Advanced Porous Materials in Mixed Matrix Membranes
Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix memb...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 47; pp. e1802401 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal–organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high‐performance membranes to meet the urgent needs of clean energy and environmental sustainability.
The recent research progress in exploring various types of advanced porous materials as promising fillers in mixed matrix membranes (MMMs) is summarized. Along with this, novel MMM design and enhanced membrane separation performance induced by these advanced porous fillers are discussed in detail. Finally, current challenges and future directions for industrial implementation of these MMMs are highlighted. |
---|---|
AbstractList | Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal-organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high-performance membranes to meet the urgent needs of clean energy and environmental sustainability. Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal-organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high-performance membranes to meet the urgent needs of clean energy and environmental sustainability.Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal-organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high-performance membranes to meet the urgent needs of clean energy and environmental sustainability. Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal–organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high‐performance membranes to meet the urgent needs of clean energy and environmental sustainability. The recent research progress in exploring various types of advanced porous materials as promising fillers in mixed matrix membranes (MMMs) is summarized. Along with this, novel MMM design and enhanced membrane separation performance induced by these advanced porous fillers are discussed in detail. Finally, current challenges and future directions for industrial implementation of these MMMs are highlighted. |
Author | Jiang, Shu‐Dong Chung, Tai‐Shung Zhang, Sui Zhao, Dan Cheng, Youdong Ying, Yunpan Japip, Susilo |
Author_xml | – sequence: 1 givenname: Youdong surname: Cheng fullname: Cheng, Youdong organization: National University of Singapore – sequence: 2 givenname: Yunpan surname: Ying fullname: Ying, Yunpan organization: National University of Singapore – sequence: 3 givenname: Susilo surname: Japip fullname: Japip, Susilo organization: National University of Singapore – sequence: 4 givenname: Shu‐Dong surname: Jiang fullname: Jiang, Shu‐Dong organization: National University of Singapore – sequence: 5 givenname: Tai‐Shung surname: Chung fullname: Chung, Tai‐Shung email: chencts@nus.edu.sg organization: National University of Singapore – sequence: 6 givenname: Sui surname: Zhang fullname: Zhang, Sui email: chezhangsui@nus.edu.sg organization: National University of Singapore – sequence: 7 givenname: Dan orcidid: 0000-0002-4427-2150 surname: Zhao fullname: Zhao, Dan email: chezhao@nus.edu.sg organization: National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30048014$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLAzEURoNU7EO3LmXAjZupN4_JTJalPqFFF92HTCYDKfOoyVTbf29Ka4WCuAiB5JzcL98Q9Zq2MQhdYxhjAHKvilqNCeAMCAN8hgY4IThmIJIeGoCgSSw4y_po6P0SAAQHfoH6FIBlgNkA0UnxqRptiui9de3aR3PVGWdV5SPbRHO7CTfhyNlNNDd17lRj_CU6LwNgrg77CC2eHhfTl3j29vw6ncxizdIMx0bzVKQYFIUi40UCORdaFCnkKWF5mRSEmoSVJQ0rZ4Kp8AWtWMmhZDoxdITu9s-uXPuxNr6TtfXaVFXIEJJKAikXmKacBfT2BF22a9eEcJJgmgClmJFA3RyodV6bQq6crZXbyp82AjDeA9q13jtTHhEMcle33NUtj3UHgZ0I2naqs23TOWWrvzWx175sZbb_DJGTh_nk1_0GUACRbA |
CitedBy_id | crossref_primary_10_1021_acsanm_4c00790 crossref_primary_10_1021_acs_inorgchem_3c03425 crossref_primary_10_1021_acs_chemrev_9b00803 crossref_primary_10_1016_j_jcis_2019_10_055 crossref_primary_10_1016_j_seppur_2020_118101 crossref_primary_10_1016_j_seppur_2021_118860 crossref_primary_10_1021_acs_iecr_2c01798 crossref_primary_10_3390_polym13060931 crossref_primary_10_1039_C9CS00322C crossref_primary_10_1016_j_memsci_2022_121311 crossref_primary_10_1016_j_memsci_2021_120071 crossref_primary_10_1002_ange_201904766 crossref_primary_10_1016_j_cej_2020_128082 crossref_primary_10_1007_s11426_023_1607_4 crossref_primary_10_2166_ws_2023_204 crossref_primary_10_1002_anie_202418098 crossref_primary_10_1002_smll_202208177 crossref_primary_10_1002_app_54217 crossref_primary_10_1126_sciadv_adm9620 crossref_primary_10_3390_en17215430 crossref_primary_10_1016_j_seppur_2021_119046 crossref_primary_10_1021_acsami_0c05176 crossref_primary_10_1002_adma_202201339 crossref_primary_10_1002_adtp_202000245 crossref_primary_10_1088_1361_6463_abafdd crossref_primary_10_1002_pat_5645 crossref_primary_10_1016_j_seppur_2024_128254 crossref_primary_10_1039_D1CS01061A crossref_primary_10_1088_2399_7532_ac005f crossref_primary_10_1039_C9TA12028A crossref_primary_10_1080_15422119_2024_2322425 crossref_primary_10_1002_app_56887 crossref_primary_10_1021_acs_iecr_2c04160 crossref_primary_10_1002_asia_202000053 crossref_primary_10_1002_aic_18426 crossref_primary_10_3390_polym15081950 crossref_primary_10_3390_membranes12070646 crossref_primary_10_1016_j_seppur_2022_122067 crossref_primary_10_1039_C9ME00154A crossref_primary_10_1002_ange_202315057 crossref_primary_10_1021_acssuschemeng_9b07026 crossref_primary_10_1039_D3CS00866E crossref_primary_10_1002_adts_202200159 crossref_primary_10_1002_advs_202002142 crossref_primary_10_1002_anie_202216549 crossref_primary_10_1038_s41467_023_36848_8 crossref_primary_10_1016_j_seppur_2020_116708 crossref_primary_10_1002_cssc_201902341 crossref_primary_10_3390_polym15132951 crossref_primary_10_1007_s13738_024_03135_2 crossref_primary_10_1016_j_scitotenv_2023_168881 crossref_primary_10_1016_j_seppur_2022_121520 crossref_primary_10_1021_acsami_0c18707 crossref_primary_10_1080_15422119_2019_1609986 crossref_primary_10_1021_acsami_3c03943 crossref_primary_10_1039_D2TA00138A crossref_primary_10_1016_j_cej_2024_156096 crossref_primary_10_1002_mame_202100298 crossref_primary_10_1016_j_seppur_2021_119707 crossref_primary_10_1039_C9CC05019A crossref_primary_10_1016_j_cej_2022_140447 crossref_primary_10_1038_s41565_022_01209_x crossref_primary_10_1021_acs_analchem_1c03982 crossref_primary_10_1016_j_seppur_2023_123563 crossref_primary_10_1002_jctb_6963 crossref_primary_10_1002_sstr_202000078 crossref_primary_10_1002_adfm_202103973 crossref_primary_10_3390_membranes12020200 crossref_primary_10_1039_C9TA05401D crossref_primary_10_1002_smll_202201982 crossref_primary_10_1016_j_memsci_2020_118221 crossref_primary_10_1016_j_seppur_2022_123057 crossref_primary_10_1016_j_trechm_2020_01_002 crossref_primary_10_1002_anie_202004657 crossref_primary_10_1007_s13762_024_05525_8 crossref_primary_10_1021_acs_iecr_2c00303 crossref_primary_10_1002_anie_202205481 crossref_primary_10_1134_S1070427220020147 crossref_primary_10_1016_j_memsci_2019_117761 crossref_primary_10_1007_s11426_024_2020_8 crossref_primary_10_3390_polym16233240 crossref_primary_10_1039_C8TA10333J crossref_primary_10_1016_j_memsci_2018_09_041 crossref_primary_10_1002_adma_202105156 crossref_primary_10_1016_j_seppur_2021_118677 crossref_primary_10_1002_ange_202014893 crossref_primary_10_1126_science_abe0192 crossref_primary_10_1002_chem_201903519 crossref_primary_10_1515_revce_2018_0091 crossref_primary_10_1016_j_micromeso_2021_111674 crossref_primary_10_1016_j_jtice_2020_10_032 crossref_primary_10_1016_j_memsci_2020_118245 crossref_primary_10_1016_j_ccr_2023_215603 crossref_primary_10_1021_acs_iecr_2c00645 crossref_primary_10_1016_j_seppur_2020_116865 crossref_primary_10_1002_adfm_202101335 crossref_primary_10_1039_C9TA04664J crossref_primary_10_1021_acs_iecr_9b04632 crossref_primary_10_1002_ange_202004657 crossref_primary_10_1021_acsami_9b17516 crossref_primary_10_1039_D4CC02669A crossref_primary_10_1016_j_cej_2020_127004 crossref_primary_10_1021_acs_chemmater_9b04907 crossref_primary_10_1021_acsami_0c19554 crossref_primary_10_1016_j_seppur_2024_127221 crossref_primary_10_1002_app_52309 crossref_primary_10_1002_aic_18606 crossref_primary_10_1007_s12274_023_5874_9 crossref_primary_10_1016_j_memsci_2018_11_060 crossref_primary_10_1002_advs_202002190 crossref_primary_10_1002_ange_202205481 crossref_primary_10_1016_j_seppur_2023_123487 crossref_primary_10_3390_ijms25020712 crossref_primary_10_1155_2024_2107340 crossref_primary_10_1016_j_cej_2022_139818 crossref_primary_10_1016_j_seppur_2024_129889 crossref_primary_10_12677_se_2025_151001 crossref_primary_10_1021_acsami_9b16332 crossref_primary_10_3389_fchem_2024_1502401 crossref_primary_10_1039_D4SC04793A crossref_primary_10_1016_j_apsusc_2021_150173 crossref_primary_10_1021_acsomega_8b03408 crossref_primary_10_1002_anie_202014893 crossref_primary_10_1063_5_0159512 crossref_primary_10_1021_acsami_9b21802 crossref_primary_10_1021_acsami_8b12556 crossref_primary_10_1039_D4MA00705K crossref_primary_10_1021_acsami_0c22124 crossref_primary_10_1021_acsami_1c24759 crossref_primary_10_1039_D4TA01357C crossref_primary_10_1016_j_cjche_2019_03_007 crossref_primary_10_1016_j_cej_2024_149742 crossref_primary_10_1016_j_seppur_2020_118190 crossref_primary_10_1016_j_seppur_2023_124227 crossref_primary_10_1016_j_memsci_2021_119803 crossref_primary_10_1016_j_memsci_2020_118795 crossref_primary_10_1002_adma_202001383 crossref_primary_10_1039_D2ME00227B crossref_primary_10_1002_adma_202107891 crossref_primary_10_1021_acs_estlett_9b00364 crossref_primary_10_1021_acs_energyfuels_4c05867 crossref_primary_10_1016_j_seppur_2020_116675 crossref_primary_10_3390_pr10050975 crossref_primary_10_1039_D4SU00460D crossref_primary_10_3390_membranes11010065 crossref_primary_10_1039_D1TA02982G crossref_primary_10_1007_s12274_023_6009_z crossref_primary_10_3390_membranes10090204 crossref_primary_10_1016_j_memsci_2021_120240 crossref_primary_10_1021_acsanm_1c01886 crossref_primary_10_1002_adma_201902009 crossref_primary_10_3390_membranes12090857 crossref_primary_10_1016_j_cej_2019_123585 crossref_primary_10_1016_j_seppur_2022_121258 crossref_primary_10_1039_C9CS00756C crossref_primary_10_1021_acsami_1c16229 crossref_primary_10_1515_revce_2024_0088 crossref_primary_10_1039_C9TA09012F crossref_primary_10_1021_acsami_9b17319 crossref_primary_10_1021_acs_chemmater_0c00851 crossref_primary_10_1038_s41578_020_00268_7 crossref_primary_10_1039_D0TA08806D crossref_primary_10_1021_acs_macromol_4c00187 crossref_primary_10_1002_adom_202002180 crossref_primary_10_1002_adma_202301007 crossref_primary_10_1002_advs_202207472 crossref_primary_10_1021_acs_inorgchem_4c01740 crossref_primary_10_1016_j_seppur_2021_119305 crossref_primary_10_1039_D3TA02842A crossref_primary_10_1002_agt2_408 crossref_primary_10_1002_sstr_202400295 crossref_primary_10_1016_j_ccr_2021_213794 crossref_primary_10_1002_slct_202302760 crossref_primary_10_1002_nano_202300114 crossref_primary_10_1002_smll_202300438 crossref_primary_10_1016_j_memsci_2021_120140 crossref_primary_10_1039_D3CS00285C crossref_primary_10_1021_acs_iecr_1c01727 crossref_primary_10_1016_j_pmatsci_2018_11_002 crossref_primary_10_1016_j_seppur_2023_125105 crossref_primary_10_1002_ange_202418098 crossref_primary_10_1016_j_seppur_2022_120714 crossref_primary_10_1021_acsomega_3c01616 crossref_primary_10_1002_smll_202305688 crossref_primary_10_1016_j_cej_2024_148760 crossref_primary_10_1021_acsami_0c22910 crossref_primary_10_1021_acsami_1c06285 crossref_primary_10_3390_pr10101918 crossref_primary_10_1016_j_powtec_2024_119558 crossref_primary_10_1002_aic_18242 crossref_primary_10_1039_D2CC05813H crossref_primary_10_1016_j_cej_2021_130883 crossref_primary_10_1039_D2CS00465H crossref_primary_10_1002_adfm_202105991 crossref_primary_10_1016_j_eng_2022_07_022 crossref_primary_10_1002_adfm_202415063 crossref_primary_10_1021_jacs_2c00318 crossref_primary_10_1021_acsmaterialsau_3c00072 crossref_primary_10_1021_acs_iecr_1c04648 crossref_primary_10_1016_j_memsci_2024_123143 crossref_primary_10_1002_aic_17948 crossref_primary_10_1016_j_memsci_2021_119564 crossref_primary_10_1007_s10924_023_02788_z crossref_primary_10_1039_D4RA02277G crossref_primary_10_3390_membranes13090755 crossref_primary_10_1021_acsami_3c19491 crossref_primary_10_1021_acs_chemmater_4c01246 crossref_primary_10_1016_j_cej_2020_127625 crossref_primary_10_1515_revce_2021_0014 crossref_primary_10_1021_acsami_0c13715 crossref_primary_10_1002_anie_202315057 crossref_primary_10_1002_pol_20200220 crossref_primary_10_1186_s40580_024_00465_y crossref_primary_10_1016_j_isci_2020_101065 crossref_primary_10_1016_j_seppur_2024_128177 crossref_primary_10_1039_D3DT01878D crossref_primary_10_1039_D1CC04786H crossref_primary_10_1038_s41578_024_00760_4 crossref_primary_10_1002_adma_202300296 crossref_primary_10_1002_ange_202216549 crossref_primary_10_1002_admt_201900109 crossref_primary_10_2494_photopolymer_34_449 crossref_primary_10_1038_s41467_020_19404_6 crossref_primary_10_1016_j_cej_2024_148954 crossref_primary_10_1002_smtd_202300278 crossref_primary_10_1016_j_memsci_2022_120882 crossref_primary_10_1002_anie_201904766 crossref_primary_10_1016_j_xcrp_2020_100113 crossref_primary_10_1039_C9DT04424H crossref_primary_10_1002_smtd_201900749 crossref_primary_10_1016_j_seppur_2024_127082 crossref_primary_10_1002_smll_202303757 crossref_primary_10_1002_smtd_202200743 crossref_primary_10_1016_j_cej_2021_132296 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1039_D0RA05615D crossref_primary_10_1021_acssuschemeng_8b05463 crossref_primary_10_1039_D1RA03124D crossref_primary_10_1007_s00604_024_06890_4 crossref_primary_10_1039_D4RA00444B crossref_primary_10_1016_j_seppur_2023_123992 crossref_primary_10_1021_acsami_4c05611 crossref_primary_10_1021_acs_chemrev_2c00667 crossref_primary_10_1016_j_ces_2023_118998 crossref_primary_10_3390_membranes13030287 crossref_primary_10_1002_admt_201900213 crossref_primary_10_1016_j_seppur_2021_120332 crossref_primary_10_1016_j_memsci_2021_120217 crossref_primary_10_20517_energymater_2024_260 crossref_primary_10_1016_j_seppur_2022_121287 crossref_primary_10_1021_acsami_0c18861 crossref_primary_10_3390_membranes12040425 crossref_primary_10_1002_smll_202205714 crossref_primary_10_1016_j_cej_2024_151451 crossref_primary_10_1002_cnma_202300224 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1021_acsanm_0c02004 crossref_primary_10_1016_j_seppur_2023_123523 |
Cites_doi | 10.1016/j.memsci.2003.10.044 10.1016/j.memsci.2011.10.003 10.1039/C4TA06820C 10.1039/C4CC02570A 10.1002/anie.200802240 10.1002/aic.15837 10.1039/c2ee21743k 10.1039/C4CS00159A 10.1039/C8DT00082D 10.1016/j.memsci.2017.06.061 10.1038/natrevmats.2016.78 10.1016/j.memsci.2016.08.045 10.1002/anie.201206339 10.1016/j.memsci.2017.12.002 10.1126/sciadv.aaq0066 10.1016/j.memsci.2008.12.006 10.1021/jacs.5b02276 10.1039/C6EE00811A 10.1002/adma.201505688 10.1016/j.memsci.2012.04.003 10.1039/c3ta11131h 10.1021/acs.cgd.7b00595 10.1016/j.memsci.2012.09.006 10.1039/C6CC00261G 10.1002/ange.201403978 10.1021/acsami.7b02295 10.1126/science.283.5405.1148 10.1039/C4CS00437J 10.1016/j.memsci.2016.12.041 10.1021/acs.inorgchem.5b00435 10.1016/j.memsci.2010.06.017 10.1002/ange.200904637 10.1021/ma702360p 10.1039/C7CC00295E 10.1021/acsami.6b08954 10.1021/jp102574f 10.1021/cm049154u 10.1016/j.memsci.2014.03.045 10.1039/c3ee42394h 10.1021/acsami.5b12541 10.1016/j.memsci.2016.04.045 10.1039/c3cc00039g 10.1021/acs.iecr.7b04796 10.1016/j.memsci.2016.03.050 10.1039/C4CS00010B 10.1016/j.memsci.2017.12.001 10.1016/j.memsci.2010.12.001 10.1039/c3ta10928c 10.1002/aenm.201200200 10.1126/science.1217544 10.1039/C5RA02230D 10.1002/anie.201701109 10.1021/ja907359t 10.1021/am504742q 10.1039/C4CS00101J 10.1038/nature16072 10.1002/anie.201713160 10.1016/j.micromeso.2016.08.008 10.1021/acs.chemmater.5b01537 10.1021/acs.cgd.6b01398 10.1039/C7CS00575J 10.1039/C6RA16896E 10.1002/chem.201504836 10.1021/acs.nanolett.7b03106 10.1039/C6TA05175H 10.1016/j.memsci.2017.06.011 10.1002/ange.201508070 10.1002/cphc.201100583 10.1016/j.seppur.2011.07.042 10.1038/natrevmats.2016.68 10.1021/ja202154j 10.1039/C7TA09596A 10.1016/j.memsci.2013.10.059 10.1002/anie.201402234 10.1002/anie.200705008 10.1039/C5EE02660A 10.1016/j.memsci.2012.10.028 10.1039/C5DT03359D 10.1016/j.ccr.2015.05.016 10.1016/j.memsci.2017.02.003 10.1073/pnas.0602439103 10.1002/anie.201611260 10.1002/aic.14496 10.1039/C6TA02611G 10.1021/jp4079184 10.1021/am301365h 10.1021/cr400005f 10.1002/adfm.201505352 10.1039/C7EE00830A 10.1073/pnas.0909718106 10.1002/adma.201701631 10.1021/acsami.6b14223 10.1016/j.memsci.2017.04.022 10.1038/nature06599 10.1016/j.seppur.2017.05.046 10.1016/j.memsci.2017.02.041 10.1016/j.seppur.2009.10.020 10.1038/nmat4805 10.1126/science.1246738 10.1038/ncomms14460 10.1039/C2CS35072F 10.1021/jacs.5b13533 10.1002/anie.201308924 10.1002/aic.15263 10.1016/j.memsci.2017.01.001 10.1016/j.memsci.2016.09.055 10.1039/C4TA05225K 10.1039/c1cc13431k 10.1002/anie.201410684 10.1039/C4CC05279J 10.1002/cssc.201402647 10.1021/acs.iecr.5b04568 10.1021/acs.macromol.6b00891 10.1126/science.1200488 10.1002/anie.200701595 10.1021/acs.jpclett.5b01602 10.1002/adma.201504982 10.1039/C5CC00384A 10.1002/ange.200905645 10.1021/cm503924h 10.1016/j.renene.2015.11.025 10.1039/C7EE02820B 10.1039/C6RA14591D 10.1039/C7TA01773A 10.1021/cr300014x 10.1039/C5TA03739E 10.1021/ja045123o 10.1039/C5CC07783D 10.1039/C4TA00316K 10.1002/anie.201007861 10.1038/nenergy.2017.86 10.1002/anie.201712816 10.1016/j.progpolymsci.2007.01.008 10.1021/ie101312k 10.1016/j.memsci.2017.11.054 10.1021/ma501488s 10.1002/anie.200803067 10.1039/C3CS60480B 10.1021/ja062491e 10.1351/pac199466081739 10.1021/acs.chemmater.5b02902 10.1016/j.memsci.2008.04.030 10.1021/jacs.6b08377 10.1039/C1EE02668B 10.1039/c1ee01324f 10.1016/j.memsci.2014.05.025 10.1021/acsami.7b12750 10.1002/adma.201606999 10.1016/j.memsci.2015.12.022 10.1039/C7TA10322K 10.1016/j.memsci.2010.06.028 10.1021/acsami.6b15752 10.1016/j.memsci.2015.01.045 10.1016/j.ijhydene.2012.10.045 10.1021/acs.chemrev.6b00439 10.1002/adma.201704303 10.1126/science.1239872 10.1126/science.1120411 10.1002/aic.15508 10.1038/nmat4113 10.1016/j.memsci.2012.09.035 10.1038/ncomms13872 10.1002/chem.201602999 10.1016/j.memsci.2015.08.016 10.1016/j.memsci.2013.05.016 10.1021/cm900166h 10.1039/c3cc46105j 10.1021/ja405078u 10.1021/acs.est.7b04056 10.1016/j.seppur.2014.03.006 10.1016/j.memsci.2016.12.039 10.1126/science.1139915 10.1016/j.memsci.2014.11.038 10.1039/b600349d 10.1038/srep07823 10.1021/acs.nanolett.7b02910 10.1021/acsami.5b08964 10.1021/acsami.7b08032 10.1002/anie.201607014 10.1039/C4CS00222A 10.1021/ja211864w 10.1021/cr500006j 10.1021/ja801294f 10.1016/j.micromeso.2008.11.020 10.1002/ange.201505508 10.1016/j.memsci.2010.07.005 10.1039/C4CS00003J 10.1002/polc.5070410109 10.1002/ange.201001919 10.1038/nmat4621 10.1021/acsami.5b04148 10.1016/j.memsci.2010.12.036 10.1002/chem.201503078 10.1016/j.memsci.2012.11.014 10.1021/ja308278w 10.1039/c2ee21996d 10.1002/asia.201701647 10.1016/j.memsci.2015.07.065 10.1039/b807083k 10.1016/j.memsci.2013.02.034 10.1002/aic.15140 10.1002/anie.201205521 10.1016/j.memsci.2010.02.074 10.1002/adma.201603833 10.1016/j.ces.2014.11.058 10.1016/j.memsci.2015.05.070 10.1021/cr3003888 10.1021/acsami.5b00106 10.1002/adfm.201203462 10.1002/anie.201006141 10.1038/nmat2545 10.1016/0376-7388(91)80060-J 10.1021/ja8057953 10.1021/ja407665w 10.1002/chem.200305413 10.1021/acsami.5b02680 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201802401 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30048014 10_1002_adma_201802401 ADMA201802401 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National University of Singapore funderid: CENGas R‐261‐508‐001‐646; R‐279‐000‐505‐133 – fundername: Ministry of Education—Singapore funderid: MOE AcRF Tier 1 R‐279‐000‐472‐112; R‐279‐000‐540‐114 – fundername: Agency for Science, Technology and Research funderid: PSF R‐279‐000‐475‐305; IRG R‐279‐000‐510‐305 – fundername: Ministry of Education-Singapore grantid: MOE AcRF Tier 1 R-279-000-472-112 – fundername: National University of Singapore grantid: R-279-000-505-133 – fundername: Ministry of Education-Singapore grantid: R-279-000-540-114 – fundername: National University of Singapore grantid: CENGas R-261-508-001-646 – fundername: Agency for Science, Technology and Research grantid: PSF R-279-000-475-305 – fundername: Agency for Science, Technology and Research grantid: IRG R-279-000-510-305 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4781-ec679710a30d86d50b69c9d70b724bf5d23e54ff34ffb494a024ca4f60f4c5e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 13:03:29 EDT 2025 Mon Jul 14 10:31:46 EDT 2025 Wed Feb 19 02:42:48 EST 2025 Thu Apr 24 22:54:12 EDT 2025 Tue Jul 01 00:44:44 EDT 2025 Wed Jan 22 16:39:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | advanced porous materials environmental sustainability clean energy gas and liquid separations mixed matrix membranes |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4781-ec679710a30d86d50b69c9d70b724bf5d23e54ff34ffb494a024ca4f60f4c5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4427-2150 |
PMID | 30048014 |
PQID | 2135033142 |
PQPubID | 2045203 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2076913764 proquest_journals_2135033142 pubmed_primary_30048014 crossref_primary_10_1002_adma_201802401 crossref_citationtrail_10_1002_adma_201802401 wiley_primary_10_1002_adma_201802401_ADMA201802401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009 2012 2017; 131 5 29 2014 2014 2013 2015 2015 2017; 453 2 428 135 492 531 2013; 1 2016 2017; 1 46 1994; 66 2014; 26 1999; 283 2014; 24 2013; 6 2004 2015; 16 3 2018; 47 2018; 6 2015 2015; 54 44 2012; 134 2015; 137 2010; 114 2013; 52 2009; 121 2018; 30 2009; 120 2012 2012; 4 134 2016; 49 2017 2018; 53 549 2014; 126 2017; 539 2017; 63 2010 2011 2010 2011 2018; 354 369 122 50 4 2015; 127 2015 2016; 481 6 2015; 51 2004; 45 2015 2017; 476 9 2014; 47 2015; 527 2017; 530 2011; 370 2016; 15 2011; 133 2014; 43 2017; 535 2016 2017 2017 2017 2017 2018; 513 2 5 186 541 549 2014 2014 2015 2015; 7 43 44 6 2016; 4 2017; 51 2016; 6 2016; 7 2007; 316 2012; 112 2005; 127 2017; 56 2008; 47 2013 2011 2012 2013 2015; 1 4 2 38 3 2008; 41 2016; 28 2018; 11 2009 2010 2012 2013 2013 2013 2013 2014; 328 49 389 444 436 425–426 428 467 2016; 26 2016; 8 2008; 130 2009; 106 2016; 22 2018; 13 2017; 8 2008 2004 2017 2010 2010 1988; 130 231 29 73 122 2009 2014 2014 2013 2011; 38 343 43 341 50 2016; 502 2011; 12 2007; 32 2017; 9 2017; 117 2012; 51 2017; 526 2017; 527 1973; 41 2006 2012 2016; 35 5 9 2016; 235 2012; 335 2014; 50 2006; 128 2013 2014 2015 2014; 427 128 495 60 2017; 523 2017 2016; 56 138 2014; 53 2016; 88 2014; 118 2015; 14 2015; 5 2009; 21 2013; 49 2015; 3 2018; 548 2005; 310 2016 2016; 8 511 2013; 42 2016; 520 2010; 361 2016; 52 2010; 362 2016; 128 2017; 29 2006 2016 2015 2008 2016; 103 1 7 47 9 1991 2008; 62 320 2015; 7 2012 2017; 413–414 63 2014; 114 2016; 55 2004; 10 2014 2015; 53 54 2010 2011 2016; 362 333 28 2016 2015; 306 44 2015; 27 2017; 17 2017; 16 2017; 10 2015; 21 2013; 135 2009; 8 2016; 62 2011 2015 2015; 81 495 7 2016; 138 2011; 47 2014; 463 2008; 452 2013 2013; 113 113 2012; 5 2007; 46 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_64_5 e_1_2_8_64_6 e_1_2_8_132_1 e_1_2_8_9_1 e_1_2_8_64_3 e_1_2_8_117_1 e_1_2_8_64_4 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_64_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_38_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_120_3 e_1_2_8_120_2 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_105_2 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_120_5 e_1_2_8_120_4 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_63_2 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_14_4 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_119_3 e_1_2_8_119_2 e_1_2_8_89_2 e_1_2_8_7_5 e_1_2_8_7_4 e_1_2_8_7_6 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_17_4 e_1_2_8_17_5 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_122_7 e_1_2_8_122_6 e_1_2_8_107_1 e_1_2_8_122_8 e_1_2_8_122_3 e_1_2_8_122_2 e_1_2_8_122_5 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_122_4 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_112_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 Yehia H. (e_1_2_8_18_1) 2004; 45 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_146_2 e_1_2_8_123_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_5_3 e_1_2_8_151_1 e_1_2_8_5_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_136_2 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_19_5 e_1_2_8_95_1 e_1_2_8_95_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_152_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_79_1 e_1_2_8_140_4 e_1_2_8_94_1 e_1_2_8_140_5 e_1_2_8_140_2 e_1_2_8_140_3 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_2 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_140_6 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_130_2 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_126_2 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_23_2 e_1_2_8_23_3 e_1_2_8_46_1 e_1_2_8_23_4 e_1_2_8_69_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_35_1 e_1_2_8_12_4 e_1_2_8_12_5 e_1_2_8_58_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_104_2 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_3 e_1_2_8_73_2 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 520 start-page: 941 year: 2016 publication-title: J. Membr. Sci. – volume: 26 start-page: 7189 year: 2014 publication-title: Chem. Mater. – volume: 362 333 28 start-page: 134 712 2629 year: 2010 2011 2016 publication-title: J. Membr. Sci. Science Adv. Mater. – volume: 28 start-page: 3399 year: 2016 publication-title: Adv. Mater. – volume: 55 start-page: 12793 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 5297 year: 2016 publication-title: Macromolecules – volume: 4 134 start-page: 5016 8115 year: 2012 2012 publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc. – volume: 14 start-page: 48 year: 2015 publication-title: Nat. Mater. – volume: 12 start-page: 2781 year: 2011 publication-title: ChemPhysChem – volume: 5 start-page: 7823 year: 2015 publication-title: Sci. Rep. – volume: 11 start-page: 544 year: 2018 publication-title: Energy Environ. Sci. – volume: 21 start-page: 17246 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 9 start-page: 37848 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 112 start-page: 673 year: 2012 publication-title: Chem. Rev. – volume: 53 54 start-page: 5322 2669 year: 2014 2015 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 66 start-page: 1739 year: 1994 publication-title: Pure Appl. Chem. – volume: 9 start-page: 14401 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 8359 year: 2012 publication-title: Energy Environ. Sci. – volume: 131 5 29 start-page: 16000 7637 1603833 year: 2009 2012 2017 publication-title: J. Am. Chem. Soc. Energy Environ. Sci. Adv. Mater. – volume: 43 start-page: 5561 year: 2014 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 583 year: 2018 publication-title: J. Mater. Chem. A – volume: 81 495 7 start-page: 243 72 5528 year: 2011 2015 2015 publication-title: Sep. Purif. Technol. J. Membr. Sci. ACS Appl. Mater. Interfaces – volume: 8 start-page: 14460 year: 2017 publication-title: Nat. Commun. – volume: 10 start-page: 1373 year: 2004 publication-title: Chem. ‐ Eur. J. – volume: 51 start-page: 4249 year: 2015 publication-title: Chem. Commun. – volume: 7 43 44 6 start-page: 3202 4470 2421 3841 year: 2014 2014 2015 2015 publication-title: ChemSusChem Chem. Soc. Rev. Chem. Soc. Rev. J. Phys. Chem. Lett. – volume: 17 start-page: 156 year: 2017 publication-title: Cryst. Growth Des. – volume: 30 start-page: 1704303 year: 2018 publication-title: Adv. Mater. – volume: 138 start-page: 2823 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 427 128 495 60 start-page: 48 31 479 2625 year: 2013 2014 2015 2014 publication-title: J. Membr. Sci. Sep. Purif. Technol. J. Membr. Sci. AIChE J. – volume: 361 start-page: 28 year: 2010 publication-title: J. Membr. Sci. – volume: 310 start-page: 1166 year: 2005 publication-title: Science – volume: 114 start-page: 11185 year: 2010 publication-title: J. Phys. Chem. C – volume: 463 start-page: 82 year: 2014 publication-title: J. Membr. Sci. – volume: 118 start-page: 1523 year: 2014 publication-title: J. Phys. Chem. C – volume: 47 start-page: 6999 year: 2014 publication-title: Macromolecules – volume: 117 start-page: 1515 year: 2017 publication-title: Chem. Rev. – volume: 3 start-page: 5014 year: 2015 publication-title: J. Mater. Chem. A – volume: 51 start-page: 12727 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 8 511 start-page: 27311 130 year: 2016 2016 publication-title: ACS Appl. Mater. Interfaces J. Membr. Sci. – volume: 47 start-page: 8487 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 56 138 start-page: 2123 15519 year: 2017 2016 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 29 start-page: 1606999 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 3565 year: 2013 publication-title: Energy Environ. Sci. – volume: 126 start-page: 9933 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 1 46 start-page: 16078 7124 year: 2016 2017 publication-title: Nat. Rev. Mater. Chem. Soc. Rev. – volume: 6 start-page: 82669 year: 2016 publication-title: RSC Adv. – volume: 127 start-page: 1504 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 527 start-page: 216 year: 2015 publication-title: Nature – volume: 135 start-page: 15201 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 235 start-page: 151 year: 2016 publication-title: Microporous Mesoporous Mater. – volume: 6 start-page: 3151 year: 2018 publication-title: J. Mater. Chem. A – volume: 106 start-page: 20637 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 6828 year: 2017 publication-title: Nano Lett. – volume: 56 start-page: 9292 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 4695 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 15 start-page: 845 year: 2016 publication-title: Nat. Mater. – volume: 17 start-page: 4467 year: 2017 publication-title: Cryst. Growth Des. – volume: 453 2 428 135 492 531 start-page: 155 10034 498 479 322 16 year: 2014 2014 2013 2015 2015 2017 publication-title: J. Membr. Sci. J. Mater. Chem. A J. Membr. Sci. Chem. Eng. Sci. J. Membr. Sci. J. Membr. Sci. – volume: 548 start-page: 429 year: 2018 publication-title: J. Membr. Sci. – volume: 7 start-page: 25193 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 483 year: 2007 publication-title: Prog. Polym. Sci. – volume: 47 start-page: 9522 year: 2011 publication-title: Chem. Commun. – volume: 55 start-page: 7933 year: 2016 publication-title: Ind. Eng. Chem. Res. – volume: 62 start-page: 1728 year: 2016 publication-title: AIChE J. – volume: 54 44 start-page: 4862 19018 year: 2015 2015 publication-title: Inorg. Chem. Dalton Trans. – volume: 47 start-page: 5755 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 283 start-page: 1148 year: 1999 publication-title: Science – volume: 476 9 start-page: 303 7523 year: 2015 2017 publication-title: J. Membr. Sci. ACS Appl. Mater. Interfaces – volume: 306 44 start-page: 171 9 year: 2016 2015 publication-title: Coord. Chem. Rev. Chem. Soc. Rev. – volume: 535 start-page: 350 year: 2017 publication-title: J. Membr. Sci. – volume: 45 start-page: 35 year: 2004 publication-title: Polym. Prepr. – volume: 49 start-page: 9449 year: 2013 publication-title: Chem. Commun. – volume: 51 start-page: 17672 year: 2015 publication-title: Chem. Commun. – volume: 28 start-page: 1277 year: 2016 publication-title: Chem. Mater. – volume: 135 start-page: 11465 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 10735 year: 2014 publication-title: Chem. Rev. – volume: 526 start-page: 205 year: 2017 publication-title: J. Membr. Sci. – volume: 13 start-page: 631 year: 2018 publication-title: Chem. ‐ Asian J. – volume: 120 start-page: 325 year: 2009 publication-title: Microporous Mesoporous Mater. – volume: 527 start-page: 8 year: 2017 publication-title: J. Membr. Sci. – volume: 127 start-page: 15703 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 16 start-page: 289 year: 2017 publication-title: Nat. Mater. – volume: 4 start-page: 7281 year: 2016 publication-title: J. Mater. Chem. A – volume: 42 start-page: 548 year: 2013 publication-title: Chem. Soc. Rev. – volume: 128 start-page: 8398 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 6752 year: 2017 publication-title: Nano Lett. – volume: 530 start-page: 201 year: 2017 publication-title: J. Membr. Sci. – volume: 63 start-page: 1303 year: 2017 publication-title: AIChE J. – volume: 53 549 start-page: 4254 312 year: 2017 2018 publication-title: Chem. Commun. J. Membr. Sci. – volume: 16 3 start-page: 3838 20801 year: 2004 2015 publication-title: Chem. Mater. J. Mater. Chem. A – volume: 50 start-page: 8779 year: 2014 publication-title: Chem. Commun. – volume: 7 start-page: 14750 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 354 369 122 50 4 start-page: 48 284 5078 4979 eaaq0066 year: 2010 2011 2010 2011 2018 publication-title: J. Membr. Sci. J. Membr. Sci. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Sci. Adv. – volume: 21 start-page: 1410 year: 2009 publication-title: Chem. Mater. – volume: 481 6 start-page: 73 70174 year: 2015 2016 publication-title: J. Membr. Sci. RSC Adv. – volume: 121 start-page: 9621 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 103 1 7 47 9 start-page: 10186 16068 15561 5136 922 year: 2006 2016 2015 2008 2016 publication-title: Proc. Natl. Acad. Sci. USA Nat. Rev. Mater. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Energy Environ. Sci. – volume: 526 start-page: 355 year: 2017 publication-title: J. Membr. Sci. – volume: 50 start-page: 13921 year: 2014 publication-title: Chem. Commun. – volume: 49 start-page: 3925 year: 2013 publication-title: Chem. Commun. – volume: 128 start-page: 2038 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 6350 year: 2013 publication-title: J. Mater. Chem. A – volume: 9 start-page: 29093 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 413–414 63 start-page: 48 4103 year: 2012 2017 publication-title: J. Membr. Sci. AIChE J. – volume: 539 start-page: 213 year: 2017 publication-title: J. Membr. Sci. – volume: 51 start-page: 14352 year: 2017 publication-title: Environ. Sci. Technol. – volume: 113 113 start-page: 4980 8261 year: 2013 2013 publication-title: Chem. Rev. Chem. Rev. – volume: 5 start-page: 43110 year: 2015 publication-title: RSC Adv. – volume: 134 start-page: 19524 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 88 start-page: 12 year: 2016 publication-title: Renewable Energy – volume: 41 start-page: 79 year: 1973 publication-title: J. Polym. Sci., Polym. Symp. – volume: 370 start-page: 1 year: 2011 publication-title: J. Membr. Sci. – volume: 41 start-page: 1297 year: 2008 publication-title: Macromolecules – volume: 57 start-page: 5156 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 13872 year: 2016 publication-title: Nat. Commun. – volume: 335 start-page: 1606 year: 2012 publication-title: Science – volume: 22 start-page: 14467 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 8 start-page: 973 year: 2009 publication-title: Nat. Mater. – volume: 57 start-page: 4083 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 7536 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 133 start-page: 8900 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 130 231 29 73 122 start-page: 5412 117 1701631 59 558 year: 2008 2004 2017 2010 2010 1988 publication-title: J. Am. Chem. Soc. J. Membr. Sci. Adv. Mater. Sep. Purif. Technol. Angew. Chem., Int. Ed. – volume: 137 start-page: 6999 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 62 320 start-page: 165 390 year: 1991 2008 publication-title: J. Membr. Sci. J. Membr. Sci. – volume: 57 start-page: 4139 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 43 start-page: 6062 year: 2014 publication-title: Chem. Soc. Rev. – volume: 38 343 43 341 50 start-page: 1248 66 5815 354 1799 year: 2009 2014 2014 2013 2011 publication-title: Chem. Soc. Rev. Science Chem. Soc. Rev. Science Ind. Eng. Chem. Res. – volume: 43 start-page: 6116 year: 2014 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 1253 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 46 start-page: 8574 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 3154 year: 2016 publication-title: Adv. Funct. Mater. – volume: 316 start-page: 268 year: 2007 publication-title: Science – volume: 502 start-page: 21 year: 2016 publication-title: J. Membr. Sci. – volume: 53 start-page: 1516 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 362 start-page: 478 year: 2010 publication-title: J. Membr. Sci. – volume: 47 start-page: 7905 year: 2018 publication-title: Dalton Trans. – volume: 9 start-page: 8433 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 16368 year: 2016 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1812 year: 2017 publication-title: Energy Environ. Sci. – volume: 35 5 9 start-page: 675 7306 1863 year: 2006 2012 2016 publication-title: Chem. Soc. Rev. Energy Environ. Sci. Energy Environ. Sci. – volume: 130 start-page: 13850 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 62 start-page: 3706 year: 2016 publication-title: AIChE J. – volume: 27 start-page: 4756 year: 2015 publication-title: Chem. Mater. – volume: 1 4 2 38 3 start-page: 6081 4171 1358 229 6549 year: 2013 2011 2012 2013 2015 publication-title: J. Mater. Chem. A Energy Environ. Sci. Adv. Energy Mater. Int. J. Hydrogen Energy J. Mater. Chem. A – volume: 328 49 389 444 436 425–426 428 467 start-page: 165 9863 34 173 221 235 445 162 year: 2009 2010 2012 2013 2013 2013 2013 2014 publication-title: J. Membr. Sci. Angew. Chem., Int. Ed. J. Membr. Sci. J. Membr. Sci. J. Membr. Sci. J. Membr. Sci. J. Membr. Sci. J. Membr. Sci. – volume: 52 start-page: 5581 year: 2016 publication-title: Chem. Commun. – volume: 513 2 5 186 541 549 start-page: 155 17086 10968 20 262 217 year: 2016 2017 2017 2017 2017 2018 publication-title: J. Membr. Sci. Nat. Energy J. Mater. Chem. A Sep. Purif. Technol. J. Membr. Sci. J. Membr. Sci. – volume: 523 start-page: 273 year: 2017 publication-title: J. Membr. Sci. – volume: 7 start-page: 1065 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 452 start-page: 301 year: 2008 publication-title: Nature – volume: 24 start-page: 249 year: 2014 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_7_2 doi: 10.1016/j.memsci.2003.10.044 – ident: e_1_2_8_122_3 doi: 10.1016/j.memsci.2011.10.003 – ident: e_1_2_8_120_5 doi: 10.1039/C4TA06820C – ident: e_1_2_8_60_1 doi: 10.1039/C4CC02570A – ident: e_1_2_8_97_1 doi: 10.1002/anie.200802240 – ident: e_1_2_8_126_2 doi: 10.1002/aic.15837 – ident: e_1_2_8_119_2 doi: 10.1039/c2ee21743k – ident: e_1_2_8_144_1 doi: 10.1039/C4CS00159A – ident: e_1_2_8_101_1 doi: 10.1039/C8DT00082D – ident: e_1_2_8_64_5 doi: 10.1016/j.memsci.2017.06.061 – ident: e_1_2_8_130_1 doi: 10.1038/natrevmats.2016.78 – ident: e_1_2_8_54_1 doi: 10.1016/j.memsci.2016.08.045 – ident: e_1_2_8_94_1 doi: 10.1002/anie.201206339 – ident: e_1_2_8_38_2 doi: 10.1016/j.memsci.2017.12.002 – ident: e_1_2_8_19_5 doi: 10.1126/sciadv.aaq0066 – ident: e_1_2_8_122_1 doi: 10.1016/j.memsci.2008.12.006 – ident: e_1_2_8_133_1 doi: 10.1021/jacs.5b02276 – ident: e_1_2_8_73_3 doi: 10.1039/C6EE00811A – ident: e_1_2_8_5_3 doi: 10.1002/adma.201505688 – ident: e_1_2_8_126_1 doi: 10.1016/j.memsci.2012.04.003 – ident: e_1_2_8_36_1 doi: 10.1039/c3ta11131h – ident: e_1_2_8_4_1 doi: 10.1021/acs.cgd.7b00595 – ident: e_1_2_8_122_6 doi: 10.1016/j.memsci.2012.09.006 – ident: e_1_2_8_87_1 doi: 10.1039/C6CC00261G – ident: e_1_2_8_135_1 doi: 10.1002/ange.201403978 – ident: e_1_2_8_145_1 doi: 10.1021/acsami.7b02295 – ident: e_1_2_8_31_1 doi: 10.1126/science.283.5405.1148 – ident: e_1_2_8_14_3 doi: 10.1039/C4CS00437J – ident: e_1_2_8_67_1 doi: 10.1016/j.memsci.2016.12.041 – ident: e_1_2_8_63_1 doi: 10.1021/acs.inorgchem.5b00435 – ident: e_1_2_8_24_1 doi: 10.1016/j.memsci.2010.06.017 – ident: e_1_2_8_88_1 doi: 10.1002/ange.200904637 – ident: e_1_2_8_118_1 doi: 10.1021/ma702360p – ident: e_1_2_8_38_1 doi: 10.1039/C7CC00295E – ident: e_1_2_8_25_1 doi: 10.1021/acsami.6b08954 – ident: e_1_2_8_52_1 doi: 10.1021/jp102574f – ident: e_1_2_8_105_1 doi: 10.1021/cm049154u – ident: e_1_2_8_98_1 doi: 10.1016/j.memsci.2014.03.045 – ident: e_1_2_8_53_1 doi: 10.1039/c3ee42394h – ident: e_1_2_8_45_1 doi: 10.1021/acsami.5b12541 – ident: e_1_2_8_64_1 doi: 10.1016/j.memsci.2016.04.045 – ident: e_1_2_8_72_1 doi: 10.1039/c3cc00039g – ident: e_1_2_8_10_1 doi: 10.1021/acs.iecr.7b04796 – ident: e_1_2_8_25_2 doi: 10.1016/j.memsci.2016.03.050 – ident: e_1_2_8_17_3 doi: 10.1039/C4CS00010B – ident: e_1_2_8_64_6 doi: 10.1016/j.memsci.2017.12.001 – ident: e_1_2_8_19_2 doi: 10.1016/j.memsci.2010.12.001 – ident: e_1_2_8_120_1 doi: 10.1039/c3ta10928c – ident: e_1_2_8_120_3 doi: 10.1002/aenm.201200200 – ident: e_1_2_8_124_1 doi: 10.1126/science.1217544 – ident: e_1_2_8_26_1 doi: 10.1039/C5RA02230D – ident: e_1_2_8_15_1 doi: 10.1002/anie.201701109 – ident: e_1_2_8_119_1 doi: 10.1021/ja907359t – ident: e_1_2_8_46_1 doi: 10.1021/am504742q – ident: e_1_2_8_41_1 doi: 10.1039/C4CS00101J – ident: e_1_2_8_92_1 doi: 10.1038/nature16072 – ident: e_1_2_8_149_1 doi: 10.1002/anie.201713160 – ident: e_1_2_8_129_1 doi: 10.1016/j.micromeso.2016.08.008 – ident: e_1_2_8_128_1 doi: 10.1021/acs.chemmater.5b01537 – ident: e_1_2_8_56_1 doi: 10.1021/acs.cgd.6b01398 – ident: e_1_2_8_130_2 doi: 10.1039/C7CS00575J – ident: e_1_2_8_115_1 doi: 10.1039/C6RA16896E – ident: e_1_2_8_79_1 doi: 10.1002/chem.201504836 – ident: e_1_2_8_55_1 doi: 10.1021/acs.nanolett.7b03106 – ident: e_1_2_8_114_1 doi: 10.1039/C6TA05175H – ident: e_1_2_8_39_1 doi: 10.1016/j.memsci.2017.06.011 – ident: e_1_2_8_86_1 doi: 10.1002/ange.201508070 – ident: e_1_2_8_35_1 doi: 10.1002/cphc.201100583 – ident: e_1_2_8_11_1 doi: 10.1016/j.seppur.2011.07.042 – ident: e_1_2_8_12_2 doi: 10.1038/natrevmats.2016.68 – ident: e_1_2_8_123_1 doi: 10.1021/ja202154j – ident: e_1_2_8_142_1 doi: 10.1039/C7TA09596A – ident: e_1_2_8_140_1 doi: 10.1016/j.memsci.2013.10.059 – ident: e_1_2_8_89_1 doi: 10.1002/anie.201402234 – ident: e_1_2_8_12_4 doi: 10.1002/anie.200705008 – ident: e_1_2_8_12_5 doi: 10.1039/C5EE02660A – ident: e_1_2_8_140_3 doi: 10.1016/j.memsci.2012.10.028 – ident: e_1_2_8_63_2 doi: 10.1039/C5DT03359D – ident: e_1_2_8_95_1 doi: 10.1016/j.ccr.2015.05.016 – ident: e_1_2_8_121_1 doi: 10.1016/j.memsci.2017.02.003 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.0602439103 – ident: e_1_2_8_104_1 doi: 10.1002/anie.201611260 – ident: e_1_2_8_23_4 doi: 10.1002/aic.14496 – ident: e_1_2_8_48_1 doi: 10.1039/C6TA02611G – ident: e_1_2_8_93_1 doi: 10.1021/jp4079184 – ident: e_1_2_8_21_1 doi: 10.1021/am301365h – ident: e_1_2_8_146_2 doi: 10.1021/cr400005f – ident: e_1_2_8_44_1 doi: 10.1002/adfm.201505352 – ident: e_1_2_8_116_1 doi: 10.1039/C7EE00830A – ident: e_1_2_8_51_1 doi: 10.1073/pnas.0909718106 – ident: e_1_2_8_7_3 doi: 10.1002/adma.201701631 – ident: e_1_2_8_136_2 doi: 10.1021/acsami.6b14223 – ident: e_1_2_8_109_1 doi: 10.1016/j.memsci.2017.04.022 – ident: e_1_2_8_131_1 doi: 10.1038/nature06599 – ident: e_1_2_8_64_4 doi: 10.1016/j.seppur.2017.05.046 – ident: e_1_2_8_140_6 doi: 10.1016/j.memsci.2017.02.041 – ident: e_1_2_8_7_4 doi: 10.1016/j.seppur.2009.10.020 – ident: e_1_2_8_1_1 doi: 10.1038/nmat4805 – ident: e_1_2_8_17_2 doi: 10.1126/science.1246738 – ident: e_1_2_8_150_1 doi: 10.1038/ncomms14460 – ident: e_1_2_8_75_1 doi: 10.1039/C2CS35072F – ident: e_1_2_8_81_1 doi: 10.1021/jacs.5b13533 – ident: e_1_2_8_91_1 doi: 10.1002/anie.201308924 – ident: e_1_2_8_100_1 doi: 10.1002/aic.15263 – ident: e_1_2_8_108_1 doi: 10.1016/j.memsci.2017.01.001 – ident: e_1_2_8_138_1 doi: 10.1016/j.memsci.2016.09.055 – ident: e_1_2_8_65_1 doi: 10.1039/C4TA05225K – ident: e_1_2_8_42_1 doi: 10.1039/c1cc13431k – ident: e_1_2_8_89_2 doi: 10.1002/anie.201410684 – ident: e_1_2_8_103_1 doi: 10.1039/C4CC05279J – ident: e_1_2_8_14_1 doi: 10.1002/cssc.201402647 – ident: e_1_2_8_70_1 doi: 10.1021/acs.iecr.5b04568 – volume: 45 start-page: 35 year: 2004 ident: e_1_2_8_18_1 publication-title: Polym. Prepr. – ident: e_1_2_8_76_1 doi: 10.1021/acs.macromol.6b00891 – ident: e_1_2_8_5_2 doi: 10.1126/science.1200488 – ident: e_1_2_8_83_1 doi: 10.1002/anie.200701595 – ident: e_1_2_8_14_4 doi: 10.1021/acs.jpclett.5b01602 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201504982 – ident: e_1_2_8_99_1 doi: 10.1039/C5CC00384A – ident: e_1_2_8_7_5 doi: 10.1002/ange.200905645 – ident: e_1_2_8_85_1 doi: 10.1021/cm503924h – ident: e_1_2_8_141_1 doi: 10.1016/j.renene.2015.11.025 – ident: e_1_2_8_117_1 doi: 10.1039/C7EE02820B – ident: e_1_2_8_33_2 doi: 10.1039/C6RA14591D – ident: e_1_2_8_64_3 doi: 10.1039/C7TA01773A – ident: e_1_2_8_16_1 doi: 10.1021/cr300014x – ident: e_1_2_8_105_2 doi: 10.1039/C5TA03739E – ident: e_1_2_8_50_1 doi: 10.1021/ja045123o – ident: e_1_2_8_61_1 doi: 10.1039/C5CC07783D – ident: e_1_2_8_140_2 doi: 10.1039/C4TA00316K – ident: e_1_2_8_19_4 doi: 10.1002/anie.201007861 – ident: e_1_2_8_64_2 doi: 10.1038/nenergy.2017.86 – ident: e_1_2_8_137_1 doi: 10.1002/anie.201712816 – ident: e_1_2_8_8_1 doi: 10.1016/j.progpolymsci.2007.01.008 – ident: e_1_2_8_17_5 doi: 10.1021/ie101312k – ident: e_1_2_8_66_1 doi: 10.1016/j.memsci.2017.11.054 – ident: e_1_2_8_3_1 doi: 10.1021/ma501488s – ident: e_1_2_8_147_1 doi: 10.1002/anie.200803067 – ident: e_1_2_8_14_2 doi: 10.1039/C3CS60480B – ident: e_1_2_8_96_1 doi: 10.1021/ja062491e – ident: e_1_2_8_13_1 doi: 10.1351/pac199466081739 – ident: e_1_2_8_78_1 doi: 10.1021/acs.chemmater.5b02902 – ident: e_1_2_8_6_2 doi: 10.1016/j.memsci.2008.04.030 – ident: e_1_2_8_104_2 doi: 10.1021/jacs.6b08377 – ident: e_1_2_8_73_2 doi: 10.1039/C1EE02668B – ident: e_1_2_8_120_2 doi: 10.1039/c1ee01324f – ident: e_1_2_8_122_8 doi: 10.1016/j.memsci.2014.05.025 – ident: e_1_2_8_134_1 doi: 10.1021/acsami.7b12750 – ident: e_1_2_8_110_1 doi: 10.1002/adma.201606999 – ident: e_1_2_8_49_1 doi: 10.1016/j.memsci.2015.12.022 – ident: e_1_2_8_28_1 doi: 10.1039/C7TA10322K – ident: e_1_2_8_5_1 doi: 10.1016/j.memsci.2010.06.028 – ident: e_1_2_8_106_1 doi: 10.1021/acsami.6b15752 – ident: e_1_2_8_33_1 doi: 10.1016/j.memsci.2015.01.045 – ident: e_1_2_8_120_4 doi: 10.1016/j.ijhydene.2012.10.045 – ident: e_1_2_8_71_1 doi: 10.1021/acs.chemrev.6b00439 – ident: e_1_2_8_132_1 doi: 10.1002/adma.201704303 – ident: e_1_2_8_17_4 doi: 10.1126/science.1239872 – ident: e_1_2_8_74_1 doi: 10.1126/science.1120411 – ident: e_1_2_8_113_1 doi: 10.1002/aic.15508 – ident: e_1_2_8_37_1 doi: 10.1038/nmat4113 – ident: e_1_2_8_7_6 – ident: e_1_2_8_23_1 doi: 10.1016/j.memsci.2012.09.035 – ident: e_1_2_8_151_1 doi: 10.1038/ncomms13872 – ident: e_1_2_8_148_1 doi: 10.1002/chem.201602999 – ident: e_1_2_8_23_3 doi: 10.1016/j.memsci.2015.08.016 – ident: e_1_2_8_122_4 doi: 10.1016/j.memsci.2013.05.016 – ident: e_1_2_8_29_1 doi: 10.1021/cm900166h – ident: e_1_2_8_62_1 doi: 10.1039/c3cc46105j – ident: e_1_2_8_58_1 doi: 10.1021/ja405078u – ident: e_1_2_8_139_1 doi: 10.1021/acs.est.7b04056 – ident: e_1_2_8_23_2 doi: 10.1016/j.seppur.2014.03.006 – ident: e_1_2_8_80_1 doi: 10.1016/j.memsci.2016.12.039 – ident: e_1_2_8_82_1 doi: 10.1126/science.1139915 – ident: e_1_2_8_136_1 doi: 10.1016/j.memsci.2014.11.038 – ident: e_1_2_8_73_1 doi: 10.1039/b600349d – ident: e_1_2_8_69_1 doi: 10.1038/srep07823 – ident: e_1_2_8_68_1 doi: 10.1021/acs.nanolett.7b02910 – ident: e_1_2_8_59_1 doi: 10.1021/acsami.5b08964 – ident: e_1_2_8_107_1 doi: 10.1021/acsami.7b08032 – ident: e_1_2_8_30_1 doi: 10.1002/anie.201607014 – ident: e_1_2_8_95_2 doi: 10.1039/C4CS00222A – ident: e_1_2_8_21_2 doi: 10.1021/ja211864w – ident: e_1_2_8_143_1 doi: 10.1021/cr500006j – ident: e_1_2_8_7_1 doi: 10.1021/ja801294f – ident: e_1_2_8_32_1 doi: 10.1016/j.micromeso.2008.11.020 – ident: e_1_2_8_22_1 doi: 10.1002/ange.201505508 – ident: e_1_2_8_34_1 doi: 10.1016/j.memsci.2010.07.005 – ident: e_1_2_8_152_1 doi: 10.1039/C4CS00003J – ident: e_1_2_8_9_1 doi: 10.1002/polc.5070410109 – ident: e_1_2_8_19_3 doi: 10.1002/ange.201001919 – ident: e_1_2_8_125_1 doi: 10.1038/nmat4621 – ident: e_1_2_8_12_3 doi: 10.1021/acsami.5b04148 – ident: e_1_2_8_2_1 doi: 10.1016/j.memsci.2010.12.036 – ident: e_1_2_8_127_1 doi: 10.1002/chem.201503078 – ident: e_1_2_8_122_7 doi: 10.1016/j.memsci.2012.11.014 – ident: e_1_2_8_77_1 doi: 10.1021/ja308278w – ident: e_1_2_8_20_1 doi: 10.1039/c2ee21996d – ident: e_1_2_8_102_1 doi: 10.1002/asia.201701647 – ident: e_1_2_8_11_2 doi: 10.1016/j.memsci.2015.07.065 – ident: e_1_2_8_17_1 doi: 10.1039/b807083k – ident: e_1_2_8_122_5 doi: 10.1016/j.memsci.2013.02.034 – ident: e_1_2_8_111_1 doi: 10.1002/aic.15140 – ident: e_1_2_8_84_1 doi: 10.1002/anie.201205521 – ident: e_1_2_8_19_1 doi: 10.1016/j.memsci.2010.02.074 – ident: e_1_2_8_119_3 doi: 10.1002/adma.201603833 – ident: e_1_2_8_140_4 doi: 10.1016/j.ces.2014.11.058 – ident: e_1_2_8_140_5 doi: 10.1016/j.memsci.2015.05.070 – ident: e_1_2_8_146_1 doi: 10.1021/cr3003888 – ident: e_1_2_8_11_3 doi: 10.1021/acsami.5b00106 – ident: e_1_2_8_43_1 doi: 10.1002/adfm.201203462 – ident: e_1_2_8_122_2 doi: 10.1002/anie.201006141 – ident: e_1_2_8_90_1 doi: 10.1038/nmat2545 – ident: e_1_2_8_6_1 doi: 10.1016/0376-7388(91)80060-J – ident: e_1_2_8_57_1 doi: 10.1021/ja8057953 – ident: e_1_2_8_112_1 doi: 10.1021/ja407665w – ident: e_1_2_8_40_1 doi: 10.1002/chem.200305413 – ident: e_1_2_8_47_1 doi: 10.1021/acsami.5b02680 |
SSID | ssj0009606 |
Score | 2.6738715 |
SecondaryResourceType | review_article |
Snippet | Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1802401 |
SubjectTerms | advanced porous materials Clean energy environmental sustainability Fillers gas and liquid separations Materials science Materials selection Membranes Metal-organic frameworks mixed matrix membranes Organic chemistry Porous materials Porous media Separation Sustainable development |
Title | Advanced Porous Materials in Mixed Matrix Membranes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802401 https://www.ncbi.nlm.nih.gov/pubmed/30048014 https://www.proquest.com/docview/2135033142 https://www.proquest.com/docview/2076913764 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMAfspMe_P6oTqkgeOqWJmnaHoc6hlARmbBbSdIEhtrJPmD415u0XbcpIuih0JKkTd_LS16bvF8ArgTyuVAR9bQIzQcKjpAXCZV5WmacShaHPrfByckD6z3T-0EwWIniL_kQ9Q83axlFf20NnItJewkN5VnBDbIEM1oEcNkFW9Yrelryo6x7XsD2SODFjEYLaiPC7fXi66PSN1dz3XMthp7uDvBFpcsVJy-t2VS05McXnuN_3moXtiu_1O2UDWkPNlS-D1srtMIDIJ1qvYD7OBqPZhM34dOy_brD3E2Gc5OSWOL_3E3Um6mE6UUPod-969_0vGrPBU_aoFNPSRYaBSFOUBaxLECCxTLOQiRCTIUOMkxUQLUm5hA0ptzUU3KqGdJUBoocQSMf5eoEXKxlGFgYDMIxNXl4SLDkRCqimckuHPAWIk9lxSO322K8piVJGadWFmktCweu6_zvJYnjx5zNhQbTyiInKfaJnbH1KXbgsk42tmQnSIxAjNjMHUIW-6bLpQ4cl5qvH0Uq0o4DuNDfL3VIO7dJp746_UuhM9i052XgYxMa0_FMnRsPaCouilb-CYvY-kQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BPZQeoD_QBmibSkWcAo7tOMmhh1W3aCkEVdVW4mbZji0h2t2K3RW0T8Wr8EaM80e3VYVUiUMPOSSexM54xuOxPd8AvNUkVtpmPHI6RQeFZiTKtC0jZ0rFjcjTWPng5OJYDL7wjyfJyQJctbEwNT5Et-DmNaMar72C-wXpvVvUUFVWwEEewgydhOZc5aH9cYFe2-TdQR-7eJvS_Q_D94OoSSwQGR9ZGVkjUmwFUYyUmSgTokVu8jIlOqVcu6SkzCbcOYaX5jlXWINR3AniuEksw88uwgOfRdyj9fc_3wJWeX-gQvdjSZQLnrUwkYTuzTd33gz-MbednypXtm5_Fa5bLtVHXM52Z1O9a37-BiD5P7HxMaw0E--wV2vKE1iwo6fw6Bc4xmfAes2BiPDT-Hw8m4SFmtYKGp6OwuL0EksKn9LgMizsN_xpNBNrMLyPRq_D0mg8si8gpM6kiUe7ITTnSKNSRo1ixjInkFwHELVdLE0DuO7zfnyVNVQ0lZ71smN9ADsd_fcaauSvlFutxMhmyJlIGjO_JR1zGsCbrhgHC78DhAxBtuEXUpHHaFN4AM9rSeuqYg2UUAC0kpc72iB7_aLX3W38y0uv4eFgWBzJo4Pjw01Y9s_rKM8tWJqez-xLnO5N9atKw0KQ9yyKN7wQV5Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BlSp6aEuBNpRCKrXiFHBsx0kOHFZsV_w0CFUgcbNsx5ZQ213E7qq0L8Wr9JE6zh_dVlUlJA4cckg8sSfjGc9MbH8GeKdJrLTNeOR0igkKzUiUaVtGzpSKG5GnsfKbk4tjsX_GD8-T8zm4affC1PgQ3Q83bxnVeO0N_LJ0O7egoaqscIM8ghnmCM2yyiP7_RsmbePdgz728HtKBx9O9_aj5lyByPiNlZE1IkUmiGKkzESZEC1yk5cp0Snl2iUlZTbhzjG8NM-5whaM4k4Qx01iGVY7D4-4ILk_K6L_6RavyqcDFbgfS6Jc8KxFiSR0Z5bdWS_4V2g7GylXrm7wDH62QqpXuHzenk70tvnxB37kA5Lic3jahN1hr7aTJZizwxfw5DcwxmVgvWY5RHgyuhpNx2GhJrV5hhfDsLi4xpLCH2hwHRb2K34zOokVOL0PpldhYTga2lcQUmfSxGPdEJpzpFEpo0YxY5kTSK4DiNoelqaBW_enfnyRNVA0lV70shN9AFsd_WUNNPJPyvVWYWQz4IwljZmfkI45DeBtV4xDhZ__QYGg2LCGVOQxehQewMta0bqmWAMkFACt1OU_PMhev-h1d2t3eWkTHp_0B_LjwfHRa1j0j-stnuuwMLma2jcY6030RmVfIch71sRfM_xWRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Porous+Materials+in+Mixed+Matrix+Membranes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cheng%2C+Youdong&rft.au=Ying%2C+Yunpan&rft.au=Japip%2C+Susilo&rft.au=Jiang%2C+Shu-Dong&rft.date=2018-11-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=47&rft.spage=e1802401&rft_id=info:doi/10.1002%2Fadma.201802401&rft_id=info%3Apmid%2F30048014&rft.externalDocID=30048014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |