Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA‐Free Perovskite Solar Cells
Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but comp...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 26; pp. e2000571 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open‐circuit voltage (Voc) deficit is circumvented by the incorporation of β‐guanidinopropionic acid (β‐GUA) molecules into an MA‐free bulk perovskite, which facilitates the formation of quasi‐2D structure with face‐on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA‐free PVSCs is improved.
The efficiency and operational stability of MA‐free FA0.95Cs0.05PbI3 perovskite solar cells can be simultaneously enhanced by the incorporation of the β‐guanidinopropionic acid (β‐GUA) molecule. The introduction of β‐GUA forms a 2D/3D hybrid perovskite phase, which effectively passivates the surface defects, resulting in an impressive power conversion efficiency of 22.2% with a substantial increase in Voc (from 1.01 to 1.14 V). |
---|---|
AbstractList | Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open‐circuit voltage (Voc) deficit is circumvented by the incorporation of β‐guanidinopropionic acid (β‐GUA) molecules into an MA‐free bulk perovskite, which facilitates the formation of quasi‐2D structure with face‐on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA‐free PVSCs is improved. Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open‐circuit voltage (Voc) deficit is circumvented by the incorporation of β‐guanidinopropionic acid (β‐GUA) molecules into an MA‐free bulk perovskite, which facilitates the formation of quasi‐2D structure with face‐on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA‐free PVSCs is improved. The efficiency and operational stability of MA‐free FA0.95Cs0.05PbI3 perovskite solar cells can be simultaneously enhanced by the incorporation of the β‐guanidinopropionic acid (β‐GUA) molecule. The introduction of β‐GUA forms a 2D/3D hybrid perovskite phase, which effectively passivates the surface defects, resulting in an impressive power conversion efficiency of 22.2% with a substantial increase in Voc (from 1.01 to 1.14 V). Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA‐free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open‐circuit voltage ( V oc ) deficit is circumvented by the incorporation of β‐guanidinopropionic acid (β‐GUA) molecules into an MA‐free bulk perovskite, which facilitates the formation of quasi‐2D structure with face‐on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA‐free PVSCs is improved. Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (Voc ) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved.Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (Voc ) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved. Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (V ) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved. |
Author | Yao, Qin Li, Ning Li, Zhenchao Cao, Yong Zhang, Teng Zhang, Kaicheng Yang, Shihe Brabec, Christoph J. Yip, Hin‐Lap Xue, Qifan |
Author_xml | – sequence: 1 givenname: Qin surname: Yao fullname: Yao, Qin organization: South China University of Technology – sequence: 2 givenname: Qifan surname: Xue fullname: Xue, Qifan email: qfxue@scut.edu.cn organization: South China Institute of Collaborative Innovation – sequence: 3 givenname: Zhenchao surname: Li fullname: Li, Zhenchao organization: South China University of Technology – sequence: 4 givenname: Kaicheng surname: Zhang fullname: Zhang, Kaicheng organization: Friedrich‐Alexander‐University Erlangen‐Nuremberg – sequence: 5 givenname: Teng surname: Zhang fullname: Zhang, Teng organization: The Hong Kong University of Science and Technology – sequence: 6 givenname: Ning surname: Li fullname: Li, Ning organization: Zhengzhou University – sequence: 7 givenname: Shihe surname: Yang fullname: Yang, Shihe organization: Peking University – sequence: 8 givenname: Christoph J. surname: Brabec fullname: Brabec, Christoph J. organization: Friedrich‐Alexander‐University Erlangen‐Nuremberg – sequence: 9 givenname: Hin‐Lap orcidid: 0000-0002-5750-9751 surname: Yip fullname: Yip, Hin‐Lap email: msangusyip@scut.edu.cn organization: South China Institute of Collaborative Innovation – sequence: 10 givenname: Yong surname: Cao fullname: Cao, Yong organization: South China University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32449209$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rVDEUhoNU7LS6dSkBN27uNF_3I8thph9CS4XqOuTmnkBq5mZMciuz8yf4G_tLmnFalYK4OeHA876cvO8ROhjDCAi9pWROCWEneljrOSOMEFK39AWa0ZrRShBZH6AZkbyuZCO6Q3SU0m1hZEOaV-iQMyEkI3KGwnnUAwyYrU74Cn-CGO7SV5cBX0AuS8pxMnmKgG2I-NRaZxyMGetxwNcbiDq7MGrvt_gm694Dvlrc__h5FgH-9roJXke8BO_Ta_TSap_gzeN7jL6cnX5eXlSX1-cfl4vLyoi2o5UVRLQMWGOBaC6p7WRnWt73euhZNxhpet2b3dC24RJM34IxA6GmM8BIzY_Rh73vJoZvE6Ss1i6ZcoEeIUxJMUGaEhjvSEHfP0NvwxTLr3YU7WRdLuKFevdITf0aBrWJbq3jVj1FWQCxB0yJLUWwyrj8K58ctfOKErVrTO0aU78bK7L5M9mT8z8Fci_47jxs_0Orxepq8Uf7ALBMqkI |
CitedBy_id | crossref_primary_10_1039_D4RA02191F crossref_primary_10_1002_bit_28783 crossref_primary_10_1016_j_surfin_2023_103641 crossref_primary_10_1039_D1TA08984F crossref_primary_10_1002_smtd_202400425 crossref_primary_10_1039_D3QM00574G crossref_primary_10_1002_adma_202208522 crossref_primary_10_1021_acsami_3c04243 crossref_primary_10_1021_acsmaterialslett_3c00027 crossref_primary_10_1039_D2SC01804G crossref_primary_10_1002_solr_202200710 crossref_primary_10_1016_j_orgel_2022_106525 crossref_primary_10_1002_adfm_202112126 crossref_primary_10_1039_D0TA12342K crossref_primary_10_1063_5_0056106 crossref_primary_10_1002_idm2_12023 crossref_primary_10_1016_j_fmre_2021_07_003 crossref_primary_10_1016_j_solmat_2022_112135 crossref_primary_10_1016_j_nanoen_2021_106666 crossref_primary_10_1002_solr_202201138 crossref_primary_10_1021_acs_nanolett_3c00486 crossref_primary_10_1002_adma_202310203 crossref_primary_10_1002_anie_202419070 crossref_primary_10_1039_D1TA08402J crossref_primary_10_1039_D4CP02010C crossref_primary_10_1002_ange_202303177 crossref_primary_10_1002_ente_202500305 crossref_primary_10_1002_adma_202105635 crossref_primary_10_1002_solr_202200061 crossref_primary_10_1002_adfm_202407897 crossref_primary_10_1002_adfm_202107359 crossref_primary_10_1021_acsenergylett_1c00531 crossref_primary_10_1016_j_cej_2021_133065 crossref_primary_10_1039_D1SC04769H crossref_primary_10_1039_D0TA11448K crossref_primary_10_1021_acsami_3c14834 crossref_primary_10_1016_j_mtener_2020_100590 crossref_primary_10_1039_D1CS00841B crossref_primary_10_1039_D2EE02227C crossref_primary_10_1016_j_jpowsour_2021_229451 crossref_primary_10_1016_j_orgel_2022_106544 crossref_primary_10_1021_acs_chemmater_0c04931 crossref_primary_10_1063_5_0100183 crossref_primary_10_15541_jim20230016 crossref_primary_10_1039_D2SE00398H crossref_primary_10_1039_D4CC05131A crossref_primary_10_3390_en14206660 crossref_primary_10_1002_aenm_202301888 crossref_primary_10_1002_aenm_202201436 crossref_primary_10_1016_j_jechem_2021_08_030 crossref_primary_10_1002_admi_202002041 crossref_primary_10_1021_acsami_3c01881 crossref_primary_10_1002_aenm_202200111 crossref_primary_10_1002_adfm_202304848 crossref_primary_10_1021_acsami_3c15594 crossref_primary_10_1039_D0EE02575E crossref_primary_10_1021_acsenergylett_2c01605 crossref_primary_10_1002_adfm_202314086 crossref_primary_10_1021_acsami_2c15928 crossref_primary_10_1039_D3TA01496G crossref_primary_10_1039_D0CE01695K crossref_primary_10_1002_adfm_202300113 crossref_primary_10_1021_acsenergylett_1c00794 crossref_primary_10_1360_SSPMA_2023_0066 crossref_primary_10_1016_j_joule_2022_12_013 crossref_primary_10_1021_acsenergylett_1c01649 crossref_primary_10_1021_acsami_1c21041 crossref_primary_10_1002_aesr_202100061 crossref_primary_10_1002_anie_202303177 crossref_primary_10_1002_adfm_202104036 crossref_primary_10_1002_advs_202105103 crossref_primary_10_1016_j_mser_2023_100727 crossref_primary_10_1021_acsami_2c10928 crossref_primary_10_1021_acs_jpclett_3c01303 crossref_primary_10_1021_acsenergylett_1c01878 crossref_primary_10_1039_D1TA06067H crossref_primary_10_1002_solr_202301077 crossref_primary_10_1002_smll_202104100 crossref_primary_10_1088_1674_1056_ad6259 crossref_primary_10_1021_acsami_4c08198 crossref_primary_10_1021_acsami_4c13540 crossref_primary_10_1002_admi_202202249 crossref_primary_10_1002_adma_202302071 crossref_primary_10_1016_j_jechem_2020_09_026 crossref_primary_10_1021_acsaem_2c00354 crossref_primary_10_1002_adma_202006745 crossref_primary_10_1016_j_cej_2023_141524 crossref_primary_10_1002_adfm_202304140 crossref_primary_10_1039_D1TA04330G crossref_primary_10_1016_j_chemosphere_2023_140395 crossref_primary_10_1002_nano_202000287 crossref_primary_10_1038_s41467_024_47112_y crossref_primary_10_1002_adfm_202407860 crossref_primary_10_1002_advs_202102730 crossref_primary_10_3390_en16186498 crossref_primary_10_1016_j_cej_2023_142720 crossref_primary_10_1021_acsaem_3c02777 crossref_primary_10_1039_D1NA00173F crossref_primary_10_1039_D4EE00912F crossref_primary_10_1002_adma_202105170 crossref_primary_10_1016_j_nanoen_2021_106846 crossref_primary_10_1021_acsami_1c23118 crossref_primary_10_1007_s12274_023_6291_9 crossref_primary_10_1016_j_nanoen_2021_106370 crossref_primary_10_1002_ange_202115663 crossref_primary_10_1002_adfm_202103130 crossref_primary_10_1021_acsami_2c09201 crossref_primary_10_1002_aenm_202200632 crossref_primary_10_1016_j_isci_2023_107248 crossref_primary_10_1021_acsnano_1c02191 crossref_primary_10_1002_eom2_12158 crossref_primary_10_1039_D2EE00433J crossref_primary_10_1002_solr_202100285 crossref_primary_10_1016_j_cej_2021_133209 crossref_primary_10_1002_adma_202310619 crossref_primary_10_1002_smll_202100678 crossref_primary_10_1002_adma_202302552 crossref_primary_10_1016_j_cej_2024_157369 crossref_primary_10_1016_j_solmat_2022_111682 crossref_primary_10_1002_solr_202300740 crossref_primary_10_1039_D1TA09705A crossref_primary_10_1002_smtd_202200933 crossref_primary_10_1016_j_chempr_2021_08_009 crossref_primary_10_1002_ange_202413303 crossref_primary_10_1016_j_cej_2020_126298 crossref_primary_10_1002_advs_202101856 crossref_primary_10_1016_j_cej_2023_143341 crossref_primary_10_1016_j_apmt_2024_102187 crossref_primary_10_1016_j_mssp_2022_106952 crossref_primary_10_1007_s40843_021_1762_0 crossref_primary_10_1002_ange_202419070 crossref_primary_10_1039_D4CC02299H crossref_primary_10_1016_j_jcis_2023_07_110 crossref_primary_10_1016_j_cej_2022_140160 crossref_primary_10_1016_j_orgel_2023_106797 crossref_primary_10_1039_D1TA01447A crossref_primary_10_1007_s10854_023_10186_3 crossref_primary_10_1016_j_jechem_2021_04_058 crossref_primary_10_1039_D0SC06354A crossref_primary_10_1021_acsaem_1c02005 crossref_primary_10_1002_adma_202204661 crossref_primary_10_1002_smll_202004877 crossref_primary_10_1039_D2TA09627G crossref_primary_10_1016_j_cej_2021_131950 crossref_primary_10_1016_j_joule_2020_12_003 crossref_primary_10_1016_j_nanoen_2021_106362 crossref_primary_10_1016_j_nanoen_2025_110859 crossref_primary_10_1021_acsaem_2c01267 crossref_primary_10_1002_smll_202501762 crossref_primary_10_1002_aenm_202102290 crossref_primary_10_1002_smll_202100888 crossref_primary_10_1515_nanoph_2021_0052 crossref_primary_10_1039_D2TA00026A crossref_primary_10_1126_science_abm5784 crossref_primary_10_1002_smtd_202201255 crossref_primary_10_1002_anie_202115663 crossref_primary_10_1016_j_mtener_2021_100759 crossref_primary_10_1038_s41467_022_33752_5 crossref_primary_10_7498_aps_73_20240561 crossref_primary_10_1016_j_nantod_2021_101357 crossref_primary_10_1007_s10854_023_10387_w crossref_primary_10_1002_adfm_202303455 crossref_primary_10_1002_adma_202211207 crossref_primary_10_1016_j_surfin_2024_105593 crossref_primary_10_1016_j_joule_2021_12_006 crossref_primary_10_1016_j_cej_2022_136803 crossref_primary_10_1002_aenm_202304302 crossref_primary_10_1016_j_jallcom_2024_176341 crossref_primary_10_1002_aenm_202201509 crossref_primary_10_1021_acs_jpcc_2c03989 crossref_primary_10_1002_ente_202300295 crossref_primary_10_1002_smll_202102368 crossref_primary_10_1002_solr_202200145 crossref_primary_10_1021_acssuschemeng_4c04732 crossref_primary_10_1002_adfm_202308577 crossref_primary_10_1039_D1EE01695D crossref_primary_10_1016_j_chemosphere_2022_136893 crossref_primary_10_1002_adma_202404517 crossref_primary_10_1007_s11426_024_2234_x crossref_primary_10_1002_anie_202413303 crossref_primary_10_1021_acs_jpcc_1c02571 crossref_primary_10_1016_j_joule_2024_07_003 crossref_primary_10_1016_j_jallcom_2022_166891 crossref_primary_10_1002_aenm_202200305 crossref_primary_10_1039_D1TA07505E crossref_primary_10_1039_D3CP01500A crossref_primary_10_1039_D3EE00413A crossref_primary_10_1016_j_solmat_2023_112375 crossref_primary_10_1007_s42114_023_00691_8 crossref_primary_10_3390_photonics11010087 crossref_primary_10_1039_D1TA06514A crossref_primary_10_1007_s40820_021_00596_5 crossref_primary_10_1016_j_chempr_2021_04_002 |
Cites_doi | 10.1038/ncomms9724 10.1126/science.aaa2725 10.1063/1.1736034 10.1002/adma.201802509 10.1038/nenergy.2017.135 10.1126/science.aav7911 10.1039/C6EE02598F 10.1021/jz500059v 10.1002/adma.201904408 10.1038/nphoton.2015.282 10.1038/nphoton.2016.62 10.1038/s41467-018-05454-4 10.1002/adma.201703852 10.1126/science.aat3583 10.1038/s41467-018-06709-w 10.1038/srep06071 10.1002/aenm.201500477 10.1002/adma.201604545 10.1016/j.joule.2017.09.007 10.1002/adma.201802041 10.1002/adma.201900390 10.1021/jacs.9b07381 10.1002/adma.201801370 10.1107/S0567740874003773 10.1088/1361-6463/aaac6d 10.1063/1.2130396 10.1021/acsami.8b07937 10.1002/adfm.201705363 10.1126/science.aay7044 10.1002/adma.201901152 10.1126/science.aal4211 10.1002/adfm.201808843 10.1016/j.isci.2018.11.003 10.1002/adma.201706186 10.1126/science.1254763 10.1002/adma.201405372 10.1002/adma.201505002 10.1038/nature18306 10.1002/adma.201401137 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202000571 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32449209 10_1002_adma_202000571 ADMA202000571 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Science and Technology Program of Guangzhou, China funderid: 201904010147 – fundername: National Natural Science Foundation of China funderid: 91733302; 51803060 – fundername: DFG funderid: BR 4031/13‐1 – fundername: Guangdong Major Project of Basic and Applied Basic Research funderid: 2019B030302007 – fundername: Science and Technology Program of Guangdong Province funderid: 2018A030313045 – fundername: Ministry of Science and Technology funderid: 2017YFA0206600; 2019YFA0705900 – fundername: Guangdong Major Project of Basic and Applied Basic Research grantid: 2019B030302007 – fundername: DFG grantid: BR 4031/13-1 – fundername: National Natural Science Foundation of China grantid: 91733302 – fundername: National Natural Science Foundation of China grantid: 51803060 – fundername: Science and Technology Program of Guangzhou, China grantid: 201904010147 – fundername: Science and Technology Program of Guangdong Province grantid: 2018A030313045 – fundername: Ministry of Science and Technology grantid: 2017YFA0206600 – fundername: Ministry of Science and Technology grantid: 2019YFA0705900 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4781-f40472e26fe0a391f898c73bbadb28dc9cbabccbabaf639ecb7eccd01c8ce2053 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 03:35:35 EDT 2025 Fri Jul 25 08:14:25 EDT 2025 Wed Feb 19 02:29:55 EST 2025 Thu Apr 24 23:03:21 EDT 2025 Tue Jul 01 02:32:48 EDT 2025 Wed Jan 22 16:33:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | high efficiency 2D/3D heterostructures MA-free perovskite solar cells energy loss ambient stability |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4781-f40472e26fe0a391f898c73bbadb28dc9cbabccbabaf639ecb7eccd01c8ce2053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5750-9751 |
PMID | 32449209 |
PQID | 2418954783 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2406571380 proquest_journals_2418954783 pubmed_primary_32449209 crossref_citationtrail_10_1002_adma_202000571 crossref_primary_10_1002_adma_202000571 wiley_primary_10_1002_adma_202000571_ADMA202000571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2018; 28 2017; 1 2015; 6 2015; 5 2017; 2 2015; 4 2015; 347 2019; 31 1974; 30 2016; 10 2014; 26 2019; 366 2005; 87 2017; 29 1961; 32 2019; 141 2017; 355 2019; 364 2018; 9 2014; 5 2015; 27 2016; 536 2019; 29 2018; 30 2018; 51 2016; 28 2018; 10 2014; 345 2016; 9 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 1 start-page: 659 year: 2017 publication-title: Joule – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 51 year: 2018 publication-title: J. Phys. D: Appl. Phys. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 10 start-page: 216 year: 2016 publication-title: Nat. Photonics – volume: 364 start-page: 475 year: 2019 publication-title: Science – volume: 27 start-page: 1837 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 6071 year: 2015 publication-title: Sci. Rep. – volume: 32 start-page: 510 year: 1961 publication-title: J. Appl. Phys. – volume: 5 start-page: 680 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 3783 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 start-page: 4482 year: 2018 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 337 year: 2018 publication-title: iScience – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 355 start-page: 1288 year: 2017 publication-title: Science – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 2253 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 295 year: 2016 publication-title: Nat. Photonics – volume: 536 start-page: 312 year: 2016 publication-title: Nature – volume: 26 start-page: 4991 year: 2014 publication-title: Adv. Mater. – volume: 30 start-page: 813 year: 1974 publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. – volume: 87 year: 2005 publication-title: Appl. Phys. Lett. – volume: 345 start-page: 295 year: 2014 publication-title: Science – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 3021 year: 2018 publication-title: Nat. Commun. – volume: 362 start-page: 449 year: 2018 publication-title: Science – volume: 366 start-page: 749 year: 2019 publication-title: Science – volume: 6 start-page: 8724 year: 2015 publication-title: Nat. Commun. – ident: e_1_2_4_34_1 doi: 10.1038/ncomms9724 – ident: e_1_2_4_2_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_4_36_1 doi: 10.1063/1.1736034 – ident: e_1_2_4_40_1 doi: 10.1002/adma.201802509 – ident: e_1_2_4_12_1 doi: 10.1038/nenergy.2017.135 – ident: e_1_2_4_18_1 doi: 10.1126/science.aav7911 – ident: e_1_2_4_35_1 doi: 10.1039/C6EE02598F – ident: e_1_2_4_39_1 doi: 10.1021/jz500059v – ident: e_1_2_4_22_1 doi: 10.1002/adma.201904408 – ident: e_1_2_4_26_1 doi: 10.1038/nphoton.2015.282 – ident: e_1_2_4_32_1 doi: 10.1038/nphoton.2016.62 – ident: e_1_2_4_11_1 doi: 10.1038/s41467-018-05454-4 – ident: e_1_2_4_1_1 doi: 10.1002/adma.201703852 – ident: e_1_2_4_16_1 doi: 10.1126/science.aat3583 – ident: e_1_2_4_17_1 doi: 10.1038/s41467-018-06709-w – ident: e_1_2_4_37_1 doi: 10.1038/srep06071 – ident: e_1_2_4_8_1 doi: 10.1002/aenm.201500477 – ident: e_1_2_4_30_1 doi: 10.1002/adma.201604545 – ident: e_1_2_4_5_1 doi: 10.1016/j.joule.2017.09.007 – ident: e_1_2_4_4_1 – ident: e_1_2_4_33_1 doi: 10.1002/adma.201802041 – ident: e_1_2_4_7_1 doi: 10.1002/adma.201900390 – ident: e_1_2_4_14_1 doi: 10.1021/jacs.9b07381 – ident: e_1_2_4_23_1 doi: 10.1002/adma.201801370 – ident: e_1_2_4_20_1 doi: 10.1107/S0567740874003773 – ident: e_1_2_4_24_1 doi: 10.1088/1361-6463/aaac6d – ident: e_1_2_4_38_1 doi: 10.1063/1.2130396 – ident: e_1_2_4_27_1 doi: 10.1021/acsami.8b07937 – ident: e_1_2_4_25_1 doi: 10.1002/adfm.201705363 – ident: e_1_2_4_3_1 doi: 10.1126/science.aay7044 – ident: e_1_2_4_19_1 doi: 10.1002/adma.201901152 – ident: e_1_2_4_28_1 doi: 10.1126/science.aal4211 – ident: e_1_2_4_6_1 doi: 10.1002/adfm.201808843 – ident: e_1_2_4_13_1 doi: 10.1016/j.isci.2018.11.003 – ident: e_1_2_4_29_1 doi: 10.1002/adma.201706186 – ident: e_1_2_4_15_1 doi: 10.1126/science.1254763 – ident: e_1_2_4_31_1 doi: 10.1002/adma.201405372 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201505002 – ident: e_1_2_4_21_1 doi: 10.1038/nature18306 – ident: e_1_2_4_9_1 doi: 10.1002/adma.201401137 |
SSID | ssj0009606 |
Score | 2.6566715 |
Snippet | Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2000571 |
SubjectTerms | 2D/3D heterostructures ambient stability Charge efficiency Circuits Crystal defects Energy conversion efficiency Energy dissipation energy loss Grain boundaries Heterostructures high efficiency Materials science MA‐free perovskite solar cells Optoelectronics Perovskites Photovoltaic cells Solar cells Thickness |
Title | Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA‐Free Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000571 https://www.ncbi.nlm.nih.gov/pubmed/32449209 https://www.proquest.com/docview/2418954783 https://www.proquest.com/docview/2406571380 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTuUAtIUSXnKlSpzCZp2njyt2tyukhYqHxC3yY_ZClKAsW6mc-An8xv6SepJsdpeqqgSXKA87cWyP57Nn5jPAtyj2NJLBPRRGu-R34QodGbfLdShDZayKoUDh8UU0ug3O78K7pSj-mh-iXXAjyajGaxJwqaadBWmoNBVvEIWahFUQOTlsESq6WvBHETyvyPb80BVRkMxZGz3eWc2-qpX-gpqryLVSPcMtkPNC1x4n96ezR3Wqn17xOb7nr7Zhs8GlrFd3pI-whvkn2FhiK_wMxfdSGjSM9zt-n_3Asvg5pbVfNiKXmqJmop2VyCwOZoOKmsJqNCZzwy4fsGxWHbNfzAJclSEb934_vwxLxOV3XdNUm51hlk134HY4uDkbuc1-Da6mgFV3EhD1JPJogp70RXeSiETHvlLSKJ4YLbSSStNBTiwwQq1i24GM19WJRm5Hg11Yz4sc94AFUsf2NscwIZt1JI0dHSSZHGOuYxM64M7bK9UNmTntqZGlNQ0zT6ki07YiHThp0z_UNB7_THk4b_60EedpamFOIoj5zHfga_vYCiJZV2SOxYzSWDRnp_yJ58CXutu0n7KoNRDcEw7wqvH_U4a01x_32qv9t2Q6gA90XjsWH8K67QJ4ZOHTozquROQPT6IRlg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4QAcCDsOARoJxMkZu70fOIziDBOSCQgSKTenl5oLlh15MqBw4hPyK_mVfEK-hC5vyYAQElIOXCy53bZ7qa56XV39GuBVGDkKacE9SLSyKe7CTlSobZerQARSGxNDG4Unu-F4339_EBwswVm3F6bhh-gdbjQyan1NA5wc0oNL1lCha-Ig2msSRG4bV7mNJ9_MrG32dis1Xfya89Hm3sbYbg8WsBXtrLSnPnEkIg-n6AgvcadxEqvIk1JoyWOtEiWFVHQRU2PBUcnI1FQ7rooVcocOijBa_wYdI050_emnS8YqmhDU9H5eYCehH3c8kQ4fLJZ30Q7-Bm4XsXJt7EYrcN41UxPj8mV9fizX1fdfGCT_q3a8C3da6M2GzVi5B0tY3IfbVwgZH0D5rhIaNePpwEvZR6zKrzNyb7MxRQ2VDdnuvEJmoD7brNk3jNFmotDswxFWrWM1P2EGw8sc2WR48eN0VCFe_dZn8iawDczz2UPYv5YaP4LloizwCTBfqMgkcwxiWpYPhTYKUNCqasRVpAML7E5AMtXytdOxIXnWME3zjDou6zvOgjd9_qOGqeSPOdc6ectajTXLDJKLEyJ38yx42T82uoYWkESB5ZzyGMAauV7sWPC4kdP-VwaY-wl3Egt4LW1_KUM2TCfD_m71X156ATfHe5OdbGdrd_sp3KL0Jo56DZaNOOAzgxaP5fN6fDI4vG5B_gncGnTf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRUJw4P1IKWAkEKd0E-fpA4dV02VL2VIBlXoLjj25NEpW2S6onPgJ_BT-Cn-BX4Inr3ZBCAmpBy6R4jiJH-OZz-PxZ4CnYeQopAX3QGhlU9yFLVSobZerQAaZNiaGNgrP9sPpof_qKDhag2_9XpiWH2JwuNHIaPQ1DfC5zkdnpKFSN7xBtNUkiNwurHIPTz-ZSdvixW5ievgZ55Od99tTuztXwFa0sdLOfaJIRB7m6EhPuHksYhV5WSZ1xmOthMpkpugic2PAUWWRqah2XBUr5A6dE2GU_iU_dAQdFpG8PSOsovlAw-7nBbYI_biniXT4aLW8q2bwN2y7CpUbWze5Dt_7VmpDXI63lifZlvr8C4Hk_9SMN-BaB7zZuB0pN2ENy1tw9Rwd422oXtZSo2Y8GXkJO8C6-rgg5zabUsxQ1VLtLmtkBuiznYZ7w5hsJkvN3syx7tyqxSkzCD4rkM3GP758ndSI57_1jnwJbBuLYnEHDi-kxndhvaxKvA_MlyoyyRyDmBblQ6mN-pO0phpxFenAAruXj1R1bO10aEiRtjzTPKWOS4eOs-D5kH_e8pT8MedmL25pp68WqcFxsSBqN8-CJ8Njo2lo-UiWWC0pj4GrkevFjgX3WjEdfmVguS-4IyzgjbD9pQzpOJmNh7uNf3npMVw-SCbp6939vQdwhZLbIOpNWDfSgA8NVDzJHjWjk8GHi5bjn_tZc44 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graded+2D%2F3D+Perovskite+Heterostructure+for+Efficient+and+Operationally+Stable+MA%E2%80%90Free+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yao%2C+Qin&rft.au=Xue%2C+Qifan&rft.au=Li%2C+Zhenchao&rft.au=Zhang%2C+Kaicheng&rft.date=2020-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=26&rft_id=info:doi/10.1002%2Fadma.202000571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202000571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |