An Armored Mixed Conductor Interphase on a Dendrite‐Free Lithium‐Metal Anode

Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 45; pp. e1804461 - n/a
Main Authors Yan, Chong, Cheng, Xin‐Bing, Yao, Yu‐Xing, Shen, Xin, Li, Bo‐Quan, Li, Wen‐Jun, Zhang, Rui, Huang, Jia‐Qi, Li, Hong, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium‐metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li‐dendrite growth and work effectively in LiNi0.5Co0.2Mn0.3O2/Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode–electrolyte interface and an effective strategy to protect Li‐metal anodes in working Li‐metal batteries. A composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of lithium by in situ chemical reactions of copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus.
AbstractList Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium‐metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li‐dendrite growth and work effectively in LiNi0.5Co0.2Mn0.3O2/Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode–electrolyte interface and an effective strategy to protect Li‐metal anodes in working Li‐metal batteries. A composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of lithium by in situ chemical reactions of copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus.
Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium‐metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li‐dendrite growth and work effectively in LiNi 0.5 Co 0.2 Mn 0.3 O 2 /Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode–electrolyte interface and an effective strategy to protect Li‐metal anodes in working Li‐metal batteries.
Lithium-metal electrodes have undergone a comprehensive renaissance to meet the requirements of high-energy-density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium-metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper-fluoride-based solution and Li metal at room temperature. The as-obtained MCI film acts like the armor of a soldier to protect the Li-metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li-dendrite growth and work effectively in LiNi Co Mn O /Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode-electrolyte interface and an effective strategy to protect Li-metal anodes in working Li-metal batteries.
Lithium-metal electrodes have undergone a comprehensive renaissance to meet the requirements of high-energy-density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium-metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper-fluoride-based solution and Li metal at room temperature. The as-obtained MCI film acts like the armor of a soldier to protect the Li-metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li-dendrite growth and work effectively in LiNi0.5 Co0.2 Mn0.3 O2 /Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode-electrolyte interface and an effective strategy to protect Li-metal anodes in working Li-metal batteries.Lithium-metal electrodes have undergone a comprehensive renaissance to meet the requirements of high-energy-density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium-metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper-fluoride-based solution and Li metal at room temperature. The as-obtained MCI film acts like the armor of a soldier to protect the Li-metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li-dendrite growth and work effectively in LiNi0.5 Co0.2 Mn0.3 O2 /Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode-electrolyte interface and an effective strategy to protect Li-metal anodes in working Li-metal batteries.
Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium‐metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li‐dendrite growth and work effectively in LiNi0.5Co0.2Mn0.3O2/Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode–electrolyte interface and an effective strategy to protect Li‐metal anodes in working Li‐metal batteries.
Author Huang, Jia‐Qi
Li, Hong
Yao, Yu‐Xing
Li, Wen‐Jun
Zhang, Qiang
Li, Bo‐Quan
Cheng, Xin‐Bing
Shen, Xin
Zhang, Rui
Yan, Chong
Author_xml – sequence: 1
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Xin‐Bing
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  organization: Tsinghua University
– sequence: 3
  givenname: Yu‐Xing
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 4
  givenname: Xin
  surname: Shen
  fullname: Shen, Xin
  organization: Tsinghua University
– sequence: 5
  givenname: Bo‐Quan
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Tsinghua University
– sequence: 6
  givenname: Wen‐Jun
  surname: Li
  fullname: Li, Wen‐Jun
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Tsinghua University
– sequence: 8
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Hong
  surname: Li
  fullname: Li, Hong
  email: hli@iphy.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30259585$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9q3DAQh0VJSTZprj0WQy-9eDuSJdk6mk3SBnZpD-1ZyPpDFGxpK8m0ueUR-ox9kjps0kKg9DLDwPcNw_xO0VGIwSL0GsMaA5D3ykxqTQB3QCnHL9AKM4JrCoIdoRWIhtWC0-4EneZ8CwCCAz9GJw0QJljHVuhzH6o-TTFZU-38j6VuYjCzLjFV16HYtL9R2VYxVKq6sMEkX-yv-59Xydpq68uNn6dl3NmixqoP0dhX6KVTY7bnj_0Mfb26_LL5WG8_fbje9Nta07bDNRONNoZTrDFQht3gXIuB80HooeGamZbQVmOuqVPMcYE5axXtFOucG9iAmzP07rB3n-K32eYiJ5-1HUcVbJyzJBg3pOOEwIK-fYbexjmF5bqFagB4Rzu2UG8eqXmYrJH75CeV7uTTrxaAHgCdYs7JOql9UcXHUJLyo8QgHyKRD5HIP5Es2vqZ9rT5n4I4CN_9aO_-Q8v-Ytf_dX8DlXyd1w
CitedBy_id crossref_primary_10_1002_adma_202000223
crossref_primary_10_1016_j_jelechem_2023_117826
crossref_primary_10_1007_s40843_024_2914_x
crossref_primary_10_1002_eem2_12861
crossref_primary_10_1016_j_electacta_2022_141464
crossref_primary_10_1002_anie_201900783
crossref_primary_10_1038_s41560_023_01405_6
crossref_primary_10_1002_adma_201905245
crossref_primary_10_1002_smll_201900687
crossref_primary_10_1016_j_cej_2021_128928
crossref_primary_10_1016_j_enchem_2022_100089
crossref_primary_10_1016_j_ensm_2020_09_017
crossref_primary_10_1016_j_cej_2021_132510
crossref_primary_10_1002_ange_202218014
crossref_primary_10_1021_acs_nanolett_1c04775
crossref_primary_10_1039_D3TA05793C
crossref_primary_10_1016_j_cej_2021_134019
crossref_primary_10_1002_ange_201912701
crossref_primary_10_1002_adfm_202408296
crossref_primary_10_1007_s40820_024_01388_3
crossref_primary_10_1016_j_cej_2020_125122
crossref_primary_10_26599_NRE_2024_9120118
crossref_primary_10_1021_acssuschemeng_2c00243
crossref_primary_10_1002_anie_202310761
crossref_primary_10_1016_j_jpowsour_2022_231374
crossref_primary_10_1002_anie_202001989
crossref_primary_10_1002_aenm_202103589
crossref_primary_10_1016_j_mattod_2023_09_004
crossref_primary_10_1021_acsaem_4c02150
crossref_primary_10_1016_j_mtener_2020_100465
crossref_primary_10_1002_adfm_201908047
crossref_primary_10_1016_j_nanoen_2020_104860
crossref_primary_10_1002_aenm_202003039
crossref_primary_10_1007_s42864_023_00231_3
crossref_primary_10_1016_j_jallcom_2019_152862
crossref_primary_10_1002_adfm_202001607
crossref_primary_10_1021_acsami_0c11761
crossref_primary_10_1016_j_jechem_2022_09_007
crossref_primary_10_1016_j_jcis_2023_06_147
crossref_primary_10_1039_D4EE01359J
crossref_primary_10_1016_j_ensm_2022_11_057
crossref_primary_10_1038_s41578_021_00320_0
crossref_primary_10_1002_adfm_201907717
crossref_primary_10_1002_adfm_202009694
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1021_acs_nanolett_0c04546
crossref_primary_10_1002_aesr_202000101
crossref_primary_10_1016_j_jpowsour_2019_227214
crossref_primary_10_1016_j_nanoen_2020_104731
crossref_primary_10_1002_adma_202312773
crossref_primary_10_1002_ange_202000375
crossref_primary_10_1039_D0SE01821J
crossref_primary_10_1021_acsami_2c18224
crossref_primary_10_1073_pnas_2200392119
crossref_primary_10_1016_j_jallcom_2024_178118
crossref_primary_10_1002_aenm_202300611
crossref_primary_10_1002_smll_202001992
crossref_primary_10_1002_cey2_94
crossref_primary_10_1002_adma_202110323
crossref_primary_10_1016_j_joule_2020_06_016
crossref_primary_10_1039_D2EE03709B
crossref_primary_10_1038_s41467_019_13436_3
crossref_primary_10_1021_acsami_9b02116
crossref_primary_10_1002_idm2_12042
crossref_primary_10_1002_adma_201905573
crossref_primary_10_1002_aenm_202003709
crossref_primary_10_1002_adma_202209028
crossref_primary_10_1002_cssc_202301777
crossref_primary_10_1016_j_jpowsour_2020_228191
crossref_primary_10_1016_j_jechem_2022_03_039
crossref_primary_10_1016_j_jcis_2024_07_246
crossref_primary_10_1002_cssc_202401183
crossref_primary_10_1016_j_cej_2024_152611
crossref_primary_10_1039_C9CS00838A
crossref_primary_10_1016_j_ensm_2022_06_020
crossref_primary_10_1002_eem2_12745
crossref_primary_10_1021_acsnano_9b07710
crossref_primary_10_1021_acsnano_9b08008
crossref_primary_10_1016_j_jpowsour_2020_229428
crossref_primary_10_1021_acsami_9b00507
crossref_primary_10_1002_aenm_201901486
crossref_primary_10_1016_j_elecom_2022_107395
crossref_primary_10_1002_eem2_12383
crossref_primary_10_1021_acsaem_9b01416
crossref_primary_10_1002_adma_202303710
crossref_primary_10_1039_D3EE04243J
crossref_primary_10_1016_j_rser_2025_115453
crossref_primary_10_1002_aenm_202203547
crossref_primary_10_1002_smll_201904216
crossref_primary_10_1002_elt2_72
crossref_primary_10_1016_j_ssi_2024_116585
crossref_primary_10_1039_D4YA00507D
crossref_primary_10_1016_j_cej_2022_139348
crossref_primary_10_1016_j_cej_2024_154346
crossref_primary_10_1002_adfm_202310711
crossref_primary_10_1016_j_mtchem_2023_101735
crossref_primary_10_1002_aenm_202003381
crossref_primary_10_1007_s12598_021_01951_6
crossref_primary_10_1016_j_jechem_2022_09_030
crossref_primary_10_1038_s41467_019_13774_2
crossref_primary_10_1007_s12613_024_2996_3
crossref_primary_10_1002_aenm_202002297
crossref_primary_10_1039_D0CC05084A
crossref_primary_10_1002_adma_202001740
crossref_primary_10_1016_j_xcrp_2023_101379
crossref_primary_10_1039_C9CC09318D
crossref_primary_10_1002_adma_202307645
crossref_primary_10_1002_adfm_202108993
crossref_primary_10_1016_j_electacta_2019_03_162
crossref_primary_10_1016_j_scib_2020_07_012
crossref_primary_10_1021_acsaem_1c00290
crossref_primary_10_1016_j_ensm_2019_05_019
crossref_primary_10_1016_j_matt_2020_08_011
crossref_primary_10_1021_acsami_0c10047
crossref_primary_10_3390_batteries9040194
crossref_primary_10_1002_adfm_202007255
crossref_primary_10_1016_j_esci_2022_02_002
crossref_primary_10_1002_adma_201806470
crossref_primary_10_1007_s40843_021_1960_3
crossref_primary_10_1002_adma_202106005
crossref_primary_10_1016_j_coelec_2019_05_004
crossref_primary_10_1016_j_nanoen_2023_108922
crossref_primary_10_1002_adfm_202208735
crossref_primary_10_1002_ange_201912217
crossref_primary_10_3390_inorganics10010005
crossref_primary_10_1016_j_nanoen_2019_104399
crossref_primary_10_1039_D0EE00039F
crossref_primary_10_1016_j_nanoen_2023_108370
crossref_primary_10_1002_smsc_202100066
crossref_primary_10_1021_acsenergylett_0c01896
crossref_primary_10_1039_D3EE00441D
crossref_primary_10_1002_adma_202209511
crossref_primary_10_3390_physchem1010003
crossref_primary_10_1016_j_chempr_2018_12_002
crossref_primary_10_1002_adma_202206367
crossref_primary_10_1021_acs_jpcc_4c02475
crossref_primary_10_1002_adfm_202413176
crossref_primary_10_1016_j_matt_2020_03_015
crossref_primary_10_1002_aenm_202202323
crossref_primary_10_1016_j_ensm_2022_11_010
crossref_primary_10_1016_j_matt_2019_06_020
crossref_primary_10_1021_acsaem_2c00705
crossref_primary_10_3390_ijms231810440
crossref_primary_10_1016_j_ensm_2019_09_020
crossref_primary_10_1002_adfm_201902630
crossref_primary_10_1016_j_apsusc_2022_152885
crossref_primary_10_1016_j_jcis_2024_07_154
crossref_primary_10_1002_adfm_202403021
crossref_primary_10_1073_pnas_2316212121
crossref_primary_10_1039_D1QM00212K
crossref_primary_10_1002_adma_201902785
crossref_primary_10_1002_eem2_12393
crossref_primary_10_1039_D1CC06630G
crossref_primary_10_1016_j_jechem_2020_06_060
crossref_primary_10_3389_fchem_2022_916132
crossref_primary_10_1016_j_jelechem_2021_115499
crossref_primary_10_1021_acsami_9b14147
crossref_primary_10_1002_aenm_202202206
crossref_primary_10_1039_C9SC01845J
crossref_primary_10_1002_aenm_202103332
crossref_primary_10_1002_smll_202102196
crossref_primary_10_1016_j_ensm_2022_11_029
crossref_primary_10_1039_C9TA00143C
crossref_primary_10_1002_adma_201807585
crossref_primary_10_1002_inf2_12166
crossref_primary_10_1016_j_ensm_2022_11_022
crossref_primary_10_1016_j_jechem_2020_11_016
crossref_primary_10_1021_acsnano_2c05832
crossref_primary_10_1039_D3SC06347J
crossref_primary_10_1002_adma_202300350
crossref_primary_10_1016_j_jallcom_2023_172780
crossref_primary_10_1016_j_matt_2020_07_005
crossref_primary_10_1002_adfm_201909035
crossref_primary_10_1016_j_cej_2021_129739
crossref_primary_10_1016_j_ensm_2021_02_033
crossref_primary_10_1002_aenm_201902254
crossref_primary_10_1016_j_ensm_2019_12_028
crossref_primary_10_1016_j_electacta_2022_141061
crossref_primary_10_1016_j_joule_2019_09_022
crossref_primary_10_1016_j_ensm_2023_102884
crossref_primary_10_1021_acsaem_1c01174
crossref_primary_10_1002_batt_202300093
crossref_primary_10_1016_j_mattod_2021_04_018
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1002_adfm_201909887
crossref_primary_10_1016_j_jechem_2021_03_046
crossref_primary_10_1039_D1TA00419K
crossref_primary_10_1002_asia_201901668
crossref_primary_10_1039_D0TA07589B
crossref_primary_10_1093_nsr_nwac183
crossref_primary_10_1016_j_jechem_2023_06_008
crossref_primary_10_1016_j_cej_2021_133689
crossref_primary_10_1002_adfm_202210639
crossref_primary_10_1039_D2CP04032H
crossref_primary_10_1016_j_cej_2022_140375
crossref_primary_10_1016_j_ensm_2023_02_031
crossref_primary_10_1002_batt_202000225
crossref_primary_10_1002_advs_202101866
crossref_primary_10_1002_sstr_202000122
crossref_primary_10_1007_s12274_022_5179_4
crossref_primary_10_1016_j_ensm_2020_04_043
crossref_primary_10_1039_C9TA02407G
crossref_primary_10_1002_adma_202102083
crossref_primary_10_1126_sciadv_aaz3112
crossref_primary_10_1016_j_nanoen_2024_110348
crossref_primary_10_1002_admi_202001698
crossref_primary_10_1007_s40820_023_01234_y
crossref_primary_10_1007_s11426_019_9519_9
crossref_primary_10_1021_acsami_1c07624
crossref_primary_10_1007_s12274_020_2625_z
crossref_primary_10_1039_D1QM00185J
crossref_primary_10_1016_j_isci_2021_102578
crossref_primary_10_1016_j_trechm_2019_06_007
crossref_primary_10_1016_j_jechem_2020_08_029
crossref_primary_10_1002_aenm_202002360
crossref_primary_10_1002_anie_202000375
crossref_primary_10_1021_acsaem_2c03663
crossref_primary_10_1002_sstr_202200120
crossref_primary_10_1002_adfm_202301638
crossref_primary_10_1016_j_jallcom_2024_174123
crossref_primary_10_1016_j_matlet_2019_127194
crossref_primary_10_1002_adma_201904537
crossref_primary_10_1016_j_jallcom_2022_164307
crossref_primary_10_1002_adma_202106353
crossref_primary_10_1016_j_esci_2023_100201
crossref_primary_10_1002_ange_202001989
crossref_primary_10_1016_j_enchem_2021_100058
crossref_primary_10_1016_j_jcis_2023_01_125
crossref_primary_10_3389_fenrg_2022_837071
crossref_primary_10_1002_nano_202000003
crossref_primary_10_1002_nano_202000123
crossref_primary_10_1021_acsami_1c02868
crossref_primary_10_1002_adfm_201905940
crossref_primary_10_1039_D2NJ01827F
crossref_primary_10_1016_j_apsusc_2020_147983
crossref_primary_10_1021_acsami_1c02621
crossref_primary_10_1039_D3CS00151B
crossref_primary_10_1039_D2TA07035A
crossref_primary_10_1016_j_compositesb_2022_110131
crossref_primary_10_1016_j_ensm_2019_08_024
crossref_primary_10_1016_j_jcis_2022_01_087
crossref_primary_10_1021_acsaem_1c00615
crossref_primary_10_1016_j_ensm_2019_04_041
crossref_primary_10_1002_smtd_202201598
crossref_primary_10_1021_acsami_9b13878
crossref_primary_10_1002_anie_201912217
crossref_primary_10_1002_qua_27507
crossref_primary_10_1016_j_cej_2020_128016
crossref_primary_10_1002_smll_201905171
crossref_primary_10_1016_j_ensm_2021_02_024
crossref_primary_10_1016_j_nanoen_2019_104242
crossref_primary_10_1039_D1QM00579K
crossref_primary_10_1021_acs_jpclett_5c00459
crossref_primary_10_1039_C9CS00636B
crossref_primary_10_1039_D1TA00956G
crossref_primary_10_1016_j_est_2024_113836
crossref_primary_10_1021_acssuschemeng_9b03751
crossref_primary_10_1002_adma_202005967
crossref_primary_10_1039_D2QI01418A
crossref_primary_10_1002_ange_201900783
crossref_primary_10_1021_acsami_2c00842
crossref_primary_10_1039_D1EE01404H
crossref_primary_10_1016_j_ensm_2022_12_016
crossref_primary_10_1021_acsnano_3c08576
crossref_primary_10_1063_5_0108998
crossref_primary_10_1016_j_mtener_2022_101134
crossref_primary_10_1039_D2TA09182H
crossref_primary_10_1016_j_matt_2019_05_016
crossref_primary_10_1021_acsami_0c17406
crossref_primary_10_1021_acsmaterialslett_2c00810
crossref_primary_10_1016_j_jechem_2020_04_043
crossref_primary_10_1039_D0TA10006D
crossref_primary_10_1002_admt_201900806
crossref_primary_10_1002_smll_202201349
crossref_primary_10_1016_j_cej_2022_136592
crossref_primary_10_1016_j_ensm_2023_103138
crossref_primary_10_1021_acs_chemmater_9b02356
crossref_primary_10_1039_D0TA12508C
crossref_primary_10_1002_aenm_201901764
crossref_primary_10_1002_adfm_202011109
crossref_primary_10_1016_j_ensm_2021_12_004
crossref_primary_10_1016_j_jpowsour_2019_227632
crossref_primary_10_1002_smll_202004688
crossref_primary_10_1016_j_electacta_2021_138485
crossref_primary_10_1016_j_mtnano_2019_100049
crossref_primary_10_1016_j_cej_2022_135705
crossref_primary_10_1002_adfm_201902499
crossref_primary_10_1007_s41918_021_00109_3
crossref_primary_10_1021_acsami_0c13283
crossref_primary_10_1021_acssuschemeng_3c00022
crossref_primary_10_1002_adfm_201907020
crossref_primary_10_1016_j_flatc_2024_100693
crossref_primary_10_1002_admi_202200457
crossref_primary_10_1016_j_nanoen_2021_106214
crossref_primary_10_1007_s12274_019_2368_x
crossref_primary_10_1002_aenm_202101518
crossref_primary_10_1016_j_nanoen_2021_106212
crossref_primary_10_1021_acs_jpcc_1c00831
crossref_primary_10_1039_D4NJ00114A
crossref_primary_10_1021_acsami_0c03471
crossref_primary_10_1038_s41565_022_01107_2
crossref_primary_10_1016_j_ensm_2020_03_022
crossref_primary_10_1002_aenm_201902989
crossref_primary_10_1002_aenm_202204007
crossref_primary_10_1002_smtd_201800551
crossref_primary_10_1021_acs_chemmater_9b05295
crossref_primary_10_1039_D1TA03343C
crossref_primary_10_1002_cey2_169
crossref_primary_10_1002_smtd_202200735
crossref_primary_10_1016_j_electacta_2021_139561
crossref_primary_10_1016_j_jpowsour_2020_228178
crossref_primary_10_1016_j_est_2022_105955
crossref_primary_10_1016_j_cej_2019_123542
crossref_primary_10_1016_j_jpowsour_2021_230306
crossref_primary_10_1007_s40843_020_1655_3
crossref_primary_10_1002_ange_202310761
crossref_primary_10_1016_j_ensm_2024_103352
crossref_primary_10_1021_acsenergylett_1c01144
crossref_primary_10_1002_anie_201912701
crossref_primary_10_1016_j_carbon_2022_05_030
crossref_primary_10_1002_adma_201903248
crossref_primary_10_1002_anie_202218014
crossref_primary_10_1016_j_ensm_2022_10_053
crossref_primary_10_1016_j_ensm_2022_10_054
crossref_primary_10_1016_j_jcis_2021_07_108
crossref_primary_10_1039_D1EE00110H
crossref_primary_10_1002_adma_201908494
crossref_primary_10_1002_anie_202114805
crossref_primary_10_1002_ange_202014265
crossref_primary_10_1002_aenm_202403585
crossref_primary_10_1002_smll_201900269
crossref_primary_10_1016_j_enchem_2019_100003
crossref_primary_10_1007_s11581_022_04461_2
crossref_primary_10_1016_j_eng_2018_10_008
crossref_primary_10_1002_adma_202008081
crossref_primary_10_1016_j_cej_2021_132970
crossref_primary_10_1016_j_cej_2024_153873
crossref_primary_10_1007_s41918_019_00054_2
crossref_primary_10_1002_aenm_201803722
crossref_primary_10_1002_ange_201913351
crossref_primary_10_1007_s10008_023_05719_z
crossref_primary_10_1021_acsami_2c11632
crossref_primary_10_3390_molecules28020548
crossref_primary_10_1016_j_cej_2022_134637
crossref_primary_10_1021_acsnano_2c07049
crossref_primary_10_1002_batt_202200232
crossref_primary_10_1002_batt_202200231
crossref_primary_10_1016_j_cej_2023_144990
crossref_primary_10_1002_smtd_202200980
crossref_primary_10_1016_j_ensm_2022_08_046
crossref_primary_10_1016_j_cej_2021_132839
crossref_primary_10_1002_adma_202007428
crossref_primary_10_1021_acsami_0c10463
crossref_primary_10_1038_s41467_019_11168_y
crossref_primary_10_1039_D2TA02162E
crossref_primary_10_1039_C9EE01903K
crossref_primary_10_1007_s40843_020_1498_8
crossref_primary_10_1016_j_ensm_2019_07_026
crossref_primary_10_1016_j_nantod_2024_102556
crossref_primary_10_1002_anie_202014265
crossref_primary_10_1039_D0MH01030H
crossref_primary_10_1002_ange_202114805
crossref_primary_10_1002_aenm_202405628
crossref_primary_10_1016_j_nanoen_2020_104889
crossref_primary_10_1021_acsami_1c02951
crossref_primary_10_1021_acs_nanolett_0c00819
crossref_primary_10_1016_j_ensm_2019_02_006
crossref_primary_10_1002_anie_201913351
crossref_primary_10_1021_acsenergylett_3c01357
Cites_doi 10.1021/jacs.7b05251
10.1039/b908149f
10.1021/ja412807w
10.1038/s41467-017-00519-2
10.1016/j.chempr.2017.01.003
10.1021/cm902050j
10.1021/acs.chemrev.7b00115
10.1021/acsami.5b02904
10.1002/adma.201703891
10.1038/nenergy.2017.12
10.1021/acsenergylett.7b00163
10.1002/adma.201606823
10.1038/nenergy.2016.114
10.1088/1674-1056/25/7/078203
10.1021/acs.chemmater.5b04278
10.1093/nsr/nww078
10.1002/adma.201705105
10.1016/j.ensm.2016.09.003
10.1002/advs.201600517
10.1002/adma.201603755
10.1038/nnano.2017.16
10.1016/j.ensm.2018.03.008
10.1149/2.0021514jes
10.1038/nmat4041
10.1021/acsenergylett.8b00526
10.1149/2.1301608jes
10.1038/ncomms8436
10.1149/1.1801451
10.1039/C7CS00139H
10.1021/ja312241y
10.1016/0167-2738(83)90045-0
10.1016/j.jpowsour.2016.07.056
10.1038/nmat4821
10.1002/aenm.201501933
10.1002/anie.201707093
10.1063/1.89283
10.1021/acs.chemmater.7b00091
10.1002/adma.201504526
10.1016/j.ensm.2018.02.014
10.1149/1.3148721
10.1149/1.1850854
10.1002/adma.201605531
10.1016/S0378-7753(02)00002-2
10.1149/1.2128859
10.1021/jp503902z
10.1016/S0013-4686(01)00858-1
10.1016/j.ensm.2017.12.002
10.1021/acs.accounts.7b00402
10.1002/aenm.201402273
10.1021/acsenergylett.6b00200
10.1021/acsnano.5b02166
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201804461
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30259585
10_1002_adma_201804461
ADMA201804461
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2016YFA0202500; 2016YFA0200102; 2015CB932500
– fundername: National Natural Scientific Foundation of China
  funderid: 21676160; 21776019; 21805161; 21808121
– fundername: Beijing Key Research and Development Plan
  funderid: Z181100004518001
– fundername: China Post‐Doctoral Science Foundation
  funderid: 2018M631480; BX201700125
– fundername: National Key Research and Development Program
  grantid: 2016YFA0202500
– fundername: China Post-Doctoral Science Foundation
  grantid: BX201700125
– fundername: National Natural Scientific Foundation of China
  grantid: 21808121
– fundername: Beijing Key Research and Development Plan
  grantid: Z181100004518001
– fundername: National Key Research and Development Program
  grantid: 2016YFA0200102
– fundername: China Post-Doctoral Science Foundation
  grantid: 2018M631480
– fundername: National Natural Scientific Foundation of China
  grantid: 21805161
– fundername: National Natural Scientific Foundation of China
  grantid: 21676160
– fundername: National Key Research and Development Program
  grantid: 2015CB932500
– fundername: National Natural Scientific Foundation of China
  grantid: 21776019
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4781-593cdd641c10451fbff71066b9cb36c5d7247c16c4fa5f691657a48a58ffb5b13
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 02:06:55 EDT 2025
Fri Jul 25 03:10:02 EDT 2025
Thu Apr 03 07:10:03 EDT 2025
Tue Jul 01 00:44:45 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Wed Jan 22 17:00:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords mixed conductor interface
lithium-metal batteries
cupric fluoride
dendrite growth
lithium-metal anodes
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4781-593cdd641c10451fbff71066b9cb36c5d7247c16c4fa5f691657a48a58ffb5b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PMID 30259585
PQID 2130068485
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2113286220
proquest_journals_2130068485
pubmed_primary_30259585
crossref_citationtrail_10_1002_adma_201804461
crossref_primary_10_1002_adma_201804461
wiley_primary_10_1002_adma_201804461_ADMA201804461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2017; 6
2015 2016; 162 25
1979; 126
2017; 8
2017; 2
2005; 152
1977 1983; 30 11
2015 2016; 6 327
2009; 156
2017; 29
2017 2017 2018; 117 12 14
2015; 9
2017 2017 2016 2009 2017 2018; 29 46 4 21 50 12
2014; 136
2016 2018 2015; 1 15 5
2017; 139
2009; 11
2002; 47
2016; 6
2018; 3
2016; 1
2017; 16
2004; 151
2014 2015 2017 2017; 13 7 56 4
2013; 135
2018; 30
2002; 108
2016; 28
2016 2016; 28 163
e_1_2_4_21_1
e_1_2_4_23_1
e_1_2_4_25_1
e_1_2_4_27_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_9_2
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_14_2
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_16_2
e_1_2_4_20_1
e_1_2_4_22_1
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_28_1
e_1_2_4_2_2
e_1_2_4_2_1
e_1_2_4_2_4
e_1_2_4_4_2
e_1_2_4_2_3
e_1_2_4_4_1
e_1_2_4_2_6
e_1_2_4_2_5
e_1_2_4_4_3
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_30_2
e_1_2_4_11_1
e_1_2_4_32_3
e_1_2_4_34_1
e_1_2_4_32_2
e_1_2_4_13_1
e_1_2_4_32_4
e_1_2_4_15_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 126
  start-page: 2047
  year: 1979
  publication-title: J. Electrochem. Soc.
– volume: 30
  start-page: 1703891
  year: 2018
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1605531
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 336
  year: 2017
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1603755
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1501933
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6 327
  start-page: 7436 212
  year: 2015 2016
  publication-title: Nat. Commun. J. Power Sources
– volume: 3
  start-page: 1564
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 152
  start-page: A396
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 13 7 56 4
  start-page: 961 18985 14207 1600517
  year: 2014 2015 2017 2017
  publication-title: Nat. Mater. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Adv. Sci.
– volume: 139
  start-page: 11550
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 15169
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 5884
  year: 2015
  publication-title: ACS Nano
– volume: 151
  start-page: A1878
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 108
  start-page: 64
  year: 2002
  publication-title: J. Power Sources
– volume: 1 15 5
  start-page: 542 8 1402273
  year: 2016 2018 2015
  publication-title: ACS Energy Lett. Energy Storage Mater. Adv. Energy Mater.
– volume: 11
  start-page: 9497
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 16114
  year: 2016
  publication-title: Nat. Energy
– volume: 2
  start-page: 1337
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 28 163
  start-page: 848 A1776
  year: 2016 2016
  publication-title: Chem. Mater. J. Electrochem. Soc.
– volume: 117 12 14
  start-page: 10403 194 22
  year: 2017 2017 2018
  publication-title: Chem. Rev. Nat. Nanotechnol. Energy Storage Mater.
– volume: 30 11
  start-page: 621 97
  year: 1977 1983
  publication-title: Appl. Phys. Lett. Solid State Ionics
– volume: 162 25
  start-page: A2387 078203
  year: 2015 2016
  publication-title: J. Electrochem. Soc. Chin. Phys. B
– volume: 6
  start-page: 18
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 17012
  year: 2017
  publication-title: Nat. Energy
– volume: 16
  start-page: 572
  year: 2017
  publication-title: Nat. Mater.
– volume: 29
  start-page: 4682
  year: 2017
  publication-title: Chem. Mater.
– volume: 47
  start-page: 1423
  year: 2002
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 1853
  year: 2016
  publication-title: Adv. Mater.
– volume: 29 46 4 21 50 12
  start-page: 1606823 5237 54 4724 2642 161
  year: 2017 2017 2016 2009 2017 2018
  publication-title: Adv. Mater. Chem. Soc. Rev. Natl. Sci. Rev. Chem. Mater. Acc. Chem. Res. Energy Storage Mater.
– volume: 2
  start-page: 258
  year: 2017
  publication-title: Chemistry
– volume: 136
  start-page: 5039
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1705105
  year: 2018
  publication-title: Adv. Mater.
– volume: 156
  start-page: A694
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_4_24_1
  doi: 10.1021/jacs.7b05251
– ident: e_1_2_4_28_1
  doi: 10.1039/b908149f
– ident: e_1_2_4_17_1
  doi: 10.1021/ja412807w
– ident: e_1_2_4_10_1
  doi: 10.1038/s41467-017-00519-2
– ident: e_1_2_4_22_1
  doi: 10.1016/j.chempr.2017.01.003
– ident: e_1_2_4_2_4
  doi: 10.1021/cm902050j
– ident: e_1_2_4_1_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_4_32_2
  doi: 10.1021/acsami.5b02904
– ident: e_1_2_4_3_1
  doi: 10.1002/adma.201703891
– ident: e_1_2_4_15_1
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_4_11_1
  doi: 10.1021/acsenergylett.7b00163
– ident: e_1_2_4_2_1
  doi: 10.1002/adma.201606823
– ident: e_1_2_4_6_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_4_14_2
  doi: 10.1088/1674-1056/25/7/078203
– ident: e_1_2_4_16_1
  doi: 10.1021/acs.chemmater.5b04278
– ident: e_1_2_4_2_3
  doi: 10.1093/nsr/nww078
– ident: e_1_2_4_35_1
  doi: 10.1002/adma.201705105
– ident: e_1_2_4_5_1
  doi: 10.1016/j.ensm.2016.09.003
– ident: e_1_2_4_32_4
  doi: 10.1002/advs.201600517
– ident: e_1_2_4_33_1
  doi: 10.1002/adma.201603755
– ident: e_1_2_4_1_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_4_4_2
  doi: 10.1016/j.ensm.2018.03.008
– ident: e_1_2_4_14_1
  doi: 10.1149/2.0021514jes
– ident: e_1_2_4_32_1
  doi: 10.1038/nmat4041
– ident: e_1_2_4_23_1
  doi: 10.1021/acsenergylett.8b00526
– ident: e_1_2_4_16_2
  doi: 10.1149/2.1301608jes
– ident: e_1_2_4_9_1
  doi: 10.1038/ncomms8436
– ident: e_1_2_4_27_1
  doi: 10.1149/1.1801451
– ident: e_1_2_4_2_2
  doi: 10.1039/C7CS00139H
– ident: e_1_2_4_13_1
  doi: 10.1021/ja312241y
– ident: e_1_2_4_30_2
  doi: 10.1016/0167-2738(83)90045-0
– ident: e_1_2_4_9_2
  doi: 10.1016/j.jpowsour.2016.07.056
– ident: e_1_2_4_20_1
  doi: 10.1038/nmat4821
– ident: e_1_2_4_25_1
  doi: 10.1002/aenm.201501933
– ident: e_1_2_4_32_3
  doi: 10.1002/anie.201707093
– ident: e_1_2_4_30_1
  doi: 10.1063/1.89283
– ident: e_1_2_4_34_1
  doi: 10.1021/acs.chemmater.7b00091
– ident: e_1_2_4_18_1
  doi: 10.1002/adma.201504526
– ident: e_1_2_4_1_3
  doi: 10.1016/j.ensm.2018.02.014
– ident: e_1_2_4_8_1
  doi: 10.1149/1.3148721
– ident: e_1_2_4_29_1
  doi: 10.1149/1.1850854
– ident: e_1_2_4_19_1
  doi: 10.1002/adma.201605531
– ident: e_1_2_4_31_1
  doi: 10.1016/S0378-7753(02)00002-2
– ident: e_1_2_4_7_1
  doi: 10.1149/1.2128859
– ident: e_1_2_4_26_1
  doi: 10.1021/jp503902z
– ident: e_1_2_4_12_1
  doi: 10.1016/S0013-4686(01)00858-1
– ident: e_1_2_4_2_6
  doi: 10.1016/j.ensm.2017.12.002
– ident: e_1_2_4_2_5
  doi: 10.1021/acs.accounts.7b00402
– ident: e_1_2_4_4_3
  doi: 10.1002/aenm.201402273
– ident: e_1_2_4_4_1
  doi: 10.1021/acsenergylett.6b00200
– ident: e_1_2_4_21_1
  doi: 10.1021/acsnano.5b02166
SSID ssj0009606
Score 2.6782196
Snippet Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode...
Lithium-metal electrodes have undergone a comprehensive renaissance to meet the requirements of high-energy-density batteries due to their lowest electrode...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1804461
SubjectTerms Anode effect
Anodic protection
Armor
Chemical reactions
Conductors
cupric fluoride
dendrite growth
Dendritic structure
Electrodes
Electrolytes
Electrolytic cells
Ion currents
Lithium
Lithium batteries
lithium‐metal anodes
lithium‐metal batteries
Materials science
mixed conductor interface
Modulus of elasticity
Nonaqueous electrolytes
Organic chemistry
Protective coatings
Title An Armored Mixed Conductor Interphase on a Dendrite‐Free Lithium‐Metal Anode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804461
https://www.ncbi.nlm.nih.gov/pubmed/30259585
https://www.proquest.com/docview/2130068485
https://www.proquest.com/docview/2113286220
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeD-KQP3i_zRgXBp8y1TbLmcahDxImIwt5KrjjUVGYH4pMfwc_oJzGn3bpNEUFfSksSkiY5zf80yS8IHXBrNeUNhZmmAhNNFOay0cSRoVRoGnuXoqB9XrKzW3Lepd2JXfwlH6L64QaWUXyvwcCFfD4aQ0OFLrhBYQJTkuD_wIItUEXXY34UyPMCthdTzBlJRtTGRnQ0nXx6VPomNaeVazH0tBeRGBW6XHFyXx_ksq5ev_Ac__NWS2hhqEuDVtmRltGMcStofoJWuIquWs6Hw8JcHXR6L_56nDnAxWb9oFy7eOeHxCBzgQhOjNN9r2Y_3t7bfWOCi15-1xs8-seOySEfl2mzhm7bpzfHZ3h4IANWsCMVUx4rrRkJVQhYGiut9QKFMcmVjJmiuhmRpgqZIlZQy7zypE1BEkETayWVYbyOZl3mzCYKgArPFGOJTGKiuBTWKw9NrI8ktOS0hvCoQVI1pJXDoRkPaclZjlKoqbSqqRo6rOI_lZyOH2PujNo3HdrrcxrBrB5LSOIz3q-CvaXB9IlwJhtAHO-5ewcwatTQRtkvqqxiLx05hdRR0bq_lCFtnXRa1dPWXxJtozm4L7dF7qDZvD8wu14f5XKvsIFPKpYGLw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_BcWChgJxCntxrG9yYHDqstqS3crhFqpt-BfdQU4aJsVPycegVfhVXgEngRP_sqCEBJSD1wiOR7Hjj3jmbHHnwEeZc4ZnvV1JAyXETNMR5nqDyJqOZeGJ8GlqNA-98XkkD0_4kdr8LU9C1PjQ3QLbigZ1XyNAo4L0tunqKHSVMBBcYp7knETV7lnP74PXtvJ091RGOLHlI6fHexMouZigUjjycqIZ4k2RrBYxwiv4pRzQdEKoTKtEqG5GVA20LHQzEnuRLCg-ECyVPLUOcVVnITvnoPzeI04wvWPXp4iVqFDUMH7JTzKBEtbnMg-3V5t76oe_M24XbWVK2U3vgLf2m6qY1xeby1LtaU__YIg-V_141W43JjeZFjLyjVYs_46XPoJkPEGvBj6kI-xx4bM5h_Cc6fwiIhbLEgdnnkctD4pPJFkZL1ZBIP9--cv44W1ZDovj-fLtyE5syXW4wtjb8LhmfzSBqz7wtvbQBD4XmghUpUmTGdKumBcGeYCkTQq4z2IWg7IdQPIjveCvMlrKGma48jk3cj04ElH_66GIvkj5WbLUHkzJZ3kFDcuRcrSUPHDLjtMJrhDJL0tlkgTJzT4uLTfg1s1I3ZVJcE6zjiWphU7_aUN-XA0G3apO_9S6AFcmBzMpvl0d3_vLlzE9_Up0E1YLxdLey-Yg6W6XwkggVdnzak_APhKY40
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUJ0Ud50oECQQKzcJo7tiRcsRg2jlnaqClGpu-CnOio41TQjHis-gU_hV_gFvgQ7rzIghITUBZtIjm9ix772PTe-PgZ4wq3VlMcKMU0FIpooxGU8RNhQKjRNvUtRs33us-1D8vKIHi3B124vTMMP0f9wCyOjnq_DAD_VdvOcNFTomjcoycKSZNKGVe6aj--903b2fCf3PfwU4_GL11vbqD1XAKmwsRJRniqtGUlUEthVrLTW21nGJFcyZYrqISZDlTBFrKCWeQBFh4JkgmbWSiqT1L_3ElwmLObhsIj81TlhVfAHana_lCLOSNbRRMZ4c7G-i2bwN2y7CJVrWze-Bt-6VmpCXE425pXcUJ9-IZD8n5rxOqy2wDsaNSPlBiwZdxNWfqJjvAUHI-fzQ-SxjibTD_66VbrAh1vOoiY489jb_Kh0kYhy4_TMw_Xvn7-MZ8ZEe9PqeDp_55MTU4VyXKnNbTi8kE-6A8uudGYNokB7zxRjmcxSorgU1kMrTawXElpyOgDUKUChWjr2cCrI26IhksZF6Jmi75kBPOvlTxsikj9Krnf6VLQT0lmBw7Ily0jmC37cZ_upJKwPCWfKeZBJUuw9XBwP4G6jh31RqcfGnIanca1Nf6lDMconoz51718eegRXDvJxsbezv3sfrobbzRbQdViuZnPzwGPBSj6sh18Eby5aUX8ARg9iPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Armored+Mixed+Conductor+Interphase+on+a+Dendrite%E2%80%90Free+Lithium%E2%80%90Metal+Anode&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chong%2C+Yan&rft.au=Xin%E2%80%90Bing+Cheng&rft.au=Yu%E2%80%90Xing+Yao&rft.au=Shen%2C+Xin&rft.date=2018-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=45&rft_id=info:doi/10.1002%2Fadma.201804461&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon