Biodegradable Natural Pectin‐Based Flexible Multilevel Resistive Switching Memory for Transient Electronics
Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed a...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 4; pp. e1803970 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next‐generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high‐density secure information storage systems applications, flexible electronics, and green electronics.
Biocompatible pectin extracted from natural orange peel is introduced to fabricate flexible multilevel resistive switching (RS) memory devices (Ag/pectin/indium tin oxides). The device exhibits excellent RS characteristics and it can be dissolved in deionized water rapidly thanks to the good solubility of pectin arising from ionization of its carboxylic groups. |
---|---|
AbstractList | Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next‐generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high‐density secure information storage systems applications, flexible electronics, and green electronics.
Biocompatible pectin extracted from natural orange peel is introduced to fabricate flexible multilevel resistive switching (RS) memory devices (Ag/pectin/indium tin oxides). The device exhibits excellent RS characteristics and it can be dissolved in deionized water rapidly thanks to the good solubility of pectin arising from ionization of its carboxylic groups. Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next‐generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high‐density secure information storage systems applications, flexible electronics, and green electronics. Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next-generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high-density secure information storage systems applications, flexible electronics, and green electronics.Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next-generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high-density secure information storage systems applications, flexible electronics, and green electronics. Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next‐generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>10 4 s), and multilevel RS behaviors. The device performance is not degraded after 10 4 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high‐density secure information storage systems applications, flexible electronics, and green electronics. Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next-generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>10 s), and multilevel RS behaviors. The device performance is not degraded after 10 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high-density secure information storage systems applications, flexible electronics, and green electronics. |
Author | Hu, Junli Liu, Yichun Zhao, Xiaoning Xu, Jiaqi Ma, Jiangang Wang, Zhongqiang Xu, Haiyang |
Author_xml | – sequence: 1 givenname: Jiaqi surname: Xu fullname: Xu, Jiaqi organization: Northeast Normal University – sequence: 2 givenname: Xiaoning surname: Zhao fullname: Zhao, Xiaoning email: zhaoxn430@nenu.edu.cn organization: Northeast Normal University – sequence: 3 givenname: Zhongqiang surname: Wang fullname: Wang, Zhongqiang organization: Northeast Normal University – sequence: 4 givenname: Haiyang surname: Xu fullname: Xu, Haiyang email: hyxu@nenu.edu.cn organization: Northeast Normal University – sequence: 5 givenname: Junli surname: Hu fullname: Hu, Junli organization: Northeast Normal University – sequence: 6 givenname: Jiangang surname: Ma fullname: Ma, Jiangang organization: Northeast Normal University – sequence: 7 givenname: Yichun surname: Liu fullname: Liu, Yichun organization: Northeast Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30500108$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URNtptyyRJTbdzHAdJ06ypFULSDOA-rO2HPumuHLsYjsts-MReEaehIymLVIlxMpXuud8su63T3Z88EjIawYLBlC8S4NziwJYA7yt4QXZY4LxuWiKdudpZrBL9lO6AeCsKOtXZJdDBcCg2SPDsQ0Gr6MyqnNIP6s8RuXoV9TZ-t8_fx2rhIaeOfxhN_vV6LJ1eIeOnmOyKds7pBf3Nutv1l_TFQ4hrmkfIr2MyieLPtNTN4XF4K1OB-Rlr1zCw4d3Rq7OTi9PPs6XXz58Onm_nOuybmCuuOiU6GtT9a3QteFY6U4bUyuhKm2gF12hONQVKNVOSyHaCrlRBbKCd6XgM3K0zb2N4fuIKcvBJo3OKY9hTLJgJYOybab7zMjbZ-hNGKOffjdRNTQFb0U7UW8eqLEb0MjbaAcV1_LxkBNQbgEdQ0oRe6ltVtkGn6OyTjKQm77kpi_51NekLZ5pj8n_FNqtcD_VsP4PLS9Wy-Vf9w8D5qqw |
CitedBy_id | crossref_primary_10_1016_j_mtchem_2019_04_008 crossref_primary_10_1007_s40995_022_01272_y crossref_primary_10_1002_slct_202400405 crossref_primary_10_1039_D0TC04655H crossref_primary_10_1063_5_0047641 crossref_primary_10_1002_aisy_202000007 crossref_primary_10_1063_5_0191005 crossref_primary_10_1021_acs_jpclett_1c02815 crossref_primary_10_1039_D2NR04551F crossref_primary_10_3390_coatings11030318 crossref_primary_10_1021_acsami_2c15332 crossref_primary_10_1088_1674_4926_42_1_014103 crossref_primary_10_3390_nano12223976 crossref_primary_10_1109_LED_2021_3075835 crossref_primary_10_3390_polym16202949 crossref_primary_10_1016_j_jallcom_2019_153247 crossref_primary_10_1209_0295_5075_127_26001 crossref_primary_10_1002_aisy_202200272 crossref_primary_10_1002_adma_202104023 crossref_primary_10_1007_s12648_020_01818_z crossref_primary_10_1039_C9CC04069B crossref_primary_10_1039_D3TC03034B crossref_primary_10_1002_adma_202403937 crossref_primary_10_1007_s40843_022_2115_6 crossref_primary_10_1007_s10854_022_08795_5 crossref_primary_10_1063_5_0171193 crossref_primary_10_1002_adma_202102520 crossref_primary_10_1016_j_nanoen_2023_108569 crossref_primary_10_1002_adma_202105020 crossref_primary_10_1039_D3TC04507B crossref_primary_10_1021_acsaelm_2c00687 crossref_primary_10_1016_j_cej_2023_144678 crossref_primary_10_1016_j_jcis_2021_10_126 crossref_primary_10_1016_j_mssp_2019_104673 crossref_primary_10_1021_acsapm_0c00439 crossref_primary_10_1002_adma_202314156 crossref_primary_10_1021_acsami_0c10796 crossref_primary_10_1002_admt_202100744 crossref_primary_10_1039_D2NR01996E crossref_primary_10_4028_p_TBXv2r crossref_primary_10_1002_aelm_202100432 crossref_primary_10_1002_inf2_12350 crossref_primary_10_3389_fnano_2021_821687 crossref_primary_10_1088_1674_1056_abc67a crossref_primary_10_3390_nano11081973 crossref_primary_10_1039_C9TC00431A crossref_primary_10_1002_aisy_202000155 crossref_primary_10_1002_inf2_12120 crossref_primary_10_1039_D4TC03877K crossref_primary_10_1021_acsnano_0c10049 crossref_primary_10_1680_jnaen_24_00077 crossref_primary_10_1002_adfm_201909114 crossref_primary_10_1002_adma_202104446 crossref_primary_10_1021_acsami_1c05590 crossref_primary_10_3390_nano10030559 crossref_primary_10_1016_j_matt_2020_08_021 crossref_primary_10_1007_s10853_021_06323_0 crossref_primary_10_1016_j_jallcom_2021_162180 crossref_primary_10_1021_acssuschemeng_9b07168 crossref_primary_10_1002_smll_202005659 crossref_primary_10_1002_inf2_12012 crossref_primary_10_1039_D0RA08784J crossref_primary_10_1088_2634_4386_ad409a crossref_primary_10_1063_5_0067453 crossref_primary_10_1039_C9RA00726A crossref_primary_10_1063_1_5096197 crossref_primary_10_1016_j_compositesb_2021_109307 crossref_primary_10_1021_acs_nanolett_2c02765 crossref_primary_10_1088_1674_4926_41_5_051205 crossref_primary_10_1038_s41598_023_32860_6 crossref_primary_10_35848_1347_4065_ab853a crossref_primary_10_1021_acsaelm_3c01611 crossref_primary_10_1002_smsc_202200028 crossref_primary_10_1002_aelm_202100322 crossref_primary_10_1007_s42114_022_00599_9 crossref_primary_10_1039_C9RA09847J crossref_primary_10_1002_adma_202211202 crossref_primary_10_1088_1361_6528_ac8f51 crossref_primary_10_1109_TED_2021_3105572 crossref_primary_10_1002_smll_202100102 crossref_primary_10_1039_D2TC03867F crossref_primary_10_1371_journal_pone_0309469 crossref_primary_10_1021_acsapm_1c00485 crossref_primary_10_1063_5_0065324 crossref_primary_10_1038_s41378_021_00261_2 crossref_primary_10_1149_2162_8777_ac67af crossref_primary_10_1063_5_0016485 crossref_primary_10_1002_advs_202306206 crossref_primary_10_1021_acsaelm_3c01663 crossref_primary_10_1088_1361_6528_aca1ca crossref_primary_10_1002_admt_202201031 crossref_primary_10_1002_adma_202405328 crossref_primary_10_1021_acsaelm_1c00517 crossref_primary_10_1021_acsaelm_1c00357 crossref_primary_10_1002_adom_201900766 crossref_primary_10_1016_j_cej_2023_144981 crossref_primary_10_1016_j_mtsust_2020_100057 crossref_primary_10_1039_D2MA00820C crossref_primary_10_1016_j_matdes_2021_109845 crossref_primary_10_1039_D0NR05858K crossref_primary_10_1016_j_mssp_2020_105110 crossref_primary_10_1088_1361_6463_ac585b crossref_primary_10_1039_C9NR08001E crossref_primary_10_3390_mi11060580 crossref_primary_10_1038_s41427_021_00307_x crossref_primary_10_1039_D1MH01433A crossref_primary_10_1515_ntrev_2021_0047 crossref_primary_10_1021_acsami_3c14581 crossref_primary_10_1021_acsami_0c16040 crossref_primary_10_1039_D0TC03668D crossref_primary_10_1039_C9TC06230K crossref_primary_10_1021_acs_chemrev_9b00730 |
Cites_doi | 10.1038/nnano.2009.456 10.1021/acsnano.7b08331 10.1109/TNANO.2005.846936 10.1002/adfm.201302246 10.1016/j.orgel.2016.12.037 10.1039/c3nr33692a 10.1063/1.2818691 10.1023/A:1016016404404 10.1038/ncomms1737 10.1007/s11581-014-1306-x 10.1002/adfm.201001520 10.1016/j.carbon.2015.04.031 10.1109/LED.2017.2774842 10.1016/j.carbpol.2013.05.052 10.1063/1.2956703 10.1088/0957-4484/21/4/045202 10.1021/nn5055909 10.1039/C3CS60235D 10.1021/acs.biomac.7b01605 10.1002/smll.201600893 10.1063/1.5002571 10.1126/science.1226325 10.1088/0957-4484/22/27/275204 10.1088/0022-3727/43/38/385105 10.1002/smll.201401690 10.1002/smll.201604306 10.1002/smll.201800945 10.1039/C8TC01844H 10.1002/adma.201306050 10.1039/b901026b 10.1002/aelm.201500186 10.1021/acs.jpcc.8b03075 10.1063/1.1352027 10.1038/nmat2023 10.1063/1.4893277 10.1002/adma.201405728 10.1021/acsami.5b10414 10.1002/adma.200900375 10.1002/adma.201301983 10.1021/acsami.7b19586 10.1021/acs.chemmater.5b04931 10.1073/pnas.1701478114 10.1002/adfm.201502592 10.1002/smll.201702525 10.1088/0957-4484/24/34/345202 10.1002/smll.201502906 10.1103/PhysRevB.74.035426 10.1063/1.2828864 10.1021/acs.chemrev.6b00225 10.1002/adma.201705193 10.1063/1.4817970 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201803970 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 30500108 10_1002_smll_201803970 SMLL201803970 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: “111” Project funderid: B13013 – fundername: Fund from Jilin Province funderid: 20160101324JC; 20180520186JH – fundername: NSFC funderid: 51701037; 51732003; 61774031; 51872043; 61574031 – fundername: National Natural Science Foundation of China (NSFC) for Excellent Young Scholars funderid: 51422201 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4780-a36ba6f7d5f96c7d3e5cbcdd7a6a5cd0f6b2a30750aa93e56695e3da2e123b463 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 11:52:49 EDT 2025 Fri Jul 25 10:24:30 EDT 2025 Wed Feb 19 02:31:39 EST 2025 Thu Apr 24 23:12:59 EDT 2025 Tue Jul 01 02:10:39 EDT 2025 Wed Jan 22 16:31:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | biodegradable resistive switching flexible multilevel pectin |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4780-a36ba6f7d5f96c7d3e5cbcdd7a6a5cd0f6b2a30750aa93e56695e3da2e123b463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30500108 |
PQID | 2170823969 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2141049861 proquest_journals_2170823969 pubmed_primary_30500108 crossref_citationtrail_10_1002_smll_201803970 crossref_primary_10_1002_smll_201803970 wiley_primary_10_1002_smll_201803970_SMLL201803970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 42 2018; 122 2006; 74 2013; 25 2013; 24 2014; 26 2014; 24 2008; 104 2017; 111 2001; 89 2013; 5 2017; 114 2016; 37 2018; 6 2009; 11 2010; 21 2018; 39 2013; 97 2007; 6 2011; 22 2011; 21 2018; 30 2016; 116 2015; 91 2010; 5 2012; 337 2014; 10 2015; 1 2009; 21 2013; 103 2007; 91 2015; 9 1996; 13 2008; 92 2014; 43 2016; 12 2018; 19 2014; 105 2010; 43 2015; 25 2012; 3 2015; 27 2017; 13 2015; 21 2005; 4 2018; 12 2016; 28 2018; 10 2016; 8 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Wu S. (e_1_2_7_10_1) 2016; 37 |
References_xml | – volume: 104 start-page: 023709 year: 2008 publication-title: J. Appl. Phys. – volume: 74 start-page: 035426 year: 2006 publication-title: Phys. Rev. B – volume: 114 start-page: 5107 year: 2017 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 97 start-page: 703 year: 2013 publication-title: Carbohydr. Polym. – volume: 26 start-page: 3905 year: 2014 publication-title: Adv. Mater. – volume: 24 start-page: 1430 year: 2014 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 345202 year: 2013 publication-title: Nanotechnology – volume: 5 start-page: 148 year: 2010 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 419 year: 2015 publication-title: ACS Nano – volume: 6 start-page: 833 year: 2007 publication-title: Nat. Mater. – volume: 43 start-page: 588 year: 2014 publication-title: Chem. Soc. Rev. – volume: 103 start-page: 062104 year: 2013 publication-title: Appl. Phys. Lett. – volume: 92 start-page: 013503 year: 2008 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 5498 year: 2013 publication-title: Adv. Mater. – volume: 43 start-page: 385105 year: 2010 publication-title: J. Phys. D: Appl. Phys. – volume: 22 start-page: 275204 year: 2011 publication-title: Nanotechnology – volume: 116 start-page: 9305 year: 2016 publication-title: Chem. Rev. – volume: 21 start-page: 1311 year: 2015 publication-title: Ionics – volume: 91 start-page: 38 year: 2015 publication-title: Carbon – volume: 10 start-page: 6453 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 89 start-page: 4575 year: 2001 publication-title: J. Appl. Phys. – volume: 42 start-page: 181 year: 2017 publication-title: Org. Electron. – volume: 10 start-page: 4951 year: 2014 publication-title: Small – volume: 19 start-page: 490 year: 2018 publication-title: Biomacromolecules – volume: 30 start-page: 1705193 year: 2018 publication-title: Adv. Mater. – volume: 1 start-page: 1500186 year: 2015 publication-title: Adv. Electron. Mater. – volume: 27 start-page: 7670 year: 2015 publication-title: Adv. Mater. – volume: 39 start-page: 31 year: 2018 publication-title: IEEE Electron Device Lett. – volume: 5 start-page: 4490 year: 2013 publication-title: Nanoscale – volume: 337 start-page: 1640 year: 2012 publication-title: Science – volume: 122 start-page: 16909 year: 2018 publication-title: J. Phys. Chem. C – volume: 12 start-page: 3360 year: 2016 publication-title: Small – volume: 21 start-page: 2632 year: 2009 publication-title: Adv. Mater. – volume: 14 start-page: 1800945 year: 2018 publication-title: Small – volume: 12 start-page: 2715 year: 2016 publication-title: Small – volume: 21 start-page: 045202 year: 2010 publication-title: Nanotechnology – volume: 13 start-page: 1210 year: 1996 publication-title: Pharm. Res. – volume: 91 start-page: 223510 year: 2007 publication-title: Appl. Phys. Lett. – volume: 37 start-page: 990 year: 2016 publication-title: IEEE Electron Device Lett. – volume: 4 start-page: 331 year: 2005 publication-title: IEEE Trans. Nanotechnol. – volume: 21 start-page: 93 year: 2011 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 5974 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 1680 year: 2018 publication-title: ACS Nano – volume: 28 start-page: 3527 year: 2016 publication-title: Chem. Mater. – volume: 111 start-page: 223505 year: 2017 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 732 year: 2012 publication-title: Nat. Commun. – volume: 25 start-page: 5586 year: 2015 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 1604306 year: 2017 publication-title: Small – volume: 8 start-page: 10954 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 105 start-page: 063504 year: 2014 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 7195 year: 2018 publication-title: J. Mater. Chem. C – volume: 14 start-page: 1702525 year: 2018 publication-title: Small – ident: e_1_2_7_13_1 doi: 10.1038/nnano.2009.456 – ident: e_1_2_7_21_1 doi: 10.1021/acsnano.7b08331 – ident: e_1_2_7_38_1 doi: 10.1109/TNANO.2005.846936 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201302246 – ident: e_1_2_7_16_1 doi: 10.1016/j.orgel.2016.12.037 – ident: e_1_2_7_32_1 doi: 10.1039/c3nr33692a – ident: e_1_2_7_35_1 doi: 10.1063/1.2818691 – ident: e_1_2_7_20_1 doi: 10.1023/A:1016016404404 – ident: e_1_2_7_15_1 doi: 10.1038/ncomms1737 – ident: e_1_2_7_22_1 doi: 10.1007/s11581-014-1306-x – ident: e_1_2_7_28_1 doi: 10.1002/adfm.201001520 – ident: e_1_2_7_34_1 doi: 10.1016/j.carbon.2015.04.031 – ident: e_1_2_7_45_1 doi: 10.1109/LED.2017.2774842 – ident: e_1_2_7_24_1 doi: 10.1016/j.carbpol.2013.05.052 – ident: e_1_2_7_49_1 doi: 10.1063/1.2956703 – ident: e_1_2_7_50_1 doi: 10.1088/0957-4484/21/4/045202 – ident: e_1_2_7_4_1 doi: 10.1021/nn5055909 – ident: e_1_2_7_5_1 doi: 10.1039/C3CS60235D – ident: e_1_2_7_19_1 doi: 10.1021/acs.biomac.7b01605 – ident: e_1_2_7_25_1 doi: 10.1002/smll.201600893 – ident: e_1_2_7_41_1 doi: 10.1063/1.5002571 – ident: e_1_2_7_7_1 doi: 10.1126/science.1226325 – ident: e_1_2_7_37_1 doi: 10.1088/0957-4484/22/27/275204 – ident: e_1_2_7_46_1 doi: 10.1088/0022-3727/43/38/385105 – ident: e_1_2_7_48_1 doi: 10.1002/smll.201401690 – ident: e_1_2_7_31_1 doi: 10.1002/smll.201604306 – ident: e_1_2_7_42_1 doi: 10.1002/smll.201800945 – ident: e_1_2_7_51_1 doi: 10.1039/C8TC01844H – ident: e_1_2_7_3_1 doi: 10.1002/adma.201306050 – ident: e_1_2_7_52_1 doi: 10.1039/b901026b – ident: e_1_2_7_29_1 doi: 10.1002/aelm.201500186 – ident: e_1_2_7_44_1 doi: 10.1021/acs.jpcc.8b03075 – volume: 37 start-page: 990 year: 2016 ident: e_1_2_7_10_1 publication-title: IEEE Electron Device Lett. – ident: e_1_2_7_8_1 doi: 10.1063/1.1352027 – ident: e_1_2_7_11_1 doi: 10.1038/nmat2023 – ident: e_1_2_7_39_1 doi: 10.1063/1.4893277 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201405728 – ident: e_1_2_7_43_1 doi: 10.1021/acsami.5b10414 – ident: e_1_2_7_12_1 doi: 10.1002/adma.200900375 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201301983 – ident: e_1_2_7_33_1 doi: 10.1021/acsami.7b19586 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemmater.5b04931 – ident: e_1_2_7_1_1 doi: 10.1073/pnas.1701478114 – ident: e_1_2_7_18_1 doi: 10.1002/adfm.201502592 – ident: e_1_2_7_14_1 doi: 10.1002/smll.201702525 – ident: e_1_2_7_26_1 doi: 10.1088/0957-4484/24/34/345202 – ident: e_1_2_7_9_1 doi: 10.1002/smll.201502906 – ident: e_1_2_7_47_1 doi: 10.1103/PhysRevB.74.035426 – ident: e_1_2_7_36_1 doi: 10.1063/1.2828864 – ident: e_1_2_7_6_1 doi: 10.1021/acs.chemrev.6b00225 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201705193 – ident: e_1_2_7_30_1 doi: 10.1063/1.4817970 |
SSID | ssj0031247 |
Score | 2.5933406 |
Snippet | Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1803970 |
SubjectTerms | Bending machines Biocompatibility Biodegradability biodegradable Data storage Deionization Electronic waste Electronics flexible Flexible components Indium tin oxides Information storage Ionization Memory devices multilevel Nanotechnology Pectin Performance degradation resistive switching Storage systems Switching Tin oxides |
Title | Biodegradable Natural Pectin‐Based Flexible Multilevel Resistive Switching Memory for Transient Electronics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201803970 https://www.ncbi.nlm.nih.gov/pubmed/30500108 https://www.proquest.com/docview/2170823969 https://www.proquest.com/docview/2141049861 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v8wbEQSfOrtesuZRxTHEiTgHeyunSQbD2YndFH3yJ_gb_SWek251U0TQt5akNG1y8n0nOecLYwfIaBOgoHaFXo4TBOA5EqHA8aGilHLBgE_ZyI1LUW8F5-2wPZHFn-tDFAtuZBl2viYDhyQ7-hQNze56tHVQiVyEVHLaKWCLWNF1oR_lI3jZ01UQsxwS3hqrNrre0fTj06j0jWpOM1cLPbVFBuNG5xEnt-XhICmrly96jv_5qiW2MOKl_DgfSMtsxqQrbH5CrXCV3Z10-5q0JTSlW_FLsJId_IqmzPT99e0EAVHzGilsUrlN7e1RTBK_NhlNJY-GN5-6Axu9yRsU4vvMkTNzi5eUl8nPikN5sjXWqp3dnNad0WkNjgqqkeuALxIQnaoOO1KoqvZNqBKldRUEhEq7HZF44BNDAZBYKIQMja_BMwieSSD8dTab9lOzyTh0INAqCiWyzwAHCxhXoWuKZBK7GCliiTnj3orVSMqcTtToxbkIsxfTb4yL31hih0X9-1zE48eaO-POj0fGnMXotdF-pBSyxPaLYjRD2luB1PSHVCdAx1ZGAhu3kQ-a4lU4pZLrHZWYZ7v-lzbEzcbFRXG39ZeHttkcXst8qWiHzQ4ehmYXydMg2bMG8gHqfRMP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB1VcCg9AKUthI_WSEg9LSzrXWd9LIgoLUmE-JB6W83ajoQIG9QkRXDqT-hv5Jd0xptdmqKqUjkm9irO2uP3xp55A7BDjDZHDmo35OUEcYxRoAkKAon7xpgQHUrORu72VPsi_vI1qaIJORem1IeoD9zYMvx-zQbOB9J7j6qho-sB3x3spyFhKnnt81zW23tVp7WClCT48vVVCLUClt6qdBvDaG_2-VlcekI2Z7mrB5_WEuTVsMuYk6vdyTjfNfd_KDo-638tw-KUmopP5Vp6DS9csQKvfhMsfAPXB5dDy_ISljOuRA-9aoc44V2zePjx84Aw0YoWi2xyu8_uHXBYkjh1I95Nvjtxdns59gGcostRvneCaLPwkMmpmeKorsszegsXraPzw3YwLdgQmLiZhgFKlaPqN23S18o0rXSJyY21TVSYGBv2VR6hZJKCqKlRKZ04aTFyhJ95rOQ7mCuGhVsDgX2MrUkTTQQ0pvWCLjTknRKflIpvMhsQVNOVmamaORfVGGSlDnOU8WvM6tfYgI91_5tSx-OvPTer2c-m9jzKyHHjK0mtdAO262ayRL5ewcINJ9wnJt9Wp4oGt1qumvqnaFdl7zttQOTn_h9jyM66nU79af1_HvoAL9vn3U7W-dw73oAF-l6XJ0ebMDf-NnFbxKXG-XtvLb8ADSYXKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4hJqHtgY39ooMxT5q0p0CIHTd-HIMKtrZCMCTeoovtSGglRbRlgif-hP2N-0t257QZZZombY-JHcWJff6-s-8-A7wjRlsgB7Vb8nIipTCJDEFBJHHbWhujR8nZyL2-3j9Rn07T0ztZ_LU-RLPgxpYR5ms28AtXbv0SDR2dD3jrYDuLCVLJaX-gdJzxuN49agSkJKFXOF6FQCti5a2ZbGOcbM0_Pw9Lv3HNeeoasKfzGHDW6jrk5OvmZFxs2pt7go7_81lPYHlKTMWHeiStwIKvnsKjO3KFz-B852zoWFzCcb6V6GPQ7BCHPGdWP26_7xAiOtFhiU0uD7m9Aw5KEkd-xHPJlRfH387GIXxT9DjG91oQaRYBMDkxU-w1p_KMnsNJZ-_Lx_1oelxDZFU7iyOUukBdtl1aGm3bTvrUFta5NmpMrYtLXSQomaIgGirU2qReOkw8oWehtHwBi9Ww8qsgsETlbJYaop-KRgv62JJvSmxSat7HbEE0663cTrXM-UiNQV6rMCc5_8a8-Y0teN_Uv6hVPP5Yc33W-fnUmkc5uW28IWm0acHbppjskDdXsPLDCddR5NmaTFPjXtaDpnkVzanse2ctSELX_6UN-XGv222uXv3LQ29g6XC3k3cP-p_X4CHdNvWy0Tosji8n_jURqXGxEWzlJ9JzFeI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+Natural+Pectin-Based+Flexible+Multilevel+Resistive+Switching+Memory+for+Transient+Electronics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xu%2C+Jiaqi&rft.au=Zhao%2C+Xiaoning&rft.au=Wang%2C+Zhongqiang&rft.au=Xu%2C+Haiyang&rft.date=2019-01-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=15&rft.issue=4&rft.spage=e1803970&rft_id=info:doi/10.1002%2Fsmll.201803970&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |