Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry

In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elus...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 20; no. 1; pp. 76 - 83
Main Authors Li, Qiang, Li, Hongsen, Xia, Qingtao, Hu, Zhengqiang, Zhu, Yue, Yan, Shishen, Ge, Chen, Zhang, Qinghua, Wang, Xiaoxiong, Shang, Xiantao, Fan, Shuting, Long, Yunze, Gu, Lin, Miao, Guo-Xing, Yu, Guihua, Moodera, Jagadeesh S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe 3 O 4 /Li model system, and that it also exists in CoO, NiO, FeF 2 and Fe 2 N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems. Although some transition metal oxide-based electrodes exhibit high storage capacities beyond theoretical values, the underlying physicochemical mechanism remains elusive. Surface capacitance on metal nanoparticles involving spin-polarized electrons is now shown to be consistent with a space charge mechanism.
AbstractList In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe 3 O 4 /Li model system, and that it also exists in CoO, NiO, FeF 2 and Fe 2 N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems. Although some transition metal oxide-based electrodes exhibit high storage capacities beyond theoretical values, the underlying physicochemical mechanism remains elusive. Surface capacitance on metal nanoparticles involving spin-polarized electrons is now shown to be consistent with a space charge mechanism.
In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe O /Li model system, and that it also exists in CoO, NiO, FeF and Fe N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.
In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe3O4/Li model system, and that it also exists in CoO, NiO, FeF2 and Fe2N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe3O4/Li model system, and that it also exists in CoO, NiO, FeF2 and Fe2N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.
In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe3O4/Li model system, and that it also exists in CoO, NiO, FeF2 and Fe2N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.Although some transition metal oxide-based electrodes exhibit high storage capacities beyond theoretical values, the underlying physicochemical mechanism remains elusive. Surface capacitance on metal nanoparticles involving spin-polarized electrons is now shown to be consistent with a space charge mechanism.
Author Ge, Chen
Hu, Zhengqiang
Zhang, Qinghua
Shang, Xiantao
Yan, Shishen
Long, Yunze
Miao, Guo-Xing
Moodera, Jagadeesh S.
Li, Qiang
Fan, Shuting
Gu, Lin
Xia, Qingtao
Wang, Xiaoxiong
Zhu, Yue
Li, Hongsen
Yu, Guihua
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0001-8891-260X
  surname: Li
  fullname: Li, Qiang
  email: liqiang@qdu.edu.cn
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Department of Electrical and Computer Engineering and Institute for Quantum Computing, University of Waterloo
– sequence: 2
  givenname: Hongsen
  orcidid: 0000-0001-6453-2135
  surname: Li
  fullname: Li, Hongsen
  email: hsli@qdu.edu.cn
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin
– sequence: 3
  givenname: Qingtao
  surname: Xia
  fullname: Xia, Qingtao
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University
– sequence: 4
  givenname: Zhengqiang
  surname: Hu
  fullname: Hu, Zhengqiang
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University
– sequence: 5
  givenname: Yue
  surname: Zhu
  fullname: Zhu, Yue
  organization: Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin
– sequence: 6
  givenname: Shishen
  orcidid: 0000-0002-7327-9968
  surname: Yan
  fullname: Yan, Shishen
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University
– sequence: 7
  givenname: Chen
  orcidid: 0000-0002-8093-940X
  surname: Ge
  fullname: Ge, Chen
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 8
  givenname: Qinghua
  surname: Zhang
  fullname: Zhang, Qinghua
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 9
  givenname: Xiaoxiong
  surname: Wang
  fullname: Wang, Xiaoxiong
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University
– sequence: 10
  givenname: Xiantao
  surname: Shang
  fullname: Shang, Xiantao
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University
– sequence: 11
  givenname: Shuting
  surname: Fan
  fullname: Fan, Shuting
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University
– sequence: 12
  givenname: Yunze
  surname: Long
  fullname: Long, Yunze
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University
– sequence: 13
  givenname: Lin
  orcidid: 0000-0002-7504-031X
  surname: Gu
  fullname: Gu, Lin
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 14
  givenname: Guo-Xing
  orcidid: 0000-0002-8735-8077
  surname: Miao
  fullname: Miao, Guo-Xing
  email: guo-xing.miao@uwaterloo.ca
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Department of Electrical and Computer Engineering and Institute for Quantum Computing, University of Waterloo, Department of Physics, Plasma Science and Fusion Center and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology
– sequence: 15
  givenname: Guihua
  orcidid: 0000-0002-3253-0749
  surname: Yu
  fullname: Yu, Guihua
  email: ghyu@austin.utexas.edu
  organization: Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin
– sequence: 16
  givenname: Jagadeesh S.
  surname: Moodera
  fullname: Moodera, Jagadeesh S.
  organization: Department of Physics, Plasma Science and Fusion Center and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32807921$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJab76A3opgl56cTsjWdL6WEL6AYFckrOQbHmrYEtbSS7xv4-2u6EQaE8Sw_MMw_uek5MQgyPkHcInBL75nFsUkjfAoAElZLO-ImfYKtm0UsLJ8Y_I2Ck5z_kBgKEQ8g055WwDqmN4RrbXjyUZmktMZutob3am92WlPtA6D9kXHwOdXTETjY9-cHTy5adf5mY_t6YUl7zLNLnfzkxuoPaPW72FzmYbXIlVTusleT2aKbu3x_eC3H-9vrv63tzcfvtx9eWm6VulSjN2RnU4ohJcWrRibO0I3MI49CCYUdKqbjMIsKK1LUJvBEeAgXGHY6-k4Rfk42HvLsVfi8tFzz73bppMcHHJmrVcYIfIu4p-eIE-xCWFel2lFGcAILFS74_UYmc36F3ys0mrfo6wAuoA9CnmnNyoa4BmH1sN0E8aQe_L0oeydC1L78vSazXxhfm8_H8OOzi5smHr0t-j_y09AQT6p1Y
CitedBy_id crossref_primary_10_1016_j_cclet_2022_01_002
crossref_primary_10_1039_D1TA09499H
crossref_primary_10_1016_j_cej_2024_150454
crossref_primary_10_1021_acs_langmuir_4c03029
crossref_primary_10_1016_j_electacta_2023_142155
crossref_primary_10_1016_j_electacta_2021_138686
crossref_primary_10_1002_eem2_12619
crossref_primary_10_1016_j_chempr_2021_06_008
crossref_primary_10_1016_j_cej_2022_137924
crossref_primary_10_1038_s41427_023_00502_y
crossref_primary_10_1021_acsami_2c11132
crossref_primary_10_1039_D0TA12112F
crossref_primary_10_1007_s40820_022_00790_z
crossref_primary_10_1007_s11581_023_04977_1
crossref_primary_10_1002_chem_202302244
crossref_primary_10_1021_acs_chemmater_4c02772
crossref_primary_10_1002_chem_202101818
crossref_primary_10_1002_bte2_70006
crossref_primary_10_1002_adma_202202780
crossref_primary_10_1021_acsanm_2c00027
crossref_primary_10_3389_fenrg_2020_609417
crossref_primary_10_1002_advs_202301248
crossref_primary_10_1002_aenm_202303011
crossref_primary_10_1016_j_jpcs_2024_112328
crossref_primary_10_3389_fchem_2021_790659
crossref_primary_10_3390_sym13040733
crossref_primary_10_1016_j_cclet_2021_08_052
crossref_primary_10_1021_acsnano_1c07943
crossref_primary_10_1016_j_jallcom_2022_164142
crossref_primary_10_1016_j_jpowsour_2023_234044
crossref_primary_10_1007_s12274_023_5702_2
crossref_primary_10_1007_s11581_023_05031_w
crossref_primary_10_1016_j_jcis_2022_04_020
crossref_primary_10_1016_j_ceramint_2023_09_173
crossref_primary_10_1016_j_ceramint_2021_06_092
crossref_primary_10_1021_acsaem_2c00340
crossref_primary_10_1039_D4NR01786B
crossref_primary_10_1016_j_cclet_2024_110010
crossref_primary_10_1021_acsami_2c17932
crossref_primary_10_1021_acsenergylett_3c01689
crossref_primary_10_1039_D0NR09228B
crossref_primary_10_1016_j_apcatb_2021_120660
crossref_primary_10_1007_s11581_021_04303_7
crossref_primary_10_1016_j_electacta_2023_143032
crossref_primary_10_1016_j_jallcom_2022_167429
crossref_primary_10_3390_mi13020149
crossref_primary_10_1021_acs_nanolett_2c00838
crossref_primary_10_1016_j_jiec_2023_05_030
crossref_primary_10_1002_ente_202201090
crossref_primary_10_1007_s12598_022_01979_2
crossref_primary_10_1039_D1RA03822B
crossref_primary_10_1021_acsaem_1c04031
crossref_primary_10_1016_j_jelechem_2022_116792
crossref_primary_10_1166_mex_2022_2316
crossref_primary_10_1007_s40820_024_01560_9
crossref_primary_10_1039_D2SC06587H
crossref_primary_10_1002_smll_202307103
crossref_primary_10_1016_j_ensm_2022_06_022
crossref_primary_10_3389_fchem_2022_845742
crossref_primary_10_31613_ceramist_2022_25_2_03
crossref_primary_10_1016_j_apsusc_2023_156994
crossref_primary_10_1039_D1CC00910A
crossref_primary_10_1021_acsami_1c05591
crossref_primary_10_1016_j_cclet_2021_01_049
crossref_primary_10_1021_acs_inorgchem_2c04462
crossref_primary_10_1016_j_mattod_2022_05_021
crossref_primary_10_1039_D1TA02880D
crossref_primary_10_1021_acsnano_4c04179
crossref_primary_10_1007_s42114_021_00397_9
crossref_primary_10_1021_acsnano_1c11032
crossref_primary_10_1007_s12274_021_3911_0
crossref_primary_10_1016_j_apsusc_2023_157719
crossref_primary_10_1021_acsami_3c18334
crossref_primary_10_1002_smll_202309586
crossref_primary_10_1002_smll_202203236
crossref_primary_10_1039_D3CC05365B
crossref_primary_10_1007_s11664_021_09191_1
crossref_primary_10_1016_j_scriptamat_2021_114466
crossref_primary_10_1016_j_jallcom_2022_165064
crossref_primary_10_1021_acsmaterialslett_3c00199
crossref_primary_10_1016_j_jcis_2024_08_182
crossref_primary_10_1021_acsnano_0c08314
crossref_primary_10_1039_D3QI00182B
crossref_primary_10_2139_ssrn_3983710
crossref_primary_10_1002_smll_202303802
crossref_primary_10_1016_j_matt_2024_05_038
crossref_primary_10_3389_fchem_2021_834418
crossref_primary_10_1016_j_jelechem_2022_116654
crossref_primary_10_1002_ange_202301631
crossref_primary_10_1016_j_jallcom_2021_162849
crossref_primary_10_1039_D1NR03491J
crossref_primary_10_1016_j_cej_2021_129838
crossref_primary_10_1039_D4TA06381C
crossref_primary_10_1039_D1EE03070A
crossref_primary_10_1002_smll_202404767
crossref_primary_10_1016_j_electacta_2023_143468
crossref_primary_10_1039_D1TA02894D
crossref_primary_10_1002_adma_202006629
crossref_primary_10_1002_aelm_202100512
crossref_primary_10_1021_acsami_1c20534
crossref_primary_10_1039_D3SC04377K
crossref_primary_10_1016_j_jallcom_2021_161626
crossref_primary_10_1016_j_cej_2021_130817
crossref_primary_10_1021_acsami_2c09179
crossref_primary_10_1021_acs_energyfuels_3c01734
crossref_primary_10_1016_j_cej_2023_141997
crossref_primary_10_1007_s10008_024_05970_y
crossref_primary_10_1021_acs_nanolett_1c02142
crossref_primary_10_1016_j_vacuum_2024_113738
crossref_primary_10_1016_j_ceramint_2022_05_301
crossref_primary_10_1002_smll_202301606
crossref_primary_10_1002_adfm_202412879
crossref_primary_10_1002_adma_202414047
crossref_primary_10_1039_D3CP00354J
crossref_primary_10_1016_j_jpowsour_2022_231636
crossref_primary_10_1016_j_est_2025_115390
crossref_primary_10_1016_j_rineng_2024_102227
crossref_primary_10_1007_s11705_020_1956_3
crossref_primary_10_1016_j_est_2024_113925
crossref_primary_10_4236_msce_2020_812005
crossref_primary_10_1016_j_cej_2023_147848
crossref_primary_10_1016_j_ensm_2021_09_022
crossref_primary_10_1002_cey2_195
crossref_primary_10_1016_j_jallcom_2023_171026
crossref_primary_10_3390_molecules27020396
crossref_primary_10_1002_aenm_202400643
crossref_primary_10_1016_S1872_2067_21_63867_6
crossref_primary_10_1016_j_cej_2022_140137
crossref_primary_10_1002_anie_202301631
crossref_primary_10_1016_j_cej_2021_133689
crossref_primary_10_1016_j_micromeso_2021_111483
crossref_primary_10_1007_s40843_022_2217_5
crossref_primary_10_1002_aenm_202200409
crossref_primary_10_1016_j_jcis_2023_05_053
crossref_primary_10_1016_j_jpowsour_2021_229758
crossref_primary_10_1021_acs_chemmater_4c02013
crossref_primary_10_1016_j_est_2024_112967
crossref_primary_10_1016_j_cej_2024_151396
crossref_primary_10_1016_j_electacta_2023_142323
crossref_primary_10_1007_s10854_023_11593_2
crossref_primary_10_1016_j_jelechem_2022_116296
crossref_primary_10_1016_j_cej_2022_141116
crossref_primary_10_1021_acsaem_1c00641
crossref_primary_10_1109_TIM_2021_3100331
crossref_primary_10_1002_anie_202102605
crossref_primary_10_1016_j_jallcom_2020_158576
crossref_primary_10_1016_j_electacta_2021_138713
crossref_primary_10_1016_j_sajce_2022_08_008
crossref_primary_10_3390_ma13173797
crossref_primary_10_2139_ssrn_4147463
crossref_primary_10_1039_D4NJ03790A
crossref_primary_10_3390_en16186740
crossref_primary_10_1039_D2TC00107A
crossref_primary_10_1002_adma_202307219
crossref_primary_10_2139_ssrn_4049715
crossref_primary_10_1002_anie_202306193
crossref_primary_10_1039_D1CE01737C
crossref_primary_10_1016_j_electacta_2023_143665
crossref_primary_10_3389_fchem_2021_812274
crossref_primary_10_2139_ssrn_4138992
crossref_primary_10_1039_D1CC03289E
crossref_primary_10_1016_j_jechem_2021_03_021
crossref_primary_10_1016_j_chphma_2023_01_001
crossref_primary_10_1021_acsami_0c20721
crossref_primary_10_1039_D1DT03718H
crossref_primary_10_1002_advs_202207234
crossref_primary_10_1002_celc_202200443
crossref_primary_10_1002_smll_202208228
crossref_primary_10_1016_j_ensm_2024_103420
crossref_primary_10_1016_j_apsusc_2022_156080
crossref_primary_10_1002_adfm_202413491
crossref_primary_10_1016_j_scib_2022_12_022
crossref_primary_10_1016_j_jpowsour_2024_234348
crossref_primary_10_1016_j_jcis_2024_12_040
crossref_primary_10_1016_j_jpowsour_2024_235313
crossref_primary_10_1016_j_jhazmat_2022_129575
crossref_primary_10_6023_A23100465
crossref_primary_10_1126_science_adi5700
crossref_primary_10_1002_adfm_202205880
crossref_primary_10_1021_acsnano_3c12543
crossref_primary_10_1021_acsnano_1c08011
crossref_primary_10_1021_acs_energyfuels_1c04177
crossref_primary_10_1016_j_mtener_2022_101103
crossref_primary_10_1039_D1RA06228J
crossref_primary_10_1002_chem_202101043
crossref_primary_10_1002_cplu_202100393
crossref_primary_10_1002_smll_202302200
crossref_primary_10_1021_acssuschemeng_3c06926
crossref_primary_10_1002_anie_202412591
crossref_primary_10_1021_acsnano_2c08115
crossref_primary_10_1016_j_jcis_2023_03_070
crossref_primary_10_1016_j_jechem_2021_05_010
crossref_primary_10_1016_j_nanoen_2024_110266
crossref_primary_10_1016_j_cej_2023_142464
crossref_primary_10_1016_j_jallcom_2022_167766
crossref_primary_10_1002_smll_202300490
crossref_primary_10_1039_D2DT01387H
crossref_primary_10_1021_acsaem_1c00691
crossref_primary_10_1016_j_electacta_2023_142883
crossref_primary_10_1039_D1TA02623B
crossref_primary_10_20964_2022_05_40
crossref_primary_10_1007_s12274_023_5855_z
crossref_primary_10_1039_D3CC04358D
crossref_primary_10_1016_j_jechem_2022_05_003
crossref_primary_10_1039_D4TC03455D
crossref_primary_10_3389_fchem_2022_866369
crossref_primary_10_1039_D1NA00329A
crossref_primary_10_1007_s12274_021_3464_2
crossref_primary_10_1002_er_7545
crossref_primary_10_1007_s11581_022_04655_8
crossref_primary_10_1007_s10800_025_02285_2
crossref_primary_10_1016_j_jssc_2022_123831
crossref_primary_10_1016_j_jcis_2023_02_139
crossref_primary_10_1016_j_jpcs_2021_110477
crossref_primary_10_1021_prechem_3c00059
crossref_primary_10_1007_s12034_023_02894_7
crossref_primary_10_1063_5_0202773
crossref_primary_10_1016_j_jallcom_2024_173661
crossref_primary_10_1016_j_jallcom_2021_161905
crossref_primary_10_1039_D2SC05479E
crossref_primary_10_1016_j_jechem_2021_04_013
crossref_primary_10_1039_D2SE01291J
crossref_primary_10_1002_adfm_202300602
crossref_primary_10_1016_j_nxnano_2023_100010
crossref_primary_10_1016_j_xcrp_2021_100543
crossref_primary_10_1016_j_jallcom_2022_165680
crossref_primary_10_1016_j_jcis_2022_02_069
crossref_primary_10_1021_acs_energyfuels_1c00836
crossref_primary_10_3390_ma15124186
crossref_primary_10_1016_j_scib_2022_04_001
crossref_primary_10_1016_j_desal_2023_116409
crossref_primary_10_1002_aenm_202301295
crossref_primary_10_1016_j_jiec_2022_07_045
crossref_primary_10_1021_acsnano_0c10121
crossref_primary_10_1016_j_apsusc_2021_149330
crossref_primary_10_1038_s41467_024_48215_2
crossref_primary_10_1002_er_7522
crossref_primary_10_1016_j_surfin_2024_104696
crossref_primary_10_3390_magnetochemistry9030063
crossref_primary_10_1002_anie_202216450
crossref_primary_10_1002_celc_202200030
crossref_primary_10_1016_j_snb_2023_134590
crossref_primary_10_1021_acs_iecr_2c01676
crossref_primary_10_1002_ifm2_7
crossref_primary_10_1016_j_apsusc_2024_159782
crossref_primary_10_1093_nsr_nwaf061
crossref_primary_10_1002_admt_202301423
crossref_primary_10_1016_j_cej_2022_135188
crossref_primary_10_1016_j_nanoms_2025_02_006
crossref_primary_10_1016_j_cej_2022_138451
crossref_primary_10_1021_acs_nanolett_2c00385
crossref_primary_10_1002_aenm_202400248
crossref_primary_10_1002_adfm_202105043
crossref_primary_10_1021_acsaem_2c01099
crossref_primary_10_1039_D2DT01528E
crossref_primary_10_1016_j_colsurfa_2022_129560
crossref_primary_10_1002_admi_202201626
crossref_primary_10_1016_j_jelechem_2021_115633
crossref_primary_10_1016_j_ensm_2022_02_026
crossref_primary_10_1016_j_matchemphys_2023_128375
crossref_primary_10_1016_j_ensm_2024_103600
crossref_primary_10_1149_1945_7111_ad1c12
crossref_primary_10_1002_anie_202110177
crossref_primary_10_1002_adfm_202421952
crossref_primary_10_1016_j_cej_2022_139310
crossref_primary_10_1021_acs_jpclett_4c00760
crossref_primary_10_1021_jacs_1c06115
crossref_primary_10_1039_D4NJ00429A
crossref_primary_10_1016_j_jallcom_2023_169447
crossref_primary_10_1021_acsami_0c18368
crossref_primary_10_1002_aenm_202400246
crossref_primary_10_1016_j_est_2024_110823
crossref_primary_10_1002_adfm_202300143
crossref_primary_10_1002_cey2_480
crossref_primary_10_1002_smll_202203835
crossref_primary_10_1016_j_matlet_2021_130803
crossref_primary_10_1021_acs_nanolett_4c02887
crossref_primary_10_1039_D4CP00847B
crossref_primary_10_1039_D4SC06323F
crossref_primary_10_1016_j_cscee_2024_101038
crossref_primary_10_1021_acs_chemmater_2c00618
crossref_primary_10_1016_j_mtener_2024_101679
crossref_primary_10_1016_j_nanoen_2022_107696
crossref_primary_10_1039_D2NJ01147F
crossref_primary_10_1016_j_ensm_2021_07_033
crossref_primary_10_3390_molecules27092708
crossref_primary_10_1016_j_cej_2021_130469
crossref_primary_10_1039_D4CS00929K
crossref_primary_10_1002_adfm_202408986
crossref_primary_10_1016_j_est_2023_110311
crossref_primary_10_1016_j_jcis_2024_12_213
crossref_primary_10_26599_EMD_2023_9370012
crossref_primary_10_1016_j_mtener_2022_101084
crossref_primary_10_1021_acs_nanolett_2c02100
crossref_primary_10_1021_acsnano_4c15915
crossref_primary_10_1016_j_micromeso_2021_111662
crossref_primary_10_1016_j_cej_2023_147663
crossref_primary_10_1002_smll_202201792
crossref_primary_10_1039_D2NJ01340A
crossref_primary_10_3390_molecules27227851
crossref_primary_10_2139_ssrn_4149376
crossref_primary_10_1002_adfm_202310170
crossref_primary_10_1016_j_mssp_2022_106567
crossref_primary_10_1016_j_cej_2021_131204
crossref_primary_10_1038_s41467_024_52026_w
crossref_primary_10_1038_s41467_021_23132_w
crossref_primary_10_1016_j_electacta_2022_141599
crossref_primary_10_1073_pnas_2320030121
crossref_primary_10_1039_D0RA08503K
crossref_primary_10_1016_j_jelechem_2024_118895
crossref_primary_10_1002_inf2_12364
crossref_primary_10_1016_j_surfin_2021_101435
crossref_primary_10_1002_ange_202110373
crossref_primary_10_1016_j_cej_2023_144260
crossref_primary_10_1021_acsami_0c21301
crossref_primary_10_1002_adfm_202404263
crossref_primary_10_1002_ente_202200207
crossref_primary_10_1039_D2NJ01462A
crossref_primary_10_1002_aenm_202301653
crossref_primary_10_1002_smll_202303666
crossref_primary_10_1002_advs_202204671
crossref_primary_10_1002_adma_202207353
crossref_primary_10_1002_adma_202209652
crossref_primary_10_1007_s10854_021_06474_5
crossref_primary_10_1016_j_jmr_2024_107772
crossref_primary_10_1016_j_est_2024_114254
crossref_primary_10_1039_D2CC04109J
crossref_primary_10_1002_smll_202203918
crossref_primary_10_1088_1361_6528_abcd65
crossref_primary_10_1016_j_pmatsci_2023_101105
crossref_primary_10_1007_s12598_023_02373_2
crossref_primary_10_1016_j_jelechem_2023_117356
crossref_primary_10_1039_D1QM00442E
crossref_primary_10_1016_j_cej_2022_140694
crossref_primary_10_1088_1361_6528_acbeb5
crossref_primary_10_1021_acs_energyfuels_2c00576
crossref_primary_10_1002_idm2_12222
crossref_primary_10_1002_anie_202110373
crossref_primary_10_1073_pnas_2314362120
crossref_primary_10_3389_fchem_2022_895749
crossref_primary_10_1016_j_materresbull_2023_112348
crossref_primary_10_1039_D0QI00892C
crossref_primary_10_1002_adfm_202412177
crossref_primary_10_1007_s42114_021_00291_4
crossref_primary_10_1016_j_ensm_2023_03_035
crossref_primary_10_1002_cey2_201
crossref_primary_10_1016_j_icheatmasstransfer_2024_108213
crossref_primary_10_1016_j_jelechem_2023_117249
crossref_primary_10_1002_inf2_12262
crossref_primary_10_1016_j_est_2024_113171
crossref_primary_10_1039_D0TA08456E
crossref_primary_10_1016_j_jcis_2022_07_141
crossref_primary_10_1016_j_actamat_2024_120562
crossref_primary_10_1016_j_matt_2021_09_006
crossref_primary_10_3390_nano12091436
crossref_primary_10_1021_acsnano_2c00129
crossref_primary_10_1142_S1793292023501059
crossref_primary_10_1002_adfm_202104286
crossref_primary_10_1088_1361_6528_ad07a0
crossref_primary_10_1016_j_cej_2021_131236
crossref_primary_10_1039_D2TA04990B
crossref_primary_10_1007_s12598_023_02517_4
crossref_primary_10_1021_acsnano_1c06491
crossref_primary_10_1016_j_jpowsour_2024_235371
crossref_primary_10_1002_ente_202200494
crossref_primary_10_1016_j_colsurfa_2024_134880
crossref_primary_10_3390_ma16124448
crossref_primary_10_1002_ente_202200012
crossref_primary_10_1021_acsenergylett_3c01086
crossref_primary_10_54227_mlab_20230030
crossref_primary_10_1016_j_cej_2024_157959
crossref_primary_10_1002_aenm_202301443
crossref_primary_10_1088_0256_307X_39_2_028202
crossref_primary_10_1021_acsenergylett_0c02074
crossref_primary_10_1007_s11581_022_04855_2
crossref_primary_10_1002_aenm_202403851
crossref_primary_10_1002_aenm_202403970
crossref_primary_10_1063_5_0135752
crossref_primary_10_1016_j_fuel_2023_127399
crossref_primary_10_1016_j_cej_2021_131481
crossref_primary_10_1016_j_ces_2022_117872
crossref_primary_10_1021_acsaem_2c00935
crossref_primary_10_1002_aenm_202300927
crossref_primary_10_1016_j_est_2024_115013
crossref_primary_10_1002_ange_202110177
crossref_primary_10_1016_j_nanoms_2024_10_003
crossref_primary_10_1016_j_cej_2022_140003
crossref_primary_10_1016_j_ensm_2021_08_039
crossref_primary_10_1039_D3TC04108E
crossref_primary_10_1021_acssuschemeng_1c05335
crossref_primary_10_1039_D4EE03217A
crossref_primary_10_1007_s12274_021_3647_x
crossref_primary_10_1016_j_carbon_2024_119003
crossref_primary_10_1016_j_jcis_2023_08_139
crossref_primary_10_1002_eem2_12586
crossref_primary_10_1016_j_jallcom_2023_168766
crossref_primary_10_1039_D2TA04984H
crossref_primary_10_3390_ijms25052884
crossref_primary_10_1016_j_electacta_2022_141747
crossref_primary_10_1016_j_cej_2022_136434
crossref_primary_10_1002_advs_202410653
crossref_primary_10_1021_acsami_4c07575
crossref_primary_10_1126_sciadv_add6596
crossref_primary_10_1002_ece2_30
crossref_primary_10_1002_adfm_202206129
crossref_primary_10_1021_acs_nanolett_1c03724
crossref_primary_10_1016_j_carbon_2022_08_074
crossref_primary_10_1002_adfm_202209753
crossref_primary_10_1002_cplu_202400251
crossref_primary_10_1021_acs_energyfuels_3c04428
crossref_primary_10_1002_aesr_202100028
crossref_primary_10_1016_j_ccr_2024_215778
crossref_primary_10_1016_j_jcis_2022_11_020
crossref_primary_10_1016_j_jallcom_2024_174480
crossref_primary_10_1002_eem2_12451
crossref_primary_10_1039_D2RA03608H
crossref_primary_10_1021_acs_nanolett_0c04959
crossref_primary_10_1002_advs_202203895
crossref_primary_10_1016_j_jallcom_2023_171827
crossref_primary_10_1039_D3TA03290F
crossref_primary_10_1039_D4TA07036D
crossref_primary_10_1016_j_electacta_2021_139121
crossref_primary_10_1016_j_nanoen_2021_106703
crossref_primary_10_1021_acs_chemmater_1c02413
crossref_primary_10_1002_cey2_643
crossref_primary_10_1039_D2EE01020H
crossref_primary_10_1039_D3RA01926H
crossref_primary_10_3390_mi12080867
crossref_primary_10_1016_j_cclet_2024_110681
crossref_primary_10_1002_smll_202202495
crossref_primary_10_1016_j_nxener_2024_100230
crossref_primary_10_1002_slct_202200092
crossref_primary_10_1002_celc_202100482
crossref_primary_10_1016_j_cej_2024_149609
crossref_primary_10_1016_j_cej_2024_156021
crossref_primary_10_1002_aisy_202200287
crossref_primary_10_33961_jecst_2021_00920
crossref_primary_10_1016_j_electacta_2022_140794
crossref_primary_10_1016_j_esci_2021_08_001
crossref_primary_10_3389_fchem_2021_818255
crossref_primary_10_1021_acsaem_0c02275
crossref_primary_10_1039_D4QI02198C
crossref_primary_10_1115_1_4051854
crossref_primary_10_20964_2022_02_21
crossref_primary_10_1007_s11581_023_05337_9
crossref_primary_10_1142_S1793604722510365
crossref_primary_10_1039_D4TA02174F
crossref_primary_10_1016_j_coelec_2023_101260
crossref_primary_10_1021_acs_energyfuels_2c02497
crossref_primary_10_3390_magnetochemistry9010025
crossref_primary_10_1002_ange_202306193
crossref_primary_10_1016_j_solidstatesciences_2023_107315
crossref_primary_10_1002_ange_202216450
crossref_primary_10_1016_j_electacta_2022_141758
crossref_primary_10_1021_acsaem_1c02247
crossref_primary_10_1016_j_electacta_2021_139265
crossref_primary_10_1039_D4TA04617J
crossref_primary_10_1016_j_est_2023_108620
crossref_primary_10_1016_j_jcis_2023_11_107
crossref_primary_10_1016_j_jpowsour_2023_233911
crossref_primary_10_1002_adfm_202407494
crossref_primary_10_1002_advs_202306992
crossref_primary_10_1007_s11581_025_06106_6
crossref_primary_10_1039_D1CC01477C
crossref_primary_10_1007_s42864_020_00068_0
crossref_primary_10_1002_advs_202105193
crossref_primary_10_1016_j_jpowsour_2023_232710
crossref_primary_10_1063_5_0086130
crossref_primary_10_1007_s12274_023_6360_0
crossref_primary_10_1021_acsami_0c21231
crossref_primary_10_1039_D3TA05054H
crossref_primary_10_1063_5_0084190
crossref_primary_10_1039_D1EE00614B
crossref_primary_10_1021_acs_nanolett_5c00451
crossref_primary_10_1073_pnas_2122866119
crossref_primary_10_1016_j_jallcom_2021_162336
crossref_primary_10_1002_eem2_12410
crossref_primary_10_1002_smll_202200367
crossref_primary_10_1016_j_apsusc_2021_151194
crossref_primary_10_1002_adma_202420453
crossref_primary_10_1360_TB_2023_0063
crossref_primary_10_1016_j_electacta_2021_138351
crossref_primary_10_1002_adfm_202315437
crossref_primary_10_1021_acs_nanolett_2c03849
crossref_primary_10_1016_j_cej_2021_132700
crossref_primary_10_1039_D1EE02810C
crossref_primary_10_1016_j_jclepro_2023_136246
crossref_primary_10_1016_j_ceja_2021_100146
crossref_primary_10_1016_j_apsusc_2022_152490
crossref_primary_10_1002_ange_202412591
crossref_primary_10_1016_j_cej_2021_130548
crossref_primary_10_1103_PhysRevApplied_19_054022
crossref_primary_10_1016_j_cjche_2023_12_003
crossref_primary_10_1016_j_jallcom_2021_161238
crossref_primary_10_1039_D1TA10531K
crossref_primary_10_1039_D2TA05309H
crossref_primary_10_1039_D4CC05233A
crossref_primary_10_1007_s40820_023_01042_4
crossref_primary_10_1016_j_jallcom_2022_167299
crossref_primary_10_1021_acsaem_1c03492
crossref_primary_10_1016_j_cej_2022_135049
crossref_primary_10_1016_j_jpowsour_2023_232852
crossref_primary_10_1021_acsami_1c01979
crossref_primary_10_1088_1402_4896_acd60a
crossref_primary_10_26599_JAC_2024_9220895
crossref_primary_10_1088_1361_648X_ac8e47
crossref_primary_10_1002_adfm_202307923
crossref_primary_10_1016_j_nanoen_2024_109823
crossref_primary_10_1002_ange_202102605
crossref_primary_10_1016_j_apsusc_2022_154668
crossref_primary_10_1016_j_device_2024_100521
crossref_primary_10_1021_acs_energyfuels_3c04726
crossref_primary_10_1016_j_est_2023_108707
crossref_primary_10_1016_j_jpowsour_2024_235081
crossref_primary_10_1016_j_jelechem_2021_115531
crossref_primary_10_2139_ssrn_4119147
crossref_primary_10_1016_j_est_2022_105490
crossref_primary_10_1016_j_cej_2022_135292
crossref_primary_10_1155_2021_8816250
crossref_primary_10_1016_j_ensm_2021_05_013
crossref_primary_10_1016_j_cej_2024_158750
crossref_primary_10_1016_j_jelechem_2024_118219
crossref_primary_10_1021_acsami_4c06039
Cites_doi 10.1038/nmat1672
10.1149/1.3254160
10.1016/j.ssi.2017.09.008
10.1063/1.336420
10.1021/jp074464w
10.1039/b309130a
10.1038/nnano.2008.406
10.1038/451652a
10.1103/PhysRevLett.112.208301
10.1038/nnano.2012.35
10.1002/aenm.201502471
10.1021/ja206268a
10.1126/science.1136629
10.1021/acs.chemmater.5b01754
10.1002/adma.201305932
10.1039/b820555h
10.1039/B603559K
10.1103/PhysRevLett.96.058302
10.1002/adma.201000717
10.1002/anie.201301084
10.1039/C7CP03312E
10.1038/s41560-017-0084-x
10.1016/0025-5408(82)90029-0
10.1038/nmat3784
10.1038/35035045
10.1021/cm901243a
10.1103/PhysRevB.53.9204
10.1038/nature19078
10.1039/C4EE00490F
10.1103/PhysRevLett.101.137201
10.1021/jacs.6b00061
10.1149/1.1467947
10.1038/nmat3601
10.1038/nnano.2007.412
10.1039/C4TC00299G
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41563-020-0756-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 83
ExternalDocumentID 32807921
10_1038_s41563_020_0756_y
Genre Journal Article
GrantInformation_xml – fundername: Welch Foundation
  grantid: F-1861
  funderid: https://doi.org/10.13039/100000928
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11504192, 51804173, 11434006, 51673103; 11504192, 51804173, 11434006, 51673103
  funderid: https://doi.org/10.13039/501100001809
– fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
  grantid: RGPIN-04178
  funderid: https://doi.org/10.13039/501100000038
– fundername: National Science Foundation (NSF)
  grantid: DMR 1700137
  funderid: https://doi.org/10.13039/100000001
– fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
  grantid: RGPIN-04178
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11504192, 51804173, 11434006, 51673103
– fundername: Welch Foundation
  grantid: F-1861
– fundername: National Science Foundation (NSF)
  grantid: DMR 1700137
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c477t-f9a791f17536b1b5f4bf03b0fdc052a76b798d50b54b410ca53100d23e1fc76a3
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Fri Jul 11 15:25:20 EDT 2025
Sat Aug 23 12:23:31 EDT 2025
Thu Apr 03 07:24:29 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 02:14:01 EDT 2025
Fri Feb 21 02:40:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-f9a791f17536b1b5f4bf03b0fdc052a76b798d50b54b410ca53100d23e1fc76a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8093-940X
0000-0001-8891-260X
0000-0002-3253-0749
0000-0002-8735-8077
0000-0002-7327-9968
0000-0001-6453-2135
0000-0002-7504-031X
PMID 32807921
PQID 2473200061
PQPubID 27576
PageCount 8
ParticipantIDs proquest_miscellaneous_2435191139
proquest_journals_2473200061
pubmed_primary_32807921
crossref_citationtrail_10_1038_s41563_020_0756_y
crossref_primary_10_1038_s41563_020_0756_y
springer_journals_10_1038_s41563_020_0756_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Maier (CR10) 2007; 134
Poizot, Laruelle, Grugeon, Dupont, Tarascon (CR1) 2000; 407
Thackeray, David, Goodenough (CR21) 1982; 17
Laruelle (CR8) 2002; 149
Wu (CR3) 2012; 7
CR37
Gershinsky, Bar, Monconduit, Zitoun (CR15) 2014; 7
Permien (CR24) 2016; 28
Wang (CR27) 2011; 133
Cabana, Monconduit, Larcher, Palacin (CR5) 2010; 22
Chen, Maier (CR19) 2018; 3
CR32
Palacin (CR4) 2009; 38
Fontcuberta, Rodríguez, Pernet, Longworth, Goodenough (CR22) 1986; 59
Jamnik, Maier (CR9) 2003; 5
Augustyn (CR29) 2013; 12
Komaba (CR26) 2010; 157
Rondinelli, Stengel, Spaldin (CR30) 2008; 3
Duan (CR35) 2008; 101
Armand, Tarascon (CR20) 2008; 451
Hjortstam, Trygg, Wills, Johansson, Eriksson (CR36) 1996; 53
Dasgupta (CR13) 2014; 26
Fu, Chen, Samuelis, Maier (CR34) 2014; 112
Yamada (CR16) 2013; 52
Taberna, Mitra, Poizot, Simon, Tarascon (CR2) 2006; 5
Hu (CR7) 2013; 12
Yamada, Morita, Kume, Yoshikawa, Awaga (CR17) 2014; 2
Weisheit (CR14) 2007; 315
Wang, Polleux, Lim, Dunn (CR28) 2007; 111
Li (CR6) 2016; 138
Zhukovskii, Balaya, Kotomin, Maier (CR11) 2006; 96
Fu, Chen, Maier (CR12) 2018; 318
Chen, Fu, Maier (CR33) 2016; 536
Zhang (CR23) 2016; 6
Bock (CR25) 2017; 19
Boyanov, Womes, Monconduit, Zitoun (CR18) 2009; 21
Maruyama (CR31) 2009; 4
S Laruelle (756_CR8) 2002; 149
S Komaba (756_CR26) 2010; 157
S Permien (756_CR24) 2016; 28
T Yamada (756_CR16) 2013; 52
V Augustyn (756_CR29) 2013; 12
M Weisheit (756_CR14) 2007; 315
756_CR37
T Maruyama (756_CR31) 2009; 4
M Armand (756_CR20) 2008; 451
O Hjortstam (756_CR36) 1996; 53
756_CR32
L Fu (756_CR34) 2014; 112
L Fu (756_CR12) 2018; 318
JM Rondinelli (756_CR30) 2008; 3
C-C Chen (756_CR33) 2016; 536
C-G Duan (756_CR35) 2008; 101
S Boyanov (756_CR18) 2009; 21
PL Taberna (756_CR2) 2006; 5
P Poizot (756_CR1) 2000; 407
J Fontcuberta (756_CR22) 1986; 59
T Yamada (756_CR17) 2014; 2
W Zhang (756_CR23) 2016; 6
DC Bock (756_CR25) 2017; 19
F Wang (756_CR27) 2011; 133
J Cabana (756_CR5) 2010; 22
J Jamnik (756_CR9) 2003; 5
S Dasgupta (756_CR13) 2014; 26
H Wu (756_CR3) 2012; 7
G Gershinsky (756_CR15) 2014; 7
J Maier (756_CR10) 2007; 134
Y-Y Hu (756_CR7) 2013; 12
J Wang (756_CR28) 2007; 111
C-C Chen (756_CR19) 2018; 3
MM Thackeray (756_CR21) 1982; 17
YF Zhukovskii (756_CR11) 2006; 96
MR Palacin (756_CR4) 2009; 38
L Li (756_CR6) 2016; 138
References_xml – volume: 5
  start-page: 567
  year: 2006
  end-page: 573
  ident: CR2
  article-title: High rate capabilities Fe O -based Cu nano-architectured electrodes for lithium-ion battery applications
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1672
– volume: 157
  start-page: A60
  year: 2010
  end-page: A65
  ident: CR26
  article-title: Electrochemical insertion of Li and Na ions into nanocrystalline Fe O and ‐Fe O for rechargeable batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3254160
– volume: 318
  start-page: 54
  year: 2018
  end-page: 59
  ident: CR12
  article-title: Interfacial mass storage in nanocomposites
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.09.008
– volume: 59
  start-page: 1918
  year: 1986
  end-page: 1926
  ident: CR22
  article-title: Structural and magnetic characterization of the lithiated iron oxide Li Fe O
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.336420
– volume: 111
  start-page: 14925
  year: 2007
  end-page: 14931
  ident: CR28
  article-title: Pseudocapacitive contributions to electrochemical energy storage in TiO (anatase) nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp074464w
– volume: 5
  start-page: 5215
  year: 2003
  end-page: 5220
  ident: CR9
  article-title: Nanocrystallinity effects in lithium battery materials. Aspects of nano-ionics. Part IV
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b309130a
– volume: 4
  start-page: 158
  year: 2009
  end-page: 161
  ident: CR31
  article-title: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.406
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: CR20
  article-title: Building better batteries
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 112
  start-page: 208301
  year: 2014
  ident: CR34
  article-title: Thermodynamics of lithium storage at abrupt junctions: modeling and experimental evidence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.208301
– volume: 7
  start-page: 310
  year: 2012
  end-page: 315
  ident: CR3
  article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
– volume: 6
  start-page: 1502471
  year: 2016
  ident: CR23
  article-title: Insights into ionic transport and structural changes in magnetite during multiple‐electron transfer reactions
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502471
– ident: CR37
– volume: 133
  start-page: 18828
  year: 2011
  end-page: 18836
  ident: CR27
  article-title: Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206268a
– volume: 315
  start-page: 349
  year: 2007
  end-page: 351
  ident: CR14
  article-title: Electric field-induced modification of magnetism in thin-film ferromagnets
  publication-title: Science
  doi: 10.1126/science.1136629
– volume: 28
  start-page: 434
  year: 2016
  end-page: 444
  ident: CR24
  article-title: What happens structurally and electronically during the Li conversion reaction of CoFe O nanoparticles: an operando XAS and XRD investigation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01754
– volume: 26
  start-page: 4639
  year: 2014
  end-page: 4644
  ident: CR13
  article-title: Intercalation‐driven reversible control of magnetism in bulk ferromagnets
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305932
– volume: 38
  start-page: 2565
  year: 2009
  end-page: 2575
  ident: CR4
  article-title: Recent advances in rechargeable battery materials: a chemist’s perspective
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b820555h
– volume: 134
  start-page: 51
  year: 2007
  end-page: 66
  ident: CR10
  article-title: Mass storage in space charge regions of nano-sized systems (Nano-ionics. Part V)
  publication-title: Faraday Discuss.
  doi: 10.1039/B603559K
– volume: 96
  start-page: 058302
  year: 2006
  ident: CR11
  article-title: Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.058302
– volume: 22
  start-page: E170
  year: 2010
  end-page: E192
  ident: CR5
  article-title: Beyond intercalation‐based Li‐ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000717
– volume: 52
  start-page: 6238
  year: 2013
  end-page: 6241
  ident: CR16
  article-title: In situ seamless magnetic measurements for solid-state electrochemical processes in Prussian blue analogues
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301084
– volume: 19
  start-page: 20867
  year: 2017
  end-page: 20880
  ident: CR25
  article-title: Size dependent behavior of Fe O crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP03312E
– volume: 3
  start-page: 102
  year: 2018
  end-page: 108
  ident: CR19
  article-title: Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0084-x
– volume: 17
  start-page: 785
  year: 1982
  end-page: 793
  ident: CR21
  article-title: Structural characterization of the lithiated iron oxides Li Fe O and Li Fe O (0<x<2)
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(82)90029-0
– volume: 12
  start-page: 1130
  year: 2013
  end-page: 1136
  ident: CR7
  article-title: Origin of additional capacities in metal oxide lithium-ion battery electrodes
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3784
– volume: 407
  start-page: 496
  year: 2000
  end-page: 499
  ident: CR1
  article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
  publication-title: Nature
  doi: 10.1038/35035045
– volume: 21
  start-page: 3684
  year: 2009
  end-page: 3692
  ident: CR18
  article-title: Mössbauer spectroscopy and magnetic measurements as complementary techniques for the phase analysis of FeP electrodes cycling in Li-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm901243a
– volume: 53
  start-page: 9204
  year: 1996
  end-page: 9213
  ident: CR36
  article-title: Calculated spin and orbital moments in the surfaces of the 3d metals Fe, Co, and Ni and their overlayers on Cu(001)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.9204
– volume: 536
  start-page: 159
  year: 2016
  end-page: 164
  ident: CR33
  article-title: Synergistic, ultrafast mass storage and removal in artificial mixed conductors
  publication-title: Nature
  doi: 10.1038/nature19078
– volume: 7
  start-page: 2012
  year: 2014
  end-page: 2016
  ident: CR15
  article-title: Operando electron magnetic measurements of Li-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00490F
– ident: CR32
– volume: 101
  start-page: 137201
  year: 2008
  ident: CR35
  article-title: Surface magnetoelectric effect in ferromagnetic metal films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.137201
– volume: 138
  start-page: 2838
  year: 2016
  end-page: 2848
  ident: CR6
  article-title: Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00061
– volume: 149
  start-page: A627
  year: 2002
  end-page: A634
  ident: CR8
  article-title: On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1467947
– volume: 12
  start-page: 518
  year: 2013
  end-page: 522
  ident: CR29
  article-title: High-rate electrochemical energy storage through Li intercalation pseudocapacitance
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3601
– volume: 3
  start-page: 46
  year: 2008
  end-page: 50
  ident: CR30
  article-title: Carrier-mediated magnetoelectricity in complex oxide heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.412
– volume: 2
  start-page: 5183
  year: 2014
  end-page: 5188
  ident: CR17
  article-title: The solid-state electrochemical reduction process of magnetite in Li batteries: in situ magnetic measurements toward electrochemical magnets
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00299G
– volume: 149
  start-page: A627
  year: 2002
  ident: 756_CR8
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1467947
– volume: 19
  start-page: 20867
  year: 2017
  ident: 756_CR25
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP03312E
– volume: 133
  start-page: 18828
  year: 2011
  ident: 756_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206268a
– volume: 451
  start-page: 652
  year: 2008
  ident: 756_CR20
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 536
  start-page: 159
  year: 2016
  ident: 756_CR33
  publication-title: Nature
  doi: 10.1038/nature19078
– volume: 52
  start-page: 6238
  year: 2013
  ident: 756_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301084
– volume: 21
  start-page: 3684
  year: 2009
  ident: 756_CR18
  publication-title: Chem. Mater.
  doi: 10.1021/cm901243a
– volume: 138
  start-page: 2838
  year: 2016
  ident: 756_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00061
– volume: 157
  start-page: A60
  year: 2010
  ident: 756_CR26
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3254160
– ident: 756_CR32
– volume: 96
  start-page: 058302
  year: 2006
  ident: 756_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.058302
– volume: 22
  start-page: E170
  year: 2010
  ident: 756_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000717
– volume: 6
  start-page: 1502471
  year: 2016
  ident: 756_CR23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502471
– volume: 315
  start-page: 349
  year: 2007
  ident: 756_CR14
  publication-title: Science
  doi: 10.1126/science.1136629
– volume: 3
  start-page: 46
  year: 2008
  ident: 756_CR30
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.412
– volume: 38
  start-page: 2565
  year: 2009
  ident: 756_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b820555h
– volume: 407
  start-page: 496
  year: 2000
  ident: 756_CR1
  publication-title: Nature
  doi: 10.1038/35035045
– volume: 112
  start-page: 208301
  year: 2014
  ident: 756_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.208301
– volume: 5
  start-page: 5215
  year: 2003
  ident: 756_CR9
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b309130a
– volume: 4
  start-page: 158
  year: 2009
  ident: 756_CR31
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.406
– volume: 26
  start-page: 4639
  year: 2014
  ident: 756_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305932
– volume: 111
  start-page: 14925
  year: 2007
  ident: 756_CR28
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp074464w
– ident: 756_CR37
– volume: 17
  start-page: 785
  year: 1982
  ident: 756_CR21
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(82)90029-0
– volume: 5
  start-page: 567
  year: 2006
  ident: 756_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1672
– volume: 12
  start-page: 1130
  year: 2013
  ident: 756_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3784
– volume: 53
  start-page: 9204
  year: 1996
  ident: 756_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.9204
– volume: 318
  start-page: 54
  year: 2018
  ident: 756_CR12
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.09.008
– volume: 7
  start-page: 2012
  year: 2014
  ident: 756_CR15
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00490F
– volume: 134
  start-page: 51
  year: 2007
  ident: 756_CR10
  publication-title: Faraday Discuss.
  doi: 10.1039/B603559K
– volume: 59
  start-page: 1918
  year: 1986
  ident: 756_CR22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.336420
– volume: 3
  start-page: 102
  year: 2018
  ident: 756_CR19
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0084-x
– volume: 7
  start-page: 310
  year: 2012
  ident: 756_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
– volume: 12
  start-page: 518
  year: 2013
  ident: 756_CR29
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3601
– volume: 28
  start-page: 434
  year: 2016
  ident: 756_CR24
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01754
– volume: 101
  start-page: 137201
  year: 2008
  ident: 756_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.137201
– volume: 2
  start-page: 5183
  year: 2014
  ident: 756_CR17
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00299G
SSID ssj0021556
Score 2.7194836
Snippet In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 76
SubjectTerms 639/301
639/301/299
Biomaterials
Capacitance
Chemistry and Materials Science
Condensed Matter Physics
Electrodes
Electron density
Electron spin
Energy storage
Iron nitride
Iron oxides
Lithium
Lithium-ion batteries
Magnetic measurement
Magnetism
Materials Science
Metal compounds
Metal oxides
Metals
Nanoparticles
Nanotechnology
Optical and Electronic Materials
Rechargeable batteries
Space charge
Storage batteries
Storage capacity
Storage systems
Transition metal compounds
Transition metal oxides
Title Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry
URI https://link.springer.com/article/10.1038/s41563-020-0756-y
https://www.ncbi.nlm.nih.gov/pubmed/32807921
https://www.proquest.com/docview/2473200061
https://www.proquest.com/docview/2435191139
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9gIPiG8KYzISTyBrceLEzhMC1DIhMSHEpL5F_spWiSajTaX1v-fOSVrQxF7ykPgc6872_Xx3vgN4K10tS-tyrhAscGl0xo2kG8s21UIY_KzpcvK3s-L0XH6d5_PB4LYewirHPTFu1L51ZCM_SaXK4rUS8eHqN6eqUeRdHUpo3IVDSl1GIV1qvj9woa7sbxepgiOuSEevZqZP1nRwIQ9mwlFpFnz7r166ATZvOEqj_pk9hAcDcGQfe0k_gjuheQz3_0on-AQuptfdyjCKd8RdgjnUgw5BNls0rCOVFKOz2DIg3mbt9cIHhhj8crFZcnpvY6ZNPDgzyuqEesMzG2mRbsOW5qIJXYvEq-1TOJ9Nf34-5UMhBe6kUh2vS6NKUVNSzsIKm9fS1klmk9q7JE-NKqwqtc8Tm0srReJMTmZ_n2ZB1E4VJnsGB03bhBfAfFkEL6QVAZGWlqL0CkEh9iO1qW1iJ5CMbKzckGWcil38qqK3O9NVz_kKOV8R56vtBN7tSK76FBu3NT4aZVMNq21d7efGBN7sPuM6IeeHaUK7oTZUilAg4J3A816mu79llBKoTJH6_Sjkfef_HcrL24fyCu6lFP8SzTVHcNCtNuE1ApjOHsdZik89-3IMh5-mZ99__AHkAO5_
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGfZUsBIcAFZjWMndg4IIeiypY9TK_UWbMcpK7FJu5sV3T_Fb2Qm2WxBFb31Gnsca8b2fPa8AN4oX6rM-YRrBAtcWSO5VRSx7GIjhMVmQ8HJB4fp6Fh9O0lO1uB3HwtDbpX9mdge1EXt6Y18O1ZatmEl4uPZOaeqUWRd7UtodMtiLyx-4ZVt9mH3C8r3bRwPd44-j_iyqgD3SuuGl5nVmSgpQ2XqhEtK5cpIuqgsfJTEVqdOZ6ZIIpcop0TkbUJv4EUsgyi9Tq3EcW_BbSVlRjvKDL-uLniom7toJp1yxDFxb0WVZntGFyWymEYclXTKF__qwSvg9ophttV3wwdwfwlU2aduZT2EtVA9gnt_pS98DKc7F83UMvKvxFOJedS7HkE9G1esIRXYeoOxSUB8z-qLcREYYv4f4_mE03fXZvbEizqjLFKopwrmWlqkm7OJPa1CUyPxdPEEjm-ExU9hvaqr8AxYkaWhEMqJgMjOKJEVGkEojqOMLV3kBhD1bMz9Mqs5Fdf4mbfWdWnyjvM5cj4nzueLAbxbkZx1KT2u67zVyyZf7u5ZfrkWB_B61Yz7kowttgr1nPpQ6UOBAHsAG51MV3-TlIIoi5H6fS_ky8H_O5XN66fyCu6Mjg728_3dw73ncDcm35v2qWgL1pvpPLxA8NS4l-2KZfD9prfIHy7PKIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4oPJqFwoYCS4ga-PYiZMDqhDtqqVQcaDS3oLtOO1KbFJ2s6L71_h1zOSxC6rordfY41hjj-ez5wXwWrlCpdZFXCNY4MokkhtFEcs2TIQw2JxQcPKXk_jwVH0aR-MN-N3HwpBbZX8mNgd1Xjl6Ix-GSssmrEQMi84t4uv-aO_iJ6cKUmRp7ctptFvk2C9_4fVt_v5oH9f6TRiODr59PORdhQHulNY1L1KjU1FQtsrYChsVyhaBtEGRuyAKjY6tTpM8CmykrBKBMxG9h-eh9KJwOjYSx70Ft7WMBMmYHq8ve6in28gmHXPENGFvUZXJcE6XJrKeBhwVdsyX_-rEK0D3ipG20X2jLbjfgVb2od1lD2DDlw_h3l-pDB_B2cFlPTOMfC3xhGIOdbBDgM8mJatJHTaeYWzqEeuz6nKSe4b4_3yymHL6bpssn3hpZ5RRCnVWzmxDi3QLNjVnpa8rJJ4tH8PpjbD4CWyWVel3gOVp7HOhrPCI8hIl0lwjIMVxVGIKG9gBBD0bM9dlOKdCGz-yxtIuk6zlfIacz4jz2XIAb1ckF216j-s67_Zrk3WSPs_W-3IAr1bNKKNkeDGlrxbUh8ogCgTbA9hu13T1N0npiNIQqd_1i7we_L9TeXr9VF7CHRSO7PPRyfEzuBuSG07zarQLm_Vs4Z8jjqrti2bDMvh-0xLyB-oDLLU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extra+storage+capacity+in+transition+metal+oxide+lithium-ion+batteries+revealed+by+in+situ+magnetometry&rft.jtitle=Nature+materials&rft.au=Li%2C+Qiang&rft.au=Li%2C+Hongsen&rft.au=Xia%2C+Qingtao&rft.au=Hu%2C+Zhengqiang&rft.date=2021-01-01&rft.issn=1476-1122&rft.volume=20&rft.issue=1&rft.spage=76&rft_id=info:doi/10.1038%2Fs41563-020-0756-y&rft_id=info%3Apmid%2F32807921&rft.externalDocID=32807921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon