DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos
UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as l...
Saved in:
Published in | Development (Cambridge) Vol. 142; no. 3; pp. 510 - 521 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. |
---|---|
AbstractList | UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis.UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1 , and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. Summary : Uhrf1 recruits DNA methyltransferase 1; upon its mutation, cells show enhanced DNA replication but fail to proliferate and ultimately die - leading to reduced organ size. UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. Summary: Uhrf1 recruits DNA methyltransferase 1; upon its mutation, cells show enhanced DNA replication but fail to proliferate and ultimately die - leading to reduced organ size. |
Author | Chen, Xintong Chernyavskaya, Yelena Jacob, Vinitha Tan, Poh Seng Hoshida, Yujin Sadler, Kirsten C. Kent, Brandon |
AuthorAffiliation | 4 Liver Cancer Program , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA 3 Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA 2 Department of Developmental and Regenerative Biology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA 1 Department of Medicine, Division of Liver Diseases , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA 5 Division of Gastroenterology and Hepatology , University Medicine Cluster, National University Health System , Singapore |
AuthorAffiliation_xml | – name: 4 Liver Cancer Program , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA – name: 1 Department of Medicine, Division of Liver Diseases , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA – name: 5 Division of Gastroenterology and Hepatology , University Medicine Cluster, National University Health System , Singapore – name: 2 Department of Developmental and Regenerative Biology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA – name: 3 Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place, Box 1020, New York, NY 10029 , USA |
Author_xml | – sequence: 1 givenname: Vinitha surname: Jacob fullname: Jacob, Vinitha organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA – sequence: 2 givenname: Yelena surname: Chernyavskaya fullname: Chernyavskaya, Yelena organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA – sequence: 3 givenname: Xintong surname: Chen fullname: Chen, Xintong organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA – sequence: 4 givenname: Poh Seng surname: Tan fullname: Tan, Poh Seng organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Health System, Singapore – sequence: 5 givenname: Brandon surname: Kent fullname: Kent, Brandon organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA – sequence: 6 givenname: Yujin surname: Hoshida fullname: Hoshida, Yujin organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA – sequence: 7 givenname: Kirsten C. surname: Sadler fullname: Sadler, Kirsten C. organization: Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25564650$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URKeFDQ-AvERIKddxEscbpKqUH6mCDawtx7luDEk82E5ReIG-Np6ZFgFCYmVZ57tH9-eckKPZz0jIUwZnrKzKlz3enDFWyxYekA2rhCgkK-UR2YCsoWBSsmNyEuMXAOCNEI_IcVnXTdXUsCG3rz-c02Hd-gnTsI46OT9TN_eLwUg13akBt6Mze6XQMXrjdMKeGhxHalYzItUhYEw0edqN3nylA24zbqhf0nXw39OQHekyBMvotCQ9J_oDu6CtiwPFqQurj4_JQ6vHiE_u3lPy-c3lp4t3xdXHt-8vzq8Kk-dKhRWVlbIva8k5r3rGmZVdywQi9FxanrcA-Q-NaLos12UvbCVa0VUWegOMn5JXB9_t0k3YG5xT0KPaBjfpsCqvnfpTmd2grv2Nqjhw2Bs8vzMI_tuSx1aTi7td6Bn9EhVroW2ElEL-H23qsmIgyyajz35v61c_94fKABwAE3yMAa0yLu1vkrt0o2KgdllQOQvqkIVc8uKvknvXf8A_AVvFtvA |
CitedBy_id | crossref_primary_10_1002_bies_202200036 crossref_primary_10_1242_dev_157412 crossref_primary_10_1016_j_gde_2015_03_002 crossref_primary_10_1038_s41419_019_1575_4 crossref_primary_10_1053_j_gastro_2015_08_034 crossref_primary_10_1016_j_ydbio_2016_01_036 crossref_primary_10_1016_j_artmed_2017_02_001 crossref_primary_10_3389_fgene_2016_00110 crossref_primary_10_1242_dmm_031575 crossref_primary_10_1007_s12038_019_9973_4 crossref_primary_10_1080_15592294_2017_1359382 crossref_primary_10_1016_j_bbrc_2015_12_090 crossref_primary_10_1016_j_celrep_2016_03_060 crossref_primary_10_3389_fcell_2018_00027 crossref_primary_10_1016_j_cbd_2020_100679 crossref_primary_10_1038_ncomms10201 crossref_primary_10_1007_s00277_016_2636_8 crossref_primary_10_1016_j_brainres_2015_06_009 crossref_primary_10_1038_s42003_020_1012_3 crossref_primary_10_1139_gen_2021_0033 crossref_primary_10_1016_j_tig_2020_05_002 crossref_primary_10_1091_mbc_E15_08_0557 crossref_primary_10_1016_j_devcel_2019_06_006 crossref_primary_10_1016_j_devcel_2019_05_034 crossref_primary_10_1016_j_ydbio_2019_08_002 crossref_primary_10_1242_dev_147629 crossref_primary_10_3389_fimmu_2021_627926 crossref_primary_10_1016_j_gene_2019_144049 crossref_primary_10_1371_journal_pone_0245239 |
Cites_doi | 10.1038/nature07280 10.1038/ni.2886 10.1073/pnas.1002720107 10.1074/jbc.M213219200 10.1002/jcb.22998 10.1042/BJ20100840 10.1074/jbc.M113.523209 10.1074/jbc.C800169200 10.1074/jbc.M113.528893 10.1038/ng1961 10.1073/pnas.0403929101 10.1038/nature09290 10.1074/jbc.M205189200 10.3109/09553002.2011.530335 10.1158/0008-5472.CAN-05-1961 10.1016/j.bbrc.2009.09.131 10.1093/nar/gkp1152 10.1038/nature12488 10.1371/journal.pgen.1002808 10.1091/mbc.E11-06-0487 10.1186/2041-9414-1-7 10.1111/j.1356-9597.2004.00710.x 10.1038/nature07273 10.1016/j.ydbio.2010.11.009 10.1038/ng1982 10.1126/scisignal.2001462 10.1016/j.jmb.2011.11.012 10.1073/pnas.0506580102 10.1038/sj.onc.1208053 10.1091/mbc.E07-10-1059 10.1093/nar/gkn961 10.1002/bdrc.20207 10.1126/science.1147939 10.1128/MCB.01887-05 10.1104/pp.112.212357 10.1093/nar/gkt549 10.1128/MCB.01684-08 10.1021/mp3004622 10.1038/ng0506-500 10.1016/j.ccr.2014.01.003 10.1074/jbc.M312823200 10.1073/pnas.0610774104 10.1074/jbc.M112.415398 10.1371/journal.pone.0011333 10.4161/epi.6.5.15082 10.1038/nature07249 10.1093/jmcb/mjq052 10.1038/nature06397 10.1128/MCB.22.7.2124-2135.2002 10.1016/j.ydbio.2009.07.017 |
ContentType | Journal Article |
Copyright | 2015. Published by The Company of Biologists Ltd. 2015. Published by The Company of Biologists Ltd 2015 |
Copyright_xml | – notice: 2015. Published by The Company of Biologists Ltd. – notice: 2015. Published by The Company of Biologists Ltd 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1242/dev.115980 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | 521 |
ExternalDocumentID | PMC4303001 25564650 10_1242_dev_115980 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01DK099558 – fundername: NCI NIH HHS grantid: T32CA078207-14 – fundername: NIDDK NIH HHS grantid: R01 DK080789 – fundername: NIDDK NIH HHS grantid: 5R01DK080789 – fundername: NIDDK NIH HHS grantid: F30 DK094503 – fundername: NIDDK NIH HHS grantid: R01 DK099558 – fundername: NIDDK NIH HHS grantid: F30DK094503 – fundername: NCI NIH HHS grantid: T32 CA078207 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 186 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AETEA AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XJT XSW CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c477t-f74f99d2593334d131f9b817ee0d39f31590b810676b4d152d7f4787b4f0dc013 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Thu Aug 21 14:06:05 EDT 2025 Fri Jul 11 08:11:39 EDT 2025 Fri Jul 11 08:00:46 EDT 2025 Thu Apr 03 06:55:17 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 Tue Jul 01 00:41:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | DNA methylation Hepatic outgrowth Zebrafish DNA replication UHRF1 Liver development |
Language | English |
License | 2015. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-f74f99d2593334d131f9b817ee0d39f31590b810676b4d152d7f4787b4f0dc013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dev.biologists.org/content/develop/142/3/510.full.pdf |
PMID | 25564650 |
PQID | 1652410926 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4303001 proquest_miscellaneous_1808679979 proquest_miscellaneous_1652410926 pubmed_primary_25564650 crossref_citationtrail_10_1242_dev_115980 crossref_primary_10_1242_dev_115980 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2015 |
Publisher | The Company of Biologists |
Publisher_xml | – name: The Company of Biologists |
References | Arima (2021042608184500200_DEV115980C4) 2004; 9 Amsterdam (2021042608184500200_DEV115980C2) 2004; 101 Mudbhary (2021042608184500200_DEV115980C30) 2011; 93 Milutinovic (2021042608184500200_DEV115980C28) 2004; 279 Avvakumov (2021042608184500200_DEV115980C6) 2008; 455 Du (2021042608184500200_DEV115980C17) 2010; 3 Milutinovic (2021042608184500200_DEV115980C27) 2003; 278 Stroud (2021042608184500200_DEV115980C42) 2012; 8 Mistry (2021042608184500200_DEV115980C29) 2010; 1 Biniszkiewicz (2021042608184500200_DEV115980C9) 2002; 22 Anderson (2021042608184500200_DEV115980C3) 2009; 334 Reich (2021042608184500200_DEV115980C38) 2006; 38 Rottach (2021042608184500200_DEV115980C39) 2010; 38 Arita (2021042608184500200_DEV115980C5) 2008; 455 Jegu (2021042608184500200_DEV115980C23) 2013; 161 Xie (2021042608184500200_DEV115980C51) 2012; 415 Obata (2021042608184500200_DEV115980C34) 2014; 15 Mudbhary (2021042608184500200_DEV115980C31) 2014; 25 Subramanian (2021042608184500200_DEV115980C43) 2005; 102 Unterberger (2021042608184500200_DEV115980C49) 2006; 26 Achour (2021042608184500200_DEV115980C1) 2009; 390 Jacob (2021042608184500200_DEV115980C22) 2010; 466 Qin (2021042608184500200_DEV115980C37) 2011; 112 Cheng (2021042608184500200_DEV115980C12) 2013; 288 Tittle (2021042608184500200_DEV115980C46) 2011; 350 Sharif (2021042608184500200_DEV115980C41) 2007; 450 Qian (2021042608184500200_DEV115980C36) 2008; 283 Muto (2021042608184500200_DEV115980C32) 2002; 277 Papait (2021042608184500200_DEV115980C35) 2008; 19 Tien (2021042608184500200_DEV115980C45) 2011; 435 Hashimoto (2021042608184500200_DEV115980C19) 2008; 455 Kim (2021042608184500200_DEV115980C25) 2009; 37 Truong (2021042608184500200_DEV115980C47) 2011; 3 Hopfner (2021042608184500200_DEV115980C21) 2002; 22 Dong (2021042608184500200_DEV115980C14) 2007; 39 Dorn (2021042608184500200_DEV115980C15) 2011; 6 Li (2021042608184500200_DEV115980C26) 2011; 87 Taylor (2021042608184500200_DEV115980C44) 2013; 41 Nishiyama (2021042608184500200_DEV115980C33) 2013; 502 Hervouet (2021042608184500200_DEV115980C20) 2010; 5 Vijayaraghavalu (2021042608184500200_DEV115980C50) 2013; 10 Dovey (2021042608184500200_DEV115980C16) 2009; 29 Sadler (2021042608184500200_DEV115980C40) 2007; 104 Bostick (2021042608184500200_DEV115980C10) 2007; 317 Bashtrykov (2021042608184500200_DEV115980C7) 2014; 289 Chen (2021042608184500200_DEV115980C11) 2007; 39 Feng (2021042608184500200_DEV115980C18) 2010; 107 Unoki (2021042608184500200_DEV115980C48) 2004; 23 Chu (2021042608184500200_DEV115980C13) 2012; 23 Karpf (2021042608184500200_DEV115980C24) 2005; 65 Berkyurek (2021042608184500200_DEV115980C8) 2014; 289 21126517 - Dev Biol. 2011 Feb 1;350(1):50-63 12530060 - Anticancer Res. 2002 Nov-Dec;22(6A):3165-70 19380487 - Mol Cell Biol. 2009 Jul;29(13):3746-53 23215027 - Mol Pharm. 2013 Jan 7;10(1):337-52 17994007 - Nature. 2007 Dec 6;450(7171):908-12 23161542 - J Biol Chem. 2013 Jan 11;288(2):1329-39 21045206 - Sci Signal. 2010;3(146):ra80 20678257 - Genome Integr. 2010 Jun 08;1(1):7 18772889 - Nature. 2008 Oct 9;455(7214):822-5 15087453 - J Biol Chem. 2004 Jul 2;279(27):27915-27 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94 11884600 - Mol Cell Biol. 2002 Apr;22(7):2124-35 24368767 - J Biol Chem. 2014 Feb 14;289(7):4106-15 16204030 - Cancer Res. 2005 Oct 1;65(19):8635-9 22100450 - J Mol Biol. 2012 Jan 13;415(2):318-28 18508923 - Mol Biol Cell. 2008 Aug;19(8):3554-63 21214517 - Biochem J. 2011 Apr 1;435(1):175-85 15361834 - Oncogene. 2004 Oct 7;23(46):7601-10 12084726 - J Biol Chem. 2002 Sep 13;277(37):34549-55 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 21268065 - J Cell Biochem. 2011 Feb;112(2):439-44 22792077 - PLoS Genet. 2012 Jul;8(7):e1002808 24486181 - Cancer Cell. 2014 Feb 10;25(2):196-209 19631206 - Dev Biol. 2009 Oct 1;334(1):213-23 15256591 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12792-7 24777532 - Nat Immunol. 2014 Jun;15(6):571-9 16642009 - Nat Genet. 2006 May;38(5):500-1 17322882 - Nat Genet. 2007 Mar;39(3):391-6 17242348 - Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1570-5 23426196 - Plant Physiol. 2013 Apr;161(4):1694-705 21364325 - Epigenetics. 2011 May;6(5):552-9 20613874 - PLoS One. 2010;5(6):e11333 17015478 - Mol Cell Biol. 2006 Oct;26(20):7575-86 18772891 - Nature. 2008 Oct 9;455(7214):818-21 12576480 - J Biol Chem. 2003 Apr 25;278(17):14985-95 19056828 - Nucleic Acids Res. 2009 Feb;37(2):493-505 20631708 - Nature. 2010 Aug 19;466(7309):987-91 19800870 - Biochem Biophys Res Commun. 2009 Dec 18;390(3):523-8 20026581 - Nucleic Acids Res. 2010 Apr;38(6):1796-804 21278447 - J Mol Cell Biol. 2011 Feb;3(1):13-22 17673620 - Science. 2007 Sep 21;317(5845):1760-4 24253042 - J Biol Chem. 2014 Jan 3;289(1):379-86 15009091 - Genes Cells. 2004 Feb;9(2):131-42 21067293 - Int J Radiat Biol. 2011 Mar;87(3):263-73 18772888 - Nature. 2008 Oct 9;455(7214):826-9 17259985 - Nat Genet. 2007 Mar;39(3):397-402 18945682 - J Biol Chem. 2008 Dec 12;283(50):34490-4 23788677 - Nucleic Acids Res. 2013 Sep;41(16):7725-37 22072796 - Mol Biol Cell. 2012 Jan;23(1):59-70 21671358 - Birth Defects Res C Embryo Today. 2011 Jun;93(2):194-203 24013172 - Nature. 2013 Oct 10;502(7470):249-53 |
References_xml | – volume: 455 start-page: 826 year: 2008 ident: 2021042608184500200_DEV115980C19 article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix publication-title: Nature doi: 10.1038/nature07280 – volume: 15 start-page: 571 year: 2014 ident: 2021042608184500200_DEV115980C34 article-title: The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells publication-title: Nat. Immunol. doi: 10.1038/ni.2886 – volume: 107 start-page: 8689 year: 2010 ident: 2021042608184500200_DEV115980C18 article-title: Conservation and divergence of methylation patterning in plants and animals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1002720107 – volume: 278 start-page: 14985 year: 2003 ident: 2021042608184500200_DEV115980C27 article-title: Epigenomic stress response: knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M213219200 – volume: 112 start-page: 439 year: 2011 ident: 2021042608184500200_DEV115980C37 article-title: Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.22998 – volume: 435 start-page: 175 year: 2011 ident: 2021042608184500200_DEV115980C45 article-title: UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis publication-title: Biochem. J. doi: 10.1042/BJ20100840 – volume: 289 start-page: 379 year: 2014 ident: 2021042608184500200_DEV115980C8 article-title: The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.523209 – volume: 283 start-page: 34490 year: 2008 ident: 2021042608184500200_DEV115980C36 article-title: Structure and hemimethylated CpG binding of the SRA domain from human UHRF1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C800169200 – volume: 289 start-page: 4106 year: 2014 ident: 2021042608184500200_DEV115980C7 article-title: The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.528893 – volume: 39 start-page: 397 year: 2007 ident: 2021042608184500200_DEV115980C14 article-title: Fgf10 regulates hepatopancreatic ductal system patterning and differentiation publication-title: Nat. Genet. doi: 10.1038/ng1961 – volume: 101 start-page: 12792 year: 2004 ident: 2021042608184500200_DEV115980C2 article-title: Identification of 315 genes essential for early zebrafish development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0403929101 – volume: 466 start-page: 987 year: 2010 ident: 2021042608184500200_DEV115980C22 article-title: Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases publication-title: Nature doi: 10.1038/nature09290 – volume: 277 start-page: 34549 year: 2002 ident: 2021042608184500200_DEV115980C32 article-title: Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205189200 – volume: 87 start-page: 263 year: 2011 ident: 2021042608184500200_DEV115980C26 article-title: UHRF1 confers radioresistance to human breast cancer cells publication-title: Int. J. Radiat. Biol. doi: 10.3109/09553002.2011.530335 – volume: 65 start-page: 8635 year: 2005 ident: 2021042608184500200_DEV115980C24 article-title: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-1961 – volume: 390 start-page: 523 year: 2009 ident: 2021042608184500200_DEV115980C1 article-title: UHRF1 recruits the histone acetyltransferase Tip60 and controls its expression and activity publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.09.131 – volume: 38 start-page: 1796 year: 2010 ident: 2021042608184500200_DEV115980C39 article-title: The multi-domain protein Np95 connects DNA methylation and histone modification publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp1152 – volume: 502 start-page: 249 year: 2013 ident: 2021042608184500200_DEV115980C33 article-title: Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication publication-title: Nature doi: 10.1038/nature12488 – volume: 8 start-page: e1002808 year: 2012 ident: 2021042608184500200_DEV115980C42 article-title: DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002808 – volume: 23 start-page: 59 year: 2012 ident: 2021042608184500200_DEV115980C13 article-title: UHRF1 phosphorylation by cyclin A2/cyclin-dependent kinase 2 is required for zebrafish embryogenesis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E11-06-0487 – volume: 1 start-page: 7 year: 2010 ident: 2021042608184500200_DEV115980C29 article-title: UHRF1 is a genome caretaker that facilitates the DNA damage response to gamma-irradiation publication-title: Genome Integr. doi: 10.1186/2041-9414-1-7 – volume: 9 start-page: 131 year: 2004 ident: 2021042608184500200_DEV115980C4 article-title: Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition publication-title: Genes Cells doi: 10.1111/j.1356-9597.2004.00710.x – volume: 455 start-page: 822 year: 2008 ident: 2021042608184500200_DEV115980C6 article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1 publication-title: Nature doi: 10.1038/nature07273 – volume: 350 start-page: 50 year: 2011 ident: 2021042608184500200_DEV115980C46 article-title: Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2010.11.009 – volume: 39 start-page: 391 year: 2007 ident: 2021042608184500200_DEV115980C11 article-title: Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells publication-title: Nat. Genet. doi: 10.1038/ng1982 – volume: 3 start-page: ra80 year: 2010 ident: 2021042608184500200_DEV115980C17 article-title: DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination publication-title: Sci. Signal. doi: 10.1126/scisignal.2001462 – volume: 415 start-page: 318 year: 2012 ident: 2021042608184500200_DEV115980C51 article-title: UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.11.012 – volume: 102 start-page: 15545 year: 2005 ident: 2021042608184500200_DEV115980C43 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 23 start-page: 7601 year: 2004 ident: 2021042608184500200_DEV115980C48 article-title: ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain publication-title: Oncogene doi: 10.1038/sj.onc.1208053 – volume: 19 start-page: 3554 year: 2008 ident: 2021042608184500200_DEV115980C35 article-title: The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E07-10-1059 – volume: 37 start-page: 493 year: 2009 ident: 2021042608184500200_DEV115980C25 article-title: UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn961 – volume: 93 start-page: 194 year: 2011 ident: 2021042608184500200_DEV115980C30 article-title: Epigenetics, development, and cancer: zebrafish make their mark publication-title: Birth Defects Res. C Embryo Today doi: 10.1002/bdrc.20207 – volume: 317 start-page: 1760 year: 2007 ident: 2021042608184500200_DEV115980C10 article-title: UHRF1 plays a role in maintaining DNA methylation in mammalian cells publication-title: Science doi: 10.1126/science.1147939 – volume: 26 start-page: 7575 year: 2006 ident: 2021042608184500200_DEV115980C49 article-title: DNA methyltransferase 1 knockdown activates a replication stress checkpoint publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01887-05 – volume: 161 start-page: 1694 year: 2013 ident: 2021042608184500200_DEV115980C23 article-title: Multiple functions of Kip-related protein5 connect endoreduplication and cell elongation publication-title: Plant Physiol. doi: 10.1104/pp.112.212357 – volume: 41 start-page: 7725 year: 2013 ident: 2021042608184500200_DEV115980C44 article-title: Depletion of Uhrf1 inhibits chromosomal DNA replication in Xenopus egg extracts publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt549 – volume: 22 start-page: 3165 year: 2002 ident: 2021042608184500200_DEV115980C21 article-title: Overexpression of ICBP90, a novel CCAAT-binding protein, overcomes cell contact inhibition by forcing topoisomerase II alpha expression publication-title: Anticancer Res. – volume: 29 start-page: 3746 year: 2009 ident: 2021042608184500200_DEV115980C16 article-title: Topoisomerase II alpha is required for embryonic development and liver regeneration in zebrafish publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01684-08 – volume: 10 start-page: 337 year: 2013 ident: 2021042608184500200_DEV115980C50 article-title: Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest publication-title: Mol. Pharm. doi: 10.1021/mp3004622 – volume: 38 start-page: 500 year: 2006 ident: 2021042608184500200_DEV115980C38 article-title: GenePattern 2.0 publication-title: Nat. Genet. doi: 10.1038/ng0506-500 – volume: 25 start-page: 196 year: 2014 ident: 2021042608184500200_DEV115980C31 article-title: UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.01.003 – volume: 279 start-page: 27915 year: 2004 ident: 2021042608184500200_DEV115980C28 article-title: DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M312823200 – volume: 104 start-page: 1570 year: 2007 ident: 2021042608184500200_DEV115980C40 article-title: Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610774104 – volume: 288 start-page: 1329 year: 2013 ident: 2021042608184500200_DEV115980C12 article-title: Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.415398 – volume: 5 start-page: e11333 year: 2010 ident: 2021042608184500200_DEV115980C20 article-title: Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0011333 – volume: 6 start-page: 552 year: 2011 ident: 2021042608184500200_DEV115980C15 article-title: Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control publication-title: Epigenetics doi: 10.4161/epi.6.5.15082 – volume: 455 start-page: 818 year: 2008 ident: 2021042608184500200_DEV115980C5 article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism publication-title: Nature doi: 10.1038/nature07249 – volume: 3 start-page: 13 year: 2011 ident: 2021042608184500200_DEV115980C47 article-title: Prevention of DNA re-replication in eukaryotic cells publication-title: J. Mol. Cell Biol. doi: 10.1093/jmcb/mjq052 – volume: 450 start-page: 908 year: 2007 ident: 2021042608184500200_DEV115980C41 article-title: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA publication-title: Nature doi: 10.1038/nature06397 – volume: 22 start-page: 2124 year: 2002 ident: 2021042608184500200_DEV115980C9 article-title: Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.7.2124-2135.2002 – volume: 334 start-page: 213 year: 2009 ident: 2021042608184500200_DEV115980C3 article-title: Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2009.07.017 – reference: 23161542 - J Biol Chem. 2013 Jan 11;288(2):1329-39 – reference: 23215027 - Mol Pharm. 2013 Jan 7;10(1):337-52 – reference: 15009091 - Genes Cells. 2004 Feb;9(2):131-42 – reference: 21268065 - J Cell Biochem. 2011 Feb;112(2):439-44 – reference: 19056828 - Nucleic Acids Res. 2009 Feb;37(2):493-505 – reference: 20026581 - Nucleic Acids Res. 2010 Apr;38(6):1796-804 – reference: 12576480 - J Biol Chem. 2003 Apr 25;278(17):14985-95 – reference: 21045206 - Sci Signal. 2010;3(146):ra80 – reference: 19800870 - Biochem Biophys Res Commun. 2009 Dec 18;390(3):523-8 – reference: 12530060 - Anticancer Res. 2002 Nov-Dec;22(6A):3165-70 – reference: 22792077 - PLoS Genet. 2012 Jul;8(7):e1002808 – reference: 18508923 - Mol Biol Cell. 2008 Aug;19(8):3554-63 – reference: 23788677 - Nucleic Acids Res. 2013 Sep;41(16):7725-37 – reference: 21214517 - Biochem J. 2011 Apr 1;435(1):175-85 – reference: 12084726 - J Biol Chem. 2002 Sep 13;277(37):34549-55 – reference: 18772888 - Nature. 2008 Oct 9;455(7214):826-9 – reference: 15361834 - Oncogene. 2004 Oct 7;23(46):7601-10 – reference: 18772889 - Nature. 2008 Oct 9;455(7214):822-5 – reference: 24368767 - J Biol Chem. 2014 Feb 14;289(7):4106-15 – reference: 16642009 - Nat Genet. 2006 May;38(5):500-1 – reference: 15087453 - J Biol Chem. 2004 Jul 2;279(27):27915-27 – reference: 22072796 - Mol Biol Cell. 2012 Jan;23(1):59-70 – reference: 19631206 - Dev Biol. 2009 Oct 1;334(1):213-23 – reference: 24777532 - Nat Immunol. 2014 Jun;15(6):571-9 – reference: 21364325 - Epigenetics. 2011 May;6(5):552-9 – reference: 24486181 - Cancer Cell. 2014 Feb 10;25(2):196-209 – reference: 23426196 - Plant Physiol. 2013 Apr;161(4):1694-705 – reference: 21671358 - Birth Defects Res C Embryo Today. 2011 Jun;93(2):194-203 – reference: 17015478 - Mol Cell Biol. 2006 Oct;26(20):7575-86 – reference: 11884600 - Mol Cell Biol. 2002 Apr;22(7):2124-35 – reference: 18945682 - J Biol Chem. 2008 Dec 12;283(50):34490-4 – reference: 16204030 - Cancer Res. 2005 Oct 1;65(19):8635-9 – reference: 17673620 - Science. 2007 Sep 21;317(5845):1760-4 – reference: 24013172 - Nature. 2013 Oct 10;502(7470):249-53 – reference: 18772891 - Nature. 2008 Oct 9;455(7214):818-21 – reference: 15256591 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12792-7 – reference: 17994007 - Nature. 2007 Dec 6;450(7171):908-12 – reference: 21067293 - Int J Radiat Biol. 2011 Mar;87(3):263-73 – reference: 21278447 - J Mol Cell Biol. 2011 Feb;3(1):13-22 – reference: 24253042 - J Biol Chem. 2014 Jan 3;289(1):379-86 – reference: 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94 – reference: 17259985 - Nat Genet. 2007 Mar;39(3):397-402 – reference: 19380487 - Mol Cell Biol. 2009 Jul;29(13):3746-53 – reference: 20613874 - PLoS One. 2010;5(6):e11333 – reference: 22100450 - J Mol Biol. 2012 Jan 13;415(2):318-28 – reference: 20631708 - Nature. 2010 Aug 19;466(7309):987-91 – reference: 17322882 - Nat Genet. 2007 Mar;39(3):391-6 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 17242348 - Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1570-5 – reference: 21126517 - Dev Biol. 2011 Feb 1;350(1):50-63 – reference: 20678257 - Genome Integr. 2010 Jun 08;1(1):7 |
SSID | ssj0003677 |
Score | 2.3797631 |
Snippet | UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 510 |
SubjectTerms | Animals Apoptosis - physiology Bromodeoxyuridine Cell Cycle Checkpoints - physiology Danio rerio DNA Methylation - physiology DNA Replication - physiology Embryo, Nonmammalian - physiology Epigenesis, Genetic - physiology Gene Expression Profiling In Situ Nick-End Labeling Liver - embryology Statistics, Nonparametric Trans-Activators - genetics Zebrafish - embryology Zebrafish - genetics Zebrafish Proteins - genetics |
Title | DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25564650 https://www.proquest.com/docview/1652410926 https://www.proquest.com/docview/1808679979 https://pubmed.ncbi.nlm.nih.gov/PMC4303001 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIhAXBOUVXloEF2QZ7PgVHysKKkWtOLQocLHW9rqJSu0osSu5B678bb7ZdRznIVS4WMnsw47ny-zM7OwMY2_CLBn4wktNK44luW4CU1iZa8p4mAkpsCAldN756Ng_OHUPR96o1_vVPV1Sxu-Sq63nSv6Hq6CBr3RK9h84204KAj6Dv7iCw7hei8f7x3vGuJ4WVAa61kFtBmzsiqKshEGtM9nuT5ui4QRUTHLXG0mN6QyhqnOQChpjXTuH5jhVSVyLqjyDiV4qj0g1nmW2cVFRyWHjivaaM8qEJC_iWV3MuwpuJwhJbRAvjoR1PA6HEMJqF-jbBPJkvAwVAnzyWlzOz0WtVNrvtCR2m5WEHE2o7PHZ0uWgqF-LMeReQ268GLa3CHzuuCMtCnrRJKmFsUvby7Z-vg1RD90C_EnlJaS-F-pyUKv5tNfWuTb6kOwejI4wNtJjb7CbA5gZVAFj__OXdiV3fFW5s322Jr0txr5f3ndVodmwUtaDbTvay8k9drcxO_iextB91pP5LrulC5HWu-z2URNiAeKPQhEfsN8AEF-DF2_gxQWn1u3w4gQvruDFNbx4WXAFL97Ai7fwwoxcwYtrePEWXryB10N2-unjyYcDs6nbYSbgWGlmgZuFYQrD2nEcN7UdOwvjoR1IaaVOmDl4bRa-Q0_yYzR7gzTIKEdU7GZWmsAmecR28iKXTxgfJjK10Dt1Y4nVJRG2j_l86JiJHwtf9tnbxcuPkiapPdVW-RltMrnPXrd9pzqVy9ZerxY8jCBp6YWJXBbVPLJ9D-quFQ78v_QZWpTBMgzCPnus-d7ei5L9uTCI-ixYQUTbgTK9r7bkk7HK-O5C0YQ--fRav-AZu7P8hz1nO-Wski-gOZfxSwXvP17SyzM |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+hypomethylation+induces+a+DNA+replication-associated+cell+cycle+arrest+to+block+hepatic+outgrowth+in+uhrf1+mutant+zebrafish+embryos&rft.jtitle=Development+%28Cambridge%29&rft.au=Jacob%2C+Vinitha&rft.au=Chernyavskaya%2C+Yelena&rft.au=Chen%2C+Xintong&rft.au=Tan%2C+Poh+Seng&rft.date=2015-02-01&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242%2Fdev.115980&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_dev_115980 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |