Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry
In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elus...
Saved in:
Published in | Nature materials Vol. 20; no. 1; pp. 76 - 83 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe
3
O
4
/Li model system, and that it also exists in CoO, NiO, FeF
2
and Fe
2
N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.
Although some transition metal oxide-based electrodes exhibit high storage capacities beyond theoretical values, the underlying physicochemical mechanism remains elusive. Surface capacitance on metal nanoparticles involving spin-polarized electrons is now shown to be consistent with a space charge mechanism. |
---|---|
AbstractList | In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe
3
O
4
/Li model system, and that it also exists in CoO, NiO, FeF
2
and Fe
2
N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.
Although some transition metal oxide-based electrodes exhibit high storage capacities beyond theoretical values, the underlying physicochemical mechanism remains elusive. Surface capacitance on metal nanoparticles involving spin-polarized electrons is now shown to be consistent with a space charge mechanism. In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe O /Li model system, and that it also exists in CoO, NiO, FeF and Fe N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems. In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe3O4/Li model system, and that it also exists in CoO, NiO, FeF2 and Fe2N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe3O4/Li model system, and that it also exists in CoO, NiO, FeF2 and Fe2N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems. In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe3O4/Li model system, and that it also exists in CoO, NiO, FeF2 and Fe2N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.Although some transition metal oxide-based electrodes exhibit high storage capacities beyond theoretical values, the underlying physicochemical mechanism remains elusive. Surface capacitance on metal nanoparticles involving spin-polarized electrons is now shown to be consistent with a space charge mechanism. |
Author | Ge, Chen Hu, Zhengqiang Zhang, Qinghua Shang, Xiantao Yan, Shishen Long, Yunze Miao, Guo-Xing Moodera, Jagadeesh S. Li, Qiang Fan, Shuting Gu, Lin Xia, Qingtao Wang, Xiaoxiong Zhu, Yue Li, Hongsen Yu, Guihua |
Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0001-8891-260X surname: Li fullname: Li, Qiang email: liqiang@qdu.edu.cn organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Department of Electrical and Computer Engineering and Institute for Quantum Computing, University of Waterloo – sequence: 2 givenname: Hongsen orcidid: 0000-0001-6453-2135 surname: Li fullname: Li, Hongsen email: hsli@qdu.edu.cn organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin – sequence: 3 givenname: Qingtao surname: Xia fullname: Xia, Qingtao organization: College of Physics, Center for Marine Observation and Communications, Qingdao University – sequence: 4 givenname: Zhengqiang surname: Hu fullname: Hu, Zhengqiang organization: College of Physics, Center for Marine Observation and Communications, Qingdao University – sequence: 5 givenname: Yue surname: Zhu fullname: Zhu, Yue organization: Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin – sequence: 6 givenname: Shishen orcidid: 0000-0002-7327-9968 surname: Yan fullname: Yan, Shishen organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University – sequence: 7 givenname: Chen orcidid: 0000-0002-8093-940X surname: Ge fullname: Ge, Chen organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 8 givenname: Qinghua surname: Zhang fullname: Zhang, Qinghua organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 9 givenname: Xiaoxiong surname: Wang fullname: Wang, Xiaoxiong organization: College of Physics, Center for Marine Observation and Communications, Qingdao University – sequence: 10 givenname: Xiantao surname: Shang fullname: Shang, Xiantao organization: College of Physics, Center for Marine Observation and Communications, Qingdao University – sequence: 11 givenname: Shuting surname: Fan fullname: Fan, Shuting organization: College of Physics, Center for Marine Observation and Communications, Qingdao University – sequence: 12 givenname: Yunze surname: Long fullname: Long, Yunze organization: College of Physics, Center for Marine Observation and Communications, Qingdao University – sequence: 13 givenname: Lin orcidid: 0000-0002-7504-031X surname: Gu fullname: Gu, Lin organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 14 givenname: Guo-Xing orcidid: 0000-0002-8735-8077 surname: Miao fullname: Miao, Guo-Xing email: guo-xing.miao@uwaterloo.ca organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Department of Electrical and Computer Engineering and Institute for Quantum Computing, University of Waterloo, Department of Physics, Plasma Science and Fusion Center and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology – sequence: 15 givenname: Guihua orcidid: 0000-0002-3253-0749 surname: Yu fullname: Yu, Guihua email: ghyu@austin.utexas.edu organization: Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin – sequence: 16 givenname: Jagadeesh S. surname: Moodera fullname: Moodera, Jagadeesh S. organization: Department of Physics, Plasma Science and Fusion Center and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32807921$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJab76A3opgl56cTsjWdL6WEL6AYFckrOQbHmrYEtbSS7xv4-2u6EQaE8Sw_MMw_uek5MQgyPkHcInBL75nFsUkjfAoAElZLO-ImfYKtm0UsLJ8Y_I2Ck5z_kBgKEQ8g055WwDqmN4RrbXjyUZmktMZutob3am92WlPtA6D9kXHwOdXTETjY9-cHTy5adf5mY_t6YUl7zLNLnfzkxuoPaPW72FzmYbXIlVTusleT2aKbu3x_eC3H-9vrv63tzcfvtx9eWm6VulSjN2RnU4ohJcWrRibO0I3MI49CCYUdKqbjMIsKK1LUJvBEeAgXGHY6-k4Rfk42HvLsVfi8tFzz73bppMcHHJmrVcYIfIu4p-eIE-xCWFel2lFGcAILFS74_UYmc36F3ys0mrfo6wAuoA9CnmnNyoa4BmH1sN0E8aQe_L0oeydC1L78vSazXxhfm8_H8OOzi5smHr0t-j_y09AQT6p1Y |
CitedBy_id | crossref_primary_10_1016_j_cclet_2022_01_002 crossref_primary_10_1039_D1TA09499H crossref_primary_10_1016_j_cej_2024_150454 crossref_primary_10_1021_acs_langmuir_4c03029 crossref_primary_10_1016_j_electacta_2023_142155 crossref_primary_10_1016_j_electacta_2021_138686 crossref_primary_10_1002_eem2_12619 crossref_primary_10_1016_j_chempr_2021_06_008 crossref_primary_10_1016_j_cej_2022_137924 crossref_primary_10_1038_s41427_023_00502_y crossref_primary_10_1021_acsami_2c11132 crossref_primary_10_1039_D0TA12112F crossref_primary_10_1007_s40820_022_00790_z crossref_primary_10_1007_s11581_023_04977_1 crossref_primary_10_1002_chem_202302244 crossref_primary_10_1021_acs_chemmater_4c02772 crossref_primary_10_1002_chem_202101818 crossref_primary_10_1002_bte2_70006 crossref_primary_10_1002_adma_202202780 crossref_primary_10_1021_acsanm_2c00027 crossref_primary_10_3389_fenrg_2020_609417 crossref_primary_10_1002_advs_202301248 crossref_primary_10_1002_aenm_202303011 crossref_primary_10_1016_j_jpcs_2024_112328 crossref_primary_10_3389_fchem_2021_790659 crossref_primary_10_3390_sym13040733 crossref_primary_10_1016_j_cclet_2021_08_052 crossref_primary_10_1021_acsnano_1c07943 crossref_primary_10_1016_j_jallcom_2022_164142 crossref_primary_10_1016_j_jpowsour_2023_234044 crossref_primary_10_1007_s12274_023_5702_2 crossref_primary_10_1007_s11581_023_05031_w crossref_primary_10_1016_j_jcis_2022_04_020 crossref_primary_10_1016_j_ceramint_2023_09_173 crossref_primary_10_1016_j_ceramint_2021_06_092 crossref_primary_10_1021_acsaem_2c00340 crossref_primary_10_1039_D4NR01786B crossref_primary_10_1016_j_cclet_2024_110010 crossref_primary_10_1021_acsami_2c17932 crossref_primary_10_1021_acsenergylett_3c01689 crossref_primary_10_1039_D0NR09228B crossref_primary_10_1016_j_apcatb_2021_120660 crossref_primary_10_1007_s11581_021_04303_7 crossref_primary_10_1016_j_electacta_2023_143032 crossref_primary_10_1016_j_jallcom_2022_167429 crossref_primary_10_3390_mi13020149 crossref_primary_10_1021_acs_nanolett_2c00838 crossref_primary_10_1016_j_jiec_2023_05_030 crossref_primary_10_1002_ente_202201090 crossref_primary_10_1007_s12598_022_01979_2 crossref_primary_10_1039_D1RA03822B crossref_primary_10_1021_acsaem_1c04031 crossref_primary_10_1016_j_jelechem_2022_116792 crossref_primary_10_1166_mex_2022_2316 crossref_primary_10_1007_s40820_024_01560_9 crossref_primary_10_1039_D2SC06587H crossref_primary_10_1002_smll_202307103 crossref_primary_10_1016_j_ensm_2022_06_022 crossref_primary_10_3389_fchem_2022_845742 crossref_primary_10_31613_ceramist_2022_25_2_03 crossref_primary_10_1016_j_apsusc_2023_156994 crossref_primary_10_1039_D1CC00910A crossref_primary_10_1021_acsami_1c05591 crossref_primary_10_1016_j_cclet_2021_01_049 crossref_primary_10_1021_acs_inorgchem_2c04462 crossref_primary_10_1016_j_mattod_2022_05_021 crossref_primary_10_1039_D1TA02880D crossref_primary_10_1021_acsnano_4c04179 crossref_primary_10_1007_s42114_021_00397_9 crossref_primary_10_1021_acsnano_1c11032 crossref_primary_10_1007_s12274_021_3911_0 crossref_primary_10_1016_j_apsusc_2023_157719 crossref_primary_10_1021_acsami_3c18334 crossref_primary_10_1002_smll_202309586 crossref_primary_10_1002_smll_202203236 crossref_primary_10_1039_D3CC05365B crossref_primary_10_1007_s11664_021_09191_1 crossref_primary_10_1016_j_scriptamat_2021_114466 crossref_primary_10_1016_j_jallcom_2022_165064 crossref_primary_10_1021_acsmaterialslett_3c00199 crossref_primary_10_1016_j_jcis_2024_08_182 crossref_primary_10_1021_acsnano_0c08314 crossref_primary_10_1039_D3QI00182B crossref_primary_10_2139_ssrn_3983710 crossref_primary_10_1002_smll_202303802 crossref_primary_10_1016_j_matt_2024_05_038 crossref_primary_10_3389_fchem_2021_834418 crossref_primary_10_1016_j_jelechem_2022_116654 crossref_primary_10_1002_ange_202301631 crossref_primary_10_1016_j_jallcom_2021_162849 crossref_primary_10_1039_D1NR03491J crossref_primary_10_1016_j_cej_2021_129838 crossref_primary_10_1039_D4TA06381C crossref_primary_10_1039_D1EE03070A crossref_primary_10_1002_smll_202404767 crossref_primary_10_1016_j_electacta_2023_143468 crossref_primary_10_1039_D1TA02894D crossref_primary_10_1002_adma_202006629 crossref_primary_10_1002_aelm_202100512 crossref_primary_10_1021_acsami_1c20534 crossref_primary_10_1039_D3SC04377K crossref_primary_10_1016_j_jallcom_2021_161626 crossref_primary_10_1016_j_cej_2021_130817 crossref_primary_10_1021_acsami_2c09179 crossref_primary_10_1021_acs_energyfuels_3c01734 crossref_primary_10_1016_j_cej_2023_141997 crossref_primary_10_1007_s10008_024_05970_y crossref_primary_10_1021_acs_nanolett_1c02142 crossref_primary_10_1016_j_vacuum_2024_113738 crossref_primary_10_1016_j_ceramint_2022_05_301 crossref_primary_10_1002_smll_202301606 crossref_primary_10_1002_adfm_202412879 crossref_primary_10_1002_adma_202414047 crossref_primary_10_1039_D3CP00354J crossref_primary_10_1016_j_jpowsour_2022_231636 crossref_primary_10_1016_j_est_2025_115390 crossref_primary_10_1016_j_rineng_2024_102227 crossref_primary_10_1007_s11705_020_1956_3 crossref_primary_10_1016_j_est_2024_113925 crossref_primary_10_4236_msce_2020_812005 crossref_primary_10_1016_j_cej_2023_147848 crossref_primary_10_1016_j_ensm_2021_09_022 crossref_primary_10_1002_cey2_195 crossref_primary_10_1016_j_jallcom_2023_171026 crossref_primary_10_3390_molecules27020396 crossref_primary_10_1002_aenm_202400643 crossref_primary_10_1016_S1872_2067_21_63867_6 crossref_primary_10_1016_j_cej_2022_140137 crossref_primary_10_1002_anie_202301631 crossref_primary_10_1016_j_cej_2021_133689 crossref_primary_10_1016_j_micromeso_2021_111483 crossref_primary_10_1007_s40843_022_2217_5 crossref_primary_10_1002_aenm_202200409 crossref_primary_10_1016_j_jcis_2023_05_053 crossref_primary_10_1016_j_jpowsour_2021_229758 crossref_primary_10_1021_acs_chemmater_4c02013 crossref_primary_10_1016_j_est_2024_112967 crossref_primary_10_1016_j_cej_2024_151396 crossref_primary_10_1016_j_electacta_2023_142323 crossref_primary_10_1007_s10854_023_11593_2 crossref_primary_10_1016_j_jelechem_2022_116296 crossref_primary_10_1016_j_cej_2022_141116 crossref_primary_10_1021_acsaem_1c00641 crossref_primary_10_1109_TIM_2021_3100331 crossref_primary_10_1002_anie_202102605 crossref_primary_10_1016_j_jallcom_2020_158576 crossref_primary_10_1016_j_electacta_2021_138713 crossref_primary_10_1016_j_sajce_2022_08_008 crossref_primary_10_3390_ma13173797 crossref_primary_10_2139_ssrn_4147463 crossref_primary_10_1039_D4NJ03790A crossref_primary_10_3390_en16186740 crossref_primary_10_1039_D2TC00107A crossref_primary_10_1002_adma_202307219 crossref_primary_10_2139_ssrn_4049715 crossref_primary_10_1002_anie_202306193 crossref_primary_10_1039_D1CE01737C crossref_primary_10_1016_j_electacta_2023_143665 crossref_primary_10_3389_fchem_2021_812274 crossref_primary_10_2139_ssrn_4138992 crossref_primary_10_1039_D1CC03289E crossref_primary_10_1016_j_jechem_2021_03_021 crossref_primary_10_1016_j_chphma_2023_01_001 crossref_primary_10_1021_acsami_0c20721 crossref_primary_10_1039_D1DT03718H crossref_primary_10_1002_advs_202207234 crossref_primary_10_1002_celc_202200443 crossref_primary_10_1002_smll_202208228 crossref_primary_10_1016_j_ensm_2024_103420 crossref_primary_10_1016_j_apsusc_2022_156080 crossref_primary_10_1002_adfm_202413491 crossref_primary_10_1016_j_scib_2022_12_022 crossref_primary_10_1016_j_jpowsour_2024_234348 crossref_primary_10_1016_j_jcis_2024_12_040 crossref_primary_10_1016_j_jpowsour_2024_235313 crossref_primary_10_1016_j_jhazmat_2022_129575 crossref_primary_10_6023_A23100465 crossref_primary_10_1126_science_adi5700 crossref_primary_10_1002_adfm_202205880 crossref_primary_10_1021_acsnano_3c12543 crossref_primary_10_1021_acsnano_1c08011 crossref_primary_10_1021_acs_energyfuels_1c04177 crossref_primary_10_1016_j_mtener_2022_101103 crossref_primary_10_1039_D1RA06228J crossref_primary_10_1002_chem_202101043 crossref_primary_10_1002_cplu_202100393 crossref_primary_10_1002_smll_202302200 crossref_primary_10_1021_acssuschemeng_3c06926 crossref_primary_10_1002_anie_202412591 crossref_primary_10_1021_acsnano_2c08115 crossref_primary_10_1016_j_jcis_2023_03_070 crossref_primary_10_1016_j_jechem_2021_05_010 crossref_primary_10_1016_j_nanoen_2024_110266 crossref_primary_10_1016_j_cej_2023_142464 crossref_primary_10_1016_j_jallcom_2022_167766 crossref_primary_10_1002_smll_202300490 crossref_primary_10_1039_D2DT01387H crossref_primary_10_1021_acsaem_1c00691 crossref_primary_10_1016_j_electacta_2023_142883 crossref_primary_10_1039_D1TA02623B crossref_primary_10_20964_2022_05_40 crossref_primary_10_1007_s12274_023_5855_z crossref_primary_10_1039_D3CC04358D crossref_primary_10_1016_j_jechem_2022_05_003 crossref_primary_10_1039_D4TC03455D crossref_primary_10_3389_fchem_2022_866369 crossref_primary_10_1039_D1NA00329A crossref_primary_10_1007_s12274_021_3464_2 crossref_primary_10_1002_er_7545 crossref_primary_10_1007_s11581_022_04655_8 crossref_primary_10_1007_s10800_025_02285_2 crossref_primary_10_1016_j_jssc_2022_123831 crossref_primary_10_1016_j_jcis_2023_02_139 crossref_primary_10_1016_j_jpcs_2021_110477 crossref_primary_10_1021_prechem_3c00059 crossref_primary_10_1007_s12034_023_02894_7 crossref_primary_10_1063_5_0202773 crossref_primary_10_1016_j_jallcom_2024_173661 crossref_primary_10_1016_j_jallcom_2021_161905 crossref_primary_10_1039_D2SC05479E crossref_primary_10_1016_j_jechem_2021_04_013 crossref_primary_10_1039_D2SE01291J crossref_primary_10_1002_adfm_202300602 crossref_primary_10_1016_j_nxnano_2023_100010 crossref_primary_10_1016_j_xcrp_2021_100543 crossref_primary_10_1016_j_jallcom_2022_165680 crossref_primary_10_1016_j_jcis_2022_02_069 crossref_primary_10_1021_acs_energyfuels_1c00836 crossref_primary_10_3390_ma15124186 crossref_primary_10_1016_j_scib_2022_04_001 crossref_primary_10_1016_j_desal_2023_116409 crossref_primary_10_1002_aenm_202301295 crossref_primary_10_1016_j_jiec_2022_07_045 crossref_primary_10_1021_acsnano_0c10121 crossref_primary_10_1016_j_apsusc_2021_149330 crossref_primary_10_1038_s41467_024_48215_2 crossref_primary_10_1002_er_7522 crossref_primary_10_1016_j_surfin_2024_104696 crossref_primary_10_3390_magnetochemistry9030063 crossref_primary_10_1002_anie_202216450 crossref_primary_10_1002_celc_202200030 crossref_primary_10_1016_j_snb_2023_134590 crossref_primary_10_1021_acs_iecr_2c01676 crossref_primary_10_1002_ifm2_7 crossref_primary_10_1016_j_apsusc_2024_159782 crossref_primary_10_1093_nsr_nwaf061 crossref_primary_10_1002_admt_202301423 crossref_primary_10_1016_j_cej_2022_135188 crossref_primary_10_1016_j_nanoms_2025_02_006 crossref_primary_10_1016_j_cej_2022_138451 crossref_primary_10_1021_acs_nanolett_2c00385 crossref_primary_10_1002_aenm_202400248 crossref_primary_10_1002_adfm_202105043 crossref_primary_10_1021_acsaem_2c01099 crossref_primary_10_1039_D2DT01528E crossref_primary_10_1016_j_colsurfa_2022_129560 crossref_primary_10_1002_admi_202201626 crossref_primary_10_1016_j_jelechem_2021_115633 crossref_primary_10_1016_j_ensm_2022_02_026 crossref_primary_10_1016_j_matchemphys_2023_128375 crossref_primary_10_1016_j_ensm_2024_103600 crossref_primary_10_1149_1945_7111_ad1c12 crossref_primary_10_1002_anie_202110177 crossref_primary_10_1002_adfm_202421952 crossref_primary_10_1016_j_cej_2022_139310 crossref_primary_10_1021_acs_jpclett_4c00760 crossref_primary_10_1021_jacs_1c06115 crossref_primary_10_1039_D4NJ00429A crossref_primary_10_1016_j_jallcom_2023_169447 crossref_primary_10_1021_acsami_0c18368 crossref_primary_10_1002_aenm_202400246 crossref_primary_10_1016_j_est_2024_110823 crossref_primary_10_1002_adfm_202300143 crossref_primary_10_1002_cey2_480 crossref_primary_10_1002_smll_202203835 crossref_primary_10_1016_j_matlet_2021_130803 crossref_primary_10_1021_acs_nanolett_4c02887 crossref_primary_10_1039_D4CP00847B crossref_primary_10_1039_D4SC06323F crossref_primary_10_1016_j_cscee_2024_101038 crossref_primary_10_1021_acs_chemmater_2c00618 crossref_primary_10_1016_j_mtener_2024_101679 crossref_primary_10_1016_j_nanoen_2022_107696 crossref_primary_10_1039_D2NJ01147F crossref_primary_10_1016_j_ensm_2021_07_033 crossref_primary_10_3390_molecules27092708 crossref_primary_10_1016_j_cej_2021_130469 crossref_primary_10_1039_D4CS00929K crossref_primary_10_1002_adfm_202408986 crossref_primary_10_1016_j_est_2023_110311 crossref_primary_10_1016_j_jcis_2024_12_213 crossref_primary_10_26599_EMD_2023_9370012 crossref_primary_10_1016_j_mtener_2022_101084 crossref_primary_10_1021_acs_nanolett_2c02100 crossref_primary_10_1021_acsnano_4c15915 crossref_primary_10_1016_j_micromeso_2021_111662 crossref_primary_10_1016_j_cej_2023_147663 crossref_primary_10_1002_smll_202201792 crossref_primary_10_1039_D2NJ01340A crossref_primary_10_3390_molecules27227851 crossref_primary_10_2139_ssrn_4149376 crossref_primary_10_1002_adfm_202310170 crossref_primary_10_1016_j_mssp_2022_106567 crossref_primary_10_1016_j_cej_2021_131204 crossref_primary_10_1038_s41467_024_52026_w crossref_primary_10_1038_s41467_021_23132_w crossref_primary_10_1016_j_electacta_2022_141599 crossref_primary_10_1073_pnas_2320030121 crossref_primary_10_1039_D0RA08503K crossref_primary_10_1016_j_jelechem_2024_118895 crossref_primary_10_1002_inf2_12364 crossref_primary_10_1016_j_surfin_2021_101435 crossref_primary_10_1002_ange_202110373 crossref_primary_10_1016_j_cej_2023_144260 crossref_primary_10_1021_acsami_0c21301 crossref_primary_10_1002_adfm_202404263 crossref_primary_10_1002_ente_202200207 crossref_primary_10_1039_D2NJ01462A crossref_primary_10_1002_aenm_202301653 crossref_primary_10_1002_smll_202303666 crossref_primary_10_1002_advs_202204671 crossref_primary_10_1002_adma_202207353 crossref_primary_10_1002_adma_202209652 crossref_primary_10_1007_s10854_021_06474_5 crossref_primary_10_1016_j_jmr_2024_107772 crossref_primary_10_1016_j_est_2024_114254 crossref_primary_10_1039_D2CC04109J crossref_primary_10_1002_smll_202203918 crossref_primary_10_1088_1361_6528_abcd65 crossref_primary_10_1016_j_pmatsci_2023_101105 crossref_primary_10_1007_s12598_023_02373_2 crossref_primary_10_1016_j_jelechem_2023_117356 crossref_primary_10_1039_D1QM00442E crossref_primary_10_1016_j_cej_2022_140694 crossref_primary_10_1088_1361_6528_acbeb5 crossref_primary_10_1021_acs_energyfuels_2c00576 crossref_primary_10_1002_idm2_12222 crossref_primary_10_1002_anie_202110373 crossref_primary_10_1073_pnas_2314362120 crossref_primary_10_3389_fchem_2022_895749 crossref_primary_10_1016_j_materresbull_2023_112348 crossref_primary_10_1039_D0QI00892C crossref_primary_10_1002_adfm_202412177 crossref_primary_10_1007_s42114_021_00291_4 crossref_primary_10_1016_j_ensm_2023_03_035 crossref_primary_10_1002_cey2_201 crossref_primary_10_1016_j_icheatmasstransfer_2024_108213 crossref_primary_10_1016_j_jelechem_2023_117249 crossref_primary_10_1002_inf2_12262 crossref_primary_10_1016_j_est_2024_113171 crossref_primary_10_1039_D0TA08456E crossref_primary_10_1016_j_jcis_2022_07_141 crossref_primary_10_1016_j_actamat_2024_120562 crossref_primary_10_1016_j_matt_2021_09_006 crossref_primary_10_3390_nano12091436 crossref_primary_10_1021_acsnano_2c00129 crossref_primary_10_1142_S1793292023501059 crossref_primary_10_1002_adfm_202104286 crossref_primary_10_1088_1361_6528_ad07a0 crossref_primary_10_1016_j_cej_2021_131236 crossref_primary_10_1039_D2TA04990B crossref_primary_10_1007_s12598_023_02517_4 crossref_primary_10_1021_acsnano_1c06491 crossref_primary_10_1016_j_jpowsour_2024_235371 crossref_primary_10_1002_ente_202200494 crossref_primary_10_1016_j_colsurfa_2024_134880 crossref_primary_10_3390_ma16124448 crossref_primary_10_1002_ente_202200012 crossref_primary_10_1021_acsenergylett_3c01086 crossref_primary_10_54227_mlab_20230030 crossref_primary_10_1016_j_cej_2024_157959 crossref_primary_10_1002_aenm_202301443 crossref_primary_10_1088_0256_307X_39_2_028202 crossref_primary_10_1021_acsenergylett_0c02074 crossref_primary_10_1007_s11581_022_04855_2 crossref_primary_10_1002_aenm_202403851 crossref_primary_10_1002_aenm_202403970 crossref_primary_10_1063_5_0135752 crossref_primary_10_1016_j_fuel_2023_127399 crossref_primary_10_1016_j_cej_2021_131481 crossref_primary_10_1016_j_ces_2022_117872 crossref_primary_10_1021_acsaem_2c00935 crossref_primary_10_1002_aenm_202300927 crossref_primary_10_1016_j_est_2024_115013 crossref_primary_10_1002_ange_202110177 crossref_primary_10_1016_j_nanoms_2024_10_003 crossref_primary_10_1016_j_cej_2022_140003 crossref_primary_10_1016_j_ensm_2021_08_039 crossref_primary_10_1039_D3TC04108E crossref_primary_10_1021_acssuschemeng_1c05335 crossref_primary_10_1039_D4EE03217A crossref_primary_10_1007_s12274_021_3647_x crossref_primary_10_1016_j_carbon_2024_119003 crossref_primary_10_1016_j_jcis_2023_08_139 crossref_primary_10_1002_eem2_12586 crossref_primary_10_1016_j_jallcom_2023_168766 crossref_primary_10_1039_D2TA04984H crossref_primary_10_3390_ijms25052884 crossref_primary_10_1016_j_electacta_2022_141747 crossref_primary_10_1016_j_cej_2022_136434 crossref_primary_10_1002_advs_202410653 crossref_primary_10_1021_acsami_4c07575 crossref_primary_10_1126_sciadv_add6596 crossref_primary_10_1002_ece2_30 crossref_primary_10_1002_adfm_202206129 crossref_primary_10_1021_acs_nanolett_1c03724 crossref_primary_10_1016_j_carbon_2022_08_074 crossref_primary_10_1002_adfm_202209753 crossref_primary_10_1002_cplu_202400251 crossref_primary_10_1021_acs_energyfuels_3c04428 crossref_primary_10_1002_aesr_202100028 crossref_primary_10_1016_j_ccr_2024_215778 crossref_primary_10_1016_j_jcis_2022_11_020 crossref_primary_10_1016_j_jallcom_2024_174480 crossref_primary_10_1002_eem2_12451 crossref_primary_10_1039_D2RA03608H crossref_primary_10_1021_acs_nanolett_0c04959 crossref_primary_10_1002_advs_202203895 crossref_primary_10_1016_j_jallcom_2023_171827 crossref_primary_10_1039_D3TA03290F crossref_primary_10_1039_D4TA07036D crossref_primary_10_1016_j_electacta_2021_139121 crossref_primary_10_1016_j_nanoen_2021_106703 crossref_primary_10_1021_acs_chemmater_1c02413 crossref_primary_10_1002_cey2_643 crossref_primary_10_1039_D2EE01020H crossref_primary_10_1039_D3RA01926H crossref_primary_10_3390_mi12080867 crossref_primary_10_1016_j_cclet_2024_110681 crossref_primary_10_1002_smll_202202495 crossref_primary_10_1016_j_nxener_2024_100230 crossref_primary_10_1002_slct_202200092 crossref_primary_10_1002_celc_202100482 crossref_primary_10_1016_j_cej_2024_149609 crossref_primary_10_1016_j_cej_2024_156021 crossref_primary_10_1002_aisy_202200287 crossref_primary_10_33961_jecst_2021_00920 crossref_primary_10_1016_j_electacta_2022_140794 crossref_primary_10_1016_j_esci_2021_08_001 crossref_primary_10_3389_fchem_2021_818255 crossref_primary_10_1021_acsaem_0c02275 crossref_primary_10_1039_D4QI02198C crossref_primary_10_1115_1_4051854 crossref_primary_10_20964_2022_02_21 crossref_primary_10_1007_s11581_023_05337_9 crossref_primary_10_1142_S1793604722510365 crossref_primary_10_1039_D4TA02174F crossref_primary_10_1016_j_coelec_2023_101260 crossref_primary_10_1021_acs_energyfuels_2c02497 crossref_primary_10_3390_magnetochemistry9010025 crossref_primary_10_1002_ange_202306193 crossref_primary_10_1016_j_solidstatesciences_2023_107315 crossref_primary_10_1002_ange_202216450 crossref_primary_10_1016_j_electacta_2022_141758 crossref_primary_10_1021_acsaem_1c02247 crossref_primary_10_1016_j_electacta_2021_139265 crossref_primary_10_1039_D4TA04617J crossref_primary_10_1016_j_est_2023_108620 crossref_primary_10_1016_j_jcis_2023_11_107 crossref_primary_10_1016_j_jpowsour_2023_233911 crossref_primary_10_1002_adfm_202407494 crossref_primary_10_1002_advs_202306992 crossref_primary_10_1007_s11581_025_06106_6 crossref_primary_10_1039_D1CC01477C crossref_primary_10_1007_s42864_020_00068_0 crossref_primary_10_1002_advs_202105193 crossref_primary_10_1016_j_jpowsour_2023_232710 crossref_primary_10_1063_5_0086130 crossref_primary_10_1007_s12274_023_6360_0 crossref_primary_10_1021_acsami_0c21231 crossref_primary_10_1039_D3TA05054H crossref_primary_10_1063_5_0084190 crossref_primary_10_1039_D1EE00614B crossref_primary_10_1021_acs_nanolett_5c00451 crossref_primary_10_1073_pnas_2122866119 crossref_primary_10_1016_j_jallcom_2021_162336 crossref_primary_10_1002_eem2_12410 crossref_primary_10_1002_smll_202200367 crossref_primary_10_1016_j_apsusc_2021_151194 crossref_primary_10_1002_adma_202420453 crossref_primary_10_1360_TB_2023_0063 crossref_primary_10_1016_j_electacta_2021_138351 crossref_primary_10_1002_adfm_202315437 crossref_primary_10_1021_acs_nanolett_2c03849 crossref_primary_10_1016_j_cej_2021_132700 crossref_primary_10_1039_D1EE02810C crossref_primary_10_1016_j_jclepro_2023_136246 crossref_primary_10_1016_j_ceja_2021_100146 crossref_primary_10_1016_j_apsusc_2022_152490 crossref_primary_10_1002_ange_202412591 crossref_primary_10_1016_j_cej_2021_130548 crossref_primary_10_1103_PhysRevApplied_19_054022 crossref_primary_10_1016_j_cjche_2023_12_003 crossref_primary_10_1016_j_jallcom_2021_161238 crossref_primary_10_1039_D1TA10531K crossref_primary_10_1039_D2TA05309H crossref_primary_10_1039_D4CC05233A crossref_primary_10_1007_s40820_023_01042_4 crossref_primary_10_1016_j_jallcom_2022_167299 crossref_primary_10_1021_acsaem_1c03492 crossref_primary_10_1016_j_cej_2022_135049 crossref_primary_10_1016_j_jpowsour_2023_232852 crossref_primary_10_1021_acsami_1c01979 crossref_primary_10_1088_1402_4896_acd60a crossref_primary_10_26599_JAC_2024_9220895 crossref_primary_10_1088_1361_648X_ac8e47 crossref_primary_10_1002_adfm_202307923 crossref_primary_10_1016_j_nanoen_2024_109823 crossref_primary_10_1002_ange_202102605 crossref_primary_10_1016_j_apsusc_2022_154668 crossref_primary_10_1016_j_device_2024_100521 crossref_primary_10_1021_acs_energyfuels_3c04726 crossref_primary_10_1016_j_est_2023_108707 crossref_primary_10_1016_j_jpowsour_2024_235081 crossref_primary_10_1016_j_jelechem_2021_115531 crossref_primary_10_2139_ssrn_4119147 crossref_primary_10_1016_j_est_2022_105490 crossref_primary_10_1016_j_cej_2022_135292 crossref_primary_10_1155_2021_8816250 crossref_primary_10_1016_j_ensm_2021_05_013 crossref_primary_10_1016_j_cej_2024_158750 crossref_primary_10_1016_j_jelechem_2024_118219 crossref_primary_10_1021_acsami_4c06039 |
Cites_doi | 10.1038/nmat1672 10.1149/1.3254160 10.1016/j.ssi.2017.09.008 10.1063/1.336420 10.1021/jp074464w 10.1039/b309130a 10.1038/nnano.2008.406 10.1038/451652a 10.1103/PhysRevLett.112.208301 10.1038/nnano.2012.35 10.1002/aenm.201502471 10.1021/ja206268a 10.1126/science.1136629 10.1021/acs.chemmater.5b01754 10.1002/adma.201305932 10.1039/b820555h 10.1039/B603559K 10.1103/PhysRevLett.96.058302 10.1002/adma.201000717 10.1002/anie.201301084 10.1039/C7CP03312E 10.1038/s41560-017-0084-x 10.1016/0025-5408(82)90029-0 10.1038/nmat3784 10.1038/35035045 10.1021/cm901243a 10.1103/PhysRevB.53.9204 10.1038/nature19078 10.1039/C4EE00490F 10.1103/PhysRevLett.101.137201 10.1021/jacs.6b00061 10.1149/1.1467947 10.1038/nmat3601 10.1038/nnano.2007.412 10.1039/C4TC00299G |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-020-0756-y |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 83 |
ExternalDocumentID | 32807921 10_1038_s41563_020_0756_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Welch Foundation grantid: F-1861 funderid: https://doi.org/10.13039/100000928 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11504192, 51804173, 11434006, 51673103; 11504192, 51804173, 11434006, 51673103 funderid: https://doi.org/10.13039/501100001809 – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada) grantid: RGPIN-04178 funderid: https://doi.org/10.13039/501100000038 – fundername: National Science Foundation (NSF) grantid: DMR 1700137 funderid: https://doi.org/10.13039/100000001 – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada) grantid: RGPIN-04178 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11504192, 51804173, 11434006, 51673103 – fundername: Welch Foundation grantid: F-1861 – fundername: National Science Foundation (NSF) grantid: DMR 1700137 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c477t-f9a791f17536b1b5f4bf03b0fdc052a76b798d50b54b410ca53100d23e1fc76a3 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Fri Jul 11 15:25:20 EDT 2025 Sat Aug 23 12:23:31 EDT 2025 Thu Apr 03 07:24:29 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Tue Jul 01 02:14:01 EDT 2025 Fri Feb 21 02:40:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-f9a791f17536b1b5f4bf03b0fdc052a76b798d50b54b410ca53100d23e1fc76a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8093-940X 0000-0001-8891-260X 0000-0002-3253-0749 0000-0002-8735-8077 0000-0002-7327-9968 0000-0001-6453-2135 0000-0002-7504-031X |
PMID | 32807921 |
PQID | 2473200061 |
PQPubID | 27576 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2435191139 proquest_journals_2473200061 pubmed_primary_32807921 crossref_citationtrail_10_1038_s41563_020_0756_y crossref_primary_10_1038_s41563_020_0756_y springer_journals_10_1038_s41563_020_0756_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Maier (CR10) 2007; 134 Poizot, Laruelle, Grugeon, Dupont, Tarascon (CR1) 2000; 407 Thackeray, David, Goodenough (CR21) 1982; 17 Laruelle (CR8) 2002; 149 Wu (CR3) 2012; 7 CR37 Gershinsky, Bar, Monconduit, Zitoun (CR15) 2014; 7 Permien (CR24) 2016; 28 Wang (CR27) 2011; 133 Cabana, Monconduit, Larcher, Palacin (CR5) 2010; 22 Chen, Maier (CR19) 2018; 3 CR32 Palacin (CR4) 2009; 38 Fontcuberta, Rodríguez, Pernet, Longworth, Goodenough (CR22) 1986; 59 Jamnik, Maier (CR9) 2003; 5 Augustyn (CR29) 2013; 12 Komaba (CR26) 2010; 157 Rondinelli, Stengel, Spaldin (CR30) 2008; 3 Duan (CR35) 2008; 101 Armand, Tarascon (CR20) 2008; 451 Hjortstam, Trygg, Wills, Johansson, Eriksson (CR36) 1996; 53 Dasgupta (CR13) 2014; 26 Fu, Chen, Samuelis, Maier (CR34) 2014; 112 Yamada (CR16) 2013; 52 Taberna, Mitra, Poizot, Simon, Tarascon (CR2) 2006; 5 Hu (CR7) 2013; 12 Yamada, Morita, Kume, Yoshikawa, Awaga (CR17) 2014; 2 Weisheit (CR14) 2007; 315 Wang, Polleux, Lim, Dunn (CR28) 2007; 111 Li (CR6) 2016; 138 Zhukovskii, Balaya, Kotomin, Maier (CR11) 2006; 96 Fu, Chen, Maier (CR12) 2018; 318 Chen, Fu, Maier (CR33) 2016; 536 Zhang (CR23) 2016; 6 Bock (CR25) 2017; 19 Boyanov, Womes, Monconduit, Zitoun (CR18) 2009; 21 Maruyama (CR31) 2009; 4 S Laruelle (756_CR8) 2002; 149 S Komaba (756_CR26) 2010; 157 S Permien (756_CR24) 2016; 28 T Yamada (756_CR16) 2013; 52 V Augustyn (756_CR29) 2013; 12 M Weisheit (756_CR14) 2007; 315 756_CR37 T Maruyama (756_CR31) 2009; 4 M Armand (756_CR20) 2008; 451 O Hjortstam (756_CR36) 1996; 53 756_CR32 L Fu (756_CR34) 2014; 112 L Fu (756_CR12) 2018; 318 JM Rondinelli (756_CR30) 2008; 3 C-C Chen (756_CR33) 2016; 536 C-G Duan (756_CR35) 2008; 101 S Boyanov (756_CR18) 2009; 21 PL Taberna (756_CR2) 2006; 5 P Poizot (756_CR1) 2000; 407 J Fontcuberta (756_CR22) 1986; 59 T Yamada (756_CR17) 2014; 2 W Zhang (756_CR23) 2016; 6 DC Bock (756_CR25) 2017; 19 F Wang (756_CR27) 2011; 133 J Cabana (756_CR5) 2010; 22 J Jamnik (756_CR9) 2003; 5 S Dasgupta (756_CR13) 2014; 26 H Wu (756_CR3) 2012; 7 G Gershinsky (756_CR15) 2014; 7 J Maier (756_CR10) 2007; 134 Y-Y Hu (756_CR7) 2013; 12 J Wang (756_CR28) 2007; 111 C-C Chen (756_CR19) 2018; 3 MM Thackeray (756_CR21) 1982; 17 YF Zhukovskii (756_CR11) 2006; 96 MR Palacin (756_CR4) 2009; 38 L Li (756_CR6) 2016; 138 |
References_xml | – volume: 5 start-page: 567 year: 2006 end-page: 573 ident: CR2 article-title: High rate capabilities Fe O -based Cu nano-architectured electrodes for lithium-ion battery applications publication-title: Nat. Mater. doi: 10.1038/nmat1672 – volume: 157 start-page: A60 year: 2010 end-page: A65 ident: CR26 article-title: Electrochemical insertion of Li and Na ions into nanocrystalline Fe O and ‐Fe O for rechargeable batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.3254160 – volume: 318 start-page: 54 year: 2018 end-page: 59 ident: CR12 article-title: Interfacial mass storage in nanocomposites publication-title: Solid State Ion. doi: 10.1016/j.ssi.2017.09.008 – volume: 59 start-page: 1918 year: 1986 end-page: 1926 ident: CR22 article-title: Structural and magnetic characterization of the lithiated iron oxide Li Fe O publication-title: J. Appl. Phys. doi: 10.1063/1.336420 – volume: 111 start-page: 14925 year: 2007 end-page: 14931 ident: CR28 article-title: Pseudocapacitive contributions to electrochemical energy storage in TiO (anatase) nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/jp074464w – volume: 5 start-page: 5215 year: 2003 end-page: 5220 ident: CR9 article-title: Nanocrystallinity effects in lithium battery materials. Aspects of nano-ionics. Part IV publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b309130a – volume: 4 start-page: 158 year: 2009 end-page: 161 ident: CR31 article-title: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.406 – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: CR20 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 112 start-page: 208301 year: 2014 ident: CR34 article-title: Thermodynamics of lithium storage at abrupt junctions: modeling and experimental evidence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.208301 – volume: 7 start-page: 310 year: 2012 end-page: 315 ident: CR3 article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.35 – volume: 6 start-page: 1502471 year: 2016 ident: CR23 article-title: Insights into ionic transport and structural changes in magnetite during multiple‐electron transfer reactions publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502471 – ident: CR37 – volume: 133 start-page: 18828 year: 2011 end-page: 18836 ident: CR27 article-title: Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206268a – volume: 315 start-page: 349 year: 2007 end-page: 351 ident: CR14 article-title: Electric field-induced modification of magnetism in thin-film ferromagnets publication-title: Science doi: 10.1126/science.1136629 – volume: 28 start-page: 434 year: 2016 end-page: 444 ident: CR24 article-title: What happens structurally and electronically during the Li conversion reaction of CoFe O nanoparticles: an operando XAS and XRD investigation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01754 – volume: 26 start-page: 4639 year: 2014 end-page: 4644 ident: CR13 article-title: Intercalation‐driven reversible control of magnetism in bulk ferromagnets publication-title: Adv. Mater. doi: 10.1002/adma.201305932 – volume: 38 start-page: 2565 year: 2009 end-page: 2575 ident: CR4 article-title: Recent advances in rechargeable battery materials: a chemist’s perspective publication-title: Chem. Soc. Rev. doi: 10.1039/b820555h – volume: 134 start-page: 51 year: 2007 end-page: 66 ident: CR10 article-title: Mass storage in space charge regions of nano-sized systems (Nano-ionics. Part V) publication-title: Faraday Discuss. doi: 10.1039/B603559K – volume: 96 start-page: 058302 year: 2006 ident: CR11 article-title: Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.058302 – volume: 22 start-page: E170 year: 2010 end-page: E192 ident: CR5 article-title: Beyond intercalation‐based Li‐ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions publication-title: Adv. Mater. doi: 10.1002/adma.201000717 – volume: 52 start-page: 6238 year: 2013 end-page: 6241 ident: CR16 article-title: In situ seamless magnetic measurements for solid-state electrochemical processes in Prussian blue analogues publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301084 – volume: 19 start-page: 20867 year: 2017 end-page: 20880 ident: CR25 article-title: Size dependent behavior of Fe O crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP03312E – volume: 3 start-page: 102 year: 2018 end-page: 108 ident: CR19 article-title: Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes publication-title: Nat. Energy doi: 10.1038/s41560-017-0084-x – volume: 17 start-page: 785 year: 1982 end-page: 793 ident: CR21 article-title: Structural characterization of the lithiated iron oxides Li Fe O and Li Fe O (0<x<2) publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(82)90029-0 – volume: 12 start-page: 1130 year: 2013 end-page: 1136 ident: CR7 article-title: Origin of additional capacities in metal oxide lithium-ion battery electrodes publication-title: Nat. Mater. doi: 10.1038/nmat3784 – volume: 407 start-page: 496 year: 2000 end-page: 499 ident: CR1 article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries publication-title: Nature doi: 10.1038/35035045 – volume: 21 start-page: 3684 year: 2009 end-page: 3692 ident: CR18 article-title: Mössbauer spectroscopy and magnetic measurements as complementary techniques for the phase analysis of FeP electrodes cycling in Li-ion batteries publication-title: Chem. Mater. doi: 10.1021/cm901243a – volume: 53 start-page: 9204 year: 1996 end-page: 9213 ident: CR36 article-title: Calculated spin and orbital moments in the surfaces of the 3d metals Fe, Co, and Ni and their overlayers on Cu(001) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.9204 – volume: 536 start-page: 159 year: 2016 end-page: 164 ident: CR33 article-title: Synergistic, ultrafast mass storage and removal in artificial mixed conductors publication-title: Nature doi: 10.1038/nature19078 – volume: 7 start-page: 2012 year: 2014 end-page: 2016 ident: CR15 article-title: Operando electron magnetic measurements of Li-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00490F – ident: CR32 – volume: 101 start-page: 137201 year: 2008 ident: CR35 article-title: Surface magnetoelectric effect in ferromagnetic metal films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.137201 – volume: 138 start-page: 2838 year: 2016 end-page: 2848 ident: CR6 article-title: Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00061 – volume: 149 start-page: A627 year: 2002 end-page: A634 ident: CR8 article-title: On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential publication-title: J. Electrochem. Soc. doi: 10.1149/1.1467947 – volume: 12 start-page: 518 year: 2013 end-page: 522 ident: CR29 article-title: High-rate electrochemical energy storage through Li intercalation pseudocapacitance publication-title: Nat. Mater. doi: 10.1038/nmat3601 – volume: 3 start-page: 46 year: 2008 end-page: 50 ident: CR30 article-title: Carrier-mediated magnetoelectricity in complex oxide heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.412 – volume: 2 start-page: 5183 year: 2014 end-page: 5188 ident: CR17 article-title: The solid-state electrochemical reduction process of magnetite in Li batteries: in situ magnetic measurements toward electrochemical magnets publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00299G – volume: 149 start-page: A627 year: 2002 ident: 756_CR8 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1467947 – volume: 19 start-page: 20867 year: 2017 ident: 756_CR25 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP03312E – volume: 133 start-page: 18828 year: 2011 ident: 756_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206268a – volume: 451 start-page: 652 year: 2008 ident: 756_CR20 publication-title: Nature doi: 10.1038/451652a – volume: 536 start-page: 159 year: 2016 ident: 756_CR33 publication-title: Nature doi: 10.1038/nature19078 – volume: 52 start-page: 6238 year: 2013 ident: 756_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301084 – volume: 21 start-page: 3684 year: 2009 ident: 756_CR18 publication-title: Chem. Mater. doi: 10.1021/cm901243a – volume: 138 start-page: 2838 year: 2016 ident: 756_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00061 – volume: 157 start-page: A60 year: 2010 ident: 756_CR26 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3254160 – ident: 756_CR32 – volume: 96 start-page: 058302 year: 2006 ident: 756_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.058302 – volume: 22 start-page: E170 year: 2010 ident: 756_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201000717 – volume: 6 start-page: 1502471 year: 2016 ident: 756_CR23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502471 – volume: 315 start-page: 349 year: 2007 ident: 756_CR14 publication-title: Science doi: 10.1126/science.1136629 – volume: 3 start-page: 46 year: 2008 ident: 756_CR30 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.412 – volume: 38 start-page: 2565 year: 2009 ident: 756_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/b820555h – volume: 407 start-page: 496 year: 2000 ident: 756_CR1 publication-title: Nature doi: 10.1038/35035045 – volume: 112 start-page: 208301 year: 2014 ident: 756_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.208301 – volume: 5 start-page: 5215 year: 2003 ident: 756_CR9 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b309130a – volume: 4 start-page: 158 year: 2009 ident: 756_CR31 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.406 – volume: 26 start-page: 4639 year: 2014 ident: 756_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.201305932 – volume: 111 start-page: 14925 year: 2007 ident: 756_CR28 publication-title: J. Phys. Chem. C doi: 10.1021/jp074464w – ident: 756_CR37 – volume: 17 start-page: 785 year: 1982 ident: 756_CR21 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(82)90029-0 – volume: 5 start-page: 567 year: 2006 ident: 756_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat1672 – volume: 12 start-page: 1130 year: 2013 ident: 756_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat3784 – volume: 53 start-page: 9204 year: 1996 ident: 756_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.9204 – volume: 318 start-page: 54 year: 2018 ident: 756_CR12 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2017.09.008 – volume: 7 start-page: 2012 year: 2014 ident: 756_CR15 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00490F – volume: 134 start-page: 51 year: 2007 ident: 756_CR10 publication-title: Faraday Discuss. doi: 10.1039/B603559K – volume: 59 start-page: 1918 year: 1986 ident: 756_CR22 publication-title: J. Appl. Phys. doi: 10.1063/1.336420 – volume: 3 start-page: 102 year: 2018 ident: 756_CR19 publication-title: Nat. Energy doi: 10.1038/s41560-017-0084-x – volume: 7 start-page: 310 year: 2012 ident: 756_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.35 – volume: 12 start-page: 518 year: 2013 ident: 756_CR29 publication-title: Nat. Mater. doi: 10.1038/nmat3601 – volume: 28 start-page: 434 year: 2016 ident: 756_CR24 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01754 – volume: 101 start-page: 137201 year: 2008 ident: 756_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.137201 – volume: 2 start-page: 5183 year: 2014 ident: 756_CR17 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00299G |
SSID | ssj0021556 |
Score | 2.7194836 |
Snippet | In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 76 |
SubjectTerms | 639/301 639/301/299 Biomaterials Capacitance Chemistry and Materials Science Condensed Matter Physics Electrodes Electron density Electron spin Energy storage Iron nitride Iron oxides Lithium Lithium-ion batteries Magnetic measurement Magnetism Materials Science Metal compounds Metal oxides Metals Nanoparticles Nanotechnology Optical and Electronic Materials Rechargeable batteries Space charge Storage batteries Storage capacity Storage systems Transition metal compounds Transition metal oxides |
Title | Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry |
URI | https://link.springer.com/article/10.1038/s41563-020-0756-y https://www.ncbi.nlm.nih.gov/pubmed/32807921 https://www.proquest.com/docview/2473200061 https://www.proquest.com/docview/2435191139 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9gIPiG8KYzISTyBrceLEzhMC1DIhMSHEpL5F_spWiSajTaX1v-fOSVrQxF7ykPgc6872_Xx3vgN4K10tS-tyrhAscGl0xo2kG8s21UIY_KzpcvK3s-L0XH6d5_PB4LYewirHPTFu1L51ZCM_SaXK4rUS8eHqN6eqUeRdHUpo3IVDSl1GIV1qvj9woa7sbxepgiOuSEevZqZP1nRwIQ9mwlFpFnz7r166ATZvOEqj_pk9hAcDcGQfe0k_gjuheQz3_0on-AQuptfdyjCKd8RdgjnUgw5BNls0rCOVFKOz2DIg3mbt9cIHhhj8crFZcnpvY6ZNPDgzyuqEesMzG2mRbsOW5qIJXYvEq-1TOJ9Nf34-5UMhBe6kUh2vS6NKUVNSzsIKm9fS1klmk9q7JE-NKqwqtc8Tm0srReJMTmZ_n2ZB1E4VJnsGB03bhBfAfFkEL6QVAZGWlqL0CkEh9iO1qW1iJ5CMbKzckGWcil38qqK3O9NVz_kKOV8R56vtBN7tSK76FBu3NT4aZVMNq21d7efGBN7sPuM6IeeHaUK7oTZUilAg4J3A816mu79llBKoTJH6_Sjkfef_HcrL24fyCu6lFP8SzTVHcNCtNuE1ApjOHsdZik89-3IMh5-mZ99__AHkAO5_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGfZUsBIcAFZjWMndg4IIeiypY9TK_UWbMcpK7FJu5sV3T_Fb2Qm2WxBFb31Gnsca8b2fPa8AN4oX6rM-YRrBAtcWSO5VRSx7GIjhMVmQ8HJB4fp6Fh9O0lO1uB3HwtDbpX9mdge1EXt6Y18O1ZatmEl4uPZOaeqUWRd7UtodMtiLyx-4ZVt9mH3C8r3bRwPd44-j_iyqgD3SuuGl5nVmSgpQ2XqhEtK5cpIuqgsfJTEVqdOZ6ZIIpcop0TkbUJv4EUsgyi9Tq3EcW_BbSVlRjvKDL-uLniom7toJp1yxDFxb0WVZntGFyWymEYclXTKF__qwSvg9ophttV3wwdwfwlU2aduZT2EtVA9gnt_pS98DKc7F83UMvKvxFOJedS7HkE9G1esIRXYeoOxSUB8z-qLcREYYv4f4_mE03fXZvbEizqjLFKopwrmWlqkm7OJPa1CUyPxdPEEjm-ExU9hvaqr8AxYkaWhEMqJgMjOKJEVGkEojqOMLV3kBhD1bMz9Mqs5Fdf4mbfWdWnyjvM5cj4nzueLAbxbkZx1KT2u67zVyyZf7u5ZfrkWB_B61Yz7kowttgr1nPpQ6UOBAHsAG51MV3-TlIIoi5H6fS_ky8H_O5XN66fyCu6Mjg728_3dw73ncDcm35v2qWgL1pvpPLxA8NS4l-2KZfD9prfIHy7PKIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4oPJqFwoYCS4ga-PYiZMDqhDtqqVQcaDS3oLtOO1KbFJ2s6L71_h1zOSxC6rordfY41hjj-ez5wXwWrlCpdZFXCNY4MokkhtFEcs2TIQw2JxQcPKXk_jwVH0aR-MN-N3HwpBbZX8mNgd1Xjl6Ix-GSssmrEQMi84t4uv-aO_iJ6cKUmRp7ctptFvk2C9_4fVt_v5oH9f6TRiODr59PORdhQHulNY1L1KjU1FQtsrYChsVyhaBtEGRuyAKjY6tTpM8CmykrBKBMxG9h-eh9KJwOjYSx70Ft7WMBMmYHq8ve6in28gmHXPENGFvUZXJcE6XJrKeBhwVdsyX_-rEK0D3ipG20X2jLbjfgVb2od1lD2DDlw_h3l-pDB_B2cFlPTOMfC3xhGIOdbBDgM8mJatJHTaeYWzqEeuz6nKSe4b4_3yymHL6bpssn3hpZ5RRCnVWzmxDi3QLNjVnpa8rJJ4tH8PpjbD4CWyWVel3gOVp7HOhrPCI8hIl0lwjIMVxVGIKG9gBBD0bM9dlOKdCGz-yxtIuk6zlfIacz4jz2XIAb1ckF216j-s67_Zrk3WSPs_W-3IAr1bNKKNkeDGlrxbUh8ogCgTbA9hu13T1N0npiNIQqd_1i7we_L9TeXr9VF7CHRSO7PPRyfEzuBuSG07zarQLm_Vs4Z8jjqrti2bDMvh-0xLyB-oDLLU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extra+storage+capacity+in+transition+metal+oxide+lithium-ion+batteries+revealed+by+in+situ+magnetometry&rft.jtitle=Nature+materials&rft.au=Li%2C+Qiang&rft.au=Li%2C+Hongsen&rft.au=Xia%2C+Qingtao&rft.au=Hu%2C+Zhengqiang&rft.date=2021-01-01&rft.issn=1476-1122&rft.volume=20&rft.issue=1&rft.spage=76&rft_id=info:doi/10.1038%2Fs41563-020-0756-y&rft_id=info%3Apmid%2F32807921&rft.externalDocID=32807921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |