Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA‐Free Perovskite Solar Cells

Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but comp...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 26; pp. e2000571 - n/a
Main Authors Yao, Qin, Xue, Qifan, Li, Zhenchao, Zhang, Kaicheng, Zhang, Teng, Li, Ning, Yang, Shihe, Brabec, Christoph J., Yip, Hin‐Lap, Cao, Yong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open‐circuit voltage (Voc) deficit is circumvented by the incorporation of β‐guanidinopropionic acid (β‐GUA) molecules into an MA‐free bulk perovskite, which facilitates the formation of quasi‐2D structure with face‐on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA‐free PVSCs is improved. The efficiency and operational stability of MA‐free FA0.95Cs0.05PbI3 perovskite solar cells can be simultaneously enhanced by the incorporation of the β‐guanidinopropionic acid (β‐GUA) molecule. The introduction of β‐GUA forms a 2D/3D hybrid perovskite phase, which effectively passivates the surface defects, resulting in an impressive power conversion efficiency of 22.2% with a substantial increase in Voc (from 1.01 to 1.14 V).
AbstractList Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open‐circuit voltage (Voc) deficit is circumvented by the incorporation of β‐guanidinopropionic acid (β‐GUA) molecules into an MA‐free bulk perovskite, which facilitates the formation of quasi‐2D structure with face‐on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA‐free PVSCs is improved.
Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open‐circuit voltage (Voc) deficit is circumvented by the incorporation of β‐guanidinopropionic acid (β‐GUA) molecules into an MA‐free bulk perovskite, which facilitates the formation of quasi‐2D structure with face‐on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA‐free PVSCs is improved. The efficiency and operational stability of MA‐free FA0.95Cs0.05PbI3 perovskite solar cells can be simultaneously enhanced by the incorporation of the β‐guanidinopropionic acid (β‐GUA) molecule. The introduction of β‐GUA forms a 2D/3D hybrid perovskite phase, which effectively passivates the surface defects, resulting in an impressive power conversion efficiency of 22.2% with a substantial increase in Voc (from 1.01 to 1.14 V).
Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open‐circuit voltage ( V oc ) deficit is circumvented by the incorporation of β‐guanidinopropionic acid (β‐GUA) molecules into an MA‐free bulk perovskite, which facilitates the formation of quasi‐2D structure with face‐on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA‐free PVSCs is improved.
Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (Voc ) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved.Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (Voc ) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved.
Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (V ) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved.
Author Yao, Qin
Li, Ning
Li, Zhenchao
Cao, Yong
Zhang, Teng
Zhang, Kaicheng
Yang, Shihe
Brabec, Christoph J.
Yip, Hin‐Lap
Xue, Qifan
Author_xml – sequence: 1
  givenname: Qin
  surname: Yao
  fullname: Yao, Qin
  organization: South China University of Technology
– sequence: 2
  givenname: Qifan
  surname: Xue
  fullname: Xue, Qifan
  email: qfxue@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
– sequence: 3
  givenname: Zhenchao
  surname: Li
  fullname: Li, Zhenchao
  organization: South China University of Technology
– sequence: 4
  givenname: Kaicheng
  surname: Zhang
  fullname: Zhang, Kaicheng
  organization: Friedrich‐Alexander‐University Erlangen‐Nuremberg
– sequence: 5
  givenname: Teng
  surname: Zhang
  fullname: Zhang, Teng
  organization: The Hong Kong University of Science and Technology
– sequence: 6
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: Zhengzhou University
– sequence: 7
  givenname: Shihe
  surname: Yang
  fullname: Yang, Shihe
  organization: Peking University
– sequence: 8
  givenname: Christoph J.
  surname: Brabec
  fullname: Brabec, Christoph J.
  organization: Friedrich‐Alexander‐University Erlangen‐Nuremberg
– sequence: 9
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
– sequence: 10
  givenname: Yong
  surname: Cao
  fullname: Cao, Yong
  organization: South China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32449209$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rVDEUhoNU7LS6dSkBN27uNF_3I8thph9CS4XqOuTmnkBq5mZMciuz8yf4G_tLmnFalYK4OeHA876cvO8ROhjDCAi9pWROCWEneljrOSOMEFK39AWa0ZrRShBZH6AZkbyuZCO6Q3SU0m1hZEOaV-iQMyEkI3KGwnnUAwyYrU74Cn-CGO7SV5cBX0AuS8pxMnmKgG2I-NRaZxyMGetxwNcbiDq7MGrvt_gm694Dvlrc__h5FgH-9roJXke8BO_Ta_TSap_gzeN7jL6cnX5eXlSX1-cfl4vLyoi2o5UVRLQMWGOBaC6p7WRnWt73euhZNxhpet2b3dC24RJM34IxA6GmM8BIzY_Rh73vJoZvE6Ss1i6ZcoEeIUxJMUGaEhjvSEHfP0NvwxTLr3YU7WRdLuKFevdITf0aBrWJbq3jVj1FWQCxB0yJLUWwyrj8K58ctfOKErVrTO0aU78bK7L5M9mT8z8Fci_47jxs_0Orxepq8Uf7ALBMqkI
CitedBy_id crossref_primary_10_1039_D4RA02191F
crossref_primary_10_1002_bit_28783
crossref_primary_10_1016_j_surfin_2023_103641
crossref_primary_10_1039_D1TA08984F
crossref_primary_10_1002_smtd_202400425
crossref_primary_10_1039_D3QM00574G
crossref_primary_10_1002_adma_202208522
crossref_primary_10_1021_acsami_3c04243
crossref_primary_10_1021_acsmaterialslett_3c00027
crossref_primary_10_1039_D2SC01804G
crossref_primary_10_1002_solr_202200710
crossref_primary_10_1016_j_orgel_2022_106525
crossref_primary_10_1002_adfm_202112126
crossref_primary_10_1039_D0TA12342K
crossref_primary_10_1063_5_0056106
crossref_primary_10_1002_idm2_12023
crossref_primary_10_1016_j_fmre_2021_07_003
crossref_primary_10_1016_j_solmat_2022_112135
crossref_primary_10_1016_j_nanoen_2021_106666
crossref_primary_10_1002_solr_202201138
crossref_primary_10_1021_acs_nanolett_3c00486
crossref_primary_10_1002_adma_202310203
crossref_primary_10_1002_anie_202419070
crossref_primary_10_1039_D1TA08402J
crossref_primary_10_1039_D4CP02010C
crossref_primary_10_1002_ange_202303177
crossref_primary_10_1002_ente_202500305
crossref_primary_10_1002_adma_202105635
crossref_primary_10_1002_solr_202200061
crossref_primary_10_1002_adfm_202407897
crossref_primary_10_1002_adfm_202107359
crossref_primary_10_1021_acsenergylett_1c00531
crossref_primary_10_1016_j_cej_2021_133065
crossref_primary_10_1039_D1SC04769H
crossref_primary_10_1039_D0TA11448K
crossref_primary_10_1021_acsami_3c14834
crossref_primary_10_1016_j_mtener_2020_100590
crossref_primary_10_1039_D1CS00841B
crossref_primary_10_1039_D2EE02227C
crossref_primary_10_1016_j_jpowsour_2021_229451
crossref_primary_10_1016_j_orgel_2022_106544
crossref_primary_10_1021_acs_chemmater_0c04931
crossref_primary_10_1063_5_0100183
crossref_primary_10_15541_jim20230016
crossref_primary_10_1039_D2SE00398H
crossref_primary_10_1039_D4CC05131A
crossref_primary_10_3390_en14206660
crossref_primary_10_1002_aenm_202301888
crossref_primary_10_1002_aenm_202201436
crossref_primary_10_1016_j_jechem_2021_08_030
crossref_primary_10_1002_admi_202002041
crossref_primary_10_1021_acsami_3c01881
crossref_primary_10_1002_aenm_202200111
crossref_primary_10_1002_adfm_202304848
crossref_primary_10_1021_acsami_3c15594
crossref_primary_10_1039_D0EE02575E
crossref_primary_10_1021_acsenergylett_2c01605
crossref_primary_10_1002_adfm_202314086
crossref_primary_10_1021_acsami_2c15928
crossref_primary_10_1039_D3TA01496G
crossref_primary_10_1039_D0CE01695K
crossref_primary_10_1002_adfm_202300113
crossref_primary_10_1021_acsenergylett_1c00794
crossref_primary_10_1360_SSPMA_2023_0066
crossref_primary_10_1016_j_joule_2022_12_013
crossref_primary_10_1021_acsenergylett_1c01649
crossref_primary_10_1021_acsami_1c21041
crossref_primary_10_1002_aesr_202100061
crossref_primary_10_1002_anie_202303177
crossref_primary_10_1002_adfm_202104036
crossref_primary_10_1002_advs_202105103
crossref_primary_10_1016_j_mser_2023_100727
crossref_primary_10_1021_acsami_2c10928
crossref_primary_10_1021_acs_jpclett_3c01303
crossref_primary_10_1021_acsenergylett_1c01878
crossref_primary_10_1039_D1TA06067H
crossref_primary_10_1002_solr_202301077
crossref_primary_10_1002_smll_202104100
crossref_primary_10_1088_1674_1056_ad6259
crossref_primary_10_1021_acsami_4c08198
crossref_primary_10_1021_acsami_4c13540
crossref_primary_10_1002_admi_202202249
crossref_primary_10_1002_adma_202302071
crossref_primary_10_1016_j_jechem_2020_09_026
crossref_primary_10_1021_acsaem_2c00354
crossref_primary_10_1002_adma_202006745
crossref_primary_10_1016_j_cej_2023_141524
crossref_primary_10_1002_adfm_202304140
crossref_primary_10_1039_D1TA04330G
crossref_primary_10_1016_j_chemosphere_2023_140395
crossref_primary_10_1002_nano_202000287
crossref_primary_10_1038_s41467_024_47112_y
crossref_primary_10_1002_adfm_202407860
crossref_primary_10_1002_advs_202102730
crossref_primary_10_3390_en16186498
crossref_primary_10_1016_j_cej_2023_142720
crossref_primary_10_1021_acsaem_3c02777
crossref_primary_10_1039_D1NA00173F
crossref_primary_10_1039_D4EE00912F
crossref_primary_10_1002_adma_202105170
crossref_primary_10_1016_j_nanoen_2021_106846
crossref_primary_10_1021_acsami_1c23118
crossref_primary_10_1007_s12274_023_6291_9
crossref_primary_10_1016_j_nanoen_2021_106370
crossref_primary_10_1002_ange_202115663
crossref_primary_10_1002_adfm_202103130
crossref_primary_10_1021_acsami_2c09201
crossref_primary_10_1002_aenm_202200632
crossref_primary_10_1016_j_isci_2023_107248
crossref_primary_10_1021_acsnano_1c02191
crossref_primary_10_1002_eom2_12158
crossref_primary_10_1039_D2EE00433J
crossref_primary_10_1002_solr_202100285
crossref_primary_10_1016_j_cej_2021_133209
crossref_primary_10_1002_adma_202310619
crossref_primary_10_1002_smll_202100678
crossref_primary_10_1002_adma_202302552
crossref_primary_10_1016_j_cej_2024_157369
crossref_primary_10_1016_j_solmat_2022_111682
crossref_primary_10_1002_solr_202300740
crossref_primary_10_1039_D1TA09705A
crossref_primary_10_1002_smtd_202200933
crossref_primary_10_1016_j_chempr_2021_08_009
crossref_primary_10_1002_ange_202413303
crossref_primary_10_1016_j_cej_2020_126298
crossref_primary_10_1002_advs_202101856
crossref_primary_10_1016_j_cej_2023_143341
crossref_primary_10_1016_j_apmt_2024_102187
crossref_primary_10_1016_j_mssp_2022_106952
crossref_primary_10_1007_s40843_021_1762_0
crossref_primary_10_1002_ange_202419070
crossref_primary_10_1039_D4CC02299H
crossref_primary_10_1016_j_jcis_2023_07_110
crossref_primary_10_1016_j_cej_2022_140160
crossref_primary_10_1016_j_orgel_2023_106797
crossref_primary_10_1039_D1TA01447A
crossref_primary_10_1007_s10854_023_10186_3
crossref_primary_10_1016_j_jechem_2021_04_058
crossref_primary_10_1039_D0SC06354A
crossref_primary_10_1021_acsaem_1c02005
crossref_primary_10_1002_adma_202204661
crossref_primary_10_1002_smll_202004877
crossref_primary_10_1039_D2TA09627G
crossref_primary_10_1016_j_cej_2021_131950
crossref_primary_10_1016_j_joule_2020_12_003
crossref_primary_10_1016_j_nanoen_2021_106362
crossref_primary_10_1016_j_nanoen_2025_110859
crossref_primary_10_1021_acsaem_2c01267
crossref_primary_10_1002_smll_202501762
crossref_primary_10_1002_aenm_202102290
crossref_primary_10_1002_smll_202100888
crossref_primary_10_1515_nanoph_2021_0052
crossref_primary_10_1039_D2TA00026A
crossref_primary_10_1126_science_abm5784
crossref_primary_10_1002_smtd_202201255
crossref_primary_10_1002_anie_202115663
crossref_primary_10_1016_j_mtener_2021_100759
crossref_primary_10_1038_s41467_022_33752_5
crossref_primary_10_7498_aps_73_20240561
crossref_primary_10_1016_j_nantod_2021_101357
crossref_primary_10_1007_s10854_023_10387_w
crossref_primary_10_1002_adfm_202303455
crossref_primary_10_1002_adma_202211207
crossref_primary_10_1016_j_surfin_2024_105593
crossref_primary_10_1016_j_joule_2021_12_006
crossref_primary_10_1016_j_cej_2022_136803
crossref_primary_10_1002_aenm_202304302
crossref_primary_10_1016_j_jallcom_2024_176341
crossref_primary_10_1002_aenm_202201509
crossref_primary_10_1021_acs_jpcc_2c03989
crossref_primary_10_1002_ente_202300295
crossref_primary_10_1002_smll_202102368
crossref_primary_10_1002_solr_202200145
crossref_primary_10_1021_acssuschemeng_4c04732
crossref_primary_10_1002_adfm_202308577
crossref_primary_10_1039_D1EE01695D
crossref_primary_10_1016_j_chemosphere_2022_136893
crossref_primary_10_1002_adma_202404517
crossref_primary_10_1007_s11426_024_2234_x
crossref_primary_10_1002_anie_202413303
crossref_primary_10_1021_acs_jpcc_1c02571
crossref_primary_10_1016_j_joule_2024_07_003
crossref_primary_10_1016_j_jallcom_2022_166891
crossref_primary_10_1002_aenm_202200305
crossref_primary_10_1039_D1TA07505E
crossref_primary_10_1039_D3CP01500A
crossref_primary_10_1039_D3EE00413A
crossref_primary_10_1016_j_solmat_2023_112375
crossref_primary_10_1007_s42114_023_00691_8
crossref_primary_10_3390_photonics11010087
crossref_primary_10_1039_D1TA06514A
crossref_primary_10_1007_s40820_021_00596_5
crossref_primary_10_1016_j_chempr_2021_04_002
Cites_doi 10.1038/ncomms9724
10.1126/science.aaa2725
10.1063/1.1736034
10.1002/adma.201802509
10.1038/nenergy.2017.135
10.1126/science.aav7911
10.1039/C6EE02598F
10.1021/jz500059v
10.1002/adma.201904408
10.1038/nphoton.2015.282
10.1038/nphoton.2016.62
10.1038/s41467-018-05454-4
10.1002/adma.201703852
10.1126/science.aat3583
10.1038/s41467-018-06709-w
10.1038/srep06071
10.1002/aenm.201500477
10.1002/adma.201604545
10.1016/j.joule.2017.09.007
10.1002/adma.201802041
10.1002/adma.201900390
10.1021/jacs.9b07381
10.1002/adma.201801370
10.1107/S0567740874003773
10.1088/1361-6463/aaac6d
10.1063/1.2130396
10.1021/acsami.8b07937
10.1002/adfm.201705363
10.1126/science.aay7044
10.1002/adma.201901152
10.1126/science.aal4211
10.1002/adfm.201808843
10.1016/j.isci.2018.11.003
10.1002/adma.201706186
10.1126/science.1254763
10.1002/adma.201405372
10.1002/adma.201505002
10.1038/nature18306
10.1002/adma.201401137
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202000571
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32449209
10_1002_adma_202000571
ADMA202000571
Genre article
Journal Article
GrantInformation_xml – fundername: Science and Technology Program of Guangzhou, China
  funderid: 201904010147
– fundername: National Natural Science Foundation of China
  funderid: 91733302; 51803060
– fundername: DFG
  funderid: BR 4031/13‐1
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  funderid: 2019B030302007
– fundername: Science and Technology Program of Guangdong Province
  funderid: 2018A030313045
– fundername: Ministry of Science and Technology
  funderid: 2017YFA0206600; 2019YFA0705900
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  grantid: 2019B030302007
– fundername: DFG
  grantid: BR 4031/13-1
– fundername: National Natural Science Foundation of China
  grantid: 91733302
– fundername: National Natural Science Foundation of China
  grantid: 51803060
– fundername: Science and Technology Program of Guangzhou, China
  grantid: 201904010147
– fundername: Science and Technology Program of Guangdong Province
  grantid: 2018A030313045
– fundername: Ministry of Science and Technology
  grantid: 2017YFA0206600
– fundername: Ministry of Science and Technology
  grantid: 2019YFA0705900
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4781-f40472e26fe0a391f898c73bbadb28dc9cbabccbabaf639ecb7eccd01c8ce2053
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 03:35:35 EDT 2025
Fri Jul 25 08:14:25 EDT 2025
Wed Feb 19 02:29:55 EST 2025
Thu Apr 24 23:03:21 EDT 2025
Tue Jul 01 02:32:48 EDT 2025
Wed Jan 22 16:33:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords high efficiency
2D/3D heterostructures
MA-free perovskite solar cells
energy loss
ambient stability
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4781-f40472e26fe0a391f898c73bbadb28dc9cbabccbabaf639ecb7eccd01c8ce2053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5750-9751
PMID 32449209
PQID 2418954783
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2406571380
proquest_journals_2418954783
pubmed_primary_32449209
crossref_citationtrail_10_1002_adma_202000571
crossref_primary_10_1002_adma_202000571
wiley_primary_10_1002_adma_202000571_ADMA202000571
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2018; 28
2017; 1
2015; 6
2015; 5
2017; 2
2015; 4
2015; 347
2019; 31
1974; 30
2016; 10
2014; 26
2019; 366
2005; 87
2017; 29
1961; 32
2019; 141
2017; 355
2019; 364
2018; 9
2014; 5
2015; 27
2016; 536
2019; 29
2018; 30
2018; 51
2016; 28
2018; 10
2014; 345
2016; 9
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 1
  start-page: 659
  year: 2017
  publication-title: Joule
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 51
  year: 2018
  publication-title: J. Phys. D: Appl. Phys.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 10
  start-page: 216
  year: 2016
  publication-title: Nat. Photonics
– volume: 364
  start-page: 475
  year: 2019
  publication-title: Science
– volume: 27
  start-page: 1837
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 6071
  year: 2015
  publication-title: Sci. Rep.
– volume: 32
  start-page: 510
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 680
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 3783
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 4482
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 337
  year: 2018
  publication-title: iScience
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 355
  start-page: 1288
  year: 2017
  publication-title: Science
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 2253
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 295
  year: 2016
  publication-title: Nat. Photonics
– volume: 536
  start-page: 312
  year: 2016
  publication-title: Nature
– volume: 26
  start-page: 4991
  year: 2014
  publication-title: Adv. Mater.
– volume: 30
  start-page: 813
  year: 1974
  publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 3021
  year: 2018
  publication-title: Nat. Commun.
– volume: 362
  start-page: 449
  year: 2018
  publication-title: Science
– volume: 366
  start-page: 749
  year: 2019
  publication-title: Science
– volume: 6
  start-page: 8724
  year: 2015
  publication-title: Nat. Commun.
– ident: e_1_2_4_34_1
  doi: 10.1038/ncomms9724
– ident: e_1_2_4_2_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_4_36_1
  doi: 10.1063/1.1736034
– ident: e_1_2_4_40_1
  doi: 10.1002/adma.201802509
– ident: e_1_2_4_12_1
  doi: 10.1038/nenergy.2017.135
– ident: e_1_2_4_18_1
  doi: 10.1126/science.aav7911
– ident: e_1_2_4_35_1
  doi: 10.1039/C6EE02598F
– ident: e_1_2_4_39_1
  doi: 10.1021/jz500059v
– ident: e_1_2_4_22_1
  doi: 10.1002/adma.201904408
– ident: e_1_2_4_26_1
  doi: 10.1038/nphoton.2015.282
– ident: e_1_2_4_32_1
  doi: 10.1038/nphoton.2016.62
– ident: e_1_2_4_11_1
  doi: 10.1038/s41467-018-05454-4
– ident: e_1_2_4_1_1
  doi: 10.1002/adma.201703852
– ident: e_1_2_4_16_1
  doi: 10.1126/science.aat3583
– ident: e_1_2_4_17_1
  doi: 10.1038/s41467-018-06709-w
– ident: e_1_2_4_37_1
  doi: 10.1038/srep06071
– ident: e_1_2_4_8_1
  doi: 10.1002/aenm.201500477
– ident: e_1_2_4_30_1
  doi: 10.1002/adma.201604545
– ident: e_1_2_4_5_1
  doi: 10.1016/j.joule.2017.09.007
– ident: e_1_2_4_4_1
– ident: e_1_2_4_33_1
  doi: 10.1002/adma.201802041
– ident: e_1_2_4_7_1
  doi: 10.1002/adma.201900390
– ident: e_1_2_4_14_1
  doi: 10.1021/jacs.9b07381
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201801370
– ident: e_1_2_4_20_1
  doi: 10.1107/S0567740874003773
– ident: e_1_2_4_24_1
  doi: 10.1088/1361-6463/aaac6d
– ident: e_1_2_4_38_1
  doi: 10.1063/1.2130396
– ident: e_1_2_4_27_1
  doi: 10.1021/acsami.8b07937
– ident: e_1_2_4_25_1
  doi: 10.1002/adfm.201705363
– ident: e_1_2_4_3_1
  doi: 10.1126/science.aay7044
– ident: e_1_2_4_19_1
  doi: 10.1002/adma.201901152
– ident: e_1_2_4_28_1
  doi: 10.1126/science.aal4211
– ident: e_1_2_4_6_1
  doi: 10.1002/adfm.201808843
– ident: e_1_2_4_13_1
  doi: 10.1016/j.isci.2018.11.003
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.201706186
– ident: e_1_2_4_15_1
  doi: 10.1126/science.1254763
– ident: e_1_2_4_31_1
  doi: 10.1002/adma.201405372
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201505002
– ident: e_1_2_4_21_1
  doi: 10.1038/nature18306
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.201401137
SSID ssj0009606
Score 2.6566715
Snippet Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000571
SubjectTerms 2D/3D heterostructures
ambient stability
Charge efficiency
Circuits
Crystal defects
Energy conversion efficiency
Energy dissipation
energy loss
Grain boundaries
Heterostructures
high efficiency
Materials science
MA‐free perovskite solar cells
Optoelectronics
Perovskites
Photovoltaic cells
Solar cells
Thickness
Title Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA‐Free Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000571
https://www.ncbi.nlm.nih.gov/pubmed/32449209
https://www.proquest.com/docview/2418954783
https://www.proquest.com/docview/2406571380
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTuUAtIUSXnKlSpzCZp2njyt2tyukhYqHxC3yY_ZClKAsW6mc-An8xv6SepJsdpeqqgSXKA87cWyP57Nn5jPAtyj2NJLBPRRGu-R34QodGbfLdShDZayKoUDh8UU0ug3O78K7pSj-mh-iXXAjyajGaxJwqaadBWmoNBVvEIWahFUQOTlsESq6WvBHETyvyPb80BVRkMxZGz3eWc2-qpX-gpqryLVSPcMtkPNC1x4n96ezR3Wqn17xOb7nr7Zhs8GlrFd3pI-whvkn2FhiK_wMxfdSGjSM9zt-n_3Asvg5pbVfNiKXmqJmop2VyCwOZoOKmsJqNCZzwy4fsGxWHbNfzAJclSEb934_vwxLxOV3XdNUm51hlk134HY4uDkbuc1-Da6mgFV3EhD1JPJogp70RXeSiETHvlLSKJ4YLbSSStNBTiwwQq1i24GM19WJRm5Hg11Yz4sc94AFUsf2NscwIZt1JI0dHSSZHGOuYxM64M7bK9UNmTntqZGlNQ0zT6ki07YiHThp0z_UNB7_THk4b_60EedpamFOIoj5zHfga_vYCiJZV2SOxYzSWDRnp_yJ58CXutu0n7KoNRDcEw7wqvH_U4a01x_32qv9t2Q6gA90XjsWH8K67QJ4ZOHTozquROQPT6IRlg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4QAcCDsOARoJxMkZu70fOIziDBOSCQgSKTenl5oLlh15MqBw4hPyK_mVfEK-hC5vyYAQElIOXCy53bZ7qa56XV39GuBVGDkKacE9SLSyKe7CTlSobZerQARSGxNDG4Unu-F4339_EBwswVm3F6bhh-gdbjQyan1NA5wc0oNL1lCha-Ig2msSRG4bV7mNJ9_MrG32dis1Xfya89Hm3sbYbg8WsBXtrLSnPnEkIg-n6AgvcadxEqvIk1JoyWOtEiWFVHQRU2PBUcnI1FQ7rooVcocOijBa_wYdI050_emnS8YqmhDU9H5eYCehH3c8kQ4fLJZ30Q7-Bm4XsXJt7EYrcN41UxPj8mV9fizX1fdfGCT_q3a8C3da6M2GzVi5B0tY3IfbVwgZH0D5rhIaNePpwEvZR6zKrzNyb7MxRQ2VDdnuvEJmoD7brNk3jNFmotDswxFWrWM1P2EGw8sc2WR48eN0VCFe_dZn8iawDczz2UPYv5YaP4LloizwCTBfqMgkcwxiWpYPhTYKUNCqasRVpAML7E5AMtXytdOxIXnWME3zjDou6zvOgjd9_qOGqeSPOdc6ectajTXLDJKLEyJ38yx42T82uoYWkESB5ZzyGMAauV7sWPC4kdP-VwaY-wl3Egt4LW1_KUM2TCfD_m71X156ATfHe5OdbGdrd_sp3KL0Jo56DZaNOOAzgxaP5fN6fDI4vG5B_gncGnTf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRUJw4P1IKWAkEKd0E-fpA4dV02VL2VIBlXoLjj25NEpW2S6onPgJ_BT-Cn-BX4Inr3ZBCAmpBy6R4jiJH-OZz-PxZ4CnYeQopAX3QGhlU9yFLVSobZerQAaZNiaGNgrP9sPpof_qKDhag2_9XpiWH2JwuNHIaPQ1DfC5zkdnpKFSN7xBtNUkiNwurHIPTz-ZSdvixW5ievgZ55Od99tTuztXwFa0sdLOfaJIRB7m6EhPuHksYhV5WSZ1xmOthMpkpugic2PAUWWRqah2XBUr5A6dE2GU_iU_dAQdFpG8PSOsovlAw-7nBbYI_biniXT4aLW8q2bwN2y7CpUbWze5Dt_7VmpDXI63lifZlvr8C4Hk_9SMN-BaB7zZuB0pN2ENy1tw9Rwd422oXtZSo2Y8GXkJO8C6-rgg5zabUsxQ1VLtLmtkBuiznYZ7w5hsJkvN3syx7tyqxSkzCD4rkM3GP758ndSI57_1jnwJbBuLYnEHDi-kxndhvaxKvA_MlyoyyRyDmBblQ6mN-pO0phpxFenAAruXj1R1bO10aEiRtjzTPKWOS4eOs-D5kH_e8pT8MedmL25pp68WqcFxsSBqN8-CJ8Njo2lo-UiWWC0pj4GrkevFjgX3WjEdfmVguS-4IyzgjbD9pQzpOJmNh7uNf3npMVw-SCbp6939vQdwhZLbIOpNWDfSgA8NVDzJHjWjk8GHi5bjn_tZc44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graded+2D%2F3D+Perovskite+Heterostructure+for+Efficient+and+Operationally+Stable+MA%E2%80%90Free+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yao%2C+Qin&rft.au=Xue%2C+Qifan&rft.au=Li%2C+Zhenchao&rft.au=Zhang%2C+Kaicheng&rft.date=2020-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=26&rft_id=info:doi/10.1002%2Fadma.202000571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202000571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon