An Armored Mixed Conductor Interphase on a Dendrite‐Free Lithium‐Metal Anode
Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendr...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 45; pp. e1804461 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium‐metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li‐dendrite growth and work effectively in LiNi0.5Co0.2Mn0.3O2/Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode–electrolyte interface and an effective strategy to protect Li‐metal anodes in working Li‐metal batteries.
A composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of lithium by in situ chemical reactions of copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. |
---|---|
AbstractList | Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium‐metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li‐dendrite growth and work effectively in LiNi0.5Co0.2Mn0.3O2/Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode–electrolyte interface and an effective strategy to protect Li‐metal anodes in working Li‐metal batteries.
A composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of lithium by in situ chemical reactions of copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium‐metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li‐dendrite growth and work effectively in LiNi 0.5 Co 0.2 Mn 0.3 O 2 /Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode–electrolyte interface and an effective strategy to protect Li‐metal anodes in working Li‐metal batteries. Lithium-metal electrodes have undergone a comprehensive renaissance to meet the requirements of high-energy-density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium-metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper-fluoride-based solution and Li metal at room temperature. The as-obtained MCI film acts like the armor of a soldier to protect the Li-metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li-dendrite growth and work effectively in LiNi Co Mn O /Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode-electrolyte interface and an effective strategy to protect Li-metal anodes in working Li-metal batteries. Lithium-metal electrodes have undergone a comprehensive renaissance to meet the requirements of high-energy-density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium-metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper-fluoride-based solution and Li metal at room temperature. The as-obtained MCI film acts like the armor of a soldier to protect the Li-metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li-dendrite growth and work effectively in LiNi0.5 Co0.2 Mn0.3 O2 /Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode-electrolyte interface and an effective strategy to protect Li-metal anodes in working Li-metal batteries.Lithium-metal electrodes have undergone a comprehensive renaissance to meet the requirements of high-energy-density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium-metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper-fluoride-based solution and Li metal at room temperature. The as-obtained MCI film acts like the armor of a soldier to protect the Li-metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li-dendrite growth and work effectively in LiNi0.5 Co0.2 Mn0.3 O2 /Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode-electrolyte interface and an effective strategy to protect Li-metal anodes in working Li-metal batteries. Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode potential and the very high theoretical capacity. Unfortunately, the unstable interface between lithium and nonaqueous electrolyte induces dendritic Li and low Coulombic efficiency during repeated Li plating/stripping, which is one of the huge obstacles toward practical lithium‐metal batteries. Here, a composite mixed ionic/electronic conductor interphase (MCI) is formed on the surface of Li by in situ chemical reactions of a copper‐fluoride‐based solution and Li metal at room temperature. The as‐obtained MCI film acts like the armor of a soldier to protect the Li‐metal anode by its prioritized lithium storage, high ionic conductivity, and high Young's modulus. The armored MCI can effectively suppress Li‐dendrite growth and work effectively in LiNi0.5Co0.2Mn0.3O2/Li cells. The armored MCI presents fresh insights into the formation and regulation of the stable electrode–electrolyte interface and an effective strategy to protect Li‐metal anodes in working Li‐metal batteries. |
Author | Huang, Jia‐Qi Li, Hong Yao, Yu‐Xing Li, Wen‐Jun Zhang, Qiang Li, Bo‐Quan Cheng, Xin‐Bing Shen, Xin Zhang, Rui Yan, Chong |
Author_xml | – sequence: 1 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 2 givenname: Xin‐Bing surname: Cheng fullname: Cheng, Xin‐Bing organization: Tsinghua University – sequence: 3 givenname: Yu‐Xing surname: Yao fullname: Yao, Yu‐Xing organization: Tsinghua University – sequence: 4 givenname: Xin surname: Shen fullname: Shen, Xin organization: Tsinghua University – sequence: 5 givenname: Bo‐Quan surname: Li fullname: Li, Bo‐Quan organization: Tsinghua University – sequence: 6 givenname: Wen‐Jun surname: Li fullname: Li, Wen‐Jun organization: Chinese Academy of Sciences – sequence: 7 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Tsinghua University – sequence: 8 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology – sequence: 9 givenname: Hong surname: Li fullname: Li, Hong email: hli@iphy.ac.cn organization: Chinese Academy of Sciences – sequence: 10 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30259585$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9q3DAQh0VJSTZprj0WQy-9eDuSJdk6mk3SBnZpD-1ZyPpDFGxpK8m0ueUR-ox9kjps0kKg9DLDwPcNw_xO0VGIwSL0GsMaA5D3ykxqTQB3QCnHL9AKM4JrCoIdoRWIhtWC0-4EneZ8CwCCAz9GJw0QJljHVuhzH6o-TTFZU-38j6VuYjCzLjFV16HYtL9R2VYxVKq6sMEkX-yv-59Xydpq68uNn6dl3NmixqoP0dhX6KVTY7bnj_0Mfb26_LL5WG8_fbje9Nta07bDNRONNoZTrDFQht3gXIuB80HooeGamZbQVmOuqVPMcYE5axXtFOucG9iAmzP07rB3n-K32eYiJ5-1HUcVbJyzJBg3pOOEwIK-fYbexjmF5bqFagB4Rzu2UG8eqXmYrJH75CeV7uTTrxaAHgCdYs7JOql9UcXHUJLyo8QgHyKRD5HIP5Es2vqZ9rT5n4I4CN_9aO_-Q8v-Ytf_dX8DlXyd1w |
CitedBy_id | crossref_primary_10_1002_adma_202000223 crossref_primary_10_1016_j_jelechem_2023_117826 crossref_primary_10_1007_s40843_024_2914_x crossref_primary_10_1002_eem2_12861 crossref_primary_10_1016_j_electacta_2022_141464 crossref_primary_10_1002_anie_201900783 crossref_primary_10_1038_s41560_023_01405_6 crossref_primary_10_1002_adma_201905245 crossref_primary_10_1002_smll_201900687 crossref_primary_10_1016_j_cej_2021_128928 crossref_primary_10_1016_j_enchem_2022_100089 crossref_primary_10_1016_j_ensm_2020_09_017 crossref_primary_10_1016_j_cej_2021_132510 crossref_primary_10_1002_ange_202218014 crossref_primary_10_1021_acs_nanolett_1c04775 crossref_primary_10_1039_D3TA05793C crossref_primary_10_1016_j_cej_2021_134019 crossref_primary_10_1002_ange_201912701 crossref_primary_10_1002_adfm_202408296 crossref_primary_10_1007_s40820_024_01388_3 crossref_primary_10_1016_j_cej_2020_125122 crossref_primary_10_26599_NRE_2024_9120118 crossref_primary_10_1021_acssuschemeng_2c00243 crossref_primary_10_1002_anie_202310761 crossref_primary_10_1016_j_jpowsour_2022_231374 crossref_primary_10_1002_anie_202001989 crossref_primary_10_1002_aenm_202103589 crossref_primary_10_1016_j_mattod_2023_09_004 crossref_primary_10_1021_acsaem_4c02150 crossref_primary_10_1016_j_mtener_2020_100465 crossref_primary_10_1002_adfm_201908047 crossref_primary_10_1016_j_nanoen_2020_104860 crossref_primary_10_1002_aenm_202003039 crossref_primary_10_1007_s42864_023_00231_3 crossref_primary_10_1016_j_jallcom_2019_152862 crossref_primary_10_1002_adfm_202001607 crossref_primary_10_1021_acsami_0c11761 crossref_primary_10_1016_j_jechem_2022_09_007 crossref_primary_10_1016_j_jcis_2023_06_147 crossref_primary_10_1039_D4EE01359J crossref_primary_10_1016_j_ensm_2022_11_057 crossref_primary_10_1038_s41578_021_00320_0 crossref_primary_10_1002_adfm_201907717 crossref_primary_10_1002_adfm_202009694 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1021_acs_nanolett_0c04546 crossref_primary_10_1002_aesr_202000101 crossref_primary_10_1016_j_jpowsour_2019_227214 crossref_primary_10_1016_j_nanoen_2020_104731 crossref_primary_10_1002_adma_202312773 crossref_primary_10_1002_ange_202000375 crossref_primary_10_1039_D0SE01821J crossref_primary_10_1021_acsami_2c18224 crossref_primary_10_1073_pnas_2200392119 crossref_primary_10_1016_j_jallcom_2024_178118 crossref_primary_10_1002_aenm_202300611 crossref_primary_10_1002_smll_202001992 crossref_primary_10_1002_cey2_94 crossref_primary_10_1002_adma_202110323 crossref_primary_10_1016_j_joule_2020_06_016 crossref_primary_10_1039_D2EE03709B crossref_primary_10_1038_s41467_019_13436_3 crossref_primary_10_1021_acsami_9b02116 crossref_primary_10_1002_idm2_12042 crossref_primary_10_1002_adma_201905573 crossref_primary_10_1002_aenm_202003709 crossref_primary_10_1002_adma_202209028 crossref_primary_10_1002_cssc_202301777 crossref_primary_10_1016_j_jpowsour_2020_228191 crossref_primary_10_1016_j_jechem_2022_03_039 crossref_primary_10_1016_j_jcis_2024_07_246 crossref_primary_10_1002_cssc_202401183 crossref_primary_10_1016_j_cej_2024_152611 crossref_primary_10_1039_C9CS00838A crossref_primary_10_1016_j_ensm_2022_06_020 crossref_primary_10_1002_eem2_12745 crossref_primary_10_1021_acsnano_9b07710 crossref_primary_10_1021_acsnano_9b08008 crossref_primary_10_1016_j_jpowsour_2020_229428 crossref_primary_10_1021_acsami_9b00507 crossref_primary_10_1002_aenm_201901486 crossref_primary_10_1016_j_elecom_2022_107395 crossref_primary_10_1002_eem2_12383 crossref_primary_10_1021_acsaem_9b01416 crossref_primary_10_1002_adma_202303710 crossref_primary_10_1039_D3EE04243J crossref_primary_10_1016_j_rser_2025_115453 crossref_primary_10_1002_aenm_202203547 crossref_primary_10_1002_smll_201904216 crossref_primary_10_1002_elt2_72 crossref_primary_10_1016_j_ssi_2024_116585 crossref_primary_10_1039_D4YA00507D crossref_primary_10_1016_j_cej_2022_139348 crossref_primary_10_1016_j_cej_2024_154346 crossref_primary_10_1002_adfm_202310711 crossref_primary_10_1016_j_mtchem_2023_101735 crossref_primary_10_1002_aenm_202003381 crossref_primary_10_1007_s12598_021_01951_6 crossref_primary_10_1016_j_jechem_2022_09_030 crossref_primary_10_1038_s41467_019_13774_2 crossref_primary_10_1007_s12613_024_2996_3 crossref_primary_10_1002_aenm_202002297 crossref_primary_10_1039_D0CC05084A crossref_primary_10_1002_adma_202001740 crossref_primary_10_1016_j_xcrp_2023_101379 crossref_primary_10_1039_C9CC09318D crossref_primary_10_1002_adma_202307645 crossref_primary_10_1002_adfm_202108993 crossref_primary_10_1016_j_electacta_2019_03_162 crossref_primary_10_1016_j_scib_2020_07_012 crossref_primary_10_1021_acsaem_1c00290 crossref_primary_10_1016_j_ensm_2019_05_019 crossref_primary_10_1016_j_matt_2020_08_011 crossref_primary_10_1021_acsami_0c10047 crossref_primary_10_3390_batteries9040194 crossref_primary_10_1002_adfm_202007255 crossref_primary_10_1016_j_esci_2022_02_002 crossref_primary_10_1002_adma_201806470 crossref_primary_10_1007_s40843_021_1960_3 crossref_primary_10_1002_adma_202106005 crossref_primary_10_1016_j_coelec_2019_05_004 crossref_primary_10_1016_j_nanoen_2023_108922 crossref_primary_10_1002_adfm_202208735 crossref_primary_10_1002_ange_201912217 crossref_primary_10_3390_inorganics10010005 crossref_primary_10_1016_j_nanoen_2019_104399 crossref_primary_10_1039_D0EE00039F crossref_primary_10_1016_j_nanoen_2023_108370 crossref_primary_10_1002_smsc_202100066 crossref_primary_10_1021_acsenergylett_0c01896 crossref_primary_10_1039_D3EE00441D crossref_primary_10_1002_adma_202209511 crossref_primary_10_3390_physchem1010003 crossref_primary_10_1016_j_chempr_2018_12_002 crossref_primary_10_1002_adma_202206367 crossref_primary_10_1021_acs_jpcc_4c02475 crossref_primary_10_1002_adfm_202413176 crossref_primary_10_1016_j_matt_2020_03_015 crossref_primary_10_1002_aenm_202202323 crossref_primary_10_1016_j_ensm_2022_11_010 crossref_primary_10_1016_j_matt_2019_06_020 crossref_primary_10_1021_acsaem_2c00705 crossref_primary_10_3390_ijms231810440 crossref_primary_10_1016_j_ensm_2019_09_020 crossref_primary_10_1002_adfm_201902630 crossref_primary_10_1016_j_apsusc_2022_152885 crossref_primary_10_1016_j_jcis_2024_07_154 crossref_primary_10_1002_adfm_202403021 crossref_primary_10_1073_pnas_2316212121 crossref_primary_10_1039_D1QM00212K crossref_primary_10_1002_adma_201902785 crossref_primary_10_1002_eem2_12393 crossref_primary_10_1039_D1CC06630G crossref_primary_10_1016_j_jechem_2020_06_060 crossref_primary_10_3389_fchem_2022_916132 crossref_primary_10_1016_j_jelechem_2021_115499 crossref_primary_10_1021_acsami_9b14147 crossref_primary_10_1002_aenm_202202206 crossref_primary_10_1039_C9SC01845J crossref_primary_10_1002_aenm_202103332 crossref_primary_10_1002_smll_202102196 crossref_primary_10_1016_j_ensm_2022_11_029 crossref_primary_10_1039_C9TA00143C crossref_primary_10_1002_adma_201807585 crossref_primary_10_1002_inf2_12166 crossref_primary_10_1016_j_ensm_2022_11_022 crossref_primary_10_1016_j_jechem_2020_11_016 crossref_primary_10_1021_acsnano_2c05832 crossref_primary_10_1039_D3SC06347J crossref_primary_10_1002_adma_202300350 crossref_primary_10_1016_j_jallcom_2023_172780 crossref_primary_10_1016_j_matt_2020_07_005 crossref_primary_10_1002_adfm_201909035 crossref_primary_10_1016_j_cej_2021_129739 crossref_primary_10_1016_j_ensm_2021_02_033 crossref_primary_10_1002_aenm_201902254 crossref_primary_10_1016_j_ensm_2019_12_028 crossref_primary_10_1016_j_electacta_2022_141061 crossref_primary_10_1016_j_joule_2019_09_022 crossref_primary_10_1016_j_ensm_2023_102884 crossref_primary_10_1021_acsaem_1c01174 crossref_primary_10_1002_batt_202300093 crossref_primary_10_1016_j_mattod_2021_04_018 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1002_adfm_201909887 crossref_primary_10_1016_j_jechem_2021_03_046 crossref_primary_10_1039_D1TA00419K crossref_primary_10_1002_asia_201901668 crossref_primary_10_1039_D0TA07589B crossref_primary_10_1093_nsr_nwac183 crossref_primary_10_1016_j_jechem_2023_06_008 crossref_primary_10_1016_j_cej_2021_133689 crossref_primary_10_1002_adfm_202210639 crossref_primary_10_1039_D2CP04032H crossref_primary_10_1016_j_cej_2022_140375 crossref_primary_10_1016_j_ensm_2023_02_031 crossref_primary_10_1002_batt_202000225 crossref_primary_10_1002_advs_202101866 crossref_primary_10_1002_sstr_202000122 crossref_primary_10_1007_s12274_022_5179_4 crossref_primary_10_1016_j_ensm_2020_04_043 crossref_primary_10_1039_C9TA02407G crossref_primary_10_1002_adma_202102083 crossref_primary_10_1126_sciadv_aaz3112 crossref_primary_10_1016_j_nanoen_2024_110348 crossref_primary_10_1002_admi_202001698 crossref_primary_10_1007_s40820_023_01234_y crossref_primary_10_1007_s11426_019_9519_9 crossref_primary_10_1021_acsami_1c07624 crossref_primary_10_1007_s12274_020_2625_z crossref_primary_10_1039_D1QM00185J crossref_primary_10_1016_j_isci_2021_102578 crossref_primary_10_1016_j_trechm_2019_06_007 crossref_primary_10_1016_j_jechem_2020_08_029 crossref_primary_10_1002_aenm_202002360 crossref_primary_10_1002_anie_202000375 crossref_primary_10_1021_acsaem_2c03663 crossref_primary_10_1002_sstr_202200120 crossref_primary_10_1002_adfm_202301638 crossref_primary_10_1016_j_jallcom_2024_174123 crossref_primary_10_1016_j_matlet_2019_127194 crossref_primary_10_1002_adma_201904537 crossref_primary_10_1016_j_jallcom_2022_164307 crossref_primary_10_1002_adma_202106353 crossref_primary_10_1016_j_esci_2023_100201 crossref_primary_10_1002_ange_202001989 crossref_primary_10_1016_j_enchem_2021_100058 crossref_primary_10_1016_j_jcis_2023_01_125 crossref_primary_10_3389_fenrg_2022_837071 crossref_primary_10_1002_nano_202000003 crossref_primary_10_1002_nano_202000123 crossref_primary_10_1021_acsami_1c02868 crossref_primary_10_1002_adfm_201905940 crossref_primary_10_1039_D2NJ01827F crossref_primary_10_1016_j_apsusc_2020_147983 crossref_primary_10_1021_acsami_1c02621 crossref_primary_10_1039_D3CS00151B crossref_primary_10_1039_D2TA07035A crossref_primary_10_1016_j_compositesb_2022_110131 crossref_primary_10_1016_j_ensm_2019_08_024 crossref_primary_10_1016_j_jcis_2022_01_087 crossref_primary_10_1021_acsaem_1c00615 crossref_primary_10_1016_j_ensm_2019_04_041 crossref_primary_10_1002_smtd_202201598 crossref_primary_10_1021_acsami_9b13878 crossref_primary_10_1002_anie_201912217 crossref_primary_10_1002_qua_27507 crossref_primary_10_1016_j_cej_2020_128016 crossref_primary_10_1002_smll_201905171 crossref_primary_10_1016_j_ensm_2021_02_024 crossref_primary_10_1016_j_nanoen_2019_104242 crossref_primary_10_1039_D1QM00579K crossref_primary_10_1021_acs_jpclett_5c00459 crossref_primary_10_1039_C9CS00636B crossref_primary_10_1039_D1TA00956G crossref_primary_10_1016_j_est_2024_113836 crossref_primary_10_1021_acssuschemeng_9b03751 crossref_primary_10_1002_adma_202005967 crossref_primary_10_1039_D2QI01418A crossref_primary_10_1002_ange_201900783 crossref_primary_10_1021_acsami_2c00842 crossref_primary_10_1039_D1EE01404H crossref_primary_10_1016_j_ensm_2022_12_016 crossref_primary_10_1021_acsnano_3c08576 crossref_primary_10_1063_5_0108998 crossref_primary_10_1016_j_mtener_2022_101134 crossref_primary_10_1039_D2TA09182H crossref_primary_10_1016_j_matt_2019_05_016 crossref_primary_10_1021_acsami_0c17406 crossref_primary_10_1021_acsmaterialslett_2c00810 crossref_primary_10_1016_j_jechem_2020_04_043 crossref_primary_10_1039_D0TA10006D crossref_primary_10_1002_admt_201900806 crossref_primary_10_1002_smll_202201349 crossref_primary_10_1016_j_cej_2022_136592 crossref_primary_10_1016_j_ensm_2023_103138 crossref_primary_10_1021_acs_chemmater_9b02356 crossref_primary_10_1039_D0TA12508C crossref_primary_10_1002_aenm_201901764 crossref_primary_10_1002_adfm_202011109 crossref_primary_10_1016_j_ensm_2021_12_004 crossref_primary_10_1016_j_jpowsour_2019_227632 crossref_primary_10_1002_smll_202004688 crossref_primary_10_1016_j_electacta_2021_138485 crossref_primary_10_1016_j_mtnano_2019_100049 crossref_primary_10_1016_j_cej_2022_135705 crossref_primary_10_1002_adfm_201902499 crossref_primary_10_1007_s41918_021_00109_3 crossref_primary_10_1021_acsami_0c13283 crossref_primary_10_1021_acssuschemeng_3c00022 crossref_primary_10_1002_adfm_201907020 crossref_primary_10_1016_j_flatc_2024_100693 crossref_primary_10_1002_admi_202200457 crossref_primary_10_1016_j_nanoen_2021_106214 crossref_primary_10_1007_s12274_019_2368_x crossref_primary_10_1002_aenm_202101518 crossref_primary_10_1016_j_nanoen_2021_106212 crossref_primary_10_1021_acs_jpcc_1c00831 crossref_primary_10_1039_D4NJ00114A crossref_primary_10_1021_acsami_0c03471 crossref_primary_10_1038_s41565_022_01107_2 crossref_primary_10_1016_j_ensm_2020_03_022 crossref_primary_10_1002_aenm_201902989 crossref_primary_10_1002_aenm_202204007 crossref_primary_10_1002_smtd_201800551 crossref_primary_10_1021_acs_chemmater_9b05295 crossref_primary_10_1039_D1TA03343C crossref_primary_10_1002_cey2_169 crossref_primary_10_1002_smtd_202200735 crossref_primary_10_1016_j_electacta_2021_139561 crossref_primary_10_1016_j_jpowsour_2020_228178 crossref_primary_10_1016_j_est_2022_105955 crossref_primary_10_1016_j_cej_2019_123542 crossref_primary_10_1016_j_jpowsour_2021_230306 crossref_primary_10_1007_s40843_020_1655_3 crossref_primary_10_1002_ange_202310761 crossref_primary_10_1016_j_ensm_2024_103352 crossref_primary_10_1021_acsenergylett_1c01144 crossref_primary_10_1002_anie_201912701 crossref_primary_10_1016_j_carbon_2022_05_030 crossref_primary_10_1002_adma_201903248 crossref_primary_10_1002_anie_202218014 crossref_primary_10_1016_j_ensm_2022_10_053 crossref_primary_10_1016_j_ensm_2022_10_054 crossref_primary_10_1016_j_jcis_2021_07_108 crossref_primary_10_1039_D1EE00110H crossref_primary_10_1002_adma_201908494 crossref_primary_10_1002_anie_202114805 crossref_primary_10_1002_ange_202014265 crossref_primary_10_1002_aenm_202403585 crossref_primary_10_1002_smll_201900269 crossref_primary_10_1016_j_enchem_2019_100003 crossref_primary_10_1007_s11581_022_04461_2 crossref_primary_10_1016_j_eng_2018_10_008 crossref_primary_10_1002_adma_202008081 crossref_primary_10_1016_j_cej_2021_132970 crossref_primary_10_1016_j_cej_2024_153873 crossref_primary_10_1007_s41918_019_00054_2 crossref_primary_10_1002_aenm_201803722 crossref_primary_10_1002_ange_201913351 crossref_primary_10_1007_s10008_023_05719_z crossref_primary_10_1021_acsami_2c11632 crossref_primary_10_3390_molecules28020548 crossref_primary_10_1016_j_cej_2022_134637 crossref_primary_10_1021_acsnano_2c07049 crossref_primary_10_1002_batt_202200232 crossref_primary_10_1002_batt_202200231 crossref_primary_10_1016_j_cej_2023_144990 crossref_primary_10_1002_smtd_202200980 crossref_primary_10_1016_j_ensm_2022_08_046 crossref_primary_10_1016_j_cej_2021_132839 crossref_primary_10_1002_adma_202007428 crossref_primary_10_1021_acsami_0c10463 crossref_primary_10_1038_s41467_019_11168_y crossref_primary_10_1039_D2TA02162E crossref_primary_10_1039_C9EE01903K crossref_primary_10_1007_s40843_020_1498_8 crossref_primary_10_1016_j_ensm_2019_07_026 crossref_primary_10_1016_j_nantod_2024_102556 crossref_primary_10_1002_anie_202014265 crossref_primary_10_1039_D0MH01030H crossref_primary_10_1002_ange_202114805 crossref_primary_10_1002_aenm_202405628 crossref_primary_10_1016_j_nanoen_2020_104889 crossref_primary_10_1021_acsami_1c02951 crossref_primary_10_1021_acs_nanolett_0c00819 crossref_primary_10_1016_j_ensm_2019_02_006 crossref_primary_10_1002_anie_201913351 crossref_primary_10_1021_acsenergylett_3c01357 |
Cites_doi | 10.1021/jacs.7b05251 10.1039/b908149f 10.1021/ja412807w 10.1038/s41467-017-00519-2 10.1016/j.chempr.2017.01.003 10.1021/cm902050j 10.1021/acs.chemrev.7b00115 10.1021/acsami.5b02904 10.1002/adma.201703891 10.1038/nenergy.2017.12 10.1021/acsenergylett.7b00163 10.1002/adma.201606823 10.1038/nenergy.2016.114 10.1088/1674-1056/25/7/078203 10.1021/acs.chemmater.5b04278 10.1093/nsr/nww078 10.1002/adma.201705105 10.1016/j.ensm.2016.09.003 10.1002/advs.201600517 10.1002/adma.201603755 10.1038/nnano.2017.16 10.1016/j.ensm.2018.03.008 10.1149/2.0021514jes 10.1038/nmat4041 10.1021/acsenergylett.8b00526 10.1149/2.1301608jes 10.1038/ncomms8436 10.1149/1.1801451 10.1039/C7CS00139H 10.1021/ja312241y 10.1016/0167-2738(83)90045-0 10.1016/j.jpowsour.2016.07.056 10.1038/nmat4821 10.1002/aenm.201501933 10.1002/anie.201707093 10.1063/1.89283 10.1021/acs.chemmater.7b00091 10.1002/adma.201504526 10.1016/j.ensm.2018.02.014 10.1149/1.3148721 10.1149/1.1850854 10.1002/adma.201605531 10.1016/S0378-7753(02)00002-2 10.1149/1.2128859 10.1021/jp503902z 10.1016/S0013-4686(01)00858-1 10.1016/j.ensm.2017.12.002 10.1021/acs.accounts.7b00402 10.1002/aenm.201402273 10.1021/acsenergylett.6b00200 10.1021/acsnano.5b02166 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201804461 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30259585 10_1002_adma_201804461 ADMA201804461 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2016YFA0202500; 2016YFA0200102; 2015CB932500 – fundername: National Natural Scientific Foundation of China funderid: 21676160; 21776019; 21805161; 21808121 – fundername: Beijing Key Research and Development Plan funderid: Z181100004518001 – fundername: China Post‐Doctoral Science Foundation funderid: 2018M631480; BX201700125 – fundername: National Key Research and Development Program grantid: 2016YFA0202500 – fundername: China Post-Doctoral Science Foundation grantid: BX201700125 – fundername: National Natural Scientific Foundation of China grantid: 21808121 – fundername: Beijing Key Research and Development Plan grantid: Z181100004518001 – fundername: National Key Research and Development Program grantid: 2016YFA0200102 – fundername: China Post-Doctoral Science Foundation grantid: 2018M631480 – fundername: National Natural Scientific Foundation of China grantid: 21805161 – fundername: National Natural Scientific Foundation of China grantid: 21676160 – fundername: National Key Research and Development Program grantid: 2015CB932500 – fundername: National Natural Scientific Foundation of China grantid: 21776019 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4781-593cdd641c10451fbff71066b9cb36c5d7247c16c4fa5f691657a48a58ffb5b13 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 02:06:55 EDT 2025 Fri Jul 25 03:10:02 EDT 2025 Thu Apr 03 07:10:03 EDT 2025 Tue Jul 01 00:44:45 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Wed Jan 22 17:00:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | mixed conductor interface lithium-metal batteries cupric fluoride dendrite growth lithium-metal anodes |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4781-593cdd641c10451fbff71066b9cb36c5d7247c16c4fa5f691657a48a58ffb5b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PMID | 30259585 |
PQID | 2130068485 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2113286220 proquest_journals_2130068485 pubmed_primary_30259585 crossref_citationtrail_10_1002_adma_201804461 crossref_primary_10_1002_adma_201804461 wiley_primary_10_1002_adma_201804461_ADMA201804461 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2017; 6 2015 2016; 162 25 1979; 126 2017; 8 2017; 2 2005; 152 1977 1983; 30 11 2015 2016; 6 327 2009; 156 2017; 29 2017 2017 2018; 117 12 14 2015; 9 2017 2017 2016 2009 2017 2018; 29 46 4 21 50 12 2014; 136 2016 2018 2015; 1 15 5 2017; 139 2009; 11 2002; 47 2016; 6 2018; 3 2016; 1 2017; 16 2004; 151 2014 2015 2017 2017; 13 7 56 4 2013; 135 2018; 30 2002; 108 2016; 28 2016 2016; 28 163 e_1_2_4_21_1 e_1_2_4_23_1 e_1_2_4_25_1 e_1_2_4_27_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_9_2 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_14_2 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_16_2 e_1_2_4_20_1 e_1_2_4_22_1 e_1_2_4_24_1 e_1_2_4_26_1 e_1_2_4_28_1 e_1_2_4_2_2 e_1_2_4_2_1 e_1_2_4_2_4 e_1_2_4_4_2 e_1_2_4_2_3 e_1_2_4_4_1 e_1_2_4_2_6 e_1_2_4_2_5 e_1_2_4_4_3 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_30_2 e_1_2_4_11_1 e_1_2_4_32_3 e_1_2_4_34_1 e_1_2_4_32_2 e_1_2_4_13_1 e_1_2_4_32_4 e_1_2_4_15_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 126 start-page: 2047 year: 1979 publication-title: J. Electrochem. Soc. – volume: 30 start-page: 1703891 year: 2018 publication-title: Adv. Mater. – volume: 29 start-page: 1605531 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 336 year: 2017 publication-title: Nat. Commun. – volume: 29 start-page: 1603755 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 1501933 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 327 start-page: 7436 212 year: 2015 2016 publication-title: Nat. Commun. J. Power Sources – volume: 3 start-page: 1564 year: 2018 publication-title: ACS Energy Lett. – volume: 152 start-page: A396 year: 2005 publication-title: J. Electrochem. Soc. – volume: 13 7 56 4 start-page: 961 18985 14207 1600517 year: 2014 2015 2017 2017 publication-title: Nat. Mater. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Adv. Sci. – volume: 139 start-page: 11550 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 15169 year: 2014 publication-title: J. Phys. Chem. C – volume: 9 start-page: 5884 year: 2015 publication-title: ACS Nano – volume: 151 start-page: A1878 year: 2004 publication-title: J. Electrochem. Soc. – volume: 108 start-page: 64 year: 2002 publication-title: J. Power Sources – volume: 1 15 5 start-page: 542 8 1402273 year: 2016 2018 2015 publication-title: ACS Energy Lett. Energy Storage Mater. Adv. Energy Mater. – volume: 11 start-page: 9497 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 16114 year: 2016 publication-title: Nat. Energy – volume: 2 start-page: 1337 year: 2017 publication-title: ACS Energy Lett. – volume: 28 163 start-page: 848 A1776 year: 2016 2016 publication-title: Chem. Mater. J. Electrochem. Soc. – volume: 117 12 14 start-page: 10403 194 22 year: 2017 2017 2018 publication-title: Chem. Rev. Nat. Nanotechnol. Energy Storage Mater. – volume: 30 11 start-page: 621 97 year: 1977 1983 publication-title: Appl. Phys. Lett. Solid State Ionics – volume: 162 25 start-page: A2387 078203 year: 2015 2016 publication-title: J. Electrochem. Soc. Chin. Phys. B – volume: 6 start-page: 18 year: 2017 publication-title: Energy Storage Mater. – volume: 2 start-page: 17012 year: 2017 publication-title: Nat. Energy – volume: 16 start-page: 572 year: 2017 publication-title: Nat. Mater. – volume: 29 start-page: 4682 year: 2017 publication-title: Chem. Mater. – volume: 47 start-page: 1423 year: 2002 publication-title: Electrochim. Acta – volume: 28 start-page: 1853 year: 2016 publication-title: Adv. Mater. – volume: 29 46 4 21 50 12 start-page: 1606823 5237 54 4724 2642 161 year: 2017 2017 2016 2009 2017 2018 publication-title: Adv. Mater. Chem. Soc. Rev. Natl. Sci. Rev. Chem. Mater. Acc. Chem. Res. Energy Storage Mater. – volume: 2 start-page: 258 year: 2017 publication-title: Chemistry – volume: 136 start-page: 5039 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1705105 year: 2018 publication-title: Adv. Mater. – volume: 156 start-page: A694 year: 2009 publication-title: J. Electrochem. Soc. – volume: 135 start-page: 4450 year: 2013 publication-title: J. Am. Chem. Soc. – ident: e_1_2_4_24_1 doi: 10.1021/jacs.7b05251 – ident: e_1_2_4_28_1 doi: 10.1039/b908149f – ident: e_1_2_4_17_1 doi: 10.1021/ja412807w – ident: e_1_2_4_10_1 doi: 10.1038/s41467-017-00519-2 – ident: e_1_2_4_22_1 doi: 10.1016/j.chempr.2017.01.003 – ident: e_1_2_4_2_4 doi: 10.1021/cm902050j – ident: e_1_2_4_1_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_4_32_2 doi: 10.1021/acsami.5b02904 – ident: e_1_2_4_3_1 doi: 10.1002/adma.201703891 – ident: e_1_2_4_15_1 doi: 10.1038/nenergy.2017.12 – ident: e_1_2_4_11_1 doi: 10.1021/acsenergylett.7b00163 – ident: e_1_2_4_2_1 doi: 10.1002/adma.201606823 – ident: e_1_2_4_6_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_4_14_2 doi: 10.1088/1674-1056/25/7/078203 – ident: e_1_2_4_16_1 doi: 10.1021/acs.chemmater.5b04278 – ident: e_1_2_4_2_3 doi: 10.1093/nsr/nww078 – ident: e_1_2_4_35_1 doi: 10.1002/adma.201705105 – ident: e_1_2_4_5_1 doi: 10.1016/j.ensm.2016.09.003 – ident: e_1_2_4_32_4 doi: 10.1002/advs.201600517 – ident: e_1_2_4_33_1 doi: 10.1002/adma.201603755 – ident: e_1_2_4_1_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_4_4_2 doi: 10.1016/j.ensm.2018.03.008 – ident: e_1_2_4_14_1 doi: 10.1149/2.0021514jes – ident: e_1_2_4_32_1 doi: 10.1038/nmat4041 – ident: e_1_2_4_23_1 doi: 10.1021/acsenergylett.8b00526 – ident: e_1_2_4_16_2 doi: 10.1149/2.1301608jes – ident: e_1_2_4_9_1 doi: 10.1038/ncomms8436 – ident: e_1_2_4_27_1 doi: 10.1149/1.1801451 – ident: e_1_2_4_2_2 doi: 10.1039/C7CS00139H – ident: e_1_2_4_13_1 doi: 10.1021/ja312241y – ident: e_1_2_4_30_2 doi: 10.1016/0167-2738(83)90045-0 – ident: e_1_2_4_9_2 doi: 10.1016/j.jpowsour.2016.07.056 – ident: e_1_2_4_20_1 doi: 10.1038/nmat4821 – ident: e_1_2_4_25_1 doi: 10.1002/aenm.201501933 – ident: e_1_2_4_32_3 doi: 10.1002/anie.201707093 – ident: e_1_2_4_30_1 doi: 10.1063/1.89283 – ident: e_1_2_4_34_1 doi: 10.1021/acs.chemmater.7b00091 – ident: e_1_2_4_18_1 doi: 10.1002/adma.201504526 – ident: e_1_2_4_1_3 doi: 10.1016/j.ensm.2018.02.014 – ident: e_1_2_4_8_1 doi: 10.1149/1.3148721 – ident: e_1_2_4_29_1 doi: 10.1149/1.1850854 – ident: e_1_2_4_19_1 doi: 10.1002/adma.201605531 – ident: e_1_2_4_31_1 doi: 10.1016/S0378-7753(02)00002-2 – ident: e_1_2_4_7_1 doi: 10.1149/1.2128859 – ident: e_1_2_4_26_1 doi: 10.1021/jp503902z – ident: e_1_2_4_12_1 doi: 10.1016/S0013-4686(01)00858-1 – ident: e_1_2_4_2_6 doi: 10.1016/j.ensm.2017.12.002 – ident: e_1_2_4_2_5 doi: 10.1021/acs.accounts.7b00402 – ident: e_1_2_4_4_3 doi: 10.1002/aenm.201402273 – ident: e_1_2_4_4_1 doi: 10.1021/acsenergylett.6b00200 – ident: e_1_2_4_21_1 doi: 10.1021/acsnano.5b02166 |
SSID | ssj0009606 |
Score | 2.6782196 |
Snippet | Lithium‐metal electrodes have undergone a comprehensive renaissance to meet the requirements of high‐energy‐density batteries due to their lowest electrode... Lithium-metal electrodes have undergone a comprehensive renaissance to meet the requirements of high-energy-density batteries due to their lowest electrode... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1804461 |
SubjectTerms | Anode effect Anodic protection Armor Chemical reactions Conductors cupric fluoride dendrite growth Dendritic structure Electrodes Electrolytes Electrolytic cells Ion currents Lithium Lithium batteries lithium‐metal anodes lithium‐metal batteries Materials science mixed conductor interface Modulus of elasticity Nonaqueous electrolytes Organic chemistry Protective coatings |
Title | An Armored Mixed Conductor Interphase on a Dendrite‐Free Lithium‐Metal Anode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804461 https://www.ncbi.nlm.nih.gov/pubmed/30259585 https://www.proquest.com/docview/2130068485 https://www.proquest.com/docview/2113286220 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeD-KQP3i_zRgXBp8y1TbLmcahDxImIwt5KrjjUVGYH4pMfwc_oJzGn3bpNEUFfSksSkiY5zf80yS8IHXBrNeUNhZmmAhNNFOay0cSRoVRoGnuXoqB9XrKzW3Lepd2JXfwlH6L64QaWUXyvwcCFfD4aQ0OFLrhBYQJTkuD_wIItUEXXY34UyPMCthdTzBlJRtTGRnQ0nXx6VPomNaeVazH0tBeRGBW6XHFyXx_ksq5ev_Ac__NWS2hhqEuDVtmRltGMcStofoJWuIquWs6Hw8JcHXR6L_56nDnAxWb9oFy7eOeHxCBzgQhOjNN9r2Y_3t7bfWOCi15-1xs8-seOySEfl2mzhm7bpzfHZ3h4IANWsCMVUx4rrRkJVQhYGiut9QKFMcmVjJmiuhmRpgqZIlZQy7zypE1BEkETayWVYbyOZl3mzCYKgArPFGOJTGKiuBTWKw9NrI8ktOS0hvCoQVI1pJXDoRkPaclZjlKoqbSqqRo6rOI_lZyOH2PujNo3HdrrcxrBrB5LSOIz3q-CvaXB9IlwJhtAHO-5ewcwatTQRtkvqqxiLx05hdRR0bq_lCFtnXRa1dPWXxJtozm4L7dF7qDZvD8wu14f5XKvsIFPKpYGLw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_BcWChgJxCntxrG9yYHDqstqS3crhFqpt-BfdQU4aJsVPycegVfhVXgEngRP_sqCEBJSD1wiOR7Hjj3jmbHHnwEeZc4ZnvV1JAyXETNMR5nqDyJqOZeGJ8GlqNA-98XkkD0_4kdr8LU9C1PjQ3QLbigZ1XyNAo4L0tunqKHSVMBBcYp7knETV7lnP74PXtvJ091RGOLHlI6fHexMouZigUjjycqIZ4k2RrBYxwiv4pRzQdEKoTKtEqG5GVA20LHQzEnuRLCg-ECyVPLUOcVVnITvnoPzeI04wvWPXp4iVqFDUMH7JTzKBEtbnMg-3V5t76oe_M24XbWVK2U3vgLf2m6qY1xeby1LtaU__YIg-V_141W43JjeZFjLyjVYs_46XPoJkPEGvBj6kI-xx4bM5h_Cc6fwiIhbLEgdnnkctD4pPJFkZL1ZBIP9--cv44W1ZDovj-fLtyE5syXW4wtjb8LhmfzSBqz7wtvbQBD4XmghUpUmTGdKumBcGeYCkTQq4z2IWg7IdQPIjveCvMlrKGma48jk3cj04ElH_66GIvkj5WbLUHkzJZ3kFDcuRcrSUPHDLjtMJrhDJL0tlkgTJzT4uLTfg1s1I3ZVJcE6zjiWphU7_aUN-XA0G3apO_9S6AFcmBzMpvl0d3_vLlzE9_Up0E1YLxdLey-Yg6W6XwkggVdnzak_APhKY40 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUJ0Ud50oECQQKzcJo7tiRcsRg2jlnaqClGpu-CnOio41TQjHis-gU_hV_gFvgQ7rzIghITUBZtIjm9ix772PTe-PgZ4wq3VlMcKMU0FIpooxGU8RNhQKjRNvUtRs33us-1D8vKIHi3B124vTMMP0f9wCyOjnq_DAD_VdvOcNFTomjcoycKSZNKGVe6aj--903b2fCf3PfwU4_GL11vbqD1XAKmwsRJRniqtGUlUEthVrLTW21nGJFcyZYrqISZDlTBFrKCWeQBFh4JkgmbWSiqT1L_3ElwmLObhsIj81TlhVfAHana_lCLOSNbRRMZ4c7G-i2bwN2y7CJVrWze-Bt-6VmpCXE425pXcUJ9-IZD8n5rxOqy2wDsaNSPlBiwZdxNWfqJjvAUHI-fzQ-SxjibTD_66VbrAh1vOoiY489jb_Kh0kYhy4_TMw_Xvn7-MZ8ZEe9PqeDp_55MTU4VyXKnNbTi8kE-6A8uudGYNokB7zxRjmcxSorgU1kMrTawXElpyOgDUKUChWjr2cCrI26IhksZF6Jmi75kBPOvlTxsikj9Krnf6VLQT0lmBw7Ily0jmC37cZ_upJKwPCWfKeZBJUuw9XBwP4G6jh31RqcfGnIanca1Nf6lDMconoz51718eegRXDvJxsbezv3sfrobbzRbQdViuZnPzwGPBSj6sh18Eby5aUX8ARg9iPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Armored+Mixed+Conductor+Interphase+on+a+Dendrite%E2%80%90Free+Lithium%E2%80%90Metal+Anode&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chong%2C+Yan&rft.au=Xin%E2%80%90Bing+Cheng&rft.au=Yu%E2%80%90Xing+Yao&rft.au=Shen%2C+Xin&rft.date=2018-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=45&rft_id=info:doi/10.1002%2Fadma.201804461&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |