Biodegradable Natural Pectin‐Based Flexible Multilevel Resistive Switching Memory for Transient Electronics

Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed a...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 4; pp. e1803970 - n/a
Main Authors Xu, Jiaqi, Zhao, Xiaoning, Wang, Zhongqiang, Xu, Haiyang, Hu, Junli, Ma, Jiangang, Liu, Yichun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next‐generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high‐density secure information storage systems applications, flexible electronics, and green electronics. Biocompatible pectin extracted from natural orange peel is introduced to fabricate flexible multilevel resistive switching (RS) memory devices (Ag/pectin/indium tin oxides). The device exhibits excellent RS characteristics and it can be dissolved in deionized water rapidly thanks to the good solubility of pectin arising from ionization of its carboxylic groups.
AbstractList Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next‐generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high‐density secure information storage systems applications, flexible electronics, and green electronics. Biocompatible pectin extracted from natural orange peel is introduced to fabricate flexible multilevel resistive switching (RS) memory devices (Ag/pectin/indium tin oxides). The device exhibits excellent RS characteristics and it can be dissolved in deionized water rapidly thanks to the good solubility of pectin arising from ionization of its carboxylic groups.
Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next‐generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high‐density secure information storage systems applications, flexible electronics, and green electronics.
Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next-generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high-density secure information storage systems applications, flexible electronics, and green electronics.Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next-generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high-density secure information storage systems applications, flexible electronics, and green electronics.
Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next‐generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>10 4 s), and multilevel RS behaviors. The device performance is not degraded after 10 4 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high‐density secure information storage systems applications, flexible electronics, and green electronics.
Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next-generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>10 s), and multilevel RS behaviors. The device performance is not degraded after 10 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high-density secure information storage systems applications, flexible electronics, and green electronics.
Author Hu, Junli
Liu, Yichun
Zhao, Xiaoning
Xu, Jiaqi
Ma, Jiangang
Wang, Zhongqiang
Xu, Haiyang
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Xu
  fullname: Xu, Jiaqi
  organization: Northeast Normal University
– sequence: 2
  givenname: Xiaoning
  surname: Zhao
  fullname: Zhao, Xiaoning
  email: zhaoxn430@nenu.edu.cn
  organization: Northeast Normal University
– sequence: 3
  givenname: Zhongqiang
  surname: Wang
  fullname: Wang, Zhongqiang
  organization: Northeast Normal University
– sequence: 4
  givenname: Haiyang
  surname: Xu
  fullname: Xu, Haiyang
  email: hyxu@nenu.edu.cn
  organization: Northeast Normal University
– sequence: 5
  givenname: Junli
  surname: Hu
  fullname: Hu, Junli
  organization: Northeast Normal University
– sequence: 6
  givenname: Jiangang
  surname: Ma
  fullname: Ma, Jiangang
  organization: Northeast Normal University
– sequence: 7
  givenname: Yichun
  surname: Liu
  fullname: Liu, Yichun
  organization: Northeast Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30500108$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URNtptyyRJTbdzHAdJ06ypFULSDOA-rO2HPumuHLsYjsts-MReEaehIymLVIlxMpXuud8su63T3Z88EjIawYLBlC8S4NziwJYA7yt4QXZY4LxuWiKdudpZrBL9lO6AeCsKOtXZJdDBcCg2SPDsQ0Gr6MyqnNIP6s8RuXoV9TZ-t8_fx2rhIaeOfxhN_vV6LJ1eIeOnmOyKds7pBf3Nutv1l_TFQ4hrmkfIr2MyieLPtNTN4XF4K1OB-Rlr1zCw4d3Rq7OTi9PPs6XXz58Onm_nOuybmCuuOiU6GtT9a3QteFY6U4bUyuhKm2gF12hONQVKNVOSyHaCrlRBbKCd6XgM3K0zb2N4fuIKcvBJo3OKY9hTLJgJYOybab7zMjbZ-hNGKOffjdRNTQFb0U7UW8eqLEb0MjbaAcV1_LxkBNQbgEdQ0oRe6ltVtkGn6OyTjKQm77kpi_51NekLZ5pj8n_FNqtcD_VsP4PLS9Wy-Vf9w8D5qqw
CitedBy_id crossref_primary_10_1016_j_mtchem_2019_04_008
crossref_primary_10_1007_s40995_022_01272_y
crossref_primary_10_1002_slct_202400405
crossref_primary_10_1039_D0TC04655H
crossref_primary_10_1063_5_0047641
crossref_primary_10_1002_aisy_202000007
crossref_primary_10_1063_5_0191005
crossref_primary_10_1021_acs_jpclett_1c02815
crossref_primary_10_1039_D2NR04551F
crossref_primary_10_3390_coatings11030318
crossref_primary_10_1021_acsami_2c15332
crossref_primary_10_1088_1674_4926_42_1_014103
crossref_primary_10_3390_nano12223976
crossref_primary_10_1109_LED_2021_3075835
crossref_primary_10_3390_polym16202949
crossref_primary_10_1016_j_jallcom_2019_153247
crossref_primary_10_1209_0295_5075_127_26001
crossref_primary_10_1002_aisy_202200272
crossref_primary_10_1002_adma_202104023
crossref_primary_10_1007_s12648_020_01818_z
crossref_primary_10_1039_C9CC04069B
crossref_primary_10_1039_D3TC03034B
crossref_primary_10_1002_adma_202403937
crossref_primary_10_1007_s40843_022_2115_6
crossref_primary_10_1007_s10854_022_08795_5
crossref_primary_10_1063_5_0171193
crossref_primary_10_1002_adma_202102520
crossref_primary_10_1016_j_nanoen_2023_108569
crossref_primary_10_1002_adma_202105020
crossref_primary_10_1039_D3TC04507B
crossref_primary_10_1021_acsaelm_2c00687
crossref_primary_10_1016_j_cej_2023_144678
crossref_primary_10_1016_j_jcis_2021_10_126
crossref_primary_10_1016_j_mssp_2019_104673
crossref_primary_10_1021_acsapm_0c00439
crossref_primary_10_1002_adma_202314156
crossref_primary_10_1021_acsami_0c10796
crossref_primary_10_1002_admt_202100744
crossref_primary_10_1039_D2NR01996E
crossref_primary_10_4028_p_TBXv2r
crossref_primary_10_1002_aelm_202100432
crossref_primary_10_1002_inf2_12350
crossref_primary_10_3389_fnano_2021_821687
crossref_primary_10_1088_1674_1056_abc67a
crossref_primary_10_3390_nano11081973
crossref_primary_10_1039_C9TC00431A
crossref_primary_10_1002_aisy_202000155
crossref_primary_10_1002_inf2_12120
crossref_primary_10_1039_D4TC03877K
crossref_primary_10_1021_acsnano_0c10049
crossref_primary_10_1680_jnaen_24_00077
crossref_primary_10_1002_adfm_201909114
crossref_primary_10_1002_adma_202104446
crossref_primary_10_1021_acsami_1c05590
crossref_primary_10_3390_nano10030559
crossref_primary_10_1016_j_matt_2020_08_021
crossref_primary_10_1007_s10853_021_06323_0
crossref_primary_10_1016_j_jallcom_2021_162180
crossref_primary_10_1021_acssuschemeng_9b07168
crossref_primary_10_1002_smll_202005659
crossref_primary_10_1002_inf2_12012
crossref_primary_10_1039_D0RA08784J
crossref_primary_10_1088_2634_4386_ad409a
crossref_primary_10_1063_5_0067453
crossref_primary_10_1039_C9RA00726A
crossref_primary_10_1063_1_5096197
crossref_primary_10_1016_j_compositesb_2021_109307
crossref_primary_10_1021_acs_nanolett_2c02765
crossref_primary_10_1088_1674_4926_41_5_051205
crossref_primary_10_1038_s41598_023_32860_6
crossref_primary_10_35848_1347_4065_ab853a
crossref_primary_10_1021_acsaelm_3c01611
crossref_primary_10_1002_smsc_202200028
crossref_primary_10_1002_aelm_202100322
crossref_primary_10_1007_s42114_022_00599_9
crossref_primary_10_1039_C9RA09847J
crossref_primary_10_1002_adma_202211202
crossref_primary_10_1088_1361_6528_ac8f51
crossref_primary_10_1109_TED_2021_3105572
crossref_primary_10_1002_smll_202100102
crossref_primary_10_1039_D2TC03867F
crossref_primary_10_1371_journal_pone_0309469
crossref_primary_10_1021_acsapm_1c00485
crossref_primary_10_1063_5_0065324
crossref_primary_10_1038_s41378_021_00261_2
crossref_primary_10_1149_2162_8777_ac67af
crossref_primary_10_1063_5_0016485
crossref_primary_10_1002_advs_202306206
crossref_primary_10_1021_acsaelm_3c01663
crossref_primary_10_1088_1361_6528_aca1ca
crossref_primary_10_1002_admt_202201031
crossref_primary_10_1002_adma_202405328
crossref_primary_10_1021_acsaelm_1c00517
crossref_primary_10_1021_acsaelm_1c00357
crossref_primary_10_1002_adom_201900766
crossref_primary_10_1016_j_cej_2023_144981
crossref_primary_10_1016_j_mtsust_2020_100057
crossref_primary_10_1039_D2MA00820C
crossref_primary_10_1016_j_matdes_2021_109845
crossref_primary_10_1039_D0NR05858K
crossref_primary_10_1016_j_mssp_2020_105110
crossref_primary_10_1088_1361_6463_ac585b
crossref_primary_10_1039_C9NR08001E
crossref_primary_10_3390_mi11060580
crossref_primary_10_1038_s41427_021_00307_x
crossref_primary_10_1039_D1MH01433A
crossref_primary_10_1515_ntrev_2021_0047
crossref_primary_10_1021_acsami_3c14581
crossref_primary_10_1021_acsami_0c16040
crossref_primary_10_1039_D0TC03668D
crossref_primary_10_1039_C9TC06230K
crossref_primary_10_1021_acs_chemrev_9b00730
Cites_doi 10.1038/nnano.2009.456
10.1021/acsnano.7b08331
10.1109/TNANO.2005.846936
10.1002/adfm.201302246
10.1016/j.orgel.2016.12.037
10.1039/c3nr33692a
10.1063/1.2818691
10.1023/A:1016016404404
10.1038/ncomms1737
10.1007/s11581-014-1306-x
10.1002/adfm.201001520
10.1016/j.carbon.2015.04.031
10.1109/LED.2017.2774842
10.1016/j.carbpol.2013.05.052
10.1063/1.2956703
10.1088/0957-4484/21/4/045202
10.1021/nn5055909
10.1039/C3CS60235D
10.1021/acs.biomac.7b01605
10.1002/smll.201600893
10.1063/1.5002571
10.1126/science.1226325
10.1088/0957-4484/22/27/275204
10.1088/0022-3727/43/38/385105
10.1002/smll.201401690
10.1002/smll.201604306
10.1002/smll.201800945
10.1039/C8TC01844H
10.1002/adma.201306050
10.1039/b901026b
10.1002/aelm.201500186
10.1021/acs.jpcc.8b03075
10.1063/1.1352027
10.1038/nmat2023
10.1063/1.4893277
10.1002/adma.201405728
10.1021/acsami.5b10414
10.1002/adma.200900375
10.1002/adma.201301983
10.1021/acsami.7b19586
10.1021/acs.chemmater.5b04931
10.1073/pnas.1701478114
10.1002/adfm.201502592
10.1002/smll.201702525
10.1088/0957-4484/24/34/345202
10.1002/smll.201502906
10.1103/PhysRevB.74.035426
10.1063/1.2828864
10.1021/acs.chemrev.6b00225
10.1002/adma.201705193
10.1063/1.4817970
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201803970
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30500108
10_1002_smll_201803970
SMLL201803970
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: “111” Project
  funderid: B13013
– fundername: Fund from Jilin Province
  funderid: 20160101324JC; 20180520186JH
– fundername: NSFC
  funderid: 51701037; 51732003; 61774031; 51872043; 61574031
– fundername: National Natural Science Foundation of China (NSFC) for Excellent Young Scholars
  funderid: 51422201
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4780-a36ba6f7d5f96c7d3e5cbcdd7a6a5cd0f6b2a30750aa93e56695e3da2e123b463
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:52:49 EDT 2025
Fri Jul 25 10:24:30 EDT 2025
Wed Feb 19 02:31:39 EST 2025
Thu Apr 24 23:12:59 EDT 2025
Tue Jul 01 02:10:39 EDT 2025
Wed Jan 22 16:31:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords biodegradable
resistive switching
flexible
multilevel
pectin
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4780-a36ba6f7d5f96c7d3e5cbcdd7a6a5cd0f6b2a30750aa93e56695e3da2e123b463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30500108
PQID 2170823969
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2141049861
proquest_journals_2170823969
pubmed_primary_30500108
crossref_citationtrail_10_1002_smll_201803970
crossref_primary_10_1002_smll_201803970
wiley_primary_10_1002_smll_201803970_SMLL201803970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 42
2018; 122
2006; 74
2013; 25
2013; 24
2014; 26
2014; 24
2008; 104
2017; 111
2001; 89
2013; 5
2017; 114
2016; 37
2018; 6
2009; 11
2010; 21
2018; 39
2013; 97
2007; 6
2011; 22
2011; 21
2018; 30
2016; 116
2015; 91
2010; 5
2012; 337
2014; 10
2015; 1
2009; 21
2013; 103
2007; 91
2015; 9
1996; 13
2008; 92
2014; 43
2016; 12
2018; 19
2014; 105
2010; 43
2015; 25
2012; 3
2015; 27
2017; 13
2015; 21
2005; 4
2018; 12
2016; 28
2018; 10
2016; 8
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Wu S. (e_1_2_7_10_1) 2016; 37
References_xml – volume: 104
  start-page: 023709
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 74
  start-page: 035426
  year: 2006
  publication-title: Phys. Rev. B
– volume: 114
  start-page: 5107
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 97
  start-page: 703
  year: 2013
  publication-title: Carbohydr. Polym.
– volume: 26
  start-page: 3905
  year: 2014
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1430
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 345202
  year: 2013
  publication-title: Nanotechnology
– volume: 5
  start-page: 148
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 419
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 833
  year: 2007
  publication-title: Nat. Mater.
– volume: 43
  start-page: 588
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 103
  start-page: 062104
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 013503
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 5498
  year: 2013
  publication-title: Adv. Mater.
– volume: 43
  start-page: 385105
  year: 2010
  publication-title: J. Phys. D: Appl. Phys.
– volume: 22
  start-page: 275204
  year: 2011
  publication-title: Nanotechnology
– volume: 116
  start-page: 9305
  year: 2016
  publication-title: Chem. Rev.
– volume: 21
  start-page: 1311
  year: 2015
  publication-title: Ionics
– volume: 91
  start-page: 38
  year: 2015
  publication-title: Carbon
– volume: 10
  start-page: 6453
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 89
  start-page: 4575
  year: 2001
  publication-title: J. Appl. Phys.
– volume: 42
  start-page: 181
  year: 2017
  publication-title: Org. Electron.
– volume: 10
  start-page: 4951
  year: 2014
  publication-title: Small
– volume: 19
  start-page: 490
  year: 2018
  publication-title: Biomacromolecules
– volume: 30
  start-page: 1705193
  year: 2018
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1500186
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 27
  start-page: 7670
  year: 2015
  publication-title: Adv. Mater.
– volume: 39
  start-page: 31
  year: 2018
  publication-title: IEEE Electron Device Lett.
– volume: 5
  start-page: 4490
  year: 2013
  publication-title: Nanoscale
– volume: 337
  start-page: 1640
  year: 2012
  publication-title: Science
– volume: 122
  start-page: 16909
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 3360
  year: 2016
  publication-title: Small
– volume: 21
  start-page: 2632
  year: 2009
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1800945
  year: 2018
  publication-title: Small
– volume: 12
  start-page: 2715
  year: 2016
  publication-title: Small
– volume: 21
  start-page: 045202
  year: 2010
  publication-title: Nanotechnology
– volume: 13
  start-page: 1210
  year: 1996
  publication-title: Pharm. Res.
– volume: 91
  start-page: 223510
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 37
  start-page: 990
  year: 2016
  publication-title: IEEE Electron Device Lett.
– volume: 4
  start-page: 331
  year: 2005
  publication-title: IEEE Trans. Nanotechnol.
– volume: 21
  start-page: 93
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 5974
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 1680
  year: 2018
  publication-title: ACS Nano
– volume: 28
  start-page: 3527
  year: 2016
  publication-title: Chem. Mater.
– volume: 111
  start-page: 223505
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 732
  year: 2012
  publication-title: Nat. Commun.
– volume: 25
  start-page: 5586
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 1604306
  year: 2017
  publication-title: Small
– volume: 8
  start-page: 10954
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 105
  start-page: 063504
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 7195
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 1702525
  year: 2018
  publication-title: Small
– ident: e_1_2_7_13_1
  doi: 10.1038/nnano.2009.456
– ident: e_1_2_7_21_1
  doi: 10.1021/acsnano.7b08331
– ident: e_1_2_7_38_1
  doi: 10.1109/TNANO.2005.846936
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201302246
– ident: e_1_2_7_16_1
  doi: 10.1016/j.orgel.2016.12.037
– ident: e_1_2_7_32_1
  doi: 10.1039/c3nr33692a
– ident: e_1_2_7_35_1
  doi: 10.1063/1.2818691
– ident: e_1_2_7_20_1
  doi: 10.1023/A:1016016404404
– ident: e_1_2_7_15_1
  doi: 10.1038/ncomms1737
– ident: e_1_2_7_22_1
  doi: 10.1007/s11581-014-1306-x
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.201001520
– ident: e_1_2_7_34_1
  doi: 10.1016/j.carbon.2015.04.031
– ident: e_1_2_7_45_1
  doi: 10.1109/LED.2017.2774842
– ident: e_1_2_7_24_1
  doi: 10.1016/j.carbpol.2013.05.052
– ident: e_1_2_7_49_1
  doi: 10.1063/1.2956703
– ident: e_1_2_7_50_1
  doi: 10.1088/0957-4484/21/4/045202
– ident: e_1_2_7_4_1
  doi: 10.1021/nn5055909
– ident: e_1_2_7_5_1
  doi: 10.1039/C3CS60235D
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.biomac.7b01605
– ident: e_1_2_7_25_1
  doi: 10.1002/smll.201600893
– ident: e_1_2_7_41_1
  doi: 10.1063/1.5002571
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1226325
– ident: e_1_2_7_37_1
  doi: 10.1088/0957-4484/22/27/275204
– ident: e_1_2_7_46_1
  doi: 10.1088/0022-3727/43/38/385105
– ident: e_1_2_7_48_1
  doi: 10.1002/smll.201401690
– ident: e_1_2_7_31_1
  doi: 10.1002/smll.201604306
– ident: e_1_2_7_42_1
  doi: 10.1002/smll.201800945
– ident: e_1_2_7_51_1
  doi: 10.1039/C8TC01844H
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201306050
– ident: e_1_2_7_52_1
  doi: 10.1039/b901026b
– ident: e_1_2_7_29_1
  doi: 10.1002/aelm.201500186
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.jpcc.8b03075
– volume: 37
  start-page: 990
  year: 2016
  ident: e_1_2_7_10_1
  publication-title: IEEE Electron Device Lett.
– ident: e_1_2_7_8_1
  doi: 10.1063/1.1352027
– ident: e_1_2_7_11_1
  doi: 10.1038/nmat2023
– ident: e_1_2_7_39_1
  doi: 10.1063/1.4893277
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201405728
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.5b10414
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.200900375
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201301983
– ident: e_1_2_7_33_1
  doi: 10.1021/acsami.7b19586
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemmater.5b04931
– ident: e_1_2_7_1_1
  doi: 10.1073/pnas.1701478114
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.201502592
– ident: e_1_2_7_14_1
  doi: 10.1002/smll.201702525
– ident: e_1_2_7_26_1
  doi: 10.1088/0957-4484/24/34/345202
– ident: e_1_2_7_9_1
  doi: 10.1002/smll.201502906
– ident: e_1_2_7_47_1
  doi: 10.1103/PhysRevB.74.035426
– ident: e_1_2_7_36_1
  doi: 10.1063/1.2828864
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.chemrev.6b00225
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201705193
– ident: e_1_2_7_30_1
  doi: 10.1063/1.4817970
SSID ssj0031247
Score 2.5933406
Snippet Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1803970
SubjectTerms Bending machines
Biocompatibility
Biodegradability
biodegradable
Data storage
Deionization
Electronic waste
Electronics
flexible
Flexible components
Indium tin oxides
Information storage
Ionization
Memory devices
multilevel
Nanotechnology
Pectin
Performance degradation
resistive switching
Storage systems
Switching
Tin oxides
Title Biodegradable Natural Pectin‐Based Flexible Multilevel Resistive Switching Memory for Transient Electronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201803970
https://www.ncbi.nlm.nih.gov/pubmed/30500108
https://www.proquest.com/docview/2170823969
https://www.proquest.com/docview/2141049861
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v8wbEQSfOrtesuZRxTHEiTgHeyunSQbD2YndFH3yJ_gb_SWek251U0TQt5akNG1y8n0nOecLYwfIaBOgoHaFXo4TBOA5EqHA8aGilHLBgE_ZyI1LUW8F5-2wPZHFn-tDFAtuZBl2viYDhyQ7-hQNze56tHVQiVyEVHLaKWCLWNF1oR_lI3jZ01UQsxwS3hqrNrre0fTj06j0jWpOM1cLPbVFBuNG5xEnt-XhICmrly96jv_5qiW2MOKl_DgfSMtsxqQrbH5CrXCV3Z10-5q0JTSlW_FLsJId_IqmzPT99e0EAVHzGilsUrlN7e1RTBK_NhlNJY-GN5-6Axu9yRsU4vvMkTNzi5eUl8nPikN5sjXWqp3dnNad0WkNjgqqkeuALxIQnaoOO1KoqvZNqBKldRUEhEq7HZF44BNDAZBYKIQMja_BMwieSSD8dTab9lOzyTh0INAqCiWyzwAHCxhXoWuKZBK7GCliiTnj3orVSMqcTtToxbkIsxfTb4yL31hih0X9-1zE48eaO-POj0fGnMXotdF-pBSyxPaLYjRD2luB1PSHVCdAx1ZGAhu3kQ-a4lU4pZLrHZWYZ7v-lzbEzcbFRXG39ZeHttkcXst8qWiHzQ4ehmYXydMg2bMG8gHqfRMP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB1VcCg9AKUthI_WSEg9LSzrXWd9LIgoLUmE-JB6W83ajoQIG9QkRXDqT-hv5Jd0xptdmqKqUjkm9irO2uP3xp55A7BDjDZHDmo35OUEcYxRoAkKAon7xpgQHUrORu72VPsi_vI1qaIJORem1IeoD9zYMvx-zQbOB9J7j6qho-sB3x3spyFhKnnt81zW23tVp7WClCT48vVVCLUClt6qdBvDaG_2-VlcekI2Z7mrB5_WEuTVsMuYk6vdyTjfNfd_KDo-638tw-KUmopP5Vp6DS9csQKvfhMsfAPXB5dDy_ISljOuRA-9aoc44V2zePjx84Aw0YoWi2xyu8_uHXBYkjh1I95Nvjtxdns59gGcostRvneCaLPwkMmpmeKorsszegsXraPzw3YwLdgQmLiZhgFKlaPqN23S18o0rXSJyY21TVSYGBv2VR6hZJKCqKlRKZ04aTFyhJ95rOQ7mCuGhVsDgX2MrUkTTQQ0pvWCLjTknRKflIpvMhsQVNOVmamaORfVGGSlDnOU8WvM6tfYgI91_5tSx-OvPTer2c-m9jzKyHHjK0mtdAO262ayRL5ewcINJ9wnJt9Wp4oGt1qumvqnaFdl7zttQOTn_h9jyM66nU79af1_HvoAL9vn3U7W-dw73oAF-l6XJ0ebMDf-NnFbxKXG-XtvLb8ADSYXKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4hJqHtgY39ooMxT5q0p0CIHTd-HIMKtrZCMCTeoovtSGglRbRlgif-hP2N-0t257QZZZombY-JHcWJff6-s-8-A7wjRlsgB7Vb8nIipTCJDEFBJHHbWhujR8nZyL2-3j9Rn07T0ztZ_LU-RLPgxpYR5ms28AtXbv0SDR2dD3jrYDuLCVLJaX-gdJzxuN49agSkJKFXOF6FQCti5a2ZbGOcbM0_Pw9Lv3HNeeoasKfzGHDW6jrk5OvmZFxs2pt7go7_81lPYHlKTMWHeiStwIKvnsKjO3KFz-B852zoWFzCcb6V6GPQ7BCHPGdWP26_7xAiOtFhiU0uD7m9Aw5KEkd-xHPJlRfH387GIXxT9DjG91oQaRYBMDkxU-w1p_KMnsNJZ-_Lx_1oelxDZFU7iyOUukBdtl1aGm3bTvrUFta5NmpMrYtLXSQomaIgGirU2qReOkw8oWehtHwBi9Ww8qsgsETlbJYaop-KRgv62JJvSmxSat7HbEE0663cTrXM-UiNQV6rMCc5_8a8-Y0teN_Uv6hVPP5Yc33W-fnUmkc5uW28IWm0acHbppjskDdXsPLDCddR5NmaTFPjXtaDpnkVzanse2ctSELX_6UN-XGv222uXv3LQ29g6XC3k3cP-p_X4CHdNvWy0Tosji8n_jURqXGxEWzlJ9JzFeI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+Natural+Pectin-Based+Flexible+Multilevel+Resistive+Switching+Memory+for+Transient+Electronics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xu%2C+Jiaqi&rft.au=Zhao%2C+Xiaoning&rft.au=Wang%2C+Zhongqiang&rft.au=Xu%2C+Haiyang&rft.date=2019-01-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=15&rft.issue=4&rft.spage=e1803970&rft_id=info:doi/10.1002%2Fsmll.201803970&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon