Advanced Carbon for Flexible and Wearable Electronics

Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 9; pp. e1801072 - n/a
Main Authors Wang, Chunya, Xia, Kailun, Wang, Huimin, Liang, Xiaoping, Yin, Zhe, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next‐generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural‐biomaterial‐derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high‐performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon‐based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized. Advances toward understanding the potential of carbon materials for flexible and wearable electronics are reviewed. This encompasses the latest developments in the controlled fabrication of carbon materials with rationally designed structures and their applications in flexible devices including physiological sensors, biochemical sensors, conductive electrodes/wires, power devices, and integrated systems. Current challenges and future prospects in the field are also summarized.
AbstractList Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next‐generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural‐biomaterial‐derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high‐performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon‐based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized. Advances toward understanding the potential of carbon materials for flexible and wearable electronics are reviewed. This encompasses the latest developments in the controlled fabrication of carbon materials with rationally designed structures and their applications in flexible devices including physiological sensors, biochemical sensors, conductive electrodes/wires, power devices, and integrated systems. Current challenges and future prospects in the field are also summarized.
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next‐generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural‐biomaterial‐derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high‐performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon‐based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next-generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural-biomaterial-derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon-based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next-generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural-biomaterial-derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon-based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.
Author Liang, Xiaoping
Yin, Zhe
Wang, Chunya
Zhang, Yingying
Wang, Huimin
Xia, Kailun
Author_xml – sequence: 1
  givenname: Chunya
  surname: Wang
  fullname: Wang, Chunya
  organization: Tsinghua University
– sequence: 2
  givenname: Kailun
  surname: Xia
  fullname: Xia, Kailun
  organization: Tsinghua University
– sequence: 3
  givenname: Huimin
  surname: Wang
  fullname: Wang, Huimin
  organization: Tsinghua University
– sequence: 4
  givenname: Xiaoping
  surname: Liang
  fullname: Liang, Xiaoping
  organization: Tsinghua University
– sequence: 5
  givenname: Zhe
  surname: Yin
  fullname: Yin, Zhe
  organization: Tsinghua University
– sequence: 6
  givenname: Yingying
  orcidid: 0000-0002-8448-3059
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30300444$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1Lw0AQhhep2A-9epSAFy-psx_Jbo6ltipUvCgew2azCynpbt1N1f57E1orFMTTMPA88w7vEPWssxqhSwxjDEBuZbmSYwJYAAZOTtAAJwTHDLKkhwaQ0STOUib6aBjCEgCyFNIz1KdAARhjA5RMyg9plS6jqfSFs5FxPprX-qsqah1JW0ZvWnrZLbNaq8Y7W6lwjk6NrIO-2M8Rep3PXqYP8eL5_nE6WcSKcUHiIgUuuDAFNpoklOGClaZ9O6OQGokFLk1qdKFUQgTHHKCkRBBFNWVUFpmgI3Szu7v27n2jQ5OvqqB0XUur3SbkBGMucMoJbtHrI3TpNt6237WU4EDa2I662lObYqXLfO2rlfTb_KeQFhjvAOVdCF6bA4Ih7xrPu8bzQ-OtwI4EVTWyqZxtvKzqv7Vsp31Wtd7-E5JP7p4mv-43KGSRnw
CitedBy_id crossref_primary_10_3390_ma16113932
crossref_primary_10_1007_s00170_023_12007_7
crossref_primary_10_1039_C9NR09785F
crossref_primary_10_1039_D3TA04473D
crossref_primary_10_1021_acsami_0c22086
crossref_primary_10_1021_acsanm_0c02494
crossref_primary_10_1002_admi_202000743
crossref_primary_10_3390_bios13060630
crossref_primary_10_1016_j_carbon_2023_118286
crossref_primary_10_1007_s40820_020_00546_7
crossref_primary_10_3390_app11093914
crossref_primary_10_1002_smll_202207879
crossref_primary_10_1595_205651322X16260813744138
crossref_primary_10_1039_D2CS00173J
crossref_primary_10_1002_adfm_202100150
crossref_primary_10_1039_C9SM01046G
crossref_primary_10_1002_smll_202204365
crossref_primary_10_1007_s10853_023_09255_z
crossref_primary_10_1002_admt_202100798
crossref_primary_10_1007_s42765_021_00101_y
crossref_primary_10_1016_j_compositesb_2021_109243
crossref_primary_10_1021_acsnano_1c00181
crossref_primary_10_1002_adfm_202305039
crossref_primary_10_1016_j_cej_2025_161526
crossref_primary_10_1021_acsnano_3c10025
crossref_primary_10_1039_D4TA00176A
crossref_primary_10_1002_adsr_202400031
crossref_primary_10_3390_chemosensors10090360
crossref_primary_10_1002_adma_202008606
crossref_primary_10_1016_j_coco_2022_101351
crossref_primary_10_3390_coatings13010155
crossref_primary_10_3390_gels9090686
crossref_primary_10_1021_acs_energyfuels_1c02008
crossref_primary_10_1016_j_pmatsci_2024_101289
crossref_primary_10_1039_D1TB01798E
crossref_primary_10_1016_j_sna_2024_115228
crossref_primary_10_1002_aelm_202200993
crossref_primary_10_1007_s10854_021_06750_4
crossref_primary_10_1016_j_compositesb_2022_109961
crossref_primary_10_3390_bios13070679
crossref_primary_10_1002_admt_202100572
crossref_primary_10_1039_D2TC05291A
crossref_primary_10_1007_s40820_023_01094_6
crossref_primary_10_1016_j_cej_2023_143736
crossref_primary_10_1002_adem_202201882
crossref_primary_10_1021_acsami_9b09438
crossref_primary_10_1016_j_cej_2024_152971
crossref_primary_10_1021_acsanm_2c04719
crossref_primary_10_1021_acsami_3c17419
crossref_primary_10_1002_sstr_202400208
crossref_primary_10_1007_s11431_020_1733_x
crossref_primary_10_1002_smll_202410283
crossref_primary_10_1021_acsami_2c08285
crossref_primary_10_1039_D4BM01434K
crossref_primary_10_1002_adfm_202203263
crossref_primary_10_1039_C9NR01791G
crossref_primary_10_1002_smtd_202200671
crossref_primary_10_1002_admt_202301903
crossref_primary_10_1021_acsnano_4c04291
crossref_primary_10_1002_smsc_202000080
crossref_primary_10_3390_ma13122733
crossref_primary_10_1021_acsmaterialslett_0c00355
crossref_primary_10_1039_D0TB02451A
crossref_primary_10_3390_polym15051245
crossref_primary_10_1126_sciadv_abn5882
crossref_primary_10_1021_acs_langmuir_4c00908
crossref_primary_10_1021_acsaelm_2c01504
crossref_primary_10_1002_mame_202200402
crossref_primary_10_1016_j_cej_2023_141777
crossref_primary_10_1021_acs_chemmater_2c01466
crossref_primary_10_1016_j_cej_2021_129949
crossref_primary_10_1016_j_compscitech_2022_109629
crossref_primary_10_1021_acsami_0c01330
crossref_primary_10_1016_j_wees_2024_03_001
crossref_primary_10_3390_ma13092166
crossref_primary_10_1016_j_physe_2024_116070
crossref_primary_10_1016_j_sna_2021_112755
crossref_primary_10_1002_smll_202201290
crossref_primary_10_1007_s10853_020_04608_4
crossref_primary_10_1039_D0EE00039F
crossref_primary_10_3390_c9040108
crossref_primary_10_1039_D4TA01088D
crossref_primary_10_1021_acsomega_3c04786
crossref_primary_10_1021_acsami_1c08406
crossref_primary_10_1021_acs_chemrev_8b00573
crossref_primary_10_1021_acsami_3c07413
crossref_primary_10_1002_adfm_202402608
crossref_primary_10_1016_j_jpowsour_2020_227902
crossref_primary_10_3389_fsens_2020_617805
crossref_primary_10_1002_adfm_202009524
crossref_primary_10_1016_j_cej_2022_135687
crossref_primary_10_1038_s41598_020_77139_2
crossref_primary_10_1002_adfm_202213095
crossref_primary_10_1002_pol_20210766
crossref_primary_10_1186_s40691_023_00356_6
crossref_primary_10_1002_smm2_1178
crossref_primary_10_1088_2752_5724_ad2f6a
crossref_primary_10_1016_j_compositesb_2021_109068
crossref_primary_10_1016_j_nanoen_2025_110821
crossref_primary_10_1016_j_cej_2023_142847
crossref_primary_10_1002_adfm_202111022
crossref_primary_10_1039_D2CS00813K
crossref_primary_10_1142_S1793292021500442
crossref_primary_10_1002_admi_202201051
crossref_primary_10_1002_smsc_202300143
crossref_primary_10_1002_smll_202008079
crossref_primary_10_1016_j_compscitech_2022_109881
crossref_primary_10_1007_s12206_022_0633_5
crossref_primary_10_3390_s21072531
crossref_primary_10_1039_D2TA01503J
crossref_primary_10_3390_nano12142495
crossref_primary_10_1021_jacs_2c11409
crossref_primary_10_1109_JSEN_2021_3059224
crossref_primary_10_1002_adma_201905767
crossref_primary_10_1016_j_isci_2023_107008
crossref_primary_10_1063_5_0093261
crossref_primary_10_1002_admt_202301265
crossref_primary_10_1002_smll_202103271
crossref_primary_10_1016_j_cjche_2024_03_029
crossref_primary_10_1088_1361_6463_abc77b
crossref_primary_10_1007_s10854_020_04278_7
crossref_primary_10_1039_D3TB01910A
crossref_primary_10_1109_JSEN_2023_3337544
crossref_primary_10_1016_j_jcis_2021_09_189
crossref_primary_10_3390_ma15031037
crossref_primary_10_1039_D2MA00086E
crossref_primary_10_1039_D2TC05059E
crossref_primary_10_3390_cryst12091316
crossref_primary_10_1016_j_cej_2023_146628
crossref_primary_10_1093_nsr_nwac172
crossref_primary_10_1016_j_carbpol_2020_117010
crossref_primary_10_1002_aenm_202000181
crossref_primary_10_1021_acsami_0c07995
crossref_primary_10_1039_D3TC02393A
crossref_primary_10_1021_acsami_0c08840
crossref_primary_10_1021_acsami_2c19826
crossref_primary_10_3390_mi11030239
crossref_primary_10_1021_acsami_9b20612
crossref_primary_10_1002_adfm_202406603
crossref_primary_10_1016_j_aca_2023_340781
crossref_primary_10_1016_j_cej_2020_124105
crossref_primary_10_3390_polym16030373
crossref_primary_10_1073_pnas_2414074122
crossref_primary_10_1002_admt_201900309
crossref_primary_10_1007_s42765_025_00518_9
crossref_primary_10_3390_nano11102728
crossref_primary_10_1021_acs_jpclett_3c00929
crossref_primary_10_1016_j_jmmm_2025_172966
crossref_primary_10_1021_acs_analchem_2c00593
crossref_primary_10_1021_acsaelm_2c01375
crossref_primary_10_3390_app12157714
crossref_primary_10_1016_j_jpowsour_2019_227058
crossref_primary_10_1038_s41528_022_00230_3
crossref_primary_10_1051_e3sconf_202126102055
crossref_primary_10_1002_aelm_202300340
crossref_primary_10_1177_15280837241252182
crossref_primary_10_1002_adfm_202402233
crossref_primary_10_1039_D1QM01427G
crossref_primary_10_3390_jmmp5030089
crossref_primary_10_1039_D0TC02983A
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_1002_app_50048
crossref_primary_10_1039_D0NR05486K
crossref_primary_10_1021_acsaelm_3c00022
crossref_primary_10_1038_s41427_020_00277_6
crossref_primary_10_1016_j_colsurfb_2022_112482
crossref_primary_10_1109_ACCESS_2020_3040064
crossref_primary_10_1016_j_nanoen_2022_107634
crossref_primary_10_1002_admt_201900781
crossref_primary_10_1002_app_56824
crossref_primary_10_1039_D4TA05338A
crossref_primary_10_1016_j_nanoms_2021_11_006
crossref_primary_10_1021_acsami_9b17467
crossref_primary_10_1016_j_cej_2025_159478
crossref_primary_10_1021_acsapm_1c01111
crossref_primary_10_1021_acs_chemrev_3c00626
crossref_primary_10_1021_acsami_0c19704
crossref_primary_10_1016_j_cej_2025_159475
crossref_primary_10_1039_D3NR05728C
crossref_primary_10_1021_acssuschemeng_0c01118
crossref_primary_10_1021_acsabm_9b00082
crossref_primary_10_1177_00405175211069888
crossref_primary_10_1016_j_cej_2022_141266
crossref_primary_10_1007_s10854_023_09987_3
crossref_primary_10_1007_s12221_024_00467_x
crossref_primary_10_1016_j_carbpol_2021_118414
crossref_primary_10_1021_acs_nanolett_4c05553
crossref_primary_10_1016_j_sna_2020_112494
crossref_primary_10_1038_s41699_021_00215_2
crossref_primary_10_1002_admt_202001156
crossref_primary_10_1039_D3QM00076A
crossref_primary_10_1002_adma_202418705
crossref_primary_10_1007_s40820_022_00934_1
crossref_primary_10_1002_cey2_284
crossref_primary_10_1016_j_asoc_2022_109363
crossref_primary_10_1039_D2MH00603K
crossref_primary_10_1021_acs_langmuir_2c02403
crossref_primary_10_1016_j_jmrt_2022_04_119
crossref_primary_10_1016_j_cej_2023_145962
crossref_primary_10_1109_MRA_2023_3276266
crossref_primary_10_1007_s10854_023_11703_0
crossref_primary_10_1088_1361_6463_ab5b2b
crossref_primary_10_1002_admt_202200344
crossref_primary_10_1016_j_cej_2022_135600
crossref_primary_10_1039_D1TC01557E
crossref_primary_10_1016_j_jelechem_2022_116122
crossref_primary_10_1002_admi_202201201
crossref_primary_10_1002_aelm_202300767
crossref_primary_10_1002_admt_202200106
crossref_primary_10_1016_j_sna_2025_116426
crossref_primary_10_1002_sstr_202100131
crossref_primary_10_1002_admt_202401983
crossref_primary_10_1021_acsanm_2c04088
crossref_primary_10_1002_adma_201807071
crossref_primary_10_1080_15685551_2021_1936373
crossref_primary_10_1021_acs_langmuir_2c01770
crossref_primary_10_1016_j_jpcs_2021_110222
crossref_primary_10_3390_en16104047
crossref_primary_10_1021_acsami_2c15687
crossref_primary_10_1016_j_jcis_2024_04_011
crossref_primary_10_1002_adhm_202301005
crossref_primary_10_1007_s42765_024_00398_5
crossref_primary_10_1016_j_ensm_2020_05_004
crossref_primary_10_1021_acsami_9b04509
crossref_primary_10_1016_j_coco_2021_100889
crossref_primary_10_1016_j_mattod_2023_09_001
crossref_primary_10_1016_j_mssp_2021_106374
crossref_primary_10_1088_1361_6463_ab5f4a
crossref_primary_10_1021_acsami_2c18203
crossref_primary_10_1039_D3LP00137G
crossref_primary_10_1038_s41598_022_13701_4
crossref_primary_10_1007_s11431_021_2093_4
crossref_primary_10_1002_mame_202100143
crossref_primary_10_1021_acsami_2c02090
crossref_primary_10_1080_19475411_2021_1948457
crossref_primary_10_1088_1361_6463_ad8660
crossref_primary_10_1016_j_carbon_2023_03_010
crossref_primary_10_1021_acsanm_3c01541
crossref_primary_10_3390_coatings12050558
crossref_primary_10_1039_D3CS00821E
crossref_primary_10_1016_j_cej_2022_140546
crossref_primary_10_59277_RRST_EE_2023_68_2_21
crossref_primary_10_1016_j_compscitech_2020_108330
crossref_primary_10_1016_j_matt_2022_03_002
crossref_primary_10_6023_A21080414
crossref_primary_10_1016_j_compscitech_2020_108571
crossref_primary_10_1002_adem_201900408
crossref_primary_10_1186_s11671_021_03548_5
crossref_primary_10_1002_admt_202200972
crossref_primary_10_1002_advs_202207400
crossref_primary_10_1016_j_geotexmem_2022_10_005
crossref_primary_10_1016_j_bioelechem_2023_108600
crossref_primary_10_1021_acsnano_1c07388
crossref_primary_10_1039_D2NR00027J
crossref_primary_10_1021_acsanm_3c00246
crossref_primary_10_1039_D2TC02706B
crossref_primary_10_1002_idm2_12154
crossref_primary_10_3390_inorganics10070092
crossref_primary_10_1016_j_cej_2024_154000
crossref_primary_10_1021_acsaelm_1c01258
crossref_primary_10_1016_j_jcis_2023_11_187
crossref_primary_10_3390_fib11030029
crossref_primary_10_1002_cphc_202200567
crossref_primary_10_1016_j_compositesa_2021_106556
crossref_primary_10_1039_D2SD00214K
crossref_primary_10_1088_2058_8585_ac32a9
crossref_primary_10_1002_adma_202313971
crossref_primary_10_1007_s40242_020_9078_5
crossref_primary_10_3390_s23052479
crossref_primary_10_1016_j_wees_2024_07_001
crossref_primary_10_1021_acsnano_1c01606
crossref_primary_10_1021_acs_jpclett_3c01291
crossref_primary_10_1002_smll_202006773
crossref_primary_10_1039_D1TC03416B
crossref_primary_10_1039_D3NR05488H
crossref_primary_10_1360_TB_2024_0511
crossref_primary_10_1016_j_sna_2022_113696
crossref_primary_10_1016_j_jpowsour_2020_229426
crossref_primary_10_1021_acsnano_0c04888
crossref_primary_10_1002_adfm_202109834
crossref_primary_10_1016_j_cej_2024_156881
crossref_primary_10_1021_acsnano_1c06230
crossref_primary_10_1021_acsaem_3c02409
crossref_primary_10_34133_2021_9845482
crossref_primary_10_1021_acsami_1c03615
crossref_primary_10_1021_acssuschemeng_0c01998
crossref_primary_10_2116_analsci_19R007
crossref_primary_10_5805_SFTI_2022_24_6_694
crossref_primary_10_1002_smll_202100911
crossref_primary_10_1088_1361_665X_ac976b
crossref_primary_10_1002_adma_202413777
crossref_primary_10_1021_acsami_0c20549
crossref_primary_10_1021_acsaem_2c03198
crossref_primary_10_1016_j_matt_2022_02_006
crossref_primary_10_1002_adma_202414620
crossref_primary_10_1016_j_nanoen_2020_104814
crossref_primary_10_1039_D1TC02458B
crossref_primary_10_1002_adhm_202304140
crossref_primary_10_1016_j_jeurceramsoc_2021_02_031
crossref_primary_10_1007_s10118_020_2379_9
crossref_primary_10_1115_1_4055469
crossref_primary_10_1002_inf2_12385
crossref_primary_10_1007_s42765_023_00351_y
crossref_primary_10_1002_inf2_12388
crossref_primary_10_1016_j_carbon_2021_02_094
crossref_primary_10_1039_D4TC02229G
crossref_primary_10_3390_polym12102344
crossref_primary_10_1016_j_jece_2025_115788
crossref_primary_10_1007_s10570_022_04722_3
crossref_primary_10_1016_j_xinn_2023_100485
crossref_primary_10_1016_j_cej_2022_138279
crossref_primary_10_3390_ijms22062917
crossref_primary_10_1002_adma_202305917
crossref_primary_10_1039_D0NJ00442A
crossref_primary_10_1021_acsami_2c18667
crossref_primary_10_1109_JSEN_2024_3394488
crossref_primary_10_1002_adfm_202301542
crossref_primary_10_1039_D4NR00952E
crossref_primary_10_1007_s10118_020_2483_x
crossref_primary_10_1016_j_sna_2023_114846
crossref_primary_10_1021_acs_iecr_1c02166
crossref_primary_10_1021_acssuschemeng_9b06818
crossref_primary_10_1038_s41467_020_17297_z
crossref_primary_10_1002_adma_201902301
crossref_primary_10_1002_batt_201900079
crossref_primary_10_1039_D1MH00018G
crossref_primary_10_1063_5_0135513
crossref_primary_10_1177_15280837241227246
crossref_primary_10_1021_acs_chemrev_4c00369
crossref_primary_10_1002_aelm_201900826
crossref_primary_10_1088_2516_1091_ac2eae
crossref_primary_10_1016_j_cej_2024_153101
crossref_primary_10_3390_batteries6010019
crossref_primary_10_1021_acsami_9b23083
crossref_primary_10_1016_j_cej_2024_151827
crossref_primary_10_1080_25740881_2024_2350026
crossref_primary_10_1039_D0NR08032B
crossref_primary_10_1007_s40684_020_00285_5
crossref_primary_10_3390_membranes11090658
crossref_primary_10_1021_acsapm_4c02124
crossref_primary_10_1039_D3YA00080J
crossref_primary_10_1002_adfm_202005703
crossref_primary_10_1002_marc_201900469
crossref_primary_10_1002_marc_202400362
crossref_primary_10_1002_advs_202000261
crossref_primary_10_3390_mi14010121
crossref_primary_10_1002_adma_202004413
crossref_primary_10_1002_marc_202400109
crossref_primary_10_1088_1361_6528_ac2649
crossref_primary_10_1038_s41467_022_31740_3
crossref_primary_10_3390_nano12152628
crossref_primary_10_1002_advs_202001116
crossref_primary_10_3390_s22135039
crossref_primary_10_1039_D2TC01178F
crossref_primary_10_1016_j_mtcomm_2023_106548
crossref_primary_10_1016_j_cej_2020_126294
crossref_primary_10_1016_j_cej_2021_131931
crossref_primary_10_34133_research_0128
crossref_primary_10_1021_acsnano_2c09933
crossref_primary_10_1016_j_coco_2023_101678
crossref_primary_10_1126_sciadv_abj8958
crossref_primary_10_3390_bios14040188
crossref_primary_10_1021_acs_chemrev_2c00192
crossref_primary_10_1088_1674_4926_41_4_040401
crossref_primary_10_3390_s21010022
crossref_primary_10_3390_coatings13061026
crossref_primary_10_1016_j_cej_2023_146171
crossref_primary_10_1109_JSEN_2020_3008474
crossref_primary_10_1038_s41598_019_46611_z
crossref_primary_10_1002_admt_202000883
crossref_primary_10_1039_D1TC03589D
crossref_primary_10_1002_adhm_202400562
crossref_primary_10_1002_adma_202002695
crossref_primary_10_1039_D2EE02267B
crossref_primary_10_1039_D0NH00098A
crossref_primary_10_3390_s23084039
crossref_primary_10_1016_j_cej_2021_130870
crossref_primary_10_1021_acssensors_4c00442
crossref_primary_10_1002_aisy_202000039
crossref_primary_10_1109_ACCESS_2021_3093442
crossref_primary_10_1016_j_ensm_2019_04_032
crossref_primary_10_1016_j_matdes_2024_112995
crossref_primary_10_1002_ppsc_202400072
crossref_primary_10_3390_s20143927
crossref_primary_10_4236_msa_2024_159020
crossref_primary_10_1002_adfm_202211889
crossref_primary_10_1007_s11998_022_00666_2
crossref_primary_10_1016_j_electacta_2020_135935
crossref_primary_10_1021_acsnano_4c15342
crossref_primary_10_1021_acsnano_1c02271
crossref_primary_10_3389_fmats_2021_748687
crossref_primary_10_1002_adma_202413929
crossref_primary_10_1016_j_cej_2024_157332
crossref_primary_10_1016_j_est_2024_111268
crossref_primary_10_1007_s11664_021_09388_4
crossref_primary_10_1016_j_cej_2024_157336
crossref_primary_10_1002_adfm_202113012
crossref_primary_10_1021_acs_nanolett_1c00251
crossref_primary_10_1016_j_carbon_2025_120034
crossref_primary_10_1038_s44222_023_00090_0
crossref_primary_10_1002_mame_202100341
crossref_primary_10_1021_acsnano_2c04676
crossref_primary_10_1063_5_0031669
crossref_primary_10_1002_adma_202208272
crossref_primary_10_1016_j_biortech_2022_127427
crossref_primary_10_2478_ftee_2023_0018
crossref_primary_10_1002_adma_202211202
crossref_primary_10_1007_s12274_019_2505_6
crossref_primary_10_1016_j_cej_2019_123663
crossref_primary_10_1002_aisy_202200361
crossref_primary_10_1088_2515_7639_ad91e1
crossref_primary_10_1021_acsnano_1c09925
crossref_primary_10_1039_D3TC00016H
crossref_primary_10_1021_acsbiomaterials_1c00741
crossref_primary_10_1016_j_cej_2022_137344
crossref_primary_10_1021_acsami_1c19137
crossref_primary_10_1002_admt_202101239
crossref_primary_10_1002_app_50512
crossref_primary_10_1016_j_carbon_2022_11_018
crossref_primary_10_1051_e3sconf_202455305038
crossref_primary_10_1002_admi_202101592
crossref_primary_10_1002_adma_201903808
crossref_primary_10_1016_j_jpowsour_2019_227653
crossref_primary_10_1016_j_nanoen_2019_05_019
crossref_primary_10_1021_acsami_0c10101
crossref_primary_10_1016_j_scib_2020_05_002
crossref_primary_10_1039_D4TA03076A
crossref_primary_10_1021_acsami_3c17172
crossref_primary_10_1007_s40843_020_1376_4
crossref_primary_10_1002_adsr_202300045
crossref_primary_10_1016_j_bios_2021_113777
crossref_primary_10_1002_adfm_202009017
crossref_primary_10_1016_j_cej_2022_140763
crossref_primary_10_1021_acsami_2c18036
crossref_primary_10_1002_aelm_202200680
crossref_primary_10_3390_app142311199
crossref_primary_10_1088_1361_6463_ac4653
crossref_primary_10_1021_acsami_0c16752
crossref_primary_10_1039_D4QI02004A
crossref_primary_10_1021_acs_chemmater_2c02007
crossref_primary_10_1021_acsami_4c12758
crossref_primary_10_1002_admi_202202274
crossref_primary_10_1039_D2TA06580K
crossref_primary_10_1016_j_eurpolymj_2025_113791
crossref_primary_10_1089_soro_2024_0098
crossref_primary_10_1088_1361_6528_abe6c7
crossref_primary_10_1021_acsanm_3c02073
crossref_primary_10_1007_s12274_023_5920_7
crossref_primary_10_1016_j_talanta_2024_126614
crossref_primary_10_1002_adfm_202202282
crossref_primary_10_3390_nano13020316
crossref_primary_10_1007_s40843_020_1314_1
crossref_primary_10_1063_5_0140629
crossref_primary_10_1002_pol_20240043
crossref_primary_10_1039_D2NR02493D
crossref_primary_10_34133_2020_2038560
crossref_primary_10_3390_molecules27248907
crossref_primary_10_1002_adhm_202303921
crossref_primary_10_1021_acsanm_2c02202
crossref_primary_10_1039_D2TC00388K
crossref_primary_10_1002_asia_202300690
crossref_primary_10_1016_j_apsusc_2023_157528
crossref_primary_10_1126_sciadv_abo1396
crossref_primary_10_1007_s12274_021_3330_8
crossref_primary_10_1007_s10853_024_10199_1
crossref_primary_10_1021_acsami_0c12176
crossref_primary_10_1016_j_mtcomm_2025_111893
crossref_primary_10_1002_bte2_20240051
crossref_primary_10_3390_nano10040664
crossref_primary_10_3390_s19235194
crossref_primary_10_1021_acsaelm_3c01065
crossref_primary_10_1021_acs_nanolett_1c02452
crossref_primary_10_1016_j_compscitech_2022_109338
crossref_primary_10_1021_acsaelm_1c00716
crossref_primary_10_1021_acs_nanolett_1c04878
crossref_primary_10_1039_D4CS00080C
crossref_primary_10_3390_mi12121505
crossref_primary_10_1021_acsami_0c06977
crossref_primary_10_1021_acsaelm_0c00292
crossref_primary_10_1016_j_cej_2024_150204
crossref_primary_10_2174_1573411018666220426123129
crossref_primary_10_3390_ijms25126713
crossref_primary_10_1007_s40820_021_00609_3
crossref_primary_10_1002_advs_202202980
crossref_primary_10_1080_1536383X_2021_1961225
crossref_primary_10_1002_ange_202200705
crossref_primary_10_1002_solr_202300202
crossref_primary_10_1016_j_compositesb_2024_111275
crossref_primary_10_1016_j_cej_2023_148063
crossref_primary_10_1039_D0MH00100G
crossref_primary_10_1088_2053_1583_acaded
crossref_primary_10_1021_acsaelm_0c00084
crossref_primary_10_1039_D1MA00960E
crossref_primary_10_3390_gels10070458
crossref_primary_10_3762_bjnano_13_99
crossref_primary_10_1002_adma_202203547
crossref_primary_10_1002_smll_201902826
crossref_primary_10_1021_acsami_3c04283
crossref_primary_10_1039_D0NR03446K
crossref_primary_10_1021_acsami_0c21075
crossref_primary_10_1039_D2NR02232J
crossref_primary_10_1002_adfm_202307301
crossref_primary_10_1039_D3GC05109A
crossref_primary_10_1016_j_mser_2022_100672
crossref_primary_10_1016_j_addma_2024_103985
crossref_primary_10_1002_adma_201901924
crossref_primary_10_1039_C9TB02476J
crossref_primary_10_1016_j_cej_2020_127105
crossref_primary_10_1177_08839115241279867
crossref_primary_10_1021_acsaelm_2c01628
crossref_primary_10_1007_s10853_023_08837_1
crossref_primary_10_1007_s42765_020_00060_w
crossref_primary_10_1002_admt_202400719
crossref_primary_10_1016_j_xcrp_2022_100908
crossref_primary_10_1021_acsanm_0c02183
crossref_primary_10_1021_acsami_1c25077
crossref_primary_10_1080_00405167_2022_2128015
crossref_primary_10_3390_app12094526
crossref_primary_10_1016_j_carbon_2020_12_089
crossref_primary_10_1002_admt_201900880
crossref_primary_10_1021_acsnano_0c10662
crossref_primary_10_1016_j_snb_2025_137449
crossref_primary_10_3390_s23031190
crossref_primary_10_1002_smll_202103734
crossref_primary_10_1021_acsanm_3c05335
crossref_primary_10_1002_adfm_202400789
crossref_primary_10_1039_D2TA02998G
crossref_primary_10_1021_acsnano_9b09802
crossref_primary_10_1039_D2TC02524H
crossref_primary_10_1088_2631_7990_ad9787
crossref_primary_10_1002_smll_202100219
crossref_primary_10_1002_adhm_202102547
crossref_primary_10_1039_D0TC02539A
crossref_primary_10_1016_j_sna_2023_114395
crossref_primary_10_3390_molecules28031259
crossref_primary_10_1021_jacs_9b12424
crossref_primary_10_1002_adfm_202308601
crossref_primary_10_1088_1402_4896_ad9a0e
crossref_primary_10_1038_s41928_022_00914_8
crossref_primary_10_3390_ma18030685
crossref_primary_10_1016_j_nanoen_2020_105337
crossref_primary_10_1039_D3NJ00294B
crossref_primary_10_1007_s40820_023_01107_4
crossref_primary_10_1021_accountsmr_2c00213
crossref_primary_10_1002_adfm_201903732
crossref_primary_10_1038_s41528_024_00318_y
crossref_primary_10_1021_acsaem_2c01222
crossref_primary_10_1016_j_sna_2021_112855
crossref_primary_10_1021_acsami_2c15968
crossref_primary_10_1016_j_matdes_2023_111683
crossref_primary_10_3390_polym13010151
crossref_primary_10_1007_s12274_021_3717_0
crossref_primary_10_1186_s40486_022_00151_w
crossref_primary_10_1021_acs_nanolett_2c04228
crossref_primary_10_1088_2053_1591_abcabf
crossref_primary_10_1002_cey2_199
crossref_primary_10_1039_D1SE01085A
crossref_primary_10_1016_j_cej_2021_129176
crossref_primary_10_3390_s22020610
crossref_primary_10_1002_adma_202110024
crossref_primary_10_1016_j_addma_2023_103824
crossref_primary_10_3390_ma13194270
crossref_primary_10_1002_elsa_202400021
crossref_primary_10_2139_ssrn_4197754
crossref_primary_10_1021_acs_analchem_4c00776
crossref_primary_10_1039_D3TC02381H
crossref_primary_10_1002_elan_202100406
crossref_primary_10_1016_S1872_2040_20_60076_7
crossref_primary_10_1016_j_cej_2022_134826
crossref_primary_10_1021_acsaenm_4c00164
crossref_primary_10_1021_acsami_0c21960
crossref_primary_10_1002_admi_202200028
crossref_primary_10_1002_admt_201900442
crossref_primary_10_1002_adfm_201910292
crossref_primary_10_3390_polym16233426
crossref_primary_10_1038_s41467_022_33133_y
crossref_primary_10_1002_adfm_202309347
crossref_primary_10_1007_s42235_022_00219_8
crossref_primary_10_3390_chemosensors10060223
crossref_primary_10_1002_adom_202300052
crossref_primary_10_1002_adfm_202405625
crossref_primary_10_1016_j_compositesa_2022_107269
crossref_primary_10_1002_adma_202109055
crossref_primary_10_3390_bios13050569
crossref_primary_10_1039_D0TA07188A
crossref_primary_10_1002_chem_202002303
crossref_primary_10_1002_admi_202100625
crossref_primary_10_1007_s00289_023_05124_6
crossref_primary_10_1021_acsami_1c17442
crossref_primary_10_1002_admt_202201762
crossref_primary_10_1016_j_cej_2021_132362
crossref_primary_10_1002_adfm_202007436
crossref_primary_10_1002_admt_202100617
crossref_primary_10_1039_D4GC01771D
crossref_primary_10_3390_s24082403
crossref_primary_10_3390_c5040062
crossref_primary_10_1039_C9NR03925B
crossref_primary_10_1039_D4MH01115E
crossref_primary_10_1109_TED_2022_3146108
crossref_primary_10_1002_eom2_12073
crossref_primary_10_1016_j_cej_2024_150013
crossref_primary_10_1002_adma_202107062
crossref_primary_10_1002_adfm_202108107
crossref_primary_10_1016_j_optmat_2022_112083
crossref_primary_10_1021_acssuschemeng_9b04690
crossref_primary_10_1021_acsami_9b00900
crossref_primary_10_3390_polym13081313
crossref_primary_10_3390_bios14110560
crossref_primary_10_1007_s42765_019_00021_y
crossref_primary_10_1016_j_cej_2024_153531
crossref_primary_10_1088_2053_1591_abbbcc
crossref_primary_10_1007_s10570_021_03913_8
crossref_primary_10_1039_D0RA03140B
crossref_primary_10_1016_j_jsamd_2021_02_001
crossref_primary_10_1021_acsami_9b08873
crossref_primary_10_1126_sciadv_adh0615
crossref_primary_10_1007_s40820_019_0302_0
crossref_primary_10_3389_fchem_2022_920807
crossref_primary_10_1016_j_matdes_2021_110164
crossref_primary_10_1109_ACCESS_2021_3053117
crossref_primary_10_1002_adfm_202301607
crossref_primary_10_1016_j_talanta_2024_127085
crossref_primary_10_7498_aps_70_20201677
crossref_primary_10_1002_aenm_201901892
crossref_primary_10_1016_j_cej_2025_159360
crossref_primary_10_3390_polym13050813
crossref_primary_10_1016_j_jcis_2024_06_060
crossref_primary_10_1007_s40820_024_01488_0
crossref_primary_10_1103_PhysRevB_111_094205
crossref_primary_10_1007_s40820_023_01029_1
crossref_primary_10_1002_adsr_202200048
crossref_primary_10_1039_D2TC00679K
crossref_primary_10_1002_aenm_202000022
crossref_primary_10_1021_acsaem_2c01600
crossref_primary_10_1002_adfm_202302917
crossref_primary_10_1021_acssuschemeng_2c02217
crossref_primary_10_1016_j_carbon_2023_118133
crossref_primary_10_1016_j_cej_2023_142576
crossref_primary_10_1002_bkcs_12678
crossref_primary_10_1007_s00604_024_06218_2
crossref_primary_10_1002_admt_202001262
crossref_primary_10_1002_admt_202302056
crossref_primary_10_3390_nano13162375
crossref_primary_10_1016_j_orgel_2020_105977
crossref_primary_10_1016_j_physb_2024_416202
crossref_primary_10_1021_acsaelm_2c01452
crossref_primary_10_1002_adfm_202203115
crossref_primary_10_1016_j_scib_2020_01_022
crossref_primary_10_1002_admt_201900475
crossref_primary_10_1007_s00216_022_04157_6
crossref_primary_10_1016_j_apsusc_2024_162180
crossref_primary_10_1515_epoly_2024_0091
crossref_primary_10_1080_10667857_2020_1810924
crossref_primary_10_1002_admi_202001392
crossref_primary_10_1016_j_talanta_2022_123208
crossref_primary_10_1186_s40486_022_00160_9
crossref_primary_10_3390_en17010046
crossref_primary_10_1016_j_carbon_2021_07_002
crossref_primary_10_1016_j_compscitech_2020_108237
crossref_primary_10_1021_acsomega_1c02535
crossref_primary_10_1016_j_cartre_2021_100077
crossref_primary_10_3390_bios12040222
crossref_primary_10_1007_s12274_020_2730_z
crossref_primary_10_1021_acsapm_2c01546
crossref_primary_10_1021_acsami_1c06993
crossref_primary_10_1021_acsami_9b04060
crossref_primary_10_1016_j_carbon_2020_06_057
crossref_primary_10_1039_D2QM01319C
crossref_primary_10_1016_j_apsusc_2024_159426
crossref_primary_10_1002_advs_202103894
crossref_primary_10_1016_j_cej_2021_130565
crossref_primary_10_1021_acs_nanolett_4c04930
crossref_primary_10_1039_D0EE03911J
crossref_primary_10_1007_s10854_024_13796_7
crossref_primary_10_1007_s40843_024_3118_4
crossref_primary_10_1002_smll_202005336
crossref_primary_10_1002_adfm_202008936
crossref_primary_10_1002_mame_202100263
crossref_primary_10_1073_pnas_2412423121
crossref_primary_10_1021_acsnano_9b09445
crossref_primary_10_1063_5_0005215
crossref_primary_10_1039_C9TC04876F
crossref_primary_10_1016_j_apsusc_2022_153792
crossref_primary_10_1007_s40097_021_00436_3
crossref_primary_10_1016_j_jallcom_2023_169446
crossref_primary_10_1021_acsami_0c13909
crossref_primary_10_1002_aelm_202400689
crossref_primary_10_1007_s11356_023_26135_w
crossref_primary_10_1002_adfm_202402064
crossref_primary_10_1002_admt_202401132
crossref_primary_10_3389_fchem_2021_669797
crossref_primary_10_3390_s22176530
crossref_primary_10_1021_acsami_2c04136
crossref_primary_10_1039_D0NR01192D
crossref_primary_10_3390_chemosensors11090483
crossref_primary_10_1021_acsomega_3c07692
crossref_primary_10_1021_acsami_2c21994
crossref_primary_10_1021_acsanm_3c02787
crossref_primary_10_1002_adfm_202418425
crossref_primary_10_1016_j_sna_2025_116220
crossref_primary_10_3390_polym14112219
crossref_primary_10_1002_smll_202300283
crossref_primary_10_1088_2752_5724_ad667b
crossref_primary_10_1021_acsami_3c01748
crossref_primary_10_1021_acsami_9b14688
crossref_primary_10_1063_5_0181931
crossref_primary_10_3390_nano11051200
crossref_primary_10_1021_acsami_3c10474
crossref_primary_10_3390_coatings14010126
crossref_primary_10_1007_s42765_022_00211_1
crossref_primary_10_3390_polym12092102
crossref_primary_10_1007_s40820_024_01380_x
crossref_primary_10_3390_nano13010179
crossref_primary_10_1021_acsami_3c00432
crossref_primary_10_1016_j_apm_2022_04_004
crossref_primary_10_1021_acssuschemeng_2c05597
crossref_primary_10_1002_adfm_202416482
crossref_primary_10_1016_j_compositesa_2021_106671
crossref_primary_10_3390_molecules27238207
crossref_primary_10_3390_macromol2020014
crossref_primary_10_1002_adma_202306090
crossref_primary_10_2139_ssrn_4188427
crossref_primary_10_1016_j_eng_2021_06_030
crossref_primary_10_1021_acsami_9b15546
crossref_primary_10_1002_smll_202100804
crossref_primary_10_1063_5_0081197
crossref_primary_10_1002_adma_202301418
crossref_primary_10_1109_ACCESS_2020_3023996
crossref_primary_10_3390_app13126874
crossref_primary_10_1021_acsami_0c16152
crossref_primary_10_1039_D2TC00735E
crossref_primary_10_1002_adem_202401704
crossref_primary_10_1021_acsami_0c22844
crossref_primary_10_3390_nano11051220
crossref_primary_10_1177_25165984241256234
crossref_primary_10_1186_s11671_024_03971_4
crossref_primary_10_1002_smtd_202000827
crossref_primary_10_1021_acsapm_0c01399
crossref_primary_10_1007_s11664_023_10223_1
crossref_primary_10_1021_acsanm_4c01299
crossref_primary_10_1039_D3TC02660D
crossref_primary_10_1007_s10853_023_09294_6
crossref_primary_10_1021_acsami_3c16819
crossref_primary_10_1002_chem_202302605
crossref_primary_10_1109_JSEN_2020_3034453
crossref_primary_10_1021_acs_langmuir_4c01694
crossref_primary_10_1126_sciadv_abl8631
crossref_primary_10_3390_polym11111774
crossref_primary_10_1039_D1TA08093H
crossref_primary_10_1007_s42114_024_01168_y
crossref_primary_10_1016_j_est_2024_113178
crossref_primary_10_1016_j_ijbiomac_2022_03_123
crossref_primary_10_1039_D1MH00908G
crossref_primary_10_1039_C9TB01733J
crossref_primary_10_3390_nano12172936
crossref_primary_10_1016_j_carbon_2022_03_026
crossref_primary_10_1088_1361_6528_ac30f3
crossref_primary_10_1002_adfm_202104288
crossref_primary_10_1016_j_isci_2023_107303
crossref_primary_10_1002_adfm_202301420
crossref_primary_10_1016_j_cej_2024_150197
crossref_primary_10_1108_CW_05_2018_0037
crossref_primary_10_1016_j_chemphys_2020_111074
crossref_primary_10_3389_fbioe_2023_1264563
crossref_primary_10_1002_adfm_202010199
crossref_primary_10_1080_09276440_2022_2068246
crossref_primary_10_1109_TIE_2024_3423434
crossref_primary_10_3390_bios12111057
crossref_primary_10_1002_admt_202201951
crossref_primary_10_1021_acsanm_2c01081
crossref_primary_10_1021_acsapm_3c00954
crossref_primary_10_1002_admt_202000560
crossref_primary_10_1016_j_coco_2021_100735
crossref_primary_10_1109_ACCESS_2024_3382011
crossref_primary_10_1021_acsomega_1c03900
crossref_primary_10_3390_ma15020573
crossref_primary_10_1002_adfm_202311458
crossref_primary_10_1002_adfm_202107570
crossref_primary_10_3390_ma14071689
crossref_primary_10_1021_acsami_2c19643
crossref_primary_10_1021_acsomega_0c01293
crossref_primary_10_1109_TED_2024_3384347
crossref_primary_10_1039_D2NR01787C
crossref_primary_10_1002_admt_201901036
crossref_primary_10_1002_admt_201901035
crossref_primary_10_20517_ss_2023_19
crossref_primary_10_1021_acsaelm_3c00958
crossref_primary_10_1039_D2RA03948F
crossref_primary_10_1016_j_electacta_2024_144452
crossref_primary_10_1002_anie_202200705
crossref_primary_10_1007_s13538_024_01618_4
crossref_primary_10_1007_s11431_024_2710_5
crossref_primary_10_1002_smll_201904774
crossref_primary_10_1016_j_synthmet_2020_116329
crossref_primary_10_15541_jim20240129
crossref_primary_10_1016_j_cej_2023_141628
crossref_primary_10_1002_adma_202312596
crossref_primary_10_1109_LED_2021_3063166
crossref_primary_10_1021_acsami_0c21392
crossref_primary_10_1039_D3NR05522A
crossref_primary_10_1002_inf2_12295
crossref_primary_10_1007_s12274_021_3285_3
crossref_primary_10_3390_polym16131781
crossref_primary_10_1016_j_cej_2021_128418
crossref_primary_10_1186_s11671_020_03428_4
crossref_primary_10_1007_s11664_021_08740_y
crossref_primary_10_1007_s40820_024_01362_z
crossref_primary_10_1002_admt_202000780
crossref_primary_10_1021_acsomega_2c06548
crossref_primary_10_1557_s43580_021_00128_8
crossref_primary_10_1103_PhysRevB_110_195411
crossref_primary_10_1016_j_compscitech_2020_108617
crossref_primary_10_1002_smtd_202201340
crossref_primary_10_1007_s11998_020_00414_4
crossref_primary_10_1002_advs_202305201
crossref_primary_10_1002_inf2_12060
crossref_primary_10_1002_admt_202300514
crossref_primary_10_1016_j_diamond_2024_111530
crossref_primary_10_1002_adfm_202400740
crossref_primary_10_1121_10_0028267
crossref_primary_10_1063_5_0220555
crossref_primary_10_1039_D3TC00351E
crossref_primary_10_1002_adma_202000165
crossref_primary_10_1039_D1GC02872C
crossref_primary_10_1021_acssensors_3c01413
crossref_primary_10_1016_j_indcrop_2022_115215
crossref_primary_10_1002_admt_202202168
crossref_primary_10_1002_smll_201904758
crossref_primary_10_1109_JSEN_2021_3099016
crossref_primary_10_1016_S1872_5805_20_60505_4
crossref_primary_10_1002_adfm_202410544
crossref_primary_10_1016_j_mtcomm_2023_107783
crossref_primary_10_3390_polym15122635
crossref_primary_10_1016_j_carbon_2020_04_072
crossref_primary_10_1039_D0TA10375F
crossref_primary_10_1039_D3MH01093G
crossref_primary_10_3390_nano11081908
crossref_primary_10_1021_acsami_1c09255
crossref_primary_10_1002_ente_201901242
crossref_primary_10_1016_j_ijbiomac_2025_139553
crossref_primary_10_1002_admi_202101046
crossref_primary_10_1016_j_pmatsci_2023_101139
crossref_primary_10_1002_adsr_202300120
crossref_primary_10_1002_smll_202306655
crossref_primary_10_1088_1361_665X_ac102c
crossref_primary_10_1002_adma_202408456
crossref_primary_10_1007_s11426_020_9791_2
crossref_primary_10_1021_acsanm_3c03414
crossref_primary_10_1016_j_jcis_2022_06_041
crossref_primary_10_1002_admi_202102588
crossref_primary_10_1039_D4MH00309H
crossref_primary_10_1002_admi_202101250
crossref_primary_10_3390_mi14091697
crossref_primary_10_1038_s41598_022_08801_0
crossref_primary_10_1002_celc_202100338
crossref_primary_10_1039_D1TA09252A
crossref_primary_10_1109_JEDS_2020_2971510
crossref_primary_10_7498_aps_70_20210949
crossref_primary_10_1002_admt_202100477
crossref_primary_10_1002_admt_202301874
crossref_primary_10_1002_adma_202417175
crossref_primary_10_3390_molecules27113418
crossref_primary_10_3390_polym17040537
crossref_primary_10_1016_j_cej_2024_156116
crossref_primary_10_1088_1361_6463_ab3869
crossref_primary_10_1016_j_mseb_2022_115648
crossref_primary_10_1016_j_jallcom_2024_177557
crossref_primary_10_1007_s40012_023_00380_3
crossref_primary_10_1007_s10118_024_3154_0
crossref_primary_10_1007_s11012_022_01553_1
crossref_primary_10_1016_j_apsusc_2021_152172
crossref_primary_10_1016_j_cej_2023_147109
crossref_primary_10_1016_j_jsamd_2021_06_004
crossref_primary_10_1016_j_nanoen_2020_105617
crossref_primary_10_1039_D0CP00468E
crossref_primary_10_1021_acs_langmuir_2c02176
crossref_primary_10_1016_j_microc_2024_111299
crossref_primary_10_1021_acsami_1c00402
crossref_primary_10_1021_acs_nanolett_1c03621
crossref_primary_10_1021_acsami_9b21197
crossref_primary_10_1016_j_carbpol_2022_119684
crossref_primary_10_1039_D1TC02352G
crossref_primary_10_1021_acsami_1c14816
crossref_primary_10_1016_j_eswa_2022_118792
crossref_primary_10_1016_j_apsusc_2025_162921
crossref_primary_10_1016_j_jcis_2021_10_032
crossref_primary_10_1039_D2CC02630A
crossref_primary_10_3390_mi14010017
crossref_primary_10_1002_adma_202301280
crossref_primary_10_3389_fphy_2024_1437146
Cites_doi 10.1002/adma.201204082
10.1002/adma.201404446
10.1038/ncomms4754
10.1021/acs.nanolett.6b03133
10.1016/j.carbon.2014.05.022
10.1016/j.mee.2015.06.007
10.1021/acscatal.5b00601
10.1002/adfm.201606066
10.1039/C7NR01016H
10.1126/science.aah4496
10.1021/acsami.6b04225
10.1007/s12274-017-1731-z
10.1016/j.elecom.2014.11.024
10.1016/j.sna.2017.08.036
10.1038/ncomms4002
10.1039/C7MH00358G
10.1002/adma.201506112
10.1016/j.electacta.2008.02.093
10.1002/adma.201700874
10.1002/adma.201701410
10.1021/acsami.7b02985
10.1002/adma.201200170
10.1021/acsnano.6b03813
10.1039/C4CS00286E
10.1038/nnano.2014.93
10.1002/adfm.201400379
10.1016/j.nanoen.2015.11.023
10.1002/adma.201501867
10.1021/acsami.5b12201
10.1021/acsnano.5b03851
10.1021/nn404889b
10.1002/adma.201604942
10.1039/C6RA14646E
10.1002/adma.201506157
10.1021/acsnano.5b01835
10.1038/ncomms6747
10.1039/c3ta00079f
10.1021/acsnano.7b06595
10.1039/C5AN00464K
10.1002/adma.201305558
10.1002/adma.201504150
10.1021/acsami.5b06229
10.1002/adma.201600040
10.1021/acsnano.7b02182
10.1126/science.aad0832
10.3866/PKU.WHXB201607261
10.1126/science.1216744
10.1021/nn400566d
10.1002/adma.201702327
10.1002/adma.201802057
10.1021/nl903949m
10.1002/cssc.201600543
10.1002/adma.200801831
10.1038/srep03402
10.1021/acsami.7b13356
10.1021/jp3080223
10.1002/adfm.201404535
10.1002/adma.201606762
10.1088/0957-4484/22/26/265504
10.1039/C4TA05810K
10.1002/adhm.201700889
10.1021/nl203117h
10.1021/acs.nanolett.5b04549
10.1002/adma.200904426
10.1039/C5EE03124A
10.1002/adma.201504759
10.1038/nature16521
10.1038/ncomms11650
10.1021/acssensors.7b00230
10.1016/j.nanoen.2017.06.045
10.1002/adfm.201604802
10.1038/srep03612
10.1016/j.mser.2017.05.001
10.1021/cr5003563
10.1002/adfm.201501000
10.1038/ncomms14997
10.1021/nn505953t
10.1002/adma.201304742
10.1039/C5EE03701H
10.1126/sciadv.1601473
10.1039/c3nr05496a
10.1002/smll.201801009
10.1002/adma.201400463
10.1002/adma.200602966
10.1080/02726351.2013.769470
10.1002/adma.201104672
10.1039/C7TC01962A
10.1002/adma.201401367
10.1002/smll.201702091
10.1021/acsnano.5b05609
10.1126/science.1222453
10.1038/nmat2971
10.1038/ncomms2553
10.1088/1361-6463/aa6cd6
10.1002/adma.201304248
10.1016/j.snb.2012.12.046
10.1080/14686996.2016.1214526
10.1002/adfm.201605657
10.1002/adma.200801788
10.1002/smll.201200933
10.1021/nn9003988
10.1021/nn500441k
10.1073/pnas.1515650112
10.1007/s12274-016-1145-3
10.1021/nn500845a
10.1002/adma.201404069
10.1002/adma.201303041
10.1039/C7EE01913K
10.1002/adma.201302753
10.1021/acsnano.5b03325
10.1002/smll.201203021
10.1002/adfm.201701513
10.1002/adma.201600408
10.1126/science.1206157
10.1002/adma.201203578
10.1002/adfm.201303874
10.1002/adma.201602994
10.1002/anie.201508848
10.1002/adma.201600772
10.1002/adma.201605479
10.1039/C4CS00455H
10.1002/adma.201003658
10.1039/C4RA04938A
10.1016/j.materresbull.2013.11.032
10.1016/j.snb.2014.04.035
10.1126/sciadv.1501122
10.1038/nnano.2010.132
10.1002/adma.201704117
10.1002/adma.201504441
10.1016/j.elecom.2007.12.004
10.1038/ncomms10310
10.1021/acs.chemrev.6b00179
10.1039/C4TC00440J
10.1002/anie.201307619
10.1038/nnano.2011.36
10.1039/C6NR04945A
10.1038/ncomms4132
10.1002/aenm.201100548
10.1002/adma.201303225
10.1021/cr5006217
10.1021/nn506341u
10.1021/ac504300n
10.1021/nl204052z
10.1002/smll.201202943
10.1007/s12274-015-0849-0
10.1038/nnano.2014.38
10.1021/acsami.7b06474
10.1002/adma.201400440
10.1039/C2AN36422K
10.1002/adma.201503558
10.1002/aenm.201700648
10.1002/adma.201503288
10.1021/nl501981f
10.1002/adma.201500009
10.1002/adma.201400633
10.1126/sciadv.1602076
10.1007/s12274-017-1448-z
10.1016/j.bios.2010.12.042
10.1126/sciadv.1601465
10.1021/nn200338r
10.1073/pnas.0807476105
10.1038/srep06074
10.1038/nphoton.2011.318
10.1002/adma.201602425
10.1088/1361-6439/aa654e
10.1002/adhm.201600092
10.1002/adma.201201724
10.1038/529475a
10.1039/C4MH00147H
10.1002/adma.201600762
10.1002/adma.201302569
10.1016/j.solmat.2011.10.001
10.1002/adma.201504335
10.1002/elan.201501116
10.1021/jacs.6b05046
10.1002/anie.201706602
10.1002/adfm.201604795
10.1109/JMEMS.2017.2710354
10.1039/c1jm10946d
10.1002/adma.201204426
10.1021/acsnano.6b04005
10.1007/s40843-017-9077-x
10.1021/acsnano.5b02781
10.1038/nnano.2011.184
10.1002/adma.201504244
10.1021/acsnano.5b01613
10.1039/C6NR02172G
10.1002/elan.201600070
10.1002/adma.201504659
10.1016/j.nanoen.2017.03.044
10.1021/nn103523t
10.1002/adma.201606411
10.1002/adfm.201504755
10.1038/srep02714
10.1021/nn501204t
10.1126/sciadv.1700159
10.1002/anie.201600414
10.1039/c4cc00590b
10.1007/s12274-013-0388-5
10.1002/adma.201203448
10.1002/aenm.201602420
10.1088/1674-4926/39/1/011007
10.1002/adma.201501828
10.1126/science.aaa7952
10.1002/adma.201504229
10.1021/acsami.6b05088
10.1002/adma.201601572
10.1021/am404872j
10.1126/sciadv.1400129
10.1002/adma.201304736
10.1002/adma.201504366
10.1002/adhm.201700495
10.1002/anie.201508300
10.1016/j.snb.2015.03.068
10.1002/adma.201504245
10.1002/adma.201305182
10.1002/adfm.201402987
10.1021/acssensors.6b00287
10.1021/acsnano.5b00860
10.1021/nn503454h
10.1016/j.nanoen.2017.03.039
10.1002/adma.201703700
10.1002/adma.201402574
10.1002/adma.201505739
10.1021/acsami.5b12588
10.1038/ncomms3435
10.1039/C7TA01693J
10.1002/adhm.201400504
10.1002/aenm.201300759
10.1038/419801a
10.1016/j.mser.2017.02.001
10.1007/s12274-014-0471-6
10.1126/sciadv.1601314
10.1002/adfm.201200498
10.1021/am404858z
10.1002/adfm.201500094
10.1126/science.1104276
10.3390/s151128732
10.1002/adma.201603878
10.1002/adma.201405353
10.1002/elan.201200349
10.1021/acsnano.7b02474
10.1016/j.jpowsour.2005.04.009
10.1002/adma.201104681
10.1039/C5TC02053K
10.1021/acsnano.5b00599
10.1002/adma.201703185
10.1002/adma.201500768
10.1002/aenm.201502159
10.1038/natrevmats.2016.33
10.1002/adfm.201102839
10.1002/aelm.201600314
10.1016/j.snb.2015.07.111
10.1021/acs.nanolett.5b01936
10.1021/acs.jpcc.5b08771
10.1021/ac401573r
10.1002/adma.201603436
10.1002/adfm.201504804
10.1021/nn507441c
10.1016/j.electacta.2017.01.095
10.1039/C5NR05726D
10.1126/sciadv.1500564
10.1002/adma.201504299
10.1002/adma.201600398
10.1002/smll.201602790
10.1021/acsami.5b03862
10.1038/srep11755
10.1038/ncomms4266
10.1002/adma.201402439
10.1021/acsnano.6b01355
10.1021/nn506293y
10.1002/adma.201506187
10.1002/adma.201504225
10.1038/nmat3755
10.3390/s140303986
10.1039/C5EE00389J
10.1016/j.bios.2017.01.058
10.1126/science.1168375
10.1186/1556-276X-9-588
10.1021/acsami.6b13800
10.1002/adfm.201603480
10.1038/nnano.2016.38
10.1007/s12274-017-1782-1
10.1063/1.4802799
10.1021/acsnano.7b02458
10.1016/j.bios.2013.11.039
10.1002/aelm.201600260
10.1038/ncomms6008
10.1002/adma.201504958
10.1021/acsami.5b06883
10.1039/C6GC00368K
10.1002/adma.201501408
10.1002/adma.201702076
10.1002/aenm.201602021
10.1038/nmat3380
10.1063/1.4790437
10.1002/aelm.201500289
10.1002/smll.201403532
10.1002/elan.201400537
10.1002/smll.201701791
10.1002/adma.201704626
10.1111/j.1551-2916.2009.02990.x
10.1021/acsnano.5b03510
10.1002/adma.201604972
10.1021/acsami.6b06984
10.1021/nn4060368
10.1002/adma.201404639
10.1002/advs.201500169
10.1002/adfm.201304224
10.1039/C3AN02359A
10.1021/acssuschemeng.5b00926
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201801072
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30300444
10_1002_adma_201801072
ADMA201801072
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Program for Support of Top‐Notch Young Professionals
– fundername: NSF of China
  funderid: 51672153
– fundername: National Key Basic Research and Development Program
  funderid: 2016YFA0200103
– fundername: National Key Basic Research and Development Program
  grantid: 2016YFA0200103
– fundername: National Program for Support of Top-Notch Young Professionals
– fundername: NSF of China
  grantid: 51672153
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4782-b607878fb1fe25341b4df1009306fa181df6febcc52871700d3282c3e343ab983
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:23:44 EDT 2025
Fri Jul 25 08:37:12 EDT 2025
Wed Feb 19 02:35:02 EST 2025
Tue Jul 01 00:44:45 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Wed Jan 22 16:27:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords wearable sensors
wearable health monitoring
carbon nanotubes
graphene
natural-biomaterial-derived carbon
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4782-b607878fb1fe25341b4df1009306fa181df6febcc52871700d3282c3e343ab983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8448-3059
PMID 30300444
PQID 2187020091
PQPubID 2045203
PageCount 37
ParticipantIDs proquest_miscellaneous_2117816721
proquest_journals_2187020091
pubmed_primary_30300444
crossref_primary_10_1002_adma_201801072
crossref_citationtrail_10_1002_adma_201801072
wiley_primary_10_1002_adma_201801072_ADMA201801072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 1, 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 140
2010; 10
2014; 139
2013; 3
2013; 4
2013; 1
2015; 142
2016; 32
2014; 26
2014; 24
2008; 105
2013; 7
2012; 12
2013; 5
2012; 11
2013; 9
2012; 96
2018; 7
2010; 22
2018; 39
2009; 92
2013; 52
2014; 14
2018; 30
2008; 20
2012; 24
2010; 5
2012; 22
2007; 19
2017; 60
2016; 19
2015; 51
2015; 54
2013; 85
2016; 10
2013; 102
2002; 419
2008; 53
2016; 18
2004; 306
2016; 17
2011; 6
2016; 16
2011; 5
2016; 11
2016; 5
2017; 50
2016; 6
2016; 7
2016; 1
2016; 2
2015; 115
2013; 339
2015; 112
2017; 56
2013; 178
2015; 119
2017; 265
2016; 28
2018; 11
2012; 116
2016; 26
2016; 8
2016; 9
2018; 14
2017; 5
2017; 6
2017; 7
2017; 8
2013; 25
2017; 2
2017; 3
2017; 4
2015; 221
2011; 11
2011; 10
2015; 349
2017; 355
2017; 9
2017; 115
2017; 118
2014; 5
2014; 4
2014; 2
2015; 215
2017; 39
2013; 12
2015; 44
2017; 35
2011; 22
2011; 21
2011; 23
2016; 116
2011; 26
2014; 9
2014; 8
2012; 335
2014; 7
2014; 50
2014; 6
2009; 323
2016; 351
2014; 200
2014; 54
2015; 2
2015; 1
2015; 15
2011; 333
2015; 6
2015; 16
2015; 5
2009; 21
2015; 4
2015; 3
2017; 26
2017; 27
2015; 11
2016; 529
2006; 153
2008; 10
2017; 29
2015; 9
2015; 8
2015; 7
2014; 87
2016; 55
2015; 25
2017; 91
2012; 2
2015; 27
2017; 11
2013; 138
2017; 10
2017; 13
2013; 31
2018
2016; 138
2009; 3
2012; 6
2014; 77
2012; 8
2017; 228
e_1_2_12_130_1
e_1_2_12_191_1
e_1_2_12_2_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_199_1
e_1_2_12_176_1
e_1_2_12_85_1
e_1_2_12_262_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_201_1
e_1_2_12_224_1
e_1_2_12_247_1
e_1_2_12_285_1
e_1_2_12_62_1
e_1_2_12_180_1
e_1_2_12_209_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_188_1
e_1_2_12_307_1
e_1_2_12_96_1
e_1_2_12_273_1
e_1_2_12_139_1
e_1_2_12_310_1
e_1_2_12_35_1
e_1_2_12_250_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_212_1
e_1_2_12_258_1
e_1_2_12_296_1
e_1_2_12_50_1
e_1_2_12_235_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_190_1
e_1_2_12_137_1
e_1_2_12_114_1
e_1_2_12_175_1
e_1_2_12_198_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_300_1
e_1_2_12_240_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_263_1
e_1_2_12_202_1
e_1_2_12_248_1
e_1_2_12_286_1
e_1_2_12_40_1
e_1_2_12_225_1
e_1_2_12_141_1
e_1_2_12_149_1
e_1_2_12_308_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_187_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_311_1
e_1_2_12_251_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_13_1
e_1_2_12_213_1
e_1_2_12_236_1
e_1_2_12_259_1
e_1_2_12_274_1
e_1_2_12_297_1
e_1_2_12_51_1
e_1_2_12_193_1
e_1_2_12_238_1
e_1_2_12_19_1
e_1_2_12_170_1
Gao L. (e_1_2_12_125_1) 2014; 5
e_1_2_12_132_1
e_1_2_12_178_1
e_1_2_12_155_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_301_1
e_1_2_12_22_1
e_1_2_12_45_1
e_1_2_12_68_1
e_1_2_12_241_1
e_1_2_12_264_1
e_1_2_12_83_1
e_1_2_12_203_1
e_1_2_12_226_1
e_1_2_12_287_1
e_1_2_12_60_1
e_1_2_12_182_1
e_1_2_12_249_1
Zhang M. (e_1_2_12_17_1) 2017; 3
e_1_2_12_121_1
e_1_2_12_309_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_118_1
e_1_2_12_312_1
e_1_2_12_33_1
e_1_2_12_56_1
e_1_2_12_79_1
e_1_2_12_290_1
e_1_2_12_252_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_237_1
e_1_2_12_275_1
e_1_2_12_71_1
e_1_2_12_214_1
e_1_2_12_298_1
e_1_2_12_216_1
e_1_2_12_239_1
e_1_2_12_1_1
Xia K.‐L. (e_1_2_12_192_1) 2016; 32
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_177_1
e_1_2_12_302_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_280_1
e_1_2_12_265_1
e_1_2_12_242_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_204_1
e_1_2_12_288_1
e_1_2_12_227_1
e_1_2_12_181_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_189_1
e_1_2_12_166_1
e_1_2_12_313_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_291_1
e_1_2_12_230_1
e_1_2_12_253_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_215_1
e_1_2_12_276_1
e_1_2_12_299_1
e_1_2_12_9_1
e_1_2_12_217_1
e_1_2_12_195_1
e_1_2_12_6_1
e_1_2_12_172_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_134_1
e_1_2_12_315_1
e_1_2_12_108_1
e_1_2_12_281_1
e_1_2_12_303_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_89_1
e_1_2_12_220_1
e_1_2_12_243_1
e_1_2_12_266_1
e_1_2_12_289_1
e_1_2_12_81_1
e_1_2_12_161_1
e_1_2_12_184_1
e_1_2_12_228_1
e_1_2_12_205_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_169_1
e_1_2_12_28_1
e_1_2_12_314_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_292_1
e_1_2_12_54_1
e_1_2_12_254_1
e_1_2_12_231_1
e_1_2_12_92_1
e_1_2_12_277_1
e_1_2_12_171_1
e_1_2_12_194_1
e_1_2_12_218_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_179_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_282_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_107_1
e_1_2_12_67_1
e_1_2_12_244_1
e_1_2_12_221_1
e_1_2_12_82_1
e_1_2_12_267_1
e_1_2_12_206_1
e_1_2_12_160_1
e_1_2_12_183_1
e_1_2_12_229_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_145_1
e_1_2_12_304_1
e_1_2_12_270_1
e_1_2_12_293_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_78_1
e_1_2_12_232_1
e_1_2_12_255_1
e_1_2_12_278_1
e_1_2_12_7_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_174_1
e_1_2_12_219_1
e_1_2_12_151_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_113_1
e_1_2_12_197_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_283_1
e_1_2_12_64_1
e_1_2_12_260_1
e_1_2_12_26_1
e_1_2_12_222_1
e_1_2_12_245_1
e_1_2_12_268_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_207_1
e_1_2_12_49_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_186_1
e_1_2_12_305_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_271_1
e_1_2_12_75_1
e_1_2_12_294_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_233_1
e_1_2_12_279_1
e_1_2_12_210_1
e_1_2_12_256_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_196_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_284_1
e_1_2_12_261_1
e_1_2_12_80_1
e_1_2_12_200_1
e_1_2_12_223_1
e_1_2_12_269_1
e_1_2_12_246_1
e_1_2_12_185_1
e_1_2_12_208_1
e_1_2_12_162_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_306_1
e_1_2_12_124_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_272_1
e_1_2_12_295_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_211_1
e_1_2_12_234_1
e_1_2_12_257_1
References_xml – volume: 25
  start-page: 5701
  year: 2013
  publication-title: Adv. Mater.
– volume: 138
  start-page: 10226
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1390
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 215401
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– volume: 9
  start-page: 912
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 8178
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 938
  year: 2013
  publication-title: Nat. Mater.
– volume: 29
  start-page: 1606411
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3645
  year: 2011
  publication-title: ACS Nano
– volume: 5
  start-page: 12954
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 2347
  year: 2018
  publication-title: Nano Res.
– volume: 7
  start-page: 15506
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 3496
  year: 2015
  publication-title: Nano Res.
– volume: 7
  start-page: 1083
  year: 2014
  publication-title: Nano. Res.
– volume: 26
  start-page: 5018
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2380
  year: 2015
  publication-title: Small
– volume: 27
  start-page: 3060
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4441
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2130
  year: 2015
  publication-title: ACS Nano
– volume: 11
  start-page: 1124
  year: 2018
  publication-title: Nano Res.
– volume: 4
  start-page: 39767
  year: 2014
  publication-title: RSC Adv.
– volume: 6
  start-page: 296
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 16033
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 28
  start-page: 1369
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 6252
  year: 2015
  publication-title: ACS Nano
– volume: 28
  start-page: 3000
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: 967
  year: 2017
  publication-title: ACS Sens.
– volume: 15
  start-page: 5846
  year: 2015
  publication-title: Nano Lett.
– volume: 52
  start-page: 13453
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 2433
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5154
  year: 2014
  publication-title: ACS Nano
– volume: 25
  start-page: 2138
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 19882
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 4044
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 2714
  year: 2013
  publication-title: Sci. Rep.
– volume: 28
  start-page: 4184
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1821
  year: 2012
  publication-title: Nano Lett.
– volume: 27
  start-page: 1480
  year: 2015
  publication-title: Adv. Mater.
– volume: 26
  start-page: 2022
  year: 2014
  publication-title: Adv. Mater.
– volume: 28
  start-page: 930
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 26407
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 4861
  year: 2014
  publication-title: J. Mater. Chem C
– volume: 28
  start-page: 4338
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 3612
  year: 2014
  publication-title: Sci. Rep.
– volume: 21
  start-page: 910
  year: 2009
  publication-title: Adv. Mater.
– volume: 54
  start-page: 15390
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  start-page: 2427
  year: 2016
  publication-title: Acta Phys.‐Chim. Sin.
– volume: 13
  start-page: 1602790
  year: 2017
  publication-title: Small
– volume: 25
  start-page: 4228
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 10257
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 945
  year: 2017
  publication-title: Mater. Horiz.
– volume: 23
  start-page: 791
  year: 2011
  publication-title: Adv. Mater.
– volume: 178
  start-page: 140
  year: 2013
  publication-title: Sens. Actuators, B
– volume: 28
  start-page: 5080
  year: 2016
  publication-title: Adv. Mater.
– volume: 35
  start-page: 199
  year: 2017
  publication-title: Nano Energy
– volume: 54
  start-page: 603
  year: 2014
  publication-title: Biosens. Bioelectron.
– volume: 28
  start-page: 748
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 20894
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 721
  year: 2015
  publication-title: Nano Lett.
– volume: 27
  start-page: 1701513
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 22404
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 7365
  year: 2015
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606762
  year: 2017
  publication-title: Adv. Mater.
– volume: 140
  start-page: 4350
  year: 2015
  publication-title: Analyst
– volume: 26
  start-page: 5310
  year: 2014
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1604795
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1622
  year: 2015
  publication-title: ACS Nano
– volume: 9
  start-page: 1316
  year: 2013
  publication-title: Small
– volume: 119
  start-page: 28640
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 6719
  year: 2016
  publication-title: Adv. Mater.
– volume: 55
  start-page: 6197
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 209
  year: 2014
  publication-title: Nano Res.
– volume: 115
  start-page: 1
  year: 2017
  publication-title: Mater. Sci. Eng., R
– volume: 9
  start-page: 12147
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1700874
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1502159
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 5469
  year: 2008
  publication-title: Electrochim. Acta
– volume: 29
  start-page: 1702327
  year: 2017
  publication-title: Adv. Mater.
– volume: 24
  start-page: 3299
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 3266
  year: 2014
  publication-title: Nat. Commun.
– volume: 2
  start-page: e1601473
  year: 2016
  publication-title: Sci. Adv.
– volume: 28
  start-page: 6640
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1704117
  year: 2017
  publication-title: Adv. Mater.
– volume: 115
  start-page: 4823
  year: 2015
  publication-title: Chem. Rev.
– volume: 6
  start-page: 788
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 105
  year: 2012
  publication-title: Nat. Photonics
– volume: 26
  start-page: 7324
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 566
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 996
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 8
  start-page: 8819
  year: 2014
  publication-title: ACS Nano
– volume: 7
  start-page: 3589
  year: 2013
  publication-title: ACS Nano
– volume: 28
  start-page: 502
  year: 2016
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1805
  year: 2012
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1500289
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 6
  start-page: 3888
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 4133
  year: 2015
  publication-title: ACS Catal.
– volume: 8
  start-page: 12020
  year: 2014
  publication-title: ACS Nano
– volume: 11
  start-page: 7950
  year: 2017
  publication-title: ACS Nano
– volume: 8
  start-page: 12851
  year: 2014
  publication-title: ACS Nano
– volume: 22
  start-page: 2632
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1370
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: e1700159
  year: 2017
  publication-title: Sci. Adv.
– volume: 8
  start-page: 13025
  year: 2016
  publication-title: Nanoscale
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 25
  start-page: 2395
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 2301
  year: 2016
  publication-title: ChemSusChem
– volume: 8
  start-page: 4689
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 10256
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 28
  start-page: 5986
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1703700
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 7216
  year: 2016
  publication-title: ACS Nano
– volume: 4
  start-page: 1300759
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 228
  start-page: 586
  year: 2017
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 11755
  year: 2015
  publication-title: Sci. Rep.
– volume: 355
  start-page: 59
  year: 2017
  publication-title: Science
– volume: 105
  start-page: 18675
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 18954
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 1396
  year: 2015
  publication-title: Adv. Mater.
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 92
  start-page: 967
  year: 2009
  publication-title: J. Am. Ceram. Soc.
– volume: 26
  start-page: 966
  year: 2017
  publication-title: J. Microelectromech. Syst.
– volume: 27
  start-page: 1605657
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 795
  year: 2012
  publication-title: Nat. Mater.
– volume: 28
  start-page: 4283
  year: 2016
  publication-title: Adv. Mater.
– volume: 116
  start-page: 13413
  year: 2016
  publication-title: Chem. Rev.
– volume: 118
  start-page: 1
  year: 2017
  publication-title: Mater. Sci. Eng., R
– volume: 16
  start-page: 6516
  year: 2016
  publication-title: Nano Lett.
– volume: 4
  start-page: 6074
  year: 2014
  publication-title: Sci. Rep.
– volume: 56
  start-page: 13800
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: e1601314
  year: 2017
  publication-title: Sci. Adv.
– volume: 21
  start-page: 9319
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 50
  start-page: 303
  year: 2014
  publication-title: Mater. Res. Bull.
– volume: 9
  start-page: 39484
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 5254
  year: 2012
  publication-title: Adv. Mater.
– volume: 10
  start-page: 316
  year: 2011
  publication-title: Nat. Mater.
– volume: 19
  start-page: 401
  year: 2016
  publication-title: Nano Energy
– volume: 9
  start-page: 2590
  year: 2016
  publication-title: Nano Res.
– volume: 28
  start-page: 4832
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 7604
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 2
  start-page: 431
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 4351
  year: 2015
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1856
  year: 2012
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 5938
  year: 2014
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3214
  year: 2011
  publication-title: ACS Nano
– volume: 25
  start-page: 6692
  year: 2013
  publication-title: Adv. Mater.
– volume: 85
  start-page: 6553
  year: 2013
  publication-title: Anal. Chem.
– volume: 11
  start-page: 5408
  year: 2011
  publication-title: Nano Lett.
– volume: 9
  start-page: 555
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 265
  start-page: 79
  year: 2017
  publication-title: Sens. Actuators, A
– volume: 5
  start-page: 3002
  year: 2014
  publication-title: Nat. Commun.
– volume: 27
  start-page: 7839
  year: 2015
  publication-title: Adv. Mater.
– volume: 44
  start-page: 5638
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 9
  start-page: 6246
  year: 2017
  publication-title: Nanoscale
– start-page: e1802057
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2435
  year: 2013
  publication-title: Nat. Commun.
– volume: 28
  start-page: 2601
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 588
  year: 2014
  publication-title: Nanoscale Res. Lett.
– volume: 26
  start-page: 2078
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 4666
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 6329
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 188
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 10310
  year: 2015
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1701791
  year: 2017
  publication-title: Small
– volume: 1
  start-page: 866
  year: 2016
  publication-title: ACS Sens.
– volume: 4
  start-page: 177
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 13
  start-page: 1702091
  year: 2017
  publication-title: Small
– volume: 335
  start-page: 1326
  year: 2012
  publication-title: Science
– volume: 29
  start-page: 1604972
  year: 2017
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1619
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2866
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 1604802
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 91
  start-page: 885
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 60
  start-page: 1026
  year: 2017
  publication-title: Sci. China Mater.
– volume: 138
  start-page: 123
  year: 2013
  publication-title: Analyst
– volume: 6
  start-page: 77267
  year: 2016
  publication-title: RSC Adv.
– volume: 139
  start-page: 1632
  year: 2014
  publication-title: Analyst
– volume: 8
  start-page: 3921
  year: 2014
  publication-title: ACS Nano
– volume: 1
  start-page: e1500564
  year: 2015
  publication-title: Sci. Adv.
– volume: 28
  start-page: 9175
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: e1601465
  year: 2016
  publication-title: Sci. Adv.
– volume: 2
  start-page: 140
  year: 2015
  publication-title: Mater. Horiz.
– volume: 51
  start-page: 41
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 28
  start-page: 4306
  year: 2016
  publication-title: Adv. Mater.
– volume: 18
  start-page: 3640
  year: 2016
  publication-title: Green Chem.
– volume: 9
  start-page: 9974
  year: 2015
  publication-title: ACS Nano
– volume: 26
  start-page: 2059
  year: 2014
  publication-title: Adv. Mater.
– volume: 102
  start-page: 161904
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 4203
  year: 2016
  publication-title: Adv. Mater.
– volume: 323
  start-page: 1590
  year: 2009
  publication-title: Science
– volume: 11
  start-page: 7925
  year: 2017
  publication-title: ACS Nano
– volume: 9
  start-page: 397
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 1602021
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 112
  start-page: 14533
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 39
  start-page: 101
  year: 2017
  publication-title: Nano Energy
– volume: 419
  start-page: 801
  year: 2002
  publication-title: Nature
– volume: 3
  start-page: 1600260
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 102
  start-page: 051903
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 349
  start-page: 400
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 708
  year: 2010
  publication-title: Nano Lett.
– volume: 3
  start-page: 201700193
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 24
  start-page: 3438
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 2056
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 5508
  year: 2014
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5747
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 10867
  year: 2015
  publication-title: ACS Nano
– volume: 339
  start-page: 535
  year: 2013
  publication-title: Science
– volume: 9
  start-page: 176
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 2181
  year: 2015
  publication-title: J. Mater. Chem A
– volume: 10
  start-page: 4770
  year: 2016
  publication-title: ACS Nano
– volume: 8
  start-page: 16922
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1701410
  year: 2017
  publication-title: Adv. Mater.
– volume: 44
  start-page: 647
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 3993
  year: 2014
  publication-title: Chem. Commun.
– volume: 3
  start-page: 2157
  year: 2009
  publication-title: ACS Nano
– volume: 27
  start-page: 6230
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4397
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 8130
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 9898
  year: 2015
  publication-title: ACS Nano
– volume: 26
  start-page: 3290
  year: 2011
  publication-title: Biosens. Bioelectron.
– volume: 29
  start-page: 1605479
  year: 2017
  publication-title: Adv. Mater.
– volume: 35
  start-page: 121
  year: 2017
  publication-title: Nano Energy
– volume: 9
  start-page: 13331
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 8933
  year: 2015
  publication-title: ACS Nano
– volume: 29
  start-page: 1703185
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5008
  year: 2014
  publication-title: Nat. Commun.
– volume: 87
  start-page: 394
  year: 2014
  publication-title: Anal. Chem.
– volume: 19
  start-page: 3358
  year: 2007
  publication-title: Adv. Mater.
– volume: 529
  start-page: 475
  year: 2016
  publication-title: Nature
– volume: 5
  start-page: 3754
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 12320
  year: 2015
  publication-title: ACS Nano
– volume: 10
  start-page: 1524
  year: 2017
  publication-title: Nano Res.
– volume: 10
  start-page: 268
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 1700495
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 5
  start-page: 574
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 6226
  year: 2013
  publication-title: Adv. Mater.
– volume: 20
  start-page: 4887
  year: 2008
  publication-title: Adv. Mater.
– volume: 1
  start-page: e1400129
  year: 2015
  publication-title: Sci. Adv.
– volume: 8
  start-page: 14997
  year: 2017
  publication-title: Nat. Commun.
– volume: 25
  start-page: 591
  year: 2013
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1336
  year: 2014
  publication-title: Adv. Mater.
– volume: 215
  start-page: 316
  year: 2015
  publication-title: Sens. Actuators, B
– volume: 7
  start-page: 1602420
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 055017
  year: 2017
  publication-title: J. Micromech. Microeng.
– volume: 26
  start-page: 4247
  year: 2014
  publication-title: Adv. Mater.
– volume: 1
  start-page: 3580
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 1606066
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 54
  start-page: 14951
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 3027
  year: 2010
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1604942
  year: 2017
  publication-title: Adv. Mater.
– volume: 31
  start-page: 427
  year: 2013
  publication-title: Part. Sci. Technol.
– volume: 28
  start-page: 1250
  year: 2016
  publication-title: Electroanalysis
– volume: 26
  start-page: 4279
  year: 2014
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1600314
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 2
  start-page: 1500169
  year: 2015
  publication-title: Adv. Sci.
– volume: 6
  start-page: 2345
  year: 2014
  publication-title: Nanoscale
– volume: 39
  start-page: 011007
  year: 2018
  publication-title: J. Semicond.
– volume: 9
  start-page: 8801
  year: 2015
  publication-title: ACS Nano
– volume: 15
  start-page: 28732
  year: 2015
  publication-title: Sensors
– volume: 77
  start-page: 199
  year: 2014
  publication-title: Carbon
– volume: 115
  start-page: 5159
  year: 2015
  publication-title: Chem. Rev.
– volume: 7
  start-page: 11650
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 17805
  year: 2015
  publication-title: Nanoscale
– volume: 153
  start-page: 191
  year: 2006
  publication-title: J. Power Sources
– volume: 9
  start-page: 5929
  year: 2015
  publication-title: ACS Nano
– volume: 7
  start-page: 1700889
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 7
  start-page: 1700648
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 14986
  year: 2016
  publication-title: Nanoscale
– volume: 10
  start-page: 7901
  year: 2016
  publication-title: ACS Nano
– volume: 3
  start-page: e1602076
  year: 2017
  publication-title: Sci. Adv.
– volume: 17
  start-page: 493
  year: 2016
  publication-title: Sci. Technol. Adv. Mater.
– volume: 306
  start-page: 1358
  year: 2004
  publication-title: Science
– volume: 9
  start-page: 1342
  year: 2013
  publication-title: Small
– volume: 14
  start-page: 5148
  year: 2014
  publication-title: Nano Lett.
– volume: 30
  start-page: 1704626
  year: 2018
  publication-title: Adv. Mater.
– volume: 26
  start-page: 3451
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 29
  year: 2013
  publication-title: Electroanalysis
– volume: 29
  start-page: 1603436
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 375
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 96
  start-page: 244
  year: 2012
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 2
  start-page: e1501122
  year: 2016
  publication-title: Sci. Adv.
– volume: 25
  start-page: 6138
  year: 2013
  publication-title: Adv. Mater.
– volume: 28
  start-page: 5300
  year: 2016
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3986
  year: 2014
  publication-title: Sensors
– volume: 27
  start-page: 4178
  year: 2015
  publication-title: Adv. Mater.
– volume: 200
  start-page: 9
  year: 2014
  publication-title: Sens. Actuators, B
– volume: 3
  start-page: 3402
  year: 2013
  publication-title: Sci. Rep.
– volume: 5
  start-page: 7651
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 221
  start-page: 1469
  year: 2015
  publication-title: Sens. Actuators, B
– volume: 8
  start-page: 5618
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1702076
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3263
  year: 2012
  publication-title: Small
– volume: 11
  start-page: 11594
  year: 2017
  publication-title: ACS Nano
– volume: 25
  start-page: 2773
  year: 2013
  publication-title: Adv. Mater.
– volume: 7
  start-page: 11166
  year: 2013
  publication-title: ACS Nano
– volume: 25
  start-page: 850
  year: 2013
  publication-title: Adv. Mater.
– volume: 4
  start-page: 792
  year: 2015
  publication-title: Adv. Healthcare Mater.
– volume: 28
  start-page: 1267
  year: 2016
  publication-title: Electroanalysis
– volume: 24
  start-page: 1969
  year: 2012
  publication-title: Adv. Mater.
– volume: 116
  start-page: 22094
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: e1801009
  year: 2018
  publication-title: Small
– volume: 11
  start-page: 7634
  year: 2017
  publication-title: ACS Nano
– volume: 28
  start-page: 6421
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3132
  year: 2014
  publication-title: Nat. Commun.
– volume: 22
  start-page: 265504
  year: 2011
  publication-title: Nanotechnology
– volume: 9
  start-page: 4766
  year: 2015
  publication-title: ACS Nano
– volume: 142
  start-page: 7
  year: 2015
  publication-title: Microelectron. Eng.
– volume: 28
  start-page: 3549
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2467
  year: 2014
  publication-title: ACS Nano
– volume: 28
  start-page: 4373
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 562
  year: 2015
  publication-title: Electroanalysis
– volume: 4
  start-page: 1543
  year: 2013
  publication-title: Nat. Commun.
– ident: e_1_2_12_109_1
  doi: 10.1002/adma.201204082
– ident: e_1_2_12_187_1
  doi: 10.1002/adma.201404446
– ident: e_1_2_12_222_1
  doi: 10.1038/ncomms4754
– ident: e_1_2_12_264_1
  doi: 10.1021/acs.nanolett.6b03133
– ident: e_1_2_12_62_1
  doi: 10.1016/j.carbon.2014.05.022
– ident: e_1_2_12_73_1
  doi: 10.1016/j.mee.2015.06.007
– ident: e_1_2_12_253_1
  doi: 10.1021/acscatal.5b00601
– ident: e_1_2_12_97_1
  doi: 10.1002/adfm.201606066
– ident: e_1_2_12_151_1
  doi: 10.1039/C7NR01016H
– ident: e_1_2_12_15_1
  doi: 10.1126/science.aah4496
– ident: e_1_2_12_72_1
  doi: 10.1021/acsami.6b04225
– ident: e_1_2_12_96_1
  doi: 10.1007/s12274-017-1731-z
– ident: e_1_2_12_171_1
  doi: 10.1016/j.elecom.2014.11.024
– ident: e_1_2_12_190_1
  doi: 10.1016/j.sna.2017.08.036
– ident: e_1_2_12_102_1
  doi: 10.1038/ncomms4002
– ident: e_1_2_12_248_1
  doi: 10.1039/C7MH00358G
– ident: e_1_2_12_272_1
  doi: 10.1002/adma.201506112
– ident: e_1_2_12_225_1
  doi: 10.1016/j.electacta.2008.02.093
– ident: e_1_2_12_263_1
  doi: 10.1002/adma.201700874
– volume: 3
  start-page: 201700193
  year: 2017
  ident: e_1_2_12_17_1
  publication-title: Adv. Electron. Mater.
– ident: e_1_2_12_267_1
  doi: 10.1002/adma.201701410
– ident: e_1_2_12_16_1
  doi: 10.1021/acsami.7b02985
– ident: e_1_2_12_201_1
  doi: 10.1002/adma.201200170
– ident: e_1_2_12_75_1
  doi: 10.1021/acsnano.6b03813
– ident: e_1_2_12_214_1
  doi: 10.1039/C4CS00286E
– ident: e_1_2_12_242_1
  doi: 10.1038/nnano.2014.93
– ident: e_1_2_12_85_1
  doi: 10.1002/adfm.201400379
– ident: e_1_2_12_289_1
  doi: 10.1016/j.nanoen.2015.11.023
– ident: e_1_2_12_29_1
  doi: 10.1002/adma.201501867
– ident: e_1_2_12_63_1
  doi: 10.1021/acsami.5b12201
– ident: e_1_2_12_53_1
  doi: 10.1021/acsnano.5b03851
– ident: e_1_2_12_135_1
  doi: 10.1021/nn404889b
– ident: e_1_2_12_255_1
  doi: 10.1002/adma.201604942
– ident: e_1_2_12_58_1
  doi: 10.1039/C6RA14646E
– ident: e_1_2_12_243_1
  doi: 10.1002/adma.201506157
– ident: e_1_2_12_286_1
  doi: 10.1021/acsnano.5b01835
– ident: e_1_2_12_122_1
  doi: 10.1038/ncomms6747
– ident: e_1_2_12_70_1
  doi: 10.1039/c3ta00079f
– ident: e_1_2_12_269_1
  doi: 10.1021/acsnano.7b06595
– ident: e_1_2_12_180_1
  doi: 10.1039/C5AN00464K
– ident: e_1_2_12_203_1
  doi: 10.1002/adma.201305558
– ident: e_1_2_12_3_1
  doi: 10.1002/adma.201504150
– ident: e_1_2_12_136_1
  doi: 10.1021/acsami.5b06229
– ident: e_1_2_12_123_1
  doi: 10.1002/adma.201600040
– ident: e_1_2_12_30_1
  doi: 10.1021/acsnano.7b02182
– ident: e_1_2_12_258_1
  doi: 10.1126/science.aad0832
– volume: 32
  start-page: 2427
  year: 2016
  ident: e_1_2_12_192_1
  publication-title: Acta Phys.‐Chim. Sin.
  doi: 10.3866/PKU.WHXB201607261
– ident: e_1_2_12_223_1
  doi: 10.1126/science.1216744
– ident: e_1_2_12_247_1
  doi: 10.1021/nn400566d
– ident: e_1_2_12_265_1
  doi: 10.1002/adma.201702327
– ident: e_1_2_12_297_1
  doi: 10.1002/adma.201802057
– ident: e_1_2_12_237_1
  doi: 10.1021/nl903949m
– ident: e_1_2_12_259_1
  doi: 10.1002/cssc.201600543
– ident: e_1_2_12_120_1
  doi: 10.1002/adma.200801831
– ident: e_1_2_12_69_1
  doi: 10.1038/srep03402
– ident: e_1_2_12_93_1
  doi: 10.1021/acsami.7b13356
– ident: e_1_2_12_143_1
  doi: 10.1021/jp3080223
– ident: e_1_2_12_124_1
  doi: 10.1002/adfm.201404535
– ident: e_1_2_12_90_1
  doi: 10.1002/adma.201606762
– ident: e_1_2_12_140_1
  doi: 10.1088/0957-4484/22/26/265504
– ident: e_1_2_12_99_1
  doi: 10.1039/C4TA05810K
– ident: e_1_2_12_19_1
  doi: 10.1002/adhm.201700889
– ident: e_1_2_12_131_1
  doi: 10.1021/nl203117h
– ident: e_1_2_12_166_1
  doi: 10.1021/acs.nanolett.5b04549
– ident: e_1_2_12_193_1
  doi: 10.1002/adma.200904426
– ident: e_1_2_12_268_1
  doi: 10.1039/C5EE03124A
– ident: e_1_2_12_41_1
  doi: 10.1002/adma.201504759
– ident: e_1_2_12_164_1
  doi: 10.1038/nature16521
– ident: e_1_2_12_282_1
  doi: 10.1038/ncomms11650
– ident: e_1_2_12_86_1
  doi: 10.1021/acssensors.7b00230
– ident: e_1_2_12_26_1
  doi: 10.1016/j.nanoen.2017.06.045
– ident: e_1_2_12_155_1
  doi: 10.1002/adfm.201604802
– ident: e_1_2_12_240_1
  doi: 10.1038/srep03612
– ident: e_1_2_12_315_1
  doi: 10.1016/j.mser.2017.05.001
– ident: e_1_2_12_249_1
  doi: 10.1021/cr5003563
– ident: e_1_2_12_80_1
  doi: 10.1002/adfm.201501000
– ident: e_1_2_12_183_1
  doi: 10.1038/ncomms14997
– ident: e_1_2_12_44_1
  doi: 10.1021/nn505953t
– ident: e_1_2_12_49_1
  doi: 10.1002/adma.201304742
– ident: e_1_2_12_160_1
  doi: 10.1039/C5EE03701H
– ident: e_1_2_12_277_1
  doi: 10.1126/sciadv.1601473
– ident: e_1_2_12_65_1
  doi: 10.1039/c3nr05496a
– ident: e_1_2_12_224_1
  doi: 10.1002/smll.201801009
– ident: e_1_2_12_302_1
  doi: 10.1002/adma.201400463
– ident: e_1_2_12_204_1
  doi: 10.1002/adma.200602966
– ident: e_1_2_12_311_1
  doi: 10.1080/02726351.2013.769470
– ident: e_1_2_12_78_1
  doi: 10.1002/adma.201104672
– ident: e_1_2_12_91_1
  doi: 10.1039/C7TC01962A
– ident: e_1_2_12_116_1
  doi: 10.1002/adma.201401367
– ident: e_1_2_12_291_1
  doi: 10.1002/smll.201702091
– ident: e_1_2_12_51_1
  doi: 10.1021/acsnano.5b05609
– ident: e_1_2_12_241_1
  doi: 10.1126/science.1222453
– ident: e_1_2_12_130_1
  doi: 10.1038/nmat2971
– ident: e_1_2_12_132_1
  doi: 10.1038/ncomms2553
– ident: e_1_2_12_60_1
  doi: 10.1088/1361-6463/aa6cd6
– ident: e_1_2_12_98_1
  doi: 10.1002/adma.201304248
– ident: e_1_2_12_148_1
  doi: 10.1016/j.snb.2012.12.046
– ident: e_1_2_12_294_1
  doi: 10.1080/14686996.2016.1214526
– ident: e_1_2_12_23_1
  doi: 10.1002/adfm.201605657
– ident: e_1_2_12_10_1
  doi: 10.1002/adma.200801788
– ident: e_1_2_12_121_1
  doi: 10.1002/smll.201200933
– ident: e_1_2_12_79_1
  doi: 10.1021/nn9003988
– ident: e_1_2_12_95_1
  doi: 10.1021/nn500441k
– ident: e_1_2_12_114_1
  doi: 10.1073/pnas.1515650112
– ident: e_1_2_12_94_1
  doi: 10.1007/s12274-016-1145-3
– ident: e_1_2_12_111_1
  doi: 10.1021/nn500845a
– ident: e_1_2_12_137_1
  doi: 10.1002/adma.201404069
– ident: e_1_2_12_106_1
  doi: 10.1002/adma.201303041
– ident: e_1_2_12_275_1
  doi: 10.1039/C7EE01913K
– ident: e_1_2_12_254_1
  doi: 10.1002/adma.201302753
– ident: e_1_2_12_150_1
  doi: 10.1021/acsnano.5b03325
– ident: e_1_2_12_304_1
  doi: 10.1002/smll.201203021
– ident: e_1_2_12_194_1
  doi: 10.1002/adfm.201701513
– ident: e_1_2_12_104_1
  doi: 10.1002/adma.201600408
– ident: e_1_2_12_279_1
  doi: 10.1126/science.1206157
– ident: e_1_2_12_238_1
  doi: 10.1002/adma.201203578
– ident: e_1_2_12_115_1
  doi: 10.1002/adfm.201303874
– ident: e_1_2_12_119_1
  doi: 10.1002/adma.201602994
– ident: e_1_2_12_276_1
  doi: 10.1002/anie.201508848
– ident: e_1_2_12_186_1
  doi: 10.1002/adma.201600772
– ident: e_1_2_12_205_1
  doi: 10.1002/adma.201605479
– ident: e_1_2_12_208_1
  doi: 10.1039/C4CS00455H
– ident: e_1_2_12_233_1
  doi: 10.1002/adma.201003658
– ident: e_1_2_12_149_1
  doi: 10.1039/C4RA04938A
– ident: e_1_2_12_234_1
  doi: 10.1016/j.materresbull.2013.11.032
– ident: e_1_2_12_145_1
  doi: 10.1016/j.snb.2014.04.035
– ident: e_1_2_12_252_1
  doi: 10.1126/sciadv.1501122
– ident: e_1_2_12_300_1
  doi: 10.1038/nnano.2010.132
– ident: e_1_2_12_271_1
  doi: 10.1002/adma.201704117
– ident: e_1_2_12_28_1
  doi: 10.1002/adma.201504441
– ident: e_1_2_12_235_1
  doi: 10.1016/j.elecom.2007.12.004
– ident: e_1_2_12_211_1
  doi: 10.1038/ncomms10310
– ident: e_1_2_12_314_1
  doi: 10.1021/acs.chemrev.6b00179
– ident: e_1_2_12_156_1
  doi: 10.1039/C4TC00440J
– ident: e_1_2_12_236_1
  doi: 10.1002/anie.201307619
– ident: e_1_2_12_42_1
  doi: 10.1038/nnano.2011.36
– ident: e_1_2_12_288_1
  doi: 10.1039/C6NR04945A
– ident: e_1_2_12_39_1
  doi: 10.1038/ncomms4132
– ident: e_1_2_12_227_1
  doi: 10.1002/aenm.201100548
– volume: 5
  start-page: 5938
  year: 2014
  ident: e_1_2_12_125_1
  publication-title: Nat. Commun.
– ident: e_1_2_12_202_1
  doi: 10.1002/adma.201303225
– ident: e_1_2_12_218_1
  doi: 10.1021/cr5006217
– ident: e_1_2_12_81_1
  doi: 10.1021/nn506341u
– ident: e_1_2_12_169_1
  doi: 10.1021/ac504300n
– ident: e_1_2_12_61_1
  doi: 10.1021/nl204052z
– ident: e_1_2_12_229_1
  doi: 10.1002/smll.201202943
– ident: e_1_2_12_246_1
  doi: 10.1007/s12274-015-0849-0
– ident: e_1_2_12_281_1
  doi: 10.1038/nnano.2014.38
– ident: e_1_2_12_66_1
  doi: 10.1021/acsami.7b06474
– ident: e_1_2_12_213_1
  doi: 10.1002/adma.201400440
– ident: e_1_2_12_170_1
  doi: 10.1039/C2AN36422K
– ident: e_1_2_12_50_1
  doi: 10.1002/adma.201503558
– ident: e_1_2_12_206_1
  doi: 10.1002/aenm.201700648
– ident: e_1_2_12_45_1
  doi: 10.1002/adma.201503288
– ident: e_1_2_12_313_1
  doi: 10.1021/nl501981f
– ident: e_1_2_12_67_1
  doi: 10.1002/adma.201500009
– ident: e_1_2_12_215_1
  doi: 10.1002/adma.201400633
– ident: e_1_2_12_14_1
  doi: 10.1126/sciadv.1602076
– ident: e_1_2_12_216_1
  doi: 10.1007/s12274-017-1448-z
– ident: e_1_2_12_173_1
  doi: 10.1016/j.bios.2010.12.042
– ident: e_1_2_12_184_1
  doi: 10.1126/sciadv.1601465
– ident: e_1_2_12_296_1
  doi: 10.1021/nn200338r
– ident: e_1_2_12_129_1
  doi: 10.1073/pnas.0807476105
– ident: e_1_2_12_189_1
  doi: 10.1038/srep06074
– ident: e_1_2_12_309_1
  doi: 10.1038/nphoton.2011.318
– ident: e_1_2_12_40_1
  doi: 10.1002/adma.201602425
– ident: e_1_2_12_141_1
  doi: 10.1088/1361-6439/aa654e
– ident: e_1_2_12_25_1
  doi: 10.1002/adhm.201600092
– ident: e_1_2_12_126_1
  doi: 10.1002/adma.201201724
– ident: e_1_2_12_168_1
  doi: 10.1038/529475a
– ident: e_1_2_12_5_1
  doi: 10.1039/C4MH00147H
– ident: e_1_2_12_266_1
  doi: 10.1002/adma.201600762
– ident: e_1_2_12_257_1
  doi: 10.1002/adma.201302569
– ident: e_1_2_12_312_1
  doi: 10.1016/j.solmat.2011.10.001
– ident: e_1_2_12_284_1
  doi: 10.1002/adma.201504335
– ident: e_1_2_12_181_1
  doi: 10.1002/elan.201501116
– ident: e_1_2_12_273_1
  doi: 10.1021/jacs.6b05046
– ident: e_1_2_12_262_1
  doi: 10.1002/anie.201706602
– ident: e_1_2_12_92_1
  doi: 10.1002/adfm.201604795
– ident: e_1_2_12_128_1
  doi: 10.1109/JMEMS.2017.2710354
– ident: e_1_2_12_231_1
  doi: 10.1039/c1jm10946d
– ident: e_1_2_12_280_1
  doi: 10.1002/adma.201204426
– ident: e_1_2_12_163_1
  doi: 10.1021/acsnano.6b04005
– ident: e_1_2_12_31_1
  doi: 10.1007/s40843-017-9077-x
– ident: e_1_2_12_52_1
  doi: 10.1021/acsnano.5b02781
– ident: e_1_2_12_68_1
  doi: 10.1038/nnano.2011.184
– ident: e_1_2_12_36_1
  doi: 10.1002/adma.201504244
– ident: e_1_2_12_77_1
  doi: 10.1021/acsnano.5b01613
– ident: e_1_2_12_57_1
  doi: 10.1039/C6NR02172G
– ident: e_1_2_12_176_1
  doi: 10.1002/elan.201600070
– ident: e_1_2_12_8_1
  doi: 10.1002/adma.201504659
– ident: e_1_2_12_290_1
  doi: 10.1016/j.nanoen.2017.03.044
– ident: e_1_2_12_47_1
  doi: 10.1021/nn103523t
– ident: e_1_2_12_76_1
  doi: 10.1002/adma.201606411
– ident: e_1_2_12_33_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_12_144_1
  doi: 10.1038/srep02714
– ident: e_1_2_12_38_1
  doi: 10.1021/nn501204t
– ident: e_1_2_12_13_1
  doi: 10.1126/sciadv.1700159
– ident: e_1_2_12_306_1
  doi: 10.1002/anie.201600414
– ident: e_1_2_12_299_1
  doi: 10.1039/c4cc00590b
– ident: e_1_2_12_212_1
  doi: 10.1007/s12274-013-0388-5
– ident: e_1_2_12_200_1
  doi: 10.1002/adma.201203448
– ident: e_1_2_12_260_1
  doi: 10.1002/aenm.201602420
– ident: e_1_2_12_295_1
  doi: 10.1088/1674-4926/39/1/011007
– ident: e_1_2_12_11_1
  doi: 10.1002/adma.201501828
– ident: e_1_2_12_196_1
  doi: 10.1126/science.aaa7952
– ident: e_1_2_12_245_1
  doi: 10.1002/adma.201504229
– ident: e_1_2_12_83_1
  doi: 10.1021/acsami.6b05088
– ident: e_1_2_12_22_1
  doi: 10.1002/adma.201601572
– ident: e_1_2_12_108_1
  doi: 10.1021/am404872j
– ident: e_1_2_12_251_1
  doi: 10.1126/sciadv.1400129
– ident: e_1_2_12_230_1
  doi: 10.1002/adma.201304736
– ident: e_1_2_12_4_1
  doi: 10.1002/adma.201504366
– ident: e_1_2_12_278_1
  doi: 10.1002/adhm.201700495
– ident: e_1_2_12_139_1
  doi: 10.1002/anie.201508300
– ident: e_1_2_12_146_1
  doi: 10.1016/j.snb.2015.03.068
– ident: e_1_2_12_1_1
  doi: 10.1002/adma.201504244
– ident: e_1_2_12_21_1
  doi: 10.1002/adma.201504245
– ident: e_1_2_12_101_1
  doi: 10.1002/adma.201305182
– ident: e_1_2_12_107_1
  doi: 10.1002/adfm.201402987
– ident: e_1_2_12_179_1
  doi: 10.1021/acssensors.6b00287
– ident: e_1_2_12_199_1
  doi: 10.1021/acsnano.5b00860
– ident: e_1_2_12_48_1
  doi: 10.1021/nn503454h
– ident: e_1_2_12_285_1
  doi: 10.1016/j.nanoen.2017.03.039
– ident: e_1_2_12_34_1
  doi: 10.1002/adma.201703700
– ident: e_1_2_12_71_1
  doi: 10.1002/adma.201402574
– ident: e_1_2_12_118_1
  doi: 10.1002/adma.201505739
– ident: e_1_2_12_55_1
  doi: 10.1021/acsami.5b12588
– ident: e_1_2_12_43_1
  doi: 10.1038/ncomms3435
– ident: e_1_2_12_274_1
  doi: 10.1039/C7TA01693J
– ident: e_1_2_12_182_1
  doi: 10.1002/adhm.201400504
– ident: e_1_2_12_221_1
  doi: 10.1002/aenm.201300759
– ident: e_1_2_12_197_1
  doi: 10.1038/419801a
– ident: e_1_2_12_32_1
  doi: 10.1016/j.mser.2017.02.001
– ident: e_1_2_12_147_1
  doi: 10.1007/s12274-014-0471-6
– ident: e_1_2_12_283_1
  doi: 10.1126/sciadv.1601314
– ident: e_1_2_12_88_1
  doi: 10.1002/adfm.201200498
– ident: e_1_2_12_157_1
  doi: 10.1021/am404858z
– ident: e_1_2_12_54_1
  doi: 10.1002/adfm.201500094
– ident: e_1_2_12_198_1
  doi: 10.1126/science.1104276
– ident: e_1_2_12_307_1
  doi: 10.3390/s151128732
– ident: e_1_2_12_7_1
  doi: 10.1002/adma.201603878
– ident: e_1_2_12_305_1
  doi: 10.1002/adma.201405353
– ident: e_1_2_12_9_1
  doi: 10.1002/elan.201200349
– ident: e_1_2_12_74_1
  doi: 10.1021/acsnano.7b02474
– ident: e_1_2_12_226_1
  doi: 10.1016/j.jpowsour.2005.04.009
– ident: e_1_2_12_152_1
  doi: 10.1002/adma.201104681
– ident: e_1_2_12_303_1
  doi: 10.1039/C5TC02053K
– ident: e_1_2_12_46_1
  doi: 10.1021/acsnano.5b00599
– ident: e_1_2_12_261_1
  doi: 10.1002/adma.201703185
– ident: e_1_2_12_167_1
  doi: 10.1002/adma.201500768
– ident: e_1_2_12_207_1
  doi: 10.1002/aenm.201502159
– ident: e_1_2_12_217_1
  doi: 10.1038/natrevmats.2016.33
– ident: e_1_2_12_232_1
  doi: 10.1002/adfm.201102839
– ident: e_1_2_12_18_1
  doi: 10.1002/aelm.201600314
– ident: e_1_2_12_195_1
  doi: 10.1016/j.snb.2015.07.111
– ident: e_1_2_12_244_1
  doi: 10.1021/acs.nanolett.5b01936
– ident: e_1_2_12_158_1
  doi: 10.1021/acs.jpcc.5b08771
– ident: e_1_2_12_174_1
  doi: 10.1021/ac401573r
– ident: e_1_2_12_219_1
  doi: 10.1002/adma.201603436
– ident: e_1_2_12_64_1
  doi: 10.1002/adfm.201504804
– ident: e_1_2_12_100_1
  doi: 10.1002/adma.201402574
– ident: e_1_2_12_117_1
  doi: 10.1021/nn507441c
– ident: e_1_2_12_89_1
  doi: 10.1016/j.electacta.2017.01.095
– ident: e_1_2_12_138_1
  doi: 10.1039/C5NR05726D
– ident: e_1_2_12_250_1
  doi: 10.1126/sciadv.1500564
– ident: e_1_2_12_292_1
  doi: 10.1002/adma.201504299
– ident: e_1_2_12_256_1
  doi: 10.1002/adma.201600398
– ident: e_1_2_12_2_1
  doi: 10.1002/smll.201602790
– ident: e_1_2_12_154_1
  doi: 10.1021/acsami.5b03862
– ident: e_1_2_12_310_1
  doi: 10.1038/srep11755
– ident: e_1_2_12_133_1
  doi: 10.1038/ncomms4266
– ident: e_1_2_12_293_1
  doi: 10.1002/adma.201402439
– ident: e_1_2_12_191_1
  doi: 10.1021/acsnano.6b01355
– ident: e_1_2_12_112_1
  doi: 10.1021/nn506293y
– ident: e_1_2_12_159_1
  doi: 10.1002/adma.201506187
– ident: e_1_2_12_209_1
  doi: 10.1002/adma.201504225
– ident: e_1_2_12_110_1
  doi: 10.1038/nmat3755
– ident: e_1_2_12_134_1
  doi: 10.3390/s140303986
– ident: e_1_2_12_210_1
  doi: 10.1039/C5EE00389J
– ident: e_1_2_12_165_1
  doi: 10.1016/j.bios.2017.01.058
– ident: e_1_2_12_185_1
  doi: 10.1126/science.1168375
– ident: e_1_2_12_301_1
  doi: 10.1186/1556-276X-9-588
– ident: e_1_2_12_188_1
  doi: 10.1021/acsami.6b13800
– ident: e_1_2_12_220_1
  doi: 10.1002/adfm.201603480
– ident: e_1_2_12_24_1
  doi: 10.1038/nnano.2016.38
– ident: e_1_2_12_27_1
  doi: 10.1007/s12274-017-1782-1
– ident: e_1_2_12_84_1
  doi: 10.1063/1.4802799
– ident: e_1_2_12_12_1
  doi: 10.1021/acsnano.7b02458
– ident: e_1_2_12_175_1
  doi: 10.1016/j.bios.2013.11.039
– ident: e_1_2_12_177_1
  doi: 10.1002/aelm.201600260
– ident: e_1_2_12_308_1
  doi: 10.1038/ncomms6008
– ident: e_1_2_12_20_1
  doi: 10.1002/adma.201504958
– ident: e_1_2_12_142_1
  doi: 10.1021/acsami.5b06883
– ident: e_1_2_12_56_1
  doi: 10.1039/C6GC00368K
– ident: e_1_2_12_6_1
  doi: 10.1002/adma.201501408
– ident: e_1_2_12_153_1
  doi: 10.1002/adma.201702076
– ident: e_1_2_12_239_1
  doi: 10.1002/aenm.201602021
– ident: e_1_2_12_37_1
  doi: 10.1038/nmat3380
– ident: e_1_2_12_105_1
  doi: 10.1063/1.4790437
– ident: e_1_2_12_178_1
  doi: 10.1002/aelm.201500289
– ident: e_1_2_12_82_1
  doi: 10.1002/smll.201403532
– ident: e_1_2_12_162_1
  doi: 10.1002/elan.201400537
– ident: e_1_2_12_287_1
  doi: 10.1002/smll.201701791
– ident: e_1_2_12_87_1
  doi: 10.1002/adma.201704626
– ident: e_1_2_12_127_1
  doi: 10.1111/j.1551-2916.2009.02990.x
– ident: e_1_2_12_103_1
  doi: 10.1021/acsnano.5b03510
– ident: e_1_2_12_161_1
  doi: 10.1002/adma.201604972
– ident: e_1_2_12_59_1
  doi: 10.1021/acsami.6b06984
– ident: e_1_2_12_298_1
  doi: 10.1021/nn4060368
– ident: e_1_2_12_270_1
  doi: 10.1002/adma.201404639
– ident: e_1_2_12_35_1
  doi: 10.1002/advs.201500169
– ident: e_1_2_12_113_1
  doi: 10.1002/adfm.201304224
– ident: e_1_2_12_172_1
  doi: 10.1039/C3AN02359A
– ident: e_1_2_12_228_1
  doi: 10.1021/acssuschemeng.5b00926
SSID ssj0009606
Score 2.7133138
SecondaryResourceType review_article
Snippet Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1801072
SubjectTerms Biomedical materials
Carbon
Carbon nanotubes
Chemical sensors
Electrical resistivity
Electronic devices
Electronics
Flexible components
Graphene
Human-computer interaction
Mass production
Materials science
Materials selection
Morphology
natural‐biomaterial‐derived carbon
Organic chemistry
Pressure sensors
Sensors
Thermal stability
wearable health monitoring
wearable sensors
Wearable technology
Weight reduction
Title Advanced Carbon for Flexible and Wearable Electronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201801072
https://www.ncbi.nlm.nih.gov/pubmed/30300444
https://www.proquest.com/docview/2187020091
https://www.proquest.com/docview/2117816721
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hTjDwfgQKChISU9o4TpxkjEqrCqkMiIpuke3YC1WK-lj49ZzzagtCSLAlylnx6-6-s8-fAe4iwSPOGXWI9mLHFz7aQRVljmTo3zkGuUSbQHH0xIZj_3ESTDZO8Zf8EM2Cm9GMwl4bBedi0V2ThvKs4A0iaGLd0Bhhk7BlUNHzmj_KwPOCbI8GTsz8qGZtdL3udvFtr_QNam4j18L1DA6A15UuM07eOqul6MiPL3yO_2nVIexXuNROyol0BDsqP4a9DbbCEwiSKl_A7vG5mOU24l17YAg1xVTZPM_sV1QbcxTL7jeX6yxOYTzov_SGTnXrgiN9hAuOYIgawkgLopUXoJMTfqaJWflwmeYICDLNtBJSBibYCl03oxi2SaqoT7mII3oGrXyWqwuwqc8oIoBMMMoxTtVRLCXaD0QFigjiZRY4da-nsqIkNzdjTNOSTNlLTXekTXdYcN_Iv5dkHD9KtutBTCulXKSIZkLX7AYRC26bz6hOZo-E52q2MjIkjAjDuNiC83Lwm1-hty_o9SzwiiH8pQ5p8jBKmrfLvxS6gl18jsuctza0lvOVukYQtBQ3xUT_BO91-Q4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOAAH9iWsQULi5DaOEyc5VkBVlvaAiuAW2Y59oUoRtBe-nnE2KAghwTGJrXibmTf2-A3AaSxFLARnhBo_IYEMUA_qOCOKo30X6ORSYx3F_oD37oPrx7COJrR3YUp-iGbDzUpGoa-tgNsN6fYHa6jICuIgijrWi1ALL9i03oVXdffBIGUBekG3x0KS8CCueRs9vz1bf9YufQObs9i1MD7dVZB1s8uYk6fWdCJb6u0Lo-O_-rUGKxU0dTvlWlqHOZ1vwPInwsJNCDtVyIB7Ll7kOHcR8rpdy6kpR9oVeeY-oOTY21juZZNf53UL7ruXw_MeqRIvEBUgYiCSI3CIYiOp0X6Idk4GmaF288PjRiAmyAw3WioVWn8r8ryMoeemmGYBEzKJ2TbM5-Nc74LLAs4QBGSSM4GuqokTpVCFIDDQVFI_c4DUw56qipXcJscYpSWfsp_a4Uib4XDgrCn_XPJx_FjyoJ7FtJLL1xQBTeTZAyHqwEnzGSXKHpOIXI-ntgyNYsrRNXZgp5z95ldo8AuGPQf8Yg5_aUPaueh3mqe9v1Q6hsXesH-b3l4NbvZhCd8nZQjcAcxPXqb6EDHRRB4Vq_4dl2r9KQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6IgujBfalrBcFTtWnStD0OjoM7IoreStaLQ0ecmYu_3pe203EUEfTYNmnTvO17Wb4AHKZSpEJwGhAbZQGTDP2gSXWgOMZ3gUkusS5RvLnl54_s8jl-_rSLv-KHaAbcnGWU_toZ-Ku2J2PSUKFL3iCCLjZM0AnPMHy90-v2_ZhAyuHzkm2PxkHGWTqibQyjk8n6k2HpG9achK5l7Oksghi1ulpy8nI8HMhj9f6F0PE_v7UECzUw9VuVJi3DlClWYP4TXeEqxK16wYB_Kt5kr_AR8Podx6gpu8YXhfaf0G7cXiz_rDldp78Gj52zh9PzoD52IVAM8UIgOcKGJLWSWBPFGOUk05a4oY-QW4GIQFtujVQqdtlWEoaaYt6mqKGMCpmldB2mi15hNsGnjFOEAFpyKjBRtWmmFDoQhAWGSBJpD4JRr-eq5iR3R2N084pNOcpdd-RNd3hw1JR_rdg4fiy5MxJiXltlP0c4k4RuOoh4cNA8RntykySiML2hK0OSlHBMjD3YqITffArDfcmv50FUivCXNuSt9k2rudr6S6V9mL1rd_Lri9urbZjD21m1_m0HpgdvQ7OLgGgg90qd_wCqnPvh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Carbon+for+Flexible+and+Wearable+Electronics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Chunya&rft.au=Xia%2C+Kailun&rft.au=Wang%2C+Huimin&rft.au=Liang%2C+Xiaoping&rft.date=2019-03-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=9&rft.spage=e1801072&rft_id=info:doi/10.1002%2Fadma.201801072&rft_id=info%3Apmid%2F30300444&rft.externalDocID=30300444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon