Sulfide‐Based Solid‐State Electrolytes: Synthesis, Stability, and Potential for All‐Solid‐State Batteries

Due to their high ionic conductivity and adeciduate mechanical features for lamination, sulfide composites have received increasing attention as solid electrolyte in all‐solid‐state batteries. Their smaller electronegativity and binding energy to Li ions and bigger atomic radius provide high ionic c...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 44; pp. e1901131 - n/a
Main Authors Zhang, Qing, Cao, Daxian, Ma, Yi, Natan, Avi, Aurora, Peter, Zhu, Hongli
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to their high ionic conductivity and adeciduate mechanical features for lamination, sulfide composites have received increasing attention as solid electrolyte in all‐solid‐state batteries. Their smaller electronegativity and binding energy to Li ions and bigger atomic radius provide high ionic conductivity and make them attractive for practical applications. In recent years, noticeable efforts have been made to develop high‐performance sulfide solid‐state electrolytes. However, sulfide solid‐state electrolytes still face numerous challenges including: 1) the need for a higher stability voltage window, 2) a better electrode–electrolyte interface and air stability, and 3) a cost‐effective approach for large‐scale manufacturing. Herein, a comprehensive update on the properties (structural and chemical), synthesis of sulfide solid‐state electrolytes, and the development of sulfide‐based all‐solid‐state batteries is provided, including electrochemical and chemical stability, interface stabilization, and their applications in high performance and safe energy storage. A comprehensive update on the properties (structural and chemical) and synthesis of sulfide solid‐state electrolytes, and the development of sulfide‐based all‐solid‐state lithium‐based batteries is given, including electrochemical and chemical stabilities, potential methods for scalable manufacturing, and their applications in high‐performance and safe energy storage.
AbstractList Due to their high ionic conductivity and adeciduate mechanical features for lamination, sulfide composites have received increasing attention as solid electrolyte in all-solid-state batteries. Their smaller electronegativity and binding energy to Li ions and bigger atomic radius provide high ionic conductivity and make them attractive for practical applications. In recent years, noticeable efforts have been made to develop high-performance sulfide solid-state electrolytes. However, sulfide solid-state electrolytes still face numerous challenges including: 1) the need for a higher stability voltage window, 2) a better electrode-electrolyte interface and air stability, and 3) a cost-effective approach for large-scale manufacturing. Herein, a comprehensive update on the properties (structural and chemical), synthesis of sulfide solid-state electrolytes, and the development of sulfide-based all-solid-state batteries is provided, including electrochemical and chemical stability, interface stabilization, and their applications in high performance and safe energy storage.
Due to their high ionic conductivity and adeciduate mechanical features for lamination, sulfide composites have received increasing attention as solid electrolyte in all‐solid‐state batteries. Their smaller electronegativity and binding energy to Li ions and bigger atomic radius provide high ionic conductivity and make them attractive for practical applications. In recent years, noticeable efforts have been made to develop high‐performance sulfide solid‐state electrolytes. However, sulfide solid‐state electrolytes still face numerous challenges including: 1) the need for a higher stability voltage window, 2) a better electrode–electrolyte interface and air stability, and 3) a cost‐effective approach for large‐scale manufacturing. Herein, a comprehensive update on the properties (structural and chemical), synthesis of sulfide solid‐state electrolytes, and the development of sulfide‐based all‐solid‐state batteries is provided, including electrochemical and chemical stability, interface stabilization, and their applications in high performance and safe energy storage. A comprehensive update on the properties (structural and chemical) and synthesis of sulfide solid‐state electrolytes, and the development of sulfide‐based all‐solid‐state lithium‐based batteries is given, including electrochemical and chemical stabilities, potential methods for scalable manufacturing, and their applications in high‐performance and safe energy storage.
Due to their high ionic conductivity and adeciduate mechanical features for lamination, sulfide composites have received increasing attention as solid electrolyte in all-solid-state batteries. Their smaller electronegativity and binding energy to Li ions and bigger atomic radius provide high ionic conductivity and make them attractive for practical applications. In recent years, noticeable efforts have been made to develop high-performance sulfide solid-state electrolytes. However, sulfide solid-state electrolytes still face numerous challenges including: 1) the need for a higher stability voltage window, 2) a better electrode-electrolyte interface and air stability, and 3) a cost-effective approach for large-scale manufacturing. Herein, a comprehensive update on the properties (structural and chemical), synthesis of sulfide solid-state electrolytes, and the development of sulfide-based all-solid-state batteries is provided, including electrochemical and chemical stability, interface stabilization, and their applications in high performance and safe energy storage.Due to their high ionic conductivity and adeciduate mechanical features for lamination, sulfide composites have received increasing attention as solid electrolyte in all-solid-state batteries. Their smaller electronegativity and binding energy to Li ions and bigger atomic radius provide high ionic conductivity and make them attractive for practical applications. In recent years, noticeable efforts have been made to develop high-performance sulfide solid-state electrolytes. However, sulfide solid-state electrolytes still face numerous challenges including: 1) the need for a higher stability voltage window, 2) a better electrode-electrolyte interface and air stability, and 3) a cost-effective approach for large-scale manufacturing. Herein, a comprehensive update on the properties (structural and chemical), synthesis of sulfide solid-state electrolytes, and the development of sulfide-based all-solid-state batteries is provided, including electrochemical and chemical stability, interface stabilization, and their applications in high performance and safe energy storage.
Author Ma, Yi
Natan, Avi
Zhu, Hongli
Aurora, Peter
Zhang, Qing
Cao, Daxian
Author_xml – sequence: 1
  givenname: Qing
  orcidid: 0000-0002-3305-3446
  surname: Zhang
  fullname: Zhang, Qing
  organization: Northeastern University
– sequence: 2
  givenname: Daxian
  orcidid: 0000-0003-1191-5954
  surname: Cao
  fullname: Cao, Daxian
  organization: Northeastern University
– sequence: 3
  givenname: Yi
  surname: Ma
  fullname: Ma, Yi
  organization: Northeastern University
– sequence: 4
  givenname: Avi
  surname: Natan
  fullname: Natan, Avi
  organization: Northeastern University
– sequence: 5
  givenname: Peter
  surname: Aurora
  fullname: Aurora, Peter
  email: paurora@umich.edu
  organization: LLC at Northeastern University
– sequence: 6
  givenname: Hongli
  orcidid: 0000-0003-1733-4333
  surname: Zhu
  fullname: Zhu, Hongli
  email: h.zhu@neu.edu
  organization: Northeastern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31441140$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFDEYh4NU7LZ69SgDXjx01rwzSXbibfvHWqgorJ5DNnkHU7KTNskgc_Mj-Bn7ScyybcVC8RRe8vwe3uR3QPaGMCAhr4HOgdLmvbYbPW8oSArQwjMyA95Azajke2RGZctrKVi3Tw5SuqKUSkHFC7LfAmMAjM7IzWr0vbN4--v3sU5oq1XwzpZplXXG6syjyTH4KWP6UK2mIf_A5NJRVa7Xzrs8HVV6sNXXkHHITvuqD7Faer81_GM61jljdJhekue99glf3Z2H5PvHs28nn-rLL-cXJ8vL2rBFB7XmEgWnRttWo6WMcYHMrI01LYimsygbvm5QGlgYYbDT0vQgjVwIpouAtYfk3c57HcPNiCmrjUsGvdcDhjGppgUQvBN8UdC3j9CrMMahbLelaNe1gtFCvbmjxvUGrbqObqPjpO4_swBsB5gYUorYK-PK210YctTOK6Bq25nadqYeOiux-aPYvfnJgNwFfjqP039otTz9vPyb_QOzU6z1
CitedBy_id crossref_primary_10_1039_D1TA04631D
crossref_primary_10_1002_eom2_12315
crossref_primary_10_1002_adfm_202214274
crossref_primary_10_1016_j_cej_2023_143409
crossref_primary_10_1002_aenm_202000904
crossref_primary_10_3390_molecules29184452
crossref_primary_10_1002_batt_202200097
crossref_primary_10_1016_j_jechem_2023_08_016
crossref_primary_10_1021_acsaelm_5c00069
crossref_primary_10_1039_D4TA02269F
crossref_primary_10_1116_6_0000430
crossref_primary_10_1007_s11581_022_04599_z
crossref_primary_10_1039_D0EE00153H
crossref_primary_10_1007_s40820_024_01498_y
crossref_primary_10_1002_adfm_202205677
crossref_primary_10_1016_j_jpowsour_2021_230335
crossref_primary_10_3390_molecules28134896
crossref_primary_10_54097_hset_v32i_5174
crossref_primary_10_1007_s11664_023_10286_0
crossref_primary_10_31613_ceramist_2022_25_1_03
crossref_primary_10_1002_sstr_202400312
crossref_primary_10_1002_adma_202405277
crossref_primary_10_1002_aenm_202100881
crossref_primary_10_1016_j_joule_2021_05_017
crossref_primary_10_1021_acsaem_4c02948
crossref_primary_10_3390_batteries10010029
crossref_primary_10_1002_batt_202400412
crossref_primary_10_1002_adma_202110423
crossref_primary_10_1039_D1EE00551K
crossref_primary_10_1016_j_jiec_2024_01_053
crossref_primary_10_1002_aenm_202203883
crossref_primary_10_1016_j_jpowsour_2021_230344
crossref_primary_10_1002_smll_202202060
crossref_primary_10_1021_jacs_0c12965
crossref_primary_10_1007_s41918_022_00149_3
crossref_primary_10_1021_acs_inorgchem_4c04707
crossref_primary_10_1002_adsu_202400729
crossref_primary_10_3390_batteries9080412
crossref_primary_10_1002_aenm_202203969
crossref_primary_10_1007_s10854_024_12660_y
crossref_primary_10_1038_s41578_021_00320_0
crossref_primary_10_1021_acs_jpcc_3c00962
crossref_primary_10_1002_aesr_202000101
crossref_primary_10_1016_j_matt_2023_02_012
crossref_primary_10_1021_acsaem_0c02671
crossref_primary_10_1039_D4CC06710J
crossref_primary_10_1002_eem2_12753
crossref_primary_10_1039_D3TA01955A
crossref_primary_10_1002_smll_202307342
crossref_primary_10_1007_s11664_024_11467_1
crossref_primary_10_1016_j_cej_2024_158154
crossref_primary_10_1002_aenm_202201555
crossref_primary_10_1016_j_nanoen_2020_105015
crossref_primary_10_1002_batt_202400625
crossref_primary_10_1002_advs_202201648
crossref_primary_10_1021_acsenergylett_4c02198
crossref_primary_10_1039_D1NJ05199G
crossref_primary_10_1002_aenm_202103921
crossref_primary_10_1039_D4EE02970D
crossref_primary_10_1111_ijac_14771
crossref_primary_10_1155_2023_2601098
crossref_primary_10_1149_1945_7111_ad68a8
crossref_primary_10_1021_acs_chemrev_2c00374
crossref_primary_10_1039_D3MA00774J
crossref_primary_10_1021_acs_energyfuels_3c00678
crossref_primary_10_1039_D4TA07492K
crossref_primary_10_1021_acs_chemmater_2c00267
crossref_primary_10_3389_fchem_2022_851264
crossref_primary_10_1002_jccs_202200078
crossref_primary_10_3390_batteries10030095
crossref_primary_10_1002_smtd_202100609
crossref_primary_10_1002_ente_202100385
crossref_primary_10_1021_acsami_4c13891
crossref_primary_10_1021_acsami_0c04850
crossref_primary_10_1002_adma_202410948
crossref_primary_10_1007_s12598_021_01804_2
crossref_primary_10_1002_aesr_202100197
crossref_primary_10_1002_gch2_202200067
crossref_primary_10_1002_ange_202320259
crossref_primary_10_1002_aenm_202003250
crossref_primary_10_1038_s41570_023_00541_7
crossref_primary_10_1002_aenm_202100836
crossref_primary_10_1021_acsami_4c00358
crossref_primary_10_1021_acsami_0c17828
crossref_primary_10_1002_adfm_202420474
crossref_primary_10_1007_s12274_022_4526_9
crossref_primary_10_1002_adfm_202306320
crossref_primary_10_1016_j_ssi_2025_116844
crossref_primary_10_1021_acsaem_4c00458
crossref_primary_10_1021_acsami_2c02678
crossref_primary_10_1021_acsenergylett_0c00207
crossref_primary_10_1016_j_cej_2022_139923
crossref_primary_10_1557_s43577_023_00611_7
crossref_primary_10_1007_s40843_022_2396_x
crossref_primary_10_1021_acsenergylett_4c03115
crossref_primary_10_1021_acs_nanolett_3c04654
crossref_primary_10_1016_j_cej_2023_147184
crossref_primary_10_1021_acsami_2c12444
crossref_primary_10_1002_smll_202307260
crossref_primary_10_1039_D4NR04583A
crossref_primary_10_1088_2752_5724_ac427c
crossref_primary_10_1021_acsenergylett_4c02156
crossref_primary_10_1002_advs_202301381
crossref_primary_10_1002_smll_202302934
crossref_primary_10_1021_acs_jpcc_4c05759
crossref_primary_10_1021_acsnano_3c04610
crossref_primary_10_1039_D4EE03097D
crossref_primary_10_1007_s11426_021_1235_2
crossref_primary_10_1007_s11426_023_1866_y
crossref_primary_10_1021_acs_nanolett_4c04093
crossref_primary_10_1039_D4CS00845F
crossref_primary_10_1002_aesr_202400135
crossref_primary_10_1007_s41918_023_00179_5
crossref_primary_10_1016_j_jpowsour_2021_230739
crossref_primary_10_1002_batt_202400381
crossref_primary_10_1002_aenm_202301338
crossref_primary_10_1016_j_nanoen_2024_109361
crossref_primary_10_1002_batt_202400142
crossref_primary_10_1002_adfm_202101636
crossref_primary_10_1039_D2TA08877K
crossref_primary_10_1149_1945_7111_ac51fb
crossref_primary_10_1080_10408436_2021_1886045
crossref_primary_10_1002_adfm_202010611
crossref_primary_10_3390_batteries9070347
crossref_primary_10_1002_admi_202200011
crossref_primary_10_1002_aenm_202301464
crossref_primary_10_1002_eom2_12383
crossref_primary_10_1002_anie_202207907
crossref_primary_10_1016_j_joule_2022_01_015
crossref_primary_10_1002_EXP_20220051
crossref_primary_10_1002_cssc_202101839
crossref_primary_10_1021_acsami_3c01383
crossref_primary_10_1002_inf2_12627
crossref_primary_10_1016_j_jcis_2022_04_075
crossref_primary_10_1021_acsami_2c18975
crossref_primary_10_1021_acs_jpcc_4c05656
crossref_primary_10_3389_fenrg_2021_682008
crossref_primary_10_1002_ange_202302363
crossref_primary_10_1002_adma_202306111
crossref_primary_10_1039_D4TA03873H
crossref_primary_10_3389_fchem_2022_837978
crossref_primary_10_1039_D5EB00010F
crossref_primary_10_1002_aesr_202000077
crossref_primary_10_1007_s12274_022_4880_9
crossref_primary_10_1002_adem_202301515
crossref_primary_10_1039_D4EE04927F
crossref_primary_10_1021_acsami_4c12341
crossref_primary_10_1002_adfm_202203551
crossref_primary_10_1038_s41467_024_46798_4
crossref_primary_10_1021_acsenergylett_2c02414
crossref_primary_10_1002_batt_202000147
crossref_primary_10_1002_idm2_12202
crossref_primary_10_1021_acsami_0c02085
crossref_primary_10_1002_admi_202100624
crossref_primary_10_1149_1945_7111_ab7fb8
crossref_primary_10_1039_D1TA02754A
crossref_primary_10_3390_batteries9070355
crossref_primary_10_1002_aenm_202002580
crossref_primary_10_3390_en16031180
crossref_primary_10_1021_acsaem_2c00971
crossref_primary_10_1007_s11581_021_04152_4
crossref_primary_10_1039_D1TA01218E
crossref_primary_10_1016_j_mattod_2023_11_016
crossref_primary_10_1021_acsami_1c22090
crossref_primary_10_1002_aenm_202203703
crossref_primary_10_1002_aenm_202202854
crossref_primary_10_1039_D4TA00361F
crossref_primary_10_1002_aenm_202200682
crossref_primary_10_1088_2516_1083_ac3894
crossref_primary_10_1039_D3QM00729D
crossref_primary_10_1002_batt_202000149
crossref_primary_10_1039_D3QM01130E
crossref_primary_10_1002_tcr_202200086
crossref_primary_10_1039_D4TA04553J
crossref_primary_10_1002_aenm_202003766
crossref_primary_10_1002_ange_202316837
crossref_primary_10_1039_D0TA02984J
crossref_primary_10_1002_ange_202501411
crossref_primary_10_1002_cssc_202202158
crossref_primary_10_1021_acsomega_3c01400
crossref_primary_10_1007_s12598_022_02065_3
crossref_primary_10_1021_acs_nanolett_2c03291
crossref_primary_10_1039_D4TA01269K
crossref_primary_10_7498_aps_69_20200713
crossref_primary_10_1039_D0TA08472G
crossref_primary_10_1039_D3QM00607G
crossref_primary_10_1002_smm2_1205
crossref_primary_10_1016_j_mattod_2021_01_006
crossref_primary_10_1002_batt_202200100
crossref_primary_10_1021_acsami_4c05609
crossref_primary_10_1002_admi_202001020
crossref_primary_10_1002_anie_202007621
crossref_primary_10_1021_jacs_0c07060
crossref_primary_10_1039_D3QM00491K
crossref_primary_10_1002_sstr_202100146
crossref_primary_10_1016_j_ssi_2024_116608
crossref_primary_10_1088_2516_1083_ab73dd
crossref_primary_10_1021_acsami_1c14487
crossref_primary_10_1002_batt_202000051
crossref_primary_10_1021_acsaem_4c00616
crossref_primary_10_1007_s10854_023_11364_z
crossref_primary_10_1002_adma_202206402
crossref_primary_10_1039_D4TA04761C
crossref_primary_10_1002_aenm_202401959
crossref_primary_10_1002_adsu_202100389
crossref_primary_10_1177_17436753241277626
crossref_primary_10_1007_s40843_022_2182_0
crossref_primary_10_1021_acsenergylett_4c01690
crossref_primary_10_1021_acsenergylett_2c02699
crossref_primary_10_1111_ijag_16654
crossref_primary_10_1021_acs_chemmater_4c02478
crossref_primary_10_1134_S0022476624050056
crossref_primary_10_1021_acsami_2c05896
crossref_primary_10_1002_adma_202006577
crossref_primary_10_1039_D4QI02970D
crossref_primary_10_3390_ma17010239
crossref_primary_10_1002_adfm_202101985
crossref_primary_10_1007_s12274_022_4242_5
crossref_primary_10_34133_energymatadv_0076
crossref_primary_10_1021_acssuschemeng_4c00365
crossref_primary_10_1039_D2SE00843B
crossref_primary_10_1007_s41918_020_00081_4
crossref_primary_10_1021_acsaem_1c03819
crossref_primary_10_1021_acsenergylett_4c00490
crossref_primary_10_1002_celc_202200156
crossref_primary_10_1016_j_ensm_2020_05_007
crossref_primary_10_2139_ssrn_4103266
crossref_primary_10_1002_smll_202311195
crossref_primary_10_3390_batteries10040132
crossref_primary_10_1039_C9DT04777H
crossref_primary_10_3389_fchem_2021_786956
crossref_primary_10_1002_ange_202409435
crossref_primary_10_1007_s10854_024_12513_8
crossref_primary_10_1002_aenm_202401336
crossref_primary_10_1002_adfm_202303668
crossref_primary_10_1021_acsaem_2c03278
crossref_primary_10_1039_D1QM00474C
crossref_primary_10_1002_chem_202402510
crossref_primary_10_1002_batt_202300488
crossref_primary_10_26599_NRE_2024_9120118
crossref_primary_10_1149_1945_7111_ac86a6
crossref_primary_10_1021_acs_chemmater_3c03317
crossref_primary_10_1002_cssc_202202235
crossref_primary_10_1002_anie_202105831
crossref_primary_10_1002_inf2_12224
crossref_primary_10_1038_s41467_020_19726_5
crossref_primary_10_1021_acsenergylett_1c00627
crossref_primary_10_1007_s40242_020_0103_5
crossref_primary_10_1021_acsaem_3c00540
crossref_primary_10_1016_j_mtener_2021_100841
crossref_primary_10_1002_aenm_202302960
crossref_primary_10_1002_ange_202419367
crossref_primary_10_1002_aenm_202002861
crossref_primary_10_1002_ange_202207907
crossref_primary_10_1021_acsami_3c01876
crossref_primary_10_1002_aenm_202002869
crossref_primary_10_1016_j_jallcom_2023_172727
crossref_primary_10_1016_j_scib_2021_04_029
crossref_primary_10_1038_s41893_024_01414_7
crossref_primary_10_34133_energymatadv_0015
crossref_primary_10_1002_adma_202207411
crossref_primary_10_1016_j_coco_2021_100789
crossref_primary_10_1021_acsami_4c19937
crossref_primary_10_1002_cey2_492
crossref_primary_10_34133_energymatadv_0022
crossref_primary_10_3390_batteries9060290
crossref_primary_10_34133_energymatadv_0021
crossref_primary_10_1149_1945_7111_ac64cb
crossref_primary_10_1007_s11581_022_04789_9
crossref_primary_10_1016_j_cej_2021_132896
crossref_primary_10_1039_D4TA00674G
crossref_primary_10_1002_aenm_202203292
crossref_primary_10_1002_batt_202200553
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_7498_aps_69_20201581
crossref_primary_10_1021_acs_nanolett_3c04072
crossref_primary_10_1007_s12598_024_02710_z
crossref_primary_10_1021_acsnano_3c04014
crossref_primary_10_1002_adfm_202314408
crossref_primary_10_1002_adfm_201908701
crossref_primary_10_3390_batteries8090113
crossref_primary_10_1021_jacsau_3c00242
crossref_primary_10_1021_acsami_4c08818
crossref_primary_10_1016_j_jechem_2022_11_018
crossref_primary_10_1016_j_ceramint_2021_08_076
crossref_primary_10_1021_acs_chemmater_0c02419
crossref_primary_10_1002_adfm_202416671
crossref_primary_10_1002_aenm_202003939
crossref_primary_10_1016_j_nanoen_2020_104947
crossref_primary_10_1016_j_cej_2022_137041
crossref_primary_10_1021_acsnano_4c00128
crossref_primary_10_1039_D1TA00467K
crossref_primary_10_1021_acsami_4c08865
crossref_primary_10_1126_sciadv_abh1896
crossref_primary_10_3390_batteries9070380
crossref_primary_10_1007_s12613_022_2453_0
crossref_primary_10_1002_elt2_8
crossref_primary_10_1039_D4FD00112E
crossref_primary_10_1002_aenm_202000779
crossref_primary_10_1002_adma_202206013
crossref_primary_10_1002_aenm_202401528
crossref_primary_10_1021_acsami_4c04393
crossref_primary_10_1002_adfm_202421918
crossref_primary_10_1021_acsenergylett_4c01882
crossref_primary_10_3390_ma16072655
crossref_primary_10_1039_D3TA04730J
crossref_primary_10_1016_j_jechem_2022_09_020
crossref_primary_10_1016_j_cej_2023_142183
crossref_primary_10_1142_S1793604722400021
crossref_primary_10_1002_aenm_202302643
crossref_primary_10_1002_idm2_12112
crossref_primary_10_1002_adfm_202105253
crossref_primary_10_1016_j_xcrp_2023_101729
crossref_primary_10_1002_batt_202400048
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_1039_D1EE00271F
crossref_primary_10_1007_s11581_021_03919_z
crossref_primary_10_1021_acsenergylett_1c00332
crossref_primary_10_1002_anie_202320259
crossref_primary_10_1002_ange_202105831
crossref_primary_10_1149_1945_7111_ac163d
crossref_primary_10_1016_j_cej_2021_132334
crossref_primary_10_1002_anie_202419367
crossref_primary_10_1016_j_mattod_2023_03_001
crossref_primary_10_1002_eem2_12272
crossref_primary_10_1002_adma_202410006
crossref_primary_10_1002_smll_202500940
crossref_primary_10_1038_s41467_023_42385_1
crossref_primary_10_1021_acsaem_2c03090
crossref_primary_10_1002_adfm_202211355
crossref_primary_10_1016_j_cej_2024_152010
crossref_primary_10_1039_D3TA02781C
crossref_primary_10_1002_aenm_202403608
crossref_primary_10_1002_cey2_462
crossref_primary_10_1021_acsomega_3c00603
crossref_primary_10_1002_adma_202308193
crossref_primary_10_1002_aenm_202403602
crossref_primary_10_3390_batteries9120590
crossref_primary_10_1002_aesr_202300280
crossref_primary_10_1016_j_carbon_2021_01_159
crossref_primary_10_1021_acsaem_3c01472
crossref_primary_10_1021_acsnano_4c12399
crossref_primary_10_3390_batteries7040077
crossref_primary_10_1002_eem2_12461
crossref_primary_10_1002_anie_202501411
crossref_primary_10_1039_D2TA02321K
crossref_primary_10_1002_smll_202103830
crossref_primary_10_1039_D1EE03032A
crossref_primary_10_1016_j_gce_2021_03_001
crossref_primary_10_20517_energymater_2024_219
crossref_primary_10_1039_D2TA06703J
crossref_primary_10_1002_advs_202204633
crossref_primary_10_1007_s41918_023_00200_x
crossref_primary_10_1039_D3QM00850A
crossref_primary_10_1021_acs_inorgchem_3c02849
crossref_primary_10_1002_ange_202007621
crossref_primary_10_1002_smll_202304269
crossref_primary_10_1002_inf2_12292
crossref_primary_10_1002_adfm_202203095
crossref_primary_10_1016_j_ccr_2024_215776
crossref_primary_10_1016_j_matt_2020_10_027
crossref_primary_10_1038_s41578_023_00623_4
crossref_primary_10_1039_D4TA08331H
crossref_primary_10_1002_celc_202400219
crossref_primary_10_1021_acsami_1c10238
crossref_primary_10_1007_s40820_023_01053_1
crossref_primary_10_1021_acs_inorgchem_0c03780
crossref_primary_10_1039_D2CC01220K
crossref_primary_10_1002_adma_202200401
crossref_primary_10_1007_s11837_023_06104_x
crossref_primary_10_1039_D4EE00938J
crossref_primary_10_1002_celc_202100010
crossref_primary_10_1039_D3QM00400G
crossref_primary_10_1039_D4TA07265K
crossref_primary_10_1016_j_jssc_2020_121915
crossref_primary_10_1039_D2EE03358E
crossref_primary_10_1002_eem2_12202
crossref_primary_10_1021_acsami_3c16067
crossref_primary_10_1002_adfm_202001118
crossref_primary_10_1021_acs_chemrev_2c00196
crossref_primary_10_1039_D4QI02717E
crossref_primary_10_1002_celc_202001291
crossref_primary_10_1007_s40843_021_1908_x
crossref_primary_10_1149_1945_7111_ac67b4
crossref_primary_10_1039_D3TA05925A
crossref_primary_10_1002_adma_202205194
crossref_primary_10_1002_anie_202409435
crossref_primary_10_1126_science_adh5115
crossref_primary_10_1007_s41918_024_00212_1
crossref_primary_10_1002_cssc_202301268
crossref_primary_10_1002_chem_202400074
crossref_primary_10_1007_s41918_020_00076_1
crossref_primary_10_1021_acssuschemeng_0c05153
crossref_primary_10_1002_adfm_202208682
crossref_primary_10_1002_admi_202201806
crossref_primary_10_1002_celc_202400598
crossref_primary_10_1016_j_cej_2021_130630
crossref_primary_10_1021_acsaem_3c02579
crossref_primary_10_1021_acssensors_4c02980
crossref_primary_10_1002_adfm_202409547
crossref_primary_10_1016_j_jechem_2020_12_017
crossref_primary_10_1038_s41560_024_01463_4
crossref_primary_10_1039_D0EE01435D
crossref_primary_10_1016_j_cej_2022_136346
crossref_primary_10_1016_j_cej_2022_140605
crossref_primary_10_1016_j_ces_2024_119775
crossref_primary_10_1002_adma_202100921
crossref_primary_10_1021_acsenergylett_0c01905
crossref_primary_10_1002_advs_202307726
crossref_primary_10_1016_j_cej_2022_136229
crossref_primary_10_1038_s41567_024_02707_6
crossref_primary_10_1002_adfm_202010046
crossref_primary_10_1002_est2_70010
crossref_primary_10_1007_s40820_022_00996_1
crossref_primary_10_1021_acsami_2c07471
crossref_primary_10_1016_j_coelec_2023_101251
crossref_primary_10_1039_D0TA06697D
crossref_primary_10_1038_s41563_021_00943_2
crossref_primary_10_1039_D2TA03795E
crossref_primary_10_1039_D3TA04182D
crossref_primary_10_1002_adfm_202104300
crossref_primary_10_1002_adfm_202106608
crossref_primary_10_1002_adfm_202301165
crossref_primary_10_1016_j_cej_2024_157696
crossref_primary_10_1016_j_coelec_2021_100877
crossref_primary_10_1021_acsami_1c18264
crossref_primary_10_1002_adma_201908041
crossref_primary_10_1002_aenm_202203153
crossref_primary_10_1021_acsmaterialslett_4c01923
crossref_primary_10_1039_D3TA07366A
crossref_primary_10_1002_anie_202302363
crossref_primary_10_1002_adma_202210365
crossref_primary_10_1002_adma_202305748
crossref_primary_10_1016_j_cej_2021_130535
crossref_primary_10_1016_j_pmatsci_2024_101339
crossref_primary_10_1557_s43577_023_00649_7
crossref_primary_10_1007_s12209_021_00294_8
crossref_primary_10_1039_D1TA03343C
crossref_primary_10_3390_batteries9040223
crossref_primary_10_1063_5_0182553
crossref_primary_10_1021_acs_energyfuels_2c00288
crossref_primary_10_1021_acsomega_3c09952
crossref_primary_10_3390_nano13020327
crossref_primary_10_1002_anie_202316837
crossref_primary_10_1002_aenm_202100210
crossref_primary_10_1002_aenm_202000804
crossref_primary_10_1557_s43579_022_00183_8
crossref_primary_10_3390_nano10081606
crossref_primary_10_1016_j_xcrp_2023_101326
crossref_primary_10_1002_smll_202411349
crossref_primary_10_1007_s11426_022_1525_3
crossref_primary_10_1021_acs_energyfuels_3c04605
crossref_primary_10_1002_ente_202201291
crossref_primary_10_1021_acs_inorgchem_3c01431
crossref_primary_10_1016_j_cej_2022_138208
crossref_primary_10_1016_j_cej_2022_135179
crossref_primary_10_1002_aenm_202003190
crossref_primary_10_1002_smtd_202301810
crossref_primary_10_1021_acsami_4c00618
crossref_primary_10_7498_aps_72_20230258
crossref_primary_10_1002_est2_506
crossref_primary_10_1021_acsami_1c21573
crossref_primary_10_1039_D4LF00099D
Cites_doi 10.1038/35104644
10.1016/j.jpowsour.2014.02.102
10.1038/s41467-017-01187-y
10.1016/j.ssi.2008.02.017
10.1007/s10832-018-0129-y
10.1021/acsami.7b18211
10.1149/2.0771508jes
10.1016/j.jssc.2016.12.001
10.1016/j.electacta.2016.06.025
10.1016/S0167-2738(02)00313-2
10.1002/adma.201502636
10.1016/j.ssi.2011.11.026
10.1016/j.ssi.2007.05.020
10.1002/adfm.201707570
10.1039/c2jm16802b
10.1039/C6TA10142A
10.1149/1.3376620
10.1039/C7TA08581H
10.1149/2.0441503jes
10.1016/j.ssi.2013.04.024
10.1002/anie.201807304
10.1103/PhysRevB.88.104103
10.1016/j.jpowsour.2013.01.090
10.1016/S0378-7753(03)00293-3
10.1016/j.jpowsour.2015.02.141
10.1039/C0JM01090A
10.1016/j.actamat.2010.11.050
10.1016/0022-3093(90)90804-U
10.1002/zaac.201100158
10.1016/j.ssi.2015.06.001
10.1039/C5TA08574H
10.1016/j.ensm.2018.02.020
10.1016/0254-0584(87)90107-6
10.1021/cm011588r
10.1002/aenm.201501590
10.1111/j.1151-2916.2001.tb00685.x
10.1111/jace.13694
10.2109/jcersj.101.1315
10.1039/c3ta15090a
10.1039/C2EE02911A
10.1021/acsenergylett.8b00275
10.1021/acs.chemmater.6b00610
10.1016/j.ssi.2012.03.013
10.1016/j.jpowsour.2014.07.055
10.1111/ijag.12037
10.1039/C7TA01147D
10.1021/jp9825664
10.2109/jcersj2.121.946
10.1039/c3cp51985f
10.1016/j.ssi.2006.04.017
10.2109/jcersj2.16114
10.1039/C3EE41655K
10.1016/j.jnoncrysol.2008.12.020
10.1039/C6CC02131J
10.1002/anie.200703900
10.1002/pssa.201001117
10.1016/j.jpowsour.2013.09.117
10.1007/s11581-017-2035-8
10.5796/electrochemistry.80.749
10.1002/aenm.201100795
10.1039/C7TA06067J
10.1016/0167-2738(90)90424-P
10.1021/acs.chemmater.8b02368
10.1016/S0167-2738(00)00277-0
10.1016/j.jpowsour.2016.06.109
10.1021/acsami.5b07517
10.1021/nl500026j
10.1021/acs.chemrev.6b00070
10.1016/j.ensm.2017.08.015
10.1016/0022-4596(82)90224-9
10.1016/0167-2738(81)90105-3
10.1039/c2jm16688g
10.1002/(SICI)1099-0739(200004)14:4<227::AID-AOC949>3.0.CO;2-F
10.1038/srep02261
10.1016/0167-2738(81)90341-6
10.1016/j.jallcom.2016.11.277
10.1016/j.ssi.2017.07.005
10.1016/j.ssi.2010.06.018
10.1021/acs.chemmater.8b03321
10.1039/C4CP03694H
10.1073/pnas.1520394112
10.1149/2.0501412jes
10.1016/j.electacta.2016.09.155
10.1149/1.1836401
10.1016/j.ssi.2010.10.013
10.1021/acsami.8b11244
10.1149/2.0951712jes
10.1039/C7TA01481C
10.1016/j.jpowsour.2016.09.009
10.1016/0378-7753(93)80106-Y
10.1016/j.ssi.2014.05.002
10.1016/j.jpowsour.2017.10.093
10.1002/aenm.201402034
10.1002/smtd.201900261
10.1016/S0167-2738(02)00889-5
10.1107/S0108768199016614
10.1016/S0022-3093(87)80691-9
10.1016/j.jpowsour.2012.04.004
10.1016/0167-2738(96)00199-3
10.20964/2017.08.29
10.1007/s10008-014-2654-1
10.1016/j.ssi.2015.11.034
10.1038/nenergy.2016.30
10.1088/0034-4885/67/7/R05
10.1016/0167-2738(84)90097-3
10.1149/1.1393349
10.1016/j.jpowsour.2008.03.030
10.1038/451652a
10.1016/j.electacta.2017.01.155
10.1016/j.jallcom.2018.03.027
10.1002/adma.200502604
10.1149/1.2188081
10.1002/adma.200401286
10.1063/1.97206
10.1002/anie.201804068
10.1149/1.1420926
10.1039/C7TA06873E
10.1016/j.ssi.2010.10.001
10.1007/s10008-011-1572-8
10.1149/1.2097416
10.1016/j.jpowsour.2017.11.031
10.1149/1.1379028
10.1021/acs.inorgchem.7b00751
10.1021/acs.nanolett.5b00538
10.1021/acsami.6b13224
10.1039/c0ee00052c
10.1016/j.jpowsour.2009.06.100
10.1016/0025-5408(83)90080-6
10.1021/ja9024897
10.1002/cssc.201700409
10.1016/j.ssi.2012.06.008
10.1039/C5TA00361J
10.1149/1.2795837
10.1016/j.jpowsour.2006.06.018
10.1021/acs.chemmater.6b04990
10.1039/C6TA01628F
10.1016/j.electacta.2011.04.084
10.1038/nmat3066
10.1016/j.jpowsour.2012.12.001
10.1021/ja407393y
10.1002/aenm.201800035
10.1039/c3ta10247e
10.1107/S0108768100010260
10.1002/ente.201200019
10.1002/chem.200903023
10.1021/ja508723m
10.1021/cm5016959
10.1149/1.1392498
10.1038/ncomms15893
10.1016/j.gee.2016.04.006
10.1016/j.jpowsour.2018.11.029
10.1016/j.elecom.2007.02.008
10.1021/cm901819c
10.1002/aenm.201602923
10.1016/0254-0584(89)90015-1
10.1021/jacs.8b10282
10.1002/chem.201703116
10.1038/s41467-018-06123-2
10.2109/jcersj2.16321
10.1021/acs.chemmater.5b04082
10.1016/j.ssi.2009.12.006
10.1002/anie.201707754
10.1021/acs.nanolett.7b00330
10.1002/cber.18860190156
10.1039/c3ee41728j
10.1016/j.ssi.2015.11.032
10.1016/j.jpowsour.2014.08.024
10.1021/ja3110895
10.1016/j.jpowsour.2011.07.071
10.1021/acsami.6b13902
10.1524/zkri.216.1.39.19001
10.1016/j.ssi.2004.08.028
10.1021/cr030203g
10.1016/j.elecom.2012.06.015
10.1038/s41560-018-0107-2
10.1016/j.mattod.2014.10.040
10.1016/j.ssi.2015.10.014
10.1021/cm203303y
10.1021/acs.chemmater.7b00931
10.1007/s10008-017-3610-7
10.1016/j.apenergy.2017.12.086
10.1038/nature02159
10.1016/0167-2738(86)90139-6
10.1016/j.jpowsour.2014.04.032
10.1149/2.0441504jes
10.1016/j.jpowsour.2012.08.041
10.1039/C5CP01841B
10.1021/acs.nanolett.6b03448
10.1039/C6RA09695F
10.1039/C3EE43357A
10.1039/C4CP02046D
10.1002/adma.201505008
10.1016/j.jpowsour.2015.09.111
10.1016/j.jpowsour.2016.08.115
10.1021/ic400577v
10.1021/acs.chemmater.6b03630
10.1021/acs.chemmater.7b00034
10.1039/C2EE23355J
10.1038/nmat4369
10.1016/j.jallcom.2013.12.191
10.1021/cm3011315
10.1016/0167-2738(92)90310-L
10.1016/0167-2738(96)00179-8
10.1038/nenergy.2017.74
10.1002/adma.201500180
10.1016/j.electacta.2016.08.081
10.1107/S0567740882007535
10.1039/C3TA15223E
10.1016/j.ssi.2010.08.019
10.1021/nn400391h
10.1016/j.ssi.2012.03.003
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201901131
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31441140
10_1002_adma_201901131
ADMA201901131
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4781-a59e650cad3aed04456e4cbcdc31628de925b2e9c17c6ce8a9cf19c9764a47843
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 04:25:24 EDT 2025
Mon Jul 14 09:43:37 EDT 2025
Thu Apr 03 07:09:10 EDT 2025
Tue Jul 01 00:44:54 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Wed Jan 22 16:37:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords synthesis
solid-state batteries
interfaces
metal sulfides
characterization
stability
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4781-a59e650cad3aed04456e4cbcdc31628de925b2e9c17c6ce8a9cf19c9764a47843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1733-4333
0000-0003-1191-5954
0000-0002-3305-3446
PMID 31441140
PQID 2310883640
PQPubID 2045203
PageCount 42
ParticipantIDs proquest_miscellaneous_2311658657
proquest_journals_2310883640
pubmed_primary_31441140
crossref_citationtrail_10_1002_adma_201901131
crossref_primary_10_1002_adma_201901131
wiley_primary_10_1002_adma_201901131_ADMA201901131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 1, 2019
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 14
2010; 16
2011; 637
2013; 4
2013; 1
2010; 13
1886; 19
1990 2008; 9 451
2013; 244
2014; 26
2009; 355
2000; 130
2011; 192
2009; 194
1996; 143
2018; 40
2011; 56
2012; 16
2011; 59
2016; 301
2013; 7
1983; 18
2003; 158
2013; 6
2001; 148
2006; 177
2018; 6
2010; 22
2007; 178
2018; 9
2004; 175
2018; 8
2018; 3
2019 2011 2002 2016 2013; 412 196 5 6 52
2000; 14
2015; 137
2018; 212
2013 2013; 3 121
2013; 233
2014; 16
2006; 163
2007; 9
2018; 30
2017; 164
2010; 3
1981; 3‐4
2012; 24
2012; 22
2001; 414
2018; 28
1982; 38
2019; 3
2012; 221
2013; 88
1990; 38
2016; 329
1989; 136
1993; 43
1981; 5
2002; 1
2013; 222
2016; 288
2014 2014; 248 2
2016; 286
2000 2000; 56 56
2016; 326
2014; 271
1999; 103
2018; 747
1990; 123
2012; 225
2016; 16
2016; 4
2016; 6
2016; 1
1996; 86‐88
2017 2012 2015; 2 2 5
2016; 219
1982; 43
2017; 56
2008; 47
1992 1993; 53‐56 101
2016; 210
2016; 330
2014; 260
2016; 215
2016; 28
2018; 10
2005; 17
2018 2015; 3 3
2014; 263
2014; 269
2018; 14
2017; 5
2017; 7
2017; 8
2002; 152‐153
2004; 67
2011; 10
2017; 230
2017; 9
2018; 375
2018; 374
2011; 208
2013; 15
2012 2000; 5 147
2014; 2
1984; 14
2016; 113
1986; 49
1987; 95‐96
2011; 21
2014; 161
1996 1999; 86‐88 146
2006 2015; 9 162
2014; 7
2017; 246
2017; 125
2017 2017; 695 9
2001; 216
2015; 284
2015; 162
1989 1986; 23 18‐19
2015; 283
2015; 15
2012; 80
2015; 14
2015; 17
2004; 104
2004; 84
2018; 140
2015; 19
2015; 18
2014 2009 2016; 14 131 116
2017; 21
2008 2013; 182 244
2015; 98
2017; 23
2016; 124
2016; 52
2006; 18
2017; 29
2008; 11
2014; 591
2014 2012; 16 213
2015; 7
1987; 18
2003; 426
2015; 27
2017; 17
2015; 278
2003; 119–121
2017; 10
2017; 12
2013; 135
2018; 318
2008; 179
2011; 182
2018; 57
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_107_2
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_2
e_1_2_9_157_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_2
e_1_2_9_23_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_23_4
e_1_2_9_23_3
e_1_2_9_23_5
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_31_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_66_2
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_43_2
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_123_2
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
Kohjiya S. (e_1_2_9_92_1) 2002; 1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_44_2
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_173_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_149_2
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_3
e_1_2_9_191_2
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_15_2
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_2
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_27_2
e_1_2_9_27_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_189_2
e_1_2_9_166_1
e_1_2_9_189_3
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_2
e_1_2_9_4_1
e_1_2_9_155_2
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
Nagaura T. (e_1_2_9_1_1) 1990; 9
e_1_2_9_40_2
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 164
  start-page: A2474
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 216
  start-page: 39
  year: 2001
  publication-title: Z. Kristallogr. ‐ Cryst. Mater.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 21
  start-page: 1939
  year: 2017
  publication-title: J. Solid State Electrochem.
– volume: 98
  start-page: 3352
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 12
  start-page: 7795
  year: 2017
  publication-title: Int. J. Electrochem. Sci.
– volume: 40
  start-page: 293
  year: 2018
  publication-title: J. Electroceram.
– volume: 103
  start-page: 519
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 194
  start-page: 1085
  year: 2009
  publication-title: J. Power Sources
– volume: 119–121
  start-page: 948
  year: 2003
  publication-title: J. Power Sources
– volume: 177
  start-page: 2721
  year: 2006
  publication-title: Solid State Ionics
– volume: 2 2 5
  start-page: 742
  year: 2017 2012 2015
  publication-title: Nat. Energy Adv. Energy Mater. Adv. Energy Mater.
– volume: 11
  start-page: A1
  year: 2008
  publication-title: Electrochem. Solid‐State Lett.
– volume: 263
  start-page: 141
  year: 2014
  publication-title: J. Power Sources
– volume: 288
  start-page: 240
  year: 2016
  publication-title: Solid State Ionics
– volume: 326
  start-page: 1
  year: 2016
  publication-title: J. Power Sources
– volume: 222
  start-page: 237
  year: 2013
  publication-title: J. Power Sources
– volume: 14
  start-page: 1806
  year: 2002
  publication-title: Chem. Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 286
  start-page: 24
  year: 2016
  publication-title: Solid State Ionics
– volume: 28
  start-page: 2400
  year: 2016
  publication-title: Chem. Mater.
– volume: 426
  start-page: 428
  year: 2003
  publication-title: Nature
– volume: 38
  start-page: 217
  year: 1990
  publication-title: Solid State Ionics
– volume: 9
  start-page: 4037
  year: 2018
  publication-title: Nat. Commun.
– volume: 162
  start-page: A344
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 113
  start-page: 52
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 80
  start-page: 749
  year: 2012
  publication-title: Electrochemistry
– volume: 412 196 5 6 52
  start-page: 29 9743 A14 9290
  year: 2019 2011 2002 2016 2013
  publication-title: J. Power Sources J. Power Sources Electrochem. Solid‐State Lett. RSC Adv. Inorg. Chem.
– volume: 318
  start-page: 102
  year: 2018
  publication-title: Solid State Ionics
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 22
  start-page: 177
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 244
  start-page: 707
  year: 2013
  publication-title: J. Power Sources
– volume: 8
  start-page: 1086
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1053
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 182 244
  start-page: 621 48
  year: 2008 2013
  publication-title: J. Power Sources Solid State Ionics
– volume: 7
  start-page: 627
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 374
  start-page: 107
  year: 2018
  publication-title: J. Power Sources
– volume: 271
  start-page: 342
  year: 2014
  publication-title: J. Power Sources
– volume: 246
  start-page: 334
  year: 2017
  publication-title: J. Solid State Chem.
– volume: 10
  start-page: 682
  year: 2011
  publication-title: Nat. Mater.
– volume: 225
  start-page: 350
  year: 2012
  publication-title: Solid State Ionics
– volume: 23
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 6681
  year: 2017
  publication-title: Inorg. Chem.
– volume: 192
  start-page: 122
  year: 2011
  publication-title: Solid State Ionics
– volume: 23 18‐19
  start-page: 29 351
  year: 1989 1986
  publication-title: Mater. Chem. Phys. Solid State Ionics
– volume: 57
  start-page: 8567
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 208
  start-page: 1804
  year: 2011
  publication-title: Phys. Status Solidi A
– volume: 14
  start-page: 181
  year: 1984
  publication-title: Solid State Ionics
– volume: 88
  year: 2013
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 148
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 14 131 116
  start-page: 1596 8984 9438
  year: 2014 2009 2016
  publication-title: Nano Lett. J. Am. Chem. Soc. Chem. Rev.
– volume: 14
  start-page: 58
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 1524
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 2211
  year: 2012
  publication-title: Chem. Mater.
– volume: 3
  start-page: 992
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 125
  start-page: 391
  year: 2017
  publication-title: J. Ceram. Soc. Jpn.
– volume: 26
  start-page: 4248
  year: 2014
  publication-title: Chem. Mater.
– volume: 182
  start-page: 116
  year: 2011
  publication-title: Solid State Ionics
– volume: 9
  start-page: 1486
  year: 2007
  publication-title: Electrochem. Commun.
– volume: 263
  start-page: 57
  year: 2014
  publication-title: Solid State Ionics
– volume: 19
  start-page: 210
  year: 1886
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 152‐153
  start-page: 285
  year: 2002
  publication-title: Solid State Ionics
– volume: 7
  start-page: 2829
  year: 2013
  publication-title: ACS Nano
– volume: 9 451
  start-page: 20 652
  year: 1990 2008
  publication-title: Prog. Batt. Sol. Cells Nature
– volume: 269
  start-page: 727
  year: 2014
  publication-title: J. Power Sources
– volume: 16
  start-page: 5138
  year: 2010
  publication-title: Chem. ‐ Eur. J.
– volume: 19
  start-page: 697
  year: 2015
  publication-title: J. Solid State Electrochem.
– volume: 53‐56 101
  start-page: 1183 1315
  year: 1992 1993
  publication-title: Solid State Ionics J. Ceram. Soc. Jpn.
– volume: 104
  start-page: 4303
  year: 2004
  publication-title: Chem. Rev.
– volume: 86‐88 146
  start-page: 487 3472
  year: 1996 1999
  publication-title: Solid State Ionics J. Electrochem. Soc.
– volume: 212
  start-page: 796
  year: 2018
  publication-title: Appl. Energy
– volume: 260
  start-page: 292
  year: 2014
  publication-title: J. Power Sources
– volume: 6
  start-page: 645
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 22
  start-page: 7687
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 3317
  year: 2015
  publication-title: Nano Lett.
– volume: 22
  start-page: 949
  year: 2010
  publication-title: Chem. Mater.
– volume: 56 56
  start-page: 402 972
  year: 2000 2000
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci. Acta Crystallogr., Sect. B: Struct. Sci.
– volume: 591
  start-page: 247
  year: 2014
  publication-title: J. Alloys Compd.
– volume: 86‐88
  start-page: 877
  year: 1996
  publication-title: Solid State Ionics
– volume: 5 147
  start-page: 5701 1274
  year: 2012 2000
  publication-title: Energy Environ. Sci. J. Electrochem. Soc.
– volume: 28
  start-page: 1874
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 139
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 210
  start-page: 905
  year: 2016
  publication-title: Electrochim. Acta
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 192
  start-page: 130
  year: 2011
  publication-title: Solid State Ionics
– volume: 4
  start-page: 414
  year: 2013
  publication-title: Int. J. Appl. Glass Sci.
– volume: 16
  start-page: 7148
  year: 2016
  publication-title: Nano Lett.
– volume: 16
  start-page: 1807
  year: 2012
  publication-title: J. Solid State Electrochem.
– volume: 23
  start-page: 2061
  year: 2017
  publication-title: Ionics
– volume: 38
  start-page: 1887
  year: 1982
  publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
– volume: 178
  start-page: 1163
  year: 2007
  publication-title: Solid State Ionics
– volume: 18
  start-page: 2226
  year: 2006
  publication-title: Adv. Mater.
– volume: 124
  start-page: 915
  year: 2016
  publication-title: J. Ceram. Soc. Jpn.
– volume: 3 3
  start-page: 267 6709
  year: 2018 2015
  publication-title: Nat. Energy J. Mater. Chem. A
– volume: 225
  start-page: 342
  year: 2012
  publication-title: Solid State Ionics
– volume: 13
  start-page: A73
  year: 2010
  publication-title: Electrochem. Solid‐State Lett.
– volume: 17
  start-page: 3013
  year: 2017
  publication-title: Nano Lett.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 3 121
  start-page: 2261 946
  year: 2013 2013
  publication-title: Sci. Rep. J. Ceram. Soc. Jpn.
– volume: 230
  start-page: 279
  year: 2017
  publication-title: Electrochim. Acta
– volume: 330
  start-page: 120
  year: 2016
  publication-title: J. Power Sources
– volume: 30
  start-page: 8747
  year: 2018
  publication-title: Chem. Mater.
– volume: 28
  start-page: 266
  year: 2016
  publication-title: Chem. Mater.
– volume: 123
  start-page: 328
  year: 1990
  publication-title: J. Non‐Cryst. Solids
– volume: 29
  start-page: 3883
  year: 2017
  publication-title: Chem. Mater.
– volume: 1
  start-page: 6320
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 3548
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 8190
  year: 2018
  publication-title: Chem. Mater.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 186
  year: 2013
  publication-title: Energy Technol.
– volume: 1
  start-page: 18
  year: 2016
  publication-title: Green Energy Environ.
– volume: 130
  start-page: 97
  year: 2000
  publication-title: Solid State Ionics
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 136
  start-page: 2441
  year: 1989
  publication-title: J. Electrochem. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 154
  year: 2002
  end-page: 155
  publication-title: Solid State Ionics
– volume: 56
  start-page: 6055
  year: 2011
  publication-title: Electrochim. Acta
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 355
  start-page: 1919
  year: 2009
  publication-title: J. Non‐Cryst. Solids
– volume: 4
  start-page: 3253
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 16 213
  start-page: 239
  year: 2014 2012
  publication-title: Phys. Chem. Chem. Phys. J. Power Sources
– volume: 375
  start-page: 93
  year: 2018
  publication-title: J. Power Sources
– volume: 15
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 84
  start-page: 477
  year: 2004
  publication-title: J. Am. Ceram. Soc.
– volume: 18
  start-page: 252
  year: 2015
  publication-title: Mater. Today
– volume: 179
  start-page: 1333
  year: 2008
  publication-title: Solid State Ionics
– volume: 28
  start-page: 7955
  year: 2016
  publication-title: Chem. Mater.
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 175
  start-page: 707
  year: 2004
  publication-title: Solid State Ionics
– volume: 14
  start-page: 227
  year: 2000
  publication-title: Appl. Organomet. Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 135
  start-page: 975
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 695 9
  start-page: 3744 1542
  year: 2017 2017
  publication-title: J. Alloys Compd. ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 1026
  year: 2015
  publication-title: Nat. Mater.
– volume: 18
  start-page: 189
  year: 1983
  publication-title: Mater. Res. Bull.
– volume: 137
  start-page: 1384
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 182
  start-page: 53
  year: 2011
  publication-title: Solid State Ionics
– volume: 10
  start-page: 2605
  year: 2017
  publication-title: ChemSusChem
– volume: 637
  start-page: 1287
  year: 2011
  publication-title: Z. Anorg. Allg. Chem.
– volume: 49
  start-page: 146
  year: 1986
  publication-title: Appl. Phys. Lett.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 67
  start-page: 1233
  year: 2004
  publication-title: Rep. Prog. Phys.
– volume: 329
  start-page: 530
  year: 2016
  publication-title: J. Power Sources
– volume: 284
  start-page: 44
  year: 2015
  publication-title: J. Power Sources
– volume: 283
  start-page: 75
  year: 2015
  publication-title: Solid State Ionics
– volume: 161
  start-page: A1812
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 52
  start-page: 6091
  year: 2016
  publication-title: Chem. Commun.
– volume: 24
  start-page: 15
  year: 2012
  publication-title: Chem. Mater.
– volume: 3‐4
  start-page: 317
  year: 1981
  publication-title: Solid State Ionics
– volume: 301
  start-page: 47
  year: 2016
  publication-title: J. Power Sources
– volume: 278
  start-page: 98
  year: 2015
  publication-title: Solid State Ionics
– volume: 225
  start-page: 354
  year: 2012
  publication-title: Solid State Ionics
– volume: 221
  start-page: 1
  year: 2012
  publication-title: Solid State Ionics
– volume: 143
  start-page: 154
  year: 1996
  publication-title: J. Electrochem. Soc.
– volume: 95‐96
  start-page: 857
  year: 1987
  publication-title: J. Non‐Cryst. Solids
– volume: 747
  start-page: 227
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 29
  start-page: 3029
  year: 2017
  publication-title: Chem. Mater.
– volume: 27
  start-page: 3473
  year: 2015
  publication-title: Adv. Mater.
– volume: 219
  start-page: 235
  year: 2016
  publication-title: Electrochim. Acta
– volume: 248 2
  start-page: 939 5095
  year: 2014 2014
  publication-title: J. Power Sources J. Mater. Chem. A
– volume: 162
  start-page: A646
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 21
  start-page: 118
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 4111
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 192
  start-page: 304
  year: 2011
  publication-title: Solid State Ionics
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 215
  start-page: 93
  year: 2016
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 6922
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 6310
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 151
  year: 1982
  publication-title: J. Solid State Chem.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 158
  start-page: 275
  year: 2003
  publication-title: Solid State Ionics
– volume: 233
  start-page: 231
  year: 2013
  publication-title: J. Power Sources
– volume: 17
  start-page: 918
  year: 2005
  publication-title: Adv. Mater.
– volume: 43
  start-page: 103
  year: 1993
  publication-title: J. Power Sources
– volume: 47
  start-page: 755
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 1507
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 163
  start-page: 289
  year: 2006
  publication-title: J. Power Sources
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 148
  start-page: A742
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 59
  start-page: 1839
  year: 2011
  publication-title: Acta Mater.
– volume: 5
  start-page: 2829
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 663
  year: 1981
  publication-title: Solid State Ionics
– volume: 18
  start-page: 1
  year: 1987
  publication-title: Mater. Chem. Phys.
– volume: 29
  start-page: 5574
  year: 2017
  publication-title: Chem. Mater.
– volume: 9 162
  start-page: A273 A1610
  year: 2006 2015
  publication-title: Electrochem. Solid‐State Lett. J. Electrochem. Soc.
– ident: e_1_2_9_124_1
  doi: 10.1038/35104644
– ident: e_1_2_9_147_1
  doi: 10.1016/j.jpowsour.2014.02.102
– ident: e_1_2_9_19_1
  doi: 10.1038/s41467-017-01187-y
– ident: e_1_2_9_146_1
  doi: 10.1016/j.ssi.2008.02.017
– ident: e_1_2_9_166_1
  doi: 10.1007/s10832-018-0129-y
– ident: e_1_2_9_192_1
  doi: 10.1021/acsami.7b18211
– ident: e_1_2_9_149_2
  doi: 10.1149/2.0771508jes
– ident: e_1_2_9_73_1
  doi: 10.1016/j.jssc.2016.12.001
– ident: e_1_2_9_20_1
  doi: 10.1016/j.electacta.2016.06.025
– ident: e_1_2_9_45_1
  doi: 10.1016/S0167-2738(02)00313-2
– ident: e_1_2_9_95_1
  doi: 10.1002/adma.201502636
– ident: e_1_2_9_150_1
  doi: 10.1016/j.ssi.2011.11.026
– ident: e_1_2_9_52_1
  doi: 10.1016/j.ssi.2007.05.020
– ident: e_1_2_9_89_1
  doi: 10.1002/adfm.201707570
– ident: e_1_2_9_163_1
  doi: 10.1039/c2jm16802b
– ident: e_1_2_9_18_1
  doi: 10.1039/C6TA10142A
– ident: e_1_2_9_164_1
  doi: 10.1149/1.3376620
– ident: e_1_2_9_71_1
  doi: 10.1039/C7TA08581H
– ident: e_1_2_9_151_1
  doi: 10.1149/2.0441503jes
– ident: e_1_2_9_155_2
  doi: 10.1016/j.ssi.2013.04.024
– ident: e_1_2_9_129_1
  doi: 10.1002/anie.201807304
– ident: e_1_2_9_130_1
  doi: 10.1103/PhysRevB.88.104103
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jpowsour.2013.01.090
– ident: e_1_2_9_171_1
  doi: 10.1016/S0378-7753(03)00293-3
– ident: e_1_2_9_60_1
  doi: 10.1016/j.jpowsour.2015.02.141
– ident: e_1_2_9_165_1
  doi: 10.1039/C0JM01090A
– ident: e_1_2_9_76_1
  doi: 10.1016/j.actamat.2010.11.050
– ident: e_1_2_9_49_1
  doi: 10.1016/0022-3093(90)90804-U
– ident: e_1_2_9_74_1
  doi: 10.1002/zaac.201100158
– ident: e_1_2_9_126_1
  doi: 10.1016/j.ssi.2015.06.001
– ident: e_1_2_9_121_1
  doi: 10.1039/C5TA08574H
– ident: e_1_2_9_140_1
  doi: 10.1016/j.ensm.2018.02.020
– ident: e_1_2_9_100_1
  doi: 10.1016/0254-0584(87)90107-6
– ident: e_1_2_9_161_1
  doi: 10.1021/cm011588r
– ident: e_1_2_9_117_1
  doi: 10.1002/aenm.201501590
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1151-2916.2001.tb00685.x
– ident: e_1_2_9_79_1
  doi: 10.1111/jace.13694
– ident: e_1_2_9_43_2
  doi: 10.2109/jcersj.101.1315
– ident: e_1_2_9_107_2
  doi: 10.1039/c3ta15090a
– ident: e_1_2_9_123_1
  doi: 10.1039/C2EE02911A
– ident: e_1_2_9_173_1
  doi: 10.1021/acsenergylett.8b00275
– ident: e_1_2_9_128_1
  doi: 10.1021/acs.chemmater.6b00610
– ident: e_1_2_9_42_1
  doi: 10.1016/j.ssi.2012.03.013
– ident: e_1_2_9_180_1
  doi: 10.1016/j.jpowsour.2014.07.055
– ident: e_1_2_9_94_1
  doi: 10.1111/ijag.12037
– ident: e_1_2_9_56_1
  doi: 10.1039/C7TA01147D
– ident: e_1_2_9_13_1
  doi: 10.1021/jp9825664
– ident: e_1_2_9_27_2
  doi: 10.2109/jcersj2.121.946
– ident: e_1_2_9_83_1
  doi: 10.1039/c3cp51985f
– ident: e_1_2_9_29_1
  doi: 10.1016/j.ssi.2006.04.017
– ident: e_1_2_9_3_1
– ident: e_1_2_9_154_1
  doi: 10.2109/jcersj2.16114
– ident: e_1_2_9_116_1
  doi: 10.1039/C3EE41655K
– ident: e_1_2_9_62_1
  doi: 10.1016/j.jnoncrysol.2008.12.020
– ident: e_1_2_9_80_1
  doi: 10.1039/C6CC02131J
– ident: e_1_2_9_30_1
  doi: 10.1002/anie.200703900
– ident: e_1_2_9_67_1
  doi: 10.1002/pssa.201001117
– ident: e_1_2_9_107_1
  doi: 10.1016/j.jpowsour.2013.09.117
– ident: e_1_2_9_112_1
  doi: 10.1007/s11581-017-2035-8
– ident: e_1_2_9_8_1
  doi: 10.5796/electrochemistry.80.749
– volume: 9
  start-page: 20
  year: 1990
  ident: e_1_2_9_1_1
  publication-title: Prog. Batt. Sol. Cells
– ident: e_1_2_9_189_2
  doi: 10.1002/aenm.201100795
– ident: e_1_2_9_21_1
  doi: 10.1039/C7TA06067J
– ident: e_1_2_9_38_1
  doi: 10.1016/0167-2738(90)90424-P
– ident: e_1_2_9_132_1
  doi: 10.1021/acs.chemmater.8b02368
– ident: e_1_2_9_75_1
  doi: 10.1016/S0167-2738(00)00277-0
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jpowsour.2016.06.109
– ident: e_1_2_9_118_1
  doi: 10.1021/acsami.5b07517
– ident: e_1_2_9_191_1
  doi: 10.1021/nl500026j
– ident: e_1_2_9_191_3
  doi: 10.1021/acs.chemrev.6b00070
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ensm.2017.08.015
– ident: e_1_2_9_55_1
  doi: 10.1016/0022-4596(82)90224-9
– ident: e_1_2_9_41_1
  doi: 10.1016/0167-2738(81)90105-3
– ident: e_1_2_9_82_1
  doi: 10.1039/c2jm16688g
– ident: e_1_2_9_25_1
  doi: 10.1002/(SICI)1099-0739(200004)14:4<227::AID-AOC949>3.0.CO;2-F
– ident: e_1_2_9_27_1
  doi: 10.1038/srep02261
– ident: e_1_2_9_47_1
  doi: 10.1016/0167-2738(81)90341-6
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jallcom.2016.11.277
– ident: e_1_2_9_127_1
  doi: 10.1016/j.ssi.2017.07.005
– ident: e_1_2_9_176_1
  doi: 10.1016/j.ssi.2010.06.018
– ident: e_1_2_9_153_1
  doi: 10.1021/acs.chemmater.8b03321
– ident: e_1_2_9_157_1
  doi: 10.1039/C4CP03694H
– ident: e_1_2_9_93_1
  doi: 10.1073/pnas.1520394112
– ident: e_1_2_9_87_1
  doi: 10.1149/2.0501412jes
– ident: e_1_2_9_32_1
  doi: 10.1016/j.electacta.2016.09.155
– ident: e_1_2_9_12_1
  doi: 10.1149/1.1836401
– ident: e_1_2_9_159_1
  doi: 10.1016/j.ssi.2010.10.013
– ident: e_1_2_9_169_1
  doi: 10.1021/acsami.8b11244
– ident: e_1_2_9_193_1
  doi: 10.1149/2.0951712jes
– ident: e_1_2_9_184_1
  doi: 10.1039/C7TA01481C
– ident: e_1_2_9_181_1
  doi: 10.1016/j.jpowsour.2016.09.009
– ident: e_1_2_9_14_1
  doi: 10.1016/0378-7753(93)80106-Y
– ident: e_1_2_9_48_1
  doi: 10.1016/j.ssi.2014.05.002
– ident: e_1_2_9_186_1
  doi: 10.1016/j.jpowsour.2017.10.093
– ident: e_1_2_9_189_3
  doi: 10.1002/aenm.201402034
– ident: e_1_2_9_142_1
  doi: 10.1002/smtd.201900261
– ident: e_1_2_9_110_1
  doi: 10.1016/S0167-2738(02)00889-5
– ident: e_1_2_9_66_1
  doi: 10.1107/S0108768199016614
– ident: e_1_2_9_102_1
  doi: 10.1016/S0022-3093(87)80691-9
– ident: e_1_2_9_157_2
  doi: 10.1016/j.jpowsour.2012.04.004
– ident: e_1_2_9_135_1
  doi: 10.1016/0167-2738(96)00199-3
– ident: e_1_2_9_177_1
  doi: 10.20964/2017.08.29
– ident: e_1_2_9_182_1
  doi: 10.1007/s10008-014-2654-1
– ident: e_1_2_9_63_1
  doi: 10.1016/j.ssi.2015.11.034
– ident: e_1_2_9_10_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_9_34_1
  doi: 10.1088/0034-4885/67/7/R05
– ident: e_1_2_9_58_1
  doi: 10.1016/0167-2738(84)90097-3
– ident: e_1_2_9_123_2
  doi: 10.1149/1.1393349
– ident: e_1_2_9_155_1
  doi: 10.1016/j.jpowsour.2008.03.030
– ident: e_1_2_9_1_2
  doi: 10.1038/451652a
– ident: e_1_2_9_158_1
  doi: 10.1016/j.electacta.2017.01.155
– ident: e_1_2_9_105_1
  doi: 10.1016/j.jallcom.2018.03.027
– ident: e_1_2_9_144_1
  doi: 10.1002/adma.200502604
– ident: e_1_2_9_149_1
  doi: 10.1149/1.2188081
– ident: e_1_2_9_57_1
  doi: 10.1002/adma.200401286
– ident: e_1_2_9_103_1
  doi: 10.1063/1.97206
– ident: e_1_2_9_190_1
  doi: 10.1002/anie.201804068
– ident: e_1_2_9_23_3
  doi: 10.1149/1.1420926
– ident: e_1_2_9_167_1
  doi: 10.1039/C7TA06873E
– ident: e_1_2_9_59_1
  doi: 10.1016/j.ssi.2010.10.001
– ident: e_1_2_9_70_1
  doi: 10.1007/s10008-011-1572-8
– ident: e_1_2_9_101_1
  doi: 10.1149/1.2097416
– ident: e_1_2_9_170_1
  doi: 10.1016/j.jpowsour.2017.11.031
– ident: e_1_2_9_24_1
  doi: 10.1149/1.1379028
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.inorgchem.7b00751
– ident: e_1_2_9_96_1
  doi: 10.1021/acs.nanolett.5b00538
– ident: e_1_2_9_7_1
  doi: 10.1021/acsami.6b13224
– ident: e_1_2_9_35_1
  doi: 10.1039/c0ee00052c
– ident: e_1_2_9_172_1
  doi: 10.1016/j.jpowsour.2009.06.100
– ident: e_1_2_9_50_1
  doi: 10.1016/0025-5408(83)90080-6
– ident: e_1_2_9_191_2
  doi: 10.1021/ja9024897
– ident: e_1_2_9_114_1
  doi: 10.1002/cssc.201700409
– ident: e_1_2_9_175_1
  doi: 10.1016/j.ssi.2012.06.008
– ident: e_1_2_9_4_2
  doi: 10.1039/C5TA00361J
– ident: e_1_2_9_148_1
  doi: 10.1149/1.2795837
– ident: e_1_2_9_90_1
  doi: 10.1016/j.jpowsour.2006.06.018
– ident: e_1_2_9_138_1
  doi: 10.1021/acs.chemmater.6b04990
– ident: e_1_2_9_185_1
  doi: 10.1039/C6TA01628F
– ident: e_1_2_9_188_1
  doi: 10.1016/j.electacta.2011.04.084
– ident: e_1_2_9_16_1
  doi: 10.1038/nmat3066
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jpowsour.2012.12.001
– volume: 1
  start-page: 154
  year: 2002
  ident: e_1_2_9_92_1
  publication-title: Solid State Ionics
– ident: e_1_2_9_17_1
  doi: 10.1021/ja407393y
– ident: e_1_2_9_152_1
  doi: 10.1002/aenm.201800035
– ident: e_1_2_9_162_1
  doi: 10.1039/c3ta10247e
– ident: e_1_2_9_66_2
  doi: 10.1107/S0108768100010260
– ident: e_1_2_9_178_1
  doi: 10.1002/ente.201200019
– ident: e_1_2_9_54_1
  doi: 10.1002/chem.200903023
– ident: e_1_2_9_61_1
  doi: 10.1021/ja508723m
– ident: e_1_2_9_122_1
  doi: 10.1021/cm5016959
– ident: e_1_2_9_44_2
  doi: 10.1149/1.1392498
– ident: e_1_2_9_37_1
  doi: 10.1038/ncomms15893
– ident: e_1_2_9_5_1
  doi: 10.1016/j.gee.2016.04.006
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jpowsour.2018.11.029
– ident: e_1_2_9_143_1
  doi: 10.1016/j.elecom.2007.02.008
– ident: e_1_2_9_139_1
  doi: 10.1021/cm901819c
– ident: e_1_2_9_133_1
  doi: 10.1002/aenm.201602923
– ident: e_1_2_9_40_1
  doi: 10.1016/0254-0584(89)90015-1
– ident: e_1_2_9_72_1
  doi: 10.1021/jacs.8b10282
– ident: e_1_2_9_183_1
  doi: 10.1002/chem.201703116
– ident: e_1_2_9_120_1
  doi: 10.1038/s41467-018-06123-2
– ident: e_1_2_9_168_1
  doi: 10.2109/jcersj2.16321
– ident: e_1_2_9_137_1
  doi: 10.1021/acs.chemmater.5b04082
– ident: e_1_2_9_91_1
  doi: 10.1016/j.ssi.2009.12.006
– ident: e_1_2_9_134_1
  doi: 10.1002/anie.201707754
– ident: e_1_2_9_109_1
  doi: 10.1021/acs.nanolett.7b00330
– ident: e_1_2_9_64_1
  doi: 10.1002/cber.18860190156
– ident: e_1_2_9_85_1
  doi: 10.1039/c3ee41728j
– ident: e_1_2_9_111_1
  doi: 10.1016/j.ssi.2015.11.032
– ident: e_1_2_9_113_1
  doi: 10.1016/j.jpowsour.2014.08.024
– ident: e_1_2_9_22_1
  doi: 10.1021/ja3110895
– ident: e_1_2_9_23_2
  doi: 10.1016/j.jpowsour.2011.07.071
– ident: e_1_2_9_15_2
  doi: 10.1021/acsami.6b13902
– ident: e_1_2_9_65_1
  doi: 10.1524/zkri.216.1.39.19001
– ident: e_1_2_9_104_1
  doi: 10.1016/j.ssi.2004.08.028
– ident: e_1_2_9_6_1
  doi: 10.1021/cr030203g
– ident: e_1_2_9_136_1
  doi: 10.1016/j.elecom.2012.06.015
– ident: e_1_2_9_4_1
  doi: 10.1038/s41560-018-0107-2
– ident: e_1_2_9_125_1
  doi: 10.1016/j.mattod.2014.10.040
– ident: e_1_2_9_98_1
  doi: 10.1016/j.ssi.2015.10.014
– ident: e_1_2_9_84_1
  doi: 10.1021/cm203303y
– ident: e_1_2_9_141_1
  doi: 10.1021/acs.chemmater.7b00931
– ident: e_1_2_9_2_1
  doi: 10.1007/s10008-017-3610-7
– ident: e_1_2_9_11_1
  doi: 10.1016/j.apenergy.2017.12.086
– ident: e_1_2_9_26_1
  doi: 10.1038/nature02159
– ident: e_1_2_9_40_2
  doi: 10.1016/0167-2738(86)90139-6
– ident: e_1_2_9_179_1
  doi: 10.1016/j.jpowsour.2014.04.032
– ident: e_1_2_9_131_1
  doi: 10.1149/2.0441504jes
– ident: e_1_2_9_156_1
  doi: 10.1016/j.jpowsour.2012.08.041
– ident: e_1_2_9_69_1
  doi: 10.1039/C5CP01841B
– ident: e_1_2_9_108_1
  doi: 10.1021/acs.nanolett.6b03448
– ident: e_1_2_9_23_4
  doi: 10.1039/C6RA09695F
– ident: e_1_2_9_78_1
  doi: 10.1039/C3EE43357A
– ident: e_1_2_9_88_1
  doi: 10.1039/C4CP02046D
– ident: e_1_2_9_115_1
  doi: 10.1002/adma.201505008
– ident: e_1_2_9_97_1
  doi: 10.1016/j.jpowsour.2015.09.111
– ident: e_1_2_9_86_1
  doi: 10.1016/j.jpowsour.2016.08.115
– ident: e_1_2_9_23_5
  doi: 10.1021/ic400577v
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.chemmater.6b03630
– ident: e_1_2_9_119_1
  doi: 10.1021/acs.chemmater.7b00034
– ident: e_1_2_9_31_1
  doi: 10.1039/C2EE23355J
– ident: e_1_2_9_33_1
  doi: 10.1038/nmat4369
– ident: e_1_2_9_160_1
  doi: 10.1016/j.jallcom.2013.12.191
– ident: e_1_2_9_77_1
  doi: 10.1021/cm3011315
– ident: e_1_2_9_43_1
  doi: 10.1016/0167-2738(92)90310-L
– ident: e_1_2_9_44_1
  doi: 10.1016/0167-2738(96)00179-8
– ident: e_1_2_9_189_1
  doi: 10.1038/nenergy.2017.74
– ident: e_1_2_9_174_1
  doi: 10.1002/adma.201500180
– ident: e_1_2_9_106_1
  doi: 10.1016/j.electacta.2016.08.081
– ident: e_1_2_9_53_1
  doi: 10.1107/S0567740882007535
– ident: e_1_2_9_99_1
  doi: 10.1039/C3TA15223E
– ident: e_1_2_9_145_1
  doi: 10.1016/j.ssi.2010.08.019
– ident: e_1_2_9_187_1
  doi: 10.1021/nn400391h
– ident: e_1_2_9_81_1
  doi: 10.1016/j.ssi.2012.03.003
SSID ssj0009606
Score 2.7075202
SecondaryResourceType review_article
Snippet Due to their high ionic conductivity and adeciduate mechanical features for lamination, sulfide composites have received increasing attention as solid...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1901131
SubjectTerms Atomic radius
characterization
Chemical synthesis
Electrolytes
Electronegativity
Energy storage
Interface stability
interfaces
Ion currents
Materials science
metal sulfides
Molten salt electrolytes
Organic chemistry
Solid electrolytes
solid‐state batteries
stability
synthesis
Title Sulfide‐Based Solid‐State Electrolytes: Synthesis, Stability, and Potential for All‐Solid‐State Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901131
https://www.ncbi.nlm.nih.gov/pubmed/31441140
https://www.proquest.com/docview/2310883640
https://www.proquest.com/docview/2311658657
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqnugBCi2wpSBXqtRL3a5jJ5twW6BVVakIsVTqLZqMJ9KKKAvs7mE58Qg8I0-Cx95NuyCEBLdY_o3tyXzjzHwW4rCu0rQuXKXq1BplAbUCIFSgSRPYGopwmHP1Nru4tpc36c2dKP7ID9EduLFkhO81CzhU09Nb0lBwgTeIFZoOgdTssMWo6P0tfxTD80C2Z1JVZDZfsTb2k9P16uta6TeouY5cg-o5fyBgNejocfLxZD6rTvDrL3yO__NW2-L-EpfKYdxID8UGtY_E1h22wh3xeTRv6rGjH9--v_K6z8nRpBk7nwqAVZ7FC3WahQevL-Vo0XpoOR1Pj6XPDh64i2MJrZPvJjP2UPKdebwsh03DLay1FDk_vQm_K67Pzz68vlDLGxsUcsiqgrQgD_kQnAFyfevRGVms0KHRWZI7KpK0SqhAPcAMKYcCa12gh0QWfAPWPBab7aSlp0J6QxM1ZWhNHy0ZYm9XU5Me5BVor9l7Qq1WrMQlnTnfqtGUkYg5KXkqy24qe-KoK_8pEnn8seT-agOUS4GelgyD89xktt8TB122F0X-vwItTeahjPaALksHPfEkbpyuK8OGq-baSVj-v4yhHL65GnapvX-p9Ezc4-cYN7kvNmdf5vTcA6hZ9SIIyU9mSBZn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcigcCuWnXSjFSEhc6nYdO9mE20JbLdCtENtK3CJnPJFWjbKF3T0sJx6BZ-RJ8NiblC1CSHB0_Bvbk_nGmfnM2IuyiOMys4UoY62ENiCFMQjCSJRodGkyf5gzPEsGF_rdp7jxJqRYmMAP0R64kWT47zUJOB1IH16zhhrriYNIo0mKpL5F13p7q-rjNYMUAXRPt6dikSU6bXgbu9Hhav1VvfQb2FzFrl75nNxlRTPs4HNyeTCfFQfw9Qaj43-91z22uYSmvB_20hZbw_o-u_MLYeED9nk0r8qxxR_fvr926s_y0aQaW5fymJUfhzt1qoXDr6_4aFE7dDkdT_e5y_ZOuIt9bmrLP0xm5KTkOnOQmferilpYaSnQfjor_iG7ODk-fzMQy0sbBFDUqjBxhg71gbHKoO1qB9BQQwEWlEyi1GIWxUWEGcgeJICpyaCUGThUpI1rQKtHbL2e1LjDuLM1QWICWnVBo0JyeFUlyl5aGOmUe4eJZslyWDKa08UaVR64mKOcpjJvp7LDXrblrwKXxx9L7jY7IF_K9DQnJJymKtHdDnveZjtppF8spsbJ3JeRDtMlca_DtsPOabtSZLtKqh359f_LGPL-0bDfph7_S6VnbGNwPjzNT9-evX_CbtPzEEa5y9ZnX-b41OGpWbHnJeYnuO4agg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRargAOW90IKRkLjUbRw72YTbtttVebSqWCr1Fjn2RFoRZQu7e1hO_IT-xv4SxvZu2gUhJDg6fsaeyXx2Zj4DvK7KJKlyW_IqUZIrbQTXGg3XAgVqVencH-Ycn6RHZ-r9eXJ-I4o_8EO0B25OM_z32in4ha32rklDtfW8Qc6gCRdIfUulUebkuv_pmkDK4XPPticTnqcqW9I2RvHeav1Vs_Qb1lyFrt72DO6BXo46uJx82Z1Ny13z_RdCx_95rU24uwCmrBck6T6sYfMA7tygK3wIX4ezuhpZvPpxuU_Gz7LhuB5ZSnnEyg7DjTr1nNDrWzacN4QtJ6PJDqNs74I732G6sex0PHUuStQZAWbWq2vXwkpLgfST9vCP4Gxw-PngiC-ubODGxaxyneRImM9oKzXaSBE8Q2VKY40UaZxZzOOkjDE3omtSg5nOTSVyQ5hIaWpAycew3owbfAqMdppGYGqUjIxCic7dVVYoulmpBZn2DvDlihVmwWfurtWoi8DEHBduKot2Kjvwpi1_EZg8_lhyaykAxUKjJ4XDwVkmUxV14FWbTbrofrDoBsczX0YQokuTbgeeBMFpu5Ju5ypc7dgv_1_GUPT6x7029exfKr2EjdP-oPj47uTDc7jtHocYyi1Yn36b4TaBqWn5wuvLT3UZGTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfide%E2%80%90Based+Solid%E2%80%90State+Electrolytes%3A+Synthesis%2C+Stability%2C+and+Potential+for+All%E2%80%90Solid%E2%80%90State+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Qing&rft.au=Cao%2C+Daxian&rft.au=Ma%2C+Yi&rft.au=Natan%2C+Avi&rft.date=2019-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201901131&rft.externalDBID=10.1002%252Fadma.201901131&rft.externalDocID=ADMA201901131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon