Advanced Porous Materials in Mixed Matrix Membranes

Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix memb...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 47; pp. e1802401 - n/a
Main Authors Cheng, Youdong, Ying, Yunpan, Japip, Susilo, Jiang, Shu‐Dong, Chung, Tai‐Shung, Zhang, Sui, Zhao, Dan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal–organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high‐performance membranes to meet the urgent needs of clean energy and environmental sustainability. The recent research progress in exploring various types of advanced porous materials as promising fillers in mixed matrix membranes (MMMs) is summarized. Along with this, novel MMM design and enhanced membrane separation performance induced by these advanced porous fillers are discussed in detail. Finally, current challenges and future directions for industrial implementation of these MMMs are highlighted.
AbstractList Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal-organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high-performance membranes to meet the urgent needs of clean energy and environmental sustainability.
Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal-organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high-performance membranes to meet the urgent needs of clean energy and environmental sustainability.Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal-organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high-performance membranes to meet the urgent needs of clean energy and environmental sustainability.
Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal–organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high‐performance membranes to meet the urgent needs of clean energy and environmental sustainability. The recent research progress in exploring various types of advanced porous materials as promising fillers in mixed matrix membranes (MMMs) is summarized. Along with this, novel MMM design and enhanced membrane separation performance induced by these advanced porous fillers are discussed in detail. Finally, current challenges and future directions for industrial implementation of these MMMs are highlighted.
Author Jiang, Shu‐Dong
Chung, Tai‐Shung
Zhang, Sui
Zhao, Dan
Cheng, Youdong
Ying, Yunpan
Japip, Susilo
Author_xml – sequence: 1
  givenname: Youdong
  surname: Cheng
  fullname: Cheng, Youdong
  organization: National University of Singapore
– sequence: 2
  givenname: Yunpan
  surname: Ying
  fullname: Ying, Yunpan
  organization: National University of Singapore
– sequence: 3
  givenname: Susilo
  surname: Japip
  fullname: Japip, Susilo
  organization: National University of Singapore
– sequence: 4
  givenname: Shu‐Dong
  surname: Jiang
  fullname: Jiang, Shu‐Dong
  organization: National University of Singapore
– sequence: 5
  givenname: Tai‐Shung
  surname: Chung
  fullname: Chung, Tai‐Shung
  email: chencts@nus.edu.sg
  organization: National University of Singapore
– sequence: 6
  givenname: Sui
  surname: Zhang
  fullname: Zhang, Sui
  email: chezhangsui@nus.edu.sg
  organization: National University of Singapore
– sequence: 7
  givenname: Dan
  orcidid: 0000-0002-4427-2150
  surname: Zhao
  fullname: Zhao, Dan
  email: chezhao@nus.edu.sg
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30048014$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLAzEURoNU7EO3LmXAjZupN4_JTJalPqFFF92HTCYDKfOoyVTbf29Ka4WCuAiB5JzcL98Q9Zq2MQhdYxhjAHKvilqNCeAMCAN8hgY4IThmIJIeGoCgSSw4y_po6P0SAAQHfoH6FIBlgNkA0UnxqRptiui9de3aR3PVGWdV5SPbRHO7CTfhyNlNNDd17lRj_CU6LwNgrg77CC2eHhfTl3j29vw6ncxizdIMx0bzVKQYFIUi40UCORdaFCnkKWF5mRSEmoSVJQ0rZ4Kp8AWtWMmhZDoxdITu9s-uXPuxNr6TtfXaVFXIEJJKAikXmKacBfT2BF22a9eEcJJgmgClmJFA3RyodV6bQq6crZXbyp82AjDeA9q13jtTHhEMcle33NUtj3UHgZ0I2naqs23TOWWrvzWx175sZbb_DJGTh_nk1_0GUACRbA
CitedBy_id crossref_primary_10_1021_acsanm_4c00790
crossref_primary_10_1021_acs_inorgchem_3c03425
crossref_primary_10_1021_acs_chemrev_9b00803
crossref_primary_10_1016_j_jcis_2019_10_055
crossref_primary_10_1016_j_seppur_2020_118101
crossref_primary_10_1016_j_seppur_2021_118860
crossref_primary_10_1021_acs_iecr_2c01798
crossref_primary_10_3390_polym13060931
crossref_primary_10_1039_C9CS00322C
crossref_primary_10_1016_j_memsci_2022_121311
crossref_primary_10_1016_j_memsci_2021_120071
crossref_primary_10_1002_ange_201904766
crossref_primary_10_1016_j_cej_2020_128082
crossref_primary_10_1007_s11426_023_1607_4
crossref_primary_10_2166_ws_2023_204
crossref_primary_10_1002_anie_202418098
crossref_primary_10_1002_smll_202208177
crossref_primary_10_1002_app_54217
crossref_primary_10_1126_sciadv_adm9620
crossref_primary_10_3390_en17215430
crossref_primary_10_1016_j_seppur_2021_119046
crossref_primary_10_1021_acsami_0c05176
crossref_primary_10_1002_adma_202201339
crossref_primary_10_1002_adtp_202000245
crossref_primary_10_1088_1361_6463_abafdd
crossref_primary_10_1002_pat_5645
crossref_primary_10_1016_j_seppur_2024_128254
crossref_primary_10_1039_D1CS01061A
crossref_primary_10_1088_2399_7532_ac005f
crossref_primary_10_1039_C9TA12028A
crossref_primary_10_1080_15422119_2024_2322425
crossref_primary_10_1002_app_56887
crossref_primary_10_1021_acs_iecr_2c04160
crossref_primary_10_1002_asia_202000053
crossref_primary_10_1002_aic_18426
crossref_primary_10_3390_polym15081950
crossref_primary_10_3390_membranes12070646
crossref_primary_10_1016_j_seppur_2022_122067
crossref_primary_10_1039_C9ME00154A
crossref_primary_10_1002_ange_202315057
crossref_primary_10_1021_acssuschemeng_9b07026
crossref_primary_10_1039_D3CS00866E
crossref_primary_10_1002_adts_202200159
crossref_primary_10_1002_advs_202002142
crossref_primary_10_1002_anie_202216549
crossref_primary_10_1038_s41467_023_36848_8
crossref_primary_10_1016_j_seppur_2020_116708
crossref_primary_10_1002_cssc_201902341
crossref_primary_10_3390_polym15132951
crossref_primary_10_1007_s13738_024_03135_2
crossref_primary_10_1016_j_scitotenv_2023_168881
crossref_primary_10_1016_j_seppur_2022_121520
crossref_primary_10_1021_acsami_0c18707
crossref_primary_10_1080_15422119_2019_1609986
crossref_primary_10_1021_acsami_3c03943
crossref_primary_10_1039_D2TA00138A
crossref_primary_10_1016_j_cej_2024_156096
crossref_primary_10_1002_mame_202100298
crossref_primary_10_1016_j_seppur_2021_119707
crossref_primary_10_1039_C9CC05019A
crossref_primary_10_1016_j_cej_2022_140447
crossref_primary_10_1038_s41565_022_01209_x
crossref_primary_10_1021_acs_analchem_1c03982
crossref_primary_10_1016_j_seppur_2023_123563
crossref_primary_10_1002_jctb_6963
crossref_primary_10_1002_sstr_202000078
crossref_primary_10_1002_adfm_202103973
crossref_primary_10_3390_membranes12020200
crossref_primary_10_1039_C9TA05401D
crossref_primary_10_1002_smll_202201982
crossref_primary_10_1016_j_memsci_2020_118221
crossref_primary_10_1016_j_seppur_2022_123057
crossref_primary_10_1016_j_trechm_2020_01_002
crossref_primary_10_1002_anie_202004657
crossref_primary_10_1007_s13762_024_05525_8
crossref_primary_10_1021_acs_iecr_2c00303
crossref_primary_10_1002_anie_202205481
crossref_primary_10_1134_S1070427220020147
crossref_primary_10_1016_j_memsci_2019_117761
crossref_primary_10_1007_s11426_024_2020_8
crossref_primary_10_3390_polym16233240
crossref_primary_10_1039_C8TA10333J
crossref_primary_10_1016_j_memsci_2018_09_041
crossref_primary_10_1002_adma_202105156
crossref_primary_10_1016_j_seppur_2021_118677
crossref_primary_10_1002_ange_202014893
crossref_primary_10_1126_science_abe0192
crossref_primary_10_1002_chem_201903519
crossref_primary_10_1515_revce_2018_0091
crossref_primary_10_1016_j_micromeso_2021_111674
crossref_primary_10_1016_j_jtice_2020_10_032
crossref_primary_10_1016_j_memsci_2020_118245
crossref_primary_10_1016_j_ccr_2023_215603
crossref_primary_10_1021_acs_iecr_2c00645
crossref_primary_10_1016_j_seppur_2020_116865
crossref_primary_10_1002_adfm_202101335
crossref_primary_10_1039_C9TA04664J
crossref_primary_10_1021_acs_iecr_9b04632
crossref_primary_10_1002_ange_202004657
crossref_primary_10_1021_acsami_9b17516
crossref_primary_10_1039_D4CC02669A
crossref_primary_10_1016_j_cej_2020_127004
crossref_primary_10_1021_acs_chemmater_9b04907
crossref_primary_10_1021_acsami_0c19554
crossref_primary_10_1016_j_seppur_2024_127221
crossref_primary_10_1002_app_52309
crossref_primary_10_1002_aic_18606
crossref_primary_10_1007_s12274_023_5874_9
crossref_primary_10_1016_j_memsci_2018_11_060
crossref_primary_10_1002_advs_202002190
crossref_primary_10_1002_ange_202205481
crossref_primary_10_1016_j_seppur_2023_123487
crossref_primary_10_3390_ijms25020712
crossref_primary_10_1155_2024_2107340
crossref_primary_10_1016_j_cej_2022_139818
crossref_primary_10_1016_j_seppur_2024_129889
crossref_primary_10_12677_se_2025_151001
crossref_primary_10_1021_acsami_9b16332
crossref_primary_10_3389_fchem_2024_1502401
crossref_primary_10_1039_D4SC04793A
crossref_primary_10_1016_j_apsusc_2021_150173
crossref_primary_10_1021_acsomega_8b03408
crossref_primary_10_1002_anie_202014893
crossref_primary_10_1063_5_0159512
crossref_primary_10_1021_acsami_9b21802
crossref_primary_10_1021_acsami_8b12556
crossref_primary_10_1039_D4MA00705K
crossref_primary_10_1021_acsami_0c22124
crossref_primary_10_1021_acsami_1c24759
crossref_primary_10_1039_D4TA01357C
crossref_primary_10_1016_j_cjche_2019_03_007
crossref_primary_10_1016_j_cej_2024_149742
crossref_primary_10_1016_j_seppur_2020_118190
crossref_primary_10_1016_j_seppur_2023_124227
crossref_primary_10_1016_j_memsci_2021_119803
crossref_primary_10_1016_j_memsci_2020_118795
crossref_primary_10_1002_adma_202001383
crossref_primary_10_1039_D2ME00227B
crossref_primary_10_1002_adma_202107891
crossref_primary_10_1021_acs_estlett_9b00364
crossref_primary_10_1021_acs_energyfuels_4c05867
crossref_primary_10_1016_j_seppur_2020_116675
crossref_primary_10_3390_pr10050975
crossref_primary_10_1039_D4SU00460D
crossref_primary_10_3390_membranes11010065
crossref_primary_10_1039_D1TA02982G
crossref_primary_10_1007_s12274_023_6009_z
crossref_primary_10_3390_membranes10090204
crossref_primary_10_1016_j_memsci_2021_120240
crossref_primary_10_1021_acsanm_1c01886
crossref_primary_10_1002_adma_201902009
crossref_primary_10_3390_membranes12090857
crossref_primary_10_1016_j_cej_2019_123585
crossref_primary_10_1016_j_seppur_2022_121258
crossref_primary_10_1039_C9CS00756C
crossref_primary_10_1021_acsami_1c16229
crossref_primary_10_1515_revce_2024_0088
crossref_primary_10_1039_C9TA09012F
crossref_primary_10_1021_acsami_9b17319
crossref_primary_10_1021_acs_chemmater_0c00851
crossref_primary_10_1038_s41578_020_00268_7
crossref_primary_10_1039_D0TA08806D
crossref_primary_10_1021_acs_macromol_4c00187
crossref_primary_10_1002_adom_202002180
crossref_primary_10_1002_adma_202301007
crossref_primary_10_1002_advs_202207472
crossref_primary_10_1021_acs_inorgchem_4c01740
crossref_primary_10_1016_j_seppur_2021_119305
crossref_primary_10_1039_D3TA02842A
crossref_primary_10_1002_agt2_408
crossref_primary_10_1002_sstr_202400295
crossref_primary_10_1016_j_ccr_2021_213794
crossref_primary_10_1002_slct_202302760
crossref_primary_10_1002_nano_202300114
crossref_primary_10_1002_smll_202300438
crossref_primary_10_1016_j_memsci_2021_120140
crossref_primary_10_1039_D3CS00285C
crossref_primary_10_1021_acs_iecr_1c01727
crossref_primary_10_1016_j_pmatsci_2018_11_002
crossref_primary_10_1016_j_seppur_2023_125105
crossref_primary_10_1002_ange_202418098
crossref_primary_10_1016_j_seppur_2022_120714
crossref_primary_10_1021_acsomega_3c01616
crossref_primary_10_1002_smll_202305688
crossref_primary_10_1016_j_cej_2024_148760
crossref_primary_10_1021_acsami_0c22910
crossref_primary_10_1021_acsami_1c06285
crossref_primary_10_3390_pr10101918
crossref_primary_10_1016_j_powtec_2024_119558
crossref_primary_10_1002_aic_18242
crossref_primary_10_1039_D2CC05813H
crossref_primary_10_1016_j_cej_2021_130883
crossref_primary_10_1039_D2CS00465H
crossref_primary_10_1002_adfm_202105991
crossref_primary_10_1016_j_eng_2022_07_022
crossref_primary_10_1002_adfm_202415063
crossref_primary_10_1021_jacs_2c00318
crossref_primary_10_1021_acsmaterialsau_3c00072
crossref_primary_10_1021_acs_iecr_1c04648
crossref_primary_10_1016_j_memsci_2024_123143
crossref_primary_10_1002_aic_17948
crossref_primary_10_1016_j_memsci_2021_119564
crossref_primary_10_1007_s10924_023_02788_z
crossref_primary_10_1039_D4RA02277G
crossref_primary_10_3390_membranes13090755
crossref_primary_10_1021_acsami_3c19491
crossref_primary_10_1021_acs_chemmater_4c01246
crossref_primary_10_1016_j_cej_2020_127625
crossref_primary_10_1515_revce_2021_0014
crossref_primary_10_1021_acsami_0c13715
crossref_primary_10_1002_anie_202315057
crossref_primary_10_1002_pol_20200220
crossref_primary_10_1186_s40580_024_00465_y
crossref_primary_10_1016_j_isci_2020_101065
crossref_primary_10_1016_j_seppur_2024_128177
crossref_primary_10_1039_D3DT01878D
crossref_primary_10_1039_D1CC04786H
crossref_primary_10_1038_s41578_024_00760_4
crossref_primary_10_1002_adma_202300296
crossref_primary_10_1002_ange_202216549
crossref_primary_10_1002_admt_201900109
crossref_primary_10_2494_photopolymer_34_449
crossref_primary_10_1038_s41467_020_19404_6
crossref_primary_10_1016_j_cej_2024_148954
crossref_primary_10_1002_smtd_202300278
crossref_primary_10_1016_j_memsci_2022_120882
crossref_primary_10_1002_anie_201904766
crossref_primary_10_1016_j_xcrp_2020_100113
crossref_primary_10_1039_C9DT04424H
crossref_primary_10_1002_smtd_201900749
crossref_primary_10_1016_j_seppur_2024_127082
crossref_primary_10_1002_smll_202303757
crossref_primary_10_1002_smtd_202200743
crossref_primary_10_1016_j_cej_2021_132296
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1039_D0RA05615D
crossref_primary_10_1021_acssuschemeng_8b05463
crossref_primary_10_1039_D1RA03124D
crossref_primary_10_1007_s00604_024_06890_4
crossref_primary_10_1039_D4RA00444B
crossref_primary_10_1016_j_seppur_2023_123992
crossref_primary_10_1021_acsami_4c05611
crossref_primary_10_1021_acs_chemrev_2c00667
crossref_primary_10_1016_j_ces_2023_118998
crossref_primary_10_3390_membranes13030287
crossref_primary_10_1002_admt_201900213
crossref_primary_10_1016_j_seppur_2021_120332
crossref_primary_10_1016_j_memsci_2021_120217
crossref_primary_10_20517_energymater_2024_260
crossref_primary_10_1016_j_seppur_2022_121287
crossref_primary_10_1021_acsami_0c18861
crossref_primary_10_3390_membranes12040425
crossref_primary_10_1002_smll_202205714
crossref_primary_10_1016_j_cej_2024_151451
crossref_primary_10_1002_cnma_202300224
crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1021_acsanm_0c02004
crossref_primary_10_1016_j_seppur_2023_123523
Cites_doi 10.1016/j.memsci.2003.10.044
10.1016/j.memsci.2011.10.003
10.1039/C4TA06820C
10.1039/C4CC02570A
10.1002/anie.200802240
10.1002/aic.15837
10.1039/c2ee21743k
10.1039/C4CS00159A
10.1039/C8DT00082D
10.1016/j.memsci.2017.06.061
10.1038/natrevmats.2016.78
10.1016/j.memsci.2016.08.045
10.1002/anie.201206339
10.1016/j.memsci.2017.12.002
10.1126/sciadv.aaq0066
10.1016/j.memsci.2008.12.006
10.1021/jacs.5b02276
10.1039/C6EE00811A
10.1002/adma.201505688
10.1016/j.memsci.2012.04.003
10.1039/c3ta11131h
10.1021/acs.cgd.7b00595
10.1016/j.memsci.2012.09.006
10.1039/C6CC00261G
10.1002/ange.201403978
10.1021/acsami.7b02295
10.1126/science.283.5405.1148
10.1039/C4CS00437J
10.1016/j.memsci.2016.12.041
10.1021/acs.inorgchem.5b00435
10.1016/j.memsci.2010.06.017
10.1002/ange.200904637
10.1021/ma702360p
10.1039/C7CC00295E
10.1021/acsami.6b08954
10.1021/jp102574f
10.1021/cm049154u
10.1016/j.memsci.2014.03.045
10.1039/c3ee42394h
10.1021/acsami.5b12541
10.1016/j.memsci.2016.04.045
10.1039/c3cc00039g
10.1021/acs.iecr.7b04796
10.1016/j.memsci.2016.03.050
10.1039/C4CS00010B
10.1016/j.memsci.2017.12.001
10.1016/j.memsci.2010.12.001
10.1039/c3ta10928c
10.1002/aenm.201200200
10.1126/science.1217544
10.1039/C5RA02230D
10.1002/anie.201701109
10.1021/ja907359t
10.1021/am504742q
10.1039/C4CS00101J
10.1038/nature16072
10.1002/anie.201713160
10.1016/j.micromeso.2016.08.008
10.1021/acs.chemmater.5b01537
10.1021/acs.cgd.6b01398
10.1039/C7CS00575J
10.1039/C6RA16896E
10.1002/chem.201504836
10.1021/acs.nanolett.7b03106
10.1039/C6TA05175H
10.1016/j.memsci.2017.06.011
10.1002/ange.201508070
10.1002/cphc.201100583
10.1016/j.seppur.2011.07.042
10.1038/natrevmats.2016.68
10.1021/ja202154j
10.1039/C7TA09596A
10.1016/j.memsci.2013.10.059
10.1002/anie.201402234
10.1002/anie.200705008
10.1039/C5EE02660A
10.1016/j.memsci.2012.10.028
10.1039/C5DT03359D
10.1016/j.ccr.2015.05.016
10.1016/j.memsci.2017.02.003
10.1073/pnas.0602439103
10.1002/anie.201611260
10.1002/aic.14496
10.1039/C6TA02611G
10.1021/jp4079184
10.1021/am301365h
10.1021/cr400005f
10.1002/adfm.201505352
10.1039/C7EE00830A
10.1073/pnas.0909718106
10.1002/adma.201701631
10.1021/acsami.6b14223
10.1016/j.memsci.2017.04.022
10.1038/nature06599
10.1016/j.seppur.2017.05.046
10.1016/j.memsci.2017.02.041
10.1016/j.seppur.2009.10.020
10.1038/nmat4805
10.1126/science.1246738
10.1038/ncomms14460
10.1039/C2CS35072F
10.1021/jacs.5b13533
10.1002/anie.201308924
10.1002/aic.15263
10.1016/j.memsci.2017.01.001
10.1016/j.memsci.2016.09.055
10.1039/C4TA05225K
10.1039/c1cc13431k
10.1002/anie.201410684
10.1039/C4CC05279J
10.1002/cssc.201402647
10.1021/acs.iecr.5b04568
10.1021/acs.macromol.6b00891
10.1126/science.1200488
10.1002/anie.200701595
10.1021/acs.jpclett.5b01602
10.1002/adma.201504982
10.1039/C5CC00384A
10.1002/ange.200905645
10.1021/cm503924h
10.1016/j.renene.2015.11.025
10.1039/C7EE02820B
10.1039/C6RA14591D
10.1039/C7TA01773A
10.1021/cr300014x
10.1039/C5TA03739E
10.1021/ja045123o
10.1039/C5CC07783D
10.1039/C4TA00316K
10.1002/anie.201007861
10.1038/nenergy.2017.86
10.1002/anie.201712816
10.1016/j.progpolymsci.2007.01.008
10.1021/ie101312k
10.1016/j.memsci.2017.11.054
10.1021/ma501488s
10.1002/anie.200803067
10.1039/C3CS60480B
10.1021/ja062491e
10.1351/pac199466081739
10.1021/acs.chemmater.5b02902
10.1016/j.memsci.2008.04.030
10.1021/jacs.6b08377
10.1039/C1EE02668B
10.1039/c1ee01324f
10.1016/j.memsci.2014.05.025
10.1021/acsami.7b12750
10.1002/adma.201606999
10.1016/j.memsci.2015.12.022
10.1039/C7TA10322K
10.1016/j.memsci.2010.06.028
10.1021/acsami.6b15752
10.1016/j.memsci.2015.01.045
10.1016/j.ijhydene.2012.10.045
10.1021/acs.chemrev.6b00439
10.1002/adma.201704303
10.1126/science.1239872
10.1126/science.1120411
10.1002/aic.15508
10.1038/nmat4113
10.1016/j.memsci.2012.09.035
10.1038/ncomms13872
10.1002/chem.201602999
10.1016/j.memsci.2015.08.016
10.1016/j.memsci.2013.05.016
10.1021/cm900166h
10.1039/c3cc46105j
10.1021/ja405078u
10.1021/acs.est.7b04056
10.1016/j.seppur.2014.03.006
10.1016/j.memsci.2016.12.039
10.1126/science.1139915
10.1016/j.memsci.2014.11.038
10.1039/b600349d
10.1038/srep07823
10.1021/acs.nanolett.7b02910
10.1021/acsami.5b08964
10.1021/acsami.7b08032
10.1002/anie.201607014
10.1039/C4CS00222A
10.1021/ja211864w
10.1021/cr500006j
10.1021/ja801294f
10.1016/j.micromeso.2008.11.020
10.1002/ange.201505508
10.1016/j.memsci.2010.07.005
10.1039/C4CS00003J
10.1002/polc.5070410109
10.1002/ange.201001919
10.1038/nmat4621
10.1021/acsami.5b04148
10.1016/j.memsci.2010.12.036
10.1002/chem.201503078
10.1016/j.memsci.2012.11.014
10.1021/ja308278w
10.1039/c2ee21996d
10.1002/asia.201701647
10.1016/j.memsci.2015.07.065
10.1039/b807083k
10.1016/j.memsci.2013.02.034
10.1002/aic.15140
10.1002/anie.201205521
10.1016/j.memsci.2010.02.074
10.1002/adma.201603833
10.1016/j.ces.2014.11.058
10.1016/j.memsci.2015.05.070
10.1021/cr3003888
10.1021/acsami.5b00106
10.1002/adfm.201203462
10.1002/anie.201006141
10.1038/nmat2545
10.1016/0376-7388(91)80060-J
10.1021/ja8057953
10.1021/ja407665w
10.1002/chem.200305413
10.1021/acsami.5b02680
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201802401
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30048014
10_1002_adma_201802401
ADMA201802401
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National University of Singapore
  funderid: CENGas R‐261‐508‐001‐646; R‐279‐000‐505‐133
– fundername: Ministry of Education—Singapore
  funderid: MOE AcRF Tier 1 R‐279‐000‐472‐112; R‐279‐000‐540‐114
– fundername: Agency for Science, Technology and Research
  funderid: PSF R‐279‐000‐475‐305; IRG R‐279‐000‐510‐305
– fundername: Ministry of Education-Singapore
  grantid: MOE AcRF Tier 1 R-279-000-472-112
– fundername: National University of Singapore
  grantid: R-279-000-505-133
– fundername: Ministry of Education-Singapore
  grantid: R-279-000-540-114
– fundername: National University of Singapore
  grantid: CENGas R-261-508-001-646
– fundername: Agency for Science, Technology and Research
  grantid: PSF R-279-000-475-305
– fundername: Agency for Science, Technology and Research
  grantid: IRG R-279-000-510-305
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4781-ec679710a30d86d50b69c9d70b724bf5d23e54ff34ffb494a024ca4f60f4c5e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 13:03:29 EDT 2025
Mon Jul 14 10:31:46 EDT 2025
Wed Feb 19 02:42:48 EST 2025
Thu Apr 24 22:54:12 EDT 2025
Tue Jul 01 00:44:44 EDT 2025
Wed Jan 22 16:39:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords advanced porous materials
environmental sustainability
clean energy
gas and liquid separations
mixed matrix membranes
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4781-ec679710a30d86d50b69c9d70b724bf5d23e54ff34ffb494a024ca4f60f4c5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4427-2150
PMID 30048014
PQID 2135033142
PQPubID 2045203
PageCount 20
ParticipantIDs proquest_miscellaneous_2076913764
proquest_journals_2135033142
pubmed_primary_30048014
crossref_primary_10_1002_adma_201802401
crossref_citationtrail_10_1002_adma_201802401
wiley_primary_10_1002_adma_201802401_ADMA201802401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Nov
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009 2012 2017; 131 5 29
2014 2014 2013 2015 2015 2017; 453 2 428 135 492 531
2013; 1
2016 2017; 1 46
1994; 66
2014; 26
1999; 283
2014; 24
2013; 6
2004 2015; 16 3
2018; 47
2018; 6
2015 2015; 54 44
2012; 134
2015; 137
2010; 114
2013; 52
2009; 121
2018; 30
2009; 120
2012 2012; 4 134
2016; 49
2017 2018; 53 549
2014; 126
2017; 539
2017; 63
2010 2011 2010 2011 2018; 354 369 122 50 4
2015; 127
2015 2016; 481 6
2015; 51
2004; 45
2015 2017; 476 9
2014; 47
2015; 527
2017; 530
2011; 370
2016; 15
2011; 133
2014; 43
2017; 535
2016 2017 2017 2017 2017 2018; 513 2 5 186 541 549
2014 2014 2015 2015; 7 43 44 6
2016; 4
2017; 51
2016; 6
2016; 7
2007; 316
2012; 112
2005; 127
2017; 56
2008; 47
2013 2011 2012 2013 2015; 1 4 2 38 3
2008; 41
2016; 28
2018; 11
2009 2010 2012 2013 2013 2013 2013 2014; 328 49 389 444 436 425–426 428 467
2016; 26
2016; 8
2008; 130
2009; 106
2016; 22
2018; 13
2017; 8
2008 2004 2017 2010 2010 1988; 130 231 29 73 122
2009 2014 2014 2013 2011; 38 343 43 341 50
2016; 502
2011; 12
2007; 32
2017; 9
2017; 117
2012; 51
2017; 526
2017; 527
1973; 41
2006 2012 2016; 35 5 9
2016; 235
2012; 335
2014; 50
2006; 128
2013 2014 2015 2014; 427 128 495 60
2017; 523
2017 2016; 56 138
2014; 53
2016; 88
2014; 118
2015; 14
2015; 5
2009; 21
2013; 49
2015; 3
2018; 548
2005; 310
2016 2016; 8 511
2013; 42
2016; 520
2010; 361
2016; 52
2010; 362
2016; 128
2017; 29
2006 2016 2015 2008 2016; 103 1 7 47 9
1991 2008; 62 320
2015; 7
2012 2017; 413–414 63
2014; 114
2016; 55
2004; 10
2014 2015; 53 54
2010 2011 2016; 362 333 28
2016 2015; 306 44
2015; 27
2017; 17
2017; 16
2017; 10
2015; 21
2013; 135
2009; 8
2016; 62
2011 2015 2015; 81 495 7
2016; 138
2011; 47
2014; 463
2008; 452
2013 2013; 113 113
2012; 5
2007; 46
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_64_5
e_1_2_8_64_6
e_1_2_8_132_1
e_1_2_8_9_1
e_1_2_8_64_3
e_1_2_8_117_1
e_1_2_8_64_4
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_64_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_38_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_120_3
e_1_2_8_120_2
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_105_2
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_120_5
e_1_2_8_120_4
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_63_2
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_14_4
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_28_1
e_1_2_8_119_3
e_1_2_8_119_2
e_1_2_8_89_2
e_1_2_8_7_5
e_1_2_8_7_4
e_1_2_8_7_6
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_17_3
e_1_2_8_17_4
e_1_2_8_17_5
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_122_7
e_1_2_8_122_6
e_1_2_8_107_1
e_1_2_8_122_8
e_1_2_8_122_3
e_1_2_8_122_2
e_1_2_8_122_5
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_122_4
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_112_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
Yehia H. (e_1_2_8_18_1) 2004; 45
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_146_2
e_1_2_8_123_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_5_3
e_1_2_8_151_1
e_1_2_8_5_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_136_2
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_19_5
e_1_2_8_95_1
e_1_2_8_95_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_152_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_79_1
e_1_2_8_140_4
e_1_2_8_94_1
e_1_2_8_140_5
e_1_2_8_140_2
e_1_2_8_140_3
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_2
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_140_6
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_130_2
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_126_2
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_23_2
e_1_2_8_23_3
e_1_2_8_46_1
e_1_2_8_23_4
e_1_2_8_69_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_35_1
e_1_2_8_12_4
e_1_2_8_12_5
e_1_2_8_58_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_104_2
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_3
e_1_2_8_73_2
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 520
  start-page: 941
  year: 2016
  publication-title: J. Membr. Sci.
– volume: 26
  start-page: 7189
  year: 2014
  publication-title: Chem. Mater.
– volume: 362 333 28
  start-page: 134 712 2629
  year: 2010 2011 2016
  publication-title: J. Membr. Sci. Science Adv. Mater.
– volume: 28
  start-page: 3399
  year: 2016
  publication-title: Adv. Mater.
– volume: 55
  start-page: 12793
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 5297
  year: 2016
  publication-title: Macromolecules
– volume: 4 134
  start-page: 5016 8115
  year: 2012 2012
  publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc.
– volume: 14
  start-page: 48
  year: 2015
  publication-title: Nat. Mater.
– volume: 12
  start-page: 2781
  year: 2011
  publication-title: ChemPhysChem
– volume: 5
  start-page: 7823
  year: 2015
  publication-title: Sci. Rep.
– volume: 11
  start-page: 544
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 17246
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 9
  start-page: 37848
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 112
  start-page: 673
  year: 2012
  publication-title: Chem. Rev.
– volume: 53 54
  start-page: 5322 2669
  year: 2014 2015
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 66
  start-page: 1739
  year: 1994
  publication-title: Pure Appl. Chem.
– volume: 9
  start-page: 14401
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 8359
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 131 5 29
  start-page: 16000 7637 1603833
  year: 2009 2012 2017
  publication-title: J. Am. Chem. Soc. Energy Environ. Sci. Adv. Mater.
– volume: 43
  start-page: 5561
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 583
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 81 495 7
  start-page: 243 72 5528
  year: 2011 2015 2015
  publication-title: Sep. Purif. Technol. J. Membr. Sci. ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 14460
  year: 2017
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1373
  year: 2004
  publication-title: Chem. ‐ Eur. J.
– volume: 51
  start-page: 4249
  year: 2015
  publication-title: Chem. Commun.
– volume: 7 43 44 6
  start-page: 3202 4470 2421 3841
  year: 2014 2014 2015 2015
  publication-title: ChemSusChem Chem. Soc. Rev. Chem. Soc. Rev. J. Phys. Chem. Lett.
– volume: 17
  start-page: 156
  year: 2017
  publication-title: Cryst. Growth Des.
– volume: 30
  start-page: 1704303
  year: 2018
  publication-title: Adv. Mater.
– volume: 138
  start-page: 2823
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 427 128 495 60
  start-page: 48 31 479 2625
  year: 2013 2014 2015 2014
  publication-title: J. Membr. Sci. Sep. Purif. Technol. J. Membr. Sci. AIChE J.
– volume: 361
  start-page: 28
  year: 2010
  publication-title: J. Membr. Sci.
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 114
  start-page: 11185
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 463
  start-page: 82
  year: 2014
  publication-title: J. Membr. Sci.
– volume: 118
  start-page: 1523
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 47
  start-page: 6999
  year: 2014
  publication-title: Macromolecules
– volume: 117
  start-page: 1515
  year: 2017
  publication-title: Chem. Rev.
– volume: 3
  start-page: 5014
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 12727
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 8 511
  start-page: 27311 130
  year: 2016 2016
  publication-title: ACS Appl. Mater. Interfaces J. Membr. Sci.
– volume: 47
  start-page: 8487
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 56 138
  start-page: 2123 15519
  year: 2017 2016
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 29
  start-page: 1606999
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3565
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 126
  start-page: 9933
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 1 46
  start-page: 16078 7124
  year: 2016 2017
  publication-title: Nat. Rev. Mater. Chem. Soc. Rev.
– volume: 6
  start-page: 82669
  year: 2016
  publication-title: RSC Adv.
– volume: 127
  start-page: 1504
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 527
  start-page: 216
  year: 2015
  publication-title: Nature
– volume: 135
  start-page: 15201
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 235
  start-page: 151
  year: 2016
  publication-title: Microporous Mesoporous Mater.
– volume: 6
  start-page: 3151
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 106
  start-page: 20637
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 6828
  year: 2017
  publication-title: Nano Lett.
– volume: 56
  start-page: 9292
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 4695
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 15
  start-page: 845
  year: 2016
  publication-title: Nat. Mater.
– volume: 17
  start-page: 4467
  year: 2017
  publication-title: Cryst. Growth Des.
– volume: 453 2 428 135 492 531
  start-page: 155 10034 498 479 322 16
  year: 2014 2014 2013 2015 2015 2017
  publication-title: J. Membr. Sci. J. Mater. Chem. A J. Membr. Sci. Chem. Eng. Sci. J. Membr. Sci. J. Membr. Sci.
– volume: 548
  start-page: 429
  year: 2018
  publication-title: J. Membr. Sci.
– volume: 7
  start-page: 25193
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 483
  year: 2007
  publication-title: Prog. Polym. Sci.
– volume: 47
  start-page: 9522
  year: 2011
  publication-title: Chem. Commun.
– volume: 55
  start-page: 7933
  year: 2016
  publication-title: Ind. Eng. Chem. Res.
– volume: 62
  start-page: 1728
  year: 2016
  publication-title: AIChE J.
– volume: 54 44
  start-page: 4862 19018
  year: 2015 2015
  publication-title: Inorg. Chem. Dalton Trans.
– volume: 47
  start-page: 5755
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 283
  start-page: 1148
  year: 1999
  publication-title: Science
– volume: 476 9
  start-page: 303 7523
  year: 2015 2017
  publication-title: J. Membr. Sci. ACS Appl. Mater. Interfaces
– volume: 306 44
  start-page: 171 9
  year: 2016 2015
  publication-title: Coord. Chem. Rev. Chem. Soc. Rev.
– volume: 535
  start-page: 350
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 45
  start-page: 35
  year: 2004
  publication-title: Polym. Prepr.
– volume: 49
  start-page: 9449
  year: 2013
  publication-title: Chem. Commun.
– volume: 51
  start-page: 17672
  year: 2015
  publication-title: Chem. Commun.
– volume: 28
  start-page: 1277
  year: 2016
  publication-title: Chem. Mater.
– volume: 135
  start-page: 11465
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 10735
  year: 2014
  publication-title: Chem. Rev.
– volume: 526
  start-page: 205
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 13
  start-page: 631
  year: 2018
  publication-title: Chem. ‐ Asian J.
– volume: 120
  start-page: 325
  year: 2009
  publication-title: Microporous Mesoporous Mater.
– volume: 527
  start-page: 8
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 127
  start-page: 15703
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  start-page: 289
  year: 2017
  publication-title: Nat. Mater.
– volume: 4
  start-page: 7281
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 42
  start-page: 548
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 128
  start-page: 8398
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 6752
  year: 2017
  publication-title: Nano Lett.
– volume: 530
  start-page: 201
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 63
  start-page: 1303
  year: 2017
  publication-title: AIChE J.
– volume: 53 549
  start-page: 4254 312
  year: 2017 2018
  publication-title: Chem. Commun. J. Membr. Sci.
– volume: 16 3
  start-page: 3838 20801
  year: 2004 2015
  publication-title: Chem. Mater. J. Mater. Chem. A
– volume: 50
  start-page: 8779
  year: 2014
  publication-title: Chem. Commun.
– volume: 7
  start-page: 14750
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 354 369 122 50 4
  start-page: 48 284 5078 4979 eaaq0066
  year: 2010 2011 2010 2011 2018
  publication-title: J. Membr. Sci. J. Membr. Sci. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Sci. Adv.
– volume: 21
  start-page: 1410
  year: 2009
  publication-title: Chem. Mater.
– volume: 481 6
  start-page: 73 70174
  year: 2015 2016
  publication-title: J. Membr. Sci. RSC Adv.
– volume: 121
  start-page: 9621
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 103 1 7 47 9
  start-page: 10186 16068 15561 5136 922
  year: 2006 2016 2015 2008 2016
  publication-title: Proc. Natl. Acad. Sci. USA Nat. Rev. Mater. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Energy Environ. Sci.
– volume: 526
  start-page: 355
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 50
  start-page: 13921
  year: 2014
  publication-title: Chem. Commun.
– volume: 49
  start-page: 3925
  year: 2013
  publication-title: Chem. Commun.
– volume: 128
  start-page: 2038
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 6350
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 29093
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 413–414 63
  start-page: 48 4103
  year: 2012 2017
  publication-title: J. Membr. Sci. AIChE J.
– volume: 539
  start-page: 213
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 51
  start-page: 14352
  year: 2017
  publication-title: Environ. Sci. Technol.
– volume: 113 113
  start-page: 4980 8261
  year: 2013 2013
  publication-title: Chem. Rev. Chem. Rev.
– volume: 5
  start-page: 43110
  year: 2015
  publication-title: RSC Adv.
– volume: 134
  start-page: 19524
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 88
  start-page: 12
  year: 2016
  publication-title: Renewable Energy
– volume: 41
  start-page: 79
  year: 1973
  publication-title: J. Polym. Sci., Polym. Symp.
– volume: 370
  start-page: 1
  year: 2011
  publication-title: J. Membr. Sci.
– volume: 41
  start-page: 1297
  year: 2008
  publication-title: Macromolecules
– volume: 57
  start-page: 5156
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 13872
  year: 2016
  publication-title: Nat. Commun.
– volume: 335
  start-page: 1606
  year: 2012
  publication-title: Science
– volume: 22
  start-page: 14467
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 8
  start-page: 973
  year: 2009
  publication-title: Nat. Mater.
– volume: 57
  start-page: 4083
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 7536
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 133
  start-page: 8900
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 130 231 29 73 122
  start-page: 5412 117 1701631 59 558
  year: 2008 2004 2017 2010 2010 1988
  publication-title: J. Am. Chem. Soc. J. Membr. Sci. Adv. Mater. Sep. Purif. Technol. Angew. Chem., Int. Ed.
– volume: 137
  start-page: 6999
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 62 320
  start-page: 165 390
  year: 1991 2008
  publication-title: J. Membr. Sci. J. Membr. Sci.
– volume: 57
  start-page: 4139
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 43
  start-page: 6062
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 38 343 43 341 50
  start-page: 1248 66 5815 354 1799
  year: 2009 2014 2014 2013 2011
  publication-title: Chem. Soc. Rev. Science Chem. Soc. Rev. Science Ind. Eng. Chem. Res.
– volume: 43
  start-page: 6116
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 1253
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 46
  start-page: 8574
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 3154
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 316
  start-page: 268
  year: 2007
  publication-title: Science
– volume: 502
  start-page: 21
  year: 2016
  publication-title: J. Membr. Sci.
– volume: 53
  start-page: 1516
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 362
  start-page: 478
  year: 2010
  publication-title: J. Membr. Sci.
– volume: 47
  start-page: 7905
  year: 2018
  publication-title: Dalton Trans.
– volume: 9
  start-page: 8433
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 16368
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1812
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 35 5 9
  start-page: 675 7306 1863
  year: 2006 2012 2016
  publication-title: Chem. Soc. Rev. Energy Environ. Sci. Energy Environ. Sci.
– volume: 130
  start-page: 13850
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 62
  start-page: 3706
  year: 2016
  publication-title: AIChE J.
– volume: 27
  start-page: 4756
  year: 2015
  publication-title: Chem. Mater.
– volume: 1 4 2 38 3
  start-page: 6081 4171 1358 229 6549
  year: 2013 2011 2012 2013 2015
  publication-title: J. Mater. Chem. A Energy Environ. Sci. Adv. Energy Mater. Int. J. Hydrogen Energy J. Mater. Chem. A
– volume: 328 49 389 444 436 425–426 428 467
  start-page: 165 9863 34 173 221 235 445 162
  year: 2009 2010 2012 2013 2013 2013 2013 2014
  publication-title: J. Membr. Sci. Angew. Chem., Int. Ed. J. Membr. Sci. J. Membr. Sci. J. Membr. Sci. J. Membr. Sci. J. Membr. Sci. J. Membr. Sci.
– volume: 52
  start-page: 5581
  year: 2016
  publication-title: Chem. Commun.
– volume: 513 2 5 186 541 549
  start-page: 155 17086 10968 20 262 217
  year: 2016 2017 2017 2017 2017 2018
  publication-title: J. Membr. Sci. Nat. Energy J. Mater. Chem. A Sep. Purif. Technol. J. Membr. Sci. J. Membr. Sci.
– volume: 523
  start-page: 273
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 7
  start-page: 1065
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 452
  start-page: 301
  year: 2008
  publication-title: Nature
– volume: 24
  start-page: 249
  year: 2014
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_7_2
  doi: 10.1016/j.memsci.2003.10.044
– ident: e_1_2_8_122_3
  doi: 10.1016/j.memsci.2011.10.003
– ident: e_1_2_8_120_5
  doi: 10.1039/C4TA06820C
– ident: e_1_2_8_60_1
  doi: 10.1039/C4CC02570A
– ident: e_1_2_8_97_1
  doi: 10.1002/anie.200802240
– ident: e_1_2_8_126_2
  doi: 10.1002/aic.15837
– ident: e_1_2_8_119_2
  doi: 10.1039/c2ee21743k
– ident: e_1_2_8_144_1
  doi: 10.1039/C4CS00159A
– ident: e_1_2_8_101_1
  doi: 10.1039/C8DT00082D
– ident: e_1_2_8_64_5
  doi: 10.1016/j.memsci.2017.06.061
– ident: e_1_2_8_130_1
  doi: 10.1038/natrevmats.2016.78
– ident: e_1_2_8_54_1
  doi: 10.1016/j.memsci.2016.08.045
– ident: e_1_2_8_94_1
  doi: 10.1002/anie.201206339
– ident: e_1_2_8_38_2
  doi: 10.1016/j.memsci.2017.12.002
– ident: e_1_2_8_19_5
  doi: 10.1126/sciadv.aaq0066
– ident: e_1_2_8_122_1
  doi: 10.1016/j.memsci.2008.12.006
– ident: e_1_2_8_133_1
  doi: 10.1021/jacs.5b02276
– ident: e_1_2_8_73_3
  doi: 10.1039/C6EE00811A
– ident: e_1_2_8_5_3
  doi: 10.1002/adma.201505688
– ident: e_1_2_8_126_1
  doi: 10.1016/j.memsci.2012.04.003
– ident: e_1_2_8_36_1
  doi: 10.1039/c3ta11131h
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.cgd.7b00595
– ident: e_1_2_8_122_6
  doi: 10.1016/j.memsci.2012.09.006
– ident: e_1_2_8_87_1
  doi: 10.1039/C6CC00261G
– ident: e_1_2_8_135_1
  doi: 10.1002/ange.201403978
– ident: e_1_2_8_145_1
  doi: 10.1021/acsami.7b02295
– ident: e_1_2_8_31_1
  doi: 10.1126/science.283.5405.1148
– ident: e_1_2_8_14_3
  doi: 10.1039/C4CS00437J
– ident: e_1_2_8_67_1
  doi: 10.1016/j.memsci.2016.12.041
– ident: e_1_2_8_63_1
  doi: 10.1021/acs.inorgchem.5b00435
– ident: e_1_2_8_24_1
  doi: 10.1016/j.memsci.2010.06.017
– ident: e_1_2_8_88_1
  doi: 10.1002/ange.200904637
– ident: e_1_2_8_118_1
  doi: 10.1021/ma702360p
– ident: e_1_2_8_38_1
  doi: 10.1039/C7CC00295E
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.6b08954
– ident: e_1_2_8_52_1
  doi: 10.1021/jp102574f
– ident: e_1_2_8_105_1
  doi: 10.1021/cm049154u
– ident: e_1_2_8_98_1
  doi: 10.1016/j.memsci.2014.03.045
– ident: e_1_2_8_53_1
  doi: 10.1039/c3ee42394h
– ident: e_1_2_8_45_1
  doi: 10.1021/acsami.5b12541
– ident: e_1_2_8_64_1
  doi: 10.1016/j.memsci.2016.04.045
– ident: e_1_2_8_72_1
  doi: 10.1039/c3cc00039g
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.iecr.7b04796
– ident: e_1_2_8_25_2
  doi: 10.1016/j.memsci.2016.03.050
– ident: e_1_2_8_17_3
  doi: 10.1039/C4CS00010B
– ident: e_1_2_8_64_6
  doi: 10.1016/j.memsci.2017.12.001
– ident: e_1_2_8_19_2
  doi: 10.1016/j.memsci.2010.12.001
– ident: e_1_2_8_120_1
  doi: 10.1039/c3ta10928c
– ident: e_1_2_8_120_3
  doi: 10.1002/aenm.201200200
– ident: e_1_2_8_124_1
  doi: 10.1126/science.1217544
– ident: e_1_2_8_26_1
  doi: 10.1039/C5RA02230D
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.201701109
– ident: e_1_2_8_119_1
  doi: 10.1021/ja907359t
– ident: e_1_2_8_46_1
  doi: 10.1021/am504742q
– ident: e_1_2_8_41_1
  doi: 10.1039/C4CS00101J
– ident: e_1_2_8_92_1
  doi: 10.1038/nature16072
– ident: e_1_2_8_149_1
  doi: 10.1002/anie.201713160
– ident: e_1_2_8_129_1
  doi: 10.1016/j.micromeso.2016.08.008
– ident: e_1_2_8_128_1
  doi: 10.1021/acs.chemmater.5b01537
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.cgd.6b01398
– ident: e_1_2_8_130_2
  doi: 10.1039/C7CS00575J
– ident: e_1_2_8_115_1
  doi: 10.1039/C6RA16896E
– ident: e_1_2_8_79_1
  doi: 10.1002/chem.201504836
– ident: e_1_2_8_55_1
  doi: 10.1021/acs.nanolett.7b03106
– ident: e_1_2_8_114_1
  doi: 10.1039/C6TA05175H
– ident: e_1_2_8_39_1
  doi: 10.1016/j.memsci.2017.06.011
– ident: e_1_2_8_86_1
  doi: 10.1002/ange.201508070
– ident: e_1_2_8_35_1
  doi: 10.1002/cphc.201100583
– ident: e_1_2_8_11_1
  doi: 10.1016/j.seppur.2011.07.042
– ident: e_1_2_8_12_2
  doi: 10.1038/natrevmats.2016.68
– ident: e_1_2_8_123_1
  doi: 10.1021/ja202154j
– ident: e_1_2_8_142_1
  doi: 10.1039/C7TA09596A
– ident: e_1_2_8_140_1
  doi: 10.1016/j.memsci.2013.10.059
– ident: e_1_2_8_89_1
  doi: 10.1002/anie.201402234
– ident: e_1_2_8_12_4
  doi: 10.1002/anie.200705008
– ident: e_1_2_8_12_5
  doi: 10.1039/C5EE02660A
– ident: e_1_2_8_140_3
  doi: 10.1016/j.memsci.2012.10.028
– ident: e_1_2_8_63_2
  doi: 10.1039/C5DT03359D
– ident: e_1_2_8_95_1
  doi: 10.1016/j.ccr.2015.05.016
– ident: e_1_2_8_121_1
  doi: 10.1016/j.memsci.2017.02.003
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.0602439103
– ident: e_1_2_8_104_1
  doi: 10.1002/anie.201611260
– ident: e_1_2_8_23_4
  doi: 10.1002/aic.14496
– ident: e_1_2_8_48_1
  doi: 10.1039/C6TA02611G
– ident: e_1_2_8_93_1
  doi: 10.1021/jp4079184
– ident: e_1_2_8_21_1
  doi: 10.1021/am301365h
– ident: e_1_2_8_146_2
  doi: 10.1021/cr400005f
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.201505352
– ident: e_1_2_8_116_1
  doi: 10.1039/C7EE00830A
– ident: e_1_2_8_51_1
  doi: 10.1073/pnas.0909718106
– ident: e_1_2_8_7_3
  doi: 10.1002/adma.201701631
– ident: e_1_2_8_136_2
  doi: 10.1021/acsami.6b14223
– ident: e_1_2_8_109_1
  doi: 10.1016/j.memsci.2017.04.022
– ident: e_1_2_8_131_1
  doi: 10.1038/nature06599
– ident: e_1_2_8_64_4
  doi: 10.1016/j.seppur.2017.05.046
– ident: e_1_2_8_140_6
  doi: 10.1016/j.memsci.2017.02.041
– ident: e_1_2_8_7_4
  doi: 10.1016/j.seppur.2009.10.020
– ident: e_1_2_8_1_1
  doi: 10.1038/nmat4805
– ident: e_1_2_8_17_2
  doi: 10.1126/science.1246738
– ident: e_1_2_8_150_1
  doi: 10.1038/ncomms14460
– ident: e_1_2_8_75_1
  doi: 10.1039/C2CS35072F
– ident: e_1_2_8_81_1
  doi: 10.1021/jacs.5b13533
– ident: e_1_2_8_91_1
  doi: 10.1002/anie.201308924
– ident: e_1_2_8_100_1
  doi: 10.1002/aic.15263
– ident: e_1_2_8_108_1
  doi: 10.1016/j.memsci.2017.01.001
– ident: e_1_2_8_138_1
  doi: 10.1016/j.memsci.2016.09.055
– ident: e_1_2_8_65_1
  doi: 10.1039/C4TA05225K
– ident: e_1_2_8_42_1
  doi: 10.1039/c1cc13431k
– ident: e_1_2_8_89_2
  doi: 10.1002/anie.201410684
– ident: e_1_2_8_103_1
  doi: 10.1039/C4CC05279J
– ident: e_1_2_8_14_1
  doi: 10.1002/cssc.201402647
– ident: e_1_2_8_70_1
  doi: 10.1021/acs.iecr.5b04568
– volume: 45
  start-page: 35
  year: 2004
  ident: e_1_2_8_18_1
  publication-title: Polym. Prepr.
– ident: e_1_2_8_76_1
  doi: 10.1021/acs.macromol.6b00891
– ident: e_1_2_8_5_2
  doi: 10.1126/science.1200488
– ident: e_1_2_8_83_1
  doi: 10.1002/anie.200701595
– ident: e_1_2_8_14_4
  doi: 10.1021/acs.jpclett.5b01602
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201504982
– ident: e_1_2_8_99_1
  doi: 10.1039/C5CC00384A
– ident: e_1_2_8_7_5
  doi: 10.1002/ange.200905645
– ident: e_1_2_8_85_1
  doi: 10.1021/cm503924h
– ident: e_1_2_8_141_1
  doi: 10.1016/j.renene.2015.11.025
– ident: e_1_2_8_117_1
  doi: 10.1039/C7EE02820B
– ident: e_1_2_8_33_2
  doi: 10.1039/C6RA14591D
– ident: e_1_2_8_64_3
  doi: 10.1039/C7TA01773A
– ident: e_1_2_8_16_1
  doi: 10.1021/cr300014x
– ident: e_1_2_8_105_2
  doi: 10.1039/C5TA03739E
– ident: e_1_2_8_50_1
  doi: 10.1021/ja045123o
– ident: e_1_2_8_61_1
  doi: 10.1039/C5CC07783D
– ident: e_1_2_8_140_2
  doi: 10.1039/C4TA00316K
– ident: e_1_2_8_19_4
  doi: 10.1002/anie.201007861
– ident: e_1_2_8_64_2
  doi: 10.1038/nenergy.2017.86
– ident: e_1_2_8_137_1
  doi: 10.1002/anie.201712816
– ident: e_1_2_8_8_1
  doi: 10.1016/j.progpolymsci.2007.01.008
– ident: e_1_2_8_17_5
  doi: 10.1021/ie101312k
– ident: e_1_2_8_66_1
  doi: 10.1016/j.memsci.2017.11.054
– ident: e_1_2_8_3_1
  doi: 10.1021/ma501488s
– ident: e_1_2_8_147_1
  doi: 10.1002/anie.200803067
– ident: e_1_2_8_14_2
  doi: 10.1039/C3CS60480B
– ident: e_1_2_8_96_1
  doi: 10.1021/ja062491e
– ident: e_1_2_8_13_1
  doi: 10.1351/pac199466081739
– ident: e_1_2_8_78_1
  doi: 10.1021/acs.chemmater.5b02902
– ident: e_1_2_8_6_2
  doi: 10.1016/j.memsci.2008.04.030
– ident: e_1_2_8_104_2
  doi: 10.1021/jacs.6b08377
– ident: e_1_2_8_73_2
  doi: 10.1039/C1EE02668B
– ident: e_1_2_8_120_2
  doi: 10.1039/c1ee01324f
– ident: e_1_2_8_122_8
  doi: 10.1016/j.memsci.2014.05.025
– ident: e_1_2_8_134_1
  doi: 10.1021/acsami.7b12750
– ident: e_1_2_8_110_1
  doi: 10.1002/adma.201606999
– ident: e_1_2_8_49_1
  doi: 10.1016/j.memsci.2015.12.022
– ident: e_1_2_8_28_1
  doi: 10.1039/C7TA10322K
– ident: e_1_2_8_5_1
  doi: 10.1016/j.memsci.2010.06.028
– ident: e_1_2_8_106_1
  doi: 10.1021/acsami.6b15752
– ident: e_1_2_8_33_1
  doi: 10.1016/j.memsci.2015.01.045
– ident: e_1_2_8_120_4
  doi: 10.1016/j.ijhydene.2012.10.045
– ident: e_1_2_8_71_1
  doi: 10.1021/acs.chemrev.6b00439
– ident: e_1_2_8_132_1
  doi: 10.1002/adma.201704303
– ident: e_1_2_8_17_4
  doi: 10.1126/science.1239872
– ident: e_1_2_8_74_1
  doi: 10.1126/science.1120411
– ident: e_1_2_8_113_1
  doi: 10.1002/aic.15508
– ident: e_1_2_8_37_1
  doi: 10.1038/nmat4113
– ident: e_1_2_8_7_6
– ident: e_1_2_8_23_1
  doi: 10.1016/j.memsci.2012.09.035
– ident: e_1_2_8_151_1
  doi: 10.1038/ncomms13872
– ident: e_1_2_8_148_1
  doi: 10.1002/chem.201602999
– ident: e_1_2_8_23_3
  doi: 10.1016/j.memsci.2015.08.016
– ident: e_1_2_8_122_4
  doi: 10.1016/j.memsci.2013.05.016
– ident: e_1_2_8_29_1
  doi: 10.1021/cm900166h
– ident: e_1_2_8_62_1
  doi: 10.1039/c3cc46105j
– ident: e_1_2_8_58_1
  doi: 10.1021/ja405078u
– ident: e_1_2_8_139_1
  doi: 10.1021/acs.est.7b04056
– ident: e_1_2_8_23_2
  doi: 10.1016/j.seppur.2014.03.006
– ident: e_1_2_8_80_1
  doi: 10.1016/j.memsci.2016.12.039
– ident: e_1_2_8_82_1
  doi: 10.1126/science.1139915
– ident: e_1_2_8_136_1
  doi: 10.1016/j.memsci.2014.11.038
– ident: e_1_2_8_73_1
  doi: 10.1039/b600349d
– ident: e_1_2_8_69_1
  doi: 10.1038/srep07823
– ident: e_1_2_8_68_1
  doi: 10.1021/acs.nanolett.7b02910
– ident: e_1_2_8_59_1
  doi: 10.1021/acsami.5b08964
– ident: e_1_2_8_107_1
  doi: 10.1021/acsami.7b08032
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201607014
– ident: e_1_2_8_95_2
  doi: 10.1039/C4CS00222A
– ident: e_1_2_8_21_2
  doi: 10.1021/ja211864w
– ident: e_1_2_8_143_1
  doi: 10.1021/cr500006j
– ident: e_1_2_8_7_1
  doi: 10.1021/ja801294f
– ident: e_1_2_8_32_1
  doi: 10.1016/j.micromeso.2008.11.020
– ident: e_1_2_8_22_1
  doi: 10.1002/ange.201505508
– ident: e_1_2_8_34_1
  doi: 10.1016/j.memsci.2010.07.005
– ident: e_1_2_8_152_1
  doi: 10.1039/C4CS00003J
– ident: e_1_2_8_9_1
  doi: 10.1002/polc.5070410109
– ident: e_1_2_8_19_3
  doi: 10.1002/ange.201001919
– ident: e_1_2_8_125_1
  doi: 10.1038/nmat4621
– ident: e_1_2_8_12_3
  doi: 10.1021/acsami.5b04148
– ident: e_1_2_8_2_1
  doi: 10.1016/j.memsci.2010.12.036
– ident: e_1_2_8_127_1
  doi: 10.1002/chem.201503078
– ident: e_1_2_8_122_7
  doi: 10.1016/j.memsci.2012.11.014
– ident: e_1_2_8_77_1
  doi: 10.1021/ja308278w
– ident: e_1_2_8_20_1
  doi: 10.1039/c2ee21996d
– ident: e_1_2_8_102_1
  doi: 10.1002/asia.201701647
– ident: e_1_2_8_11_2
  doi: 10.1016/j.memsci.2015.07.065
– ident: e_1_2_8_17_1
  doi: 10.1039/b807083k
– ident: e_1_2_8_122_5
  doi: 10.1016/j.memsci.2013.02.034
– ident: e_1_2_8_111_1
  doi: 10.1002/aic.15140
– ident: e_1_2_8_84_1
  doi: 10.1002/anie.201205521
– ident: e_1_2_8_19_1
  doi: 10.1016/j.memsci.2010.02.074
– ident: e_1_2_8_119_3
  doi: 10.1002/adma.201603833
– ident: e_1_2_8_140_4
  doi: 10.1016/j.ces.2014.11.058
– ident: e_1_2_8_140_5
  doi: 10.1016/j.memsci.2015.05.070
– ident: e_1_2_8_146_1
  doi: 10.1021/cr3003888
– ident: e_1_2_8_11_3
  doi: 10.1021/acsami.5b00106
– ident: e_1_2_8_43_1
  doi: 10.1002/adfm.201203462
– ident: e_1_2_8_122_2
  doi: 10.1002/anie.201006141
– ident: e_1_2_8_90_1
  doi: 10.1038/nmat2545
– ident: e_1_2_8_6_1
  doi: 10.1016/0376-7388(91)80060-J
– ident: e_1_2_8_57_1
  doi: 10.1021/ja8057953
– ident: e_1_2_8_112_1
  doi: 10.1021/ja407665w
– ident: e_1_2_8_40_1
  doi: 10.1002/chem.200305413
– ident: e_1_2_8_47_1
  doi: 10.1021/acsami.5b02680
SSID ssj0009606
Score 2.6738715
SecondaryResourceType review_article
Snippet Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1802401
SubjectTerms advanced porous materials
Clean energy
environmental sustainability
Fillers
gas and liquid separations
Materials science
Materials selection
Membranes
Metal-organic frameworks
mixed matrix membranes
Organic chemistry
Porous materials
Porous media
Separation
Sustainable development
Title Advanced Porous Materials in Mixed Matrix Membranes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802401
https://www.ncbi.nlm.nih.gov/pubmed/30048014
https://www.proquest.com/docview/2135033142
https://www.proquest.com/docview/2076913764
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMAfspMe_P6oTqkgeOqWJmnaHoc6hlARmbBbSdIEhtrJPmD415u0XbcpIuih0JKkTd_LS16bvF8ArgTyuVAR9bQIzQcKjpAXCZV5WmacShaHPrfByckD6z3T-0EwWIniL_kQ9Q83axlFf20NnItJewkN5VnBDbIEM1oEcNkFW9Yrelryo6x7XsD2SODFjEYLaiPC7fXi66PSN1dz3XMthp7uDvBFpcsVJy-t2VS05McXnuN_3moXtiu_1O2UDWkPNlS-D1srtMIDIJ1qvYD7OBqPZhM34dOy_brD3E2Gc5OSWOL_3E3Um6mE6UUPod-969_0vGrPBU_aoFNPSRYaBSFOUBaxLECCxTLOQiRCTIUOMkxUQLUm5hA0ptzUU3KqGdJUBoocQSMf5eoEXKxlGFgYDMIxNXl4SLDkRCqimckuHPAWIk9lxSO322K8piVJGadWFmktCweu6_zvJYnjx5zNhQbTyiInKfaJnbH1KXbgsk42tmQnSIxAjNjMHUIW-6bLpQ4cl5qvH0Uq0o4DuNDfL3VIO7dJp746_UuhM9i052XgYxMa0_FMnRsPaCouilb-CYvY-kQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BPZQeoD_QBmibSkWcAo7tOMmhh1W3aCkEVdVW4mbZji0h2t2K3RW0T8Wr8EaM80e3VYVUiUMPOSSexM54xuOxPd8AvNUkVtpmPHI6RQeFZiTKtC0jZ0rFjcjTWPng5OJYDL7wjyfJyQJctbEwNT5Et-DmNaMar72C-wXpvVvUUFVWwEEewgydhOZc5aH9cYFe2-TdQR-7eJvS_Q_D94OoSSwQGR9ZGVkjUmwFUYyUmSgTokVu8jIlOqVcu6SkzCbcOYaX5jlXWINR3AniuEksw88uwgOfRdyj9fc_3wJWeX-gQvdjSZQLnrUwkYTuzTd33gz-MbednypXtm5_Fa5bLtVHXM52Z1O9a37-BiD5P7HxMaw0E--wV2vKE1iwo6fw6Bc4xmfAes2BiPDT-Hw8m4SFmtYKGp6OwuL0EksKn9LgMizsN_xpNBNrMLyPRq_D0mg8si8gpM6kiUe7ITTnSKNSRo1ixjInkFwHELVdLE0DuO7zfnyVNVQ0lZ71smN9ADsd_fcaauSvlFutxMhmyJlIGjO_JR1zGsCbrhgHC78DhAxBtuEXUpHHaFN4AM9rSeuqYg2UUAC0kpc72iB7_aLX3W38y0uv4eFgWBzJo4Pjw01Y9s_rKM8tWJqez-xLnO5N9atKw0KQ9yyKN7wQV5Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BlSp6aEuBNpRCKrXiFHBsx0kOHFZsV_w0CFUgcbNsx5ZQ213E7qq0L8Wr9JE6zh_dVlUlJA4cckg8sSfjGc9MbH8GeKdJrLTNeOR0igkKzUiUaVtGzpSKG5GnsfKbk4tjsX_GD8-T8zm4affC1PgQ3Q83bxnVeO0N_LJ0O7egoaqscIM8ghnmCM2yyiP7_RsmbePdgz728HtKBx9O9_aj5lyByPiNlZE1IkUmiGKkzESZEC1yk5cp0Snl2iUlZTbhzjG8NM-5whaM4k4Qx01iGVY7D4-4ILk_K6L_6RavyqcDFbgfS6Jc8KxFiSR0Z5bdWS_4V2g7GylXrm7wDH62QqpXuHzenk70tvnxB37kA5Lic3jahN1hr7aTJZizwxfw5DcwxmVgvWY5RHgyuhpNx2GhJrV5hhfDsLi4xpLCH2hwHRb2K34zOokVOL0PpldhYTga2lcQUmfSxGPdEJpzpFEpo0YxY5kTSK4DiNoelqaBW_enfnyRNVA0lV70shN9AFsd_WUNNPJPyvVWYWQz4IwljZmfkI45DeBtV4xDhZ__QYGg2LCGVOQxehQewMta0bqmWAMkFACt1OU_PMhev-h1d2t3eWkTHp_0B_LjwfHRa1j0j-stnuuwMLma2jcY6030RmVfIch71sRfM_xWRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Porous+Materials+in+Mixed+Matrix+Membranes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cheng%2C+Youdong&rft.au=Ying%2C+Yunpan&rft.au=Japip%2C+Susilo&rft.au=Jiang%2C+Shu-Dong&rft.date=2018-11-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=47&rft.spage=e1802401&rft_id=info:doi/10.1002%2Fadma.201802401&rft_id=info%3Apmid%2F30048014&rft.externalDocID=30048014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon