9186 |
PMID | 30907487 |
PQID | 2220624137 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2197327336 proquest_journals_2220624137 pubmed_primary_30907487 crossref_citationtrail_10_1002_adma_201808392 crossref_primary_10_1002_adma_201808392 wiley_primary_10_1002_adma_201808392_ADMA201808392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-May |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2016 2018; 138 28 4 2011; 334 1990; 42 2016 2017; 2 1 2018 2018 2018; 57 28 15 2017; 1 2004; 104 2013 2015 2017 2015; 12 5 114 48 2018; 382 1999; 81–82 2010 1995; 22 54 2018 1989 2017; 51 136 358 2018 2017; 5 29 2019 2016 2018 2019; 166 28 115 16 2017; 32 2017; 56 2018 2018 2018 2018; 14 8 28 12 2016 2018 2018 2014 2018; 1 11 3 114 13 2017; 342 2017 2017; 3 42 2018 2014; 54 7 2007; 46 2018 2017 2017 2018 2017 2016; 30 4 1 2 29 11 2014; 43 e_1_2_4_21_1 e_1_2_4_23_1 e_1_2_4_23_2 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_3_3 e_1_2_4_5_1 e_1_2_4_3_2 e_1_2_4_5_3 e_1_2_4_7_1 e_1_2_4_3_4 e_1_2_4_5_2 e_1_2_4_5_5 e_1_2_4_7_3 e_1_2_4_9_1 e_1_2_4_5_4 e_1_2_4_7_2 e_1_2_4_9_3 e_1_2_4_9_2 e_1_2_4_10_1 e_1_2_4_12_1 e_1_2_4_12_2 e_1_2_4_14_1 e_1_2_4_16_1 e_1_2_4_16_3 e_1_2_4_18_1 e_1_2_4_16_2 e_1_2_4_16_4 e_1_2_4_20_1 e_1_2_4_22_1 e_1_2_4_24_2 e_1_2_4_24_1 e_1_2_4_24_3 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_4_1 e_1_2_4_6_2 e_1_2_4_6_1 e_1_2_4_8_2 e_1_2_4_8_1 e_1_2_4_8_4 e_1_2_4_8_3 e_1_2_4_11_1 e_1_2_4_11_2 e_1_2_4_11_3 e_1_2_4_13_1 e_1_2_4_11_4 e_1_2_4_11_5 e_1_2_4_15_1 e_1_2_4_11_6 e_1_2_4_17_2 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 104 start-page: 4271 year: 2004 publication-title: Chem. Rev. – volume: 56 start-page: 753 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 342 start-page: 816 year: 2017 publication-title: J. Power Sources – volume: 2 1 start-page: e1600320 871 year: 2016 2017 publication-title: Sci. Adv. Joule – volume: 54 7 start-page: 6648 513 year: 2018 2014 publication-title: Chem. Commun. Energy Environ. Sci. – volume: 1 11 3 114 13 start-page: 16114 527 1564 11503 715 year: 2016 2018 2018 2014 2018 publication-title: Nat. Energy Energy Environ. Sci. ACS Energy Lett. Chem. Rev. Nat. Nanotechnol. – volume: 42 start-page: 7355 year: 1990 publication-title: Phys. Rev. A – volume: 43 start-page: 4714 year: 2014 publication-title: Chem. Soc. Rev. – volume: 14 8 28 12 start-page: 1801987 1800348 1707536 161 year: 2018 2018 2018 2018 publication-title: Small Adv. Energy Mater. Adv. Funct. Mater. Energy Storage Mater. – volume: 12 5 114 48 start-page: 452 1402073 11069 2947 year: 2013 2015 2017 2015 publication-title: Nat. Mater. Adv. Energy Mater. Proc. Natl. Acad. Sci. USA Acc. Chem. Res. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 32 start-page: 271 year: 2017 publication-title: Nano Energy – volume: 51 136 358 start-page: 80 3198 506 year: 2018 1989 2017 publication-title: Acc. Chem. Res. J. Electrochem. Soc. Science – volume: 30 4 1 2 29 11 start-page: 1800884 1600445 563 764 1702714 626 year: 2018 2017 2017 2018 2017 2016 publication-title: Adv. Mater. Adv. Sci. Joule Joule Adv. Mater. Nat. Nanotechnol. – volume: 46 start-page: 7778 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 166 28 115 16 start-page: A5184 1853 5343 411 year: 2019 2016 2018 2019 publication-title: J. Electrochem. Soc. Adv. Mater. Proc. Natl. Acad. Sci. USA Energy Storage Mater. – volume: 57 28 15 start-page: 1505 1705838 148 year: 2018 2018 2018 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Energy Storage Mater. – volume: 5 29 start-page: 1701097 1605531 year: 2018 2017 publication-title: Adv. Mater. Interfaces Adv. Mater. – volume: 1 start-page: 394 year: 2017 publication-title: Joule – volume: 22 54 start-page: 587 76 year: 2010 1995 publication-title: Chem. Mater. J. Power Sources – volume: 138 28 4 start-page: 15443 2888 eaar4410 year: 2016 2016 2018 publication-title: J. Am. Chem. Soc. Adv. Mater. Sci. Adv. – volume: 382 start-page: 179 year: 2018 publication-title: J. Power Sources – volume: 81–82 start-page: 925 year: 1999 publication-title: J. Power Sources – volume: 3 42 start-page: e1601659 262 year: 2017 2017 publication-title: Sci. Adv. Nano Energy – ident: e_1_2_4_3_1 doi: 10.1002/smll.201801987 – ident: e_1_2_4_21_1 doi: 10.1002/anie.200701144 – ident: e_1_2_4_3_3 doi: 10.1002/adfm.201707536 – ident: e_1_2_4_20_1 doi: 10.1016/j.jpowsour.2018.01.063 – ident: e_1_2_4_8_4 doi: 10.1016/j.ensm.2018.06.022 – ident: e_1_2_4_23_1 doi: 10.1126/sciadv.1600320 – ident: e_1_2_4_11_3 doi: 10.1016/j.joule.2017.06.004 – ident: e_1_2_4_7_3 doi: 10.1126/science.aam6014 – ident: e_1_2_4_5_4 doi: 10.1021/cr500003w – ident: e_1_2_4_11_4 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_4_8_2 doi: 10.1002/adma.201504526 – ident: e_1_2_4_18_1 doi: 10.1039/c4cs00020j – ident: e_1_2_4_16_3 doi: 10.1073/pnas.1708489114 – ident: e_1_2_4_13_1 doi: 10.1103/PhysRevA.42.7355 – ident: e_1_2_4_7_1 doi: 10.1021/acs.accounts.7b00484 – ident: e_1_2_4_15_1 doi: 10.1016/S0378-7753(98)00242-0 – ident: e_1_2_4_4_2 doi: 10.1039/C3EE40795K – ident: e_1_2_4_5_5 doi: 10.1038/s41565-018-0183-2 – ident: e_1_2_4_12_2 doi: 10.1002/adma.201605531 – ident: e_1_2_4_9_3 doi: 10.1016/j.ensm.2018.03.024 – ident: e_1_2_4_10_1 doi: 10.1016/j.nanoen.2016.12.001 – ident: e_1_2_4_6_1 doi: 10.1021/cm901452z – ident: e_1_2_4_9_1 doi: 10.1002/anie.201710806 – ident: e_1_2_4_8_3 doi: 10.1073/pnas.1720291115 – ident: e_1_2_4_11_5 doi: 10.1002/adma.201702714 – ident: e_1_2_4_2_1 doi: 10.1021/cr020731c – ident: e_1_2_4_17_2 doi: 10.1016/j.nanoen.2017.10.065 – ident: e_1_2_4_5_3 doi: 10.1021/acsenergylett.8b00526 – ident: e_1_2_4_5_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_4_24_2 doi: 10.1002/adma.201506124 – ident: e_1_2_4_9_2 doi: 10.1002/adfm.201705838 – ident: e_1_2_4_6_2 doi: 10.1016/0378-7753(94)02044-4 – ident: e_1_2_4_7_2 doi: 10.1149/1.2096425 – ident: e_1_2_4_14_1 doi: 10.1016/j.joule.2017.06.002 – ident: e_1_2_4_16_1 doi: 10.1038/nmat3602 – ident: e_1_2_4_1_1 doi: 10.1126/science.1212741 – ident: e_1_2_4_24_3 doi: 10.1126/sciadv.aar4410 – ident: e_1_2_4_3_4 doi: 10.1016/j.ensm.2017.12.002 – ident: e_1_2_4_17_1 doi: 10.1126/sciadv.1601659 – ident: e_1_2_4_5_2 doi: 10.1039/C7EE02555F – ident: e_1_2_4_19_1 doi: 10.1002/anie.201608924 – ident: e_1_2_4_16_4 doi: 10.1021/acs.accounts.5b00427 – ident: e_1_2_4_11_2 doi: 10.1002/advs.201600445 – ident: e_1_2_4_3_2 doi: 10.1002/aenm.201800348 – ident: e_1_2_4_23_2 doi: 10.1016/j.joule.2017.11.009 – ident: e_1_2_4_22_1 doi: 10.1016/j.jpowsour.2017.01.006 – ident: e_1_2_4_16_2 doi: 10.1002/aenm.201402073 – ident: e_1_2_4_12_1 doi: 10.1002/admi.201701097 – ident: e_1_2_4_8_1 doi: 10.1149/2.0281903jes – ident: e_1_2_4_4_1 doi: 10.1039/C8CC02280A – ident: e_1_2_4_24_1 doi: 10.1021/jacs.6b08730 – ident: e_1_2_4_11_6 doi: 10.1038/nnano.2016.32 – ident: e_1_2_4_11_1 doi: 10.1002/adma.201800884 |
SSID | ssj0009606 |
Score | 2.6717165 |
Snippet | The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1808392 |
SubjectTerms | Anodes Anodic protection Batteries Deformation Dendritic structure Deposition Electric fields Formability Interfacial properties Ion transport Lithium Lithium batteries lithium‐metal anodes Materials science Metal surfaces rechargeable batteries single‐ion pathways solid electrolyte interphase Solid electrolytes |
Title | Dual‐Phase Single‐Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808392 https://www.ncbi.nlm.nih.gov/pubmed/30907487 https://www.proquest.com/docview/2220624137 https://www.proquest.com/docview/2197327336 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA7ikz54393xRoSFfYq2TZOmj4M6jKIiXkD2peRWZnDsiNMi-uRP8Df6SzxpO9VxkQV9a9ocmuack_MlOf2C0O9YeiLmwhBpooCEXHEiYfZDBLM81tIRUZYJsie8exkeXrGrd3_xV_wQzYKb84xyvHYOLtVo5400VJqSN8gXnovxMAi7hC2His7e-KMcPC_J9igjMQ_FmLXRC3YmxSej0j9QcxK5lqGnM4_kuNFVxsn1dpGrbf34gc_xO1-1gOZqXIrblSEtoimbLaHZd2yFy-jvXiEHL0_Ppz2IfPgc7g0sFA-GGT4FHHkvH3C5vpi6LC8MYBifDVUxyvFRP-_1ixt8bAHp436G6xV6XJF7wlx9BV129i92u6Q-moHoEDAFSY2BkcBXEQtiAGSeNcrXoFjBUphRMiHANAIdCyoMN5TqlLNUm4gp7YM5KEp_oOlsmNlfCCsVMi2N8qTiYZSCDKU8lIFlMDnVEWshMlZNomvecnd8xiCpGJeDxPVZ0vRZC_1p6t9WjB2f1lwfazqpPXeUAF7yuNtsjFpoq3kMPuc2UmRmhwXU8R3HkSOSbKGflYU0r6KeW24QIB2Uev5PG5L23nG7Ka1-RWgNzcB1XGVhrqPp_K6wG4CUcrVZesMrmM0KAg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3oWFAkZC4uQ2iWPHOa4o1RZ2q6q0EuIS-RV1xZJFNBGCU39Cf2N_ScfOoywIIcHRjq049oznm_HkM8DLXEUyF9JSZbOEpkILqtD7oZI7kRvliShDguyemBylbz_wPpvQ_wvT8kMMATevGWG_9gruA9Jbl6yhygbioFhG3shfhWv-Wu_gVR1cMkh5gB7o9hinuUhlz9sYJVur_Vft0m9gcxW7BuOzcxt0P-w25-TTZlPrTfPjF0bH__quO3Crg6Zk3MrSXbjiqntw8yfCwvvwcbtRi_PTs_1jNH7kPdYtHBZ3lxXZRyj5TX0nIcRY-kQvgniYHCx1c1KT6bw-njefycwh2CfzinRBetLye6K7_gCOdt4cvp7Q7nYGalKEFbS0FjeDWGc8yRGTRc7q2ODaSl6iU8mlROlITC6ZtMIyZkrBS2Mzrk2MEqEZW4e1alm5R0C0TrlRVkdKizQrsQ9jIlWJ4-ifmoyPgPZrU5iOutzfoLEoWtLlpPBzVgxzNoJXQ_svLWnHH1tu9EtddMp7UiBkioQ_b8xG8GJ4jGrnz1JU5ZYNtok9zZHnkhzBw1ZEhlexyEccJPZOwkL_ZQzFeHs2HkqP_6XTc7g-OZxNi-nu3rsncAPr8zYpcwPW6q-Ne4rAqdbPgmpcADasDh0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ8oJkYfUFTgEHRJTHxaaLvd7fbx4nEBBXJBSYgvzf5ruHD2CLQh-sRH4DPySZxte4XTGBN97HYnu92Z2f3t7PS3AO9SFchUSEuVTSIaCy2owt0PldyJ1ChPRFknyB6K3eP44wk_ufcXf8MP0QXcvGfU87V38HObb9-Rhipb8waFMvBr_EN4FAts1sOiozsCKY_Pa7Y9xmkqYjmjbQyi7Xn5-WXpN6w5D13rtWf4DNSs103KydlWVeot8-MXQsf_-aznsNgCU9JvLGkJHrjiBTy9R1f4Er4OKjW5vb4ZneLSRz5j2cTh4960ICMEklfqO6kDjLlP8yKIhsnRVFeXJdkfl6fj6hs5cAj1ybggbYieNOyeuFl_BcfDnS8fdml7NwM1MYIKmluLU0GoEx6liMgCZ3VoULOS57il5FKibUQmlUxaYRkzueC5sQnXJkR70Iwtw0IxLdwqEK1jbpTVgdIiTnKUYUzEKnIcd6cm4T2gM9VkpiUu9_dnTLKGcjnK_Jhl3Zj14H1X_7yh7PhjzfWZprPWdS8zBEyB8KeNSQ82u9fodP4kRRVuWmGd0JMceSbJHqw0FtI1xQIfb5AoHdV6_ksfsv7goN89rf2L0Ft4PBoMs_29w0-v4QkWp01G5joslBeV20DUVOo3tWP8BBdzDNU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Phase+Single-Ion+Pathway+Interfaces+for+Robust+Lithium+Metal+in+Working+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Rui&rft.au=Xiao%2C+Ye&rft.au=Zhang%2C+Rui&rft.au=Cheng%2C+Xin-Bing&rft.date=2019-05-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=19&rft.spage=e1808392&rft_id=info:doi/10.1002%2Fadma.201808392&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |