DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos

UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as l...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 142; no. 3; pp. 510 - 521
Main Authors Jacob, Vinitha, Chernyavskaya, Yelena, Chen, Xintong, Tan, Poh Seng, Kent, Brandon, Hoshida, Yujin, Sadler, Kirsten C.
Format Journal Article
LanguageEnglish
Published England The Company of Biologists 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis.
AbstractList UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis.
UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis.UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis.
UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1 , and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. Summary : Uhrf1 recruits DNA methyltransferase 1; upon its mutation, cells show enhanced DNA replication but fail to proliferate and ultimately die - leading to reduced organ size.
UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. Summary: Uhrf1 recruits DNA methyltransferase 1; upon its mutation, cells show enhanced DNA replication but fail to proliferate and ultimately die - leading to reduced organ size.
Author Chen, Xintong
Chernyavskaya, Yelena
Jacob, Vinitha
Tan, Poh Seng
Hoshida, Yujin
Sadler, Kirsten C.
Kent, Brandon
AuthorAffiliation 4 Liver Cancer Program , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA
3 Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA
2 Department of Developmental and Regenerative Biology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA
1 Department of Medicine, Division of Liver Diseases , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA
5 Division of Gastroenterology and Hepatology , University Medicine Cluster, National University Health System , Singapore
AuthorAffiliation_xml – name: 4 Liver Cancer Program , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA
– name: 1 Department of Medicine, Division of Liver Diseases , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA
– name: 5 Division of Gastroenterology and Hepatology , University Medicine Cluster, National University Health System , Singapore
– name: 2 Department of Developmental and Regenerative Biology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA
– name: 3 Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA
Author_xml – sequence: 1
  givenname: Vinitha
  surname: Jacob
  fullname: Jacob, Vinitha
  organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
– sequence: 2
  givenname: Yelena
  surname: Chernyavskaya
  fullname: Chernyavskaya, Yelena
  organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
– sequence: 3
  givenname: Xintong
  surname: Chen
  fullname: Chen, Xintong
  organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
– sequence: 4
  givenname: Poh Seng
  surname: Tan
  fullname: Tan, Poh Seng
  organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Health System, Singapore
– sequence: 5
  givenname: Brandon
  surname: Kent
  fullname: Kent, Brandon
  organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
– sequence: 6
  givenname: Yujin
  surname: Hoshida
  fullname: Hoshida, Yujin
  organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
– sequence: 7
  givenname: Kirsten C.
  surname: Sadler
  fullname: Sadler, Kirsten C.
  organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25564650$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFDQ-AvERIKddxEscbpKqUH6mCDawtx7luDEk82E5ReIG-Np6ZFgFCYmVZ57tH9-eckKPZz0jIUwZnrKzKlz3enDFWyxYekA2rhCgkK-UR2YCsoWBSsmNyEuMXAOCNEI_IcVnXTdXUsCG3rz-c02Hd-gnTsI46OT9TN_eLwUg13akBt6Mze6XQMXrjdMKeGhxHalYzItUhYEw0edqN3nylA24zbqhf0nXw39OQHekyBMvotCQ9J_oDu6CtiwPFqQurj4_JQ6vHiE_u3lPy-c3lp4t3xdXHt-8vzq8Kk-dKhRWVlbIva8k5r3rGmZVdywQi9FxanrcA-Q-NaLos12UvbCVa0VUWegOMn5JXB9_t0k3YG5xT0KPaBjfpsCqvnfpTmd2grv2Nqjhw2Bs8vzMI_tuSx1aTi7td6Bn9EhVroW2ElEL-H23qsmIgyyajz35v61c_94fKABwAE3yMAa0yLu1vkrt0o2KgdllQOQvqkIVc8uKvknvXf8A_AVvFtvA
CitedBy_id crossref_primary_10_1002_bies_202200036
crossref_primary_10_1242_dev_157412
crossref_primary_10_1016_j_gde_2015_03_002
crossref_primary_10_1038_s41419_019_1575_4
crossref_primary_10_1053_j_gastro_2015_08_034
crossref_primary_10_1016_j_ydbio_2016_01_036
crossref_primary_10_1016_j_artmed_2017_02_001
crossref_primary_10_3389_fgene_2016_00110
crossref_primary_10_1242_dmm_031575
crossref_primary_10_1007_s12038_019_9973_4
crossref_primary_10_1080_15592294_2017_1359382
crossref_primary_10_1016_j_bbrc_2015_12_090
crossref_primary_10_1016_j_celrep_2016_03_060
crossref_primary_10_3389_fcell_2018_00027
crossref_primary_10_1016_j_cbd_2020_100679
crossref_primary_10_1038_ncomms10201
crossref_primary_10_1007_s00277_016_2636_8
crossref_primary_10_1016_j_brainres_2015_06_009
crossref_primary_10_1038_s42003_020_1012_3
crossref_primary_10_1139_gen_2021_0033
crossref_primary_10_1016_j_tig_2020_05_002
crossref_primary_10_1091_mbc_E15_08_0557
crossref_primary_10_1016_j_devcel_2019_06_006
crossref_primary_10_1016_j_devcel_2019_05_034
crossref_primary_10_1016_j_ydbio_2019_08_002
crossref_primary_10_1242_dev_147629
crossref_primary_10_3389_fimmu_2021_627926
crossref_primary_10_1016_j_gene_2019_144049
crossref_primary_10_1371_journal_pone_0245239
Cites_doi 10.1038/nature07280
10.1038/ni.2886
10.1073/pnas.1002720107
10.1074/jbc.M213219200
10.1002/jcb.22998
10.1042/BJ20100840
10.1074/jbc.M113.523209
10.1074/jbc.C800169200
10.1074/jbc.M113.528893
10.1038/ng1961
10.1073/pnas.0403929101
10.1038/nature09290
10.1074/jbc.M205189200
10.3109/09553002.2011.530335
10.1158/0008-5472.CAN-05-1961
10.1016/j.bbrc.2009.09.131
10.1093/nar/gkp1152
10.1038/nature12488
10.1371/journal.pgen.1002808
10.1091/mbc.E11-06-0487
10.1186/2041-9414-1-7
10.1111/j.1356-9597.2004.00710.x
10.1038/nature07273
10.1016/j.ydbio.2010.11.009
10.1038/ng1982
10.1126/scisignal.2001462
10.1016/j.jmb.2011.11.012
10.1073/pnas.0506580102
10.1038/sj.onc.1208053
10.1091/mbc.E07-10-1059
10.1093/nar/gkn961
10.1002/bdrc.20207
10.1126/science.1147939
10.1128/MCB.01887-05
10.1104/pp.112.212357
10.1093/nar/gkt549
10.1128/MCB.01684-08
10.1021/mp3004622
10.1038/ng0506-500
10.1016/j.ccr.2014.01.003
10.1074/jbc.M312823200
10.1073/pnas.0610774104
10.1074/jbc.M112.415398
10.1371/journal.pone.0011333
10.4161/epi.6.5.15082
10.1038/nature07249
10.1093/jmcb/mjq052
10.1038/nature06397
10.1128/MCB.22.7.2124-2135.2002
10.1016/j.ydbio.2009.07.017
ContentType Journal Article
Copyright 2015. Published by The Company of Biologists Ltd.
2015. Published by The Company of Biologists Ltd 2015
Copyright_xml – notice: 2015. Published by The Company of Biologists Ltd.
– notice: 2015. Published by The Company of Biologists Ltd 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1242/dev.115980
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
EndPage 521
ExternalDocumentID PMC4303001
25564650
10_1242_dev_115980
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01DK099558
– fundername: NCI NIH HHS
  grantid: T32CA078207-14
– fundername: NIDDK NIH HHS
  grantid: R01 DK080789
– fundername: NIDDK NIH HHS
  grantid: 5R01DK080789
– fundername: NIDDK NIH HHS
  grantid: F30 DK094503
– fundername: NIDDK NIH HHS
  grantid: R01 DK099558
– fundername: NIDDK NIH HHS
  grantid: F30DK094503
– fundername: NCI NIH HHS
  grantid: T32 CA078207
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
186
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAYXX
ABZEH
ACGFS
ACMFV
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AETEA
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XJT
XSW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c477t-f74f99d2593334d131f9b817ee0d39f31590b810676b4d152d7f4787b4f0dc013
ISSN 0950-1991
1477-9129
IngestDate Thu Aug 21 14:06:05 EDT 2025
Fri Jul 11 08:11:39 EDT 2025
Fri Jul 11 08:00:46 EDT 2025
Thu Apr 03 06:55:17 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
Tue Jul 01 00:41:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords DNA methylation
Hepatic outgrowth
Zebrafish
DNA replication
UHRF1
Liver development
Language English
License 2015. Published by The Company of Biologists Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-f74f99d2593334d131f9b817ee0d39f31590b810676b4d152d7f4787b4f0dc013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dev.biologists.org/content/develop/142/3/510.full.pdf
PMID 25564650
PQID 1652410926
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4303001
proquest_miscellaneous_1808679979
proquest_miscellaneous_1652410926
pubmed_primary_25564650
crossref_citationtrail_10_1242_dev_115980
crossref_primary_10_1242_dev_115980
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2015
Publisher The Company of Biologists
Publisher_xml – name: The Company of Biologists
References Arima (2021042608184500200_DEV115980C4) 2004; 9
Amsterdam (2021042608184500200_DEV115980C2) 2004; 101
Mudbhary (2021042608184500200_DEV115980C30) 2011; 93
Milutinovic (2021042608184500200_DEV115980C28) 2004; 279
Avvakumov (2021042608184500200_DEV115980C6) 2008; 455
Du (2021042608184500200_DEV115980C17) 2010; 3
Milutinovic (2021042608184500200_DEV115980C27) 2003; 278
Stroud (2021042608184500200_DEV115980C42) 2012; 8
Mistry (2021042608184500200_DEV115980C29) 2010; 1
Biniszkiewicz (2021042608184500200_DEV115980C9) 2002; 22
Anderson (2021042608184500200_DEV115980C3) 2009; 334
Reich (2021042608184500200_DEV115980C38) 2006; 38
Rottach (2021042608184500200_DEV115980C39) 2010; 38
Arita (2021042608184500200_DEV115980C5) 2008; 455
Jegu (2021042608184500200_DEV115980C23) 2013; 161
Xie (2021042608184500200_DEV115980C51) 2012; 415
Obata (2021042608184500200_DEV115980C34) 2014; 15
Mudbhary (2021042608184500200_DEV115980C31) 2014; 25
Subramanian (2021042608184500200_DEV115980C43) 2005; 102
Unterberger (2021042608184500200_DEV115980C49) 2006; 26
Achour (2021042608184500200_DEV115980C1) 2009; 390
Jacob (2021042608184500200_DEV115980C22) 2010; 466
Qin (2021042608184500200_DEV115980C37) 2011; 112
Cheng (2021042608184500200_DEV115980C12) 2013; 288
Tittle (2021042608184500200_DEV115980C46) 2011; 350
Sharif (2021042608184500200_DEV115980C41) 2007; 450
Qian (2021042608184500200_DEV115980C36) 2008; 283
Muto (2021042608184500200_DEV115980C32) 2002; 277
Papait (2021042608184500200_DEV115980C35) 2008; 19
Tien (2021042608184500200_DEV115980C45) 2011; 435
Hashimoto (2021042608184500200_DEV115980C19) 2008; 455
Kim (2021042608184500200_DEV115980C25) 2009; 37
Truong (2021042608184500200_DEV115980C47) 2011; 3
Hopfner (2021042608184500200_DEV115980C21) 2002; 22
Dong (2021042608184500200_DEV115980C14) 2007; 39
Dorn (2021042608184500200_DEV115980C15) 2011; 6
Li (2021042608184500200_DEV115980C26) 2011; 87
Taylor (2021042608184500200_DEV115980C44) 2013; 41
Nishiyama (2021042608184500200_DEV115980C33) 2013; 502
Hervouet (2021042608184500200_DEV115980C20) 2010; 5
Vijayaraghavalu (2021042608184500200_DEV115980C50) 2013; 10
Dovey (2021042608184500200_DEV115980C16) 2009; 29
Sadler (2021042608184500200_DEV115980C40) 2007; 104
Bostick (2021042608184500200_DEV115980C10) 2007; 317
Bashtrykov (2021042608184500200_DEV115980C7) 2014; 289
Chen (2021042608184500200_DEV115980C11) 2007; 39
Feng (2021042608184500200_DEV115980C18) 2010; 107
Unoki (2021042608184500200_DEV115980C48) 2004; 23
Chu (2021042608184500200_DEV115980C13) 2012; 23
Karpf (2021042608184500200_DEV115980C24) 2005; 65
Berkyurek (2021042608184500200_DEV115980C8) 2014; 289
21126517 - Dev Biol. 2011 Feb 1;350(1):50-63
12530060 - Anticancer Res. 2002 Nov-Dec;22(6A):3165-70
19380487 - Mol Cell Biol. 2009 Jul;29(13):3746-53
23215027 - Mol Pharm. 2013 Jan 7;10(1):337-52
17994007 - Nature. 2007 Dec 6;450(7171):908-12
23161542 - J Biol Chem. 2013 Jan 11;288(2):1329-39
21045206 - Sci Signal. 2010;3(146):ra80
20678257 - Genome Integr. 2010 Jun 08;1(1):7
18772889 - Nature. 2008 Oct 9;455(7214):822-5
15087453 - J Biol Chem. 2004 Jul 2;279(27):27915-27
20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94
11884600 - Mol Cell Biol. 2002 Apr;22(7):2124-35
24368767 - J Biol Chem. 2014 Feb 14;289(7):4106-15
16204030 - Cancer Res. 2005 Oct 1;65(19):8635-9
22100450 - J Mol Biol. 2012 Jan 13;415(2):318-28
18508923 - Mol Biol Cell. 2008 Aug;19(8):3554-63
21214517 - Biochem J. 2011 Apr 1;435(1):175-85
15361834 - Oncogene. 2004 Oct 7;23(46):7601-10
12084726 - J Biol Chem. 2002 Sep 13;277(37):34549-55
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
21268065 - J Cell Biochem. 2011 Feb;112(2):439-44
22792077 - PLoS Genet. 2012 Jul;8(7):e1002808
24486181 - Cancer Cell. 2014 Feb 10;25(2):196-209
19631206 - Dev Biol. 2009 Oct 1;334(1):213-23
15256591 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12792-7
24777532 - Nat Immunol. 2014 Jun;15(6):571-9
16642009 - Nat Genet. 2006 May;38(5):500-1
17322882 - Nat Genet. 2007 Mar;39(3):391-6
17242348 - Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1570-5
23426196 - Plant Physiol. 2013 Apr;161(4):1694-705
21364325 - Epigenetics. 2011 May;6(5):552-9
20613874 - PLoS One. 2010;5(6):e11333
17015478 - Mol Cell Biol. 2006 Oct;26(20):7575-86
18772891 - Nature. 2008 Oct 9;455(7214):818-21
12576480 - J Biol Chem. 2003 Apr 25;278(17):14985-95
19056828 - Nucleic Acids Res. 2009 Feb;37(2):493-505
20631708 - Nature. 2010 Aug 19;466(7309):987-91
19800870 - Biochem Biophys Res Commun. 2009 Dec 18;390(3):523-8
20026581 - Nucleic Acids Res. 2010 Apr;38(6):1796-804
21278447 - J Mol Cell Biol. 2011 Feb;3(1):13-22
17673620 - Science. 2007 Sep 21;317(5845):1760-4
24253042 - J Biol Chem. 2014 Jan 3;289(1):379-86
15009091 - Genes Cells. 2004 Feb;9(2):131-42
21067293 - Int J Radiat Biol. 2011 Mar;87(3):263-73
18772888 - Nature. 2008 Oct 9;455(7214):826-9
17259985 - Nat Genet. 2007 Mar;39(3):397-402
18945682 - J Biol Chem. 2008 Dec 12;283(50):34490-4
23788677 - Nucleic Acids Res. 2013 Sep;41(16):7725-37
22072796 - Mol Biol Cell. 2012 Jan;23(1):59-70
21671358 - Birth Defects Res C Embryo Today. 2011 Jun;93(2):194-203
24013172 - Nature. 2013 Oct 10;502(7470):249-53
References_xml – volume: 455
  start-page: 826
  year: 2008
  ident: 2021042608184500200_DEV115980C19
  article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix
  publication-title: Nature
  doi: 10.1038/nature07280
– volume: 15
  start-page: 571
  year: 2014
  ident: 2021042608184500200_DEV115980C34
  article-title: The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2886
– volume: 107
  start-page: 8689
  year: 2010
  ident: 2021042608184500200_DEV115980C18
  article-title: Conservation and divergence of methylation patterning in plants and animals
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1002720107
– volume: 278
  start-page: 14985
  year: 2003
  ident: 2021042608184500200_DEV115980C27
  article-title: Epigenomic stress response: knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M213219200
– volume: 112
  start-page: 439
  year: 2011
  ident: 2021042608184500200_DEV115980C37
  article-title: Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.22998
– volume: 435
  start-page: 175
  year: 2011
  ident: 2021042608184500200_DEV115980C45
  article-title: UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis
  publication-title: Biochem. J.
  doi: 10.1042/BJ20100840
– volume: 289
  start-page: 379
  year: 2014
  ident: 2021042608184500200_DEV115980C8
  article-title: The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.523209
– volume: 283
  start-page: 34490
  year: 2008
  ident: 2021042608184500200_DEV115980C36
  article-title: Structure and hemimethylated CpG binding of the SRA domain from human UHRF1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C800169200
– volume: 289
  start-page: 4106
  year: 2014
  ident: 2021042608184500200_DEV115980C7
  article-title: The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.528893
– volume: 39
  start-page: 397
  year: 2007
  ident: 2021042608184500200_DEV115980C14
  article-title: Fgf10 regulates hepatopancreatic ductal system patterning and differentiation
  publication-title: Nat. Genet.
  doi: 10.1038/ng1961
– volume: 101
  start-page: 12792
  year: 2004
  ident: 2021042608184500200_DEV115980C2
  article-title: Identification of 315 genes essential for early zebrafish development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0403929101
– volume: 466
  start-page: 987
  year: 2010
  ident: 2021042608184500200_DEV115980C22
  article-title: Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases
  publication-title: Nature
  doi: 10.1038/nature09290
– volume: 277
  start-page: 34549
  year: 2002
  ident: 2021042608184500200_DEV115980C32
  article-title: Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M205189200
– volume: 87
  start-page: 263
  year: 2011
  ident: 2021042608184500200_DEV115980C26
  article-title: UHRF1 confers radioresistance to human breast cancer cells
  publication-title: Int. J. Radiat. Biol.
  doi: 10.3109/09553002.2011.530335
– volume: 65
  start-page: 8635
  year: 2005
  ident: 2021042608184500200_DEV115980C24
  article-title: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-1961
– volume: 390
  start-page: 523
  year: 2009
  ident: 2021042608184500200_DEV115980C1
  article-title: UHRF1 recruits the histone acetyltransferase Tip60 and controls its expression and activity
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2009.09.131
– volume: 38
  start-page: 1796
  year: 2010
  ident: 2021042608184500200_DEV115980C39
  article-title: The multi-domain protein Np95 connects DNA methylation and histone modification
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp1152
– volume: 502
  start-page: 249
  year: 2013
  ident: 2021042608184500200_DEV115980C33
  article-title: Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication
  publication-title: Nature
  doi: 10.1038/nature12488
– volume: 8
  start-page: e1002808
  year: 2012
  ident: 2021042608184500200_DEV115980C42
  article-title: DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002808
– volume: 23
  start-page: 59
  year: 2012
  ident: 2021042608184500200_DEV115980C13
  article-title: UHRF1 phosphorylation by cyclin A2/cyclin-dependent kinase 2 is required for zebrafish embryogenesis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E11-06-0487
– volume: 1
  start-page: 7
  year: 2010
  ident: 2021042608184500200_DEV115980C29
  article-title: UHRF1 is a genome caretaker that facilitates the DNA damage response to gamma-irradiation
  publication-title: Genome Integr.
  doi: 10.1186/2041-9414-1-7
– volume: 9
  start-page: 131
  year: 2004
  ident: 2021042608184500200_DEV115980C4
  article-title: Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition
  publication-title: Genes Cells
  doi: 10.1111/j.1356-9597.2004.00710.x
– volume: 455
  start-page: 822
  year: 2008
  ident: 2021042608184500200_DEV115980C6
  article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1
  publication-title: Nature
  doi: 10.1038/nature07273
– volume: 350
  start-page: 50
  year: 2011
  ident: 2021042608184500200_DEV115980C46
  article-title: Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2010.11.009
– volume: 39
  start-page: 391
  year: 2007
  ident: 2021042608184500200_DEV115980C11
  article-title: Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng1982
– volume: 3
  start-page: ra80
  year: 2010
  ident: 2021042608184500200_DEV115980C17
  article-title: DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2001462
– volume: 415
  start-page: 318
  year: 2012
  ident: 2021042608184500200_DEV115980C51
  article-title: UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.11.012
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2021042608184500200_DEV115980C43
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 23
  start-page: 7601
  year: 2004
  ident: 2021042608184500200_DEV115980C48
  article-title: ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208053
– volume: 19
  start-page: 3554
  year: 2008
  ident: 2021042608184500200_DEV115980C35
  article-title: The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E07-10-1059
– volume: 37
  start-page: 493
  year: 2009
  ident: 2021042608184500200_DEV115980C25
  article-title: UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn961
– volume: 93
  start-page: 194
  year: 2011
  ident: 2021042608184500200_DEV115980C30
  article-title: Epigenetics, development, and cancer: zebrafish make their mark
  publication-title: Birth Defects Res. C Embryo Today
  doi: 10.1002/bdrc.20207
– volume: 317
  start-page: 1760
  year: 2007
  ident: 2021042608184500200_DEV115980C10
  article-title: UHRF1 plays a role in maintaining DNA methylation in mammalian cells
  publication-title: Science
  doi: 10.1126/science.1147939
– volume: 26
  start-page: 7575
  year: 2006
  ident: 2021042608184500200_DEV115980C49
  article-title: DNA methyltransferase 1 knockdown activates a replication stress checkpoint
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01887-05
– volume: 161
  start-page: 1694
  year: 2013
  ident: 2021042608184500200_DEV115980C23
  article-title: Multiple functions of Kip-related protein5 connect endoreduplication and cell elongation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.212357
– volume: 41
  start-page: 7725
  year: 2013
  ident: 2021042608184500200_DEV115980C44
  article-title: Depletion of Uhrf1 inhibits chromosomal DNA replication in Xenopus egg extracts
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt549
– volume: 22
  start-page: 3165
  year: 2002
  ident: 2021042608184500200_DEV115980C21
  article-title: Overexpression of ICBP90, a novel CCAAT-binding protein, overcomes cell contact inhibition by forcing topoisomerase II alpha expression
  publication-title: Anticancer Res.
– volume: 29
  start-page: 3746
  year: 2009
  ident: 2021042608184500200_DEV115980C16
  article-title: Topoisomerase II alpha is required for embryonic development and liver regeneration in zebrafish
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01684-08
– volume: 10
  start-page: 337
  year: 2013
  ident: 2021042608184500200_DEV115980C50
  article-title: Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest
  publication-title: Mol. Pharm.
  doi: 10.1021/mp3004622
– volume: 38
  start-page: 500
  year: 2006
  ident: 2021042608184500200_DEV115980C38
  article-title: GenePattern 2.0
  publication-title: Nat. Genet.
  doi: 10.1038/ng0506-500
– volume: 25
  start-page: 196
  year: 2014
  ident: 2021042608184500200_DEV115980C31
  article-title: UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.01.003
– volume: 279
  start-page: 27915
  year: 2004
  ident: 2021042608184500200_DEV115980C28
  article-title: DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M312823200
– volume: 104
  start-page: 1570
  year: 2007
  ident: 2021042608184500200_DEV115980C40
  article-title: Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610774104
– volume: 288
  start-page: 1329
  year: 2013
  ident: 2021042608184500200_DEV115980C12
  article-title: Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.415398
– volume: 5
  start-page: e11333
  year: 2010
  ident: 2021042608184500200_DEV115980C20
  article-title: Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011333
– volume: 6
  start-page: 552
  year: 2011
  ident: 2021042608184500200_DEV115980C15
  article-title: Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control
  publication-title: Epigenetics
  doi: 10.4161/epi.6.5.15082
– volume: 455
  start-page: 818
  year: 2008
  ident: 2021042608184500200_DEV115980C5
  article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism
  publication-title: Nature
  doi: 10.1038/nature07249
– volume: 3
  start-page: 13
  year: 2011
  ident: 2021042608184500200_DEV115980C47
  article-title: Prevention of DNA re-replication in eukaryotic cells
  publication-title: J. Mol. Cell Biol.
  doi: 10.1093/jmcb/mjq052
– volume: 450
  start-page: 908
  year: 2007
  ident: 2021042608184500200_DEV115980C41
  article-title: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA
  publication-title: Nature
  doi: 10.1038/nature06397
– volume: 22
  start-page: 2124
  year: 2002
  ident: 2021042608184500200_DEV115980C9
  article-title: Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.7.2124-2135.2002
– volume: 334
  start-page: 213
  year: 2009
  ident: 2021042608184500200_DEV115980C3
  article-title: Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2009.07.017
– reference: 23161542 - J Biol Chem. 2013 Jan 11;288(2):1329-39
– reference: 23215027 - Mol Pharm. 2013 Jan 7;10(1):337-52
– reference: 15009091 - Genes Cells. 2004 Feb;9(2):131-42
– reference: 21268065 - J Cell Biochem. 2011 Feb;112(2):439-44
– reference: 19056828 - Nucleic Acids Res. 2009 Feb;37(2):493-505
– reference: 20026581 - Nucleic Acids Res. 2010 Apr;38(6):1796-804
– reference: 12576480 - J Biol Chem. 2003 Apr 25;278(17):14985-95
– reference: 21045206 - Sci Signal. 2010;3(146):ra80
– reference: 19800870 - Biochem Biophys Res Commun. 2009 Dec 18;390(3):523-8
– reference: 12530060 - Anticancer Res. 2002 Nov-Dec;22(6A):3165-70
– reference: 22792077 - PLoS Genet. 2012 Jul;8(7):e1002808
– reference: 18508923 - Mol Biol Cell. 2008 Aug;19(8):3554-63
– reference: 23788677 - Nucleic Acids Res. 2013 Sep;41(16):7725-37
– reference: 21214517 - Biochem J. 2011 Apr 1;435(1):175-85
– reference: 12084726 - J Biol Chem. 2002 Sep 13;277(37):34549-55
– reference: 18772888 - Nature. 2008 Oct 9;455(7214):826-9
– reference: 15361834 - Oncogene. 2004 Oct 7;23(46):7601-10
– reference: 18772889 - Nature. 2008 Oct 9;455(7214):822-5
– reference: 24368767 - J Biol Chem. 2014 Feb 14;289(7):4106-15
– reference: 16642009 - Nat Genet. 2006 May;38(5):500-1
– reference: 15087453 - J Biol Chem. 2004 Jul 2;279(27):27915-27
– reference: 22072796 - Mol Biol Cell. 2012 Jan;23(1):59-70
– reference: 19631206 - Dev Biol. 2009 Oct 1;334(1):213-23
– reference: 24777532 - Nat Immunol. 2014 Jun;15(6):571-9
– reference: 21364325 - Epigenetics. 2011 May;6(5):552-9
– reference: 24486181 - Cancer Cell. 2014 Feb 10;25(2):196-209
– reference: 23426196 - Plant Physiol. 2013 Apr;161(4):1694-705
– reference: 21671358 - Birth Defects Res C Embryo Today. 2011 Jun;93(2):194-203
– reference: 17015478 - Mol Cell Biol. 2006 Oct;26(20):7575-86
– reference: 11884600 - Mol Cell Biol. 2002 Apr;22(7):2124-35
– reference: 18945682 - J Biol Chem. 2008 Dec 12;283(50):34490-4
– reference: 16204030 - Cancer Res. 2005 Oct 1;65(19):8635-9
– reference: 17673620 - Science. 2007 Sep 21;317(5845):1760-4
– reference: 24013172 - Nature. 2013 Oct 10;502(7470):249-53
– reference: 18772891 - Nature. 2008 Oct 9;455(7214):818-21
– reference: 15256591 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12792-7
– reference: 17994007 - Nature. 2007 Dec 6;450(7171):908-12
– reference: 21067293 - Int J Radiat Biol. 2011 Mar;87(3):263-73
– reference: 21278447 - J Mol Cell Biol. 2011 Feb;3(1):13-22
– reference: 24253042 - J Biol Chem. 2014 Jan 3;289(1):379-86
– reference: 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94
– reference: 17259985 - Nat Genet. 2007 Mar;39(3):397-402
– reference: 19380487 - Mol Cell Biol. 2009 Jul;29(13):3746-53
– reference: 20613874 - PLoS One. 2010;5(6):e11333
– reference: 22100450 - J Mol Biol. 2012 Jan 13;415(2):318-28
– reference: 20631708 - Nature. 2010 Aug 19;466(7309):987-91
– reference: 17322882 - Nat Genet. 2007 Mar;39(3):391-6
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 17242348 - Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1570-5
– reference: 21126517 - Dev Biol. 2011 Feb 1;350(1):50-63
– reference: 20678257 - Genome Integr. 2010 Jun 08;1(1):7
SSID ssj0003677
Score 2.3797631
Snippet UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 510
SubjectTerms Animals
Apoptosis - physiology
Bromodeoxyuridine
Cell Cycle Checkpoints - physiology
Danio rerio
DNA Methylation - physiology
DNA Replication - physiology
Embryo, Nonmammalian - physiology
Epigenesis, Genetic - physiology
Gene Expression Profiling
In Situ Nick-End Labeling
Liver - embryology
Statistics, Nonparametric
Trans-Activators - genetics
Zebrafish - embryology
Zebrafish - genetics
Zebrafish Proteins - genetics
Title DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos
URI https://www.ncbi.nlm.nih.gov/pubmed/25564650
https://www.proquest.com/docview/1652410926
https://www.proquest.com/docview/1808679979
https://pubmed.ncbi.nlm.nih.gov/PMC4303001
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIhAXBOUVXloEF2QZ7PgVHysKKkWtOLQocLHW9rqJSu0osSu5B678bb7ZdRznIVS4WMnsw47ny-zM7OwMY2_CLBn4wktNK44luW4CU1iZa8p4mAkpsCAldN756Ng_OHUPR96o1_vVPV1Sxu-Sq63nSv6Hq6CBr3RK9h84204KAj6Dv7iCw7hei8f7x3vGuJ4WVAa61kFtBmzsiqKshEGtM9nuT5ui4QRUTHLXG0mN6QyhqnOQChpjXTuH5jhVSVyLqjyDiV4qj0g1nmW2cVFRyWHjivaaM8qEJC_iWV3MuwpuJwhJbRAvjoR1PA6HEMJqF-jbBPJkvAwVAnzyWlzOz0WtVNrvtCR2m5WEHE2o7PHZ0uWgqF-LMeReQ268GLa3CHzuuCMtCnrRJKmFsUvby7Z-vg1RD90C_EnlJaS-F-pyUKv5tNfWuTb6kOwejI4wNtJjb7CbA5gZVAFj__OXdiV3fFW5s322Jr0txr5f3ndVodmwUtaDbTvay8k9drcxO_iextB91pP5LrulC5HWu-z2URNiAeKPQhEfsN8AEF-DF2_gxQWn1u3w4gQvruDFNbx4WXAFL97Ai7fwwoxcwYtrePEWXryB10N2-unjyYcDs6nbYSbgWGlmgZuFYQrD2nEcN7UdOwvjoR1IaaVOmDl4bRa-Q0_yYzR7gzTIKEdU7GZWmsAmecR28iKXTxgfJjK10Dt1Y4nVJRG2j_l86JiJHwtf9tnbxcuPkiapPdVW-RltMrnPXrd9pzqVy9ZerxY8jCBp6YWJXBbVPLJ9D-quFQ78v_QZWpTBMgzCPnus-d7ei5L9uTCI-ixYQUTbgTK9r7bkk7HK-O5C0YQ--fRav-AZu7P8hz1nO-Wski-gOZfxSwXvP17SyzM
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+hypomethylation+induces+a+DNA+replication-associated+cell+cycle+arrest+to+block+hepatic+outgrowth+in+uhrf1+mutant+zebrafish+embryos&rft.jtitle=Development+%28Cambridge%29&rft.au=Jacob%2C+Vinitha&rft.au=Chernyavskaya%2C+Yelena&rft.au=Chen%2C+Xintong&rft.au=Tan%2C+Poh+Seng&rft.date=2015-02-01&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242%2Fdev.115980&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_dev_115980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon