Challenges and Perspectives for NASICON‐Type Electrode Materials for Advanced Sodium‐Ion Batteries

Sodium‐ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical distribution, and low cost. Apart from inherent thermodynamic disadvantages, SIBs have to overcome multiple kinetic problems, such as fast cap...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 48
Main Authors Chen, Shuangqiang, Wu, Chao, Shen, Laifa, Zhu, Changbao, Huang, Yuanye, Xi, Kai, Maier, Joachim, Yu, Yan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sodium‐ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical distribution, and low cost. Apart from inherent thermodynamic disadvantages, SIBs have to overcome multiple kinetic problems, such as fast capacity decay, low rate capacities and low Coulombic efficiencies. A special case is sodium super ion conductor (NASICON)‐based electrode materials as they exhibit – besides pronounced structural stability – exceptionally high ion conductivity, rendering them most promising for sodium storage. Owing to the limiting, comparatively low electronic conductivity, nano‐structuring is a prerequisite for achieving satisfactory rate‐capability. In this review, we analyze advantages and disadvantages of NASICON‐type electrode materials and highlight electrode structure design principles for obtaining the desired electrochemical performance. Moreover, we give an overview of recent approaches to enhance electrical conductivity and structural stability of cathode and anode materials based on NASICON structure. We believe that this review provides a pertinent insight into relevant design principles and inspires further research in this respect. Sodium super ion conductor (NASICON)‐based electrode materials, exhibiting pronounced structural stability and exceptionally high ion conductivity are promising materials for sodium storage. Challenges and perspectives of NASICON‐type electrode materials are discussed, and electrode structure design principles for obtaining the desired electrochemical performance are highlighted. Recent progress in enhancing electrical conductivity and structural stability of NASICON materials is summarized.
AbstractList Sodium‐ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical distribution, and low cost. Apart from inherent thermodynamic disadvantages, SIBs have to overcome multiple kinetic problems, such as fast capacity decay, low rate capacities and low Coulombic efficiencies. A special case is sodium super ion conductor (NASICON)‐based electrode materials as they exhibit – besides pronounced structural stability – exceptionally high ion conductivity, rendering them most promising for sodium storage. Owing to the limiting, comparatively low electronic conductivity, nano‐structuring is a prerequisite for achieving satisfactory rate‐capability. In this review, we analyze advantages and disadvantages of NASICON‐type electrode materials and highlight electrode structure design principles for obtaining the desired electrochemical performance. Moreover, we give an overview of recent approaches to enhance electrical conductivity and structural stability of cathode and anode materials based on NASICON structure. We believe that this review provides a pertinent insight into relevant design principles and inspires further research in this respect. Sodium super ion conductor (NASICON)‐based electrode materials, exhibiting pronounced structural stability and exceptionally high ion conductivity are promising materials for sodium storage. Challenges and perspectives of NASICON‐type electrode materials are discussed, and electrode structure design principles for obtaining the desired electrochemical performance are highlighted. Recent progress in enhancing electrical conductivity and structural stability of NASICON materials is summarized.
Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical distribution, and low cost. Apart from inherent thermodynamic disadvantages, SIBs have to overcome multiple kinetic problems, such as fast capacity decay, low rate capacities and low Coulombic efficiencies. A special case is sodium super ion conductor (NASICON)-based electrode materials as they exhibit - besides pronounced structural stability - exceptionally high ion conductivity, rendering them most promising for sodium storage. Owing to the limiting, comparatively low electronic conductivity, nano-structuring is a prerequisite for achieving satisfactory rate-capability. In this review, we analyze advantages and disadvantages of NASICON-type electrode materials and highlight electrode structure design principles for obtaining the desired electrochemical performance. Moreover, we give an overview of recent approaches to enhance electrical conductivity and structural stability of cathode and anode materials based on NASICON structure. We believe that this review provides a pertinent insight into relevant design principles and inspires further research in this respect.
Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical distribution, and low cost. Apart from inherent thermodynamic disadvantages, SIBs have to overcome multiple kinetic problems, such as fast capacity decay, low rate capacities and low Coulombic efficiencies. A special case is sodium super ion conductor (NASICON)-based electrode materials as they exhibit - besides pronounced structural stability - exceptionally high ion conductivity, rendering them most promising for sodium storage. Owing to the limiting, comparatively low electronic conductivity, nano-structuring is a prerequisite for achieving satisfactory rate-capability. In this review, we analyze advantages and disadvantages of NASICON-type electrode materials and highlight electrode structure design principles for obtaining the desired electrochemical performance. Moreover, we give an overview of recent approaches to enhance electrical conductivity and structural stability of cathode and anode materials based on NASICON structure. We believe that this review provides a pertinent insight into relevant design principles and inspires further research in this respect.Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical distribution, and low cost. Apart from inherent thermodynamic disadvantages, SIBs have to overcome multiple kinetic problems, such as fast capacity decay, low rate capacities and low Coulombic efficiencies. A special case is sodium super ion conductor (NASICON)-based electrode materials as they exhibit - besides pronounced structural stability - exceptionally high ion conductivity, rendering them most promising for sodium storage. Owing to the limiting, comparatively low electronic conductivity, nano-structuring is a prerequisite for achieving satisfactory rate-capability. In this review, we analyze advantages and disadvantages of NASICON-type electrode materials and highlight electrode structure design principles for obtaining the desired electrochemical performance. Moreover, we give an overview of recent approaches to enhance electrical conductivity and structural stability of cathode and anode materials based on NASICON structure. We believe that this review provides a pertinent insight into relevant design principles and inspires further research in this respect.
Author Wu, Chao
Xi, Kai
Maier, Joachim
Huang, Yuanye
Chen, Shuangqiang
Shen, Laifa
Yu, Yan
Zhu, Changbao
Author_xml – sequence: 1
  givenname: Shuangqiang
  surname: Chen
  fullname: Chen, Shuangqiang
  organization: Max Planck Institute for Solid State Research
– sequence: 2
  givenname: Chao
  surname: Wu
  fullname: Wu, Chao
  organization: Max Planck Institute for Solid State Research
– sequence: 3
  givenname: Laifa
  surname: Shen
  fullname: Shen, Laifa
  organization: Max Planck Institute for Solid State Research
– sequence: 4
  givenname: Changbao
  surname: Zhu
  fullname: Zhu, Changbao
  organization: Max Planck Institute for Solid State Research
– sequence: 5
  givenname: Yuanye
  surname: Huang
  fullname: Huang, Yuanye
  organization: Max Planck Institute for Solid State Research
– sequence: 6
  givenname: Kai
  surname: Xi
  fullname: Xi, Kai
  organization: University of Cambridge
– sequence: 7
  givenname: Joachim
  surname: Maier
  fullname: Maier, Joachim
  organization: Max Planck Institute for Solid State Research
– sequence: 8
  givenname: Yan
  orcidid: 0000-0002-3685-7773
  surname: Yu
  fullname: Yu, Yan
  email: yanyumse@ustc.edu.cn
  organization: Max Planck Institute for Solid State Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28626908$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1u1DAUBWALFdFp6ZYlisSGTabXjuM4yzAtdKT-ILVdWx77GlIl8WAnRbPjEfqMfRI8mhakSoiVJfs7V7bPAdkb_ICEvKMwpwDsWNtezxnQCoAX9BWZ0ZLRnENd7pEZ1EWZ14LLfXIQ4x0A1ALEG7LPpGCiBjkjbvFddx0O3zBmerDZVwxxjWZs79OG8yG7bK6Xi6vLx18PN5s1ZqddOgzeYnahRwyt7nassfd6MGiza2_bqU986Yfskx63CONb8tolikdP6yG5_Xx6szjLz6--LBfNeW54JWkuTVXK0tbSyfQazXhpCm6oZY5iiZzZFTJwBQiniwolXVmgpRFIeWWdASgOycfd3HXwPyaMo-rbaLDr9IB-iorWlDJgVNSJfnhB7_wUhnS7pCrJJJViO_D9k5pWPVq1Dm2vw0Y9_2ACfAdM8DEGdMq0ox5bP4xBt52ioLZFqW1R6k9RKTZ_EXue_M9AvQv8bDvc_Eer5uSi-Zv9DTjnpf0
CitedBy_id crossref_primary_10_1002_adfm_202106923
crossref_primary_10_1039_C8TA00990B
crossref_primary_10_3390_batteries10070223
crossref_primary_10_1016_j_apt_2024_104403
crossref_primary_10_1039_D2QI01568D
crossref_primary_10_1039_D3MH00003F
crossref_primary_10_1016_j_jcis_2020_08_015
crossref_primary_10_1039_D1TA09693A
crossref_primary_10_1021_acsami_3c04004
crossref_primary_10_1021_acsenergylett_5c00315
crossref_primary_10_1021_acsaem_0c02203
crossref_primary_10_1007_s40820_024_01474_6
crossref_primary_10_1002_smll_202004925
crossref_primary_10_1016_j_matlet_2018_08_006
crossref_primary_10_1016_j_electacta_2021_138569
crossref_primary_10_1039_C8TA10624J
crossref_primary_10_1002_ente_202000682
crossref_primary_10_1016_j_ensm_2018_12_015
crossref_primary_10_1016_j_est_2022_105471
crossref_primary_10_1007_s10853_020_04420_0
crossref_primary_10_1002_batt_202400526
crossref_primary_10_1021_acsami_9b04088
crossref_primary_10_1002_smll_202412681
crossref_primary_10_1021_acs_energyfuels_3c03740
crossref_primary_10_1039_C7CS00614D
crossref_primary_10_1007_s43979_023_00077_1
crossref_primary_10_1016_j_surfin_2023_103421
crossref_primary_10_1002_smtd_201800221
crossref_primary_10_1002_eem2_12519
crossref_primary_10_1016_j_ensm_2021_04_026
crossref_primary_10_1021_acsnano_8b02721
crossref_primary_10_1039_C9TA08603J
crossref_primary_10_1002_smtd_201800218
crossref_primary_10_1016_j_cej_2024_152864
crossref_primary_10_1039_C9TA08845H
crossref_primary_10_1021_acsenergylett_2c01838
crossref_primary_10_1021_acsami_4c02820
crossref_primary_10_1016_j_electacta_2021_139438
crossref_primary_10_1021_acssuschemeng_3c06667
crossref_primary_10_1021_acsami_9b22746
crossref_primary_10_1016_j_cej_2020_127565
crossref_primary_10_1016_j_cej_2020_126118
crossref_primary_10_1016_j_jmmm_2019_165602
crossref_primary_10_1002_smll_202206445
crossref_primary_10_1016_j_jallcom_2018_05_116
crossref_primary_10_1021_acs_chemmater_2c03787
crossref_primary_10_3390_ma13163453
crossref_primary_10_1002_smll_202310997
crossref_primary_10_1021_acssuschemeng_9b05098
crossref_primary_10_1088_2752_5724_acc7bb
crossref_primary_10_1002_smtd_201800323
crossref_primary_10_1007_s11581_024_05369_9
crossref_primary_10_1016_j_ensm_2020_09_007
crossref_primary_10_1016_j_ensm_2021_04_019
crossref_primary_10_1002_adfm_202009458
crossref_primary_10_1021_acsami_7b19138
crossref_primary_10_1002_smll_202001524
crossref_primary_10_1016_j_ensm_2023_102820
crossref_primary_10_1016_S1872_5805_21_60019_7
crossref_primary_10_1021_acsami_0c23165
crossref_primary_10_1016_j_seppur_2024_126613
crossref_primary_10_1002_advs_201801021
crossref_primary_10_1016_j_jallcom_2019_153261
crossref_primary_10_1002_slct_201904600
crossref_primary_10_1007_s12274_024_6846_4
crossref_primary_10_1021_acsaem_3c02181
crossref_primary_10_1016_j_jeurceramsoc_2018_05_039
crossref_primary_10_1016_j_jelechem_2018_09_013
crossref_primary_10_1002_smll_202405719
crossref_primary_10_1016_j_cej_2020_127597
crossref_primary_10_1016_j_jssc_2022_123333
crossref_primary_10_3390_polym14194046
crossref_primary_10_1002_adfm_201808745
crossref_primary_10_1021_jacs_1c06727
crossref_primary_10_1016_j_mattod_2018_03_004
crossref_primary_10_1002_ange_202219304
crossref_primary_10_1002_smll_202302726
crossref_primary_10_1016_j_matpr_2022_02_111
crossref_primary_10_1002_smtd_202000039
crossref_primary_10_1021_acs_nanolett_2c00983
crossref_primary_10_1002_smll_202206987
crossref_primary_10_1016_j_jelechem_2023_117916
crossref_primary_10_1016_j_cej_2019_122978
crossref_primary_10_1002_adfm_202210725
crossref_primary_10_1039_C9TA13210D
crossref_primary_10_1039_D3RA02126B
crossref_primary_10_1021_acsami_3c18448
crossref_primary_10_1021_acssuschemeng_1c00418
crossref_primary_10_1063_5_0151559
crossref_primary_10_1016_j_jcis_2024_07_022
crossref_primary_10_1039_D2RA06449A
crossref_primary_10_1002_adma_202108304
crossref_primary_10_1021_acsenergylett_2c02837
crossref_primary_10_1039_D0QM00364F
crossref_primary_10_1007_s00894_019_3971_1
crossref_primary_10_1007_s11581_020_03791_3
crossref_primary_10_1021_acsnano_4c06571
crossref_primary_10_1039_C8TA08842J
crossref_primary_10_1021_acsami_1c17117
crossref_primary_10_1007_s10853_022_07766_9
crossref_primary_10_1016_j_ensm_2019_05_041
crossref_primary_10_1039_C8QI00768C
crossref_primary_10_1002_aesr_202100088
crossref_primary_10_1021_acsami_9b12984
crossref_primary_10_1016_j_jcis_2025_137299
crossref_primary_10_1039_D2CC03281C
crossref_primary_10_1016_j_est_2024_112548
crossref_primary_10_1002_adfm_202215155
crossref_primary_10_1039_C7RA13441J
crossref_primary_10_1039_D1NJ00262G
crossref_primary_10_1007_s12274_022_5298_y
crossref_primary_10_1021_acsaem_0c00283
crossref_primary_10_1002_advs_202002199
crossref_primary_10_1007_s11581_020_03693_4
crossref_primary_10_1039_C8TA01314D
crossref_primary_10_1021_jacs_3c11739
crossref_primary_10_1021_acsenergylett_8b00948
crossref_primary_10_1016_j_jechem_2021_06_015
crossref_primary_10_1016_j_mattod_2022_02_013
crossref_primary_10_1016_j_cej_2024_152485
crossref_primary_10_1016_j_cej_2021_129051
crossref_primary_10_1039_C7CS00871F
crossref_primary_10_1021_acs_nanolett_9b04829
crossref_primary_10_1039_C9TA06713B
crossref_primary_10_1002_adma_202305135
crossref_primary_10_1002_aenm_202302550
crossref_primary_10_1021_acsami_4c02565
crossref_primary_10_1007_s12274_019_2369_9
crossref_primary_10_1039_C7TC05432G
crossref_primary_10_1016_j_eng_2021_08_032
crossref_primary_10_1016_j_jlumin_2022_118912
crossref_primary_10_1038_s44160_022_00096_3
crossref_primary_10_1007_s12598_021_01743_y
crossref_primary_10_1149_1945_7111_ac0b5d
crossref_primary_10_1039_D1TA01215K
crossref_primary_10_1016_j_desal_2023_116701
crossref_primary_10_1002_aenm_202002244
crossref_primary_10_1021_acs_chemmater_1c04033
crossref_primary_10_32434_0321_4095_2019_125_4_157_162
crossref_primary_10_1039_D4YA00141A
crossref_primary_10_2320_materia_58_440
crossref_primary_10_2174_2666731201666210520125051
crossref_primary_10_1002_adma_201904771
crossref_primary_10_1002_adma_202000721
crossref_primary_10_1002_bte2_20220042
crossref_primary_10_1149_1945_7111_acd3b8
crossref_primary_10_1016_j_electacta_2019_04_140
crossref_primary_10_1021_acs_chemrev_0c00767
crossref_primary_10_3390_electronicmat4010003
crossref_primary_10_1002_advs_201800680
crossref_primary_10_1002_celc_202000881
crossref_primary_10_1039_D3DT00124E
crossref_primary_10_1088_2516_1083_aba5f5
crossref_primary_10_1039_D0TA10610K
crossref_primary_10_3389_fenrg_2020_00200
crossref_primary_10_1002_aenm_202001486
crossref_primary_10_1002_adfm_202213578
crossref_primary_10_1039_D0MH00315H
crossref_primary_10_1002_aenm_202402720
crossref_primary_10_1038_s41467_021_26032_1
crossref_primary_10_1021_acs_jpcc_4c07861
crossref_primary_10_1002_smtd_201800169
crossref_primary_10_1021_acsaem_3c00605
crossref_primary_10_1021_jacs_8b11388
crossref_primary_10_1002_aenm_201902918
crossref_primary_10_1002_adfm_202203424
crossref_primary_10_1149_2_1031906jes
crossref_primary_10_1016_j_nanoen_2018_01_046
crossref_primary_10_1039_D0TA09029H
crossref_primary_10_1016_j_mtchem_2022_101294
crossref_primary_10_1021_acsami_2c03261
crossref_primary_10_1039_D0TA11042F
crossref_primary_10_3390_ma12121952
crossref_primary_10_3390_magnetochemistry9070162
crossref_primary_10_1016_j_electacta_2023_142993
crossref_primary_10_1016_j_ensm_2018_05_026
crossref_primary_10_1039_D4TA06950A
crossref_primary_10_1002_cey2_153
crossref_primary_10_1002_smll_202200805
crossref_primary_10_1002_celc_202000345
crossref_primary_10_1016_j_nanoen_2019_03_066
crossref_primary_10_1002_adfm_202302810
crossref_primary_10_1002_anie_202003275
crossref_primary_10_1002_advs_202202082
crossref_primary_10_1016_j_ensm_2023_103141
crossref_primary_10_1039_C7NR07000D
crossref_primary_10_1021_acsaem_8b01390
crossref_primary_10_1007_s40820_018_0224_2
crossref_primary_10_1002_adma_202110108
crossref_primary_10_1016_j_nanoen_2019_03_080
crossref_primary_10_1016_j_jechem_2020_10_047
crossref_primary_10_1002_smll_202102010
crossref_primary_10_1016_j_electacta_2023_142521
crossref_primary_10_1016_j_jelechem_2025_119027
crossref_primary_10_1016_j_jallcom_2023_173259
crossref_primary_10_1039_D2NR06602E
crossref_primary_10_1016_j_electacta_2018_10_007
crossref_primary_10_1016_j_cej_2019_04_128
crossref_primary_10_1021_acsami_4c04795
crossref_primary_10_1016_j_jallcom_2020_156118
crossref_primary_10_1016_j_optmat_2024_116611
crossref_primary_10_1016_j_nanoen_2021_106462
crossref_primary_10_1016_j_cej_2024_149036
crossref_primary_10_1016_j_est_2023_108366
crossref_primary_10_1016_j_mtener_2022_101115
crossref_primary_10_1021_acsami_8b08415
crossref_primary_10_1016_j_matpr_2020_08_753
crossref_primary_10_1016_j_jpowsour_2024_235773
crossref_primary_10_1021_acsnano_4c01831
crossref_primary_10_1021_acsami_9b20539
crossref_primary_10_1039_D3QM00031A
crossref_primary_10_1021_acsami_8b18488
crossref_primary_10_1002_adma_202401008
crossref_primary_10_1021_acsami_8b04085
crossref_primary_10_1002_advs_202200924
crossref_primary_10_1007_s11426_022_1269_0
crossref_primary_10_1021_acsaem_1c00410
crossref_primary_10_1039_D3EE02082G
crossref_primary_10_54097_62wswy20
crossref_primary_10_3390_nano14141204
crossref_primary_10_1002_eom2_12043
crossref_primary_10_1016_S1872_5805_22_60616_4
crossref_primary_10_3389_fchem_2020_00635
crossref_primary_10_1039_C9CS00846B
crossref_primary_10_1039_C9QM00674E
crossref_primary_10_1021_acsnano_4c01845
crossref_primary_10_1002_adma_201904320
crossref_primary_10_1016_j_xcrp_2021_100665
crossref_primary_10_1038_s41467_022_31768_5
crossref_primary_10_1002_aenm_202401704
crossref_primary_10_34133_energymatadv_0073
crossref_primary_10_1149_1945_7111_ac001d
crossref_primary_10_1002_batt_202200246
crossref_primary_10_1007_s11426_020_9897_8
crossref_primary_10_1016_j_esci_2024_100252
crossref_primary_10_1016_j_nanoen_2020_105176
crossref_primary_10_1021_acsenergylett_4c00490
crossref_primary_10_1016_j_scib_2020_01_018
crossref_primary_10_1016_j_apsusc_2024_161505
crossref_primary_10_2139_ssrn_4147089
crossref_primary_10_1021_acsaem_3c01871
crossref_primary_10_1002_sus2_105
crossref_primary_10_1002_adfm_202209482
crossref_primary_10_1002_smll_202202879
crossref_primary_10_2139_ssrn_4136071
crossref_primary_10_1021_acs_chemmater_2c00501
crossref_primary_10_34133_energymatadv_0036
crossref_primary_10_1002_adfm_201802684
crossref_primary_10_1021_acsami_9b01239
crossref_primary_10_1016_j_jcis_2024_04_003
crossref_primary_10_1021_acsaem_1c02413
crossref_primary_10_1149_2_0251902jes
crossref_primary_10_1016_j_carbon_2020_05_001
crossref_primary_10_1039_C8TA10498K
crossref_primary_10_1016_j_jelechem_2023_117157
crossref_primary_10_1016_j_materresbull_2018_03_035
crossref_primary_10_1002_cssc_202102522
crossref_primary_10_1016_j_jallcom_2020_157992
crossref_primary_10_1016_j_cej_2021_132637
crossref_primary_10_1007_s11426_021_1162_3
crossref_primary_10_1021_acs_chemmater_3c02345
crossref_primary_10_1002_anie_202415942
crossref_primary_10_1021_acsami_1c17700
crossref_primary_10_1016_j_est_2024_111910
crossref_primary_10_1016_j_ceramint_2022_04_085
crossref_primary_10_1016_j_electacta_2018_07_118
crossref_primary_10_1002_adfm_202302200
crossref_primary_10_1039_D4GC03958K
crossref_primary_10_3390_en15134932
crossref_primary_10_1021_acs_chemmater_2c01948
crossref_primary_10_1007_s12598_022_02204_w
crossref_primary_10_1016_j_inoche_2024_113676
crossref_primary_10_1002_adma_202004920
crossref_primary_10_1016_j_apsusc_2022_155960
crossref_primary_10_1016_j_ensm_2022_10_011
crossref_primary_10_1002_aenm_201903968
crossref_primary_10_1002_adfm_201907837
crossref_primary_10_1002_batt_202300271
crossref_primary_10_1016_j_nanoen_2024_110175
crossref_primary_10_1016_j_ssi_2023_116446
crossref_primary_10_1021_acs_energyfuels_4c01515
crossref_primary_10_3390_coatings13030482
crossref_primary_10_1016_j_electacta_2020_136761
crossref_primary_10_1016_j_ensm_2023_03_024
crossref_primary_10_1016_j_jpowsour_2019_226803
crossref_primary_10_3390_min10060524
crossref_primary_10_1103_PhysRevB_106_014311
crossref_primary_10_1016_j_jechem_2021_01_014
crossref_primary_10_1002_ange_201912924
crossref_primary_10_3390_ma16124361
crossref_primary_10_3390_min15010003
crossref_primary_10_1002_adsu_202300233
crossref_primary_10_1039_D2TA05971A
crossref_primary_10_1002_aenm_201703155
crossref_primary_10_3390_nano12060930
crossref_primary_10_1007_s40843_022_2441_6
crossref_primary_10_1016_j_matchar_2019_109795
crossref_primary_10_1039_D3MA00074E
crossref_primary_10_1016_j_ensm_2021_07_040
crossref_primary_10_1016_j_est_2024_110849
crossref_primary_10_1021_acsmaterialslett_3c00610
crossref_primary_10_1002_smtd_202100339
crossref_primary_10_1021_acsanm_3c01687
crossref_primary_10_1002_smll_201906669
crossref_primary_10_1002_smll_202409731
crossref_primary_10_1021_acsami_7b14006
crossref_primary_10_1039_D0TA04307A
crossref_primary_10_1021_acs_chemmater_4c00933
crossref_primary_10_1039_D3CP00960B
crossref_primary_10_1007_s41918_021_00120_8
crossref_primary_10_1021_acs_jpcc_1c04367
crossref_primary_10_1002_adma_202410132
crossref_primary_10_1515_zpch_2021_3091
crossref_primary_10_1016_j_carbon_2023_118631
crossref_primary_10_1002_adfm_202212692
crossref_primary_10_54227_mlab_20210001
crossref_primary_10_1016_j_mtener_2022_101184
crossref_primary_10_1007_s40820_019_0273_1
crossref_primary_10_1021_acs_chemmater_1c02345
crossref_primary_10_1016_j_rser_2021_110849
crossref_primary_10_1002_chem_201704303
crossref_primary_10_1039_D0EE02162H
crossref_primary_10_1002_cey2_313
crossref_primary_10_1088_1361_648X_acc8af
crossref_primary_10_1007_s42765_021_00088_6
crossref_primary_10_1016_j_mtener_2025_101868
crossref_primary_10_1002_aenm_201703252
crossref_primary_10_1007_s11581_021_04133_7
crossref_primary_10_1002_aenm_202001880
crossref_primary_10_1021_acsaem_9b00566
crossref_primary_10_1007_s40820_021_00625_3
crossref_primary_10_1016_j_jechem_2022_09_016
crossref_primary_10_1016_j_ensm_2019_09_036
crossref_primary_10_1016_j_ensm_2024_103764
crossref_primary_10_1016_j_ensm_2023_02_005
crossref_primary_10_1016_j_jallcom_2019_02_202
crossref_primary_10_1016_j_jallcom_2018_10_180
crossref_primary_10_1021_acsaem_0c00973
crossref_primary_10_1149_1945_7111_ab812b
crossref_primary_10_1016_j_cej_2020_125725
crossref_primary_10_1016_j_jallcom_2023_169128
crossref_primary_10_1021_acsami_4c10821
crossref_primary_10_1016_j_jallcom_2023_169365
crossref_primary_10_1039_C9TA05926A
crossref_primary_10_1016_j_pmatsci_2022_101055
crossref_primary_10_1007_s10854_024_13099_x
crossref_primary_10_1007_s40820_025_01697_1
crossref_primary_10_1021_acssuschemeng_0c02609
crossref_primary_10_1021_acsaem_3c00229
crossref_primary_10_1142_S1793604725300014
crossref_primary_10_1021_acs_jpcc_3c05873
crossref_primary_10_1016_j_jallcom_2019_03_127
crossref_primary_10_1021_acs_chemmater_1c02695
crossref_primary_10_1021_acsami_1c21271
crossref_primary_10_1002_smll_201805427
crossref_primary_10_1039_D1TA01073E
crossref_primary_10_1016_j_jallcom_2019_153631
crossref_primary_10_1002_advs_201900649
crossref_primary_10_1016_j_jpowsour_2021_229924
crossref_primary_10_1002_eem2_12166
crossref_primary_10_1021_acs_chemmater_3c02874
crossref_primary_10_1134_S1063776122010071
crossref_primary_10_1111_ijac_13920
crossref_primary_10_2139_ssrn_3993047
crossref_primary_10_1039_C8EE03727B
crossref_primary_10_1002_adma_202001854
crossref_primary_10_1016_j_mtnano_2020_100072
crossref_primary_10_1016_j_jcis_2023_12_170
crossref_primary_10_3390_ma16145146
crossref_primary_10_1016_j_cej_2021_133542
crossref_primary_10_1039_C8TA06995F
crossref_primary_10_1039_C8TA10258A
crossref_primary_10_1021_acsenergylett_9b00748
crossref_primary_10_1021_acsami_0c00712
crossref_primary_10_1016_j_ensm_2024_103627
crossref_primary_10_1016_j_cej_2019_123234
crossref_primary_10_1016_j_cej_2019_123233
crossref_primary_10_1002_smtd_202000613
crossref_primary_10_1016_j_jallcom_2023_172890
crossref_primary_10_1039_C9TA05252F
crossref_primary_10_1039_D3NJ03648K
crossref_primary_10_1002_aenm_201900022
crossref_primary_10_1016_j_solidstatesciences_2023_107358
crossref_primary_10_1039_C8CC09718F
crossref_primary_10_1039_D3TA03555G
crossref_primary_10_1016_j_nanoen_2019_104040
crossref_primary_10_1016_j_electacta_2022_141671
crossref_primary_10_3389_fchem_2020_00353
crossref_primary_10_1021_acsami_1c12470
crossref_primary_10_1016_j_nanoen_2018_06_017
crossref_primary_10_1002_sstr_202300150
crossref_primary_10_1016_j_est_2024_113078
crossref_primary_10_1002_adfm_202310248
crossref_primary_10_1002_adma_202105611
crossref_primary_10_1016_j_ensm_2024_103734
crossref_primary_10_1002_admt_202200515
crossref_primary_10_1039_D2TA05653D
crossref_primary_10_1002_chem_201902400
crossref_primary_10_1016_j_electacta_2019_04_059
crossref_primary_10_1016_j_apsusc_2022_155461
crossref_primary_10_1016_j_nanoen_2019_104212
crossref_primary_10_1021_acsami_8b03846
crossref_primary_10_1002_celc_202100029
crossref_primary_10_1002_anie_201912924
crossref_primary_10_1039_D0TA05929C
crossref_primary_10_1002_smtd_202100888
crossref_primary_10_1021_acsami_2c22547
crossref_primary_10_1039_C8NR09391A
crossref_primary_10_1021_jacs_3c14452
crossref_primary_10_1016_j_cej_2024_156289
crossref_primary_10_1039_C9QI01690B
crossref_primary_10_1016_j_pmatsci_2024_101300
crossref_primary_10_1021_acsami_4c07336
crossref_primary_10_3390_nano11010156
crossref_primary_10_1016_j_scib_2020_04_010
crossref_primary_10_1016_j_jpowsour_2019_226860
crossref_primary_10_1002_smll_202205732
crossref_primary_10_1002_adfm_202107747
crossref_primary_10_1016_j_ensm_2025_104156
crossref_primary_10_1016_j_ensm_2020_11_005
crossref_primary_10_1093_chemle_upae125
crossref_primary_10_1002_aenm_202000974
crossref_primary_10_1016_j_jelechem_2021_115597
crossref_primary_10_1063_5_0073087
crossref_primary_10_1002_ente_202000723
crossref_primary_10_1021_acs_chemmater_2c00212
crossref_primary_10_1039_D1CS00442E
crossref_primary_10_1016_j_jallcom_2020_156707
crossref_primary_10_1016_j_jcis_2018_08_002
crossref_primary_10_1016_j_chempr_2018_05_018
crossref_primary_10_1016_j_jpowsour_2021_230183
crossref_primary_10_1088_2515_7655_ab71ed
crossref_primary_10_1002_adfm_202302045
crossref_primary_10_1002_adma_202311256
crossref_primary_10_1016_j_est_2024_113497
crossref_primary_10_1002_advs_202002213
crossref_primary_10_1016_j_matdes_2019_108287
crossref_primary_10_1021_acs_chemmater_1c02775
crossref_primary_10_1002_inf2_12184
crossref_primary_10_1021_acs_chemmater_1c01680
crossref_primary_10_1002_celc_202001087
crossref_primary_10_1021_acsami_4c07348
crossref_primary_10_1039_C8TA12014E
crossref_primary_10_1002_adfm_202315114
crossref_primary_10_1021_acs_inorgchem_0c01129
crossref_primary_10_1149_1945_7111_acf95f
crossref_primary_10_1002_eem2_12485
crossref_primary_10_1021_acs_energyfuels_3c04898
crossref_primary_10_1021_acsami_3c09876
crossref_primary_10_1021_acs_jpcc_8b06120
crossref_primary_10_1002_chem_202100219
crossref_primary_10_1002_smll_202407285
crossref_primary_10_1016_j_matpr_2020_11_961
crossref_primary_10_1002_aenm_202202478
crossref_primary_10_1016_j_jssc_2023_124006
crossref_primary_10_1007_s11581_024_05793_x
crossref_primary_10_3389_fchem_2020_00152
crossref_primary_10_1002_admi_202100188
crossref_primary_10_1016_j_nanoen_2018_11_091
crossref_primary_10_1016_j_pmatsci_2023_101128
crossref_primary_10_1002_adfm_202000473
crossref_primary_10_1007_s40843_019_1188_x
crossref_primary_10_1002_smll_202304002
crossref_primary_10_1016_j_ssi_2019_03_014
crossref_primary_10_1002_chem_201905706
crossref_primary_10_1002_aenm_201801102
crossref_primary_10_1039_C9TA01264H
crossref_primary_10_1002_cssc_201800194
crossref_primary_10_1021_acsami_4c14093
crossref_primary_10_1016_j_nanoen_2018_06_050
crossref_primary_10_1039_D0TA08535A
crossref_primary_10_1016_j_jallcom_2021_162511
crossref_primary_10_1039_D1TA09040B
crossref_primary_10_1007_s10854_022_08395_3
crossref_primary_10_1002_adfm_202105463
crossref_primary_10_1016_j_jallcom_2022_168358
crossref_primary_10_1021_acsenergylett_4c00976
crossref_primary_10_1002_aenm_202203216
crossref_primary_10_7498_aps_72_20222316
crossref_primary_10_1002_chem_202101796
crossref_primary_10_1002_anie_202219304
crossref_primary_10_1002_ange_202415942
crossref_primary_10_1021_acs_jpclett_3c02540
crossref_primary_10_1149_1945_7111_abcd10
crossref_primary_10_1016_j_cej_2018_07_159
crossref_primary_10_1016_j_jpowsour_2023_233913
crossref_primary_10_1016_j_apsusc_2022_154218
crossref_primary_10_1002_adfm_202103456
crossref_primary_10_1142_S1793604723400076
crossref_primary_10_1021_acsami_1c06160
crossref_primary_10_1016_j_electacta_2020_135816
crossref_primary_10_1149_2_1241904jes
crossref_primary_10_1039_D5CP00210A
crossref_primary_10_1021_acsnano_4c06510
crossref_primary_10_1039_D0TA07872G
crossref_primary_10_1002_smll_202202798
crossref_primary_10_1002_smll_202104293
crossref_primary_10_1039_D1TA06094E
crossref_primary_10_1016_j_esci_2021_12_008
crossref_primary_10_1002_cssc_202001216
crossref_primary_10_1016_j_cej_2022_137324
crossref_primary_10_1016_j_jallcom_2019_01_125
crossref_primary_10_3390_batteries5030056
crossref_primary_10_3390_coatings12111774
crossref_primary_10_1007_s11705_024_2435_z
crossref_primary_10_1149_1945_7111_ad13fa
crossref_primary_10_1016_j_mtener_2021_100756
crossref_primary_10_1021_acs_inorgchem_3c01579
crossref_primary_10_1016_j_cej_2021_130778
crossref_primary_10_1021_acs_nanolett_8b04006
crossref_primary_10_1016_j_ensm_2024_103920
crossref_primary_10_1002_smll_201805381
crossref_primary_10_1007_s11581_020_03635_0
crossref_primary_10_1021_acsenergylett_8b01426
crossref_primary_10_1039_D0DT03459B
crossref_primary_10_1021_acs_jpclett_0c01035
crossref_primary_10_1007_s10854_020_04381_9
crossref_primary_10_1021_acsami_9b00116
crossref_primary_10_1002_smll_201900233
crossref_primary_10_1039_C8SC04350G
crossref_primary_10_1016_j_carbon_2025_120022
crossref_primary_10_1016_j_ensm_2023_01_047
crossref_primary_10_1007_s12274_020_2969_4
crossref_primary_10_1021_acsami_9b12214
crossref_primary_10_3390_surfaces3010001
crossref_primary_10_1007_s12274_020_2848_z
crossref_primary_10_1039_D4TA02060J
crossref_primary_10_1002_chem_201704131
crossref_primary_10_1016_j_est_2024_112258
crossref_primary_10_1016_j_cej_2022_136132
crossref_primary_10_1016_j_ensm_2020_04_027
crossref_primary_10_1039_C9TA00869A
crossref_primary_10_1016_j_ensm_2020_10_011
crossref_primary_10_1016_j_jnucmat_2019_01_038
crossref_primary_10_1007_s10008_024_05836_3
crossref_primary_10_1016_j_mtener_2020_100432
crossref_primary_10_1016_j_jallcom_2019_153587
crossref_primary_10_1002_ente_201900079
crossref_primary_10_3390_molecules25041000
crossref_primary_10_1016_j_mtphys_2022_100813
crossref_primary_10_1039_D0CP00772B
crossref_primary_10_3390_electrochem6010006
crossref_primary_10_1039_D2SE00475E
crossref_primary_10_1016_j_cej_2024_157663
crossref_primary_10_1016_j_jpowsour_2020_227739
crossref_primary_10_1016_j_jallcom_2020_156813
crossref_primary_10_1016_j_desal_2021_115514
crossref_primary_10_1007_s12274_023_6164_2
crossref_primary_10_1016_j_cej_2024_155367
crossref_primary_10_1002_ange_202003275
crossref_primary_10_1007_s11581_020_03538_0
crossref_primary_10_1038_s41467_024_54998_1
crossref_primary_10_1016_j_jelechem_2019_05_062
crossref_primary_10_1002_adfm_202002624
crossref_primary_10_1016_j_jcis_2024_09_152
crossref_primary_10_1002_ejic_202001159
crossref_primary_10_1021_acs_jpcc_0c11164
Cites_doi 10.1016/j.ensm.2016.04.003
10.1002/aenm.201502185
10.1016/j.electacta.2016.03.007
10.11648/j.ajpc.20140305.12
10.1016/j.elecom.2013.05.025
10.1002/chem.201402511
10.1149/2.0021503eel
10.1038/ncomms3922
10.1016/j.jallcom.2016.02.223
10.1007/s10853-011-5302-5
10.1016/0025-5408(85)90164-3
10.1016/S0167-2738(02)00134-0
10.1002/adma.200902550
10.1039/C3RA47878E
10.1016/S0167-2738(00)00618-4
10.1149/2.0011505jss
10.1002/adma.200901079
10.1002/anie.200702505
10.1039/C3TA14310D
10.1002/adma.201400794
10.1002/anie.201205569
10.1002/anie.201308354
10.1002/cssc.201500192
10.1038/nmat4170
10.1002/adfm.201400173
10.1039/C3TA13976J
10.1039/C5RA08321D
10.1016/S1452-3981(23)11280-6
10.1002/anie.201606508
10.1021/nl400998t
10.1002/smll.201301931
10.1016/0167-2738(86)90201-8
10.1039/C4DT01223B
10.1016/j.jpowsour.2006.04.028
10.1002/aenm.201200026
10.1039/C5DT00971E
10.1039/C5CP05323D
10.1039/c2ee22258b
10.1021/nn3034309
10.1016/j.ssi.2011.02.013
10.1039/C3EE42944J
10.1021/ja3091438
10.1149/2.0711514jes
10.1002/adma.201305522
10.1039/C4RA15655B
10.1016/j.elecom.2012.05.017
10.1021/cr3001862
10.1039/C4CP01821D
10.1021/acsami.5b11003
10.1021/cm991138n
10.1002/anie.201411788
10.1039/C4CP04649H
10.1021/am4023994
10.1002/adfm.201300318
10.20964/110483
10.1039/c2ee02781j
10.1016/j.nanoen.2015.12.005
10.1021/ja407552k
10.1016/j.jpowsour.2009.11.048
10.1002/adfm.201200691
10.1021/nn405014d
10.1149/1.2388240
10.1016/j.jcis.2016.04.021
10.1021/acsami.5b09835
10.1007/s11581-008-0236-x
10.1016/j.carbon.2012.05.040
10.1039/c2jm34451c
10.1038/ncomms7929
10.1039/C4NR07054B
10.1016/j.nanoen.2014.12.032
10.1021/nl500548a
10.1149/2.0081409jes
10.1016/j.solidstatesciences.2006.05.009
10.1002/aenm.201200558
10.1038/am.2016.53
10.1038/srep09817
10.1016/j.ensm.2016.03.001
10.1039/C5RA21235A
10.1002/chem.201502583
10.1038/nmat2920
10.1021/cs200652y
10.1039/c1ee01598b
10.1016/j.ensm.2016.07.001
10.1039/C4TA00106K
10.1038/nnano.2015.194
10.1016/j.jpowsour.2016.06.066
10.1021/acsami.6b11372
10.1007/s10450-010-9235-0
10.1021/cm020348o
10.1021/acsami.6b03410
10.1021/cm020479p
10.1039/C5TA05939A
10.1149/1.1391556
10.1039/C5CC01504A
10.1039/c1ee01782a
10.1002/adma.201502864
10.1142/9789814434294_0011
10.1149/2.015209jes
10.1002/cssc.201500149
10.1038/nmat3105
10.1021/jp411382r
10.1016/j.elecom.2013.02.020
10.1149/1.3611434
10.1016/j.ssi.2015.02.021
10.1021/nn4025674
10.1021/acsnano.5b02787
10.1002/asia.201400018
10.1016/j.nanoen.2015.02.022
10.1016/j.jpowsour.2010.07.062
10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
10.1002/adma.201100904
10.1038/srep32330
10.1038/ncomms11722
10.1021/nl403053v
10.1039/C6TA02218A
10.1038/nmat3309
10.1021/jz2012066
10.1016/0022-4596(83)90236-0
10.1039/C6RA06533C
10.1126/science.1167130
10.1002/anie.201107817
10.1016/0167-2738(83)90095-4
10.1039/C2NR32758A
10.1021/ja204321y
10.1038/ncomms9668
10.1002/adfm.201002527
10.1039/C5TA03141A
10.1016/0022-4596(90)90272-Y
10.1021/nn4063598
10.1021/ja311044t
10.1016/j.jpowsour.2012.10.034
10.1016/S0167-2738(00)00677-9
10.1002/aenm.201502197
10.1016/j.nanoen.2016.04.021
10.1038/ncomms5033
10.1149/1.2068978
10.1038/ncomms10308
10.1002/adfm.201404078
10.1039/C4NJ01731E
10.1149/1.1836486
10.1111/j.1151-2916.1993.tb03743.x
10.1021/acs.chemmater.6b01806
10.1021/am503365k
10.1002/adma.201505943
10.1038/451652a
10.1016/0025-5408(76)90077-5
10.1002/chem.201102410
10.1021/nl3016957
10.1039/c2cp44467d
10.1016/j.jpowsour.2013.09.051
10.1039/c3nr05329f
10.1016/j.jallcom.2015.05.170
10.1039/C5CC01963J
10.1002/adma.201100984
10.1038/srep14564
10.1039/c4ta00230j
10.1016/j.ssi.2015.06.026
10.1002/aenm.201402104
10.1016/j.electacta.2014.09.068
10.1016/j.elecom.2012.07.023
10.1016/j.jpowsour.2014.01.025
10.1039/C5RA05161D
10.1126/science.1122152
10.1021/acs.chemmater.5b02471
10.1021/cm403728w
10.1038/ncomms7544
10.1016/j.jpowsour.2013.02.090
10.1016/j.jpowsour.2012.05.051
10.1039/C5TA03519H
10.1039/C3NR06452B
10.1002/chem.201403126
10.1039/C3NR05374A
10.1016/j.elecom.2011.11.009
10.3762/bjnano.5.37
10.1149/2.0161614jes
10.1016/j.elecom.2011.09.020
10.1007/s10008-013-2342-6
10.1016/0025-5408(76)90073-8
10.1016/0021-9614(86)90075-3
10.1039/c2jm33862a
10.1149/05812.0033ecst
10.1021/acscentsci.5b00329
10.1021/nl404165c
10.1016/j.elecom.2013.01.001
10.1103/PhysRevLett.116.126805
10.1149/2.018305jes
10.1002/aenm.201400982
10.1016/j.electacta.2016.05.099
10.1021/nn2006249
10.1016/j.jpowsour.2016.07.089
10.1039/c0jm00782j
10.1039/C5RA06336A
10.1039/C3NR06730K
10.1039/C5TA08869K
10.1016/j.electacta.2013.01.057
10.1002/smll.201401521
10.1007/s12274-016-1077-y
10.1002/cphc.201400088
10.1016/j.nanoen.2016.03.018
10.1039/b820555h
10.1016/j.carbon.2011.05.043
10.1002/anie.201503188
10.1021/acs.chemmater.5b00361
10.1039/C5CC00944H
10.1039/C4TA04732J
10.1039/c3ee40847g
10.1039/c3ta11045a
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201700431
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 28626908
10_1002_adma_201700431
ADMA201700431
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: WK3430000004
– fundername: National Natural Science Foundation of China
  funderid: 51622210; 21373195
– fundername: National Key Research Program of China
  funderid: 2016YFB0100305
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4781-8c7585d98f8431a245c34c1d2f1e5e42dbe20f306fa37e81bd015c6e147dfc003
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 03:47:48 EDT 2025
Mon Jul 14 10:17:58 EDT 2025
Mon Jul 21 05:42:01 EDT 2025
Tue Jul 01 00:44:34 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Wed Jan 22 16:24:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords NASICON-type materials
electrode materials
sodium-ion batteries
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4781-8c7585d98f8431a245c34c1d2f1e5e42dbe20f306fa37e81bd015c6e147dfc003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3685-7773
PMID 28626908
PQID 1978281860
PQPubID 2045203
PageCount 21
ParticipantIDs proquest_miscellaneous_1911202169
proquest_journals_1978281860
pubmed_primary_28626908
crossref_citationtrail_10_1002_adma_201700431
crossref_primary_10_1002_adma_201700431
wiley_primary_10_1002_adma_201700431_ADMA201700431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Dec
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 14
2013; 3
2010; 16
2013; 4
2013; 1
2013; 244
2014; 26
1983; 9
2014; 24
2000; 131
2012; 18
1996; 143
2000; 133
2013; 7
2011; 196
2012; 14
2013; 5
2012; 12
2013; 6
2012; 11
2014; 20
2014; 256
2010; 22
2010; 20
2000; 12
2013; 52
2014; 16
2016; 674
2014; 15
2014; 14
1985
2002; 148
2013; 113
2010; 195
2014; 18
1998; 10
2012; 23
2012; 22
2012; 21
2009; 15
2014; 247
1989
2014; 10
2011; 2
2015; 51
2016; 327
2015; 54
2013; 227
1986; 18
2013; 92
2016; 325
2015; 646
2011; 4
2007; 10
2011; 5
2011; 133
2016; 163
2014; 43
2016; 11
2016; 4
2012; 50
2016; 5
2016; 6
2016; 7
1986; 21
2008; 47
1992; 139
2016; 20
2016; 210
2016; 28
2016; 8
2016; 25
2016; 24
2016; 9
2014; 146
2013; 29
2011; 158
2015; 39
2013; 23
2003; 15
2011; 10
2011; 13
1983; 50
2013; 160
2007; 37
2012; 51
2014; 5
2013; 15
1990; 89
2014; 4
2014; 3
2014; 2
2013; 13
1993; 76
2015; 44
2014; 58
2016; 474
2011; 21
2014; 161
2011; 23
2016; 116
2014; 9
2014; 8
2014; 7
2014; 6
2012; 216
2009; 323
2016; 196
2014; 53
2014; 118
2015; 162
2015; 13
2015; 1
2015; 12
2015; 14
2015; 6
2015; 17
2015; 5
2009; 21
2015; 4
2015; 3
2015; 11
2015; 10
2006; 8
2005
1999; 146
2015; 9
2006; 159
2015; 8
2015; 7
2006; 311
2016; 55
2015; 25
2012; 2
2015; 27
1976; 11
2013; 34
2015; 278
2013; 31
2015; 274
2015; 21
2013; 135
2017
2016
2011; 46
2014
2012; 159
2011; 49
2008; 451
2012; 5
2009; 38
2011; 187
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_1
e_1_2_6_91_1
e_1_2_6_152_1
e_1_2_6_175_1
e_1_2_6_198_1
e_1_2_6_212_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_163_1
e_1_2_6_140_1
e_1_2_6_102_1
e_1_2_6_186_1
e_1_2_6_200_1
e_1_2_6_5_1
e_1_2_6_208_1
e_1_2_6_49_1
e_1_2_6_26_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_159_1
e_1_2_6_31_1
e_1_2_6_174_1
e_1_2_6_151_1
e_1_2_6_113_1
e_1_2_6_197_1
e_1_2_6_211_1
Nguyen V. T. (e_1_2_6_185_1) 2015; 10
e_1_2_6_219_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_162_1
e_1_2_6_101_1
e_1_2_6_124_1
Ming‐sen Z. (e_1_2_6_92_1) 2007; 37
e_1_2_6_6_1
e_1_2_6_207_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_158_1
e_1_2_6_150_1
e_1_2_6_173_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_196_1
e_1_2_6_210_1
Raccichini R. (e_1_2_6_144_1) 2016
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_218_1
Wu C. (e_1_2_6_20_1) 2016
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_169_1
e_1_2_6_108_1
Kühne M. (e_1_2_6_103_1) 2017
e_1_2_6_161_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_184_1
e_1_2_6_123_1
e_1_2_6_221_1
e_1_2_6_24_1
e_1_2_6_206_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_119_1
e_1_2_6_90_1
e_1_2_6_172_1
e_1_2_6_111_1
e_1_2_6_157_1
e_1_2_6_195_1
e_1_2_6_134_1
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_217_1
e_1_2_6_37_1
e_1_2_6_63_1
Chen S. (e_1_2_6_148_1) 2014
e_1_2_6_86_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_168_1
e_1_2_6_183_1
Chen S. (e_1_2_6_11_1) 2017
e_1_2_6_220_1
e_1_2_6_171_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_205_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_72_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
e_1_2_6_179_1
e_1_2_6_194_1
e_1_2_6_19_1
e_1_2_6_182_1
e_1_2_6_34_1
Sun W. (e_1_2_6_3_1) 2014
e_1_2_6_216_1
e_1_2_6_57_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_167_1
e_1_2_6_9_1
e_1_2_6_193_1
e_1_2_6_170_1
e_1_2_6_1_1
e_1_2_6_22_1
e_1_2_6_204_1
e_1_2_6_45_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_50_1
e_1_2_6_132_1
e_1_2_6_178_1
e_1_2_6_155_1
e_1_2_6_181_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_215_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_189_1
e_1_2_6_143_1
e_1_2_6_166_1
e_1_2_6_192_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_203_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_154_1
e_1_2_6_177_1
e_1_2_6_180_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_214_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_142_1
e_1_2_6_188_1
e_1_2_6_165_1
e_1_2_6_191_1
e_1_2_6_7_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_202_1
e_1_2_6_115_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_153_1
e_1_2_6_199_1
e_1_2_6_130_1
e_1_2_6_176_1
e_1_2_6_33_1
e_1_2_6_18_1
Jian Z. (e_1_2_6_41_1) 2017
e_1_2_6_56_1
e_1_2_6_79_1
e_1_2_6_213_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_21_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_164_1
e_1_2_6_187_1
e_1_2_6_190_1
e_1_2_6_8_1
e_1_2_6_201_1
e_1_2_6_209_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 8
  start-page: 2238
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20
  start-page: 11980
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 44
  start-page: 7881
  year: 2015
  publication-title: Dalton Trans.
– volume: 51
  start-page: 3591
  year: 2012
  publication-title: Angew. Chem. Int Ed.
– volume: 14
  start-page: 271
  year: 2015
  publication-title: Nat Mater
– volume: 163
  start-page: A2835
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 9382
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 133
  start-page: 11900
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 5
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 10
  start-page: 649
  year: 2011
  publication-title: Nat. Mater.
– volume: 27
  start-page: 6670
  year: 2015
  publication-title: Adv. Mater.
– volume: 14
  start-page: 2175
  year: 2014
  publication-title: Nano Lett.
– volume: 5
  start-page: 48928
  year: 2015
  publication-title: RSC Adv.
– volume: 6
  start-page: 2338
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 6668
  year: 2015
  publication-title: Chem. Mater.
– volume: 6
  start-page: 8668
  year: 2015
  publication-title: Nat. Commun.
– volume: 49
  start-page: 4013
  year: 2011
  publication-title: Carbon
– volume: 327
  start-page: 580
  year: 2016
  publication-title: J. Power Sources
– volume: 29
  start-page: 8
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 16
  start-page: 17681
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 54
  start-page: 9911
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 311
  start-page: 977
  year: 2006
  publication-title: Science
– volume: 5
  start-page: 5884
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 18
  start-page: 959
  year: 2014
  publication-title: J. Solid State Electrochem.
– volume: 674
  start-page: 392
  year: 2016
  publication-title: J. Alloy. Compd.
– volume: 8
  start-page: e266
  year: 2016
  publication-title: NPG Asia Mater.
– volume: 187
  start-page: 58
  year: 2011
  publication-title: Solid State Ionics
– volume: 2
  start-page: 5358
  year: 2014
  publication-title: J. Mater. Chem. A
– year: 2014
  publication-title: Nanoscale
– volume: 3
  start-page: 21478
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 2821
  year: 2011
  publication-title: J. Mater. Sci.
– volume: 143
  start-page: 600
  year: 1996
  publication-title: J. Electrochem. Soc.
– start-page: 1
  year: 2017
  publication-title: ARXIV
– volume: 9
  start-page: 1844
  year: 2016
  publication-title: Nano Res.
– volume: 135
  start-page: 16002
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 40065
  year: 2015
  publication-title: RSC Adv.
– volume: 5
  start-page: 8273
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 11218
  year: 2013
  publication-title: ACS Nano
– volume: 3
  start-page: 15190
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 10308
  year: 2016
  publication-title: Nat. Commun.
– volume: 25
  start-page: 145
  year: 2016
  publication-title: Nano Energy
– volume: 16
  start-page: 413
  year: 2010
  publication-title: Adsorption
– volume: 4
  start-page: M25
  year: 2015
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 1
  start-page: 516
  year: 2015
  publication-title: ACS Cent. Sci.
– volume: 22
  start-page: 20857
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 23
  start-page: 3155
  year: 2011
  publication-title: Adv. Mater.
– volume: 159
  start-page: 249
  year: 2006
  publication-title: J. Power Sources
– volume: 12
  start-page: 525
  year: 2000
  publication-title: Chem. Mater.
– volume: 5
  start-page: 53129
  year: 2015
  publication-title: RSC Adv.
– volume: 17
  start-page: 30433
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 710
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 11
  year: 2016
  publication-title: Nano Energy
– volume: 6
  start-page: 5081
  year: 2014
  publication-title: Nanoscale
– volume: 5
  start-page: 8572
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 7
  start-page: 3164
  year: 2015
  publication-title: Nanoscale
– volume: 10
  start-page: 725
  year: 1998
  publication-title: Adv. Mater.
– volume: 21
  start-page: 3464
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 135
  start-page: 3897
  year: 2013
  publication-title: J. Am. Chem. Soc.
– year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 2409
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: 20659
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 3680
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 2513
  year: 2014
  publication-title: Chem. Mater.
– volume: 4
  start-page: 130
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 19
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 71
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 51
  start-page: 13086
  year: 2015
  publication-title: Chem. Commun.
– volume: 43
  start-page: 14931
  year: 2014
  publication-title: Dalton Trans.
– volume: 4
  start-page: 7155
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 301
  year: 2009
  publication-title: Ionics
– volume: 18
  start-page: 6225
  year: 2012
  publication-title: Chem. Eur. J.
– year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4492
  year: 2016
  publication-title: Chem. Mater.
– volume: 5
  start-page: 180
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 1215
  year: 2006
  publication-title: Solid State Sci
– volume: 7
  start-page: 323
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 106519
  year: 2015
  publication-title: RSC Adv.
– volume: 12
  start-page: 3783
  year: 2012
  publication-title: Nano Lett.
– volume: 323
  start-page: 610
  year: 2009
  publication-title: Science
– volume: 89
  start-page: 308
  year: 1990
  publication-title: J. Solid State Chem.
– volume: 161
  start-page: A1181
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 210
  start-page: 45
  year: 2016
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 156
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 146
  start-page: 8
  year: 1999
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 2948
  year: 2015
  publication-title: ChemSusChem
– volume: 11
  start-page: 512
  year: 2012
  publication-title: Nat. Mater.
– volume: 160
  start-page: A3131
  year: 2013
  publication-title: J Electrochem Soc
– volume: 6
  start-page: 6929
  year: 2015
  publication-title: Nat. Commun.
– volume: 474
  start-page: 88
  year: 2016
  publication-title: J. Colloid Interf. Sci.
– volume: 247
  start-page: 975
  year: 2014
  publication-title: J. Power Sources
– volume: 14
  start-page: 86
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 1502197
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 118
  start-page: 2970
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 21
  start-page: 65
  year: 2012
  publication-title: Electrochem Commun
– volume: 50
  start-page: 4557
  year: 2012
  publication-title: Carbon
– volume: 9
  start-page: 1611
  year: 2014
  publication-title: Chem. — Asian J.
– volume: 6
  start-page: 32330
  year: 2016
  publication-title: Sci. Rep.
– volume: 6
  start-page: 6544
  year: 2015
  publication-title: Nat. Commun.
– volume: 113
  start-page: 6552
  year: 2013
  publication-title: Chem. Rev.
– volume: 646
  start-page: 170
  year: 2015
  publication-title: J. Alloy. Compd.
– volume: 7
  start-page: 6378
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 3243
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 45605
  year: 2016
  publication-title: RSC Adv.
– volume: 23
  start-page: 5326
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 947
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: A29
  year: 2015
  publication-title: ECS Electrochem. Lett.
– volume: 13
  start-page: 3093
  year: 2013
  publication-title: Nano Lett.
– volume: 11
  start-page: 203
  year: 1976
  publication-title: Mater. Res. Bull.
– volume: 5
  start-page: 5463
  year: 2011
  publication-title: ACS Nano
– volume: 4
  start-page: 2922
  year: 2013
  publication-title: Nat. Commun.
– volume: 9
  start-page: 823
  year: 1983
  publication-title: Solid State Ionics
– year: 2014
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 2565
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 3009
  year: 2015
  publication-title: Chem. Mater.
– volume: 8
  start-page: 31709
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 6328
  year: 2014
  publication-title: Nanoscale
– start-page: 242
  year: 1989
– volume: 24
  start-page: 4265
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3815
  year: 2016
  publication-title: Int. J. Electrochem. Sci.
– volume: 13
  start-page: 208
  year: 2015
  publication-title: Nano Energy
– volume: 6
  start-page: 1502185
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 91
  year: 1983
  publication-title: J. Solid State Chem.
– volume: 8
  start-page: 1867
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 274
  start-page: 24
  year: 2015
  publication-title: Solid State Ionics
– volume: 7
  start-page: 11722
  year: 2016
  publication-title: Nat. Commun.
– volume: 116
  start-page: 126805
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 8668
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 2084
  year: 2003
  publication-title: Chem. Mater.
– volume: 2
  start-page: 2050
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 196
  start-page: 814
  year: 2011
  publication-title: J. Power Sources
– volume: 159
  start-page: A1393
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 16386
  year: 2015
  publication-title: RSC Adv.
– start-page: 1461
  year: 1985
  publication-title: Mater. Res. Bull.
– volume: 10
  start-page: A13
  year: 2007
  publication-title: Electrochem. Solid‐State Lett.
– volume: 8
  start-page: 4415
  year: 2014
  publication-title: ACS Nano
– volume: 4
  start-page: 1180
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 12768
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 833
  year: 2010
  publication-title: Adv. Mater.
– volume: 10
  start-page: 74
  year: 2011
  publication-title: Nat. Mater.
– volume: 11
  start-page: 473
  year: 2015
  publication-title: Small
– volume: 20
  start-page: 7491
  year: 2010
  publication-title: J. Mater.Chem.
– volume: 278
  start-page: 281
  year: 2015
  publication-title: Solid State Ionics
– volume: 76
  start-page: 1212
  year: 1993
  publication-title: J. Am. Ceram. Soc.
– volume: 10
  start-page: 980
  year: 2015
  publication-title: Nat. Nano
– volume: 9
  start-page: 1611
  year: 2014
  publication-title: Chem. Asian J.
– volume: 216
  start-page: 22
  year: 2012
  publication-title: J. Power Sources
– volume: 325
  start-page: 474
  year: 2016
  publication-title: J. Power Sources
– volume: 14
  start-page: 4684
  year: 2002
  publication-title: Chem. Mater.
– volume: 3
  start-page: 61
  year: 2014
  publication-title: Am. J. Phys. Chem.
– volume: 8
  start-page: 1856
  year: 2015
  publication-title: ChemSusChem
– volume: 21
  start-page: 97
  year: 1986
  publication-title: Solid State Ionics
– volume: 20
  start-page: 12636
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 3
  start-page: 21805
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 2152
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 3545
  year: 2014
  publication-title: Adv. Mater.
– volume: 13
  start-page: 5480
  year: 2013
  publication-title: Nano Lett.
– volume: 5
  start-page: 780
  year: 2013
  publication-title: Nanoscale
– volume: 24
  start-page: 130
  year: 2016
  publication-title: Nano Energy
– volume: 92
  start-page: 427
  year: 2013
  publication-title: Electrochim Acta
– volume: 23
  start-page: 4828
  year: 2011
  publication-title: Adv. Mater.
– volume: 34
  start-page: 41
  year: 2013
  publication-title: Electrochem Commun
– volume: 148
  start-page: 45
  year: 2002
  publication-title: Solid State Ionics
– volume: 146
  start-page: 142
  year: 2014
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 1341
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1384
  year: 2014
  publication-title: Nanoscale
– volume: 244
  start-page: 758
  year: 2013
  publication-title: J. Power Sources
– volume: 2
  start-page: 781
  year: 2012
  publication-title: ACS Catal.
– volume: 8
  start-page: 15341
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 309
  year: 1986
  publication-title: J. Chem. Thermodyn.
– volume: 133
  start-page: 303
  year: 2000
  publication-title: Solid State Ionics
– volume: 195
  start-page: 2419
  year: 2010
  publication-title: J Power Sources
– volume: 15
  start-page: 3304
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 116
  start-page: 126805
  year: 2016
  publication-title: Phy. Rev. Lett.
– volume: 10
  start-page: 4042
  year: 2014
  publication-title: Small
– volume: 39
  start-page: 1910
  year: 2015
  publication-title: New J. Chem.
– volume: 15
  start-page: 2152
  year: 2014
  publication-title: ChemPhysChem
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– start-page: 300
  year: 2005
– volume: 256
  start-page: 258
  year: 2014
  publication-title: J. Power Sources
– volume: 51
  start-page: 7160
  year: 2015
  publication-title: Chem. Commun.
– volume: 21
  start-page: 2664
  year: 2009
  publication-title: Adv. Mater.
– volume: 51
  start-page: 6381
  year: 2015
  publication-title: Chem. Commun.
– volume: 131
  start-page: 13
  year: 2000
  publication-title: Solid State Ionics
– volume: 17
  start-page: 159
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 196
  start-page: 470
  year: 2016
  publication-title: Electrochim Acta
– volume: 23
  start-page: 145
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 52
  start-page: 4998
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 1393
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 162
  start-page: A2723
  year: 2015
  publication-title: J Electrochem. Soc.
– volume: 5
  start-page: 329
  year: 2014
  publication-title: Beilstein J. Nanotechnol.
– volume: 5
  start-page: 14564
  year: 2015
  publication-title: Sci. Rep.
– volume: 10
  start-page: 10565
  year: 2015
  publication-title: Int. J. Electrochem. Sci.
– volume: 22
  start-page: 20535
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 26
  start-page: 4037
  year: 2014
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1462
  year: 2011
  publication-title: Electrochem. Commun.
– volume: 12
  start-page: 224
  year: 2015
  publication-title: Nano Energy
– volume: 5
  start-page: 1402104
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 9817
  year: 2015
  publication-title: Sci. Rep.
– volume: 11
  start-page: 173
  year: 1976
  publication-title: Mater. Res. Bull.
– volume: 5
  start-page: 4033
  year: 2014
  publication-title: Nat. Commun.
– volume: 47
  start-page: 2930
  year: 2008
  publication-title: Angew Chem Int Edit
– volume: 5
  start-page: 1400982
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 3217
  year: 2014
  publication-title: Nanoscale
– volume: 37
  start-page: 199
  year: 2007
  publication-title: Battery Bimonthly
– volume: 227
  start-page: 80
  year: 2013
  publication-title: J. Power Sources
– volume: 2
  start-page: 2560
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 139
  start-page: 2776
  year: 1992
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 11375
  year: 2014
  publication-title: RSC Adv.
– volume: 58
  start-page: 33
  year: 2014
  publication-title: ECS Trans.
– volume: 14
  start-page: 1255
  year: 2014
  publication-title: Nano Lett.
– volume: 158
  start-page: A1067
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 21
  start-page: 17371
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 54
  start-page: 5894
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 15860
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 6610
  year: 2015
  publication-title: ACS Nano
– ident: e_1_2_6_76_1
– ident: e_1_2_6_52_1
  doi: 10.1016/j.ensm.2016.04.003
– ident: e_1_2_6_181_1
  doi: 10.1002/aenm.201502185
– ident: e_1_2_6_218_1
  doi: 10.1016/j.electacta.2016.03.007
– ident: e_1_2_6_36_1
  doi: 10.11648/j.ajpc.20140305.12
– ident: e_1_2_6_45_1
  doi: 10.1016/j.elecom.2013.05.025
– ident: e_1_2_6_203_1
  doi: 10.1002/chem.201402511
– ident: e_1_2_6_198_1
  doi: 10.1149/2.0021503eel
– ident: e_1_2_6_17_1
  doi: 10.1038/ncomms3922
– ident: e_1_2_6_195_1
  doi: 10.1016/j.jallcom.2016.02.223
– ident: e_1_2_6_78_1
  doi: 10.1007/s10853-011-5302-5
– ident: e_1_2_6_87_1
  doi: 10.1016/0025-5408(85)90164-3
– ident: e_1_2_6_100_1
  doi: 10.1016/S0167-2738(02)00134-0
– ident: e_1_2_6_146_1
  doi: 10.1002/adma.200902550
– ident: e_1_2_6_172_1
  doi: 10.1039/C3RA47878E
– ident: e_1_2_6_91_1
  doi: 10.1016/S0167-2738(00)00618-4
– ident: e_1_2_6_197_1
  doi: 10.1149/2.0011505jss
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.200901079
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.200702505
– year: 2016
  ident: e_1_2_6_20_1
  publication-title: Adv. Mater.
– ident: e_1_2_6_211_1
  doi: 10.1039/C3TA14310D
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.201400794
– ident: e_1_2_6_93_1
  doi: 10.1002/anie.201205569
– ident: e_1_2_6_21_1
  doi: 10.1002/anie.201308354
– ident: e_1_2_6_50_1
  doi: 10.1002/cssc.201500192
– ident: e_1_2_6_143_1
  doi: 10.1038/nmat4170
– ident: e_1_2_6_118_1
  doi: 10.1002/adfm.201400173
– ident: e_1_2_6_68_1
  doi: 10.1039/C3TA13976J
– ident: e_1_2_6_77_1
  doi: 10.1039/C5RA08321D
– volume: 10
  start-page: 10565
  year: 2015
  ident: e_1_2_6_185_1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)11280-6
– ident: e_1_2_6_219_1
  doi: 10.1002/anie.201606508
– ident: e_1_2_6_48_1
  doi: 10.1021/nl400998t
– ident: e_1_2_6_141_1
  doi: 10.1002/smll.201301931
– ident: e_1_2_6_85_1
  doi: 10.1016/0167-2738(86)90201-8
– ident: e_1_2_6_162_1
  doi: 10.1039/C4DT01223B
– ident: e_1_2_6_72_1
  doi: 10.1016/j.jpowsour.2006.04.028
– ident: e_1_2_6_24_1
  doi: 10.1002/aenm.201200026
– ident: e_1_2_6_187_1
  doi: 10.1039/C5DT00971E
– ident: e_1_2_6_117_1
  doi: 10.1039/C5CP05323D
– ident: e_1_2_6_23_1
  doi: 10.1039/c2ee22258b
– ident: e_1_2_6_166_1
  doi: 10.1021/nn3034309
– ident: e_1_2_6_104_1
  doi: 10.1016/j.ssi.2011.02.013
– ident: e_1_2_6_67_1
  doi: 10.1039/C3EE42944J
– ident: e_1_2_6_8_1
  doi: 10.1021/ja3091438
– ident: e_1_2_6_182_1
  doi: 10.1149/2.0711514jes
– ident: e_1_2_6_137_1
  doi: 10.1002/adma.201305522
– ident: e_1_2_6_196_1
  doi: 10.1039/C4RA15655B
– ident: e_1_2_6_42_1
  doi: 10.1016/j.elecom.2012.05.017
– start-page: 1
  year: 2017
  ident: e_1_2_6_103_1
  publication-title: ARXIV
– ident: e_1_2_6_33_1
  doi: 10.1021/cr3001862
– ident: e_1_2_6_119_1
  doi: 10.1039/C4CP01821D
– ident: e_1_2_6_112_1
  doi: 10.1021/acsami.5b11003
– ident: e_1_2_6_193_1
  doi: 10.1021/cm991138n
– ident: e_1_2_6_26_1
  doi: 10.1002/anie.201411788
– ident: e_1_2_6_178_1
  doi: 10.1039/C4CP04649H
– ident: e_1_2_6_47_1
  doi: 10.1021/am4023994
– ident: e_1_2_6_142_1
  doi: 10.1002/adfm.201300318
– ident: e_1_2_6_171_1
  doi: 10.20964/110483
– ident: e_1_2_6_31_1
  doi: 10.1039/c2ee02781j
– ident: e_1_2_6_126_1
  doi: 10.1016/j.nanoen.2015.12.005
– ident: e_1_2_6_161_1
  doi: 10.1021/ja407552k
– ident: e_1_2_6_6_1
  doi: 10.1016/j.jpowsour.2009.11.048
– ident: e_1_2_6_13_1
  doi: 10.1002/adfm.201200691
– ident: e_1_2_6_25_1
  doi: 10.1021/nn405014d
– ident: e_1_2_6_99_1
  doi: 10.1149/1.2388240
– ident: e_1_2_6_216_1
  doi: 10.1016/j.jcis.2016.04.021
– ident: e_1_2_6_105_1
  doi: 10.1021/acsami.5b09835
– ident: e_1_2_6_9_1
  doi: 10.1007/s11581-008-0236-x
– ident: e_1_2_6_139_1
  doi: 10.1016/j.carbon.2012.05.040
– ident: e_1_2_6_134_1
  doi: 10.1039/c2jm34451c
– ident: e_1_2_6_64_1
  doi: 10.1038/ncomms7929
– ident: e_1_2_6_152_1
  doi: 10.1039/C4NR07054B
– ident: e_1_2_6_73_1
  doi: 10.1016/j.nanoen.2014.12.032
– ident: e_1_2_6_123_1
  doi: 10.1021/nl500548a
– ident: e_1_2_6_71_1
  doi: 10.1149/2.0081409jes
– ident: e_1_2_6_186_1
  doi: 10.1016/j.solidstatesciences.2006.05.009
– ident: e_1_2_6_120_1
  doi: 10.1002/aenm.201200558
– ident: e_1_2_6_98_1
  doi: 10.1038/am.2016.53
– ident: e_1_2_6_167_1
  doi: 10.1038/srep09817
– ident: e_1_2_6_30_1
  doi: 10.1016/j.ensm.2016.03.001
– ident: e_1_2_6_180_1
  doi: 10.1039/C5RA21235A
– ident: e_1_2_6_154_1
  doi: 10.1002/chem.201502583
– ident: e_1_2_6_27_1
  doi: 10.1038/nmat2920
– ident: e_1_2_6_155_1
  doi: 10.1021/cs200652y
– ident: e_1_2_6_4_1
  doi: 10.1039/c1ee01598b
– ident: e_1_2_6_200_1
  doi: 10.1016/j.ensm.2016.07.001
– ident: e_1_2_6_131_1
  doi: 10.1039/C4TA00106K
– ident: e_1_2_6_53_1
  doi: 10.1038/nnano.2015.194
– ident: e_1_2_6_215_1
  doi: 10.1016/j.jpowsour.2016.06.066
– ident: e_1_2_6_177_1
  doi: 10.1021/acsami.6b11372
– ident: e_1_2_6_164_1
  doi: 10.1007/s10450-010-9235-0
– ident: e_1_2_6_19_1
  doi: 10.1021/cm020348o
– ident: e_1_2_6_129_1
  doi: 10.1021/acsami.6b03410
– ident: e_1_2_6_79_1
  doi: 10.1021/cm020479p
– ident: e_1_2_6_184_1
  doi: 10.1039/C5TA05939A
– ident: e_1_2_6_102_1
  doi: 10.1149/1.1391556
– ident: e_1_2_6_192_1
  doi: 10.1039/C5CC01504A
– ident: e_1_2_6_18_1
  doi: 10.1039/c1ee01782a
– ident: e_1_2_6_145_1
  doi: 10.1002/adma.201502864
– ident: e_1_2_6_89_1
  doi: 10.1142/9789814434294_0011
– ident: e_1_2_6_95_1
– ident: e_1_2_6_116_1
  doi: 10.1149/2.015209jes
– volume: 37
  start-page: 199
  year: 2007
  ident: e_1_2_6_92_1
  publication-title: Battery Bimonthly
– ident: e_1_2_6_56_1
  doi: 10.1002/cssc.201500149
– ident: e_1_2_6_220_1
  doi: 10.1038/nmat3105
– ident: e_1_2_6_28_1
  doi: 10.1021/jp411382r
– ident: e_1_2_6_204_1
  doi: 10.1016/j.elecom.2013.02.020
– ident: e_1_2_6_207_1
  doi: 10.1149/1.3611434
– ident: e_1_2_6_124_1
  doi: 10.1016/j.ssi.2015.02.021
– ident: e_1_2_6_66_1
  doi: 10.1021/nn4025674
– ident: e_1_2_6_69_1
  doi: 10.1021/acsnano.5b02787
– ident: e_1_2_6_15_1
  doi: 10.1002/asia.201400018
– ident: e_1_2_6_202_1
  doi: 10.1016/j.nanoen.2015.02.022
– ident: e_1_2_6_40_1
  doi: 10.1016/j.jpowsour.2010.07.062
– ident: e_1_2_6_74_1
  doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
– ident: e_1_2_6_39_1
  doi: 10.1002/adma.201100904
– ident: e_1_2_6_114_1
  doi: 10.1038/srep32330
– ident: e_1_2_6_55_1
  doi: 10.1038/ncomms11722
– ident: e_1_2_6_54_1
  doi: 10.1021/nl403053v
– ident: e_1_2_6_213_1
  doi: 10.1039/C6TA02218A
– ident: e_1_2_6_22_1
  doi: 10.1038/nmat3309
– ident: e_1_2_6_62_1
  doi: 10.1021/jz2012066
– ident: e_1_2_6_88_1
  doi: 10.1016/0022-4596(83)90236-0
– ident: e_1_2_6_111_1
  doi: 10.1039/C6RA06533C
– ident: e_1_2_6_138_1
  doi: 10.1126/science.1167130
– year: 2017
  ident: e_1_2_6_11_1
  publication-title: Adv. Mater.
– ident: e_1_2_6_149_1
  doi: 10.1002/anie.201107817
– ident: e_1_2_6_86_1
  doi: 10.1016/0167-2738(83)90095-4
– ident: e_1_2_6_97_1
  doi: 10.1039/C2NR32758A
– ident: e_1_2_6_32_1
  doi: 10.1021/ja204321y
– ident: e_1_2_6_157_1
  doi: 10.1038/ncomms9668
– ident: e_1_2_6_115_1
  doi: 10.1002/adfm.201002527
– ident: e_1_2_6_169_1
  doi: 10.1039/C5TA03141A
– ident: e_1_2_6_35_1
  doi: 10.1016/0022-4596(90)90272-Y
– ident: e_1_2_6_44_1
  doi: 10.1021/nn4063598
– ident: e_1_2_6_38_1
  doi: 10.1038/nmat3309
– ident: e_1_2_6_209_1
  doi: 10.1021/ja311044t
– ident: e_1_2_6_175_1
  doi: 10.1016/j.jpowsour.2012.10.034
– ident: e_1_2_6_188_1
  doi: 10.1016/S0167-2738(00)00677-9
– ident: e_1_2_6_208_1
  doi: 10.1002/aenm.201502197
– ident: e_1_2_6_199_1
  doi: 10.1016/j.nanoen.2016.04.021
– ident: e_1_2_6_16_1
  doi: 10.1038/ncomms5033
– ident: e_1_2_6_75_1
  doi: 10.1149/1.2068978
– ident: e_1_2_6_179_1
  doi: 10.1038/ncomms10308
– ident: e_1_2_6_63_1
  doi: 10.1002/adfm.201404078
– ident: e_1_2_6_194_1
  doi: 10.1039/C4NJ01731E
– ident: e_1_2_6_101_1
  doi: 10.1149/1.1836486
– ident: e_1_2_6_94_1
  doi: 10.1111/j.1151-2916.1993.tb03743.x
– ident: e_1_2_6_190_1
  doi: 10.1021/acs.chemmater.6b01806
– year: 2014
  ident: e_1_2_6_3_1
  publication-title: Nanoscale
– ident: e_1_2_6_46_1
  doi: 10.1021/am503365k
– ident: e_1_2_6_81_1
  doi: 10.1002/adma.201505943
– ident: e_1_2_6_2_1
  doi: 10.1038/451652a
– ident: e_1_2_6_84_1
  doi: 10.1016/0025-5408(76)90077-5
– ident: e_1_2_6_160_1
  doi: 10.1002/chem.201102410
– ident: e_1_2_6_49_1
  doi: 10.1021/nl3016957
– ident: e_1_2_6_106_1
  doi: 10.1039/c2cp44467d
– ident: e_1_2_6_206_1
  doi: 10.1016/j.jpowsour.2013.09.051
– ident: e_1_2_6_125_1
  doi: 10.1039/c3nr05329f
– ident: e_1_2_6_130_1
  doi: 10.1016/j.jallcom.2015.05.170
– ident: e_1_2_6_151_1
  doi: 10.1039/C5CC01963J
– ident: e_1_2_6_135_1
  doi: 10.1002/adma.201100984
– ident: e_1_2_6_158_1
  doi: 10.1038/srep14564
– ident: e_1_2_6_82_1
  doi: 10.1039/c4ta00230j
– ident: e_1_2_6_132_1
  doi: 10.1016/j.ssi.2015.06.026
– ident: e_1_2_6_121_1
  doi: 10.1002/aenm.201402104
– ident: e_1_2_6_176_1
  doi: 10.1016/j.electacta.2014.09.068
– ident: e_1_2_6_80_1
  doi: 10.1016/j.elecom.2012.07.023
– ident: e_1_2_6_183_1
  doi: 10.1016/j.jpowsour.2014.01.025
– ident: e_1_2_6_189_1
  doi: 10.1039/C5RA05161D
– ident: e_1_2_6_1_1
  doi: 10.1126/science.1122152
– ident: e_1_2_6_107_1
  doi: 10.1021/acs.chemmater.5b02471
– ident: e_1_2_6_173_1
  doi: 10.1021/cm403728w
– ident: e_1_2_6_61_1
  doi: 10.1038/ncomms7544
– ident: e_1_2_6_96_1
  doi: 10.1016/j.jpowsour.2013.02.090
– ident: e_1_2_6_140_1
  doi: 10.1016/j.jpowsour.2012.05.051
– ident: e_1_2_6_110_1
  doi: 10.1039/C5TA03519H
– ident: e_1_2_6_147_1
  doi: 10.1039/C3NR06452B
– ident: e_1_2_6_133_1
  doi: 10.1002/chem.201403126
– ident: e_1_2_6_12_1
  doi: 10.1039/C3NR05374A
– ident: e_1_2_6_127_1
  doi: 10.1016/j.elecom.2011.11.009
– year: 2014
  ident: e_1_2_6_148_1
  publication-title: J. Mater. Chem. A
– ident: e_1_2_6_168_1
  doi: 10.3762/bjnano.5.37
– ident: e_1_2_6_113_1
  doi: 10.1149/2.0161614jes
– ident: e_1_2_6_59_1
  doi: 10.1016/j.elecom.2011.09.020
– ident: e_1_2_6_109_1
  doi: 10.1007/s10008-013-2342-6
– year: 2017
  ident: e_1_2_6_41_1
  publication-title: Adv. Mater.
– ident: e_1_2_6_83_1
  doi: 10.1016/0025-5408(76)90073-8
– ident: e_1_2_6_90_1
  doi: 10.1016/0021-9614(86)90075-3
– ident: e_1_2_6_170_1
  doi: 10.1039/c2jm33862a
– ident: e_1_2_6_34_1
  doi: 10.1149/05812.0033ecst
– ident: e_1_2_6_51_1
  doi: 10.1021/acscentsci.5b00329
– ident: e_1_2_6_43_1
  doi: 10.1021/nl404165c
– ident: e_1_2_6_60_1
  doi: 10.1016/j.elecom.2013.01.001
– ident: e_1_2_6_57_1
  doi: 10.1039/C4NR07054B
– ident: e_1_2_6_150_1
  doi: 10.1103/PhysRevLett.116.126805
– ident: e_1_2_6_29_1
  doi: 10.1149/2.018305jes
– ident: e_1_2_6_128_1
  doi: 10.1002/aenm.201400982
– ident: e_1_2_6_153_1
  doi: 10.1016/j.electacta.2016.05.099
– ident: e_1_2_6_65_1
  doi: 10.1002/asia.201400018
– ident: e_1_2_6_165_1
  doi: 10.1021/nn2006249
– ident: e_1_2_6_214_1
  doi: 10.1016/j.jpowsour.2016.07.089
– ident: e_1_2_6_156_1
  doi: 10.1103/PhysRevLett.116.126805
– ident: e_1_2_6_159_1
  doi: 10.1039/c0jm00782j
– ident: e_1_2_6_212_1
  doi: 10.1039/C5RA06336A
– ident: e_1_2_6_70_1
  doi: 10.1039/C3NR06730K
– ident: e_1_2_6_108_1
  doi: 10.1039/C5TA08869K
– ident: e_1_2_6_201_1
  doi: 10.1016/j.electacta.2013.01.057
– ident: e_1_2_6_58_1
  doi: 10.1002/smll.201401521
– ident: e_1_2_6_221_1
  doi: 10.1007/s12274-016-1077-y
– ident: e_1_2_6_37_1
  doi: 10.1002/cphc.201400088
– ident: e_1_2_6_122_1
  doi: 10.1016/j.nanoen.2016.03.018
– year: 2016
  ident: e_1_2_6_144_1
  publication-title: Adv. Mater.
– ident: e_1_2_6_205_1
  doi: 10.1039/b820555h
– ident: e_1_2_6_163_1
  doi: 10.1016/j.carbon.2011.05.043
– ident: e_1_2_6_191_1
  doi: 10.1002/anie.201503188
– ident: e_1_2_6_174_1
  doi: 10.1021/acs.chemmater.5b00361
– ident: e_1_2_6_217_1
  doi: 10.1039/C5CC00944H
– ident: e_1_2_6_210_1
  doi: 10.1039/C4TA04732J
– ident: e_1_2_6_7_1
  doi: 10.1039/c3ee40847g
– ident: e_1_2_6_136_1
  doi: 10.1039/c3ta11045a
SSID ssj0009606
Score 2.6680403
SecondaryResourceType review_article
Snippet Sodium‐ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical...
Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Conductors
Decay rate
Electrical resistivity
Electrochemical analysis
Electrode materials
Electrodes
Geographical distribution
Lithium
Materials science
NASICON‐type materials
Rechargeable batteries
Sodium
Sodium-ion batteries
Structural stability
Title Challenges and Perspectives for NASICON‐Type Electrode Materials for Advanced Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201700431
https://www.ncbi.nlm.nih.gov/pubmed/28626908
https://www.proquest.com/docview/1978281860
https://www.proquest.com/docview/1911202169
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hnsqhtEAhZYuMhNST28Rxsskx2u6qRdoFtVTqLXL8I6FCgtjdCycegWfkSZiJk2wXhJDglihj2fF47G-SmW8AXufSichIyW0sFJfo6vAKgTDPnBWEb4XTlOA8X6QXN_LNbXJ7L4vf80MMH9zIMtr9mgxcVcuzDWmoMi1vEPHLyTaRmgK2CBVdbfijCJ63ZHtxwvNUZj1rYyjOtptvn0q_Qc1t5NoePbNHoPpB-4iTu9P1qjrVX3_hc_yft9qHvQ6XssIvpAN4YOvH8PAeW-ETcJO-8MqSqdqwd5s8zSVD7MsWxfXl5O3ix7fv5N2yqa-wYyybq5Vf6K1Y0YUdsOvGfFh_QvHLpmae6BP99qdwM5u-n1zwrkwD15SnyjNNPofJM5fhkJWQiY6ljoxwkU2sFKayInTomjgVjy3CZIMQRKc2kmPjNO4qh7BTN7V9Dkw5laRKJApho0xiXeEBm1QqVVWosSsXAO_VVOqOw5xKaXwsPfuyKGn-ymH-AjgZ5D979o4_So56rZedFS_LCF1sYstKwwBeDY_R_uiniqptsyYZRKwIlNI8gGd-tQxdCXIX8zALQLQ6_8sYyuJ8Xgx3R__S6AXs0rWPtxnBzurL2h4jalpVL1vL-Am6zA3R
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5VA4QMujhD4wEhInt4njpMkx2rbahe6CaCtxixw_JARkEbt74cRP4Df2l3QmTrJdKlQJjknG8nPsb5yZbwBe59KJyEjJbSwUl2jq8AqBMM-cFYRvhdMU4DyepMNL-fZT0nkTUiyM54foL9xIM5r9mhScLqQPl6yhyjTEQUQwJymS-h6l9Sb6_OOPSwYpAugN3V6c8DyVWcfbGIrD1fKr59ItsLmKXZvD5_QRVF2zvc_Jl4PFvDrQP_9gdPyvfm3CwxaassKvpS1Ys_VjeHCDsPAJuEGXe2XGVG3Yh2Wo5owh_GWT4nw0eD-5-vWbDFx24pPsGMvGau7XeiNWtJ4H7HxqPi--ofhoWjPP9Ymm-1O4PD25GAx5m6mBawpV5Zkms8PkmcuwyUrIRMdSR0a4yCZWClNZETq0TpyKjywiZYMoRKc2kkfGadxYnsF6Pa3tc2DKqSRVIlGIHGUS6wrP2KRSqapCjVW5AHg3T6Vuacwpm8bX0hMwi5LGr-zHL4A3vfx3T-DxV8ndbtrLVpFnZYRWNhFmpWEAr_rPqIL0X0XVdrogGQStiJXSPIBtv1z6qgRZjHmYBSCaSb-jDWVxPC76pxf_UuglbAwvxmfl2Wjybgfu03vvfrML6_MfC7uHIGpe7Tdqcg2YHhHt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hIlVwAFqgBAq4UiVObhPHSZNjtNtVF9htRanUW-T4Q6oK2YrdvXDiJ_Ab-SXMxEm2C0JIcEwylh3bY7-XeN4A7OfSichIyW0sFJdIdXiFQJhnzgrCt8JpCnCeTNOTC_n2Mrm8FcXv9SH6D27kGc16TQ5-Y9zhSjRUmUY3iPTlJAVS35VpmFPyhuGHlYAU4fNGbS9OeJ7KrJNtDMXhevn1bek3rLkOXZu9Z_QQVNdqf-Tk-mC5qA70118EHf_ntR7BgxaYssLPpC24Y-ttuH9LrvAxuEGXeWXOVG3Y2SpQc84Q_LJpcT4enE5_fPtO9JYd-xQ7xrKJWviZ3pgV7bkDdj4zV8vPaD6e1cwrfSJxfwIXo-OPgxPe5mngmgJVeaaJdJg8cxk2WQmZ6FjqyAgX2cRKYSorQofcxKn4yCJONohBdGojeWScxmXlKWzUs9o-A6acSlIlEoW4USaxrnCHTSqVqirUWJULgHfDVOpWxJxyaXwqvfyyKKn_yr7_AnjT2994-Y4_Wu52o162bjwvI-TYJJeVhgHs9Y_RAemviqrtbEk2CFkRKaV5ADt-tvRVCeKLeZgFIJox_0sbymI4Kfqr5_9S6DVsng1H5fvx9N0LuEe3_dmbXdhYfFnal4igFtWrxkl-Ak1nEJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+Perspectives+for+NASICON%E2%80%90Type+Electrode+Materials+for+Advanced+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Shuangqiang&rft.au=Wu%2C+Chao&rft.au=Shen%2C+Laifa&rft.au=Zhu%2C+Changbao&rft.date=2017-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=48&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201700431&rft.externalDBID=10.1002%252Fadma.201700431&rft.externalDocID=ADMA201700431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon