Dual‐Phase Single‐Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries

The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with si...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 19; pp. e1808392 - n/a
Main Authors Xu, Rui, Xiao, Ye, Zhang, Rui, Cheng, Xin‐Bing, Zhao, Chen‐Zi, Zhang, Xue‐Qiang, Yan, Chong, Zhang, Qiang, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery. A single‐ion‐conducting interface consisting of dual‐layer architecture is proposed to regulate a homogeneous ionic and electric field distribution while achieving a superior mechanical feature at the surface of a lithium‐metal anode simultaneously, synergistically enabling a highly efficient cell performance of working lithium‐metal batteries.
AbstractList The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery. A single‐ion‐conducting interface consisting of dual‐layer architecture is proposed to regulate a homogeneous ionic and electric field distribution while achieving a superior mechanical feature at the surface of a lithium‐metal anode simultaneously, synergistically enabling a highly efficient cell performance of working lithium‐metal batteries.
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single-ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long-term working conditions. Herein, a robust dual-phase artificial interface is constructed, where not only the single-ion-conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al-doped Li6.75 La3 Zr1.75 Ta0.25 O12 -based bottom layer and a lithiated Nafion top layer. The as-constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li-ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite-free Li deposition behavior in a working battery.The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single-ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long-term working conditions. Herein, a robust dual-phase artificial interface is constructed, where not only the single-ion-conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al-doped Li6.75 La3 Zr1.75 Ta0.25 O12 -based bottom layer and a lithiated Nafion top layer. The as-constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li-ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite-free Li deposition behavior in a working battery.
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 ‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery.
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single-ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long-term working conditions. Herein, a robust dual-phase artificial interface is constructed, where not only the single-ion-conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al-doped Li La Zr Ta O -based bottom layer and a lithiated Nafion top layer. The as-constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li-ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite-free Li deposition behavior in a working battery.
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery.
Author Huang, Jia‐Qi
Xu, Rui
Xiao, Ye
Zhao, Chen‐Zi
Zhang, Qiang
Cheng, Xin‐Bing
Zhang, Rui
Zhang, Xue‐Qiang
Yan, Chong
Author_xml – sequence: 1
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Tsinghua University
– sequence: 4
  givenname: Xin‐Bing
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  organization: Tsinghua University
– sequence: 5
  givenname: Chen‐Zi
  surname: Zhao
  fullname: Zhao, Chen‐Zi
  organization: Tsinghua University
– sequence: 6
  givenname: Xue‐Qiang
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Tsinghua University
– sequence: 7
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Tsinghua University
– sequence: 9
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30907487$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAURkVIaSZpt10WQTfdeCpd2bK0nCb9GZjQkCYUshGyLGeU2FIiyYTZ9RH6jH2SOkzSQqBkdblwzsflfvto1wdvEXpDyZwSAh90O-g5ECqIYBJ20IxWQIuSyGoXzYhkVSF5KfbQfkpXhBDJCX-J9hiRpC5FPUMXR6Puf__8dbLWyeLvzl_2dlqXweMTndd3eoOXPtvYaWMT7kLEp6EZU8Yrl9duHPCxzbrHzuMfIV5POv6o88Q7m16hF53uk339MA_Q-edPZ4dfi9W3L8vDxaowZS2g6NqWAdCmrkCWwIhtG2okZaLqgNJKiMYaMFIw0fKWMdPxqjNtXTWG8oY3jB2g99vcmxhuR5uyGlwytu-1t2FMCqisGdSM8Ql99wS9CmP003UKAAiHkrJ6ot4-UGMz2FbdRDfouFGPX5uAcguYGFKKtlPGZZ1d8Dlq1ytK1H056r4c9becSZs_0R6T_yvIrXDnert5hlaLo-PFP_cPIPqiIA
CitedBy_id crossref_primary_10_1002_adma_202007416
crossref_primary_10_1007_s42864_021_00102_9
crossref_primary_10_1016_j_mattod_2023_02_011
crossref_primary_10_1002_ange_202422539
crossref_primary_10_1021_acsaem_0c01358
crossref_primary_10_1002_eem2_12181
crossref_primary_10_1016_j_xcrp_2021_100534
crossref_primary_10_1039_D4EE04617J
crossref_primary_10_31857_S2218117224040054
crossref_primary_10_1016_j_jechem_2022_06_009
crossref_primary_10_1063_5_0068465
crossref_primary_10_1002_ange_201912701
crossref_primary_10_1021_acsami_9b23395
crossref_primary_10_1021_acs_nanolett_1c03207
crossref_primary_10_1002_er_6303
crossref_primary_10_1002_smll_202309317
crossref_primary_10_1007_s12274_022_4833_1
crossref_primary_10_1016_j_joule_2019_07_025
crossref_primary_10_1021_acsami_9b16186
crossref_primary_10_1021_acsami_9b21993
crossref_primary_10_1038_s41467_023_39673_1
crossref_primary_10_1002_anie_202420973
crossref_primary_10_1002_aenm_202103112
crossref_primary_10_1002_aenm_202101173
crossref_primary_10_1021_acsenergylett_1c02489
crossref_primary_10_1039_D0MA00260G
crossref_primary_10_7498_aps_69_20200906
crossref_primary_10_1016_j_jechem_2020_11_034
crossref_primary_10_1002_smtd_202001035
crossref_primary_10_1016_j_jpowsour_2022_231255
crossref_primary_10_1038_s41467_022_32955_0
crossref_primary_10_20517_energymater_2023_130
crossref_primary_10_1002_smll_202205571
crossref_primary_10_1002_asia_202300453
crossref_primary_10_1002_adma_202004128
crossref_primary_10_1002_aenm_202003836
crossref_primary_10_1016_j_cej_2021_129119
crossref_primary_10_1039_D1EE03345J
crossref_primary_10_1002_adfm_202009694
crossref_primary_10_1002_aenm_202200337
crossref_primary_10_1002_adfm_202108449
crossref_primary_10_1039_D4EE02896A
crossref_primary_10_3390_ma14081979
crossref_primary_10_1002_aenm_202300611
crossref_primary_10_1016_j_cej_2019_123398
crossref_primary_10_1016_j_esci_2022_09_001
crossref_primary_10_1039_D3NR03046F
crossref_primary_10_1002_batt_202300389
crossref_primary_10_1007_s11581_019_03356_z
crossref_primary_10_1016_j_coelec_2021_100889
crossref_primary_10_1021_acsami_9b16083
crossref_primary_10_1002_adma_201908293
crossref_primary_10_1016_j_cej_2024_152611
crossref_primary_10_1016_j_ensm_2023_03_017
crossref_primary_10_1021_acsami_3c02728
crossref_primary_10_3390_polym15224340
crossref_primary_10_1002_adma_202003021
crossref_primary_10_1039_D3EE00161J
crossref_primary_10_1002_ange_202400619
crossref_primary_10_1021_acs_macromol_1c01102
crossref_primary_10_1039_D0TA02098B
crossref_primary_10_1039_C9CS00883G
crossref_primary_10_1016_j_jechem_2020_06_052
crossref_primary_10_1002_adfm_202001263
crossref_primary_10_1039_D4TA07861F
crossref_primary_10_1021_acsami_9b18703
crossref_primary_10_1002_anie_202217458
crossref_primary_10_1002_adfm_202000613
crossref_primary_10_1039_D0CC05084A
crossref_primary_10_1016_j_jechem_2020_09_030
crossref_primary_10_1002_adma_201903778
crossref_primary_10_1002_ange_201905251
crossref_primary_10_1016_j_nanoen_2020_104815
crossref_primary_10_1002_adfm_202212466
crossref_primary_10_1557_s43579_023_00392_9
crossref_primary_10_1016_j_ssi_2022_116055
crossref_primary_10_1360_SSC_2024_0082
crossref_primary_10_3390_batteries9080407
crossref_primary_10_3390_inorganics10010005
crossref_primary_10_1002_aenm_202003496
crossref_primary_10_1016_j_cej_2020_124300
crossref_primary_10_1021_acs_nanolett_4c01241
crossref_primary_10_1039_C9TA08795H
crossref_primary_10_1021_acsnano_0c05636
crossref_primary_10_1134_S2517751622040102
crossref_primary_10_1038_s41598_019_55865_6
crossref_primary_10_1002_adma_202001854
crossref_primary_10_1021_acsami_4c11328
crossref_primary_10_1039_D4TA01836B
crossref_primary_10_1007_s41918_024_00230_z
crossref_primary_10_1016_j_pmatsci_2022_100996
crossref_primary_10_1002_aenm_202202683
crossref_primary_10_1016_j_ensm_2019_09_020
crossref_primary_10_1002_ange_202016608
crossref_primary_10_1002_anie_202016608
crossref_primary_10_1016_j_jechem_2020_06_060
crossref_primary_10_1002_anie_202422539
crossref_primary_10_1002_adma_202309726
crossref_primary_10_1002_adma_202415258
crossref_primary_10_1002_advs_202404513
crossref_primary_10_1021_jacs_4c08766
crossref_primary_10_1002_aenm_202102242
crossref_primary_10_1002_ange_202217458
crossref_primary_10_1002_cey2_100
crossref_primary_10_1002_aenm_202103689
crossref_primary_10_1039_D4EE03097D
crossref_primary_10_1002_smll_202106427
crossref_primary_10_1016_j_jechem_2020_11_016
crossref_primary_10_1039_D1TA00408E
crossref_primary_10_1002_adma_202300350
crossref_primary_10_1002_adfm_202314045
crossref_primary_10_1002_sus2_187
crossref_primary_10_1016_j_cej_2021_130967
crossref_primary_10_1007_s12274_022_5227_0
crossref_primary_10_1016_j_jpowsour_2021_229868
crossref_primary_10_1039_D2PY01208A
crossref_primary_10_1002_adfm_201909887
crossref_primary_10_1039_D2CP04787J
crossref_primary_10_1021_acs_energyfuels_4c04530
crossref_primary_10_1002_sstr_202200010
crossref_primary_10_1039_D0TA02999H
crossref_primary_10_1002_batt_202000225
crossref_primary_10_1016_j_ensm_2020_04_043
crossref_primary_10_1039_C9TA02407G
crossref_primary_10_1016_j_jpowsour_2020_228803
crossref_primary_10_1063_5_0008206
crossref_primary_10_1021_acsami_1c07624
crossref_primary_10_1016_j_trechm_2019_10_002
crossref_primary_10_1021_acs_nanolett_0c00352
crossref_primary_10_1016_j_jechem_2020_08_034
crossref_primary_10_1021_acsmaterialslett_9b00118
crossref_primary_10_1016_j_jechem_2020_08_029
crossref_primary_10_1088_1361_6528_ac2093
crossref_primary_10_1002_adfm_202004189
crossref_primary_10_1002_batt_202100407
crossref_primary_10_3389_fmats_2020_00071
crossref_primary_10_3390_molecules29194761
crossref_primary_10_1002_adma_202311938
crossref_primary_10_1002_ange_202420973
crossref_primary_10_1002_batt_202000255
crossref_primary_10_1002_anie_201905251
crossref_primary_10_1002_aenm_202001257
crossref_primary_10_1002_aenm_202000962
crossref_primary_10_1093_pnasnexus_pgad263
crossref_primary_10_1002_advs_202308939
crossref_primary_10_1002_adfm_202107753
crossref_primary_10_1039_D2MA00201A
crossref_primary_10_1016_j_ensm_2020_07_039
crossref_primary_10_1039_D0QM01134G
crossref_primary_10_1002_ange_202106047
crossref_primary_10_1002_adfm_202008514
crossref_primary_10_1002_nano_202000003
crossref_primary_10_1002_adfm_202009961
crossref_primary_10_1021_acsami_1c02621
crossref_primary_10_1002_smll_202310915
crossref_primary_10_1002_adma_202310756
crossref_primary_10_1002_adma_201905629
crossref_primary_10_1021_acsami_1c10913
crossref_primary_10_1007_s41918_020_00076_1
crossref_primary_10_1002_anie_202400619
crossref_primary_10_1002_batt_202000126
crossref_primary_10_3390_en18020261
crossref_primary_10_1002_adfm_202107769
crossref_primary_10_1002_chem_201904631
crossref_primary_10_1002_smll_201905171
crossref_primary_10_1016_j_jcis_2022_06_017
crossref_primary_10_1002_ente_202000700
crossref_primary_10_1016_j_mtnano_2019_100057
crossref_primary_10_1002_ange_202102593
crossref_primary_10_1039_D1TA02657G
crossref_primary_10_1007_s11581_022_04505_7
crossref_primary_10_1002_eem2_12345
crossref_primary_10_1016_j_cis_2024_103249
crossref_primary_10_1016_j_mattod_2021_03_013
crossref_primary_10_1021_acsaem_9b01046
crossref_primary_10_1021_acssuschemeng_3c00057
crossref_primary_10_1021_acsami_2c17547
crossref_primary_10_1002_batt_202000016
crossref_primary_10_1039_D0TA08179E
crossref_primary_10_1016_j_matt_2019_05_016
crossref_primary_10_1021_acsmaterialslett_2c00810
crossref_primary_10_1134_S2517751622070010
crossref_primary_10_1002_adma_202002325
crossref_primary_10_1021_acsenergylett_1c00150
crossref_primary_10_1016_j_jechem_2020_07_019
crossref_primary_10_1021_acsaem_3c01159
crossref_primary_10_1002_admt_201900806
crossref_primary_10_1016_j_cej_2022_138772
crossref_primary_10_1039_D2MA00215A
crossref_primary_10_1002_adfm_202303590
crossref_primary_10_1016_j_jechem_2021_10_038
crossref_primary_10_1021_acsami_1c19479
crossref_primary_10_1002_smll_202407983
crossref_primary_10_1002_adfm_202010499
crossref_primary_10_1016_j_ssi_2023_116184
crossref_primary_10_1002_anie_202102593
crossref_primary_10_1016_j_mtnano_2019_100049
crossref_primary_10_1016_j_mtener_2021_100770
crossref_primary_10_1002_adfm_201907020
crossref_primary_10_1002_adma_202100793
crossref_primary_10_1021_acsapm_3c00455
crossref_primary_10_1002_tcr_202200088
crossref_primary_10_1016_j_jechem_2022_11_006
crossref_primary_10_1021_acsaem_1c03706
crossref_primary_10_1021_acssuschemeng_3c06922
crossref_primary_10_1039_C9TA13678A
crossref_primary_10_1038_s41565_022_01107_2
crossref_primary_10_1016_j_ensm_2020_03_022
crossref_primary_10_1002_aenm_202301708
crossref_primary_10_1002_ange_202104671
crossref_primary_10_1039_D4TA04922E
crossref_primary_10_1002_anie_202106047
crossref_primary_10_1016_j_jechem_2020_07_030
crossref_primary_10_1039_D3MH01434G
crossref_primary_10_1002_adfm_202206834
crossref_primary_10_1039_D1CC03044B
crossref_primary_10_1002_adfm_202009718
crossref_primary_10_1007_s40843_019_1277_3
crossref_primary_10_1002_anie_201912701
crossref_primary_10_1021_acsami_9b20777
crossref_primary_10_1002_aenm_201903362
crossref_primary_10_1021_acssuschemeng_2c01368
crossref_primary_10_1002_adfm_202007198
crossref_primary_10_1016_j_jechem_2024_02_063
crossref_primary_10_1002_aenm_202101654
crossref_primary_10_1002_anie_202104671
crossref_primary_10_1016_j_scib_2019_05_025
crossref_primary_10_1002_ange_201913351
crossref_primary_10_1002_adfm_202009925
crossref_primary_10_1021_acsami_9b14647
crossref_primary_10_1002_adma_202007428
crossref_primary_10_1016_j_cej_2023_143530
crossref_primary_10_1039_D1TA08771A
crossref_primary_10_1039_D2TA02162E
crossref_primary_10_1002_smll_202102233
crossref_primary_10_1007_s42765_024_00402_y
crossref_primary_10_1039_D0MH01030H
crossref_primary_10_1016_j_jpowsour_2021_230086
crossref_primary_10_1039_D1EE00308A
crossref_primary_10_1021_acs_jpcc_3c07673
crossref_primary_10_1002_adfm_202315777
crossref_primary_10_1039_D1SC06181J
crossref_primary_10_1002_anie_201913351
crossref_primary_10_1002_aenm_202300403
crossref_primary_10_1002_chem_201902124
crossref_primary_10_1002_adfm_202202013
crossref_primary_10_1039_C9TA12337G
crossref_primary_10_3390_batteries9050283
Cites_doi 10.1002/smll.201801987
10.1002/anie.200701144
10.1002/adfm.201707536
10.1016/j.jpowsour.2018.01.063
10.1016/j.ensm.2018.06.022
10.1126/sciadv.1600320
10.1016/j.joule.2017.06.004
10.1126/science.aam6014
10.1021/cr500003w
10.1016/j.joule.2018.02.001
10.1002/adma.201504526
10.1039/c4cs00020j
10.1073/pnas.1708489114
10.1103/PhysRevA.42.7355
10.1021/acs.accounts.7b00484
10.1016/S0378-7753(98)00242-0
10.1039/C3EE40795K
10.1038/s41565-018-0183-2
10.1002/adma.201605531
10.1016/j.ensm.2018.03.024
10.1016/j.nanoen.2016.12.001
10.1021/cm901452z
10.1002/anie.201710806
10.1073/pnas.1720291115
10.1002/adma.201702714
10.1021/cr020731c
10.1016/j.nanoen.2017.10.065
10.1021/acsenergylett.8b00526
10.1038/nenergy.2016.114
10.1002/adma.201506124
10.1002/adfm.201705838
10.1016/0378-7753(94)02044-4
10.1149/1.2096425
10.1016/j.joule.2017.06.002
10.1038/nmat3602
10.1126/science.1212741
10.1126/sciadv.aar4410
10.1016/j.ensm.2017.12.002
10.1126/sciadv.1601659
10.1039/C7EE02555F
10.1002/anie.201608924
10.1021/acs.accounts.5b00427
10.1002/advs.201600445
10.1002/aenm.201800348
10.1016/j.joule.2017.11.009
10.1016/j.jpowsour.2017.01.006
10.1002/aenm.201402073
10.1002/admi.201701097
10.1149/2.0281903jes
10.1039/C8CC02280A
10.1021/jacs.6b08730
10.1038/nnano.2016.32
10.1002/adma.201800884
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201808392
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30907487
10_1002_adma_201808392
ADMA201808392
Genre article
Journal Article
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  funderid: L182021
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  funderid: 21776019; 21825501; 21805161
– fundername: Beijing Key Research and Development Plan
  funderid: Z181100004518001
– fundername: National Key Research and Development Program
  grantid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  grantid: 21776019
– fundername: National Natural Science Foundation of China
  grantid: 21825501
– fundername: Beijing Key Research and Development Plan
  grantid: Z181100004518001
– fundername: Beijing Natural Science Foundation
  grantid: L182021
– fundername: National Natural Science Foundation of China
  grantid: 21805161
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4782-fdd3221b75294230edb1c91385f211588bec2c9838d6d33cf65fcd75bc16b6b33
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:02:49 EDT 2025
Fri Jul 25 02:56:28 EDT 2025
Thu Apr 03 07:00:54 EDT 2025
Tue Jul 01 00:44:51 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Wed Jan 22 16:19:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords solid electrolyte interphase
single-ion pathways
rechargeable batteries
lithium-metal anodes
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4782-fdd3221b75294230edb1c91385f211588bec2c9838d6d33cf65fcd75bc16b6b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7394-9186
PMID 30907487
PQID 2220624137
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2197327336
proquest_journals_2220624137
pubmed_primary_30907487
crossref_citationtrail_10_1002_adma_201808392
crossref_primary_10_1002_adma_201808392
wiley_primary_10_1002_adma_201808392_ADMA201808392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2016 2018; 138 28 4
2011; 334
1990; 42
2016 2017; 2 1
2018 2018 2018; 57 28 15
2017; 1
2004; 104
2013 2015 2017 2015; 12 5 114 48
2018; 382
1999; 81–82
2010 1995; 22 54
2018 1989 2017; 51 136 358
2018 2017; 5 29
2019 2016 2018 2019; 166 28 115 16
2017; 32
2017; 56
2018 2018 2018 2018; 14 8 28 12
2016 2018 2018 2014 2018; 1 11 3 114 13
2017; 342
2017 2017; 3 42
2018 2014; 54 7
2007; 46
2018 2017 2017 2018 2017 2016; 30 4 1 2 29 11
2014; 43
e_1_2_4_21_1
e_1_2_4_23_1
e_1_2_4_23_2
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_3_3
e_1_2_4_5_1
e_1_2_4_3_2
e_1_2_4_5_3
e_1_2_4_7_1
e_1_2_4_3_4
e_1_2_4_5_2
e_1_2_4_5_5
e_1_2_4_7_3
e_1_2_4_9_1
e_1_2_4_5_4
e_1_2_4_7_2
e_1_2_4_9_3
e_1_2_4_9_2
e_1_2_4_10_1
e_1_2_4_12_1
e_1_2_4_12_2
e_1_2_4_14_1
e_1_2_4_16_1
e_1_2_4_16_3
e_1_2_4_18_1
e_1_2_4_16_2
e_1_2_4_16_4
e_1_2_4_20_1
e_1_2_4_22_1
e_1_2_4_24_2
e_1_2_4_24_1
e_1_2_4_24_3
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_4_1
e_1_2_4_6_2
e_1_2_4_6_1
e_1_2_4_8_2
e_1_2_4_8_1
e_1_2_4_8_4
e_1_2_4_8_3
e_1_2_4_11_1
e_1_2_4_11_2
e_1_2_4_11_3
e_1_2_4_13_1
e_1_2_4_11_4
e_1_2_4_11_5
e_1_2_4_15_1
e_1_2_4_11_6
e_1_2_4_17_2
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 104
  start-page: 4271
  year: 2004
  publication-title: Chem. Rev.
– volume: 56
  start-page: 753
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 342
  start-page: 816
  year: 2017
  publication-title: J. Power Sources
– volume: 2 1
  start-page: e1600320 871
  year: 2016 2017
  publication-title: Sci. Adv. Joule
– volume: 54 7
  start-page: 6648 513
  year: 2018 2014
  publication-title: Chem. Commun. Energy Environ. Sci.
– volume: 1 11 3 114 13
  start-page: 16114 527 1564 11503 715
  year: 2016 2018 2018 2014 2018
  publication-title: Nat. Energy Energy Environ. Sci. ACS Energy Lett. Chem. Rev. Nat. Nanotechnol.
– volume: 42
  start-page: 7355
  year: 1990
  publication-title: Phys. Rev. A
– volume: 43
  start-page: 4714
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 14 8 28 12
  start-page: 1801987 1800348 1707536 161
  year: 2018 2018 2018 2018
  publication-title: Small Adv. Energy Mater. Adv. Funct. Mater. Energy Storage Mater.
– volume: 12 5 114 48
  start-page: 452 1402073 11069 2947
  year: 2013 2015 2017 2015
  publication-title: Nat. Mater. Adv. Energy Mater. Proc. Natl. Acad. Sci. USA Acc. Chem. Res.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 32
  start-page: 271
  year: 2017
  publication-title: Nano Energy
– volume: 51 136 358
  start-page: 80 3198 506
  year: 2018 1989 2017
  publication-title: Acc. Chem. Res. J. Electrochem. Soc. Science
– volume: 30 4 1 2 29 11
  start-page: 1800884 1600445 563 764 1702714 626
  year: 2018 2017 2017 2018 2017 2016
  publication-title: Adv. Mater. Adv. Sci. Joule Joule Adv. Mater. Nat. Nanotechnol.
– volume: 46
  start-page: 7778
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 166 28 115 16
  start-page: A5184 1853 5343 411
  year: 2019 2016 2018 2019
  publication-title: J. Electrochem. Soc. Adv. Mater. Proc. Natl. Acad. Sci. USA Energy Storage Mater.
– volume: 57 28 15
  start-page: 1505 1705838 148
  year: 2018 2018 2018
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Energy Storage Mater.
– volume: 5 29
  start-page: 1701097 1605531
  year: 2018 2017
  publication-title: Adv. Mater. Interfaces Adv. Mater.
– volume: 1
  start-page: 394
  year: 2017
  publication-title: Joule
– volume: 22 54
  start-page: 587 76
  year: 2010 1995
  publication-title: Chem. Mater. J. Power Sources
– volume: 138 28 4
  start-page: 15443 2888 eaar4410
  year: 2016 2016 2018
  publication-title: J. Am. Chem. Soc. Adv. Mater. Sci. Adv.
– volume: 382
  start-page: 179
  year: 2018
  publication-title: J. Power Sources
– volume: 81–82
  start-page: 925
  year: 1999
  publication-title: J. Power Sources
– volume: 3 42
  start-page: e1601659 262
  year: 2017 2017
  publication-title: Sci. Adv. Nano Energy
– ident: e_1_2_4_3_1
  doi: 10.1002/smll.201801987
– ident: e_1_2_4_21_1
  doi: 10.1002/anie.200701144
– ident: e_1_2_4_3_3
  doi: 10.1002/adfm.201707536
– ident: e_1_2_4_20_1
  doi: 10.1016/j.jpowsour.2018.01.063
– ident: e_1_2_4_8_4
  doi: 10.1016/j.ensm.2018.06.022
– ident: e_1_2_4_23_1
  doi: 10.1126/sciadv.1600320
– ident: e_1_2_4_11_3
  doi: 10.1016/j.joule.2017.06.004
– ident: e_1_2_4_7_3
  doi: 10.1126/science.aam6014
– ident: e_1_2_4_5_4
  doi: 10.1021/cr500003w
– ident: e_1_2_4_11_4
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_4_8_2
  doi: 10.1002/adma.201504526
– ident: e_1_2_4_18_1
  doi: 10.1039/c4cs00020j
– ident: e_1_2_4_16_3
  doi: 10.1073/pnas.1708489114
– ident: e_1_2_4_13_1
  doi: 10.1103/PhysRevA.42.7355
– ident: e_1_2_4_7_1
  doi: 10.1021/acs.accounts.7b00484
– ident: e_1_2_4_15_1
  doi: 10.1016/S0378-7753(98)00242-0
– ident: e_1_2_4_4_2
  doi: 10.1039/C3EE40795K
– ident: e_1_2_4_5_5
  doi: 10.1038/s41565-018-0183-2
– ident: e_1_2_4_12_2
  doi: 10.1002/adma.201605531
– ident: e_1_2_4_9_3
  doi: 10.1016/j.ensm.2018.03.024
– ident: e_1_2_4_10_1
  doi: 10.1016/j.nanoen.2016.12.001
– ident: e_1_2_4_6_1
  doi: 10.1021/cm901452z
– ident: e_1_2_4_9_1
  doi: 10.1002/anie.201710806
– ident: e_1_2_4_8_3
  doi: 10.1073/pnas.1720291115
– ident: e_1_2_4_11_5
  doi: 10.1002/adma.201702714
– ident: e_1_2_4_2_1
  doi: 10.1021/cr020731c
– ident: e_1_2_4_17_2
  doi: 10.1016/j.nanoen.2017.10.065
– ident: e_1_2_4_5_3
  doi: 10.1021/acsenergylett.8b00526
– ident: e_1_2_4_5_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_4_24_2
  doi: 10.1002/adma.201506124
– ident: e_1_2_4_9_2
  doi: 10.1002/adfm.201705838
– ident: e_1_2_4_6_2
  doi: 10.1016/0378-7753(94)02044-4
– ident: e_1_2_4_7_2
  doi: 10.1149/1.2096425
– ident: e_1_2_4_14_1
  doi: 10.1016/j.joule.2017.06.002
– ident: e_1_2_4_16_1
  doi: 10.1038/nmat3602
– ident: e_1_2_4_1_1
  doi: 10.1126/science.1212741
– ident: e_1_2_4_24_3
  doi: 10.1126/sciadv.aar4410
– ident: e_1_2_4_3_4
  doi: 10.1016/j.ensm.2017.12.002
– ident: e_1_2_4_17_1
  doi: 10.1126/sciadv.1601659
– ident: e_1_2_4_5_2
  doi: 10.1039/C7EE02555F
– ident: e_1_2_4_19_1
  doi: 10.1002/anie.201608924
– ident: e_1_2_4_16_4
  doi: 10.1021/acs.accounts.5b00427
– ident: e_1_2_4_11_2
  doi: 10.1002/advs.201600445
– ident: e_1_2_4_3_2
  doi: 10.1002/aenm.201800348
– ident: e_1_2_4_23_2
  doi: 10.1016/j.joule.2017.11.009
– ident: e_1_2_4_22_1
  doi: 10.1016/j.jpowsour.2017.01.006
– ident: e_1_2_4_16_2
  doi: 10.1002/aenm.201402073
– ident: e_1_2_4_12_1
  doi: 10.1002/admi.201701097
– ident: e_1_2_4_8_1
  doi: 10.1149/2.0281903jes
– ident: e_1_2_4_4_1
  doi: 10.1039/C8CC02280A
– ident: e_1_2_4_24_1
  doi: 10.1021/jacs.6b08730
– ident: e_1_2_4_11_6
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201800884
SSID ssj0009606
Score 2.6717165
Snippet The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1808392
SubjectTerms Anodes
Anodic protection
Batteries
Deformation
Dendritic structure
Deposition
Electric fields
Formability
Interfacial properties
Ion transport
Lithium
Lithium batteries
lithium‐metal anodes
Materials science
Metal surfaces
rechargeable batteries
single‐ion pathways
solid electrolyte interphase
Solid electrolytes
Title Dual‐Phase Single‐Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808392
https://www.ncbi.nlm.nih.gov/pubmed/30907487
https://www.proquest.com/docview/2220624137
https://www.proquest.com/docview/2197327336
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA7ikz54393xRoSFfYq2TZOmj4M6jKIiXkD2peRWZnDsiNMi-uRP8Df6SzxpO9VxkQV9a9ocmuack_MlOf2C0O9YeiLmwhBpooCEXHEiYfZDBLM81tIRUZYJsie8exkeXrGrd3_xV_wQzYKb84xyvHYOLtVo5400VJqSN8gXnovxMAi7hC2His7e-KMcPC_J9igjMQ_FmLXRC3YmxSej0j9QcxK5lqGnM4_kuNFVxsn1dpGrbf34gc_xO1-1gOZqXIrblSEtoimbLaHZd2yFy-jvXiEHL0_Ppz2IfPgc7g0sFA-GGT4FHHkvH3C5vpi6LC8MYBifDVUxyvFRP-_1ixt8bAHp436G6xV6XJF7wlx9BV129i92u6Q-moHoEDAFSY2BkcBXEQtiAGSeNcrXoFjBUphRMiHANAIdCyoMN5TqlLNUm4gp7YM5KEp_oOlsmNlfCCsVMi2N8qTiYZSCDKU8lIFlMDnVEWshMlZNomvecnd8xiCpGJeDxPVZ0vRZC_1p6t9WjB2f1lwfazqpPXeUAF7yuNtsjFpoq3kMPuc2UmRmhwXU8R3HkSOSbKGflYU0r6KeW24QIB2Uev5PG5L23nG7Ka1-RWgNzcB1XGVhrqPp_K6wG4CUcrVZesMrmM0KAg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3oWFAkZC4uQ2iWPHOa4o1RZ2q6q0EuIS-RV1xZJFNBGCU39Cf2N_ScfOoywIIcHRjq049oznm_HkM8DLXEUyF9JSZbOEpkILqtD7oZI7kRvliShDguyemBylbz_wPpvQ_wvT8kMMATevGWG_9gruA9Jbl6yhygbioFhG3shfhWv-Wu_gVR1cMkh5gB7o9hinuUhlz9sYJVur_Vft0m9gcxW7BuOzcxt0P-w25-TTZlPrTfPjF0bH__quO3Crg6Zk3MrSXbjiqntw8yfCwvvwcbtRi_PTs_1jNH7kPdYtHBZ3lxXZRyj5TX0nIcRY-kQvgniYHCx1c1KT6bw-njefycwh2CfzinRBetLye6K7_gCOdt4cvp7Q7nYGalKEFbS0FjeDWGc8yRGTRc7q2ODaSl6iU8mlROlITC6ZtMIyZkrBS2Mzrk2MEqEZW4e1alm5R0C0TrlRVkdKizQrsQ9jIlWJ4-ifmoyPgPZrU5iOutzfoLEoWtLlpPBzVgxzNoJXQ_svLWnHH1tu9EtddMp7UiBkioQ_b8xG8GJ4jGrnz1JU5ZYNtok9zZHnkhzBw1ZEhlexyEccJPZOwkL_ZQzFeHs2HkqP_6XTc7g-OZxNi-nu3rsncAPr8zYpcwPW6q-Ne4rAqdbPgmpcADasDh0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ8oJkYfUFTgEHRJTHxaaLvd7fbx4nEBBXJBSYgvzf5ruHD2CLQh-sRH4DPySZxte4XTGBN97HYnu92Z2f3t7PS3AO9SFchUSEuVTSIaCy2owt0PldyJ1ChPRFknyB6K3eP44wk_ufcXf8MP0QXcvGfU87V38HObb9-Rhipb8waFMvBr_EN4FAts1sOiozsCKY_Pa7Y9xmkqYjmjbQyi7Xn5-WXpN6w5D13rtWf4DNSs103KydlWVeot8-MXQsf_-aznsNgCU9JvLGkJHrjiBTy9R1f4Er4OKjW5vb4ZneLSRz5j2cTh4960ICMEklfqO6kDjLlP8yKIhsnRVFeXJdkfl6fj6hs5cAj1ybggbYieNOyeuFl_BcfDnS8fdml7NwM1MYIKmluLU0GoEx6liMgCZ3VoULOS57il5FKibUQmlUxaYRkzueC5sQnXJkR70Iwtw0IxLdwqEK1jbpTVgdIiTnKUYUzEKnIcd6cm4T2gM9VkpiUu9_dnTLKGcjnK_Jhl3Zj14H1X_7yh7PhjzfWZprPWdS8zBEyB8KeNSQ82u9fodP4kRRVuWmGd0JMceSbJHqw0FtI1xQIfb5AoHdV6_ksfsv7goN89rf2L0Ft4PBoMs_29w0-v4QkWp01G5joslBeV20DUVOo3tWP8BBdzDNU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Phase+Single-Ion+Pathway+Interfaces+for+Robust+Lithium+Metal+in+Working+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Rui&rft.au=Xiao%2C+Ye&rft.au=Zhang%2C+Rui&rft.au=Cheng%2C+Xin-Bing&rft.date=2019-05-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=19&rft.spage=e1808392&rft_id=info:doi/10.1002%2Fadma.201808392&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon